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ABSTRACT 
This thesis presents an investigation of the possibility of using the fixed-point arithmetic 
in the inertial navigation systems, which use the local level navigation frame mechaniza­
tion equations. Two square root filtering methods, the Potter's square root Kalman filter 
and UD factorized Kalman filter, are compared with respect to the conventional Kalman 
filter and its Joseph's stabilized form. The effect of rounding errors to the Kalman filter 
optimality and the covariance matrix or its factors conditioning is evaluated for a various 
lengths of the fractional part of the fixed-point computational word. Main contribution 
of this research lies in an evaluation of the minimal fixed-point arithmetic word length 
for the Phi-angle error model with noise statistics which correspond to the tactical grade 
inertial measurements units. 

KEYWORDS 
Inertial navigation, multisensor data fusion, Kalman filtering, square root filtering, fixed-
point arithmetic, floating-point arithmetic, Phi-angle error model, 15-state loosely cou­
pled integration approach 

ABSTRAKT 
Tato diplomová práce se zabývá vyšetřováním možnosti použití aritmetiky pracující v 
pevné řadové čárce u inerciálních navigačních systémů, které využívají navigační rovnice 
vyjádřené v lokální navigační soustavě. Dva typy odmocninových filtrů, Potterův odmoc-
ninový Kalmanův filtr a UD faktorizovaný Kalmanův filtr, jsou porovnány vzhledem ke 
konvenčnímu Kalmanově filtru a jeho Josephově stabilizované formě. Je zde vyhodno­
cen vliv zaokrouhlovacích chyb na optimalitu Kalmanova filtru a na podmíněnost jeho 
kovarianční matice resp. jejich faktorů. Hlavní přínos této práce spočívá ve vyhodno­
cení minimální délky výpočetního slova aritmetiky pracující v pevné řadové čárce pro 
Phi-angle chybový model s uvažovanými statistikami šumu, které odpovídají kvalitě tak­
tických inerciálně měřicích jednotek. 

KLÍČOVÁ SLOVA 
Inerciální navigace, datová fůze, Kalmanova filtrace, odmocninová filtrace, aritmetika s 
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15-stavový slabě spjatý přístup k integraci navigačního algoritmu 
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1 I N T R O D U C T I O N 

1.1 Thesis Motivation 
A high-performance inertial navigation system (INS) is today one of the most critical 
part of each aircraft. Especially in a long-range and long-term flight is needed 
an accurate, robust and high-rate inertial navigation. As a counterpart for these 
requirements, there is a cost and energy efficiency Most of the modern Digital 
Signal Processors (DSP), which use the floating-point arithmetic, are incompatible 
with these requirements when we assume e.g. long duration unmanned aircraft 
missions, where a need for the energy efficiency can be crucial. A way how to reduce 
the cost and increase the energy efficiency lies in a consideration if we are able to use 
simpler processors or Field-Programmable Gate Arrays (FPGA). These commonly 
uses the fixed-point arithmetic for performing mathematical operations. Hence, a 
question of correct and efficient implementation with an attention to a numerical 
issues becomes one of the most important. 

Most of the inertial navigation systems are based on the conventional Kalman 
filter. Theoretically it is not possible for the Kalman filter to become numerically 
unstable, but from a practical point of view, especially if we use a short length of 
the computational word, there is a chance, that the filter become unstable. The 
task related to the numerical difficulties connected with the conventional Kalman 
filter was investigated many times over past years. A special attention was paid to a 
spacecraft navigation and orbit determination problems as can be seen for example 
in [1] [2] [3]. The methods which have an ability to deal with numerical deficiencies of 
the Kalman filter are generally called as the square root filtering methods. Although 
these methods appear in the era of first cosmic flights, thus when computers had 
very limited computational power, they are still an inspiration for newly invented 
last squares methods as can be seen for example in [4]. A motivation for their use 
is not only the fixed-point implementation, but their ability to make an estimation 
algorithm more robust, even if the floating-point arithmetic is used. Another reason 
for their use is an effort to make some system economically advantageous, thus when 
we tray to have a system with no unnecessary level of redundancy. 

1.2 Thesis Objectives 

The main objective of this thesis is to compare different numerical implementations 
of the Kalman filter with an attention to a quality of the estimated state variables as 
they are represented in an inertial navigation system which uses an external aiding by 
the Global Navigation Satellite System (GNSS). It is an aim of this thesis to make 
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such a comparison for the inertial navigation system algorithm expressed in the 
local navigation frame with using the Phi-angle error model in the so-called Loosely 
Coupled navigation integration approach. We will try to evaluate how various word 
lengths of the fixed-point arithmetic can affect a precision of the navigation system's 
output. Our next goal is to show how different numerical implementations of the 
Kalman filter can lead to obtaining better results and make the navigation algorithm 
more robust. Finally we try to answer a question if it is possible to use a length of the 
fixed-point computational word which is less or similar to the length of the double 
precision floating-point arithmetic, because if it is, then the navigation system can 
be implemented beneficially. 

1.3 Thesis Organization 

Chapter 1 - it is right here, thus only for a summary, some introductory remarks, 
thesis objectives and description of the thesis. 

Chapter 2 - presents an introduction to the today's most commonly used arith­
metic systems, although it is a very known topic, we describe some notions, only for 
completeness. 

Chapter 3 - deals with a stochastic dynamical system model which is suitable 
through this work. Further, the conventional Kalman filter and its numerically 
more stable implementations are presented. 

Chapter 4 - presents basic principles of the inertial navigation i.e. the coordi­
nate frames, inertial navigation system mechanization algorithm and Phi-angle error 
model. A description of the inertial sensors inaccuracies and how to use them for 
the inertial measurement unit data generation, is proposed. 

Chapter 5 - an experimental part of the thesis which presents how the numerical 
round-off errors can affect a trajectory estimated by the inertial navigation system. 
For this purpose is evaluated a criteria function for various lengths of the fractional 
part of the fixed-point computational word. Further, an influence to the covariance 
matrix or their square root factors conditioning is shown. Finally, a divergence 
caused by the rounding is described. 

Chapter 6 - summarizes results achieved through this thesis and states possible 
extensions and final conclusions. 

12 



2 F I N I T E W O R D L E N G T H A R I T H M E T I C 

2.1 Introduction 
A l l computing machines are able to compute only with a finite precision, thus they 
are able to compute only in a certain subset of the real numbers. Assuming a com­
puter which computes with an infinite precision is not realistic because it will takes 
probably an infinite time for obtaining a result. Hence, it is suitable to have a finite 
precision of computing. A l l numbers represented in the computer are spread out by 
a finite interval, which represents the machine resolution, hence a numerical round­
off arises due to an execution of mathematical operations. These round-off errors 
can significantly affect some types of mathematical algorithms. The objective of this 
chapter is a brief description of commonly used arithmetic systems represented in 
the today's computers and embedded systems. 

2.2 Fixed-Point Arithmetic 
Let's assume that we have an A^-bit binary word for interpreting a real value, then 
using the two's complement representation, the fixed-point number can be expressed 
as figure 2.1 shows. There can be seen that the bit word is divided into three parts, 
these are 1-bit for expressing a sing (S), a-bits for the integer part (I) and b-bits for 
the fractional part (F). The red dot represents the fixed binary point. 

1 bit MSB a bits LSB MSB b bits LSB 

S I . F 

Fig. 2.1: The binary representation of the two's complement fixed-point number 

Using this representation, a real world value can be approximated as a number 
from the following range [5] 

_ 2 A T - I - 6 < y < + 2 A T - I - 6 _ 2-b (2.1) 

where a concrete value can be obtained as 

2~b 

N-2 

i=0 
(2.2) 

the term Xi is considered as the i-th bit of the binary word. It is clear now, that 
the machine resolution, commonly called as the machine epsilon, is of the value 2~b. 
Assuming 6 = 0, the previous representation becomes signed integer as can be seen 
from 2.1 and 2.2. 
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2.3 Floating-Point Arithmetic 
The floating-point binary representation is depicted in figure 2.2. There we can 
see, that the binary word is divided into three parts, these are 1-bit for the sign (S) 
expression, w-bits for the exponent (E) and t-bits for the trailing significant field (T) 
or mantissa. The bit do, which is decreased from the p-bit field, represents the first 
bit in the mantissa. It is the bit before the binary point and is implicitly included 
in the exponent part. 

1 bit MSB W bits LSB MSB t = p-1 bits LSB 

S E T 
e0 ew_! dj dp_! 

Fig. 2.2: The floating-point binary representation according to the std. IEEE 754 

The floating-point arithmetic is standardized by the Institute of Electrical and 
Electronics Engineers (IEEE) as the std. IEEE 754 [6]. This standard recommends 
the parameters of the binary interchange format as it is shown in Table 2.1. 

Format Sign Exponent (w) Mantisa (t) 

binary32 (Single) 1 8 23 
binary64 (Double) 1 11 52 
binaryl28 (Quadruple) 1 15 112 

Tab. 2.1: The floating-point number parameters according to the std. IEEE 754 

A value of the floating-point number can be obtained according to the expression 
2.3, where the first two rows represent the normal and subnormal numbers. The 
remaining rows express some special values. These are the signed zero, positive or 
negative infinity and not-a-number. 

( - l ) s 2 e ™ " (O + Ef=i dfi-* 

( - i ) 5 (+o) 
( - l ) 5 (+oo) 

NaN 

\<E<2w-2 
E = 0,T^0 
E = 0,T = 0 

E = 2W - 1,T = 0 
E = 2W - 1,T ^ 0 

(2.3) 

The values of the bias and emin are represented as bias = emax 
emin = 1 — emax = 2 — 2W~1 respectively. 

2W~X - 1 and 

14 



2.4 Floating-Point vs. Fixed-Point Comparison 
Although the floating-point arithmetic is evolutionary far away in a comparison to 
the fixed-point arithmetic, there are still some considerable differences, which can 
be useful when we try to implement numerical algorithms efficiently Of course, the 
dynamic range of the floating-point is much more greater than the fixed-point, but 
its speed is slower and a chip integration area is greater. Both of these bottlenecks 
are caused due to complex algorithms for the arithmetical operations. As these 
algorithms are simpler for the fixed-point numbers a greater speed and smaller chip 
integration area can be achieved. Especially the chip integration area significantly 
affects the power consumption, operating cost and cost of the device itself. There 
is no doubt about the fact, that an algorithm implementation in the fixed-point 
arithmetic takes more time in a comparison to a floating-point implementation. 

c/) 1 0 5 

c 
o 
to 
to 
CL 
o 
tö 104 

E 

•a 

Q. 
-*—-

E 

CO 
c o 

1 0 3 -

1 0 2 

T M S 3 2 0 C 6 4 x + 

T M S 3 2 0 C 6 4 X 

T M S 3 2 0 C 6 2 X 
s>* 

C ^ Q ^ r ^ ^ ™ S 3 2 ° C 6 7 1 3 
- T M S 3 2 0 C 6 7 1 1 

T M S 3 2 0 C 6 7 0 1 

i i i i i i i 

T M S 3 2 0 C 6 7 x + 

i i i 
1996 1997 1998 1 9 9 9 2 0 0 0 2001 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 

Yeer 

A Floating-point DSP 
• Fixed-point DSP 

Fig. 2.3: A comparison of the M A C s per second for the floating-point and fixed-point 
DSPs. (Reprinted from [7] and corrected.) 

A comparison of the number of multiply and accumulate operations per second 
for the floating-point and fixed-point DSPs is depicted in figure 2.3. There we can 
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see that the trend for the fixed-point DSPs grows more rapidly in a comparison to 
the floating-point DSPs. This difference can be significant for the inertial naviga­
tion systems which employ the Kalman filtering algorithm with a high state space 
dimension. Another important benefit for the fixed-point arithmetic is its suitability 
for the systolic array implementation of the algorithms for matrix operations. A l l 
previously mentioned advantages and disadvantages are summarized in table 2.2. 

Fixed-Point Floating-Point 

Dynamic Range - + 
Development Time - + 
Operational Complexity + -
Arithmetic Operations Speed + -
Chip Integration Area + -
Power Consumption + -
Device Cost + -
Operating Cost + -
Systolic Array Algorithms + -

Tab. 2.2: Fixed-point vs. floating-point arithmetic comparison 

It is important to note, that the table 2.2 can not be considered dogmatically. 
A l l properties need to be determined individually for all devices since they strongly 
dependent on a level of optimisation used during their development. 

16 



3 K A L M A N F I L T E R I N G 

3.1 Introduction 
This chapter deals about the Kalman filter and its numerically more stable imple­
mentations. In the first section we look at a system which is needed for the purposes 
of this text as a whole. Next section is concerned with a derivation of the conven­
tional Kalman filter for the system presented in the first section. Third part is 
focused on a derivation of some numerically robust Kalman filters. 

3.2 System Model 

Let us assume that we have a stochastic linear time-variant dynamic system given 
by the following equations 

xt = Ftxt + Gtwt (3.1) 

zt = Htxt + vt (3.2) 

where first of these equations represents the system state model and the second 
represents the measurement or observation model. The n-dimensional state vector 
Xt is related from the one time step to the other by the system transition matrix 
Ft which is of the dimension n x n. The system measurement is expressed by the 
/-dimensional vector zt and is considered as a linear transformation from the state 
space to the measurement space and computed by the observation matrix Ht of 
the dimension / x n. The term wt is considered as a random variable, especially 
as a random vector of dimension m, which is assumed as the Gaussian or normally 
distributed with zero mean and known covariance and which represents the process 
noise. The term vt, which represents a measurement noise, is similarly the Gaussian 
random vector with zero mean and known covariance and is of the dimension /. The 
matrix Gt is the process noise distribution matrix and is of the dimension n x m. 

At a beginning we consider only the deterministic part of the equation 3.1 as 
follows 

xt = Ftxt (3.3) 

If we assume that we have a set of n linearly independent vectors which together 
form the fundamental matrix of 3.3 given as 

Xt = {x1)t x2,t ••• xn)t] (3.4) 

where Xi)t = [xu x<n ••• x n i ] T and if we substitute this matrix into 3.3, then the 
following matrix differential equation is obtained 

Xt = FtXt (3.5) 

17 



Post-multiplying the previous equation by X^1 yields 

( X , ^ 1 ) = Ft{XtX-') (3.6) 

$*,*o = F&t* (3-7) 

where the term $ t t o = XtX^ is the normalised fundamental matrix. Again post-
multiply, but now with an initial condition vector xto yields 

(^t,i0xt0) = Ft(<S>tjtoxto) (3.8) 

which gives us the general expression for the solution of the equation 3.3 as follows 

xt = $t,t0xt0 (3.9) 

Now we include the stochastic part of the equation 3.1 and we will deal with it 
as with the deterministic input. This assumption is not, from a point of view of 
the stochastic system theory, correct and rigorous, but it leads to the same results. 
Let's start with an assumed solution given as follows 

xt = $t,t0ct (3.10) 

where q is a vector which need to be expressed. Taking the time derivative of this 
equation yields 

xt = $>t,t0ct + $t,t0ct (3.11) 

= Ftxt + Gtwt (3.12) 

Comparing the second terms of the equations 3.11 and 3.12 gives 

®t,t0ct = Gtwt (3.13) 

Now pre-multiplying by $ i 0 j i and integrating this expression yields 

ck = ct0 + f $;}oGTwTdT (3.14) 
Jto 

Substituting this into 3.10 and replacing cto as xto gives us the final solution of the 
equation 3.1 as follows 

xt = $t,t0Xt0 + [ ^t,rGTwTdr (3.15) 

where the matrix $ < < 0 is, in general, computed as 

*t*> = eS**°FrdT (3.16) 
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However, this expression can be used only if the following condition holds for all t 

and T[8] 

Ft f FTdr = f FTdrFt (3.17) 
J to J to 

Because this is a true only for some special cases the elements of matrix Ft will be 
considered as constant values between the time to and t. Now we can use simplified 
expression for computing $ < i < 0 as follows 

$t,to =eF to('-'o) ( 3 . 1 8 ) 

where the time index to in the matrix F represents that all entries are computed at 
the beginning of the time interval [to,t]. The matrix exponential eF*o('_'o) c a n ^ e 

computed by Taylor series expansion given as follows 
OO 1 

*<* = E / ^ ( 3 - 1 9 ) 
i=0 l -

where A t is equal to (t — to). There are several ways how to compute the matrix 
exponential, but using the first two or three terms of this expansion is commonly 
sufficient. Using this approximation is advantageous especially in such cases, where 
the complete analytical expression of the matrix exponential is too complex. 

Now we can formulate discrete time solution simply as 
rk+l 

xk+1 = $fc+i,fcXfc + / $k+1)TGTwTdT (3.20) 
Jk 

which can be used for expressing the discrete-time equivalent of the system given 
by the equations 3.1 and 3.2 as follows 

xk+1 = $k+1:kxk + wk (3.21) 

zk = Hkxk + vk (3.22) 

where wk is equal to the integral on the right-hand side of equation 3.20. 
Finally we need to express discrete-time covariance matrices of this system. The 

process noise covariance matrix is given as 

Qk = E{wkwT

k) (3.23) 
rk+l 

= / $k+liTGTQTG%$Z+liTdT (3.24) 
J k 

If we assume that the matrices in 3.24 are constant between the times k and k + 1 
then we can use the following approximation 

Qk = <S>k+hkGkQGl$l+likAt (3.25) 

The measurement noise covariance matrix can be expressed as [9] 

R^ = E{^)vl)}xt = Xt ( 3 - 2 6 ) 

Where Q and R are the continuous covariances of the process and measurement 
noise respectively. 
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3.3 Conventional Kaiman Filter 
This section presents a Kalman filter derivation or rather some inductive proof type 
of derivation, because we do not derive the Kalman filter from the general perspective 
of the Bayesian estimation theory, but we start from an a priori knowledge about 
the equation of linear mean square estimate of the random variable x conditioned 
on the random variable z, thus we tray to estimate the system state 3.21 from an 
information about the measurements 3.22, as they are related to this state. 

At a beginning we need to describe the system noise statistics more closely as 
follows 

E{wk} = 0 (3.27) 

E{vk} = 0 (3.28) 

E{ 

wkwj> = Qk5kj 

WkWj 

E \vkvj \ = Ri5, jUkj 
E {vkVj 

k = j 

k = j 

(3.29) 

(3.30) 

E{vkwj} = 0 Vk,j (3.31) 

where we point out that the both random vectors wk and vk are zero mean with 
covariances given by Qk and Rk respectively and that they are not correlated in 
the discrete times k and j as it is denoted by the Kronecker delta function Skj. We 
assume that the random variables are Gaussian, hence it can be proved from 3.29 
that the joint probability density function p(w0, wi,..., WN) can be rewritten as 
P(WQ, WI, ..., WN) = P(WQ)P(WI) .. .P(WN), which indicates that the random variable 
wk represents the white noise. The same assumptions hold for the measurement 
noise vk. The last from the previous expressions 3.31 indicates that the process and 
measurement noises are not correlated between each other. 

As it is stated in the first paragraph of this section, the proof starts with the 
equation of the linear mean square estimate as follows 

%k\k = £fc|fc-i + Kk (zk - Hkxk\k_i) (3.32) 

where the first time subscript in the state vector xk\k represents the discrete time 
of computing or current system time step and the second subscript represents the 
measurement time, thus its value k indicates that the estimate is based on the mea­
surement history up to and including time k. We call this estimate as an a posteriori 
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estimate since it is calculated after an incorporation of the last measurement. Sim­
ilarly, we have an a priori estimate xk\k-i conditioned on the measurement history 
up to and including time k — 1, thus the estimate computed before the measurement 
k is taken. The Kalman gain is generally of the form K = PXZP~^. We do not as­
sume this form at this moment because we will tray to show, only through a simple 
algebraic approach, how to obtain concrete form of the Kalman gain for the system 
given by 3.21 and 3.22. For this purpose we need to define a criteria function as 
follows 

J = trE[(xk-xk\k) (xk - xk\k) | (3.33) 

thus we tray to minimize a sum of squares of the differences between a true value 
of the state vector xk entries and their estimated counterparts from xk\k, which 
directly gives the trace of the a posteriori covariance matrix. However, we can try 
to minimize the a posteriori covariance matrix without the trace considerations. 
This is not a limitation, because if the diagonal entries of the a posteriori covariance 
are minimized, then the off diagonal entries are minimized too as they represent 
the variances. Hence, the task is to minimize the following a posteriori covariance 
matrix 

Pk\k = E{xk\kxl\k} 
w - \T) (3.34) 

Xk — xk\k J \xk — Xk\k ̂  

So we need to express 3.34 in terms of the a posteriori error as follows 

= ®k,k-lxk-l + wk — %k\k-l — Kk [zk — HkXk\k_iJ 

= $fc,fc-i£fc-i|fc-i +wk — Kk (Hkxk + vk — iffc<&fc,fc-i;rfc-i|fc-i) 

= $fc,fc-i£fc-i|fc-i +wk — Kk (i7fc$fc,fc-i£fc-i — iTfc^fc-iXfc-iifc-i + Hkwk + vk 

= $fc,fc-i (I - KkHk) x f c-i |fc-i + (/ - KkHk) wk - Kkvk 

(3.35) 
now substituting this equation into 3.34 yields 

Pk\k = E{xk\kxl\k\ 
= $ f c, f c_i (J - KkHk) E {S f c _i | f c _i^_ 1 | f c _ 1 } (J - KkHk)T 

+ (J - KkHk) E {wkwl} (J - KkHkf + KkE {vkvT

k} KT

k 

= (J - KkHk) P f c | f c_! (J - KkHkf + KkRKT

k 

(3.36) 

where we use the fact, that the expectation operator E {.} is linear, which leads 
to an appearance of the relations 3.29, 3.30, 3.31. Further, we assume that the a 
posteriori estimation error xk\k is not correlated with the process and measurement 
noise. The last row of 3.36 is commonly called as the Joseph's stabilized form of 
the a posteriori covariance matrix. This equation will be needed in the subsequent 
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section about numerically more stable Kalman filter implementations. At this point 
we need to perform a minimization of this equation. This task can be solved by the 
completing-the-square method as follows 

Pk\k = Pk\k-i — Pk\k-iHl'K% — KkHkPk\k-i + KHkPk\k_iHlK]: + KkRKl 

= Pk\k-i — Pk\k-iHk Kl — KkHkPk\k_i + KkYkKl 

= Pk\k-i — KkHkPk\k-i + (Kk — Pkik-iH^YfT1^ Yk [Kk — P ^ - i f / J l ^ T 1 ) 
(3.37) 

where we introduce the following matrix 

Yk = HkPk\k_1Hk

r + Rk (3.38) 

which represents the so-called innovation covariance matrix. Now it is obvious that 
if we choose the Kalman gain as follows 

Kk = P^H^Y,-1 (3.39) 

than the a posteriori covariance matrix will be minimized. Now substituting this 
gain into 3.37 gives the minimal form of the a posteriori covariance matrix as follows 

Pk\k = (J - KkHk) Pk\k-i (3.40) 

Now we need to express the a priori covariance matrix which is given as follows 

Pk\k-1 = E \ Xfc|fc-l5|j fc_1 \ 
' J T] (3.41) 

1' = E I (xk - xk\k-i) (xk - xk\k 

Similarly, for this purpose we need to express the a priori error as follows 

%k\k-l = Xk — Xk\k-1 

= $k,k-iXk-i +wk- $fc,fc-i£fc-i|fc_i (3.42) 
= $fe,fe-lXfe_i|fe_i + wk 

where we use the a priori estimate given as 

Xk\k-i = ®k,k-iXk-i\k-i (3.43) 

which can be obtained by applying the expectation operator to the equation 3.21. 
Substituting 3.42 into 3.41 yields 

Pfc|fc-i = E jxfeife.ix^^} 

= E | ($ f c i f c_ix f c_i|fc-i + wk) (®k,k-iXk-i\k-i + Wk) | 

= E I^Pfc.fc-i^fc-ilfc-i^fc-ilfc-i^fc^-i + ®k,k-ixk-i\k-iivk (3.44) 
+ wLi | fc - i* fc , fc - i + wkwk | 

= <$>k,k-lE {xk-l\k-ixl-i\k-l\ $ J f e _ ! + E [wkwl] 

= ^k,k-lPk-l\k-l^k,k-l + Qk 
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where we use the linearity of the expectation operator as in the previous case, so the 
assumption 3.29 can appear, and next we use the fact that the a priori estimation 
error is not correlated with the process noise. 

Now we have everything what we need to summarize the equations for the con­
ventional Kalman filter as follows 

Xk\k-1 — ®k,k-lxk-l\k-l (3.45) 

P f c | f c _i = fcfc.fc-i-Pfc-ilfc-i^fc.fc-i + Qk (3.46) 

Kk = P^-^Hl faP^H* + Rk)'1 (3.47) 

%k\k = Xk\k-i + Kk (zk - Hkxk\k-i) (3.48) 

Pk\k = (I — KkHk) Pk\k-\ (3.49) 

The initial conditions for the state vector and covariance matrix are Xo|-i and Po|-i 
respectively, thus we need to set an initial estimate of the state with a corresponding 
degree of uncertainty. 

3.4 Numerically Robust Kalman Filter Forms 

The problem of numerical stability of the conventional Kalman filter is given mainly 
due to the form of equation 3.49, thus the form of the a posteriori covariance matrix. 
There we can see that for maintaining its positive definiteness the product of the 
Kalman gain and the observation matrix need to be less than the identity matrix. If 
we assume that we have a computer which has an infinite length of the computational 
word, then we can compute this product without any loss of the precision, thus this 
product is computed without any round-off error and is really less than the identity 
matrix. However, this is not realistic, so we need to consider the effect of rounding 
errors which arise due to a finite length of the computational word. These rounding 
errors are more significant as the machine epsilon, the value of least significant bit of 
the fractional part of the computational word, is greater. As the number of bits of 
the fractional part is smaller and numbers in the system model are expressed in very 
different units (the model is badly conditioned) a probability that the a posteriori 
covariance matrix become negative definite, indefinite or non-symmetric is greater. 
This can lead to a temporary divergence or to the suboptimal performance of the 
algorithm in a better case. In a worst case it can cause an absolute failure of the 
algorithm. 

Several modifications of the conventional Kalman filter for avoiding these nu­
merical problems were invented. A l l of these are based on some kind of the matrix 
factorization methods which can improve numerical properties of the covariance 

23 



matrix computation. Especially the Square Root and UD factorized Kalman fil­
ters are the most commonly used implementations. It is important to note, that 
all these methods are algebraically equivalent, but not numerically, which is very 
advantageous. 

For the end of this opening we need to note that these numerical difficulties are 
not only the problem of the Kalman filter, but other leas-squares algorithms too. 
Generally, it is the problem of all least-squares algorithms, which uses the Riccati 
equation of the form given by equation 3.49. 

The organization of this section is as follows. At the beginning we will look at 
the Joseph Stabilized Form of the Riccati equation. Next the Square Root filter with 
using the Potter's square-root measurement update step and the Modified Gram-
Schmidt algorithm for the time update step will be shown. Finally we will look at 
the Bierman's UD factorized measurement update step together with the Modified 
Weighted Gram-Schmidt algorithm for the time update step. In the all subsequent 
sections the measurement time index will be expressed as the superscript (—) and 
(+), thus the a priori and a posteriori covariance matrices will be marked as Pj7 and 
Pk respectively. 

3.4.1 Joseph Stabilized Form 

Through the derivation of the conventional Kalman filter in the previous section 
(the last row of equation 3.36) the form of the a posteriori covariance matrix, which 
is commonly known as the Joseph's stabilized form, was obtained as follows 

P+ = (J - KkHk) Pk~ (I - KkHkf + KkRkKT

k (3.50) 

This expression is mathematically equivalent to the equation 3.49, however the nu­
merical properties are different since we have a various number of arithmetic opera­
tions for each of these expressions. If we assume the previously mentioned rounding 
error which can make the result of the parentheses in 3.49 negative definite (theo­
retically impossible as we know from the Kalman filter derivation that the value of 
the criteria function after minimization is positive and non-zero), then the quadratic 
form of the first term of the equation 3.50 makes the resulting covariance matrix 
positive definite, even in a case of the negative definite parentheses. This assump­
tion holds if the process noise covariance matrix Rk is positive definite, because if 
it is, then the result of the quadratic form of the second term of 3.50 is positive 
definite too. If we consider the second term of equation 3.50, then can be seen, that 
this term increases, each time step, the uncertainty of the estimated state. Hence, 
this term represents the linear absolute forgetting factor. 
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3.4.2 Square Root Filter 

The idea of the square root filtering is based on the factorization of positive semi-
definite matrix to the product of an upper and lower triangular matrices as follows 

P = SST (3.51) 

where the factor S is generally non-unique, thus we can find numerous expressions 
for matrix S. As the diagonal elements of the covariance matrix represent variances, 
one can expect, that the diagonal entries of the factor S now represents the standard 
deviations. This is not true if the product S is of the Cholesky type. Therefore, 
from the Cholesky factorization can be simply derived an expression for obtaining 
the standard deviations. Now it is clear that if we will propagate through time the 
factor S only, instead of the covariance matrix as a whole, then we can be certain 
about the covariance matrix positive definiteness, even for the negative definite 
factor S. From this point, we can feel that the precision of the covariance matrix 
computation is now two times better than in the case of the conventional Kalman 
filter covariance matrix. This fact can be indicated by the condition number, which 
can be considered as some kind of a measure of the linear dependence of the matrix 
rows. The condition number K of the matrix P can be computed as follows 

= a m a x ^ (3.52) 

where amax(.) and 
crmm(-) a r e the maximum and minimum singular values of a 

matrix (.) respectively. The vector which contains the singular values of P can be 
expressed as a(P) = ^\{PPT) (3.53) 

where A(.) represents eigenvalue vector. The above expression simply means that 
the singular values of the matrix are the absolute values of its eigenvalues. However, 
this statement holds for the symmetric matrices only. If the condition number 
approaches to a large value, then the matrix P is more ill-conditioned. On the other 
hand the best conditioning can be achieved when it is one. The relation between 
the condition number of P and S can be expressed as [1] 

•<T\ i ..i c\\2 amax(S) ^max(P) «(P) = ) = (K(S)Y = = - ^ - f (3.54) 

which implies 
K(S) = ^JK(P) (3.55) 

Now it is clear that we have a two times greater precision for the covariance matrix 
computation and we can state that we are able to use the single precision arithmetic 
instead of the double precision arithmetic, but this is only a theoretical statement, 
practically it is strongly dependent on the examined system model. 
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Time Update 

Consider now that we have the a posteriori covariance matrix given as the product 
of its Cholesky factors as it is expressed by the following equation 

(3.56) 

If we now substitute equation 3.56 into 3.46, then we can obtain the following relation 
for the a priory covariance matrix 

<s>kS£_i(sLi)T®Tk+QK 

WWT 

1/2 1/2 (3.57) 

where W now represents a matrix of dimension n x (n + m) which is not equal to 
the triangular matrix Sk. The factor Sk can be obtained if we rewrite equation 
3.57 as follows 

p- = WWT 

= (WVT) (VWT) (3.58) 

= s^s^r 
Where V is an orthogonal matrix of dimension (n + m) x (n + m) which represents 
a linear transformation between the following matrices 

" {s-kf' = V 
0 QT 

(3.59) 

The task about finding the matrix V can be approached in several ways e.g. we 
can employ Householder transformation, Givens rotations, classical Gram-Schmidt 
algorithm or Modified Gram-Schmidt algorithm. The greatest numerical robustness 
from these algorithms has the MGS. So this algorithm, applied to the rows of the 
matrix W, is given for j — n, n — 1 , 1 and i — 1,2, — 1 as follows[10] 

w 

ßi 

00 

(n-i+1) 

W 

ßi 
J 

1/2 
0 

W 
/ „ -

o I öjj 

Wi,Vj) 
(n-j) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

where ||-|| 2 represents the Euclidean norm and (•, •) is the dot product. 
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Measurement Update 

Similarly as in the time-update step we start the derivation with a consideration that 
we have the a priory covariance matrix expressed as the product of the Cholesky 
factors as follows 

i V = 5 f c"(5 f c-)T (3.65) 

Substituting this product into the equation 3.49 leads to the a posteriori covariance 
matrix written as 

pk = Sk(Sk)T ~ Sk(Sk)THk (HkSj:(Sk)TH^ + Rk^j HkSk(Sk)T 

= sk (1 ~ (Sk)THk (HkSk (Sk)THi + Rk) HkSk^j (Sk)T 

= 5 f e - ( / - ^ ( ^ + r f e ) " \ T ) ( 5 f e - ) T ( 3 - 6 6 ) 

= 5fc" (J - a-V) (5 f c "f 

= s-kwwT{s-kf 
where we place the following substitutions 

v = {Sk)THT

k (3.67) 

a = vTv + rk (3.68) 

WWT = I - a^vv? (3.69) 

It is important to note that we change in the third row of equation 3.66 the matrix 
Rk for the scalar rk. This simplification means that we will be able to compute with 
the scalar measurements only, which is not restrictive, because we can process the 
measurement-update sequentially, thus one diagonal entry of Rk with corresponding 
entry from zk at a given time. This is very advantageous because we do not need 
to compute an inverse of the innovation matrix, which substantially increase the 
computational time of the Kalman filter. The main disadvantage in computing the 
inverse of the innovation matrix lies in the fact that this process makes the resulting 
covariance matrix numerically badly conditioned in such a case, where the length 
of the computational word is short. Hence, the sequential measurement-update 
brings more numerical robustness into the Kalman filter computation. However, 
this approach requires the diagonal matrix Rk. The diagonalization procedure can 
be performed before an implementation of the algorithm, but only for cases, where 
Rk is time-invariant. 

The problem of factoring the a posteriori covariance matrix is now given by 
searching for an expression of the factor W. This can be done by rewriting the 
equation 3.69 as follows 

WWT ={l- ia~lvvT) (i - 1a-xvvT)T (3.70) 
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where we introduce a variable 7, which need to be found. For this purpose we make 
the following treatment 

/ — a~1vvT = I — 2/ya~1vvT + ry2a~2vvTvvT 

0 = 7

2 a r > ^ + 2 7 a " V + a V 
0 = {1

2a-1P + 21 + l)a~1vvT V ' ' 
0 = 7

2 a - 1

/ g + 27 + l 

where we can obtain, after some arrangements, the following two solutions 

7i,2 = — ( 3 . 7 2 ) 
1 =F \fr^a 

Only the positive expression is important for us, because if rka —> 1 then 7 —> 00. 
Rewriting the expression 3.66 as follows 

W f c

+ ) T = SkWWT(Sk)T (3.73) 

yields the final term for updating the factor of the a posteriori covariance matrix 

s+ = skw 
= Sk — 'ya~1vvT 

= Sk ~ la^SkW? 

= sk ~ lKkVT 

(3.74) 

where the Kalman gain Kk is expressed as 

Kk = a~lSkv (3.75) 

The Potter's Square Root measurement-update can be summarized as follows 

v = {Sk)THT

k (3.76) 

a = vTv + rk (3.77) 

Kk = a~lS^v (3.78) 
xt = xk + Kk {zk - Hkxk^j (3.79) 

7 = q l~T= (3-80) 

S+ = 5 f e " - 7 ^ T (3.81) 

If one need to initialize the factor SQ , then the Cholesky decomposition need to 
be used. The estimated state vector is initialized as same as in the case of the 
conventional Kalman filter. 
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3.4.3 U D Filter 

The main disadvantage of the Square Root filter is the need for the square root 
computation, which brings more computational burden and some difficulties from 
an implementation point of view. These drawbacks can be avoided by introducing 
the UD factorization of any positive semi-definite matrix as follows 

P = UDUT (3.82) 

where U is an upper triangular matrix with unit diagonal entries and D is a diagonal 
matrix. Both of these are assumed as square matrices of the same dimension. Now 
one can ask how we obtain a two times greater precision with this expression. The 
answer is expressed by the following relation 

p = (UVD)(UVD)t = ssT 

which gives the relation for the condition number as 

(3.83) 

K(P) = K((UVD)(UVD [K(UVD)) 
D) 

(3.84) 

where the terms ar, 
values of a matrix 

<J2

min{\J \[D) O-min(P) 

(.) and <Jmin{) represent the maximum and minimum singular 
respectively. Hence, the condition number of product U\[P) is 

K(UVD) • 'K(P) (3.85) 

Now finding an expressions for propagating the a priori and a posteriori covariance 
matrices in the terms of 3.82 leads to an improved version of the previously expressed 
Square Root filter, however without the square root computation. 

Time Update 

Similarly as with the Square Root filter we firstly make an assumption that we have 
the a posteriori covariance matrix expressed in the factorized terms, but now we 
consider the terms of the UD factorization as follows 

P+ = UtDi{Ut)T (3.86) 

where Uk is the upper-triangular matrix of the dimension n x n with unit diagonal 
entries. The matrix Dk is diagonal and of the dimension nxn. Again we need to note 
that we need to employ the Cholesky UD factorization for obtaining the standard 
deviations because the diagonal entries of factor D~[ do not directly interpret the 
variances. Substituting now equation 3.86 into 3.46 yields 

WDWT 

D k-l 0 

Qk 
(3.87) 
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where the block-diagonal matrix D is of dimension (n + m) x (n + m). The matrix 
W is not interchangeable for the factor Uk as before and is of the dimension n x 
(n + m). Incorporating again the orthogonal transformation matrix V, which is now 
of dimension n x (n + m), leads to another expression for the a priori covariance 
matrix as follows 

Pk = (uk-v)D(uk-v)T 

Uk~ (VDVT) (U, 
UkD-k(Uk)T 

which yields 
u k v 

(3.88) 

(3.89) 

where we need to find the matrix V as before. 
In the second row of the equation 3.88 can be seen that Dk = VDVT, thus the 

diagonal entries djj are expressed as VjDvJ for j = 1, 2 , n (where we assume Vj as 
a row vector of the matrix V), which is nothing else than the weighted dot product. 
Assuming this type of dot product the following Weighted Modified Gram-Schmidt 
algorithm, applied to the rows of W, can be defined for j n, n 

1,2, 1 as follows 

djj 
U,: 

W (n-j) 
D 

W 

,Wj)/d 
(n-j) 

uijWj 

where ||-||^ represents the Euclidean norm weighted by the matrix D and 
standard dot product. 

., 1 and 

(3.90) 

(3.91) 

(3.92) 

•) is the 

Measurement Update 

If we assume the following expression for the a priori covariance matrix 

Pk =UkDk-{Uk-)T (3.93) 

where Uk is the upper-triangular matrix and Dk is the diagonal matrix, both of the 
dimension n x n, then the a posteriori covariance matrix 3.49 can be rewritten as 

Pit UkDk(Uk UkD-k{Uk)THT

k [HkUk-Dk{Uk)THT

k + Rk) HkUkDk{U, 
Uk (Dk - Dk{Uk)THl {HkUkD-k{Uk)THl + Rk)~X HkUkD^ (Uk 

Uk [Dk - Dkf (fTDkf + n)'1 fTDk) (Ukf 

Uk (Dk - a-W) (Ukf 

uk (ubuT) (uk-f 

(UkU) D (ukU)T 

(3.94) 
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where the following terms were introduced 

/ = (U^fHZ (3-95) 

v = D~kf (3.96) 

a = fv + rk (3.97) 

The problem of factorizing the matrix expression 3.94 is now given as 

UDUT = Dk - oTxvvT (3.98) 

Obtaining the factors U and D leads to a general recursion of the UD measurement-
update 

% = US° (3.99) 
D* = D 

Similarly as with the Square Root Filter are there several approaches how to obtain 
factors of the equation 3.98. Bierman was presented in [12] how to obtain a solution 
for updating the terms Uk and Dk directly as follows 

= (U~)THT (3.100) 

V = D-f (3.101) 

a3 = OLj_X + fjVj (3.102) 

d} = df^ 
aj 

(3.103) 

h = V3 (3.104) 

Pj 
fj (3.105) Pj 

= U~j+ biPj (3.106) 

bi := k + U^Vj (3.107) 

K b (3.108) 

where j = l ,2 . . . . ,n and % — 1 , 2 , j — 1. It is crucial to set a0 = r before we go 
through the first iteration. If we have /-dimensional observation vector, then the 
equations 3.100-3.108 need to be performed /-times. A n initialization of the factors 
UQ and DQ need to be performed by the Cholesky UDUT decomposition. 
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4 A I D E D I N E R T I A L N A V I G A T I O N 

4.1 Introduction 
It is clear form the title that an aided inertial navigation system is based on using 
inertial sensors, thus on using some accelerometers and gyroscopes. Therefore, as the 
accelerometer measure an acceleration, we need to perform a time integration of its 
output for obtaining a velocity. As we have the velocity, we need to perform another 
time integration for obtaining a position. Similarly an output of the gyroscope 
need to be integrated for obtaining an attitude. The task related to integrating 
these outputs is difficult because all measurements are obtained with some degree 
of uncertainty. This uncertainty is represented by a measurement noise, additional 
error, scale factor error, non-linearity etc. A l l these effects are integrated together 
with useful information. Therefore, integrating the sensor's outputs becomes a very 
critical part of the navigation process, because as more as uncertain the output of the 
sensors is, the navigation system's error grows more quickly. A way how to reduce 
this error lies in a modelling of the previously mentioned effects. If we are able to 
estimate values of these effects, then we can use them for correcting the outputs of 
the inertial sensors. Unfortunately, assuming this corrections, it is not possible to 
cover it in all, and although the navigation system's error grows more slightly than 
before, it is still an unbounded grow. If we need to make the navigation system's 
error bounded, then an external aiding, with bounded error, need to be incorporated. 
One of the most popular aiding source is the Global Navigation Satellite System 
(GNSS). Although the GNSS measurements are erroneous, these errors are not grow 
over time. The measurements of the GNSS and the inertial sensors are then fused 
together, which makes the inertial system's error bounded. The obvious question 
can appear, so why we do not use the GNSS only? The answer is, the GNSS 
measurements can be significantly noisy and the sample rate is low. However, a 
combination of the GNSS and the inertial sensor's measurements leads to a high-
rate and more accurate navigation system's results. 

There are several approaches how to fuse data from the GNSS and the inertial 
sensors. These approaches are divided according to a degree of coupling between the 
GNSS and the inertial navigation system into four categories, which are named as 
the Loosely Coupled Integration, Tightly Coupled Integration, Deep Integration and 
Ultra Deep Integration. This is a general division and all others can be considered 
as a combination of these approaches or something between them. A l l these are 
very good described in [13]. 

The organization of this chapter is as follows. For support our next effort, we 
first describe a number of coordinate frames, which detailed knowledge is crucial for 
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understanding the navigation algorithm. Next we focus our attention to a derivation 
of the kinematic equations of motion. From these equations we can next derive a 
trajectory (sensor data) generator. Last part of this chapter is focused to a deriva­
tion of navigation error equations with their corresponding error state space model. 
These sections are based on the author's studies of [15] [16] [20] [21]. 

4.2 Coordinate Frames and Earth Model 

For describing a movement of target in the vicinity of the Earth is suitable to use 
a number of coordinate frames. If we do so, the mathematical model of the inertial 
navigation becomes, in some sense, modular. This modularity is a suitable property 
as it can be used for defining a number of inertial navigation algorithms with a 
possibility of extensions. This extension can be for example the so-called wander 
azimuth coordinate frame, which can be used for avoiding the singularity as it arises 
in the local navigation frame due to the vehicle's movement through the poles of 
the Earth. 

North 

South 

Fig. 4.1: Relations between the Earth Centered Inertial (ECI) frame, Earth Cen­
tered Earth Fixed (ECEF) frame, local navigation frame and body frame. 
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4.2.1 Coordinate Frames Description 

Earth Centered Inertial (ECI) frame (i-frame) - an orthogonal set of 
axes denoted by triad [xi,yi,Zi\ as depicted in figure 4.1. This orthogonal frame 
has its origin at the centre of the Earth and is nonrotating and nonaccelerating 
with respect to the rest of the Universe. This assumption is not considered with 
an acceleration due to the rotation of the Earth around the Sun and the Galaxy 
rotation because it is not measurable. The inertial sensors measure a motion just 
with respect to the inertial frame. 

Earth Centered Earth Fixed (ECEF) frame (e-frame) - similarly it is 
a set of orthogonal axes, which are denoted by triad [xe, ye, ze] as depicted in figure 
4.1. A n origin of this frame is placed at the centre of the Earth and its axes are 
fixed to the Earth, hence they rotate with respect to the inertial frame. The axis xe 

intersects the Greenwich meridian or the conventional meridian where zero degree 
of the longitude is defined. A n angular rate of the E C E F frame with respect to the 
ECI frame is denoted as Uie. 

Local navigation frame (n-frame) - an orthogonal axes set with an origin 
at the point P as depicted in figure 4.1. The axes are denoted by triad [xn,yn,zn]. 

More commonly used notation, especially between navigation engineers is [E, N, U], 
which are the abbreviations of east, north and up. In some cases we can find a 
definition by triad [N, E, D] (down), which involve a different orientation of the 
axes. For the purposes of this work the first option will be considered. The origin of 
the n-frame is placed at the curve which is defined by a local meridian plane. The 
axis yUjN is always pointed to the north pole of the Earth. For that reason, there is 
a possibility to gain an infinite speed when e.g. an aircraft flight over the north or 
south pole. This lack can by avoided by a definition of the so-called wander azimuth 
frame, as was written in the introductory of this section, but for now we will not 
consider this option due to simplification. 

Body frame (b-frame) - this axes set is defined by triad y&, z&] and has 
an origin at the same place as the n-frame i.e. at the point P. The axes are aligned 
with the roll, pitch and yaw axes of an aircraft. The inertial navigation system is 
commonly installed in the b-frame. This is not strict, so it can be installed else­
where, but this include another transformation needed for computing the navigation 
solution, which involves higher computational burden. 
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4.2.2 Ear th Mode l 

The Earth model defines a number of important constants and variables, which are 
necessary for running the navigation algorithm. The Earth itself is a very complex 
shape in a detail. Modelling all aspects of this shape is very difficult, therefore its 
surface is approximated by an ellipsoid, whose radius is defined by the mean sea 
level. The necessary constants, which are used through this text are defined in the 
table 4.1. 

Re e 

6378140 m 0.00335281066475 - 7.2921151467e-5 rad/s] 

Tab. 4.1: Definition of the Earth model constants. RE is the main radius of the 
Earth, e is the eccentricity of the Earth and ooie is the angular rate of the Earth. 

A two important radii are needed for computing the time change of the latitude 
and longitude. First one RN is the radius of curvature, known as the meridian radius 
for the north-south motion. 

RN{L) - „ 2 ^ „ 2 ^ 3 / 2 ( L i ) 

sin 

And the second one RE is the transverse radius of curvature for the east-west motion, 
written as 

= ( 1 - e w i ) . / 2 <42> 
Both of this change its values when the object varies its latitude as moves in the 
vicinity of the Earth. 

A n angular rate of change of the latitude is obtained from figure 4.1 as the 
fraction of the translational velocity in the north direction and the sum of Earth's 
meridian radius with a height above the Earth's surface as follows 

L = R^flf+h <43> 

Similarly, the time change of longitude is obtained from figure 4.1 as the fraction 
of the east translational velocity and sum of the transverse radius of the Earth and 
the height as 

A = (4.4) 
{RE{L) + h) cos L y 1 

where the sum in the denominator changes its value with a change of the cosine of lat­
itude. This is obvious directly from the geometry of figure 4.1 and the Pythagorean 
theorem. 
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4.2.3 Coordinate Transformations 

The coordinate transformation matrices are useful when we need to transform a 
vector expressed in some frame to a vector expressed in another frame. Main two 
transformation matrices used through this text are C™ direction cosine matrix, which 
transform a vector expressed in the e-frame (ECEF) to a vector expressed in the 
n-frame, and Ch

w which transform vectors between the n-frame and the b-frame. 
First of these is obtained by rotating the n-frame from its starting position by 

the longitude angle A around the z-axis and next rotating by the latitude angle L 
around the y-axis. At last, the first matrix in the expression 4.5 is used for changing 
the axes order from [E,U,N] to [E,N,U]. 

" 0 1 0 " cL 0 sL 

c: = 0 0 1 0 1 0 
_ 1 0 0 _ . ~ s L 0 cL 

-sX cX 0 
= —sLc\ — sLsX cL 

cLcX cLsX sL 

cX sX 0 
-sX cX 0 

0 0 1 
(4.5) 

Second of these can by obtained in the similar way as before. We start with a 
rotation of the b-frame around its z-axis by the yaw angle, next we need a rotation 
around the x-axis by the pitch angle and the last rotation is around the y-axis by 
the roll angle as follows 

rib — C 3 C 2 C 1 

cy 0 — 5 7 ' 1 0 0 c?p sip 0 
= 0 1 0 0 c6 s6 —sip cip 0 

5 7 0 C 7 _ 0 -s6 c6 _ 0 0 1 
cyc<p — sysOsip —cOsip sjcip + cjs9sip 

= cys<p + sysOcip cOcip sysip - cysOcip 
—sjc6 s6 cyc9 

(4.6) 

where the indexes in the terms of right-hand side of 4.6 denote the order of rotations. 
Now, if we look at this matrix, then we can see, that the all angles can be computed 
back from the entries, which are expressed only by the two (e.g. c9c<p) or less terms 
(i.e. sB). 

4.3 Navigation System Equations 
This section deals with a derivation of inertial navigation system mechanization 
equations. Firstly we start with a velocity equation, which describe a movement 
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of a target expressed in the local navigation frame. Next is described an attitude 
equation of the object's body frame which is related to the navigation frame. Fur­
ther, a position equation of the target, expressed in the geodetic coordinates i.e. in 
the terms of latitude, longitude and altitude, is presented. As was mentioned in 
the introductory of this chapter, the sensor's measurement comprises errors, so the 
final part of this section briefly describes equations which are commonly used for 
their modelling. At this point is important to note, that the time indexes in the all 
following subsection, are omitted due to a simplification of the notation. 

4.3.1 Velocity Equation 

Let's start a derivation of the velocity time propagation equation with the following 
relation 

<n = Cn

efln (4.7) 

which describes the transformation of the e-frame expressed velocity to the n-frame 
expressed velocity. Taking the time derivative of this equation yields 

= Cn

ertn + Cn

erln (4.8) 

where the r%n term is defined as 

ren ^iren (4-9) 

and its first time derivative as 

en i en ' i en I A I r\\ 
— ne. f-i _ Qi i \ \ • ) 

w i V en ie en J 

Previous relation uses the time propagation equation for the transformation matrix 
Cf as follows 

Ct = -CtWie (4.11) 

where Q\e is the skew-symmetric matrix of the e-frame to i-frame angular rate ex­
pressed in the i-frame. The second time derivative of 4.9 gives 

fie f-i _ Qi ri \ _ i _ fie ("i _ Qi ri _ Qi -i 
^i V en i L i e ' e n ) ' ^ i \'en iLie'en " i e ' e 

~Cfäle (fln — Vt\er%

en) + Cf (fl — Vt\efl

en) (4-12) ie V en ie en I 1 V era ie en 
Cf (fL - 2QlrL + iVJKx 

ie ie en) 

substituting both of these time derivatives into the 4.8 yields 

vn = CnCe (r* - 2D}- f1 +VLiVLiri ) - Qn Cnfe 

en s i V era %e en 1 ie ie en) en e en 

= cn(fA -2QiCifn -2QiQiri +QiQiri ) - Qn fn 

i V en ie n era ie ie era 1 ie ie en) en en 
— Hn ir* — 9 0 * r i i r n — Oi Oi r-i \ — On r n 

~ ^i V en ^Lie^n' era " i e " i e ' en) iLen'en 
= C\ [fen — (fijn + 2Qie) Cnfen — VtieVtieren) 

(4.13) 
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where in the first row we use a time propagation equation of the transformation 
matrix C™ as follows 

cn

e = -nn

enc: (4.i4) 

and the expression for the time derivative of rl

en as 

^ e1 en ' ^ e1 en 
Qi ri _ i _ (~<ij,e 

ie en ' e en 

(4.15) 

n 
en which can be obtained from the equation 4.9. The skew-symmetric matrix Q 

in 4.14 is represented by the n-frame to e-frame angular velocity expressed in the 
n-frame. 

The specific force, measured by the accelerometer, is obtained as a combination 
of an inertial acceleration, gravity and the Earth's centripetal acceleration 

fr 
J e fJc *Lie*Lie' en (4.16) 

(4.17) 

Expressing the first right-hand side term of 4.16 in the inertial frame yields 

rmfi £n _ i _ r n _ i _ (~<nc\n c\n r n 
1 en ~ J en ' iJen ' ^ i ^Lie^Lie^n' en 

p = Cl (fn + qn ) + nl rl 

en n \J en 1 Jen) 1 ie ie en 

then by substituting this equation into 4.13, the final relation for the velocity time 
propagation can be written as: 

Cb fib — ( ^ en + 2^™e) V^n + ^ (4.18) 

Now we need to perform a derivation of the angular rate terms used in the pre­
vious equations. For expressing the term u;™n we need firstly introduce a temporary 
angular rate of the n-frame with respect to the e-frame expressed in the n-frame as 

cL 0 sL 1 T 0 1 I" 0 1 T sLA " 
0 1 0 0 + —L = —L (4.19) 

-sL 0 cL \ [ A J [ 0 J |_ cLX _ 

the order of scalars in this vector is organized as [U,E,N], so for change this ar­
rangement into [E,N,U], the other transformation need to be included as follows 

" 0 1 0 " ' 0 1 0 " " sLX ' " —L ' 
0 0 1 ,,n' -

uen' — 
0 0 1 —L = cLX = 

1 0 0 _ 1 0 0 _ 

RN(L)+h 

RE(L)+h 
1 , " „ , f i t a n L 

RE(L)+h 

(4.20) 
The angular rate of the e-frame with respect to the i-frame expressed in the n-frame 
can be obtained as 

(4.21) 
0 0 

Uie — ° e 0 — Ldie cL 
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where the transformation matrix C™ is defined by equation 4.5. 
At this point we have everything what we need for expressing the discrete-time 

version of equation 4.18 as follows 

Ven,t0+At = ven,t0 + {fib,t ~ (pen,t + ^ie,t) Ven,t + 9en,t) dt (4.22) 

where we introduce the time indexes into 4.18. If we assume that the integrand in the 
equation 4.22 is constant between the time steps then the following approximation 
can be made 

Ven,k+1 = Ven,k + (/i6,fc — (pen,k + ^7e,k) Ven,k + 9en,k) At (4.23) 

where A t represents the sample time period. 

4.3.2 Att i tude Equation 

The time propagation equation of the attitude, for small angle deviations between 
the time steps, can be expressed as 

C? = C-Qb

nb (4.24) 

where Vtb

nb is the skew-symmetric matrix of the b-frame to n-frame angular rate 
expressed in the b-frame. If we assume, that the angular rate of the gyroscope is 
measured as a sum of the angular rate of the b-frame with respect to the n-frame 
and an angular rate of the n-frame with respect to the i-frame as follows 

ub

b = ub

nb + ub

n (4.25) 

then we can express the skew-symmetric matrix Vtb

nb as 

Ob — ob — ob 

c\b (~<bc\n (~m ^ ' i 

The angular rate of the n-frame with respect to the i-frame is defined as a sum of the 
angular rate of the e-frame with respect to the i-frame, thus as the Earth's angular 
rate, and the angular rate of the n-frame with respect to the e-frame. So the last 
equation can by rewritten as 

Vb

nb = nb

b-Cb(Ql + n:n)CZ (4.27) 

Now the discrete-time equivalent of equation 4.24 can be obtained as follows 

(~m _ (-m Jt°+ nnbdt _ / i n Jab

nbx) _ / m (anbX) _ syn sib,to IA cyo\ 

i=0 
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where the Taylor series expansion for the term e^»ftx-) can be rewritten as (inspired 
by [15] p. 138) 

no ' 

+ 

^ o o K f t x ) 

/ _ L I r\P v 1 _ L 1 rag ^ I ^ no ^ I v no ' l 

^3x3 + (Cir,h><) H o 1 R 1 OA r 

(4.29) 

a nb where we use {ab

nbx)z = — 
notation |.|| express the Euc 
attitude D C M update is as follows 

{ab

nbx) and « , x ) 4 

idean norm. Finally, the relation 
a (ab

nbxf. The 
or the discrete-time 

a b,k+l 
b.k 

b,k^b,k+l (4.30) 

where Cb'k+1 is given by the last row of the equation 4.29. 

4.3.3 Position Equation 

The time propagation of the position equation, expressed in the n-frame, can by 
computed as 

(4.31) en en en en 

but because we need to obtain the position in the geodetic coordinates the resulting 
equation is obtained by using the coordinate transformation matrix as follows 

Tvr: (4.32) 

where the notation r„ now represents the position of the n-frame's origin expressed 
in geodetic coordinates. Therefore we involve the transformation matrix T as follows 

T 
0 
1 

(RE(L)+h)cos(L) 

0 

RN(L)+h u 

0 0 

0 1 

(4.33) 

This transformation matrix can be obtained directly from the geometry of figure 4.1 
in the similar way as the time derivatives of the latitude and longitude expressed by 
the equations 4.3 and 4.4 respectively. 
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The discrete-time version of the position can be obtained simply as the time 
integration of the equation 4.32 as follows 

K+At = Lt0+ ™>N>\ dt (4.34) 

rt0 + At V™n E t 

J to (RE(Lt) + ht) cos Lt 

rto+At 
K+At = hto+ vn

e utdt (4.36) 
J t0 

again assuming the constant integrand between time steps in the equations 4.34 
- 4.36, the final form of the discrete-time equivalent of the equation 4.32 can be 
written as 

W = Lk + —ff—At (4.37) 

\k+i = A f c + f " ^ f c -At (4.38) 
{RE{Lk) + hk) cosL f c 

hk+1 = hk + vn

en^kAt (4.39) 

where A t represents the sample time period as in the case of velocity equation. 

4.3.4 Sensor Errors 

The accelerometer and gyroscope errors can be divided, according to [15], into four 
categories. These are a fixed contribution, temperature-dependent variation, run-
to-run variation and an in-run variation. First two of these can be calibrated in a 
laboratory, so their influence can be compensated systematically inside the naviga­
tion processor. On the other hand, the last two, need to be estimated before their 
use for the sensor's output correction, because these are not possible to compensate 
during the laboratory calibration since they are represented by random processes. 
Hence, they are modelled in the navigation system estimation algorithm. A n ap­
proach how to model these two error sources follows. 

The run-to-run variation acts as the static component of the output error and is 
different after each turn-on, but constant during an operation period. This error part 
is commonly called as the fixed bias or turn-on bias. The in-run variation represents 
the variable component of the output error as it varies through time. This error 
source is called as the in-run bias of drift. Both biases, the turn-on and in-run, can 
be modelled as the random walk plus random constant process. Another way how to 
model these biases lies in an employment of the first order Gauss-Markov process. 
More about both of these stochastic system models can be found for example in 
[17]. There is considered the first option, so the models of the accelerometer and 
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gyroscope biases are expressed as follows 

ba = Van (4.40) 

bg = vgu (4.41) 

where vau and vgu are Gaussian random variables. 
Assuming these models, the following accelerometer measurement vector can be 

defined as 
j*b = (I3 + Ma)f»b + ba + vav (4.42) 

where f\h express the measured value of the specific force, f\h is the true value of the 
specific force, ba express the previously mentioned accelerometers' biases and vav is 
a zero mean uncorrelated Gaussian white noise with known covariances. For the 
gyroscope measurement vector we have the following expression 

Qb

ib=(I3 + Mg)ub

ib + bg + vgv (4.43) 

where we have similarly the Co\b) which represents the gyroscope measurement of the 
body angular rate, uj\b is the corresponding true value, bg express the gyroscopes' 
biases and vgv is again a zero mean uncorrelated Gaussian white noise. 

The gyroscopes' and accelerometers' scale factor error terms are noted by Mg and 
Ma respectively. These scale factor error terms are not considered in the subsequent 
navigation system error model, but are used in the following trajectory generator 
description, so they are introduced only due to a more general expression. 

The estimated value of the measurements 4.42 and 4.43, thus the measurements 
compensated by the biases and scale factors, can be written as follows 

fl = (I3-Ma)(fl-ba) (4.44) 

u\b={h-Mg){u\b-bg) (4.45) 

where all variables has the similar meaning as before. The only difference is given 
by the hat which means that the variables represent the estimates. 

4.4 Sensor Data Generator 

The inertial sensor data generator is created for the purpose of generating the gy­
roscope and accelerometer data from an a priory knowledge about a reference tra­
jectory. 

A n equation for the gyroscope data generator can be obtained by combining 4.43 
and 4.25 as follows 

CJ\ = (I + Mg) (CB

N « + u>:n) + JNB) +bg + vgv (4.46) 
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Computation of the terms u;™n and a;™ (equations 4.20 and 4.21 respectively) is based 
on the navigation solution from the previous time step. The term bjh

nh need to be 
specified a priory from the data about the required trajectory, thus we use 

nb,x 7 " 0 " " 0 " 

nb,y = 0 + c3 
0 + C3C2 0 

. unb,z _ _ 0 _ _ 0 _ J -

7 + s<j)9 — ccpsOip 
= cip9 + stpsOtp 

cOip 

which can be derived from transformation matrix 4.6. A l l what we need now for 
generating angular rates from the gyroscopes, is a definition of the roll, pitch and 
yaw angle expressions and their first time derivatives. A concrete form of these 
expressions is defined by the desired trajectory. 

Similarly, combining 4.42 and 4.18 the following expression for the specific force 
generation, expressed in the body frame, can be derived as 

/I = (J + Ma) Cb

n (a + (2w? + un

en) x vn

en -g) + ba + vav (4.48) 

Computation of the terms u;™n and uufe is solved in the same way as before, thus they 
are directly computed from the equations 4.20 and 4.21 respectively. What need to 
be specified now, is the desired acceleration vector a. This term need to be defined 
with relation to the previous angular rate equations which as they are given by u)h

nh. 
The term v™n is computed as the time integration of the specified acceleration a. 

Circle Trajectory 

The circle trajectory with a constant altitude can be simulated by using the following 
equations [18] 

aNk = (4.49) 
' -'-circle 

au,k = 0 

where all these represent an entries of the vector a = [a,E,k aN,k au,k] and where vg 

is the ground speed which is defined as a constant value 

vg = constant 

Further, the term Tcircie express the circulation period. Now a definition of the yaw 
angle increment and its rate is 

A-i/> = mod f^^ ,27r 
\ circle 

2TT 
Tcircl 

(4.50) 
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the roll and pitch angle increments and the corresponding rates are set to zeros. 
The translational velocity, position and the angular increments are integrated 

each simulation step according to the next equations 

<n,k+i = <n,k + akAt (4.51) 

L f c + i - Lk + RN

e

{

n

L^hkAt 

\ k + 1 = \ k + ( f l B ( £ " ) ^ ) c o s £ f c A t (4.52) 

h fe+i = hk 

= 7fc + Ajk 

= $k + A$k 
= i\)k + A^fe 

lk+1 = ik + Ajk 

9k+l = 6k + A$k 
i>k+i = ipk + Aipk 

(4.53) 

(4.54) 

Other trajectories can be derived in the similar manner. That can be a static state, 
straight line, serpentine shape or their combinations. 

4.5 Navigation Error Equations 
The main purpose of error equations is to obtain an error correction which can 
be used to correct the inertial navigation solution as we tray to prevent from the 
divergence caused due to the inertial sensors inaccuracies. Another reason why we 
need to derive an error model is because the navigation equations are non-linear 
and the direct linearisation leads to too complex equations. However, the direct 
linearisation techniques are sometimes used too, as has been shown for example in 
[19]. Generally it is possible to meet two types of the navigation error equations 
through the literature. These are denoted after Greek letters \I/ and 0, where each 
of these represent a vector of attitude errors. Although the Phi-angle error model 
is derived in the local navigation frame at the true navigation position and the Psi-
angle error model in the computer frame at the computed navigation position, it can 
be shown, that they are algebraically equivalent as was proved in [20]. The difference 
between these frames makes the Psi-angle error model computational less demanding 
against to the Phi-angle error model. There are some modifications, which appear 
in the literature over past few years, e.g. [22] modifies the basic version of the Phi-
angle and Psi-angle error models. This modification avoids an explicit occurrence 
of the specific force in the error model state space transition matrix. Further, [23] 
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deals with large heading uncertainty error models, as this uncertainty can appear 
during the coarse alignment phase, and generalizes the basic Phi-error and Psi-error 
models and their modified versions from [22]. In [24] are investigated properties of 
the second order error models. However, through this work, we will use only the 
basic form of the Phi-angle error model, thus the first order approximation. 

Since the error model can be derived by the first order linear perturbation anal­
ysis the following perturbation terms need to be stated 

Kn = <n + Kn (4-55) 

f2 = (I-(<Px))fTb + SfTb (4.56) 

9l = 9l + Sgl (4.57) 

un

en = u& + & £ , (4.58) 

= u £ + (4.59) 

CZ = (I-(<px))CZ (4.60) 

C: = (I-(Qx))C: (4.61) 

A l l these represent, that the computed value, denoted by the hat, is a sum of the true 
value and the error term, denoted by S. The direction cosine errors are expressed in 
the similar manner, but the error is given as —(<px)Cb. 

4.5.1 Velocity Error Equation 

Let's begin with a derivation of the velocity error equation. The velocity error 
of a moving target can be expressed by the equation 4.55. If we simply subtract 
the true inertial navigation velocity mechanization equation 4.18 from its computed 
equivalent 

C = fl - (^n + 2fl£) x vn

en + gl (4.62) 

together with substituting the equations 4.55 - 4.59 into 4.62, then the following 

velocity error equation can be obtained 

Svn

en = (J - (0x)) fl + 5fl - « „ + 5un

en + 2 (cufe + 5uD) x « „ + 5vn

en) 

+ 9l + Sgl - n + « „ + 2w?) x vn

en - gl 
= + *fl + 8& ~ (<H"„ + 2(Jw?) x < „ - « „ + 2w?) x 5vn

en 

(4.63) 
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4.5.2 Att i tude Error Equation 

The attitude error is represented by the second term in the parentheses of the 
equation 4.60, thus as the skew-symmetric matrix (0x). From this equation we can 
write the b-frame to n-frame transformation error matrix as follows 

<SC« = C 6 " - C 6 " 
= - ( 0 x ) q 

The time derivative of the first row of 4.64 yields 

"n 
(4.64) 

5Cl = Ch - C? n 
I, — ~ 

o n fin I n i l fin 
^Lbn^b "r ^Lbn^b 

^ n ( / - ( 0 x ) ) Q + fiM (4-65) 
-fill + fi^x) + nil) C£ 
-n^ + nu<Px) + ^n)c^ 

where the equations 4.60 and 4.24 are used. In the last row of 4.65 the second term 
is replaced by the true value of the body to navigation angular rate skew-symmetric 
matrix. This adaptation does not have any significant effect, because the values are 
nearly similar. Let's taking the time derivative of the second row of 4.64 as follows 

5Cn

b = _ ( 0 x ) Q > - ( 0 x ) Q 
= ( - ( 0 x ) + ( 0 x K „ ) Q > 

where the equation 4.24 is used again. Now comparing 4.65 and 4.66 yields 

- ^ „ + ^ „ ( 0 x ) + ^ „ = - ( 0 x ) + ( 0 x K „ (4.67) 

where we need to express the first term of the right-hand side as follows 

((fix) = ( 0 x ) ^ n - ^ n ( 0 x ) + ^ n - ^ n (4.68) 

or in a vector form 
0 = - ^ n 0 + a, b ™ n -uC (4.69) 

Now we need to express the last two terms of this equation. The first one can be 
simply expanded as 

u C = u?n-C£ub

lb (4.70) 

and the second one as 

Jbn 

cD™ - (J - (0x)) C?a& - 5ul + {4>x)C%5u\b (4.71) 
cD™ -{I-{4>x))C%u\b-5un 

ib 
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where the last term of the second row is neglected, because the multiplication of two 
error terms is nearly zero. Now substituting 4.70 and 4.71 back into the equation 
4.69 yields 

= ( 0 x ) < + (0x)ul + 5ul + 5un

en - 5ul (4.72) 

which is the final expression of the Phi-angle attitude error. 

4.5.3 Position Error Equation 

The previously presented equations for the velocity and attitude errors need to be 
expressed by using the equations 4.55 - 4.60. This is due to the fact, that the direct 
partial derivative of the velocity 4.18 and attitude 4.24 equations is difficult since 
the appearance of the direction cosine matrix in both of these equations. On the 
other hand, the position equation 4.32 do not need this approach, thus we can write 
the corresponding error equation directly as follows 

,. drr, orn = — 
orr, 

dfr. 
drn + dvr: 

5vn

en (4.73) 

Another way how to express the position error lies in the equation 4.31, or more 
precisely, in its equivalent before the time derivation r™„ = C™re

en. It is obvious 
that this equation contains the direction cosine matrix, thus we need to use similar 
approach as with the attitude error equation. For this purpose one need to employ 
4.61. However, the equation 4.73 is sufficient for our purposes. 

4.5.4 State Space Representation of Navigation Error Mode l 

Now we need to rearrange all the previously presented error equations into a state 
space representation which is appropriate for the Kalman filter. Let's start with 
the general form of the error state space representation which need to be found as 
follows 

Sxt = Ft5xt + Gtvt (4.74) 

5zt = Ht5xt + vt (4.75) 

These equations are very similar to the state space model presented by 3.1 and 3.2, 
the only difference is, that the state and measurement vector represent deviations. 
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State Space Error Equations 

The state equation 4.74 can be divided into the following two parts 

5%ins,t 

5%aug,t 

+ 

F * F 

-1 insxins,t ^ insxaug,t 

Faugxins,t Faugxaug,t 
c c 
^insxinSjt ^insxaugj 

Gaugxins,t GaUgxaug,t 

5%ins,t 

5%aug,t + 

(4.76) 

The first part, denoted by the index ins, comprises the error terms of the position, 
velocity and attitude as 

5x inn,l 
5Lt 5\t 5ht 5vn

 E t uuen,N,t uuen,U,t 
i T 

Jz,t 
(4.77) 

where 5rn,t is the position error vector, 5v™nt is the velocity error vector and <f>t is 
the attitude error vector. 

The second part, denoted by the index aug, represents an augmentation, which 
comprises the inertial sensor error increments. These correspond to the biases, scale 
factor error terms, non-orthogonality etc. Through this work, we will consider only 
the biases as follows 

= [Sba,x,t Öba,y,t 5b, a,z,t 5b, g,x,t Sbg,y,t 5bgtZtt] 
(4.78) 

where 5baj is the accelerometer bias vector, which consists of the three scalars, one 
for each axis, denoted by the subscripts x,y,z. The term 5bgj express the gyroscope 
bias vector, again composed of three scalars, which are denoted similarly as before. 

As we have described the error state space vector the transition and noise distri­
bution sub-matrices need to be found. A way, how to obtain the transition matrix 
Finsxins,t, lies in the equations 4.73, 4.63 and 4.72. Since we need to express the 
position error given by 4.73 the partial derivatives need to be evaluated firstly as 
follows 

dfr, 
drr, 

5rr, 
0 
1 

0 

Jen,E sin L 

(RE(L)h) cos 2 L 
-5L 

f.n 
uen,N 

(RN(L)+hy 
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V en7E 

(RE(L)+h)2 c o s L 

0 

5h (4.79) 

d f r . 
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RN(L)+h 

(RE(L)+h)cosL 

5i)n 

0Uen,U 

(4.80) 
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where we neglect the derivatives of the orders higher than first and those, which are 
derivatives of the inner functions. Further, the equation 4.63 need to expressed in 
the terms of Su^n and Sujfe. Both of these can be obtained from partial derivatives 
according to the navigation system state vector (not the error state vector) similarly 
as before 

5ul 

!)r" 

RN(L)+h 
5vn „ 

en,E 

RE{L)+h^ 

RE(L)+h 

+ 
0 
0 
1 

5vv 

[RE(L)+h) cos 2 L 
5L + 

(RN(L)+h)2 

{RE{L)+hf 

'.RE(L)+h)2 

Sh (4.81) 

5uZ UJi, 

0 
— sinL 
cosL 

SL (4.82) 

The gravity error term Sg^b can be computed as [0 0 — 
2 

|f] where g is [16] 
8g 
c)li 

d_n ( Re V 
dh^° \Re+h) 

2.9 
Re + h 

(4.83) 

Now we need to put all these terms together and make the resulting matrix 
Finsxins,t- For this purpose the following block representation is introduced 

insxins,t 

Fn F\2 F13 

F21 F22 F23 

F31 F32 F33 

(4.84) 

substituting now 4.79, 4.80 into 4.73 and 4.81, 4.82 into 4.63 and 4.72 gives, after 
some rearrangements, the following sub-matrices 
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At this point it is obvious that the terms 5f™b and Su^b, from the equations 4.63 
and 4.72 respectively, are not used in the previous F i n s x i n S t t matrix derivation. So 
their use becomes important through a derivation of the matrices F i n s x a u g j t , G i n s X i n S j t 

and Ginsxaug,t- Before expressing these matrices the relation for the terms 5f% and 
need to be found. Let's start with the first of these, thus with the true specific 

force error term as follows 

Sf* = fl ~ fl (4-94) 

Now by substituting the equations 4.44 and 4.42 into 4.94 (the term f™b need to be 
expressed and scale factor error matrices Ma and Ma are set to zero) the following 
relation can be obtained 

5f, ib Cb (ba ~ba + Vav 
CI (Sba + Vav) 

(4.95) 

where the Sba is the accelerometers' bias error state variable. Similarly, the error 
term 5co^b can be defined as follows 

5un 

it, 
Uib ~ Uib (4.96) 
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Again, substitution of the equations 4.45 and 4.43 into 4.82 yields 

5u, Cb (bg - b 9 + vgv 

CI (Sbg + vgv) 
(4.97) 

Using 4.95 and 4.97 the previously mentioned matrices Ft insxaug,ti ^insxinsj G; and 
Ginsxaug,t are written as follows 

insxaug,t G insxins,t 

G insxaug,t o. 

0 3 x 3 0 3 x 3 
Cm 

0 3 X 3 

0 3 x 3 ~Ub . 

9x6 

(4.98) 

(4.99) 

For expressing the matrices of augmented part of the error state vector 4.78 the 
derivatives of Sba and Sbg need to be expressed first. Starting with Sba gives the 
following expression 

5bn 

E{ba} (4.100) 

It is obvious from 4.95 that the time derivative of Sba is given as a difference of the 
time derivatives of true bias and its estimate. The term in the second row of 4.95 
expresses that the estimated value of the bias is given as the mean of the true bias. 
Hence, it is clear that the time derivative of this value is zero and the resulting value 
of the time derivative of Sba is given only by the noise term vau. Similar conclusion 
holds for the time derivative of the gyroscope bias error as follows 

Sbn b g - b g 
bg-E{b9} (4.101) 

gu 

Now we can express the matrices of the augmented part of the error model as 

7 — D 
augxins,t ^ 6 x 9 

1augxaug,t GaUgxins,t OQX6 

G augxaug,t -^6x6 

(4.102) 

(4.103) 

(4.104) 

Observation Error Equations 

The observation error vector of the equation 4.75 can be expressed as a difference 
between the GNSS observation vector zt and the vector which comprises the resulting 
solution of the navigation system's position r" n and velocity w™„ denoted here as xrv 

5zt = zt- xrVjt (4.105) 
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where the vector zt is given as 

Zt en,l 

en,E,t 

Jen,t 
Jen,N,t Jen,U,t Jen,E,t Jen,N,t Jen,U,t 

(4.106) 

and the vector xrv t as 

ry'v iy*lt, iy*>t, 01 01 01 
1 en.E.t 1 en.N.t 1 en.U.t uen,E,t uen,N,t uen,U,t 

(4.107) 

The observation matrix Ht is defined as follows 

Ht = 
Tt

 1 ^ 3 x 3 ^ 3 x 3 ^ 3 x 3 ^ 3 x 3 

^ 3 x 3 -^3x3 ^ 3 x 3 ^ 3 x 3 ^ 3 x 3 
(4.108) 

where the matrix Tt

 1 is given as the inverse of matrix 4.33 

Tf1 

0 (RE(L) + h) cos(L) 0 
RN{L) + h 0 0 

0 0 1 
(4.109) 

There we can ask why the position part of the vectors zt and xrVjt is not expressed 
in the terms of latitude, longitude and height. It is due to numerical difficulties 
which can arise in the Kalman filter innovation matrix inverse computation. As we 
have the navigation system position expressed in the terms of latitude, longitude 
and height, the input position observations fn and the position as the result of the 
navigation systems integration rn, need to be both transformed before their use in 
the Kalman filter residual. 

Here we need to note that the discretization of the system transition matrix 
in 4.74 is performed with using the first two terms of the 3.19, thus we use the 
first order approximation. For the discrete version of the process noise covariance 
matrix is used equation 3.25. The discretization of the inertial navigation system 
mechanization part was described in the previous sections. 

Now we have everything what we need for the Kalman filter implementations. 
The summary of the inertial navigation algorithm is depicted in figure 4.2, where the 
measurement time indexes are introduced. It is important to say that as we estimate 
the error between the estimated and true trajectory we use the so-called indirect 
Kalman filter. This do not brings any change into the conventional Kalman filter 
equations 3.45 - 3.49, but we need to consider a little difference in the covariance 
matrix interpretation and if we want to use the estimated error in the so-called 
feedback or feed-forward implementation of the indirect Kalman filter. Both of 
these implementations are described for example in [17]. 
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5 E X P E R I M E N T S A N D R E S U L T S 

5.1 Introduction 

It is very difficult to obtain some analytical solution, for example in a sense of the 
sensitivity analysis, which can precisely evaluate all rounding errors in the inertial 
navigation system or which can describe how are these errors propagated through 
time. Hence, we need to note, that the following description do not trays to quantify 
any source of rounding error individually since it is a very difficult and demanding 
task. It only trays to compare the previously described Kalman filter implementa­
tions. Further, we want to describe what the presented results show and where is 
probably the most significant source of rounding errors from a higher perspective. 
First part of this chapter presents a description of an experiment and the second 
part presents a result of experiments where the fractional part of the fixed-point 
computational word is changed in some interval. 

5.2 Experiment Description 

Let us assume that we have a vehicle which moves in a circular trajectory with a 
constant ground speed 10m.s _ 1 and at constant altitude 1000m. A n initial value of 
the latitude, longitude, roll, pitch and yaw angles is set to Orad. Initial velocity is 
known from the ground speed. The accelerometers' noise std. deviations are given 
as aa = 9.81 x 10~ 5m.s~ 3 / / 2 and aba = 6.00 x 10~ 5m.s~ 5 / / 2. For the gyroscopes' std. 
deviations we have ag = 2.91 x 10~7rad.s~1 / / 2 and <j\,g = 9.20 x 10~7rad.s~3 / / 2. The 
accelerometers' biases are all three set to —0.03m.s~2 and gyroscopes' biases to 2.95 x 
10 _ 4 rad.s _ 1 , where first one of these gyro biases have a negative sign. The GNSS 
position and velocity measurements have std. deviations ar = 10m and av = 4m.s _ 1 

respectively. The accelerometers' and gyroscopes' measurements are both sampled 
every 0.2s and GNSS measurements every Is. The variances of the initial covariance 
matrix are set to 1 x 10 _ 6 rad 2 for the latitude and longitude, 3.33m2 for the height, 
0.66m 2.s - 2 for the east and north velocities, 3.33 x 1 0 _ 2 m 2 . s - 2 for the up velocity, 
5.8 x 10 _ 6 rad 2 for the roll and pitch angles and 2.3 x 10 _ 2 rad 2 for the yaw angle. 
The initial accelerometer-bias variances are all three set to 3.3 x 1 0 _ 2 m 2 . s - 4 and 
the initial gyroscope-bias variances are all three set to 3.3 x 10 _ 4 rad 2 . s - 2 . The off-
diagonal elements of the initial covariance matrix and the elements of the initial error 
state vector are set to zero. Simulation was performed in the MATLAB/Simul ink 
environment with the Fixed-Point Toolbox. The length of the simulation is 1000s. 
A l l these experimental conditions hold for the all subsequent sections. 
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5.3 Different Computational Word Lengths 
This section presents simulation results for experiments which tray to evaluate how 
the optimality of the Kalman filter forms is affected due to changes in the fractional 
part of the fixed-point computational word, thus we tray to evaluate the effect of 
rounding errors to the estimated trajectory and compare a performance of the all 
previously discussed Kalman filter forms. 

The integer part of the computational word is set to 24bits (including the sign 
bit) and is unchanged between the individual experiments. The fractional part is 
changed in a range from 45bits to 55bits. The integer part of the computational 
word is chosen with respect to the greatest number in the system, which is one 
of the Earth's radii summed with the height above the Earth. The 24bits has 
a sufficient redundancy for the common flight levels. The bottom value of the 
fractional bit range is chosen with respect to the smallest values which can appear 
in the navigation system. These are results of the division of the local navigation 
frame velocities with the sum of the Earth's radius with the height above the Earth, 
which arises in some elements of the system transition matrix 4.84. This sum is of 
the second power in some entries, hence one can ask, if the previously mentioned 
24bits in the integer part is a sufficient length for expressing a number, which can 
arises as a result of this second power. Of course, 24bits is not sufficient, but if 
we take a closer look at the all equations which we need to compute during one 
iteration (in the navigation system algorithm as a whole), then we can see, that 
these second powers are expressed only in the denominators of some entries of the 
transition matrix 4.84. Hence, we can split this fraction into the multiplication 
of the same two fractions, which avoids the need for a longer integer part of the 
computational word. It only brings a requirement for a minimal number of bits 
in the fractional part of the computational word, thus the 45bits. If we decrease 
this number of bits more, then the previously mentioned multiplication of the two 
fractions becomes rounded to zero, hence we are right on the edge with this number 
of bits, so we can expect that as we will approach this length more closely, then 
the rounding in the transition matrix 4.84 becomes more significant. The other 
numbers, which are expressed by small values, are the elements of the process noise 
covariance matrix, which are obtained as the square of the previously mentioned 
gyroscopes' and accelerometers' std. deviations. The length of 45bits is sufficient 
for their interpretation. 
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5.3.1 Criteria Evaluation 

We choose the criteria function as a weighted sum of the second powers of the 
estimated error states as follows 

where TV is the number of samples in the simulation output dataset and 5xi is the 
i-th estimated error state vector from this dataset. The subscript j represents that 
the sum is computed for the j-th entry of the vector 8x. 

Bars which indicate values of the criteria function for the conventional Kalman 
filter, its implementation with the stabilized Joseph's version of the discrete Riccati 
equation, the Square Root filter and UD factorized filter, when the number of bits 
in the fractional part of the fixed-point computational word is changed, are depicted 
in figures 5.1 - 5.5. The red line represents a value of the criteria function for the 
conventional Kalman filter computed in the double precision floating-point arith­
metic. We can compare a height of the bars with respect to this line as we expect 
that the conventional Kalman filter computed in the double precision floating-point 
arithmetic is a sufficient reference which do not experience any significant rounding 
errors during the simulation. Hence, we can say that the red line represents an 
optimal value of the criteria as the process and measurement covariance matrices 
are set optimally from the previously mentioned std. deviations. 

Now let's take a closer look at the figure 5.1 which depicts the values of the 
criteria function for the latitude (a), longitude (b) and height (c) errors. We can 
see, that the bars are the same in the range from 55bits down to 51bits for the 
all Kalman filter implementations. This identity is an expected result as we know 
that the all implementations are algebraically equivalent. The values of the criteria 
function for the conventional and Joseph implementations are zero in the interval 
from 45bits to 48bits, which indicates that the both algorithms fail trough their 
run in this range. We will describe this situation more precisely in the subsequent 
section which deals about the estimated trajectories. The criteria function for the 
Square Root and UD factorized implementations, in the range from 45bits to 49bits, 
is discrepant. This indicates a suboptimal performance of these implementations. 
Similar conclusions can be made about the rest of the error state variables depicted 
in figures 5.2 - 5.5. However, it is obvious that the variables which do not experience 
any significant movement are least affected. 

i v i=i 
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5.3.2 Covariance M a t r i x Conditioning 

This section take a different look at some lengths of the fractional part of the fixed-
point computational word used through the previous evaluation of the criteria func­
tion. Thus, we demonstrate, how the covariance matrix conditioning is affected due 
to rounding errors in the system. Figures 5.6 - 5.9 show the covariance matrix or its 
factors conditioning for the various lengths of the fractional part of the computa­
tional word. Each of these figures depict the conditioning of the conventional covari­
ance matrix n(Pconv_fxp), Joseph's form of the covariance matrix K,(Pjsph_fxp), next 

1/2 

the conditioning of the Square Root factor K{Ssr fxp) and UD factor K,(UDu'd ^ ). 
These are compared with respect to the conditioning of the conventional Kalman 
filter covariance matrix n(Pconv_fip) computed in the double precision floating-point 
arithmetic. 

In figure 5.6 is used 48bits for the fractional part when the integer part remains 
set to 24bits. This is the number of bits of the fractional part when the conventional 
and Joseph's Kalman filters fail as was pointed out through the previous section and 
as it is depicted in figures 5.1 - 5.5. It can be seen again that the both algorithms 
fail after approximately 400s. We can see that some values significantly fluctuates 
from their reference represented by the black line. The peaks show that there is 
a significant likelihood that the covariance matrix becomes ill-conditioned. On the 
other hand the conditioning of the Square Root and UD factorized Kalman filter 
factors do not experience any fluctuations. There we need to remind that the con­
dition number of the Square Root and UD factorized Kalman filter factors is two 
times smaller in order of magnitude with respect to the conventional and Joseph 
implementations of the covariance matrix. The resulting trend of the Square Root 
and UD factors conditioning is significantly smoother, thus we can state that these 
implementations are numerically more robust. As we increase the number of bits 
in the fractional part of the computational word, the conventional and Joseph im­
plementations do not fail as it is depicted in figure 5.7, but it is obvious that there 
is still a possibility, that a divergence can occur. A little bit better situation is 
depicted in figure 5.8 where the conventional and Joseph implementations are not 
disrupted significantly, but the trend is not smooth, which still indicates unstability 
of the covariance matrix computation. Other bit increase in the fractional part in­
dicates that the trend for the conventional and Joseph's implementations becomes 
completely smooth as it is depicted in figure 5.9. It is clear that it is much more 
better to use square root filtering methods instead of the conventional and Joseph 
implementations, even if it brings a little bit more computational burden. 
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5.3.3 Estimated Trajectories of Conventional Kalman Fil ter 

In this section we take a closer look at the length of the fractional part of the 
computational word where the conventional and Joseph's implementations diverge. 
This is 48bits as it is depicted in figures 5.1 - 5.5. A whole navigation period, during 
this simulation, is depicted in figures 5.10 - 5.24 for the conventional Kalman filter 
only. This is because the Joseph's version results are nearly identical. Each of these 
figures depict the navigation system state variable, error state variable estimated by 
the Kalman filter with corresponding sigma bounds and the variance which serves 
for computing these sigma bounds. One can ask why we need to depict the variance, 
it is because we need to show, if the diagonal entries of the covariance matrix, thus 
the variances, are positive or if they become negative due to rounding errors. A l l 
the presented estimates are compared with respect to their equivalents computed 
in the double precision floating-point arithmetic, where we expect that the effect of 
rounding errors is negligible. 

Now let's focus our attention on the figures 5.10 - 5.12 where the estimates of 
the latitude, longitude and height are depicted. The part (a) of these figures shows 
the trajectory estimated by the both implementations in comparison with respect 
to the reference trajectory (the red line) and the GNSS measurements (the blue 
line). For example, the estimated height depicted in figure 5.12a shows that the 
GNSS measurements are successfully filtered for the double precision implementa­
tion. Similar conclusion can be made about the latitude and longitude, however 
due the length of radius of the circle trajectory 315m) the filtering performance 
is not visible enough. However, the fixed-point implementation do not goes well. 
If we look at the estimated error state of the latitude, longitude and height with 
their corresponding 3-sigma bounds, (these bounds set out the interval in which 
all the estimated error states should be with the probability 99.73%), then we can 
see that these estimates diverge. After approximately 400s all the error states and 
the states of the estimated trajectory fail. From the part (c) of the latitude and 
longitude figures can be seen, that the diagonal entries of the covariance matrix for 
the fixed-point implementation becomes negative (even for the Joseph's implemen­
tation which is not depicted as was sad in the first paragraph of this section). This 
is not possible, because as was shown in the Kalman filter derivation, there is still a 
minimum of the Kalman filter criteria function, which can not be minimized to zero, 
hence we have only the non-zero and positive variances. However, the variances are 
negative, so it is obvious that this can be caused only due to the rounding errors 
since the double precision equivalent of the navigation system implementation have 
the variances with the positive sign. 

If we look at another three figures 5.13 - 5.15, where the estimates for the east, 
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north and up velocities are depicted in the similar manner as before, then a very good 
tracking of the reference velocities can be seen. Even the fixed-point implementation 
goes well for the first 50s. After this time, the estimates of the error sates and their 
corresponding 3-sigma bounds start to diverge similarly as in the previous case of 
the position estimates. From the part (c) of the east and north velocity can be 
seen that the variances become negative after approximately 340s. This negative 
sing of the variance can be considered as the main reason why the conventional 
Kalman filter computed in the fixed-point arithmetic with 48bits in the fractional 
part of the computational word fails. However, one need to consider the estimated 
variances of the east and north velocities and their corresponding sigma bounds as 
they start to diverge after 50s (they are significantly different from their reference 
values represented by the estimates computed in the double precision floating-point 
arithmetic). From this can be stated, that the rounding in the system, causes a 
gradual divergence of the velocity estimated error. It is very important to compare 
that the 340s is less than the ~ 400s when the variances of the other estimated error 
variables become negative, thus it is obvious that the velocity part of the navigation 
error model is the most affected one. Now, if we compare the up-direction velocity 
estimates and the estimates of the height from the previously mentioned figures of 
the position, then we can state that they are not affected due to rounding since their 
sigma bounds do not experience any divergence. Of course, they fail too, but this 
failure is caused due to the divergence of the other estimated states, but not due to 
a divergence of their variances. 

Similar conclusions can be made about 3-sigma bounds corresponding to the roll 
and pitch angle depicted in figures 5.16 and 5.17 respectively. We can see that they 
do not indicate any divergence, but the estimates of the reference trajectory of the 
roll and pitch angles are a little bit different in comparison with respect to their 
double precision equivalents. This is probably caused mainly due to the transfer of 
the rounding errors from the velocity error estimates, as they experience the most 
significant influence of the rounding, into the roll and pith error estimates. If we 
take a look at the figure 5.18, where the yaw angle estimates are depicted, then we 
can see that the 3-sigma bounds are affected too, so the slow divergence is apparent. 

Figures 5.19 - 5.21 show the estimates for the accelerometers' bias part of the 
navigation system algorithm. There is not any visible discrepancy of the 1-sigma 
bounds (68.23%) for the all three components of these biases within the time range 
from 0s to approximately 400s. However, their reference trajectory estimates, de­
picted in the parts (a) of the figures 5.19 - 5.21, are affected. Assuming that the bias 
is in the navigation algorithm modelled only as a constant, which is corrected by the 
error increments, thus the only mathematical operation at this point is summation, 
and that these error increments are computed only from the multiplication of the 
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Kalman gain and the actual innovation, then we can state, that the only possible 
source of rounding error, can arise in this multiplication. 

Similar conclusions can be made about the gyroscopes' biases depicted in figure 
5.22 - 5.24. The z-axis bias in figure 5.24a converges very slowly, thus the reference 
value is reached after 300s, even for the floating-point implementation. This is caused 
due to weak observability of this channel [25]. The solution lies in an incorporation 
of the so-called zero update velocity (ZUPT) into the navigation system algorithm. 

5.3.4 Estimated Trajectories of U D Factorized Kalman F i l ­
ter 

Here we show and describe results for the UD factorized Kalman filter with the same 
simulation conditions as in the previous case of the conventional Kalman filter im­
plementation. A comparison of the estimated trajectory, estimated error variables 
with the corresponding sigma bounds and variances, for the fixed-point implemen­
tation of the UD factorized Kalman filter and the floating-point implementation of 
the conventional Kalman filter, is depicted in figures 5.25 - 5.39. The results of the 
Square Root Kalman filter are not shown as they are nearly identical with respect 
to the presented UD factorized Kalman filter. 

If we look at figures, where the latitude, longitude and height are depicted, thus 
at the figures 5.25, 5.26 and 5.27 respectively, then we can see, that the estimation 
goes well. A closer look shows, that there is a little discrepancy in the estimates 
of the latitude and longitude error variables and their sigma bounds. This can be 
observed in figures 5.1 and 5.2 as that part of the bars which is above the red line, 
thus it is obvious that the length of 48bits in the fractional part of the fixed-point 
computational word makes the performance of the UD factorized Kalman filter 
a little bit worse, but the error and trajectory estimates do not diverge over the 
whole estimation period. It is obvious that the rounding errors make the resulting 
performance suboptimal, however a divergence do not occur. The figures 5.1-5.5 can 
make an impression that there is not a significant save in the number of bits between 
the conventional, Joseph's, UD factorized and Square Root implementations, but one 
need to consider the results of the covariance matrix and their factors conditioning. 
As was shown in figures 5.6 - 5.8 the numerical stability of the covariance matrix 
is significantly threatened, however the numerical stability of the UD and Square 
Root factors seems to be good. The rest of the depicted variables brings the similar 
conclusions. It is obvious that the estimation performance is affected only for the 
variables which do not represent the estimation of the constant value, thus the 
variables which do not experience any significant movement. 
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Fig. 5.1: Values of the criteria function J for the latitude (a), longitude (b) and 
height (c), computed with using the fixed-point arithmetic, which has 24bits in the 
integer part and various number of bits in the fractional part. A l l previously men­
tioned Kalman filter implementations are compared with respect to the conventional 
Kalman filter computed in the double precision floating-point arithmetic. 
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Fig. 5.2: Values of the criteria function J for the east (a), north (b) and up (c) 
velocities, computed with using the fixed-point arithmetic, which has 24bits in the 
integer part and various number of bits in the fractional part. A l l previously men­
tioned Kalman filter implementations are compared with respect to the conventional 
Kalman filter computed in the double precision floating-point arithmetic. 
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Fig. 5.3: Values of the criteria function J for the roll (a), pitch (b) and yaw (c) angles, 
computed with using the fixed-point arithmetic, which has 24bits in the integer part 
and various number of bits in the fractional part. A l l previously mentioned Kalman 
filter implementations are compared with respect to the conventional Kalman filter 
computed in the double precision floating-point arithmetic. 
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Fig. 5.4: Values of the criteria function J for the accelerometer x (a), y (b) and z (c) 
axis biases, computed with using the fixed-point arithmetic, which has 24bits in the 
integer part and various number of bits in the fractional part. A l l previously men­
tioned Kalman filter implementations are compared with respect to the conventional 
Kalman filter computed in the double precision floating-point arithmetic. 
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Fig. 5.5: Values of the criteria function J for the gyroscope x (a), y (b) and z (c) 
axis biases, computed with using the fixed-point arithmetic, which has 24bits in the 
integer part and various number of bits in the fractional part. A l l previously men­
tioned Kalman filter implementations are compared with respect to the conventional 
Kalman filter computed in the double precision floating-point arithmetic. 
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Fig. 5.6: The covariance matrix and its factors condition numbers computed with 
using the fixed-point arithmetic, which has 24bits in the integer part and 48bits in 
the fractional part. The black line represents the condition number for the conven­
tional Kalman filter computed in the double precision floating-point arithmetic. 
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Fig. 5.7: The covariance matrix and its factors condition numbers computed with 
using the fixed-point arithmetic, which has 24bits in the integer part and 50bits in 
the fractional part. The black line represents the condition number for the conven­
tional Kalman filter computed in the double precision floating-point arithmetic. 
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Fig. 5.8: The covariance matrix and its factors condition numbers computed with 
using the fixed-point arithmetic, which has 24bits in the integer part and 52bits in 
the fractional part. The black line represents the condition number for the conven­
tional Kalman filter computed in the double precision floating-point arithmetic. 
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Fig. 5.9: The covariance matrix and its factors condition numbers computed with 
using the fixed-point arithmetic, which has 24bits in the integer part and 54bits in 
the fractional part. The black line represents the condition number for the conven­
tional Kalman filter computed in the double precision floating-point arithmetic. 
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Fig. 5.10: Estimates of the latitude (a), latitude error with corresponding 3-sigma 
bounds (b) and latitude variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the conventional 
Kalman filter compared with respect to its double precision floating-point version. 
The red line represents a reference trajectory and blue line the GNSS measurements. 
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Fig. 5.11: Estimates of the longitude (a), longitude error with corresponding 3-sigma 
bounds (b) and longitude variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the conventional 
Kalman filter compared with respect to its double precision floating-point version. 
The red line represents a reference trajectory and blue line the GNSS measurements. 
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Fig. 5.12: Estimates of the height (a), height error with corresponding 3-sigma 
bounds (b) and height variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the conventional 
Kalman filter compared with respect to its double precision floating-point version. 
The red line represents a reference trajectory and blue line the GNSS measurements. 
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Fig. 5.13: Estimates of the east velocity (a), east velocity error with correspond­
ing 3-sigma bounds (b) and east velocity variance (c) computed in the fixed-point 
arithmetic, which has 24bits in the integer part and 48bits in the fractional part, 
for the conventional Kalman filter compared with respect to its double precision 
floating-point version. The red line represents a reference trajectory and blue line 
the GNSS measurements. 
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Fig. 5.14: Estimates of the north velocity (a), north velocity error with correspond­
ing 3-sigma bounds (b) and north velocity variance (c) computed in the fixed-point 
arithmetic, which has 24bits in the integer part and 48bits in the fractional part, 
for the conventional Kalman filter compared with respect to its double precision 
floating-point version. The red line represents a reference trajectory and blue line 
the GNSS measurements. 
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Fig. 5.15: Estimates of the up velocity (a), up velocity error with corresponding 
3-sigma bounds (b) and up velocity variance (c) computed in the fixed-point arith­
metic, which has 24bits in the integer part and 48bits in the fractional part, for the 
conventional Kalman filter compared with respect to its double precision floating­
point version. The red line represents a reference trajectory and blue line the GNSS 
measurements. 
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Fig. 5.16: Estimates of the roll (a), roll error with corresponding 3-sigma bounds 
(b) and roll variance (c) computed in the fixed-point arithmetic, which has 24bits 
in the integer part and 48bits in the fractional part, for the conventional Kalman 
filter compared with respect to its double precision floating-point version. The red 
line represents a reference trajectory. 
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Fig. 5.17: Estimates of the pitch (a), pitch error with corresponding 3-sigma bounds 
(b) and pitch variance (c) computed in the fixed-point arithmetic, which has 24bits 
in the integer part and 48bits in the fractional part, for the conventional Kalman 
filter compared with respect to its double precision floating-point version. The red 
line represents a reference trajectory. 
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Fig. 5.18: Estimates of the yaw (a), yaw error with corresponding 3-sigma bounds 
(b) and yaw variance (c) computed in the fixed-point arithmetic, which has 24bits 
in the integer part and 48bits in the fractional part, for the conventional Kalman 
filter compared with respect to its double precision floating-point version. The red 
line represents a reference trajectory. 
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Fig. 5.19: Estimates of the accelerometers' x-axis bias (a), corresponding error with 
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the conventional 
Kalman filter compared with respect to its double precision floating-point version. 
The red line represents a reference trajectory. 
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Fig. 5.20: Estimates of the accelerometers' y-axis bias (a), corresponding error with 
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the conventional 
Kalman filter compared with respect to its double precision floating-point version. 
The red line represents a reference trajectory. 
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Fig. 5.21: Estimates of the accelerometers' z-axis bias (a), corresponding error with 
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the conventional 
Kalman filter compared with respect to its double precision floating-point version. 
The red line represents a reference trajectory. 
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Fig. 5.22: Estimates of the gyroscopes' x-axis bias (a), corresponding error with 
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the conventional 
Kalman filter compared with respect to its double precision floating-point version. 
The red line represents a reference trajectory. 
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Fig. 5.23: Estimates of the gyroscopes' y-axis bias (a), corresponding error with 
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the conventional 
Kalman filter compared with respect to its double precision floating-point version. 
The red line represents a reference trajectory. 
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Fig. 5.24: Estimates of the gyroscopes' z-axis bias (a), corresponding error with 1-
sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the conventional 
Kalman filter compared with respect to its double precision floating-point version. 
The red line represents a reference trajectory. 
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Fig. 5.25: Estimates of the latitude (a), corresponding error with 3-sigma bounds 
(b) and variance (c) computed in the fixed-point arithmetic, which has 24bits in 
the integer part and 48bits in the fractional part, for the UD factorized Kalman 
filter compared with respect to the conventional Kalman filter computed in double 
precision floating-point arithmetic. The red line represents a reference trajectory 
and blue line the GNSS measurements. 
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Fig. 5.26: Estimates of the longitude (a), corresponding error with 3-sigma bounds 
(b) and variance (c) computed in the fixed-point arithmetic, which has 24bits in 
the integer part and 48bits in the fractional part, for the UD factorized Kalman 
filter compared with respect to the conventional Kalman filter computed in double 
precision floating-point arithmetic. The red line represents a reference trajectory 
and blue line the GNSS measurements. 
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Fig. 5.27: Estimates of the height (a), corresponding error with 3-sigma bounds 
(b) and variance (c) computed in the fixed-point arithmetic, which has 24bits in 
the integer part and 48bits in the fractional part, for the UD factorized Kalman 
filter compared with respect to the conventional Kalman filter computed in double 
precision floating-point arithmetic. The red line represents a reference trajectory 
and blue line the GNSS measurements. 
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Fig. 5.28: Estimates of the east velocity (a), corresponding error with 3-sigma 
bounds (b) and variance (c) computed in the fixed-point arithmetic, which has 
24bits in the integer part and 48bits in the fractional part, for the UD factorized 
Kalman filter compared with respect to the conventional Kalman filter computed 
in double precision floating-point arithmetic. The red line represents a reference 
trajectory and blue line the GNSS measurements. 
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Fig. 5.29: Estimates of the north velocity (a), corresponding error with 3-sigma 
bounds (b) and variance (c) computed in the fixed-point arithmetic, which has 
24bits in the integer part and 48bits in the fractional part, for the UD factorized 
Kalman filter compared with respect to the conventional Kalman filter computed 
in double precision floating-point arithmetic. The red line represents a reference 
trajectory and blue line the GNSS measurements. 
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Fig. 5.30: Estimates of the up velocity (a), corresponding error with 3-sigma bounds 
(b) and variance (c) computed in the fixed-point arithmetic, which has 24bits in 
the integer part and 48bits in the fractional part, for the UD factorized Kalman 
filter compared with respect to the conventional Kalman filter computed in double 
precision floating-point arithmetic. The red line represents a reference trajectory 
and blue line the GNSS measurements. 
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Fig. 5.31: Estimates of the roll (a), corresponding error with 3-sigma bounds (b) and 
variance (c) computed in the fixed-point arithmetic, which has 24bits in the integer 
part and 48bits in the fractional part, for the UD factorized Kalman filter compared 
with respect to the conventional Kalman filter computed in double precision floating­
point arithmetic. The red line represents a reference trajectory. 
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Fig. 5.32: Estimates of the pitch (a), corresponding error with 3-sigma bounds (b) 
and variance (c) computed in the fixed-point arithmetic, which has 24bits in the 
integer part and 48bits in the fractional part, for the UD factorized Kalman fil­
ter compared with respect to the conventional Kalman filter computed in double 
precision floating-point arithmetic. The red line represents a reference trajectory. 
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Fig. 5.33: Estimates of the yaw (a), corresponding error with 3-sigma bounds (b) and 
variance (c) computed in the fixed-point arithmetic, which has 24bits in the integer 
part and 48bits in the fractional part, for the UD factorized Kalman filter compared 
with respect to the conventional Kalman filter computed in double precision floating­
point arithmetic. The red line represents a reference trajectory. 
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Fig. 5.34: Estimates of the accelerometers' x-axis bias (a), corresponding error with 
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized 
Kalman filter compared with respect to the conventional Kalman filter computed 
in double precision floating-point arithmetic. The red line represents a reference 
trajectory. 

94 



I 

12 

10 

8 

6 

4 

2 

0 

x 10" 

100 

(c) 

v 
1 1 1 

^fxp _ 

flp _ 1 

1 

^fxp _ 

flp 

\ \ 
V 
1" 

\ 

1 1 1 1 1 
200 300 400 500 

m 
600 700 800 900 1000 

Fig. 5.35: Estimates of the accelerometers' y-axis bias (a), corresponding error with 
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized 
Kalman filter compared with respect to the conventional Kalman filter computed 
in double precision floating-point arithmetic. The red line represents a reference 
trajectory. 
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Fig. 5.36: Estimates of the accelerometers' z-axis bias (a), corresponding error with 
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized 
Kalman filter compared with respect to the conventional Kalman filter computed 
in double precision floating-point arithmetic. The red line represents a reference 
trajectory. 
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Fig. 5.37: Estimates of the gyroscopes' x-axis bias (a), corresponding error with 
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized 
Kalman filter compared with respect to the conventional Kalman filter computed 
in double precision floating-point arithmetic. The red line represents a reference 
trajectory. 
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Fig. 5.38: Estimates of the gyroscopes' y-axis bias (a), corresponding error with 
1-sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized 
Kalman filter compared with respect to the conventional Kalman filter computed 
in double precision floating-point arithmetic. The red line represents a reference 
trajectory. 
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Fig. 5.39: Estimates of the gyroscopes' z-axis bias (a), corresponding error with 1-
sigma bounds (b) and variance (c) computed in the fixed-point arithmetic, which 
has 24bits in the integer part and 48bits in the fractional part, for the UD factorized 
Kalman filter compared with respect to the conventional Kalman filter computed 
in double precision floating-point arithmetic. The red line represents a reference 
trajectory. 
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6 C O N C L U S I O N 
Main objective of this thesis was to compare different numerical implementations 
of the Kalman filter applied in an inertial navigation system which is expressed 
in the local navigation frame and which is implemented with using the Loosely 
Coupled integration approach and the Phi-angle error model. The implementations 
of the Kalman filter, investigated through this thesis, were the conventional Kalman 
filter, Kalman filter with the Joseph's stabilized form of the a posteriori covariance 
matrix, Square Root Kalman filter and UD factorized Kalman filter. A l l algorithms 
were derived due to a better understanding and certainty about their integration 
into a simulation. The performance of the all Kalman filter implementations was 
compared in a sense of an evaluation of the criteria function, the covariance matrix 
or its factors conditioning and in an ability to trace the reference trajectory. 

The presented results show that using the Square Root and UD factorized 
Kalman filters leads to a better robustness of the inertial navigation system. A 
closer look at the evaluated criteria function shows that a reduction in the number 
of bits is not much significant. However, one need to consider the results of the 
covariance matrices or their factors conditioning. These indicates a possibility that 
the conventional and Joseph implementations of the covariance matrix may become 
ill-conditioned as the trends of the condition number significantly fluctuates. On the 
other hand the trends of the condition number of the Square Root and UD factors 
are smooth, which directly shows their better numerical performance. It can be 
stated that 24bits in the integer part and 54bits in the fractional part of the fixed-
point arithmetic is sufficient for the all Kalman filter implementations. Further, 
decreasing the number of bits of the fractional part to 48bits failure of the 
conventional and Joseph's implementations while the Square Root and UD imple­
mentations run well even for the 45bits of the fractional part. However, it is obvious 
from the results of the criteria function, that the both of these implementations, 
thus the Square Root and UD implementations, starts to be suboptimal from the 
49bits of the fractional part. It can be excluded that this suboptimality is caused 
due to rounding in the measurement noise covariance matrix as it is represented by 
high numbers. On the other hand, the entries of the process covariance matrix are 
very small numbers, however the 45bit length of the fractional part is still sufficient 
for their interpretation. This is supported by the fact, that the Square Root filter 
do not uses directly the process noise covariance matrix, but its square root factor, 
which has two times better precision. Despite this fact, the suboptimal performance 
of the Square Root implementation is obvious. The only possible explanation, to the 
best author's knowledge, is that the suboptimality can be caused by the rounding 
in the system transition matrix, because if we take a closer look at the matrices W 
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(equations 3.57 and 3.87), then can be seen that the system transition matrix can 
be affected by rounding before its use in the Gram-Schmidt algorithm. Therefore, 
even if we use the Square Root or UD factors, then there is still a possible source 
of rounding errors, thus the rounding in the system transition matrix. However, 
this statement can not be generalized since it is a matter of the investigated system 
model. This statement holds only for such a model which is numerically badly con­
ditioned, thus a model where is a significant difference in the magnitude of numbers, 
which is exactly our case as we tray to estimate the position error expressed in radi­
ans of the geodetic coordinates and the velocity errors expressed in the meters per 
second. The figures, which depict the estimated trajectory and error variables for 
the conventional Kalman filter implementation, show that the most affected part of 
the error model is the velocity part due to its most rapid divergence. 

It was stated in the thesis objectives, if there is a possibility to use a length of the 
fixed-point arithmetic word, which is less or comparable to the length of the double 
precision floating-point arithmetic. The 69bit length of the fixed-point arithmetic 
word is the minimal possible value since the 45bit of the fractional part can interpret 
the entries of the process noise covariance matrix. However, this length is sufficient 
only for the Square Root and UD factorized implementations. The 69bit length is 
comparable to the 64bit length of the double precision, however this 69bits cause 
the previously mentioned suboptimality. 

A possible extension of this thesis lies in an investigation of the same naviga­
tion algorithm with using better integration methods for the position and velocity 
updating. Another extension can be an investigation of the other numerical im­
plementations of the Kalman filter e.g. the information Kalman filter, information 
Square Root filter etc. Further, the Psi-angle error model can be another inter­
esting extension. It is an unexpected result that the implementation which uses 
the Joseph's stabilized version of the a posteriori covariance matrix do not brings 
any improvement with respect to the conventional Kalman filter. Their results are 
nearly identical, thus some diagonal entries of the Joseph's form of the a posteriori 
covariance matrix becomes negative as same as in the case of the conventional a 
posteriori covariance matrix. This phenomena deserves a deeper explanation, how­
ever this is out of the time portion for this thesis, therefore it will be a subject of 
further analysis. 
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A . l Contents of the Attached C D 

The attached C D contains source codes and simulation files of the all algorithms 
presented in this thesis and an electronic version of this thesis. The algorithms are 
implemented in the Matlab/Simulink environment with the Fixed-Point Toolbox. 
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