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Abstract 
The motivation for this thesis arises from the aim of the Thermo Fisher Scientific com
pany to develop a method to measure the thickness of contamination layers in scanning 
electron microscopy (SEM) images through advanced image processing techniques. The 
primary aim is to create automated methods for quantifying contamination in images that 
adversely impact imaging in material science research, using image processing techniques. 
In this study, we collect a dataset of images with contamination and manually annotate 
masks for each image. These annotations will serve to fine-tune and evaluate the effective
ness of the methods we propose. By employing a combination of edge detection algorithms 
and machine learning models, specifically a fine-tuned DeepLabv3 network, this work en
hances the precision and efficiency for contamination detection. The edge Detection-Based 
Contamination Analyzer (EDCA) utilizes traditional image processing methods, while the 
DeepLabv3 model introduces a machine learning approach to robustly handle diverse imag
ing conditions. Comparative analyses demonstrate the effectiveness of these methods in 
providing reliable, scalable, and detailed measurements of contamination layers, signifi
cantly contributing to the field of materials science. 

Abstrakt 
Motivací pro vznik této práce byl cíl společnosti Thermo Fisher Scientific vyvinout metodu 
měření tloušťky kontaminačních vrstev na snímcích ze skenovací elektronové mikroskopie 
(SEM) pomocí pokročilých technik zpracování obrazu. Hlavním cílem je vytvořit automa
tizované metody pro kvantifikaci kontaminace v obrazech, které nepříznivě ovlivňují zobra
zování ve výzkumu v oblasti materiálových věd, pomocí technik zpracování obrazu. V této 
studii shromažďujeme soubor dat snímků s kontaminací a ručně anotujeme masky pro každý 
snímek. Tyto anotace budou sloužit k doladění a vyhodnocení účinnosti námi navrhovaných 
metod. Použitím kombinace algoritmů detekce hran a modelů strojového učení, konkrétně 
vyladěné sítě DeepLabv3, tato práce zvyšuje přesnost a účinnost detekce kontaminace. An
alyzátor kontaminace založený na detekci hran (EDCA) využívá tradiční metody zpracování 
obrazu, zatímco model DeepLabv3 zavádí přístup strojového učení, který robustně zvládá 
různorodé obrazové podmínky. Srovnávací analýzy prokazují účinnost těchto metod při 
poskytování spolehlivých, škálovatelných a podrobných měření kontaminačních vrstev, což 
významně přispívá k rozvoji oboru materiálových věd. 
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Rozšířený abstrakt 
Motivace pro tuto práci vychází ze závazku společnosti Thermo Fisher Scientific k rozvoji 
technologií používaných v rastrovací elektronové mikroskopii (SEM). Společnost si klade za 
cíl vyvinout automatizovanou metodu pro měření tloušťky kontaminačních vrstev na vzor
cích analyzovaných pomocí S E M , která by měla být praktičtější ve srovnání se stávajícími 
manuálními metodami. V současnosti neexistuje automatická metoda, která by tuto úlohu 
mohla vykonávat, což představuje významné omezení v oblasti materiálové vědy. Přesné 
a efektivní měření kontaminace je klíčové, protože ovlivňuje kvalitu obrazů S E M a tím i 
spolehlivost charakterizace a analýzy materiálů. Tento výzkum se snaží řešit tyto výzvy 
vývojem nové automatizované měřicí techniky. 
Definice problému: Hlavní výzvou tohoto výzkumu je vývoj spolehlivé automatizované 
metody pro měření tloušťky kontaminačních vrstev pomocí technik zpracování obrazu. 
Současné metody často vyžadují manuální zásah, což může být časově náročné a náchylné k 
lidské chybě. Navíc je složitost úkolu zvýšena nekonzistencí v obrazech kontaminace; S E M 
obrazy různých vzorků mohou vykazovat široké spektrum rysů kontaminace, jako jsou různé 
tloušťky, hustoty a dokonce i vizuální aspekty v závislosti na látce a environmentálních pod
mínkách během přípravy a zkoumání vzorku. Tato diverzita vyžaduje robustní algoritmy, 
které jsou schopné přesně měřit kontaminaci napříč různorodými obrazy bez ztráty přes
nosti. 
Existuj íc í řešení: Pokrok v metodách kvantifikace kontaminace indukované elektronovým 
paprskem v elektronových mikroskopech přinesl užitečné přístupy k hodnocení a minimal
izaci kontaminace. Roediger et al. [22] vyvinuli automatizovanou metodu zaměřující se na 
měření kontaminace v komoře skenovacích elektronových mikroskopů, která využívá de
pozici materiálu z plynu na substrát pod kontrolou podmínek a atomického mikroskopu. 
Tento přístup umožňuje kontinuální sledování úrovní kontaminace a poskytuje data pro 
optimalizaci čistoty komory a údržbových plánů. Hugenschmidt et al. [9] poukázali na 
schopnosti technologií specifických pro S T E M , jako je High Angular Annular Dark Field 
( H A A D F ) , měřit kontaminaci prostřednictvím vizualizace vysoce kontrastních obrazů přímo 
spojených s atomovým číslem prvků. Tyto pokročilé techniky však vyžadují speciální kom
ponenty v mikroskopu, které nejsou vždy součástí a podmínky pro měření jsou odlišné od 
našich, kde my využíváme vzorek s cínovými kuličky, kde následně skenujeme delší dobu na 
stejném místě a časem vznikne nahromaděná vrstva kontaminace, která má jasně viditelnou 
boční hranu kvůli sférickému tvaru cínové kuličky. 
N a v r ž e n é řešení a implementace metod: Tato práce představuje Analyzátor kontam
inace založený na detekci hran (EDCA) , speciálně navržený pro S E M obrazy, zahrnující 
pokročilé techniky předzpracování obrazu a využívání operátoru Scharr k určení oblastí 
zájmu (ROI). Proces zahrnuje snižování šumu pomocí Gaussova rozostření, morfologické 
operace pro zlepšení kvality obrazu a detekci hran pro přesnou identifikaci hranic vrstev 
kontaminace. Analýzou gradientu a vertikálním profilováním přesně identifikujeme horní 
a dolní hranice vrstev kontaminace z centrálního sloupce kontaminace, což nastavuje vý
chozí bod pro detekci hranic na základě první derivace vertikálního profilu linie. Kromě 
toho implementujeme model založený na architektuře DeepLabv3, původně předtrénovaný 
na rozmanitých datech, který je doladěn pro zlepšení schopností segmentace speciálně pro 
S E M obrazy kontaminace. Tento přístup efektivně rozlišuje mezi kontaminovanými a nekon-
taminovanými oblastmi. Model je dále optimalizován úpravou jeho rychlosti učení a ztrá
tové funkce, aby odpovídal našemu konkrétnímu úkolu binární klasifikace, čímž zajišťuje ro
bustní učení a konzistentní výkon napříč novými a dosud neviděnými S E M obrazy.Detailní 
implementace těchto metod zahrnuje přípravu datasetu a anotaci, konfiguraci modelu a 



postprocesing, který umožňuje efektivní naučení modelu a jeho schopnost generalizace na 
nové, neviděné obrázky. 
Experimenty a výs ledky: Provedli jsme experimenty s různými datasety za účelem 
hodnocení vlivu ladění na výkon modelu při měření tloušťky kontaminační vrstvy v S E M 
snímcích. Byly hodnoceny dvě metodiky: Analyzátor kontaminace založený na detekci hran 
(EDCA) a laděný model DeepLabv3, přičemž byla zaměřena pozornost na jejich přesnost, 
preciznost a metriky chyb ve srovnání s ručně anotovanými daty. Experimenty zahrnovaly 
datasety s kontaminací, smíšené datasety a augmentované datasety. Bylo zjištěno, že malý 
počet epoch při tréninku je efektivní a zabraňuje nadměrnému přizpůsobení modelu. Op
timalizace prahových hodnot pro získání kontaminace z pravděpodobnostní masky byla 
klíčová pro kalibraci modelů, aby přesně segmentovaly kontaminované oblasti. Model laděný 
na augmentovaným datasetu dosáhl průměrné hodnoty IoU 0.832 se směrodatnou odchylkou 
0.071 a byl ohodnocen jako nejlepší ze všech se kterými jsme experimentovali. Průměrná 
chyba v nanometrech byla vypočítána pro výsledek výšky každé metody na unikátním 
datasetu, kde E D C A zaznamenala 7.9 nm a model DeepLabv3 7.27 nm, což ukazuje na lepší 
výkonnost modelu. V porovnání dosáhl model úspěšnosti 98.16% na unikátním datasetu, 
zatímco E D C A dosáhla 87.16%, což demonstruje významnou robustnost modelu. 
Závěr: Tato studie hodnotí účinnost dvou metod pro měření tloušťky kontaminačních 
vrstev ve skenovací elektronové mikroskopii: tradiční metodu založenou na detekci hran 
a metodu s využitím strojového učení a modelu založeném na architektuře DeepLabv3. 
Model, laděný na augmentovaném datasetu, ukázal vyšší přesnost a efektivitu ve srovnání 
s tradičním přístupem. Výsledky naznačují, že tento model nabízí významné výhody pro 
přesnou analýzu S E M obrázků a poskytuje vhodný nástroj pro použití v praxi. 
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Chapter 1 

Introduction 

Contamination in Scanning Electron Microscopy (SEM) poses significant challenges in the 
microscopic analysis of materials. Such contamination, often manifested as unwanted de
posits on the specimen surface, can significantly obscure microscopic features and interfere 
with the electron beam, thus degrading the quality of the S E M images. Understanding and 
mitigating the effects of contamination is crucial for ensuring the reliability and accuracy 
of SEM-based investigations. 

This thesis focuses on the critical issue of contamination in S E M . It explores various 
methods for detecting and quantifying contamination, which is vital for improving the 
image quality and the interpretative accuracy of S E M analyses. The primary objective is to 
develop and assess different computational techniques that can automate the detection and 
measurement of contamination layers with high precision and minimal human intervention. 

To achieve this, the thesis proposes two novel approaches: an advanced image processing 
algorithm Edge Detection-Based Contamination Analyzer (EDCA) , and a machine learning 
model adapted from the DeepLabv3 architecture. Both methods are designed to enhance 
detection capabilities by accurately segmenting and quantifying contamination from S E M 
images without any operator. 

It is crucial to create and meticulously annotate the datasets to measure contamination 
and test the effectiveness of the proposed methods. This annotation process involves label
ing the areas of contamination in the S E M images to train and validate the computational 
models effectively. These annotated datasets will encompass S E M images with varying de
grees of contamination to provide a robust foundation for the experimental evaluation. The 
experiments will not only compare the proposed methods against traditional manual mea
surements but also explore the impact of different training regimes and data augmentation 
techniques on the performance of the machine learning model. 

Ultimately, this study aims to provide a detailed comparative analysis of the proposed 
methods, offering insights into their practical applications and limitations in the context 
of S E M . The findings are expected to contribute significantly to the field of electron mi
croscopy by providing robust tools for contamination analysis, thereby enhancing build a 
foundation to enhance the overall quality and efficacy of S E M imaging in future contami
nation mitigation. 
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Chapter 2 

Scanning Electron Microscopy 
Secondary Electron Image 
Characteristics 

In this chapter, we describe the fundamental principles of Scanning Electron Microscopy 
(SEM) and explore the generation and characteristics of secondary electrons, as well as 
aspects of S E M imaging. This chapter provides an overview of the functions of an S E M 
within the context of this thesis. For a more detailed exploration of S E M technologies and 
applications, readers are encouraged to consult Scanning Electron Microscopy and X-ray 
Microanalysis [7]. 

2.1 Introduction to Scanning Electron Microscopy (SEM) 

The scanning electron microscope (SEM) is a sophisticated device designed to create mag
nified images that elucidate microscopic details such as the size, shape, composition and 
other physical and chemical properties of the specimens. The S E M operates by generating 
a finely focused beam of electrons, typically with energies ranging from 0.1 to 30 keV, which 
is emitted from an electron source. The high energies of the electrons are related to their 
small wavelengths, which enable nanometer-resolution imaging. This beam is precisely 
shaped and directed by apertures, magnetic and electrostatic lenses, and electromagnetic 
coils, enabling it to scan the specimen in a controlled raster (x-y) pattern see fig 2.1. 

The interaction of the electron beam with the specimen at various discrete points results 
in the emission of two primary types of electrons: backscattered electrons (BSEs), which 
are electrons that maintain most of their initial energy after deflecting off the specimen's 
atoms, and secondary electrons (SEs), which are ejected from the specimen's atoms with 
considerably lower energies, typically below 5 eV. These electrons are detected by specialized 
detectors, including the Everhart-Thornley detector for secondary electrons and dedicated 
detectors for backscattered electrons. The signals from these detectors are digitized and 
used to form the image pixels, reflecting the intensity of the detected signals at each scan 
point. In further of the thesis, we will only focus on secondary electrons which are important 
for our work. Further, this thesis concentrates on the study and application of Secondary 
Electrons (SE) for their significant role in the analytical techniques we have implemented. 
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SEM 

Electron source 

Figure 2.1: A n illustration displaying schematic diagram of scanning electron microscopes. 
In S E M , the electron beam raster-scans across the sample surface, and detectors collect the 
electrons emitted from the surface. 

Operating Principles of S E M 

Scanning electron microscopes (SEMs) use an electron beam to obtain high-definition im
ages of specimens up to the nanometer scale. The electrons are produced from a filament 
and meticulously arranged into a focused beam in the electron source. Following this, a 
sequence of lenses in the electron column is used to focus and steer this beam onto the 
specimen's surface. 

Beam Quality and Vacuum Environment 

The operation of S E M (Scanning Electron Microscope) often necessitates a high vacuum 
environment, typically below 1 0 - 4 Pa, to maintain the integrity of the focused primary 
electron beam. This vacuum minimizes the scattering of the electron beam by atmospheric 
gases and avoids the collisions between the beam electrons and residual gas molecules. Such 
interactions can cause elastic-scattering events, degrading the image quality and resolution 
due to reduced beam intensity and uneven scattering along the beam path. Conversely, 
variable pressure SEMs (VPSEM) facilitate the examination of uncoated, insulating speci
mens at higher pressures by utilizing ionized gas to enable automatic discharging, beneficial 
for studying wet specimens, but with degraded resolution. 

2.2 Formation of Secondary Electron (SE) Images 

In a scanning electron microscope (SEM), the electron beam, after emanating from the 
source, traverses along the optic axis of the lens system. It is sequentially refined by 
apertures and focused via the magnetic and/or electrostatic fields of the lens system. Within 
the objective lens, a set of scan coils shifts the beam from the optic axis, enabling precise 
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targeting of the specimen at designated locations. At any given moment, the beam interacts 
with only a singular location on the specimen. 

The S E M constructs images by directing the focused beam across a grid of discrete 
x-y positions on the specimen and recording the interactions at each point. Typically, 
this involves collecting signals from an electron detector, such as the Everhart-Thornley 
detector, which is sensitive to secondary electrons (SEs). Moreover, outputs from multiple 
detectors can be gathered simultaneously at each beam position, allowing the concurrent 
construction of multiple grayscale images from different electron signals. 

It is important to note that unlike classical optical microscopy, which constructs images 
through direct ray paths from the specimen to the imaging medium, S E M image formation 
is inherently digital. Each interaction site is digitized using an analog-to-digital converter 
(ADC) to convert electron signals into digital data packets (x,y,Ij), where Ij denotes 
intensities of various detected signals such as SE, backscattered electrons (BSE), X-rays, 
etc. 

The scanned area is logically divided into an x-y grid of pixels, each with an edge 
dimension defined by the equation Specimen pixel dimension = ^, where I is the edge 
length and n is the number of pixels per edge. The beam is systematically positioned at 
the center of each pixel, where it dwells for a predetermined time to accumulate signal 
information, which is then stored in a three-dimensional data matrix (x,y,Ij). 

The final S E M image is generated by translating the data matrix into a display grid 
of pixels, where the brightness of each pixel (varying from black to white) corresponds to 
the intensity of the measured signals, providing a visual representation of the specimen's 
surface at microscopic resolution. 

2.3 Characteristics of SE Images 

Surface Sensitivity 

The heightened surface sensitivity of SE imaging arises because only low-energy electrons 
emitted from the specimen's uppermost layers—typically just a few nanometers deep, are 
able to escape to be detected. Electrons originating from deeper within the sample lack the 
energy necessary to reach the surface and be captured as a signal, rendering SE imaging 
particularly effective for examining the fine details of surface morphology and topography. 

Topographical Information 

SE images reveal detailed surface topography, including fine features, roughness, and mi-
crostructures. They are especially useful for examining the three-dimensional (3D) structure 
of a specimen's surface. 

High Spatial Resolution 

SE imaging, with its excellent spatial resolution, enables visualization of surface features 
with nanometric precision. This is attributed to the confined excitation volume from which 
SE electrons originate. As SE electrons are produced from interactions in the near-surface 
region, a shallow excitation volume represented by only the top few nanometers, this limi
tation naturally enhances the spatial resolution of the S E M . The excitation volume where 
is the S E M scanning we can see in figure 2.2. Such a restricted excitation zone ensures that 
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the detected electrons contribute to a high-resolution signal that corresponds directly to 
the fine details of the surface topography. 

Figure 2.2: Visualization of the material volume sampled through the detection of various 
signals generated from electron-matter interactions. Adapted from [26]. 

2.4 Contamination in S E M 

Contamination during the scanning electron microscopy (SEM) process poses significant 
challenges in obtaining high-resolution, clear imagery essential for material characteriza
tion and analysis. The following sections delve into the nuances of contamination control, 
the inherent and extrinsic factors contributing to this pervasive issue, and the methodologies 
employed to measure and mitigate its impact on S E M operations. Through comprehending 
the origins, development, and management of contamination, both researchers and practi
tioners are able to improve the accuracy and dependability of S E M imaging and analysis. 
This understanding is particularly crucial as advancements in S E M technology continue to 
push the boundaries of resolution and sensitivity. 

Contamination Control in Scanning Electron Microscopy 

In scanning electron microscopy (SEM), the term „contamination" refers to the unintended 
deposition of foreign materials on the specimen induced by electron beam bombardment. 
This phenomenon is a particular kind of radiation damage, where the contaminating ma
terial, often a hydrocarbon, is present due to the specimen's environmental history or 
inadequate sample preparation. These hydrocarbons are susceptible to radiation damage 
and may decompose under the electron beam, leaving a residual layer of carbon. 

Contamination is not only a result of hydrocarbons that were initially on the specimen 
surface, but it can also be exacerbated by the electron beam-induced migration of these 
molecules. This leads to an increase in localized contamination, which can impact the 
quality of S E M imaging and analysis. A modern and well-maintained S E M should produce 
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minimal contamination from the instrument itself, assuming rigorous attention to cleaning 
and handling protocols. 

To mitigate contamination, it is advantageous for an S E M to be equipped with a vac
uum airlock, reducing the specimen chamber's exposure to contaminants during sample 
exchange. Additionally, a plasma cleaner in the airlock, used during the pump-down cycle, 
can further reduce contamination by breaking down hydrocarbon deposits. However, care 
must be taken to prevent potential damage to the specimen from the plasma. 

Contamination typically manifests as a change in the secondary electron (SE) yield 
due to the deposition of carbon-rich material from the electron bombardment. The most 
significant contamination is often observed at the edges of the scanned area where the 
electron dose is highest, because of the physical scanning of the beam. 

Radiation damage can also have an etch effect, where prolonged electron irradiation 
removes the material layers, revealing the underlying material with different SE properties. 
The propensity for contamination is dose-dependent; high- resolution imaging, which re
quires a highly focused beam and high current density, is more susceptible to contamination 
issues. 

Introduction to contamination in S E M 

Electron beam-induced contamination, ie, the deposition of carbonaceous material over the 
sample surface bombarded by the electron beam, is almost always present after viewing in 
the scanning electron microscope (SEM). This is one of the most troublesome problems as 
it induces physical changes in the actual structure of the material being viewed, generally 
by obscuring the fine detail. Its importance is growing, especially for nanometer resolution 
imaging, where small surface structures can easily be buried in a few seconds. Therefore, it 
is essential to find the origins of electron beam-induced contamination, measure it regularly, 
and keep it at acceptable levels [25]. 

Sources and types of contamination 

Generally, sources of S E M contamination can be attributed to one or a combination of 
three major contributors: (1) the pumping system (in case the S E M contains oil pumps): 
(2) outgassing of other internal S E M component parts (ie, specimen stage, stage lubricants, 
O-rings, etc.), or (3) the sample (including its preparation and handling) [20]. 

Formation of Contamination Layers 

It is critical to understand that the contamination layers depicted in our S E M images are 
not typical outcomes of standard electron microscope operation. These layers are unusually 
extensive and are formed under specific conditions that are not commonly encountered 
during routine S E M usage. The creation of such extensive contamination is primarily due 
to prolonged exposure of the sample to the electron beam within a confined scanning area 
under defined image conditions. The particular area selected is placed at the top of the tin 
ball; see Figure 2.3. The choice of this particular location is due to the spherical shape of 
the tin ball, which allows the contamination to be clearly visible from the side and provides 
an optimal condition for measuring its thickness. 

This prolonged exposure leads to an accumulation of contamination, which is depicted 
in Figure 2.4. The electron beam, when stationary or moving slowly over a particular area, 
induces the deposition of carbonaceous material. Over time, this results in the formation of 
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Figure 2.3: Annotated S E M image displaying a contamination layer formed on a tin ball 
with clearly delineated background and contamination regions. 

a visible contamination layer that is much thicker than is usually observed under standard 
operating conditions. The reason behind this is to quantify the contamination build up 
over time in the system, to judge its cleanliness. 

Figure 2.4: Contaminations on the sample surface due to extended electron exposure in 
S E M . Left: a) contamination of medium size; Right: b) excessively large contamination 

Evaluation of chamber contamination in S E M 

There are three significant forms of contamination: one is depicted in figure 2.5, where 
there is minimal contamination, followed by images that show excessive contamination in 
figure 2.4 b), and then those in figure 2.4 a), in all these images contamination is atop 
the Tin Ball , with the Tin Balls also apparent in the background. In these images, we 
can observe both the width and height of the contamination. The width, starting from 
the bottom of the contamination layer, gives us a sense of how wide it is and is mostly 
defined by the defined continuous scanning region. The height measurement begins in the 
middle of the width and extends to the top of the contamination layer, indicating how much 
contamination has accumulated. The contamination layer exhibits a unique characteristic: 
a peak on the far left that declines towards the contamination's center after a certain 
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distance. Specifically, it arises in an area where the scanning beam lingers for an extended 
period, leading to increased contamination at that spot caused by scanning synchronization. 
This enhanced contamination is not included in the measurements, and instead, the center 
of the contamination layer's forefront is used as the reference point for assessments. The 
measurements obtained are then compared to established thresholds for maximum and 
optimal contamination levels, which guide our use of the microscope. However, this thesis 
will not explore these aspects further, as it concentrates on image processing techniques 
designed to measure and quantify the height of contamination, rather than its creation, 
preparation, or determining if the contamination level is excessive for the microscope. 

Figure 2.5: S E M images showing a clean sample on the left and slight contamination on 
the right. 
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Chapter 3 

Measuring Features in S E M 
Images 

This chapter reviews recent advancements in quantifying electron beam-induced carbon 
contamination in electron microscopes, drawing from the findings of Hugenschmidt et al. [9] 
and Roediger et al. [22]. These studies provide insight into automated techniques to measure 
contamination. The subsequent section will discuss methods for image analysis in scanning 
electron microscopy. 

3.1 Measuring Chamber Contamination in S E M 

Reproducible Measurement Using Residual Gas Analysis and 
Electron Beam Deposition 

Roediger et al. [22] developed an automated approach that focuses on measuring chamber 
contamination in scanning electron microscopes through the following methodological steps: 

• Focused Electron Beam Deposition: By depositing material from the gases onto 
a substrate under controlled conditions, the study quantifies how much material is 
deposited over time, which directly correlates to the contamination level. 

• Automated Measurements: The deposition rate is automatically by measuring 
the thickness of the deposited layer using A F M , which will be discussed in further 
detail in a further text. 

Focused Electron Beam Deposition by depositing material from these gases onto a sub
strate under controlled conditions, the study quantifies how much material is deposited 
over time, which directly correlates to the contamination level and then measuring the 
thickness of the deposited layer. This approach allows for continuous monitoring of con
tamination levels in the S E M chamber and provides data that can be used to optimize 
chamber cleaning schedules and other preventive maintenance strategies. It is necessary to 
mention that this work is using for analysis and quantification of contamination separate 
atomic force microscope. It was used in tapping mode. The tapping mode means that as 
the tip scans across the sample surface, it intermittently taps or lightly contacts the surface. 
This tapping interaction provides information about the sample's surface topography and 
mechanical properties of the sample. 
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Electron-Beam-Induced Carbon Contamination in S T E M - i n -
S E M 

The study by Hugenschmidt et al. [9] shows that STEM-specific technologies, such as High 
Angular Annular Dark Field ( H A A D F ) , provide exceptional capabilities for measuring con
tamination through visualization of high-contrast images directly related to the atomic 
number of elements. However, these advanced techniques require the transmission of elec
trons through very thin specimens, a requirement that is not applicable in traditional S E M 
setups where the electron beam interacts primarily with the surface. 

Conclusion 

Although the studies by Hugenschmidt et al. [9] and Roediger et al. [22] are instrumental 
in advancing contamination measurement within electron microscopy, their application to 
S T E M - i n - S E M platforms specifically highlights the unique challenges faced in adapting 
S E M technologies for contamination analysis. This discussion underscores the need for 
SEM-specific techniques for measuring contamination, as S E M does not involve electron 
transmission through the sample, making S T E M techniques like H A A D F inapplicable and 
the use of atomic force microscopes is not applicable either. There appears to be no existing 
work that implements automatic contamination measurement under S E M conditions, as 
described in our methods, which rely on detecting the contamination layer formed at the 
edge of a tin ball. 

Unlike other methods, which use different metrics for contamination quantification, our 
approach focuses on the visible side layer created by electron bombarding on the edge of 
the round tin ball. To my best knowledge, there are no studies on measuring contami
nation under these specific conditions using automatic methods. Subsequent studies will 
concentrate on S E M image analysis related to contamination assessment and explore image 
processing techniques that could aid our objectives, leading to the development of novel 
methods appropriate for measuring contamination layer. 

3.2 Image Analysis for Contamination Assessment 

This section delves into the utilization of diverse image processing techniques suitable for 
assessing contamination in S E M . Our goal is to find the technologies used for measuring 
layer heights in images or in detecting the features. Consequently, this section will examine 
the image analysis methods related to similar issues in electron microscopy. 

Electron microscopy is widely used across various fields such as drug discovery, struc
tural biology, cell biology, infectious diseases, cancer, plant biology, and semiconductors. 
Each of these areas has seen substantial research and development. However, our focus on 
contamination measurement introduces a distinct challenge not commonly addressed in the 
literature. Although there are studies, few align closely with our specific needs. For this 
purpose, our attention is directed towards exploring studies on image analysis techniques, 
which will be employed in the following chapter to outline our two proposed methods, 
discussed further in chapter 4. 
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Morphological Operations for T h i n F i l m Analysis 

The research conducted by Su Junhong, Ge Jinman, and Yang Lihong [23] enhanced the 
precision and efficiency of measuring thin film thickness, a crucial element in materials 
science. This research played a key role in integrating morphological operations into the 
assessment of thin film parameters obtained through interferometry. It is important to note 
that this research does not rely on S E M , yet it focuses on image preparation for thin film 
thickness measurement. Morphological operations, play a pivotal role in the preprocessing 
and enhancement of digital images. In the context of thin film thickness measurement, these 
operations are crucial for improving the quality and accuracy of the data extracted from 
interferograms. Su Junhong et al. have effectively employed morphological techniques such 
as erosion, dilation, opening, and closing to address various image artifacts. Specifically, 
the use of structured elements tailored to the unique characteristics of the interferogram 
noise and thin film edges facilitates a more precise delineation and recognition of the film's 
boundaries. This is crucial for accurate thickness measurement as it directly impacts the 
subsequent computational steps in edge detection. In our scenario, we face a comparable 
task initially with the images where our aim is to normalize the images and eliminate any 
artifacts that could potentially compromise our measurements. 

Otsu Thresholding 

Otsu's method, developed by Nobuyuki Otsu in 1979 [18], is a thresholding technique pivotal 
in the field of image processing for its efficacy in segmenting images into foreground and 
background. This method determines an optimal threshold by maximizing the inter-class 
variance, thus facilitating the clear distinction between different components in grayscale 
images. Traditionally, Otsu thresholding has been broadly applied across various scientific 
and industrial domains, particularly where binary segmentation of images is crucial. Its 
algorithm involves analyzing the histogram of pixel intensities and calculating a threshold 
that segregates pixels to minimize intra-class variance, equivalent to maximizing the inter-
class variance. This characteristic makes it particularly useful in applications ranging from 
medical imaging to automated industrial inspection. 

In the study of Si/C-Graphite composite anode microstructure using focused ion beam 
scanning electron microscopy (FIB-SEM) [11], Otsu thresholding has been instrumental. 
The technique has been adapted to enhance the precision in analyzing the subtle contrasts 
and intricate details typical in F I B - S E M images of battery materials. Researchers inte
grated Otsu thresholding with advanced preprocessing techniques, such as noise reduction 
and contrast enhancement, to address specific imaging challenges like curtain artifacts and 
non-uniform illumination. The workflow developed in the referenced study extends the 
basic application of Otsu's method by incorporating it into a systematic algorithm that 
includes both pre- and post-processing stages designed to refine the segmentation process. 
This integrated approach is critical for achieving high segmentation accuracy necessary for 
reconstructing the three-dimensional structure of the anode and assessing its electrochemi
cal performance and serves as a prime illustration of how combining preprocessing methods 
with the thresholding technique can maximize the benefits derived from otsu thresholding. 
The effective use of Otsu thresholding in this research not only demonstrates its robustness 
but also its adaptability to complex imaging scenarios. By combining Otsu's method with 
other image processing techniques, the researchers enhanced its utility, making it an in
valuable tool in the detailed analysis of electrode materials for lithium-ion batteries. Otsu's 
method applies thresholding to distinguish between foreground and background, which is 
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similar to the scenario in our S E M contamination images. In these images, the foreground 
features a whitish tin ball with a darker contamination layer, while the background appears 
blackish and includes several smaller tin balls. 

Edge detection and Region of Interest 

Edge detection is a fundamental component in image processing and a critical step for 
feature extraction in the field of computer vision. It aims to identify points or regions with 
significant changes in brightness or intensity, which often correspond to edges within the 
image. 

In S E M imaging study, Sun et al. [24] discuss the efficacy of traditional edge detection 
algorithms, including Sobel, Laplacian, and Canny operators, which are typically used to 
identify image boundaries through variations in grayscale gradients. The study evaluates 
these techniques on multilayer thin film images, determining that the Canny operator excels 
in both accuracy and computational efficiency for their specific application. In addition, 
this work proposed an edge detection method based on mask operation to enhance the 
clarity of edges in S E M images of multilayer thin film materials. Manual mask selection 
is not applicable in our context; however, their extensive utilization of regions of interest 
is noteworthy and warrants consideration for the development of robust methods in our 
case. We could attempt to locate the contaminated area and subsequently focus all edge 
detection efforts solely within that region of the image. Despite these advancements, edge 
detection in S E M images remains a challenging task due to its inherent noise and complex 
structures. 

Cut-face Edge Detection 

Kutalek's approach [13] tackles the challenge of edge detection in S E M images used to as
sess the thickness of material layers that have been removed from a sample, which closely 
parallels our scenario of measuring layers that have been added instead. It is done by con
verting a two-dimensional image slice into a one-dimensional vector. This transformation 
is performed by first averaging the pixel intensities throughout the image and then apply
ing a moving average for further smoothing. The core of this method is the subsequent 
convolution with a Gaussian window, which greatly improves the precision of edge detec
tion. Initially, transforming 2D image data into a ID vector of averaged pixel intensities 
streamlines the complex data, facilitating easier handling and analysis. The use of a moving 
average enhances this transformation, highlighting variations in intensity to more clearly 
expose hidden patterns. Convolution with a Gaussian window accentuates the identified 
edges, making them more distinct and easier to recognize. 

Deep Learning Approaches 

In the study from L iu et al. [14], semantic segmentation has become a transformative 
approach in biomedical image analysis, enabling precise delineation and quantification of 
cellular structures like mitochondria from imaging datasets. The transition from conven
tional thresholding methods to sophisticated deep learning models has markedly enhanced 
both the precision and speed of segmenting mitochondria. 

Additionally, „Deep Learning, Feature Learning, and Clustering Analysis for S E M Image 
Classification" by Aversa et al. [1] further demonstrates the utility of deep learning, par
ticularly CNNs, in enhancing the classification of nanoscale structures within S E M images. 
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This exploration of the integration of supervised and unsupervised learning underscores the 
adaptability of deep learning in addressing the challenges posed by the variability of S E M 
images. In this study, they also analyzed the training of the dataset for classification from 
scratch across various architectures as well as the fine-tuning process. They discovered that 
fine-tuning not only accelerated the process compared to initiating from scratch but also 
improved test accuracy, establishing it as a superior method. 

There is a semantic segmentation architecture that is used several times, which is called 
DeepLabv3 [4]. For instance, in the work „MudrockNet: Semantic segmentation of mudrock 
S E M images through deep learning" by Bihany et al. [2] created his own net based on the 
DeepLabv3 architecture. The model addresses the specific challenges posed by the S E M 
images of mudrock, such as the presence of silt and clay grains alongside the pores, all with 
overlapping grayscale values. This advancement specifically, the segmentation of individual 
pores and grains in mudrock S E M images is crucial for enhancing the understanding of 
their petrophysical properties, which are pivotal in sectors like petroleum exploration and 
anthropogenic waste sequestration. In addition to the uses of the DeepLabv3 architecture 
in various domains, it has also been successfully applied to the segmentation of minerals in 
reflected light microscopy images. A recent study employs the DeepLabv3 model to address 
the challenging task of differentiating between opaque and non-opaque minerals from epoxy 
resin. This method has shown remarkable segmentation accuracy, particularly benefiting 
from modifications to the original architecture that enhance detail recognition at the borders 
of mineral particles [6]. These advancements in semantic segmentation model demonstrate 
significant potential for improving the efficiency and accuracy of mineral characterization 
processes in the mining industry. 

To conclude, deep learning proves to be highly effective in image analysis across biomed
ical, materials science, and other related disciplines. Studies by L iu et al. and Aversa et al. 
demonstrate improvements in segmentation and classification accuracy. Furthermore, the 
adaptation and refinement of DeepLabv3 architectures in specialized applications, as shown 
by Bihany et al., highlight the potential of these techniques to tackle complex segmenta
tion challenges like ours with high precision and efficiency. It is essential to note that this 
discussion merely scratches the surface of applying deep learning in S E M , with numerous 
studies still to be explored. In the following section 3.2, we will explore in detail the study 
by Minhas on „Transfer Learning for Segmentation Using DeepLabv3 in PyTorch" [15], 
which is directly relevant to our problem and also gains advantages from avoiding training 
from the beginning, as recommendedin work by Aversa et al. [1]. 

DeepLabv3-Based Image Segmentation 

Upon reviewing image analysis applications in S E M , we encountered a study unrelated to 
S E M yet involving a similar task. To address the challenge of feature measurement under 
the constraints of limited data, in particular the study by Manpreet Singh Minhas on 
„Transfer Learning for Segmentation Using DeepLabv3 in PyTorch" presents a compelling 
methodology leveraging transfer learning with DeepLabv3 for road crack detection [15]. 
This approach exemplifies the potential of transfer learning in improving the accuracy of 
segmentation tasks in S E M image analysis, even with sparse datasets. 

Background and Methodology The essence of transfer learning, as explored by Min
has [15], lies in adapting a pre-trained model to a new, but related, task. DeepLabv3 [4], a 
model developed by Google and pre-trained on a large dataset, is utilized for the semantic 
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segmentation of road cracks from a relatively small dataset of just 118 images. The pro
cedure involves fine-tuning DeepLabv3's segmentation sub-network to cater to the specific 
requirements of the new dataset, a process significantly less resource-intensive than training 
a model from scratch. 

Adapting DeepLabv3 for Custom Datasets Modifications to the DeepLabv3 model 
were necessary to tailor it to the target task of road crack detection. The core adaptation 
involved altering the output channels of the model's classifier to match the number of 
target categories in the dataset with road cracks. This adjustment is crucial for the model 
to accurately learn and predict the segmentation masks corresponding to road cracks. 

Performance and Adaptability The resilience and flexibility of DeepLabv3 in the 
face of image degradations such as noise and blurring have been rigorously evaluated by 
Christoph Kamann and Carsten Rother. Their research highlights the model's capability 
to maintain high accuracy even when subjected to distortions similar to those encountered 
in S E M image segmentation [10]. The study implies that enhancements in the model's 
robustness are directly linked to its improved performance, a critical factor for dependable 
S E M image analysis. 

3.3 Conclusion 

This section highlights the necessity of developing innovative methods to assess contami
nation in the S E M industry. We aim to devise techniques that diverge from the existing 
approaches applied in various S E M fields. Although the S E M industry is extensive and 
has seen significant research, there is a gap in specific studies on automated contamination 
quantification. Our goal is to develop innovative techniques and evaluate their precision 
with our own datasets, setting the error margin in nanometers for these measurement 
methods. This chapter discusses potential solutions to issues akin to ours and establishes 
a foundation for the innovative methods proposed in the following chapter 4 to measure 
contamination in S E M . 
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Chapter 4 

Proposed Methods for Measuring 
Contamination Layer Thickness 

This chapter presents two techniques for assessing the thickness of contamination layers in 
Scanning Electron Microscopy (SEM) images. The initial technique focuses on cut-face edge 
detection [13], which utilizes image processing and incorporates established pre-processing 
and thresholding methods to identify regions of interest, and the second involves fine-
tuning the DeepLabv3 [4] model, a machine learning approach, for precise contamination 
segmentation. 

4.1 Evaluation of Exist ing Methods and The Need for New 
Approaches 

This section explores the limitations of measuring the thickness of the contamination layer 
in S E M images, highlighting the need for specialized approaches tailored to the intricacies 
of S E M contamination analysis. 

Limitations of the Cut-Face Technique 

The cut-face technique, while robust for significant pixel value changes, confronts limitations 
in the nuanced context of S E M contamination measurement: 

• Inconsistent Contamination Presentation: Contamination can manifest any
where on the tin ball, without the uniform position required for the cut-face technique, 
complicating its application. 

• Variable Transition Zones: Transition zones, especially at the top of the contami
nation layer, may not exhibit the pronounced changes in the pixel value on which the 
cut-face technique is based, leading to measurement inaccuracies. 

Limitations of Semantic Segmentation Challenges 

Semantic segmentation models face their own set of challenges in adapting to the variability 
present in S E M contamination images: 

• Challenges in Model Training with Diverse Contamination Patterns: The 
model's training on datasets, such as those focusing on crack detection showed in 
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work by Minhas [15], where variability is primarily in crack positioning against a con
sistent background, contrasts sharply with the nature of S E M contamination images. 
In contamination analysis, each image can significantly differ in terms of both the 
material properties and the contamination characteristics, presenting a unique chal
lenge. Finetuning a model to accurately detect contamination across such a diverse 
set of images, especially with a limited dataset, poses significant difficulties. 

• Lack of Specialized Datasets: The absence of a dedicated and annotated dataset 
for S E M contamination layers complicates the training and effectiveness of semantic 
segmentation models for this specific application. 

• Lack of automation mask threshold finder: When the model is fine-tuned and 
applied to an image, it produces a probability mask. This mask must be thresholded at 
a certain probability value. However, there is no automatic tool available to establish 
this threshold value to my best knowledge. 

4.2 Proposed Methods 

Both methods are here described very briefly the detailed chapter dedicated to both methods 
is 6. 

4.2.1 Edge Detection-Based Contamination Analyzer ( E D C A ) 

The Edge Detection-Based Contamination Analyzer (EDCA) utilizes an algorithm adapted 
from the cut-face technique to enhance contamination detection and edge delineation in 
S E M (Scanning Electron Microscopy) images. The approach begins by pre-processing im
ages to rectify artifacts using morphological techniques, thereby enhancing the visibility 
of edges through the use of Otsu thresholding and blurring. The core of E D C A involves 
applying edge detection filters, to precisely identify contamination edges against the S E M 
background. These identified edges define the region of interest (ROI), which is crucial to 
isolate contaminated areas for focused analysis. Subsequent steps include analysis to detect 
significant edge contours and thickness measurement of the contamination layer by quanti
fying the pixel distance between edges within the ROI based on cut-face. Calibration with 
known scales converts these measurements from pixels to precise nanometric dimensions. 
Detailed implementation steps will be discussed in Section 6.1. 

4.2.2 DeepLabv3-based Contamination Layer Segmentation 

The refinement of DeepLabv3 is centered on tailoring this advanced deep learning archi
tecture to accurately detect and delineate contamination layers in S E M imagery. Initially, 
the process involves assembling a detailed dataset of labeled S E M images that display a 
variety of contamination scenarios, as discussed in sections 5.1 and 5.2. This dataset is 
subsequently utilized to refine the DeepLabv3 model as described in 6.2. After training, 
the model is capable of segmenting new S E M images, offering detailed pixel-level classifi
cations that help to measure the thickness of contamination through segmentation masks. 
To boost the model's robustness, the dataset includes artificially altered images that mimic 
various imaging conditions, as explained in 5.4. Additionally, an automated script adjusts 
the threshold settings for the model's output probability maps, detailed in 5.5. 
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Chapter 5 

Data Collection and Analysis 

This chapter offers an in-depth explanation of the systematic gathering, preparation, and 
manipulation of images to establish a sturdy dataset that can support complex analyses. It 
outlines the incorporation of automated scripts that ensure that each image uniquely illus
trates the contamination layers devoid of irrelevant information. In addition, the chapter 
expands on the stringent procedure of constructing a carefully annotated dataset, which acts 
as a foundation for the creation and evaluation of machine learning models that automate 
the partitioning and comprehensive analysis of these images. 

5.1 Data Collection 

This section describes the methods used to build a dataset suitable for accurately analyz
ing contamination layers. The dataset consists of two main parts: an initial subset with 
images lacking dimensional marks and a larger subset predominantly showcasing images 
with various dimensional marks, including both colorful and grayscale representations; see 
figure 5.1. The two datasets were supplied by Thermo Fisher Scientific and consist of 
contamination measurements conducted manually by experts over the past few years. 

Figure 5.1: Dataset samples showcasing a specimen adorned with noticeable dimensional 
marks on the left and without the dimensions on the right. For both the lower section 
of the image contains important details outlining the settings employed for capturing the 
image through electron microscopy. 
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Removing bottom information bar 

The dataset initially contained images that encompassed extraneous elements at the bot
tom, particularly service information and data used for measurement. To refine these 
images, a tailored cropping approach was employed. The script systematically analyzed 
the image dimensions and selectively cropped sections based on a pre-defined mapping of 
the image sizes. This mapping allowed for the removal of unnecessary lower sections from 
the images with the text „Service Mode", thereby creating a cleaner dataset optimized for 
contamination layer analysis. 

Dimension Removal Process 

This section discusses the implementation of image processing methods aimed at the elimi
nation of dimensional annotations and markings from images. To incorporate these images 
into our dataset for evaluation and fine-tuning purposes. 

Color-Based Masking 

Initialize an object to manage the dataset and set specific color ranges to identify regions 
representing dimensional markings within the images. A pivotal technique involves color-
based masking. This process involves transforming the images from the conventional R G B 
color space to the H S V (Hue, Saturation, Value) color space. By defining specific ranges 
of H S V values, masks are created to isolate areas of interest corresponding to the colors 
associated with dimensional annotations; see Figure 5.2. 

These masks highlight the regions containing the markings, enabling them to differenti
ate them from the rest of the image content. To refine the areas detected, a morphological 
operation dilation is applied to the masks. This operation expands the marked regions, 
helping to cover all-dimensional annotations effectively. 

Figure 5.2: Left: Pre-masked image with dimensional annotations clearly visible in green. 
Right: Resulting mask highlighting these annotations, prepared for further processing steps. 

Inpainting for Markings Removal 

Once regions with dimensional markings are identified using the combined mask, they 
undergo a technique called „inpainting". This method reconstructs the marked areas by 
utilizing information from the adjacent unmarked regions, following the Navier-Stokes al
gorithm [5]. As a result, the dimensional annotations are effectively removed, producing 
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a clean and unmarked representation of the original content, as illustrated in the result 
Figure right 5.3. 

Figure 5.3: Left: Original image with dimensional markings used for measurement. Right: 
Image after application of inpainting techniques, where dimensional markings have been 
removed. 

5.2 Annotation Dataset and Automatic Tests 

This section discusses the development of an annotation dataset and the implementation 
of automated tests to validate the image processing methods used in this study. 

Annotation Dataset Creation 

The labeling of S E M images is a meticulous process that involves identifying unique charac
teristics in each image, such as contamination layers. Consequently, a S E M image dataset 
was created with particular attention to the following requirements: 

• Annotation Process: 654 images from the dataset were annotated by hand. This 
process involved identifying contamination and storing the annotated masks in a 
designated folder. The naming convention of this folder corresponds to the original 
images, simplifying subsequent tasks such as error calculation, validation, and model 
refinement. 

• Quality Assurance: Every image that was annotated underwent a verification pro
cess to confirm the correctness of the labels compared to actual measurements taken 
from images that were annotated with dimensions prior to their removal. 

Created Datasets 

We have developed a total of four datasets from all our obtained images. These datasets are 
divided into two categories: one featuring contamination and the other encompassing both 
contamination and no contamination, as initially illustrated in the types of contamination 
in images at the beginning 2.5 and 2.4. Two versions of these datasets exist, one designed 
for fine-tuning and the other for validation purposes. These will be further explored in 
relation to evaluating the model's effectiveness as outlined in the chapter 7. The datasets 
were separated to facilitate experiments with fine-tuning the model on one of these datasets 
because we aim to determine which model will deliver superior results and reliably detect 
any contamination in the images. 
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• Contamination Only Dataset - Contains 339 contamination images. 

• Default Dataset - Contains Contamination_Only_Dataset and zero contamina
tion images. This dataset is obtaining 563 images. 

• Uniq Contamination Only Dataset - Contains 54 contamination images. This 
dataset is created only to validate how the models perform and to compare them 
between each other. 

• Uniq Dataset - Contains Uniq_Contamination_Only_Dataset and zero contami
nation images. It is also used same as the previous dataset for models. This dataset 
is obtaining 91 images. 

These annotated images serve as the ground truth for fine-tuning and evaluating the per
formance of both implemented methods designed to automatically measure contamination 
in S E M images. 

5.3 Automated Testing of Image Analysis Algorithms 

Automating the measurement of contamination in S E M images facilitates the evaluation 
of the performance of each method throughout its implementation and testing phases.The 
provided Python script is designed to identify and quantify contamination areas, which are 
represented by other than black regions in the processed S E M images shown in figure 5.4. 
The following subsections describe the functionality and workflow implemented in the script. 
It is essential to note that this algorithm, which measures height from the mask, is similarly 
applied to assess thickness in the fine-tuned model's output mask after the thresholding of 
the probability map. 

Figure 5.4: Left: S E M image displaying contamination layer. Right: Corresponding mask 
highlighting the front side of contamination layer. 

Measuring Height in Images from Mask 

For every manually annotated mask, the function computes the height of the area within a 
column, which is precisely in the center of the width of the mask: 
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1. The image is loaded and thresholded to filter out all colors except black, thereby 
isolating areas of contamination. Subsequently, it detects the contours of these areas. 

2. Identify the furthest left and right points of the mask, which will determine the central 
column where the height measurement will be taken. 

3. Searches vertically through the specified column to locate the top- and bottom-most 
other than black pixels. 

4. The vertical distance between these two points gives the height of the measured area. 

Data Collection and C S V File Generation 

The main execution block of the script performs the following steps: 

1. Defines the directory containing the images and initializes the C S V file to store the 
results with headers. 

2. Iteratively processes each image in the directory, applying the width and height mea
surement functions to determine the dimensions of contamination. 

3. Outputs the measured values and writes them to the C S V file, associating each mea
surement with the corresponding image file name; see Table 5.1. 

The dataset captured in the resulting C S V file organizes each image's analysis into the 
following format: 

• ImageName: The file name of the analyzed S E M image. 

• BottomHeightY: The distance in pixels from the top of the image to the lowest 
point of the contamination region. 

• TopHeightY: The distance in pixels from the top of the image to the highest point 
of the contamination region. 

• ContaminationHeight: Vertical span in pixels of the contamination region. 

Extensibility of the Automated Measurement Integration 

The script's design naturally supports the dynamic addition of new images and their asso
ciated measurement values to the C S V file. This functionality underscores the utility of the 
script, as it allows for the seamless integration of fresh data, thus continuously enriching the 
dataset. This feature is pivotal for maintaining an up-to-date repository, making it ideal 
for iterative analysis and automated testing that evolves with the addition of new images 
and subsequent contamination measurements. 

5.4 Data Augmentation 

Data augmentation plays an essential role in training machine learning models, especially 
for tasks that require a high generalization in diverse input scenarios, such as S E M image 
segmentation. Our augmentation strategy is designed not only to increase the diversity 
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ImageName BottomHeightY TopHeightY ContaminationHeight 
H 6 E X 1 0 _ S _ . . . _ l . p n g 544 633 89 
H 6 E X 1 2 _ S _ . . . _ l . p n g 565 587 22 
H 6 E X 1 2 _ S _ . . . _ l . p n g 567 600 33 
H 6 E X 1 7 _ S _ . . . _ l . p n g 583 684 101 
H6EX17_S_. . ._2 .png 567 641 74 
H6EX17_S_. . ._3 .png 500 585 85 
H 6 E X 2 0 _ S _ . . . _ l . p n g 572 594 22 
H6EX20_S_. . ._2 .png 556 582 26 
H 6 E X 2 0 _ S _ . . . _ l . p n g 541 670 129 
H6EX20_S_. . ._2 .png 431 579 148 

Table 5.1: This table presents a portion of the dataset, illustrating the automated measure
ment of contamination heights in S E M images. Detailed are the positions of the bottom 
and top height positions, alongside the calculated contamination height for a selection of 
samples. 

of the training dataset but also to ensure that key geometric properties of contamina
tion, specifically the perpendicular orientation of start and end lines, are maintained. This 
section elaborates on the augmentation methods used, utilizing the Python library Albu-
mentations [3]. 

Augmentation Pipeline 

The augmentation pipeline is carefully constructed to apply transformations that simulate 
realistic variations in S E M imaging conditions without distorting critical contamination 
characteristics see results in Figure 5.5. Here are the specific transformations used: 

• Noise and Blur: This transformation introduces Gaussian noise with a variance 
between 10.0 and 50.0 to mimic S E M image artifacts, applied with a 70% probability. 
Additionally, blur and median blur with a limit of 3 simulate focus variations, included 
in a composite operation under the OneOf clause, each with an individual application 
probability of 100%, but collectively with a 70% probability due to the parent setting. 

• Elastic Transformations: The use of ShiftScaleRotate without rotation simu
lates minor elastic-like deformations through controlled shifts (shift_limit=0.0625) 
and scales (scale_limit=0.1), ensuring that critical contamination boundaries remain 
aligned and undistorted. 

• Brightness and Contrast: Random adjustments in brightness and contrast are 
applied with limits of 0.2 to account for variations in illumination conditions and 
sensor sensitivity across different S E M machines. These adjustments are also set with 
a 70% probability of application. 

• Scaling and Translation: The pipeline includes random scaling (limited to 0.1) and 
translation (shift limit set to 0.0625) without any rotation, ensuring the orientation 
and perpendicularity of contamination lines are maintained, crucial for accurate S E M 
image analysis. 

• Additional Details: A l l images are resized to 320x480, standardizing the input 
size for subsequent model fine-tuning. Each transformation is applied ensuring that 
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the same modifications are mirrored on both the image and its corresponding mask, 
preserving the alignment between the two. 

Figure 5.5: Examples of data augmentation techniques applied to one S E M image. The 
images demonstrate the application of various transformations. 

Implementation of Augmentation 

The augmentation process is implemented using a multiprocessing approach to efficiently 
handle a large dataset and significantly speed up the processing time. Each image and 
its mask undergo the defined transformations, and the augmented results are saved into 
specified directories for subsequent training usage. The process is described in the pro
vided Python script, which reads images and masks from specified directories, applies the 
augmentation pipeline, and writes the output to new directories. 

Preservation of Perpendicular Lines 

Special attention is given to ensure that the start and end lines of contamination, which 
are critical for accurate measurement and classification, remain perpendicular after aug
mentation. This is achieved by carefully calibrating the elastic and affine transformation 
parameters within the Albumentations library to avoid any rotational effects that might 
tilt these lines. 

This strategic approach to data augmentation ensures that the augmented images faith
fully represent possible real-world scenarios while maintaining the integrity of critical struc
tural information in the S E M images. 
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5.5 Automation Mask Threshold Finder 

In this section, we discuss the development of a Python script specifically designed to 
accurately determine the optimal threshold value for a probability map. This task is es
sential to improve the accuracy of the model in applications that rely on probability-based 
segmentation. 

Motivation 

The choice of threshold value for interpreting probability maps significantly affects both 
the accuracy of predictive models and the precision of error measurements used in subse
quent validation steps. A n optimally chosen threshold ensures that the probability maps 
effectively distinguish between areas of front contamination layer and background, thus 
minimizing false positives and negatives. 

Implementation 

Input: The input to our process is a probability map, as depicted in Figure 5.6. 
Output: The output is a binary mask, highlighting regions where the probability value 
exceeds the found threshold. 

Figure 5.6: The left side presents the original image, while on the right, the resultant 
probability map is shown, which has been derived through the application of the model to 
the original image. 

Data Preparation 

Our dataset comprises all available images, each labeled with height, the Y position top 
and the Y position bottom. These annotated data form the basis for comparing the results 
produced by different threshold values. 

Initial Parameter Setup 

• Minimum Threshold: Set to 0. 

• Maximum Threshold: Set to 1. 

. Threshold Step: Initially set to 0.025. 
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Optimization Loop 

This stage is crucial to refine the threshold value to ensure the highest possible accuracy. 
The process involves a series of iterative adjustments based on the errors computed for each 
threshold value. 

1. Initial Assessment: Review each image in the data set and apply the model-
generated probability map using a threshold mask. This mask helps to measure 
the bottom, top, and height of the front contamination layer, capturing these values 
in a dictionary for subsequent error analysis. 

2. Compute Error Measurement: Calculate the mean error for each image in the 
dictionary tested. This involves averaging the absolute differences in height, top Y 
position, and bottom Y position for each image compared to its annotations stored 
in C S V as mentioned in the previous section about annotation dataset 5.2. 

3. Threshold Adjustment: Increment the threshold value by the predefined thresh
old step and revert to the initial assessment phase. If the threshold surpasses the 
maximum value, we proceed to the subsequent steps outlined below. 

4. Identify Optimal Range: Determine the threshold value that results in the smallest 
average error by summing up the top and bottom errors of each threshold value 
computed in the initial 3 stages, and then select the one with the smallest value as 
the most suitable threshold value. This threshold signifies the most precise distinction. 
This threshold indicates the most accurate separation between relevant and irrelevant 
regions in the probability map. If the threshold step falls below the established 
precision accuracy value, then the script is terminated using the threshold value found 
in this iteration as the ideal threshold mask value. 

5. Refine Threshold Step: Once the threshold with the minimum sum error is found, 
the threshold step is halved. This refinement increases the precision of the threshold 
values tested in subsequent iterations. 

6. Adjust Search Bounds: To enhance efficiency and focus computational resources: 

• Update Minimum Threshold: Set the new minimum threshold to the best 
performing threshold minus five times the new (halved) threshold step. We have 
empirically found that using five times the threshold step optimizes our search 
bounds effectively. 

• Update Maximum Threshold: Set the new maximum threshold to the best-
performing threshold plus five times the new threshold step. This adjustment 
has been empirically determined to work best for our applications. 

7. Repeat Process: Continue the evaluation process with the updated threshold set
tings, beginning anew from the Initial Assessment. This cycle persists until the 
threshold step decreases below the set precision value. In our particular scenario, 
the precision is established at 0.005. This ensures a comprehensive evaluation of 
potential threshold values within the most promising range. 
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Results Compilation and Storage 

The iterative process of refining the threshold value not only narrows down the range of 
possible thresholds, but also incrementally enhances the precision of image segmentation. 
By systematically reducing the threshold interval and judiciously adjusting the limits, this 
method significantly accelerates the identification of the optimal threshold, thereby decreas
ing computational demands while sustaining or heightening the accuracy of the results. 
Concurrently, after each iteration, error metrics for each threshold are meticulously stored 
in a C S V file for subsequent analysis and verification of the threshold determination pro
cess. This deliberate and efficient strategy sharpens the focus on the most viable threshold 
ranges, fostering a faster attainment of the best solution and ensuring the dependability 
and consistency of the segmentation outcomes. 
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Chapter 6 

Implementation of Proposed 
Methods 

In this chapter, we explore the implementation of the Edge Detection-Based Contamina
tion Analyzer ( E D C A ) . Subsequently, we examine an enhanced method that employs the 
DeepLabv3 model, designed specifically for the segmentation of contamination layers in 
S E M images. This section investigates the intricacies of training a specialized deep learn
ing model, its configuration, and the comprehensive training cycle. Each technique is thor
oughly described, with insight into the technical execution. Research techniques and meth
ods have been enhanced by insights derived from the book „Digital Image Processing" [8], 
which has been instrumental in refining our approach to image analysis and processing. 

6.1 Method 1: Edge Detection-Based Contamination Ana
lyzer ( E D C A ) 

Image Preprocessing 

Inspired by the work of Su Junhong et al. [23], we adopt a series of preprocessing techniques 
specifically tailored to optimize the input images for edge detection algorithms. Given 
the significant variability among images, normalization of the input for the method was 
essential. 

• Morphological Operations (Opening and Closing): Morphological operations 
are employed, starting with an Opening operation, which is beneficial for eliminating 
small objects or noise in the image foreground while retaining the shape and size of 
larger objects. This is followed by a Closing operation, essentially the antithesis of 
opening, involving dilation followed by erosion. These processes aim to seal minor 
holes or gaps within foreground objects, smooth edges, fill in small holes, or bridge 
nearby objects separated by small gaps. These steps are instrumental in removing 
minor specks of noise or artifacts and ensuring that the contamination is not obscured 
by such disruptions. 

• Noise Reduction and Detail Minimization: We apply then noise reduction tech
nique Gaussian Blurring to diminish image noise and detail by weighted averaging 
the pixels within a 11 kernel-sized window. This technique is suitable for reducing 
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noise and minimizing details, facilitating enhanced performance in subsequent tasks 
like edge detection by rendering edges smoother and less fragmented by noise. 

Edge Detection 

Edge detection using the Scharr operator is employed solely to identify regions of interest 
due to inconsistency over the data. The edge detection phase leverages established edge 
detection techniques to identify potential boundaries between the contamination layer and 
the background. The following steps constitute the edge detection process: 

• Thresholding (Otsu's Method): Utilizing Otsu's thresholding technique [18], the 
image will be segmented into foreground and background regions by employing opti
mal thresholding values derived from the image histogram. This approach is partic
ularly well-suited for the given scenario, considering the presence of a large tin ball 
and the background behind it; see Figure 6.1. 

• Scharr Edge Detection: Referencing findings from a study [16], which highlighted 
the efficacy of both the Canny and Scharr edge detectors, we undertook testing on 
our S E M dataset. These tests confirmed that while both methods are robust, the 
Scharr operator slightly edged out in performance for our applications. It consistently 
delivered more defined edges as can be seen in Figure 6.2, which proved advantageous 
for further image processing stages. Although both techniques are commendable, 
the Scharr method's ability to maintain clear edge orientation makes it particularly 
beneficial for defining regions of interest in our studies. It is important to note, 
however, that the inherent variability in image contrast and contamination types 
limits the universal applicability of any edge detection method. Thus, our choice 
of Scharr primarily facilitates the initial identification of contamination areas, setting 
the stage for a subsequent detailed analysis. The resulting image serves for the further 
detection of Regions of Interest (ROI). 

Original Image Otsu Thresholded Image 

i 

1 
Figure 6.1: Comparison of the original and Otsu's thresholded image. 

Tin Ball edges 

After preprocessing, the objective becomes to identify the extremities of the tin ball. Specif
ically, we aim to pinpoint the most left and right points where the tin ball ends and the 
background begins. This is important because, according to the analysis of the dataset, 
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Original Image Canny Edge Detect ion Scharr Edge Detect ion 

Figure 6.2: Comparative analysis of Canny and Scharr edge detection on a S E M image. 
This figure demonstrates the enhanced definition and clarity of boundaries achieved with 
the Scharr method, which proved particularly beneficial for identifying regions of interest 
within our dataset. 

the bottom edge of contamination does not extend beyond these points. In other cases, the 
contamination is defined as low or none. 

Extraction and Definition of the Region of Interest (ROI) 

The goal is to accurately pinpoint and isolate the crucial Region of Interest (ROI) in the 
image. This is important because it allows for an in-depth inspection of the particular area 
affected by contamination. 

• Identification of Tin Ball Edges and Contour Validation: The process starts 
with detecting the initial contour from the bottom center of the image. After this, 
the next step involves locating the contour's farthest left and right points. It is 
crucial to validate the contour width to ensure consistency across all contaminations. 
Additionally, the contour's height is checked against the tin ball's top edges to ensure 
that it does not exceed this limit, as exceeding could indicate zero contamination in 
the image, halting further analysis. 

• Detection of Contamination Layer Boundaries: After validating the contour, 
the algorithm meticulously determines the left and right boundaries of the contam
ination layer. Then it is checked that the distance between these two points is not 
under 350 pixels. This threshold is established based on the scanning area, which is 
approximately 350 pixels in 1024x768 resolution images. 

• Extraction of ROI: Once the boundaries have been defined, the Region of Interest 
(ROI) is extracted by trimming the original image from the contour's most left to its 
most right side. This refined segment represents the specific area of the image that 
encapsulates vital information about the contamination layer, thus ensuring that our 
analysis is focused and accurate. 

By employing these steps, we lay a solid foundation for the subsequent analytical tasks, 
ensuring that the contamination is precisely localized. 

Starting Point 

The next phase focuses on pinpointing the initial point of analysis, strategically located 
midway between the contamination's upper and lower bounds. This determination relies 
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on analyzing vertical profile pixel values across each row within a central column that falls 
within our region of interest. To enhance measurement accuracy and mitigate potential 
distortions, we examine a breadth of 100 columns on either side of this central column. By 
averaging these values, we construct a vertical profile, as shown in Figure 6.3. Our approach 
involves extracting all local minima and maxima from this profile and sequentially evaluat
ing these points from the highest to the lowest. Should the intensity shift between a given 
minimum and its nearest maximum exceed a threshold of 40, we consider this point as a 
candidate for our starting-point array. Empirically, we have found that a threshold of 40 is 
optimal for this purpose. In instances where no change exceeds the threshold, we systemat
ically reduce it and reassess it, ensuring that at least one viable starting point is identified. 
Following the accumulation of potential starting points, we eliminate any that do not exceed 
the tin ball edge threshold, as discussed in the preceding section. Subsequently, we isolate 
the point that signifies the most significant variation between maximum values, which is 
marked for further analysis to delineate the upper and lower limits of contamination. 

Vertical Profile 

0 100 200 300 400 500 600 700 300 

Y Axis (Height of Image) 

Figure 6.3: Vertical profile illustrating pixel values along the height of the image, with the 
identified starting point marked by green vertical dashed line. The ROI from the original 
image, rotated to align with the Y Axis, is displayed behind the plot. 

Finding Bottom and Top of contamination 

In this section, we enhance the methodology initiated to determine the starting point by 
employing a vertical plot analysis, similar to the initial steps taken. The gradient of this plot 
was computed using second-order accurate central differences for interior points and one
sided forward differences at the boundaries. This approach enables us to identify significant 
variations within our column of interest, thereby elucidating the regions that mark the top 
and bottom boundaries of the contamination. 

Initially, we identify all local maxima and minima through a straightforward comparison 
of neighboring values in the gradient plot of our vertical line profile, and subsequently using 
the starting point established earlier as a benchmark, we examined the gradient plot to 
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isolate the most pronounced maximum that extends from the starting point towards the 
upper boundary of the image height. This maximum point effectively signifies the bottom 
edge of the contamination. The observable transition at this point, marked by a significant 
shift from the lighter hue of the tin ball to the darker shades that denote the contamination 
layer, provides visual confirmation of our computational findings, as illustrated in Figure 6.4 

Subsequently, our attention turns towards identifying the contamination's upper bound
ary. Starting from the established point and moving towards the image's lower boundary, 
we search for the minimum that leads to a subsequent maximum with a biggest substan
tial variance in the direction towards the top of the image. The range where we set from 
bottom to top of the image is bottom of contamination plus 200 pixels defined according 
to the biggest height in our dataset is 178 so if we take in mind there might be chance 
of go over this value we set the range to find top from bottom plus 200 pixels towards 
the top of the image. This specific minimum, which also represents the upper limit of the 
contamination when approached from the bottom boundary, is thus identified as the top of 
the contamination. 

Through the validation of gradient plots across our defined datasets, we have ascertained 
the effectiveness of this approach in pinpointing the vertical extents of contamination ac
curately, as will be mentioned in the next chapter, where we will discuss the error of this 
method 7.2. The approach highlights the effectivity of gradient analysis not just as a 
method for boundary detection, but also as an usefull tool for contamination measurement 
within the examined specimens. 

Y Axis (Height of Image) 

Figure 6.4: Illustration of the region of interest delineated by red lines indicating the source 
area for the vertical plot analysis. The contamination boundaries are highlighted with a 
purple line marking the top and a blue line denoting the bottom on the left side of the 
Figure. The right side features the corresponding gradient plot, showcasing the variation 
in intensity across these marked boundaries. 

6.2 Method 2: DeepLabv3-based Contamination Layer Seg
mentation 

This section details the technical implementation of the DeepLabv3 model customized for 
the segmentation of contamination layers in Scanning Electron Microscopy (SEM) images. 
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Covers the aspects of training the model using PyTorch [19], and post-processing techniques 
to refine the segmentation results. 

Dataset Preparation 

A critical aspect of implementation involves preparing the S E M image dataset to train 
the segmentation model. The dataset consists of S E M images, each manually annotated 
to delineate the contamination layers. The preparation of the dataset is discussed in a 
previous chapter 5. 

Model Configuration 

The DeepLabv3 model is configured and trained using PyTorch [19], a popular framework 
for deep learning applications due to its flexibility and extensive library support. The 
training process includes the following configurations and steps: 

• Model Architecture: Our model employs the DeepLabv3 architecture [4], utiliz
ing the ResNet-101 backbone for robust feature extraction. Initially pre-trained on a 
comprehensive dataset, the model is fine-tuned for a binary segmentation task that 
detects contamination at the pixel level. This fine-tuning involves adapting the output 
layer to produce a single-channel output, which classifies each pixel as either 'contami
nated' or 'non-contaminated.' Such a modification is essential for aligning the model's 
capabilities with the binary classification demands of our dataset annotations. 

• Loss Function: During the model's fine-tuning process, we utilize the Mean Squared 
Error (MSE) loss function. This loss function was selected due to its successful appli
cation in fine-tuning DeepLabv3 on cracks, as highlighted in the work by Minhas [15]. 

• Optimizer and Learning Rate: A n Adam optimizer [12] with an initial learning 
rate of 0.0001 is used. The learning rate is adjusted according to a learning rate 
scheduler based on the validation loss to ensure effective learning without plateauing. 

Model Performance Evaluation 

In the book Data Science for Business: What You Need to Know about Data Mining and 
Data-Analytic Thinking by Foster Provost and Tom Fawcett [21], the authors underscore 
the role of evaluating a model's ability to accurately manage and predict data. The book 
elaborates on various key performance metrics for assessing the efficacy of classification 
models in the stages of the machine learning process. These metrics, including the Train 
and Test A U R O C and F l scores, are presented as indicators of the predictive precision of 
a model and its generalizability. This section provides an overview of what these metrics 
mean and their typical range, with more comprehensive details available in the book itself. 

The F l score, which ranges from 0 to 1, evaluates the balance between precision (the 
proportion of true positive results in all positive predictions) and recall (the proportion of 
true positive results in all actual positives). A higher F l score suggests better balance and 
performance of the model. The A U R O C (Area Under the Receiver Operating Characteris
tics), which also varies from 0 to 1, assesses the model's capability to differentiate between 
classes. Higher A U R O C values suggest an enhanced ability to discriminate. Detailed dis
cussions of these interpretations and additional explanations are provided in the previously 
mentioned book. 
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Detailed Training Loop 

Training loop is component where the model is trained iteratively and evaluated against the 
datasets to optimize its performance. The detailed training loop is implemented in Python 
using PyTorch [19], and it operates as follows: 

• Setup Phase: The model is initialized and transferred to a G P U if available to 
leverage hardware acceleration for training. This is critical for handling the compu
tational demands of training DeepLabv3 on a dataset. A log file is created to record 
training and testing metrics for each epoch, which helps in monitoring the model's 
performance and diagnosing issues during training. 

• Epoch Execution: The loop iterates through a specified number of epochs, where 
each epoch consists of both training and testing phases to validate the model's per
formance continually. For each epoch, the model state is toggled between the training 
and evaluation modes, using model.train() and model.eval(). 

• Batch Processing: Within each epoch, data are processed in batches. For each 
batch, the images and their corresponding masks are loaded and transferred to the 
G P U . At the beginning of each batch, the gradient calculations are reset to prevent 
accumulation from previous iterations. This is done using optimizer.zero_grad(). 

• Forward and Backward Passes: The model performs a forward pass to generate 
predictions for the batch. The loss is then calculated using a specified criterion, 
comparing the predicted output against the ground-truth mask labels. During the 
training phase, a backward pass is executed to compute gradients, and an optimization 
step is performed to update the model's weights. 

• Metrics Calculation and Logging: For each batch we calculate F l score and 
Auroc (area under the receiver operating characteristic curve) score. These metrics 
are then averaged over the epoch and logged in the previously created log file. The 
model's performance is assessed at the end of each epoch by comparing the current 
loss with the best loss observed in previous epochs. If an improvement is found, the 
model weights are updated to reflect the best performing model. 

• Completion and Model Saving: Upon completion of all epochs, the training loop 
reports the total time taken and the best loss achieved. The best model weights are 
saved, ensuring that the most effective version of the model is preserved for future 
inference tasks. 

This detailed implementation ensures rigorous training and validation, allowing the 
model to effectively learn from the training data while maintaining the ability to generalize 
to new, unseen images. The logging of detailed metrics provides an essential tool for tracking 
the model's progress and making informed adjustments to training parameters. 

Post-processing 

Once trained, the model is used to segment new S E M images. This involves the following 
post-processing steps to quantify contamination: 
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• Model Inference: For the application, the input images are first resized to fit the 
model's expected input dimensions of 480 x 320 pixels. Each image is then restructured 
into a tensor format appropriate for the model, normalized, and processed through 
the network to obtain a prediction. The model outputs a probability map, from which 
we extract a binary mask by applying a threshold. 

• Thresholding: In the thresholding section, we have developed a tool „Automation 
Mask Threshold Finder" discussed in section 5.5. This tool, when provided with a 
dataset and a corresponding csv file containing values for the top, bottom, and height 
of each image, can determine the optimal threshold value. The goal is to minimize the 
mean error of the output from the fine-tuned model to the greatest extent possible and 
accurately delineate the foremost layer of contamination in the image for subsequent 
quantification. 
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Chapter 7 

Experiments and Evaluation 

This chapter details the experiments conducted with various datasets to evaluate the impact 
of fine-tuning on the model's performance. The objective was to determine how different 
types of data affect the accuracy and robustness of the segmentation of the model. We 
evaluated the performance of the Edge Detection-Based Contamination Analyzer (EDCA) 
and the chosen fine-tuned DeepLabv3 model, focusing on their accuracy, precision, and 
error metrics compared to manually annotated ground truth data. 

7.1 Mode l Experiments Across Datasets 

• Dataset with Contamination Only: The initial experiment utilized a dataset 
comprising 339 images, all containing contamination. This dataset helped establish a 
baseline for the model's ability to identify and segment contaminated areas without 
the influence of uncontaminated regions. 

• Mixed Contamination Dataset: The second experiment incorporated a dataset 
that included both contaminated and uncontaminated images. This approach was 
intended to test the model's discriminative power in distinguishing between contam
inated and clean ct rests. The dataset consists of 563 images. 

• Augmented Dataset: The final set of experiments employed an augmented dataset, 
where original images were modified using techniques detailed in section 5.4. The 
purpose was to evaluate the model's robustness and its ability to maintain accuracy 
despite variations in image presentation and quality. This dataset is composed of 10 
augmented versions for each image from the Contamination Only dataset, generated 
through the methods described in section 5.4, totaling 3390 images. 

As highlighted in the work of Minhas et al. (2020) [15], our models demonstrate robust 
performance after fine-tuning for a relatively small number of epochs, fewer than 25. This 
is evident from the results shown in Figure 7.1, which presents the training outcomes 
exclusively on the Contamination Only dataset. Specifically, training and test losses show 
substantial reductions early in the training process, with training loss decreasing from 0.0214 
to 0.0021 and test loss from 0.0142 to 0.0042 by the 25th epoch. Concurrently, the F l scores 
and A U R O C values also show remarkable improvement within this period, achieving levels 
above 0.88 and 0.94. This underscores the model's capability for quick adaptation without 
a significant risk of overfitting, highlighting its efficiency in learning from limited data. 
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Upon fine-tuning the model using an augmented dataset, both the training and test 
losses exhibited a rapid decline, with the training loss reducing from 0.0046 to 0.0010 and 
the test loss from 0.0081 to 0.0015 over the initial 50 epochs. Concurrently, the F l scores 
on both the training and test sets showed gradual improvement, starting at 0.469 and 
0.384, and peaking at around 0.629 and 0.628 by the 30th epoch. This indicates a steady 
enhancement in the precision and recall of the model. 

0.2 

0.0 
0 20 40 60 80 100 

epoch 

Figure 7.1: Training dynamics over epochs for a fine-tuned model on the Contamination 
Only dataset. The graph illustrates the evolution of loss and performance metrics, including 
the F l score and area under the receiver operating characteristic curve (AUROC) , for both 
training and test sets. Notably, the training loss rapidly declines within the first few 
epochs, stabilizing shortly thereafter. The F l score and A U R O C for the training set ascend 
correspondingly, indicating effective learning. Conversely, the test metrics plateau early, 
suggesting quick model generalization with minimal overfitting. These trends underscore 
the efficacy of fine-tuning with a modest epoch count. 

Determination of Optimal Threshold Values 

The efficacy of the finetuned models is contingent upon the calibration of threshold val
ues. These values are determined through the use of the automated threshold finder, as 
elaborated in the preceding chapter that discusses dataset acquisition and annotation. Il
lustrative figures 7.2 therein depict the threshold variation for each iteration, outlining the 
impact on model performance. To determine the appropriate threshold, a dataset compris
ing all images merged into a single file was utilized. This approach ensures the selection 
of the most accurate threshold value, disregarding the data on which the model was previ
ously trained. The optimal threshold value identified for the model refined exclusively on 
the Contamination-Only dataset is 0.41249, for the Mixed Contamination Dataset 0.44375, 
and for the Augmented dataset, the determined threshold is 0.42187. A l l corresponding 
data are saved in csv files, which are titled according to the dataset used for fine-tuning. 
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Figure 7.2: The figure illustrates a side-by-side comparison of error metrics for mask pre
diction models across a range of threshold values from 0.0 to 1.0. The left graph depicts the 
'Mask Prediction Model (Augmented Dataset)' and identifies the optimal threshold where 
the combined error is minimized at approximately 0.42187, denoted by a dashed red line. 
The right graph represents the 'Mask Prediction Model (Contamination only Dataset)' 
with its minimal combined error threshold indicated at roughly 0.41249, also marked by 
a dashed red line. Both graphs plot three distinct error types: 'Height Error'(blue), 'Top 
Error'(orange), and 'Bottom Error'(green). 

Comparison Between Contaminated and Mixed Dataset Models 

This subsection evaluates the performance of models fine-tuned on different types of data 
sets: one trained exclusively on images with contamination and another trained on a mixed 
set of images, both contaminated and uncontaminated. The analysis was performed using 
a unique dataset that was not employed in the fine-tuning process to ensure an unbiased 
evaluation of the models' true performance. 

The analysis focused on the output probability maps generated by each model. It was 
observed that the model fine-tuned on the mixed dataset tends to under-detect contami
nation, especially in images with very low levels of contamination. This results in a higher 
rate of false negatives, where the model fails to identify subtle contamination that might be 
perceptible upon close expert examination. This contrasts with the model trained only on 
contaminated datasets, which exhibited a tendency to identify contamination more reliably 
under the same conditions, albeit with a risk of overdetecting in some scenarios. 

However, in situations with medium to high levels of contamination, both models showed 
similar effectiveness, accurately recognizing and delineating areas of contamination, as evi
denced by their output probability maps. 

To visually demonstrate these findings, Figure 7.3 contrasts the detection outputs of the 
two models, particularly highlighting their performance in scenarios where contamination 
is minimal and thus more challenging to detect. 

Evaluation Metrics and Mode l Comparison 

The efficacy of the segmentation models was quantitatively assessed through the Intersection 
over Union (IoU) metric in the following Equation 7.1, widely used to evaluate the accuracy 
of object detection and segmentation tasks. This metric measures the extent of overlap 
between the model-generated predicted segmentation masks and the manually annotated 
ground truth masks. For a more detailed explanation, refer to the book by Provost [21]. 
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Model l (Mixed Training Dataset) Model 1 Mask Overlay 

Model 2(Dataset Contamination Only) Model 2 Mask Overlay 

Figure 7.3: Comparison of probability maps and mask overlays: the top row shows the 
model trained on a mixed dataset failing to detect low levels of contamination, whereas the 
bottom row illustrates the model trained only on contamination datasets detecting such 
contamination more effectively. 

d f o U (x ,y) = i - L _ _ i (7.i) 

In equation (7.1), | A n F | denotes the intersection of the predicted segmentation mask X 
and the ground truth mask Y, representing areas correctly identified by the model. | X u y | 
denotes the union of these masks, encompassing all areas identified by either or both. A 
higher IoU value indicates a greater overlap and hence a more accurate model. 

A comparison was made between two distinct configurations of the DeepLabv3 model, 
each fine-tuned on different datasets: one on augmented images and the other on con
tamination only. This analysis employed a dataset composed of 54 unique S E M images, 
exclusively featuring contamination. 

The performance of the models was assessed as follows: 

• Model 1 achieved a mean IoU of 0.824 with a standard deviation of 0.078, 

• Model 2 achieved a mean IoU of 0.832 with a standard deviation of 0.071. 

Figure 7.4 illustrates the histogram of IoU scores for both models, demonstrating the 
distribution of scores and showcasing the slightly tighter spread and higher averages for 
Model 2. 

The marginally better mean IoU score of Model 2 implies that it was more effective in 
precisely identifying contamination layers in S E M images. Additionally, the reduced stan
dard deviation of Model 2 reflects its greater reliability across various testing conditions, 
making it the preferable option for use in precision-dependent environments. The enhanced 
accuracy and consistency of Model 2 offer a benefit for tasks that demand accurate con
tamination segmentation. The stability of Model 2 demonstrates its capability to manage 

39 



diverse imaging scenarios in the limits of our controlled environment and contamination 
levels, making it especially valuable in industrial settings where variations in S E M image 
conditions are common. 

Conclusion 

Model 2, with its higher mean IoU and lower variability, emerges as the preferred model 
for critical applications. Future work could explore further enhancements to the model's 
architecture or training process, such as integrating additional layers or advanced data-
augmentation techniques, to further improve its accuracy and robustness, though the cur
rent level of accuracy is deemed sufficient for our purposes. 

Histogram of IoU Scores 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 
IoU Score 

Figure 7.4: Histogram comparing IoU scores of Model 1 fmetuned on Contamination only 
dataset(blue) and Model 2 fmetuned on Augmented dataset(green), indicating that Model 
2 not only has a higher average IoU but also shows less variability in performance across 
samples. 

7.2 Error Analysis 

This section delineates the error measurement methodologies employed for both the image 
processing technique and the machine learning model, comparing their accuracy against 
manually annotated ground truth data. 

Error Measurement Procedure 

Error measurements are conducted by comparing the predicted contamination dimensions 
of both detection methods against actual measurements derived from a manually annotated 
dataset. 
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• Data Handling: The S E M images along with their corresponding contamination 
measurements are stored in a C S V file. Each entry records the true dimensions of 
contamination for comparison. 

• Comparison Logic: For each image, the absolute differences between the predicted 
and actual values of the key metrics are calculated: height, top and bottom of con
tamination. 

• Handling Special Cases: Special attention is dedicated to images exhibiting mini
mal contamination, as detecting and quantifying low levels of contamination presents 
unique challenges. The primary objective is to accurately identify and define con
tamination within these images. In instances where contamination is minimal or is 
perceived incorrectly, when there is none, such results are excluded from our error 
measurement analysis. This exclusion is strategic, prioritizing the detection of any 
contamination over none to avoid skewing the overall analysis with potentially mis
leading data. 

Statistical Error Metrics 

Error quantification is achieved using several statistical metrics that provide information 
on the precision and consistency of the predictions made by each method (measurements 
are in pixels): 

• Mean Absolute Error ( M A E ) : Measures the average magnitude of the errors in 
a set of predictions, without considering their direction. The calculation of M A E is 
shown in Equation 7.2, where yi are the true values, yi are the predicted values, and 
n is the number of observations. 

M A E = - V | y i - y i | (7.2) 
n ^-^ 

• Mean Squared Error (MSE): Highlights larger errors, which is particularly useful 
when large errors are particularly undesirable. The M S E is calculated using Equa
tion 7.3, where yi are the true values and yi are the predicted values, n represents 
the number of observations. 

M S E = - J2(Vi ~ Vi? (7-3) 
i=i 

• Root Mean Squared Error (RMSE): Indicates the square root of the M S E , 
providing error measurement in the same units as the initial data, which simplifies 
interpretation. R M S E is detailed in Equation 7.4, where yi are the true values, yi are 
the predicted values, and n is the number of observations. 

- E G " - * ) 2 (7-4) 
i=l 

• Median of Errors: Indicates the median value of all absolute errors, providing a 
robust measure of central tendency that is less sensitive to outliers. The Median of 

R M S E 
\ 
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Errors is calculated as shown in Equation 7.5. It considers all absolute differences 
between predicted values yi and true values yi. 

Median of Errors = median(|yi — , \y2 — 2/2I, • • •, \yn (7.5) 

Success rate: In our experiments, we establish a threshold such that the absolute 
difference between the values measured by our method and the ground truth does not 
exceed 20 pixels. The success rate is then calculated as the ratio of images meeting 
this criterion to the total number of images assessed, expressed as a percentage. This 
measurement is quantified in Equation 7.6. 

Success Rate (%) 
/Number of Images with Absolute Error < 20 pixels 
\ Total Number of Images 

x 100 

(7.6) 

Error Metrics for Edge Detection-Based Contamination Analyzer ( E D C A ) 
and DeepLabv3-based Contamination Layer Segmentation 

The first method, an image processing technique to detect contamination and the machine 
learning model fine-tuned on augmented dataset showed the following error metrics which 
are shown in tables 7.1, 7.4, 7.2, 7.3: 

Table 7.1: E D C A Error Metrics and Success Rates for the Contamination Only Dataset 
Method Type M A E M S E R M S E Median Success rate (%) 

E D C A 
Height 6.15 53.68 7.33 6.00 81.17 

E D C A Top 3.32 17.93 4.23 3.00 -E D C A 
Bottom 5.15 42.18 6.49 4.00 -

Table 7.2: E D C A Error Metrics and Success Rates for the Default Dataset 
Method Type M A E M S E R M S E Median Success rate (%) 

E D C A 
Height 6.15 53.72 7.33 6.00 87.16 

E D C A Top 3.32 17.89 4.23 3.00 -E D C A 
Bottom 5.18 42.52 6.52 4.00 -

Table 7.3: Comparison of E D C A and Model Error Metrics and Success Rates for the Unique 
Contamination Only Dataset 

Method Type M A E M S E R M S E Median Success rate (%) 

E D C A 
Height 6.06 57.88 7.61 5.00 75.00 

E D C A Top 2.67 11.15 3.34 2.00 -E D C A 
Bottom 5.33 46.97 6.85 5.00 -

Model 
Height 5.51 49.62 7.04 5.00 98.14 

Model Top 3.55 21.92 4.68 3.00 -Model 
Bottom 3.66 29.62 5.44 3.00 -
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Table 7.4: Comparison of E D C A and Model Error Metrics and Success Rates for the Unique 
Dataset  

Method Type M A E M S E R M S E Median Success rate (%) 

E D C A 
Height 6.06 57.88 7.61 5.00 87.18 

E D C A Top 2.67 11.15 3.34 2.00 -E D C A 
Bottom 5.33 46.97 6.85 5.00 -

Model 
Height 5.56 50.40 7.10 5.00 98.61 

Model Top 3.54 22.04 4.69 3.00 -Model 
Bottom 3.71 30.17 5.49 3.00 -

Table 7.5: Comparison of E D C A and Model Error Metrics in nanometres for the Unique 
Contamination Only Dataset 

Method Type M A E M S E R M S E Median 

E D C A 
Height 7.90 103.47 10.17 6.74 

E D C A Top 3.27 18.46 4.30 2.25 E D C A 
Bottom 7.02 85.09 9.22 5.62 

Model 
Height 7.27 80.83 8.99 5.62 

Model Top 4.47 35.41 5.95 3.37 Model 
Bottom 5.14 51.02 7.14 3.37 

Height Measurement Errors Top Measurement Errors Bottom Measurement Errors 

Figure 7.5: Visual comparison of error metrics for height, top, and bottom measurements 
for both the image processing technique and the machine learning model used on Unique 
Dataset. The blue columns signify E D C A , while the orange columns correspond to the 
Deeplabv3-based approach. 
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7.3 The precision of each method 

Precision of each method in nanometers 

Each image from a Scanning Electron Microscope (SEM) is associated with a specific pixel 
width that translates pixels into real-wo rid units. This pixel width is given in meters: 
however, for the microscopic measurements, it's conventionally set to nanometers to en
hance readability. In this experiment, to determine the measurement error of each method 
in nanometers, we collect the pixel width for each image, stored in a C S V file under the 
columns 'ImageName' and 'PixelWidth'. Subsequently, we can proceed with our prede
fined error measurement procedures, albeit with adjustments such as retaining the original 
image dimensions, since for performance reasons during testing, these were standardized 
to 1024x864. For each image, the bottom, top and height difference measurements from 
ground truth must be multiplied by the pixel width indicated in the C S V file. Ultimately, 
the calculation of the metrics remains consistent with the standard pixel-based error mea
surement method. The results of each method, displayed in nanometers, are detailed in 
Tables 7.5. Specifically, the precision of the height measurement in a unique dataset is 7.9 
nanometers for the E D C A method and 7.27 nanometers for the model. 

Edge Detection-Based Contamination Analyzer ( E D C A ) 

The Edge Detection-Based Contamination Analyzer (EDCA) utilizes image processing tech
niques that excel in environments with clear, well-defined edges. However, its effectiveness 
diminishes under high-noise conditions or when processing images with subtle edge varia
tions. Despite achieving low error values in controlled settings, as evidenced in Table 7.3, 
the E D C A method struggles with flexibility and adaptability to new or unseen variations 
that were not part of its initial training set. 

The method's performance varies significantly based on the presence of contamination 
in images. For instance, it demonstrated an improved success rate, rising from 81.17% to 
87.16%, when analyzing uncontaminated images. This improvement is documented across 
comparative analyses in Tables 7.1 and 7.2. 

Figure 7.6 highlights specific cases where E D C A failed to detect both the bottom and 
height of contamination. In one depicted scenario, the contamination is excessively large, 
obscuring features like the leftmost peak, which is typically discernible in the dataset. This 
issue is compounded by a lack of distinct pixel value changes from the bottom to the top 
of the image, complicating the detection of the top of the contamination. 

Moreover, the E D C A method struggles with variations in contamination build-up, which 
affect its detection capabilities. Another noted challenge is the method's sensitivity to 
changes in contrast, which can severely affect its ability to quantify contamination accu
rately. In conclusion the method is capable of measuring the contamination in most cases 
and even with good error values. The method performs often well despite variety in the 
contamination dataset, with the exception of the described edge cases. 

DeepLabv3-based Contamination Layer Segmentation 

The DeepLabv3-based model exhibited adaptability and robustness, showcasing its ability 
to generalize to new datasets effectively. This model achieved high accuracy in detecting 
contamination under various sample conditions, highlighting its precision in segmenting 
complex images. However, it is worth noting that the Edge Detection-Based Contamination 
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Figure 7.6: Illustration of E D C A ' s performance limitations in specific cases: (a) Image 
lacking distinct edge variations leads to failure in top contamination detection, (b) Image 
with too complicated structure of contamination to detect, and (c) Image with too big 
contamination. These cases demonstrate the limited adaptability of the method to atypical 
scenarios not covered during its development phase. 

Analyzer (EDCA) method exhibits slightly better performance in measuring the top of the 
contamination. This suggests a potential area for further optimization in DeepLabv3's 
approach to detecting smaller, less distinct features. However, for accurate contamination 
assessment, it is crucial to measure the entire height of the contamination rather than just 
the top or bottom, in order to determine whether the contamination levels are excessively 
high or low. 

Despite this challenge, the model's robustness is evident across multiple evaluations. It 
accurately detects contamination in every analyzed image, with a particularly low mean 
error in height measurements, which are critical for our assessments. This performance is 
documented in the results of Tables 7.1, 7.2, 7.3, and 7.4. 

The precision rate of the model in the unique dataset, as shown in Table 7.4, reaches 
98.61% compared to manual measurements, underscoring its effectiveness with both trained 
and new data. This high level of accuracy supports the model's utility in practical appli
cations where reliable contamination detection is essential. 

Discussion of Results 

A comparative evaluation of both methods reveals that the model consistently outperforms 
E D C A in precision. The results from testing on the unique dataset demonstrated that 
the model achieved a precision of 98.61%, surpassing the precision of 87.18% recorded by 
the E D C A method. These metrics underscore the model's adeptness in both identifying 
and quantifying contamination. In terms of error metrics for the detection of the bottom 
and the height of the contamination, the model's performance excelled. Although E D C A 
registered slightly better performance in the detection of the top of the contamination, the 
overall analysis favors the DeepLabv3-based model for its effectiveness and reliability across 
various contamination scenarios. The measurement errors for each method, expressed in 
nanometers, are 7.13 nm for the model and 7.90 nm for E D C A . 
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Chapter 8 

Conclusion and Future Work 

In this study, we explored the effectiveness of various image processing techniques to mea
sure the thickness of the contamination layers in scanning electron microscopy images. 
Two primary methods were proposed: a traditional image processing approach using Edge 
Detection-Based Contamination Analyzer (EDCA) and a modern machine learning ap
proach through fine-tuning of the DeepLabv3 model on different datasets. 

To facilitate accurate evaluation and comparison of these methods, we created datasets 
complete with annotations of ground truth masks and accompanying C S V files documenting 
the manually measured y-positions for each image. The ground truth masks were essential 
for training the machine learning model and validating both the finetuned model and the 
E D C A , providing a clear benchmark against which to measure the precision and robustness 
of each method. 

Our evaluation highlights that while the Edge Detection-Based Contamination Analyzer 
(EDCA) provided a foundational approach for measuring contamination, it was the fine-
tuned DeepLabv3 model that exhibited superior precision and robustness. The fine-tuned 
model, particularly when trained on an augmented dataset, demonstrated an improved 
ability to accurately segment and analyze contamination layers across diverse S E M images 
within the limits of our measurement setup. This was evidenced by significant improvements 
in evaluation metrics such as Intersection over Union (IoU) and reduced error rates in 
practical tests. Our model finetuned on Contamination only dataset achieved a mean IoU 
of 0.824 with a standard deviation of 0.078 and the model finetuned on the Augmented 
dataset achieved a mean IoU of 0.832 with a standard deviation of 0.071. These findings 
show a higher performance of the model fine-tuned on the Augmented dataset. Additionally, 
the mean error in nanometers was calculated for the height result of each method on a 
unique dataset, where the E D C A recorded 7.9 nm and the DeepLabv3 model recorded 
7.27 nm, indicating the superior performance of the model. In comparison, the model 
achieved a success rate of 98.16% on the Unique dataset, while the E D C A achieved 87.16%, 
demonstrating the substantial robustness of the model. 

Given these results, the decision was made to select the DeepLabv3 model fine-tuned on 
the augmented dataset. This choice was driven by the robustness of the model against vari
ous imaging challenges and its ability to deliver precise measurements to measure the height 
of contamination. Moreover, this research lays the groundwork for further studies focused 
on expanding the dataset and integrating additional machine learning models, potentially 
enhancing the precision of contamination evaluations, particularly for upper measurements 
where the model slightly underperformed compared to E D C A . It provides a pre-annotated 
dataset to other researchers, enabling them to evaluate different architectures or techniques. 

46 



47 



Bibliography 

[1] A V E R S A , R., C O R O N I C A , P., D E N O B I L I , C. and C O Z Z I N I , S. Deep Learning, Feature 
Learning, and Clustering Analysis for S E M Image Classification. Data Intelligence. 
One Rogers Street, Cambridge, M A 02142-1209, USA: M I T Press. October 2020, 
vol. 2, no. 4, p. 513-528. DOI: 10.1162/dint_a_00062. ISSN 2641-435X. Available 
at: https://doi.org/10.1162/dint_a_00062. 

[2] B I H A N I , A . , D A I G L E , H . , S A N T O S , J . E. , L A N D R Y , C , P R O D A N O V I C , M . et al. 

MudrockNet: Semantic segmentation of mudrock S E M images through deep learning. 
Computers & Geosciences. 2022, vol. 158, p. 104952. DOI: 
https://doi.Org/10.1016/j.cageo.2021.104952. ISSN 0098-3004. Available at: 
https: //www. sciencedirect.com/science/article/pii/S0098300421002387. 

[3] B U S L A E V , A . , I G L O V I K O V , V . I., K H V E D C H E N Y A , E . , P A R I N O V , A . , D R U Z H I N I N , M . 
et al. Albumentations: Fast and Flexible Image Augmentations. Information. M D P I 
A G . february 2020, vol. 11, no. 2, p. 125. DOI: 10.3390/infoll020125. ISSN 
2078-2489. Available at: ht tp: / /dx.doi .org/10.3390/ infol l020125. 

[4] C H E N , L . , P A P A N D R E O U , G. , S C H R O F F , F . and A D A M , H . Rethinking Atrous 

Convolution for Semantic Image Segmentation. ArXiv.org. Ithaca: Cornell University 
Library, arXiv.org. June 2017, abs/1706.05587. ISSN 2331-8422. Available at: 
ht tp: / /arxiv.org/abs/1706.05587. 

[5] E B R A H I M I , M . A . , H O L S T , M . and L U N A S I N , E . The Navier-Stokes-Voight Model for 
Image Inpainting. IMA Journal of Applied Mathematics. January 2009, vol. 78. DOI: 
10.1093/imamat/hxr069. Available at: https://arxiv.org/abs/0901.4548. 

[6] F l L I P P O , M . P., D A F O N S E C A M A R T I N S G O M E S , O., D A C O S T A , G . A . O. P. 

and M O T A , G . L . A . Deep learning semantic segmentation of opaque and non-opaque 
minerals from epoxy resin in reflected light microscopy images. Minerals Engineering. 
2021, vol. 170, p. 107007. DOI: https://doi.Org/10.1016/j.mineng.2021.107007. ISSN 
0892-6875. Available at: 
https: //www. sciencedirect.com/science/article/pii/S0892687521002363. 

[7] G O L D S T E I N , J . I., N E W B U R Y , D. E. , M I C H A E L , J . R., R I T C H I E , N . W . M . , S C O T T , J. 

H . J . et al. Scanning Electron Microscopy and X-Ray Microanalysis. Fourthth ed. 
New York, N Y : Springer Nature, 2018. ISBN 978-1-4939-6674-5. 

[8] G O N Z A L E Z , R. C. Digital image processing. Fourth edition; Global editionth ed. New 
York: Pearson, 2018. ISBN 978-1-292-22304-9. 

18 

https://doi.org/10.1162/dint_a_00062
https://doi.Org/10.1016/j.cageo.2021.104952
http://sciencedirect.com/science/article/pii/S0098300421002387
http://dx.doi.org/10.3390/infoll020125
http://ArXiv.org
http://arXiv.org
http://arxiv.org/abs/1706.05587
https://arxiv.org/abs/0901.4548
https://doi.Org/10.1016/j.mineng.2021.107007
http://sciencedirect.com/science/article/pii/S0892687521002363


[9] H U G E N S C H M I D T , M . , A D R I O N , K . , M A R X , A . , M Ü L L E R , E . and G E R T H S E N , D. 
Electron-Beam-Induced Carbon Contamination in S T E M - i n - S E M : Quantification 
and Mitigation. Microscopy and Microanalysis, december 2022, vol. 29, no. 1, 
p. 219-234. DOI: 10.1093/micmic/ozac003. ISSN 1431-9276. Available at: 
h t tps : / /doi .org/10.1093/micmic/ozac003. 

[10] K A M A N N , C. and R O T H E R , C. Benchmarking the Robustness of Semantic 
Segmentation Models. ArXiv.org. Ithaca: Cornell University Library, arXiv.org. 
august 2019, abs/1908.05005. DOI: 10.1109/CVPR42600.2020.00885. Available at: 
ht tp : / /arxiv .org/abs /1908.05005. 

[11] K I M , D. , L E E , S., H O N G , W., L E E , H . , J E O N , S. et al. Image Segmentation for 
F I B - S E M Serial Sectioning of a Si/C-Graphite Composite Anode Microstructure 
Based on Preprocessing and Global Thresholding. Microscopy and Microanalysis. 
October 2019, vol. 25, no. 5, p. 1139-1154. DOI: 10.1017/S1431927619014752. ISSN 
1431-9276. Available at: https://doi.org/10.1017/S1431927619014752. 

[12] K I N G M A , D. P. and B A , J . Adam: A Method for Stochastic Optimization. ArXiv.org. 
Ithaca: Cornell University Library, arXiv.org. 2017. ISSN 2331-8422. Available at: 
h t tps : / /arxiv.org/pdf/1412.6980.pdf. 

[13] K U T Ä L E K , J . Measuring the thickness of material layers removed from a sample in 
an electron microscope. Brno, 2023. Master's Thesis. Brno University of Technology. 
Supervisor I N G . M A R T I N C A D I K , P. doc. 

[14] L i u , J. , L i , W., X I A O , C., H O N G , B. , X I E , Q. et al. Automatic Detection and 
Segmentation of Mitochondria from S E M Images using Deep Neural Network. 
In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine 
and Biology Society (EMBC). I E E E , 2018, p. 628-631. DOI: 
10.1109/EMBC.2018.8512393. ISBN 978-1-5386-3646-6. [Accessed: 2024-05-04]. 
Available at: https://doi.org/10.1109/EMBC.2018.8512393. 

[15] M I N H A S , M . S. Transfer Learning for Segmentation Using DeepLabv3 in PyTorch. 
Dec 2019. Accessed: 2024-04-10. Available at: h t tps : / / towardsdatascience.com/ 
t ransfer - learn ing-for -segmenta t ion-us ing-deeplabv3- in-pytorch-f770863d6a42. 

[16] M O R O Z D U B E N C O , C. Comparison of Gradient-Based Edge Detectors Applied 
on Mammograms. Studia Universitatis Babes-Bolyai Informatica. 2021, vol. 66, 
no. 2, p. 5-18. DOI: 10.24193/subbi.2021.2.01. ISSN 2065-9601. [cit. 2024-04-22]. 
Available at: https:/ /doi .org/10.24193/subbi.2021.2.01. 

[17] O P E N A I . ChatGPT. 2023. [cit. 2024-05-06]. Available at: 
h t tps : //www.openai.com/chatgpt. 

[18] O T S U , N . A Threshold Selection Method from Gray-Level Histograms. IEEE 
Transactions on Systems, Man, and Cybernetics. 1979, vol . 9, no. 1, p. 62-66. DOI: 
10.1109/TSMC. 1979.4310076. ISSN 0018-9472. [Accessed: 2024-05-04]. Available at: 
https://doi.org/10.1109/TSMC.1979.4310076. 

[19] P A S Z K E , A . , G R O S S , S., M A S S A , F. , L E R E R , A . , B R A D B U R Y , J . et al. PyTorch: A n 
Imperative Style, High-Performance Deep Learning Library. CoRR. Ithaca: Cornell 

49 

http://ArXiv.org
http://arXiv.org
http://arxiv.org/abs/1908.05005
https://doi.org/10.1017/S1431927619014752
http://ArXiv.org
http://arXiv.org
https://doi.org/10.1109/EMBC.2018.8512393
https://towardsdatascience.com/
https://doi.org/10
http://www.openai.com/chatgpt
https://doi.org/10.1109/TSMC.1979.4310076


University Library, arXiv.org. 2019, abs/1912.01703. ISSN 2331-8422. Available at: 
http://arxiv.org/abs/1912.01703. 

[20] P O S T E R , M . T. A n approach to the reduction of hydrocarbon contamination in the 
scanning electron microscope. Scanning. 1996, vol. 18, no. 4, p. 269-274. DOI: 
https://doi.org/10.1002/sca.1996.4950180402. Available at: 
https://onlinelibrary.wiley.com/doi/abs/10.1002/sca.1996.4950180402. 

[21] P R O V O S T , F . Data science for business : what you need to know about data mining 
and data-analytic thinking. 1st ed.th ed. Sebastopol: O 'Reilly, 2013. Data 
Science/Business. ISBN 978-1-449-36132-7. 

[22] R O E D I G E R , P., W A N Z E N B O E C K , H . D., H O C H L E I T N E R , G . and B E R T A G N O L L I , E . 
Evaluation of chamber contamination in a scanning electron microscope. Journal of 
Vacuum Science & Technology B: Microelectronics and Nanometer Structures 
Processing, Measurement, and Phenomena, december 2009, vol. 27, no. 6, 
p. 2711-2717. DOI: 10.1116/1.3244628. ISSN 1071-1023. Available at: 
https://doi.org/10.1116/1.3244628. 

[23] Su, J . , G E , J . and Y A N G , L . Study on thin film thickness measurement method 
based on digital image processing. In: Z H A N G , Y . , S A S I A N , J . M . , X I A N G , L . and T o , 
S., ed. 5th International Symposium on Advanced Optical Manufacturing and Testing 
Technologies: Optical Test and Measurement Technology and Equipment. Bellingham 
WA: SPIE, 2010, vol. 7656, no. 1, p. 765632-1-765636-6. DOI: 10.1117/12.864540. 
ISBN 081948086X. Available at: https://doi.org/10.1117/12.864540. 

[24] S U N , W . , D U A N , F. , Z H U , J . , Y A N G , M . and W A N G , Y . A n Edge Detection 
Algorithm for S E M Images of Multilayer Thin Films. Coatings. 2024, vol. 14, no. 3. 
ISSN 2079-6412. Available at: https://www.mdpi.eom/2079-6412/14/3/313. 

[25] V L A D A R , A . and P O S T E R , M . Electron Beam-Induced Sample Contamination in the 
S E M . Microscopy and Microanalysis. 2005, vol. 11, S02. DOI: 
10.1017/S1431927605507785. ISSN 1431-9276. [Accessed: 2024-05-04]. Available at: 
https://doi.org/10.1017/S1431927605507785. 

[26] Z H O U , W . , A P K A R I A N , R., W A N G , Z . L . and J O Y , D. Fundamentals of Scanning 
Electron Microscopy (SEM). In: Z H O U , W . and W A N G , Z . L . , ed. Scanning 
Microscopy for Nanotechnology. New York, N Y : Springer New York, 2006, p. 1-40. 
DOI: 10.1007/978-0-387-39620-0_l. ISBN 978-0-387-33325-0. [Accessed: 2024-05-04]. 
Available at: https:/ /doi.org/10.1007/978-0-387-39620-0_l. 

50 

http://arXiv.org
http://arxiv.org/abs/1912.01703
https://doi.org/10.1002/sca.1996.4950180402
https://onlinelibrary.wiley.com/doi/abs/10.1002/sca.1996.4950180402
https://doi.org/10.1116/1.3244628
https://doi.org/10.1117/12.864540
https://www.mdpi.eom/2079-6412/14/3/313
https://doi.org/10.1017/S1431927605507785
https://doi.org/10.1007/978-0-387-39620-0_l

