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Abstrakt
Cílem této práce je implementace klasifikátoru, který by mohl být použit v prostředí
společnosti AVG Technologies k detekci škodlivého softwaru na základě jeho chování ve
virtuálním prostředí namísto současné metody detekce, kdy mají jednotlivé sledované akce
ručně přiděleny váhy a jejich součet rozhoduje o tom, zda je neznámý vzorek považován za
škodlivý či neškodný. Tato společnost také poskytla data použitá pro učení a testování.

V práci jsou představeny základní pojmy z klasifikace, blíže jsou představeny některé
klasifikační metody a způsoby vyhodnocení úspěšnosti modelu a srovnání různých modelů
a také učení s ohledem na ceny chybné klasifikace. Konkrétně je představena bayesovská
klasifikace, rozhodovací stromy, neuronové sítě, Support Vector Machines a algoritmy Ad-
aBoost a MetaCost.

Popsané klasifikační algoritmy jsou porovnány na poskytnuté databázi. Ukázalo se,
že ačkoliv některé klasifikátory dosahují velmi dobrých výsledků (94% úspěšnost v pří-
padě neuronových sítí), na druhou stranu klasifikují příliš mnoho neškodných vzorků jako
škodlivých – více než 9 %, přičemž společnost AVG je ochotna tolerovat maximálně 1 %. Po
nastavení cen falešně pozitivní klasifikace, tak aby byla tato hodnota dodržena se ukázalo,
že úspěšnost všech klasifikátorů se pohybuje okolo 62 % a větší rozdíl je pouze v čase
potřebném k trénování. Na základě těchto experimentů byl k implementaci zvolen naivní
bayesovský klasifikátor, který se ukázal jako nejrychlejší.

Zvolený algoritmus byl implementován v jazyce Python a jeho standardní knihovna.
Jako vstupní a výstupní formát byl použit dialekt CSV. Vytvořená aplikace pokrývá všechny
potřebné kroky – extrakci atributů z logů vytvořených během analýzy souborů ve virtuál-
ním prostředí, učení klasifikátoru a odhad jeho úspěšnosti a klasifikaci neznámých vzorků.
Aplikace také umožňuje nastavení vah trénovacím vzorkům na základě jejich třídy, díky
čemuž lze snadno model upravovat směrem k pozitivní či negativní klasifikaci.

Výsledky aplikace byly ověřeny na poskytnuté databázi. Ukázalo se, že při nastavení vah
tak, že model dosahoval požadovaného maxima 1 % neškodných vzorků ohodnocených jako
škodlivých, byla jeho úspěšnost podobná jako současně používaný způsob klasifikace. Na
druhou stranu učení probíhá zcela automaticky a není třeba ručně určovat váhy jednotlivých
sledovaných akcí. Také se ukázalo, že eliminací některých méně důležitých atributů lze
zkrátit čas potřebný k učení zhruba o jednu polovinu. Vytvořená aplikace neposkytuje
pro výběr atributů žádné nástroje, nicméně pro tento úkol lze použít některý z mnoha
existujících specializovaných nástrojů.



Abstract
This thesis describes the implementation of a classification tool for detection of unknown
malware based on their behaviour which could replace current solution, based on manually
chosen attributes’ scores and a threshold. The database used for training and testing was
provided by AVG Technologies company, which specializes in antivirus and security systems.
Five different classifiers were compared in order to find the best one for implementation:
Näıve Bayes, a decision tree, RandomForrest, a neural net and a support vector machine.
After series of experiments, the Näıve Bayes classifier was selected. The implemented
application covers all necessary steps: attribute extraction, training, estimation of the
performance and classification of unknown samples. Because the company is willing to
tolerate false positive rate of only 1% or less, the accuracy of the implemented classifier
is only 61.7%, which is less than 1% better than the currently used approach. However it
provides automation of the learning process and allows quick re-training (in average around
12 seconds for 90 thousand training samples).
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Chapter 1

Introduction

Malicious software or malware is a term used for all kinds of unwanted software (viruses,
Trojan horses, worms etc.) which pose security thread to computer users. The most
important defence against these are virus scanners. These usually work with database of
descriptions of known malware, in form of signatures. When a new type of malware appears,
traditional scanner will not be able to recognize it until its signature database is updated.

To be able to detect also unknown malware, heuristic analysis was introduced. Instead
of looking for signatures of specific malware instances, heuristic analysis tries to look for
suspicious behaviour. During analysis, several features are extracted from examined file
and then these features are processed by classifier, which yields a final decision whether the
file seems to be benign or a new form of malware.

AVG Technologies1, an anti-virus company, owns a database of several millions examples
of both benign and malicious files, as a training and testing data for their heuristic analyser.
Part of the database was examined inside a virtual environment (sandbox ) for performed
actions. Currently, the results of this step are then processed by a simple classification
algorithm, which rates each action by manually chosen score and the classification is based
on the total score and a certain threshold. However the accuracy of this approach is poor,
only 39.3%, which is worse than random classification.

In this thesis we try to find the best classification method suitable for this task and
implement a tool which could be integrated into the sanbox. It describes some of the avail-
able classification methods and how they are trained and evaluated. Described classifiers
are then trained using a data set created from sandbox reports, provided by AVG Tech-
nologies. The training and testing is done using RapidMiner, a specialized data mining
tool. The results of performed experiments are evaluated and the best-performing method
is implemented as a part of application which provides all necessary functions: attribute ex-
traction from sandbox logs, training, estimation of classifier’s performance and classification
of unknown samples.

1.1 Goals of the Thesis

The main goal is to create a new classification tool which could be embedded into sandbox
system currently used by AVG Technologies. However, the tool cannot be created without
an analysis of available classification methods, which can be used for this task, because the

1More information about AVG Technologies company can be found on its website, http://www.avg.com/
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their performances depends also on the data we examine. The main goal can be divided
into sub-goals as follows:

1. Analyse provided data set.

2. Experiment with various classifiers using k-fold cross-validation.

3. Evaluate results and choose the classification method.

4. Implement application which would provide selected classifier and could be integrated
into the sandbox system.

5. Evaluate the performance of the implemented application.

The document is structured as follows: Chapter 2 gives an overview of classification,
suitable methods, presents how classifiers are evaluated and also gives some examples of
machine learning approaches to malicious code detection. Chapter 3 describes the provided
data set and also the current classification method used by the company and its perfor-
mance. Chapter 4 presents experiments performed in order to select which classifier to
implement. Chapter 5 is focused on design of the application and chapter 6 describes the
implementation of the application and evaluation of the performance of the application.
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Chapter 2

Data classification

Classification is a task of learning a function which maps each record from input data to
one of predefined class labels based on its properties, represented as set of attributes. The
algorithm implementing this task is called classifier. This term is also used for the resulting
function, also called classification model. Model can be represented in various forms, for
example as a set of rules, decision tree or mathematical expression.

During learning, classifier is provided by records for which we already know correct
class labels. For this reason, classification is considered as a supervised learning method,
which means that the classifier is provided by correct output for each training record. The
main goal is to find pattern which is common to all records (or at least to most of them)
belonging to the same class and at the same time not true for records from other classes.
When the learning is finished, the classification model can be used either to determine
classes of unknown instances or also as a description of features common to instances of
the same class and different from instances of other classes.

2.1 Classification methods

This sections describes classification methods which were trained and evaluated (using
provided data set) in order to select method for later implementation.

2.1.1 Bayes classifiers

Bayes classifiers calculate probability that a given sample belongs to a particular class.
They are based on Bayes’ theorem, named after Thomas Bayes: let X be a data tuple,
described by values of n attributes, H a hypothesis, e.g. that the data tuple belongs to a
particular class C. For classification, we want to determine P (H|X), the probability that
tuple X belongs to class C, also called the posterior probability. It can be estimated
from the prior probability P (H) (the probability that any tuple belongs to class C),
posterior probability of X conditioned on H (the probability that tuple belonging to class
C equals to X) and the evidence P (X), which all can be estimated from training data.
The Bayes’ theorem is:

P (H|X) =
P (X|H)P (H)

P (X)
(2.1)

The classifier estimates prior and posterior probabilities for all m classes C1, C2, . . . , Cm
and compares them to each other. Because value of P (X) is constant, it can be omitted in
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comparison. The prior probability of class Ci can be either given by an expert or estimated
from the training data as:

P (Ci) =
|Ci|∑m
k=1 |Ck|

(2.2)

where |Ci| represents the number of tuples of class Ci in the training set.
To simplify calculation of class-dependent posterior probability, the Näıve Bayes clas-

sifier assumes that all attributes’ values are conditionally independent on each other, given
the class of the tuple. Thus P (X|Hi) can be estimated as:

P (X|Hi) =
n∏
k=1

P (xk|Hi) (2.3)

Here xk refers to value of attribute Ak for given tuple X. The probability for single
discrete attribute is given as number of tuples of class Ci having the value xk for Ak divided
by the total number of tuples in class Ci. For continuous attributes, their distribution is
typically assumed as Gaussian with mean µ and standard deviation σ:

g(x, µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 (2.4)

so the probability is:

P (xk|Hi) = g(xk, µCi , σCi) (2.5)

The classifier predicts that given tuple belongs to class Ci if and only if:

P (Hi|X)P (Hi) > P (Hj |X)P (Hj) for 1 ≤ j ≤ m, j 6= i (2.6)

Since multiplying many probabilities could lead to floating point number underflow,
the logarithms of probabilities are added instead. Because log(xy) = log(x) + log(y) and
logarithm is monotonic function, the classification is still given by the highest value. The
products in equation 2.6 are substituted as follows:

P (Hi|X)P (Hi) = log(P (Hi|X)) +
n∑
k=1

log(P (xk|Hi)) (2.7)

2.1.2 Decision trees

One of the most popular classifiers are decision trees. They are constructed by repeatedly
dividing training data into subsets based on attribute values. Usually in each test, a value
of one attribute is compared to a constant, but sometimes two attributes are compared
to each other or some function of several attributes is used. Building stops after certain
condition is reached – for example the minimal data subset size or tree maximal depth can
be limited.

When classifying an unknown record, tree is routed from a root node, following path
determined by attribute test results in internal nodes. When a leaf node is reached, its
value is the result of prediction. Decision trees are also easily readable and it is visible
which attributes are the most important for the prediction.

There are several methods to build the tree and choose suitable split attribute in each
step. ID3 algorithm invented by Ross Quinlan [10] uses information gain measure. It
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is based on calculating expected amount of information necessary to correctly classify a
record, also known as entropy. Let D be the training set, |D| the number of instances in D,
m number of distinct classes C1, C2, . . . , Cm and pi non-zero probability that a tuple from
D belongs to class Ci (estimated as |Ci|/|D|). The amount of information needed to classify
instance in D is given by:

Info(D) = −
m∑
i=1

pi log2(pi) (2.8)

When a training set is divided into k subsets D1, D2, . . . , Dj by attribute A, the information
needed for classification after split is estimated as:

InfoA(D) = −
k∑
j=1

|Dj |
|D|
× Info(Dj) (2.9)

Information gain is the difference between the original information requirement and the
requirement for each created subset, thus:

Gain(A) = Info(D)− InfoA(D) (2.10)

This measure tends to favour attributes with a larger number of values. For example in
extreme case, when one of the attributes had unique value for each record (e.g. ID), split
using this attribute would result into maximal information gain, however it is not useful
for classification. In C4.5 algorithm [11], successor of ID3, gain ratio measure is used in
attempt to overcome this bias. As a kind of normalization to information gain ratio, it also
considers the number of records in each created subset. It does so by adding new “split
information” value defined as:

SplitInfoA(D) = −
k∑
j=1

|Dj |
|D|
× log2

(
|Dj |
|D|

)
(2.11)

The gain ratio is then estimated as:

GainRatio(A) =
Gain(A)

SplitInfoA(D)
(2.12)

Gain ratio measure however tends to prefer unbalanced splits with one partition much
smaller than the others. Several other methods exist, but “no one attribute selection mea-
sure has been found to be significantly superior to others. Most measures give quite good
results” [5]. Most algorithm consider all attributes when deciding on split, but there are
exceptions: for example RandomTree algorithm randomly selects subset of attributes from
which the tree is built. An extension is the RandomForest algorithm which trains several
decision trees, each with randomly selected subset of attributes. The class of unknown
instance is determined by voting.

To avoid overfitting, which is the situation when learned tree fits training data too
well and almost all training records are classified correctly but it fails to correctly classify
unknown records, the tree is pruned. The pruning can be done during the building process
(pre-pruning), which means that the algorithm tries to decide when to stop creating more
subtrees, or after the complete tree is built (post-pruning), during which some subtrees are
replaced by single leaves. Although pruning causes worse performance on the training data,
it may lead to better results with unseen records [6].
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2.1.3 Neural Networks

Neural networks are algorithms inspired by real biological neural systems. Like in brain,
neural network consists of number of neurons. Each neuron realises particular function
of several inputs and one output. They are organised into layers. The first layer is used
for input, number of neurons in this layer is the same as number of attributes in data set.
The last layer servers as output – it provides the result of classification. It usually has one
output neuron for each defined class, but not necessarily – for two-class problems only one
output neuron is needed, which will output “low” value for the first class and “high” for
the second class. Between these layers there are one or more hidden layers. In feed-
forward networks, neurons in one layer are connected only to neurons in the next layers.
Usually each neuron is connected to all neurons in the next layer, but other layouts are also
possible. Figure 2.1 shows an example of feed- forward network for two-class classification
problem with each record having five attributes.

C?

A1

A2

A5

A3

A4

Input layer Hidden layer Output layer

Figure 2.1. An example of feed-forward neural network with one input, one hidden and one
output layer. Attributes are connected to input layer, the output layer yields predicted class
label. Each connection has assigned its weight which is adjusted during training.

The connections between neurons have associated weights. In the beginning, they are
set to random values and during learning their values are adjusted towards desired output
of the whole network. In the back-propagation method, this is done by connecting each
record from training set to the network inputs and computing the output of the network
with current weights. The error between the correct and actual output is then propagated
back to network and the weights are adjusted. The output is computed in forward direction
– outputs of neurons in layer k are computed before the outputs in layer k+1. Each neuron
implements an activation function, commonly used is the sigmoid function, defined as:

f(x) =
1

1 + e−x
(2.13)

The goal is to determine vector of weights w which minimizes the sum of squared error
which is given as:

E =
1

2

N∑
i=1

(y − f(x))2 (2.14)

where N is the number of records in training set, y is the instance’s real class label and
f(x) the network’s output value. To solve this problem, the gradient descent method is
used. The weights of the connections are updated using formula:

8



wj ← wj − λ
δE

δwj

where λ is the learning rate. In back-propagation, the weights are updated in reverse
direction – the weights at level k + 1 are updated before the weights at level k.

When the whole training data set is processed, the process is repeated again. Each
repetition is called an epoch. The total number of performed epochs can be determined
manually or the learning process can stop when certain conditions are met, e.g. when the
average output error or number of misclassified records during one epoch is smaller then
some specified threshold.

Major drawback of neural network classification is that the knowledge represented by
connections and their associated weights is difficult to interpret by humans. Also the
network topology (number of neurons and layers) must by selected which may lead to long
trial-and-error process until acceptable results are achieved [15] [6].

2.1.4 Support Vector Machines

Support Vector Machines (SVM) are based on finding the best hyperplane which separates
instances of each class – the maximum margin hyperplane. They are defined for two-
class problems, however there are modifications for classification with three or more classes.
Because hyperplane is a kind of linear model, the data must be linearly separable, however
SVM can be used also of non-linearly separable problems by mapping the original data
into a different space, where the boundary between classes becomes linear. An example of
maximum margin hyperplane is shown in figure 2.2.

The maximum margin hyperplane is a hyperplane which separates data, so that all
instances are correctly classified and also gives the largest separation between classes. It is
found using support vectors and margins. Margin is the distance between the hyperplane
and nearest training instance of either class. We expect that hyperplanes with larger margin
will have less classifications errors for future data, so SVM searches for the hyperplane with
the largest possible margin.

If we have two-class problem with N training instances, we can denote each instance
as (xi, yi), where xi = (xi1, xi2, ..., xid)

T corresponds to the attributes of i-th instance and
yi ∈ −1, 1 denotes its class. The hyperplane can be written as:

H : w · x+ b = 0 (2.15)

where x and b are parameters of the model. Any point laying above the separating hyper-
plane satisfies

w · xa + b > 0 (2.16)

Similarly, any point below the separating hyperplane satisfies

w · xa + b < 0 (2.17)

If we label all points above the hyperplane as class yi = 1 and points below it as yi = −1,
we can predict the class label y for any test example z:

y =

{
1, if w · z+ b > 0;
−1, if w · z+ b < 0.

(2.18)
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Two parallel hyperplanes H1 and H2 which defines the “sides” of the margin can be
expressed if we adjust the parameters x and b as:

H1 : w · x+ b = 1 (2.19)

H2 : w · x+ b = −1 (2.20)

The margin is given by the distance of these two hyperplanes. Any training instance
which lies on either of these hyperplanes is called as support vector. There is always
at least one for each class. The support vectors gives the most information regarding
classification and they uniquely define the maximum margin hyperplane, the rest of training
set is irrelevant and can be removed without changing the hyperplane.

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0,8

1

A1

A2
H1 H2H

Figure 2.2. An example of a maximum margin hyperplane H in two-class problem within
two-dimensional space. Points (training instances) lying on hyperplanes H1 and H2 are called
support vectors – the rest can be omitted without changes to the hyperplane.

The process of finding the hyperplane can be rewritten that it will become a problem
known as constrained convex quadratic optimization problem. It can be solved using general
optimization software package, however for larger data sets specialized and more efficient
SVM algorithms exist. Once the support vectors are found and the maximum margin
hyperplane defined, the support vector machine is trained and can be used for classifying
new instances [15] [6].

2.1.5 Boosting

Boosting is an example of an ensemble or combination model – it combines several models
of the same type and the resulting class is determined by voting. The votes are not equal,
each created model has assigned its weight, based on how well it performs. The models are
trained consequently and any classification method can be used for their creation. After
each model is trained, records’ weights are recalculated, so incorrectly handled records are
given higher weight than records handled correctly. This means that the next trained model
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will more focus on the misclassified instances, seeking for model which would complement
the previous one.

One of widely used boosting methods is AdaBoost (short for Adaptive Boosting),
designed especially for classification, formulated by Yoav Freund and Robert E. Schapire in
[4]. At the beginning, all training records are given the same weight. Then the underlying
classifier is called to generate model based on the data and weights are adjusted – decreased
for correctly classified instances and decreased for the misclassified ones. Finally, next
iteration is started – new model is built and training records are re-weighted. If e denotes
the classifier’s error on the weighted data, new weight for correctly classified instance is
calculated as follows:

weight← weight · e

1− e
Then the weights are re-normalized, so their sum remains same as before, which causes

increase of weights of misclassified instances. The modelling is stopped when the overall
model error exceeds or equals 0.5 or when it equals 0, because then all weights become 0.

If the selected classification method does not support weighted instances in training
set, it can be still used with boosting. In this case, an unweighted data set is created by
re-sampling – each instance is selected into new data set with probability proportional to
its weight. This means, that high weighted instances are replicated frequently and ones
with low weight may never be selected. The data set is provided to the classifier once it
reaches the size of the original weighted one [15].

2.2 Performance evaluation

Once classifier is trained, it is useful to measure how well it performs to classify previously
unseen data. For this reason it is tested against unlabelled test set. The test set is randomly
selected from all available data beforehand and it is not used during learning.

Counts of correctly and incorrectly classified test set records can be visualised as a
two-dimensional confusion matrix. Each entry in this matrix represents the number of
records for which the row is their real class and the column is the predicted class. For goo
results, values on the main diagonal are large and all other values are small, ideally zero.

To make it more convenient to compare different classifiers, confusion matrix can be
summarized into one number using a performance metric such as accuracy or error rate:

Accuracy =
Number of correct predictions
Total number of predictions

Error rate =
Number of wrong predictions
Total number of predictions

Accuracy (and error rate) calculated on the test set can be also used to compare two
different classifiers on the same domain.

Besides accuracy, the performance of a classifier can be also observed in terms of the true
positive rate (TPR, also called sensitivity) and the false positive rate (FPR). Knowing num-
ber of all positive (P), negative (N), true positive (TP) and false positive (FP) samples, these
rates can be calculated as TPR = TP/P = TP/TP + FN and FPR = FP/N = FP/FP + TN.
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2.2.1 Selecting training and testing data

There are several options how to create training and testing data set. The simplest method
is the holdout. In this method, data are partitioned into two disjoint sets, one used for
training, one for testing. Main weakness of this method is that part of the data is not used
to build the classifier, thus the resulting model might not be as good as when all records
were used. On the other hand, the larger the training set is, the less reliable is the error
estimate computed from the test set. Also, the result is dependent on the composition of
the two sets, for example if all instances of one class are present in the test set but none
of them are in the training set, classifier will probably perform poorly for that class. To
improve error estimates, holdout method can be run more times and the resulting estimate
is the mean of values from each run – this scheme is called the repeated holdout method.
Stratification can also be used, which divides data into two parts keeping ratio between
classes in each subset as in original data.

To ensure all records were used for both training and testing and maximize amount of
data used for training, the k-fold cross-validation can be used. In this approach, data
is split into k subsets and the validation is performed k times. In each run, one subset
is used for testing and the others for training. The resulting error measurement is found
by averaging results from each run. A special case is the leave-one-out method in which
k = N , the size of the data set. In each run, exactly one record is used for testing. The
advantage is that maximum of available data is used for training, however it might be
computationally expensive to repeat the process N times [15].

2.3 Comparing various classifiers

Although accuracy gives some overview on how different classification methods perform
compared to each other, it is good to prove that the difference between results are not
given only by chance. This can be confirmed using the Student’s t-test, introduced
by William Sealy Gosset (“Student” was his pen name). It is a statistical method that
can be used to determine whether the mean of two samples differ significantly or not.
Measurements observed using the same classifier but with different data (for example each
fold in k-fold cross-validation) can be considered as samples from a probability distribution
– in particular t-distribution with k−1 degrees of freedom, where k equals to the number
of measurements. This distribution looks similar to normal (Gaussian) distribution, but
the defining function is different. The hypothesis (null hypothesis) tested is that the two
models are same – the difference between mean error rates is zero. If the hypothesis can be
rejected, we can conclude that the difference between the models is statistically significant
and we can select the model with the lower error rate.

The test computes t-statistic with k − 1 degrees of freedom. Let err(M1) and err(M2)
be average error rate for model M1 and M2, respectively and var(M1 −M2) the variance
of the difference between these two models. The t-statistic for k − 1 degrees of freedom is
then computed as:

t =
err(M1)− err(M2)√

var(M1 −M2)/k
(2.21)

The variance between the means of the two compared models is estimated as:
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var(M1 −M2) =

√
var(M1)

k1
+
var(M2)

k2
(2.22)

To determine if modelsM1 andM2 are significantly different, we compute t and select the
significance level – usually 5% or 1%. Based on the computed t and selected significance
level, the t-distribution value z is found – either computed or looked up in table of selected
values. If t > z or t < −z, then t lies in the rejection region and the null hypothesis can
be rejected. That means, that the difference between models M1 and M2 is statistically
significant. If we cannot reject the null hypothesis (i.e. −z < t < z), any difference between
these two models can be attributed to chance [6].

2.4 Cost-sensitive classification

When dealing with unknown samples, in some cases the cost of false positive classification
might be much higher than the cost of false negative classification (or vice versa). These
costs can be taken into account during the training by providing a cost matrix which
allows to bias the model to avoid costly errors.

The cost matrix looks similar to the confusion matrix, however the cells contain assigned
costs instead of number of classified examples. The values on the main diagonal are always
zero (because there is no cost of correct classification).

However, some classifiers does not support cost-sensitive learning and editing them
might be non-trivial. This problem can be solved by using the MetaCost method, proposed
by Pedro Domingos [3] which treats underlying classifier as a black box and does not require
any changes to it. It creates multiple training sets using sampling with replacement and
learns a classifier for each of them. Probabilities that each sample belongs to each of the
classes are estimated by using the trained classifiers and the training set is relabelled to
optimal classes according to the given cost matrix. This process is repeated m times,
producing m models. When an unknown sample is given to the resulting m models, the
decision is determined by voting (as a class predicted by the greatest number of models).

2.5 Machine learning in malware detection

Machine Learning was first used to detect malware by Schultz et al. [13]. They used three
feature extraction approaches (program headers, strings and byte sequences), and free clas-
sification methods (RIPPER, a rule-based classifier, Näıve Bayes, and Multi-Näıve Bayes).
All of the methods were more accurate than signature-based methods, best performing
being the Multi-Näıve Bayes using byte sequences with accuracy of 97.76%.

Another approach is the Common N-Gram analysis (CNG), proposed by Abou-Assaleh
et al. [1]. N-grams is file substrings a fixed length n. For each class, L most frequent
n-grams collected from training data represents class profile. A new instance is classified
by building its class profile and using the k-nearest neighbours algorithm. They achieved
98% accuracy for several parameter configurations.

Kolter and Maloof [8] also collected n-grams, each being sequence of 4 bytes, then
selecting 500 most relevant ones using information gain measure. They applied four different
machine learning methods: k-nearest neighbours, Näıve Bayes, a support vector machine
(SVM) and a decision tree. All of the methods, excluding k-NN were also “boosted”. Best
performance was achieved by boosted the decision tree, followed by SVM and boosted SVM.
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They also tried to determine the kind of malware (e.g. backdoor virus), omitting benign
data set, with boosted decision tree and SVM being again the best performing methods. To
estimate results in an real-world environment operation, the authors also trained classifiers
using malware discovered before July 2003 and tested them against files discovered between
July 2003 and August 2004. The results were not as good as in their first experiment, with
boosted decision tree again outperforming others classifiers.

Henchiri and Japkowicz [7] worked with same data set as Schultz et al. [13] but with
different – hierarchical – feature extraction approach, selecting n-grams present at rates
above threshold within specific virus family and also present in minimal amount of fami-
lies. They evaluated several classifiers (decision trees, Näıve Bayes and a support vector
machine), authors claimed they achieved better results than in [13].

Ding et al. [2] experimented with dynamic heuristic analysis using set of 8823 malicious
and 2821 benign samples. Each of them was run inside virtual environment and monitored
by API tracer for Windows API calls, resulting into a 35-dimension feature vector, each
attribute representing one event (e.g. file system operations), the value indicated only
whether that event occurred or not, number of these occurrences in each run was not
recorded. They built two classifiers – a statistical model and Mixture of Experts model.
They achieved true positives rate of 96.01% with statistical and 75.2% with Mixture of
Experts model.

2.6 Machine Learning Tools

When dealing with data mining tasks, various existing tools may be used for data pre-
processing, data visualisation, modelling and evaluation. Two different tools were used –
Weka for data analysis and RapidMiner for training and evaluation of described classifica-
tion methods on the given data set.

2.6.1 Weka

Weka, (Waikato Environment for Knowledge Analysis), is a tool developed at university of
Waikato, distributed under GNU GPL license1. It is written in Java and can be easily run on
most used operating systems and platforms and can be used as a stand-alone application
or integrated into custom Java applications. It provides a collection of both supervised
and unsupervised machine learning algorithms, and also tools for data pre-processing and
visualisation [14].

2.6.2 RapidMiner

RapidMiner is an open source data mining tool developed by Rapid-I GmbH. It is available
in two editions – Community Edition available under GNU AGPL license2 and Enterprise
Edition which offers extended technical support and it can be also integrated into propri-
etary closed-source applications. Like Weka, it is written in Java and can be integrated into
other Java applications. Functionality can be extended by plug-ins – for example learners
from Weka can be integrated into RapidMiner in this way [12].

Data mining tasks in RapidMiner are defined as processes consisting of various oper-
ators which are applied to input data. Each process is described in an XML file and can

1http://www.gnu.org/licenses/gpl.html
2http://www.gnu.org/licenses/agpl-3.0.html
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be created either manually or using a graphical user interface. Operators can be combined
into chains and in some cases even nested together making the tool universally applicable to
many data mining tasks. There are more than 600 operators of various types, including ba-
sic process control (loops, branching, etc.), data transformation (attributes normalization,
filtering, sampling, etc.), modelling (classification, regression, clustering, etc.) or support
for evaluation of the created model. Operators define their inputs and outputs and their
types (e.g. data set, model, vector etc.). The types are checked during both designing and
execution of a process and when incompatible input and output are connected, RapidMiner
raises an error. There are also additional outputs, not included in normal processing flow,
which can be stored in a log, such as execution time or the count of how many times an
operator was executed.
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Chapter 3

Data set

The data set was generated using database of executable files owned by the AVG Technolo-
gies company, however only 100 000 malicious and 45 384 benign samples were used, due
to the fact that it is computationally expensive to process the whole database (which con-
tains millions of executables). This part of database was then analysed using the virtual
environment and each example’s behaviour was monitored (namely performed Windows
API calls). Generated log files was then processed by specialized tool which filtered only
part of sample behaviour (file system operations, network access, Windows system registry
modifications, etc.) and produced final report for each file. For classification purposes, we
extracted a vector of 39 numeric attributes from each report. Each attribute represents
specific action and its value number of occurrences of that action.

There are many instances with null attribute vector, which means that during examina-
tion in the virtual environment, none of the monitored actions were performed. Although
it is perfectly fine for benign files to not perform any of those actions, it is at least sus-
picious in the case of malicious files. Probably some of them can determine that they are
run inside a virtual environment and so they did not perform any suspicious actions to
avoid being detected. Another option is that they perform different actions which were not
monitored. Despite the actual reason, these malicious set records with null attribute vector
were removed from the data set.

Although the number of attributes is relatively high, not all of them may be significant
for classification. Removing the least significant attributes can lead to shorter learning
times without small or even no impact on classifier’s performance. Weka toolbox provides
several algorithms to help selecting relevant attributes. The gain ratio measure was used
(which is also used to build decision trees1). The complete list of attributes is included in
Appendix A. The attributes at the bottom of the list has zero value for almost all records
in the data set – and in the case of attribute “HIDE PROCESS” this is true for all of them.
However, if the whole database of executables (and not only provided subset) was analysed,
these attributes may become more significant.

3.1 Current classifier used by AVG Technologies

Current classifier is embedded into sandbox as a part of the tool which generates reports
for each file. The classification method is simple: each monitored action is assigned a
certain score (either negative or positive). If the total score for processed file exceeds pre-

1See section 2.1.2 for gain ratio definition.
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determined threshold, it is marked as a possible new malware, if not, it is considered benign.
Both scores and threshold were chosen manually. The result is included in the generated
report. The accuracy of this approach is 39.3% for the whole data set, which is worse
than classification by random choice (which has the accuracy of 50%). If the malicious
samples with null attribute vector are omitted, the accuracy is higher, 61.28%. As we
can see in table 3.1, although the false positives rate (i.e. the number of benign samples
marked as malicious) is very small (0.93%), most of the malicious files are not detected
(87.78% or 74.48% if null vector malicious samples are omitted). The scores and threshold
are intentionally set to achieve false positive rate that small – 1% is the maximum value
the company is willing to tolerate.

Table 3.1. Confusion matrix for current classifier. Although the false negatives rate is small,
most of malicious samples are misclassified.

(a) Whole data set

predicted malicious predicted benign
true malicous 12.22% 87.78%
true benign 0.93% 99.07%

(b) Data set without malicious records having null attribute vector

predicted malicious predicted benign
true malicous 25.52% 74.48%
true benign 0.93% 99.07%
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Chapter 4

Choosing classification method

To choose the classification method to implement, several experiments with different clas-
sifiers were performed using RapidMiner (briefly described in section 2.6.2).

The experiments were performed using the provided data set without malicious samples
with null attribute vector. Five different classification methods described in chapter 2.1 were
tested - Näıve Bayes, a decision tree (with gain ratio measure), RandomForrest algorithm,
a support vector machine and a neural net. Decision tree and neural net were also boosted
using AdaBoost algorithm. Performances were estimated using 20-fold cross validation,
i.e. by dividing data set into 20 parts, 19 parts used for training and one part for testing,
repeating this process 20 times with different testing set each time. Accuracy, absolute
numbers of test instances classified correctly (true positives and negatives) and incorrectly
(false positives and negatives) and the learning time were observed.

All experiments were performed with default RapidMiner settings. Besides that, deci-
sion trees were also built with various maximal depth settings (default 20, 15, 10 and 7).
Four different structures of neural networks were used. All of them had one hidden layer
with different numbers of neurons: 22 (default RapidMiner settings1), 15, 10 and 5.

When all results were gathered, classifiers can be compared to each other. To ensure
that the differences are not given only by chance, the Student’s t-test (described in section
2.3) were performed, using accuracies recorded for each run, giving 20 samples for each
classifier.

The goal of the second set of experiments was to lower the false positive rate below 1%
which is the highest value the company would tolerate. This was done by using the Meta-
Class operator together with the classifiers. The cost matrices were determined manually
by a trial-and-error process. The false negative cost was always set to zero and the false
positive cost was increased until the average false positive rate achieved value around 1%.
The performance was estimated using 20-fold cross-validation, as in previous experiments.
The “boosted” versions of neural nets and decision tree were not included in this set of
experiment, because it turned out that boosting does not have any significant impact on
the performance (however it significantly increases learning time).

1Default number of nodes in hidden layer is given as n = A+C
2

+ 1 nodes, where A is the number of
attributes and C the number of classes, in our case n = 39+2

2
+ 1 = 21.5 ≈ 22
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4.1 Experimental results

This section presents obtained results of the described experiments. The collection of five
classifiers was trained on the data set – first with default settings and then together with
the MetaCost operator (in order to achieve lower false positive rate).

4.1.1 Experiments with default settings

In general, all used classification methods performed better than the current classifier,
regarding their accuracy and true positive rate. On the other hand, the average false
positive rate is higher for all of them – it varies from 1.18% for Näıve Bayes to 32.71% for
RandomForrest (however results for this algorithm vary a lot for each fold). Table 4.1 and
figure 4.1 show results for all classifiers sorted by their accuracy.

Because training a support vector machine using standard implementation included in
RapidMiner turned out to be very time consuming, this experiment was performed using
“Fast Large Margin” learner instead, which is based on fast support vector learning scheme
included in LIBLINEAR2. Although its results are similar to other SVM implementations,
the training time is much better even for data sets containing millions of records and/or
attributes.

The best results were achieved using neural net with default RapidMiner settings. The
average accuracy is good, 93.97% (σ = 0.30%). The true positive rate (TPR) is also the
best among all methods, being 97.31% (σ = 0.90%). However, the false positive rate (FPR)
is 9.49% (σ = 0.95%) which is approximately 10 times higher value than the one of the
current classifier. Networks with different number of neurons than default in general had
same or almost same accuracy, however the amount of time necessary for training was twice
smaller in the case of the smallest network.

The major drawback is the learning time which is one of the highest (almost 8 hours
for whole 20-fold cross validation) but it is still good compared to the time necessary to
analyse samples using virtual environment (months). On the other hand, if the whole
available database (millions of samples) were used for training, this might be a large issue.
Another disadvantage is unclear structure of neural networks in general. For production
usage, a faster learning scheme than the back-propagation would be a better choice.

The second best performing classifier were decision trees, either with default setting of
maximal depth (which is 20) or adjusted to 10 – difference between these two trees was
proven as statistically insignificant using the t-test. The accuracy is 92.93% (σ = 0.33%)
which is lower than the neural network, however, trees have an advantage of clear structure
and the learned knowledge can be easily interpreted by human. The true positive rate
is also lower (94.85%, σ = 0.46%) and the false positive rate is a little better than for
the neural network, but the difference is not significant. When the maximal depth is set to
smaller value (which leads into smaller number of tested attributes during classification), the
accuracy, TPR and FPR are also smaller, but still above 90%. Despite poorer performance,
building decision trees was 12 times faster than training a neural net.

These were only two classification methods with accuracy better than 90%. The support
vector machine (Fast Large Margin) is third best performing. Fourth best accuracy was
achieved by RandomForrest algorithm, however results for this classifier vary a lot for each
fold. This is probably due to the way RandomForrest algorithm works. Since it creates

2R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A Library for Large
Linear Classification. J. Mach. Learn. Res., 9:1871– 1874, June 2008.
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number of decision trees, each of them with randomly selected subset of attributes, some
of these trees are built based only on attributes which are not that useful for classification,
thus the resulting tree does not perform well. Although the final decision is determined by
weighted voting, it seems it could not overcome this problem.

The worst accuracy among selected classifiers was obtained by the Näıve Bayes classifier.
Its results were similar to the current approach. The main reason could be that the “naive”
assumption that all attributes are independent of each other is probably not true.

Two best performing methods (neural net and decision tree) with default RapidMiner
settings were also trained using AdaBoost, described in chapter 2.1.5. Regarding decision
trees, the difference of accuracy was statistically insignificant compared to the non-boosted
version. The accuracy of the boosted neural network was even worse than the regular one
and the learning took approximately twice more time.

Table 4.1. Average results for all classifiers estimated by 20-fold cross validation sorted by
average accuracy. The last row shows values for current classifier which were calculated using
complete data set. Neural networks had one hidden layer with different number of neurons.
Decision trees were trained using different settings of maximal depth.

Classifier Accuracy σ TPR σ FPR σ Learning time

Neural net (15 neurons) 94.06% 0.19% 97.39% 0.63% 9.41% 0.80% 16 min
Neural net (22 neurons) 93.97% 0.30% 97.31% 0.90% 9.49% 0.95% 24 min
Neural net (10 neurons) 93.93% 0.31% 97.42% 0.77% 9.70% 0.91% 14 min
Neural net (5 neurons) 93.61% 0.49% 96.89% 0.73% 9.79% 0.54% 12 min
Decision tree (depth 20) 92.93% 0.33% 94.85% 0.46% 9.07% 0.55% 1 min
Decision tree (depth 10) 92.93% 0.33% 94.86% 0.45% 9.08% 0.54% 44 s
Decision tree + AdaBoost 92.93% 0.33% 94.85% 0.46% 9.07% 0.55% 26 s
Decision tree (depth 7) 92.34% 0.31% 93.40% 0.54% 8.77% 0.56% 26 s
Decision tree (depth 5) 90.34% 0.33% 88.91% 0.61% 8.17% 0.61% 13 s
SVM 84.07% 1.36% 76.23% 3.70% 7.78% 1.22% 1.5 min
Neural net + AdaBoost 82.22% 1.63% 72.84% 4.37% 8.05% 1.36% 46 min
RandomForrest 72.94% 10.59% 78.38% 16.85% 32.71% 31.55% 13 s
Näıve Bayes 62.26% 0.52% 27.06% 0.94% 1.18% 0.24% 1 s
Current classifier 61.28% 25.52% 0.93% –

4.1.2 Experiments with MetaCost

In these experiments the classifiers were tuned to achieve similar false positive rate as the
method currently used by the company, i.e. around 1%, using the MetaCost method. Table
4.2 displays average accuracies, true positive rates and false positive rates, together with
average learning time and the value of false positive cost used during training.

The only classifier which could not be properly tuned was the decision tree. The tree
could be trained with false positive rate of either 0.37% (with average accuracy of 51.7%,
which is almost the same as random classification) or 6.55% (with average accuracy of
78.99%) and nothing between; the boundary was approximately between the false positive
cost values of 9.7 and 9.75. For this reason it is not included in the summary table 4.2.

The performance of other classifiers was approximately the same – arround 62%. The
differences are probably due to the fact that the classifiers were not biased to the same
FPR value. The best performing classifier was the support vector machine with accuracy
of 62.51% (TPR 27.43%, FPR 1.07%), followed by the Näıve Bayes classifier which had
accuracy of 62.02% (TPR 26.38%, FPR 0.96%). Again, the accuracy of the RandomForrest
algorithm varies a lot (from 49.1% to 63.8%), as we can see in the Box-and-whisker chart
chart in figure 4.2. The main difference between the classifiers is their learning speed,
ranging from just a few seconds (Näıve Bayes) to almost an hour (support vector machine).
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Figure 4.1. Box-and-whisker chart showing accuracy of all trained classifiers. The top and
bottom of the boxes correspond with 25th and 75th percentile. The mean is plotted as a
diamond, outliers as circles.
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Figure 4.2. Box-and-whisker chart showing accuracy of all trained classifiers (combined with
the MetaCost algorithm). The top and bottom of the boxes correspond with 25th and 75th

percentile. The mean is plotted as a diamond, outliers as circles.
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Table 4.2. Average results for all classifiers estimated by 20-fold cross validation sorted by
average accuracy; the classifiers were biased using MetaCost method to achieve false positive
rate around 1%. Neural networks had one hidden layer with different number of neurons.

Classifier Accuracy σ TPR σ FPR σ FP cost Learning time

SVM 62.51% 0.67% 27.43% 1.24% 1.07% 0.22% 4.25 53 min
Näıve Bayes 62.02% 0.74% 26.38% 1.44% 0.96% 0.22% 999 999.0 <1 min
Neural net (15 neurons) 61.55% 2.5% 25.66% 5.3% 1.17% 0.44% 12.5 48 min
Current classifier 61.28% 25.52% 0.93% – –
Neural net (22 neurons) 60.17% 1.53% 22.71% 3.23% 0.93% 0.26% 13.75 47 min
Neural net (10 neurons) 60.16% 1.44% 22.63% 3.08% 0.86% 0.3% 12.85 48 min
Neural net (5 neurons) 59.59% 1.91% 21.58% 4.05% 0.94% 0.36% 12.75 28 min
RandomForrest 56.04% 4.34% 14.54% 9.15% 10.13% 0.76% 0.85 1.5 min

4.1.3 Selected classifier

If accuracy would be the only criterion, neural nets are the most convenient classification
method to use, followed by the decision tree. Although the neural net training is quite time
consuming, there are different and faster learning schemes for neural nets than the used
back-propagation.

However, the false positive rate of these two classifiers is much higher than what the
company is willing to tolerate (1%). The second set of experiments showed that if the FPR
is reduced to the maximal tolerated value, all tested classification methods perform with
almost the same accuracy and the only difference is in the learning speed. Since only a
part of the malicious and clean samples were used during the experiments, any difference in
learning time could make significant impact if the complete database of millions of records
would be used. Shorter learning time would allow to re-train the classifier more often,
allowing more flexible reactions to new threats. For this reason the Näıve Bayes classifier
was selected for implementation.
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Chapter 5

Application design

The application implemented in this thesis should be easily integrated into the executable
analyser currently used by the company. For this reason the design should allow easy
addition of support of more types of input and output storages (for example databases of
various types, remote APIs1, etc.). The graphical interface is not included, because the
application is meant to be run mainly automatically and thus the GUI is not necessary.

The application should provide these functions:

1. Attribute extraction from one or more sandbox logs.

2. Train the classifier from a training set.

3. Classify one or more unknown samples.

4. Estimate performance of the classifier using k-fold cross-validation

5.1 Attribute extraction

This process converts raw sandbox logs into tuples consisting of the ID, values of all sup-
ported attributes and the user-supplied class label. It can process many logs at once – in
this case the logs are supplied as a CSV2 file; each row contains one log. The output is also
a CSV file: each row contains record ID, its attributes’ values and supplied class label.

The application can be also used to extract attributes from one log at a time. In this case
the input is the log file itself and the ID must can be either provided through a command
line argument or it can be generated from the file name. The output can be appended to
an existing CSV file or it can be saved to a INI file.

The extractor also keeps list of files created or modified during the execution in the
sandbox virtual environment. This is because some actions (records in the log) may
yield different attributes based on the file used during the action. For example, the
line Run file "<FILE_NAME>" may yield either RUN_FILE_OTHER or RUN_CREATED_FILE
attribute, depending on whether there is an action which created or modified the file
<FILE_NAME> somewhere earlier in the log.

The user can also specify that samples with null attribute vector should not be written
to the output CSV file. This is useful when extracting attributes from samples known to

1Application Programming Interface, used for communication between different systems
2Comma Separated Values. Each row contains one record consisting of several values, usually separated

by comma, hence the name.
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be malicious, because some of them might pass the analysis without being detected, as
described in chapter 3.

5.2 Training and classification

The input to the training process is the training set; it can be created by the application
but it is not necessary. The training set can be loaded from one or more files or directly
from the application standard input. Each record consists of its ID, values of attributes
and its correct class label. The output – trained Näıve Bayes classifier (described in section
2.1.1) – can be stored to a file for later usage.

To train the the classifier it is necessary to calculate the mean and the standard deviation
for each attribute and class label in the training set and also prior probabilities for each
class. The mean of a sample consisting of N values x1, x2, . . . , xN is defined in [6] as:

µ =
1

N

N∑
i=1

xi (5.1)

and the standard deviation as:

σ =

√√√√ 1

N

N∑
i=1

(xi − x)2 =

√√√√ 1

N

(
N∑
i=1

x2i

)
− x2 (5.2)

To allow bias the model towards positive or negative classification, each class label can
be given a weight. Values of records from that class are then multiplied by the weight.
To calculate the mean, standard deviation and prior probabilities, the number of records
of each class is also multiplied by the corresponding weight. This results in the same
situation as if every record appeared in the training set multiple times (depending on the
weight), however unlike simple duplication of the records, this allows to use also floating
point numbers as weights.

During the classification of unknown samples, the logarithms of probabilities of contin-
uous attributes are calculated using equation 2.5:

log(P (xk|Hi)) = − log(
√
2πσCi)−

1

2

(
xk − µCi
σCi

)2

(5.3)

Because the term log(
√
2πσi) does not depend on the unknown sample, it is also calculated

during training and stored in order to speed up the classification.
The input to classification is either a set of unknown samples (similarly to the training

set) or just a single sample – in this case it can be provided either as a log file or as a list
of attributes and their values. The output is either only the most probable class label and
optionally also calculated probabilities for all class labels. If the classification is done for
many samples at once, the output for each record also contain its ID and optionally the
values of the attributes.

5.3 Estimation of performance of the classifier

The validation requires the same inputs as the training – the data set and the class label
weights. It is done using the k-fold cross validation (see section 2.2.1) – the number of folds
k can be chosen by user as a command line argument.
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The application than follows the scheme described in section 2.2.1. First, the data set
is partitioned into k subsets, ideally each containing the same number of records. The ratio
between different classes in each subset should be kept the same as in the complete data
set. The partitioning can be described as follows:

1. Prepare n buckets, where n is the number of classes in the data set.

2. Read the data set and put the sequence number of each record into corresponding
bucket.

3. Calculate the target number of items of each class in each resulting subset.

4. For each of the resulting subsets, randomly pick calculated number of items (sequence
numbers) from the buckets.

5. Read the data set again and replace the sequence numbers with actual records and
save them to corresponding subset files.

In fact it is not necessary to work with the sequence numbers, however storing the whole
data set in the memory might not be possible for larger number of records. The work-flow
with sequence numbers allows to store only one record in the memory at a time (the record
which is copied from the source data set into corresponding subset).

After the subsets are created, the application trains the classifier k times, each time
with different training and test set and collects the results. When this process is finished,
the results are averaged and printed to the application standard output. It shows the
total number of classified records, number of correctly and incorrectly classified records (in
total and for each class) and the accuracy, the true positive and false positive rates. The
application does not require setting which class is positive and negative – it shows rates for
all classes.

The application should also support creation of the subsets separately. This allows to
store the subsets into files and run the cross-validation multiple times on the same data,
without the need to re-create the subsets each time from scratch.
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Chapter 6

Implementation and evaluation

This chapter describes the implementation of the application described in the previous
chapter and performed tests and achieved results of the implemented classifier.

6.1 Implementation

The application user interface was implemented as a set of command line scripts. Each
of them starts one of the functions described in Chapter 5. The classification of unknown
samples and the attribute extraction are divided into two scripts – one for processing many
samples at once and one for processing only one sample. There is also one extra script for
creating subsets for later use in the cross-validation.

6.1.1 Python programming language

The application was implemented using the Python language (version 2.7). This dynamic
interpreted language can be run on all major platforms. Its standard library covers most
of the common tasks, including CSV file format support (used for storing data sets) and
easy text manipulation (and thus log parsing). The generator functions can be used for
simple iteration over even very large data sets without the need to load them completely
into the memory in exactly the same way as iterating over regular memory-based arrays1.
Python can also be easily embedded into other applications and it can be extended by
modules written in low-level languages like C or C++ which allows additional speed-up of
critical parts of applications. The language implementation, CPython, is distributed under
an open source license which allows also commercial usage [9].

6.1.2 Code organization

Besides the executable scripts, the code is organized into two packages. The package
classification contains implementation of the Näıve Bayes classifier (class NaiveBayes)
and functions for loading the model from a CSV-like file as well as saving trained model
(class NaiveBayesCsv). The module sampling contains function kfold sample which im-
plements splitting data set into k subsets using stratified sampling.

1With some limitations, for example it is impossible to get the number of items using the len built-in
function or to seek backwards.
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The package dataset contains everything necessary for working with the data set –
loading sandbox logs, data sets and records (module readers), storing data sets and records
(module writers), and the attribute extraction (modules extractor and attributes).

The source code is formatted according to the PEP 8 – Style Guide for Python Code2.

6.1.3 Reading and writing data

For reading and writing data, there are two modules containing necessary functionality
– dataset.readers and dataset.writers. The readers and writers are implemented as
context managers. Besides the context manager interface methods, each of them contain one
method for storage access – fetch all, returning generator yielding records one by one, and
write record for writers. The dataset.readersmodule also contains two helper functions
– read_attribute_file and read_multiple_attribute_files which return directly the
generator, without the need to create the reader class and enter corresponding context
(using the with statement). Thanks to the use of generators, only one record is stored in
the memory at a time.

The rest of the application is not dependent on the actual storage. This allows easy
implementation of new data storages or file format – one only needs to write the reader
and writers classes and/or functions and change the import <module> statements in the
corresponding parts of the application (the executable scripts).

6.1.4 Attribute extraction

The extraction procedure is started by one of the scripts extract single.py and extract.py.
The former takes single log file as a input. The user can supply the file name or it can be
written directly to the standard input. The extractor (object of class AttributeExtractor)
initializes all attribute values to zero and reads the file line by line. If the line contains text
characteristic for an attribute, the value of that attribute is increased by one. When the end
of file is reached, the attribute vector is returned and either print to the standard output in
a INI format, (generated by the function record to ini from module dataset.writers)
or appended to a given CSV file (using an object of class CsvAttributeWriter).

The second script reads the logs one by one from the CSV file, using an object of class
CsvLogReader, and repeats the same procedure for each of them. The output is in form of
a CSV file, including headers and it is written either to the standard output or to a given
file, using an object of class CsvAttributeWriter.

6.1.5 Training

The training is started by executing script train.py. It takes one or more CSV files
containing the training set as an argument (or the training set can be written to the standard
input) and optionally weights assigned to some or all of the classes. If not specified by the
user, a class has weight of 1.

The learning itself is implemented in the method train of the class NaiveBayes. It
reads training records from the input file(s) and stores the sum of records’ weights (given
as a weight of the class label) for the entire training set and also for each class label sepa-
rately. Each attribute’s value is multiplied by the corresponding weight and the application
calculates the sum of the values and the sum of the squared values. After the whole train-
ing set is processed, these sums of values and weights are used to calculate the required

2Python Enhancement Proposal 8, http://www.python.org/dev/peps/pep-0008/
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statistics (described in section ): the prior probabilities, the mean, the standard deviation
and the value of the term log(

√
2πσi) from the equation 5.3 for each class.

The model is not represented in the application as a object of a special type, but as
a tuple consisting of 4 dictionaries3 (prior probabilities, means, standard deviations and
values of log(

√
2πσ)).

6.1.6 Classification of unknown samples

Each unknown sample can be classified using the classify single.py script. It takes an
INI file (which can be generated by the attribute extractor) or a raw sandbox log (in this
case the attributes are extracted before the classification). The output is also in INI format,
with the ___label___ attribute changed to the result of the classification and optionally
with new attributes probability(<CLASS>) containing the calculated values for each class.
The INI file is read using the function ini to record from module dataset.readers.

If the number of unknown samples is higher, the classify.py script might be a better
option. It takes a CSV file (in the same format as a training set) and classifies each record.
The output is again a CSV file, containing each record’s ID and its most probable class,
and optionally also values of all attributes and/or all all calculated probabilities.

The classification itself is implemented in the method classify of the class NaiveBayes.
It iterates over all classes and calculates the logarithm of the probability that the unknown
sample belongs to each class. It returns the label of the class with highest calculated
probability and optionally all calculated values.

6.1.7 Estimation of the classifier’s performance

The k-fold cross-validation process is started using the xvalidate.py script. It takes a
data set as an input in the CSV format. If not done beforehand, it is partitioned into k
subsets, according to scheme described in section 5.3, however the records are not stored in
the memory, only the mappings from records’ sequence numbers to corresponding subsets
are kept, to minimize memory usage.

The number of items in each subset from each class is calculated by integer division
NC ⁄N, where NC is number of records of class C and N is the total number of records. The
remainder is equally distributed among subsets, so the difference between the size of the
smallest and largest resulting subset is at most the number of classes. Although it can
create unbalanced subsets for small data sets (e.g. 10 items of 2 classes may be divided into
subsets of 4, 4 and 2 items), the difference is insignificant in the case of larger data sets.

The application can split the data set itself, however it also supports working with al-
ready created subsets. Because the splitting can be time-consuming, if several experiments
are run on the same data, the necessary time can be reduced significantly by creating
the subsets only once before experimenting. The data set can be split into subsets using
the script subsets.py, which takes the data set, required number of subsets and option-
ally the output directory as arguments. The resulting subsets are saved to files named
subset_X.csv, where X is number of the subset, starting from 1.

The testing is performed using the test method of the class NaiveBayes. It takes the
trained model and a testing set as an argument and returns the confusion matrix as a
“two-dimensional” dictionary4. For example, to access the number of test samples which

3Dictionary is a Python built-in data structure which maps keys to corresponding values.
4More precisely, it is a dictionary that contains another dictionaries as items’ values.
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have correct class label “positive” and which were classified as “negative”, one can write
my_value = matrix[’positive’][’negative’].

The application calls the test once for each subset, used as test set, other subsets are
merged together and used as the training set. The resulting values are added together.
After this process is completed, the total number of classifications and number of correctly
and incorrectly classified test samples are printed to the standard output, together with
the accuracy. These counts are printed also for each class label. Since the application does
not take the positive class label as an argument, it prints the true positive rate and the
false positive rate for each class. The average learning and testing time are also recorded
and printed. It is also shown how long (in average) it takes to classify one unknown record.
If required by the user, the results for each of the testing sub-processes can be printed as
well. An example of the output is shown in section B.2.4, in the listing B.5.

6.2 Experimental output

The performance of the implemented classifier was estimated using the 10-fold cross- valida-
tion. The goal was to observe the changes in the performance by increasing the “negative”
class weight in steps of 0.1, from 1.0 to 12.0 (which results in 111 runs). The weight of
the “positive” class was always set to 1 – since there are only two different classes, it is
not necessary (only the ratio between the weights matters, not the absolute values). Four
measures was monitored – true positive rate, false positive rate, accuracy and the average
learning time necessary for one iteration of the cross-validation. The same experiment was
repeated using only the 15 most significant attributes (estimated by the information gain
measure) to see how the pre-selection affects the performance and learning time.

6.2.1 Results

The figure 6.1 shows the relationship between the true and false positive rates and the
weight for both experiments. The rates (and also the accuracy) decreases as the weight
is increased. The maximal tolerated false positive rate of 1% (0.987% to be exact) was
achieved when the weight was set to 3.8, with true positive rate of 25.82%, the accuracy
was 61.73%. The average learning time was 12.3 seconds.

When only 15 attributes were used, the accuracy, TPR and FPR did not change much.
The required false positive rate was achieved when the weight was set to 3.9 when the FPR
was 0.970%. True positive rate and accuracy was a bit higher than in the previous case,
62.0% (+0.27%) and 26.38% (+0.56%) respectively, however, according to the Student’s
t-test5, these differences are not statistically significant. The average learning time was 5.8
seconds, approximately one half compared to the previous experiment.

Although the accuracy is only by less than one percentage point (+0.45 or +0.72 points,
depending on the number of attributes used) better than in the case of the currently used
method (scores and threshold), the main advantage is that it is not necessary to manually
determine the scores of each of monitored actions (or attributes). It also allows to quickly
bias the classifier towards positive or negative classification, as required.

5See section 2.3 for description.
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Figure 6.1. The relationship between the TPR, FPR and accuracy on the weight of the
“negative” class.
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Chapter 7

Conclusions

This thesis describes the implementation of a classification tool which could be used for
detecting malicious software. The topic was proposed by an anti-virus company AVG
Technologies which also provided the data set in a form of reports created by analysing
various executable files in a virtual environment. The complete database consists of millions
of samples, however only part of those were analysed, due to time expensiveness.

First, 39 features (attributes) were extracted from the reports. It turned out that about
half of the samples from malicious set did not perform any of the monitored Windows API
calls, thus the reports were empty. It is possible that these executables are able to detect
that they are running in a virtual environment and suspend any behaviour which could
be considered as malicious. Other option is that although they performed their payload,
it consists of different set of Windows API calls then those monitored. Although it is
very difficult to overcome the first issue (by using some kind of more advanced virtual
environment or emulator), the former problem can be eliminated by monitoring larger
number of API calls. Since this would means larger number of attributes in the data set, it
would also lead to longer learning time. Furthermore, the significance of each feature was
estimated using information gain measure included in Weka toolbox. This showed, that
some of them are not used in almost all samples, however this might not be true for the
whole database of executables.

Selected classification methods were then trained and evaluated using 20-fold cross
validation. The classifiers used were: Näıve Bayes, decision trees (using four different
maximal depth settings), the RandomForrest algorithm, a support vector machine and
neural nets (using four different structures). One decision tree and one neural net was
trained alse “boosted” using the AdaBoost algorithm. All experiments were performed
using RapidMiner data mining software, using built-in implementations of these classifiers
and their default settings.

All of the the used classifiers had better accuracy than the method currently used by
the company. The best performing classifier, in terms of the accuracy, was the neural net.
The experiments reveal that the net structure does not affect the performance significantly
in this task (all of them had accuracy around 94%), however it does affect training time.
The second best method was the decision tree induction. Although it is a little less accurate
(92.9% in average), the training is about 24 times faster than in the case of the largest neural
net. However, there are faster neural net training methods than the used back-propagation.

Because the achieved false positive rate was higher than the maximum the company is
willing to tolerate (1%), all the classifiers were trained again, together with the MetaCost
method, which allows to specify cost of the false positive classification. It turned out that
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when the cost is set so the FPR reaches value around 1%, the accuracy of all the classifiers
does not differ as much as in the first experiments. It varied from 56.04% in the case of the
RandomForrest algorithm, to 62.51% in the case of the support vector machine, however
the differences may be caused by the fact, that the classifiers were not set to achieve the
exactly same value of the false positive rate. The main difference between the classifiers
was in the time necessary for learning and for this reason the Näıve Bayes classifier (with
average training time under 1 minute) was selected for implementation.

The implemented application covers all necessary steps – attribute extraction from
sandbox logs, training of the Näıve Bayes classifier, estimation of its performance using
k-fold cross-validation, and classification of unknown samples. It also supports assigning
weights to records of one or another class label which allows to fine-tune the resulting true
and false positive rates.

The tests showed that when the classifier is trained so it achieves the false positive rate
lower than 1%, its performance is only slightly better than the accuracy of the currently
used method. On the other hand, the current solution needed to manually specify scores for
each of the monitored actions and also the maximal score which can be achieved to consider
unknown file as benign, which complicates addition of new attributes and/or samples to
the database. The implemented application does not have this limitation – the classifier is
trained fully automatically and within just couple of minutes. In the hypothetical situation
when the false positive rate exceeds the tolerated maximum after new executables (or
attributes) were added to the data set, it is possible to quickly re-adjust the classifier
without the need of an expert (who would manually assign new scores to the attributes).

Although the implemented classifier is very fast to train – in average around 12 seconds
for training set containing 90 thousand examples with 39 attributes – the necessary learning
time can be shortened by omitting attributes which are less significant for the classification,
however the application does not support either estimation of the attributes’ significance or
reduction of the attribute set before training. On the other hand however there are many
existing tools which could be used for data set analysis (for example Weka or RapidMiner
used in this thesis) which provide almost anything one would need – estimation of the
attributes’ significance, tools for identifying correlated attributes, data visualisations and
much more.
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Appendix A

List of extracted attributes

Gain ratio Name

Action

0.2388 WINSOCK STARTUP

Initializing network sockets

0.1628 REG SET RUN

Writing to the list of programs run on OS startup (CurrentVersion\Run* registry keys)

0.1511 CONNECT

Connecting to remote computer

0.1427 REG SET WINLOGON

Writing to the list of programs run on OS startup (CurrentVersion\WinLogon registry
keys)

0.1414 RUN OTHER FILE

Executing file not created nor modified by the monitored process

0.1413 RUN CREATED FILE

Executing file previously created or modified by monitored process

0.1369 COPY FILE WIN

Copying a file into C:\Windows directory

0.1298 COPY FILE OTHER

Copying a file (not into C:\Windows directory)

0.118 REG SET EXPLORER RUN

Writing to the list of programs run on OS startup (Policies\Explorer\Run registry
keys)

0.1136 DNS QUERY

Sending query to DNS server

0.112 DELETE OTHER FILE

Deleting file not created nor modified by the monitored process

0.1117 API HOOK
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Calling API hook function

0.1099 WRITE FILE EXEC

Writing to exe, dll, sys or com file

0.1094 NET SEND

Sending data over network

0.1017 FIREWALL SET EXCEPTION

Creating exception in Windows Firewall settings

0.0974 MOVE FILE OTHER

Moving file to a location different than C:\Windows

0.0946 DOWNLOAD

Downloading a file from network using the HTTP protocol

0.0935 WRITE FILE OTHER

Writing to file which is neither executable, located in C:\Windows nor the HOSTS file

0.0933 REG SET WINDOWS

Writing to CurrentVersion\Windows registry key

0.0926 FIREWALL ENABLE EXCEPTIONS

Enabling exceptions in Windows Firewall

0.0862 WRITE FILE WIN

Writing to file located in C:\Windows

0.0845 DELETE CREATED FILE

Deleting file previously created or modified by monitored process

0.0801 CREATE CREATED SERVICE

Registering a service driver using file previously created or modified by the monitored
process

0.0778 REG SET SAFEBOOT

Writing to System\CurrentControlSet \Control\Safeboot registry key

0.0759 EMAIL

Sending an email

0.0651 WRITE FILE HOSTS

Writing to HOSTS file (list of IP addresses for selected domain names, it has larger
priority than Domain Name System, DNS)

0.0641 OPEN PROCESS

Opening another process for writing

0.0641 CREATE OTHER SERVICE

Registering a service using file previously created nor modified by monitored process

0.0623 IMAGE LOAD

Calling undocumented IMAGE LOAD Windows API function
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0.0613 LOAD OTHER DRIVER

Loading a kernel service driver using file not created nor modified by monitored process

0.0613 WIN OR SYSTEM INI

Writing to win.ini or system.ini file

0.0588 MOVE FILE WIN

Moving file into C:\Windows directory

0.0522 LISTEN

Starting listening for remote network connection

0.0358 DELETE SERVICE

Unregistering a service

0.035 CREATE OREANS32 SERVICE

Registering OREANS32 service (driver used for protecting some games)

0.0228 REG SET SHELL OPEN

Creating file type association with certain application

0 UNLOAD DRIVER

Unloading a kernel service driver

0 HIDE PROCESS

Calling HIDE PROCESS Windows API function

0 LOAD CREATED DRIVER

Loading a kernel service driver using file previously created or modified by the moni-
tored process
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Appendix B

Application user’s manual

B.1 File formats

B.1.1 CSV files

CSV files are used for storing sandbox logs database, data sets and the resulting model.
The first line always contains the column headers, other lines contains data rows. The
column names are case-sensitive. Although the application can process any type of line
endings, it is preferred to use Unix style line endings (\n).

Fields are separated by comma (,, no spaces are allowed) and they can be enclosed in
double quotes ("). Fields can span over multiple rows, in which case the line endings are
not escaped. If double quotes character is part of field contents, it must be escaped by
inserting it twice (""). Comments are not supported. There are many other dialects of
CSV files which differ in the delimeter and escaping characters but they are not supported.

Sandbox logs database

The CSV files supplied to attribute extractor must contain at least two columns. The first
column contains the record’s ID and the second column contains the log itself. The IDs are
not checked for uniqueness within the file. Their names are left to user’s decision, only the
order matters. If the file contains more than two columns, the rest is ignored and it does
not raise an error.

Listing B.1. Example of a logs database file

md5 ,log ,auxiliary
FIRST_ENTRY_ID ," first entry log line 1
first entry log line 2 with some "" quoted string ""
first entry log line 3",auxiliary value
SECOND_ENTRY_ID ," second entry log line 1
second entry log line 2", auxiliary value

Data sets

The data set files generated and used by the application consist from at least three columns.
The first column is the record’s ID and the last column contains its class label. All columns
between contains the attributes’ values. The name of the ID and class label columns
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are arbitrary. Attributes’ values must be valid floating point number literals. Nominal
attributes and missing values are not supported.

Listing B.2. Example of a data set file

id ,ATTRIBUTE_A ,ATTRIBUTE_B ,label
FIRST_ENTRY_ID ,1.0003 ,4e4 ,positive
SECOND_ENTRY_ID ,0,0, negative

Models

The model file format is slightly modified compared to the previous file formats. It is
divided into two parts, each introduced by its own header.

The first part contains the class labels’ prior probabilities. It contains two columns,
named label and prior, followed by values for each available label. The second part
contains calculated values for each combination of class label and attribute. It contains five
columns, named label, attribute, mean, stddev and log_factor1.

Listing B.3. Example of a model file

label ,prior
positive , -0.6744398349152223
negative , -0.7122111735094135
label ,attribute ,mean ,stddev ,log_factor
positive ,ATTRIBUTE_A ,0.27 ,3.05 ,2.03
positive ,ATTRIBUTE_B ,2.12e-05 ,0.0 , -4.46
negative ,ATTRIBUTE_A ,0.03 ,0.75 ,0.64
negative ,ATTRIBUTE_B ,0.0 ,0.001 , -5.99

B.1.2 INI files – single record files

INI files are used to store attribute values of a single extracted record. They can be
generated by extract single.py from sandbox logs and they can used as an input for the
classify single.py script.

Although the INI file format is not well defined, the application follows commonly used
version, however with some limitations – for example comments are not supported. The first
line contains the record’s ID enclosed in square brackets (similar to INI section declaration).
It is followed by attributes and their values, each on separate line. The attribute name and
its value are separated by single = character. There is one special attribute, ___label___,
which contains the record’s correct class label.

The application supports reading only INI files containing one section (one record).
The last section declaration found denotes the read ID and if any attribute is present more
than once, only the last value is used. Values must be valid floating point literals, nominal
attributes and missing values are not supported (an error would be raised).

Listing B.4. Example of a INI single record file

[RECORD_ID]
___label___=positive
ATTRIBUTE_A =1.0003
ATTRIBUTE_B =4e-4

1The value of the term log(
√
2πσi) from equation 5.3
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B.2 Usage of executable scripts

B.2.1 Attribute extraction

extract.py [-h] [-o FILE] [-l LABEL] [-s] [input]

Extracts attributes from sandbox logs stored in a CSV file and returns results as another
CSV file.

-o FILE

Write output CSV to FILE. If not specified, the result is written to the standard output.

-l LABEL

The class label to store for all records. If not specified, the input file name is used. Required
if the input file is not specified.

-s

Skip records with null attribute vector. These records will not be written to the output

input

Input CSV file name. If not specified, the standard input is used.

extract_single.py [-h] [-a CSV_FILE] [-d ID] [-l LABEL] [-s] [input]

Extracts attributes from single sandbox log and returns results as a INI file or appends it
to an existing CSV file as a new row.

-a CSV_FILE

Append output to CSV_FILE as a new row. If not specified, the result is written to the
standard output as a INI file.

-d ID

The record’s ID. If not specified, the input file name or stdin is used.

-l LABEL

The class label to store. If not specified, unknown is used.

-s

If used together with the -a option, if the extracted record has null attribute vector, it will
not be written to the CSV file.

input

Input file name. If not specified, the standard input is used.

B.2.2 Training

train.py [-h] [-o FILE] [-w [label:weight [label:weight ...]]]

[input [input ...]]

Trains a Naive Bayes classifier from provided training set. The training set can be loaded
from multiple files at once.
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-o FILE

Write output model to FILE. If not specified, the result is written to the standard output.

-w label:weight

The weight of records having specified class label. This option can be repeated to specify
weights for more than one class label. If the label does not exist, the option is ignored. It
is not necessary to specify weights for all labels. The weights for non-specified labels are
set to 1.

input

Input CSV file name(s). If not specified, the standard input is used.

B.2.3 Splitting dataset into subsets

subsets.py [-h] -n N [-o DIR] [input [input ...]]

Splits provided data set into n subsets. Each subset will contain approximately the same
number of records and the ratio between classes in subsets are will be kept the same as
in the full data set (stratified sampling). The resulting subsets are saved to files named
subset X.csv, where X is number of the subset, starting from 1.

-n N

Number of subsets. Required.

-o DIR

Output directory name. If it does not exist, it is created automatically. If not specified,
current working directory is used.

input

Input CSV file name(s). If not specified, the standard input is used.

B.2.4 Performance estimation

xvalidation.py [-h] [-k FOLDS] [-p] [-d] [-w [label:weight [label:weight ...]]]

[input [input ...]]

Estimates Naive Bayes model performance using k-fold cross-validation. The training set
can be loaded from multiple files at once. Commented example of the output is shown in
listing B.5.

-k FOLDS

Number of folds. Default value is 20.

-p

If present, each input file is treated as an subset created from the training set, prepared for
the cross-validation. The number of folds is determined by the number of input files and
the option -f is ignored.

-d

If present, prints also detailed results for each fold separately.
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-w label:weight

The weight of records having specified class label. This option can be repeated to specify
weights for more than one class label. If the label does not exist, the option is ignored. It
is not necessary to specify weights for all labels. The weights for non-specified labels are
set to 1.

input

Input CSV file name(s). If not specified, the standard input is used.

Listing B.5. Example output of the cross-validation process.

Total number of classified samples: 92515
Average learning time: 23.659 secs
Average testing time: 18.765 secs (0.001 secs per record)
Correctly classified: 62918
Misclassified: 29597
Accuracy: 68.0084 %
------
Total CLASS_A count: 47131 Number of CLASS A records
True CLASS_A count: 18519 Number of correctly classified CLASS A records
True CLASS_A rate: 40.8051 % True CLASS A count / Total CLASS A count
False CLASS_A count: 985 Number of CLASS B records classified as CLASS A
False CLASS_A rate: 2.1704 % False CLASS A count / Total CLASS B count
------
Total CLASS_B count: 45384 Number of CLASS B records
True CLASS_B count: 44399 Number of correctly classified CLASS B records
True CLASS_B rate: 94.2034 % True CLASS B count / Total CLASS B count
False CLASS_B count: 28612 Number of CLASS A records classified as CLASS B
False CLASS_B rate: 60.7074 % False CLASS B count / Total CLASS A count
------
This part is printed only with the -d option.
k,T(CLASS_A),F(CLASS_A),T(CLASS_B),F(CLASS_B),learn_time ,test_time
0 ,3797 ,222 ,8855 ,5630 ,18.995000 ,15.946000
1 ,3629 ,199 ,8878 ,5797 ,22.677000 ,27.704000
2 ,3842 ,207 ,8870 ,5584 ,38.670000 ,18.743000
3 ,3587 ,173 ,8904 ,5839 ,19.054000 ,15.031000
4 ,3664 ,184 ,8892 ,5762 ,18.897000 ,16.403000

B.2.5 Classification of unknown samples

classify.py [-h] -m MODEL [-o FILE] [-a] [-f] [input [input ...]]

Classifies many unknown samples at once. The output is in the CSV format, containing
these columns:

� By default: id, label

� With the -p option: id, probability(CLASS_A), probability(CLASS_B), . . . , label

� With the -a option: id, ATTRIBUTE_A, ATTRIBUTE_B, . . . , label
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� With both -p and -a options: id, ATTRIBUTE_A, ATTRIBUTE_B, . . . , probability(CLASS_A),
probability(CLASS_B), . . . , label

-m MODEL

Model file, previously generated by train.py.

-o FILE

Write output CSV to FILE. If not specified, the result is written to the standard output.

-p

Include all calculated probabilities in the output.

-a

Include attribute values in the output.

input

Input CSV file name. If not specified, the standard input is used.

classify_single.py [-h] -m MODEL [-e] [-p] [FILE]

Classifies many unknown samples at once. The input can be either in INI format or a raw
log. The output is in the INI format. The ___label___ attribute is replaced by the most
probable class.

-m MODEL

Model file, previously generated by train.py.

-e

The input is a raw log file, extract attributes first.

-p

Include all calculated probabilities in the output. They are added as attributes named
probability(CLASS_NAME) at the end of the file.

input

Input file name. If not specified, the standard input is used.
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Appendix C

CD Contents

The CD contains following directories:

� thesis – this thesis source code in the LATEX format

� pdf – this thesis in the PDF format

� implementation – the implemented application

� sample data – sample input data

� results – results of all performed experiments in OpenDocument Spreadsheet format
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