
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY O F INFORMATION T E C H N O L O G Y

DEPARTMENT OF INFORMATION S Y S T E M S

OPTIMALIZACE HEURISTICKÉ ANALÝZY
SPUSTITELNÝCH SOUBORŮ
OPTIMIZATION OF HEURISTIC ANALYSIS OF EXECUTABLE FILES

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE MICHAL WIGLASZ
AUTHOR

VEDOUCÍ PRÁCE Prof. Ing. TOMÁŠ HRUŠKA, CSc
SUPERVISOR

BRNO 2012

Abstrakt
Cílem t é t o p r á c e je implementace klasif ikátoru, k t e r ý by mohl bý t p o u ž i t v p r o s t ř e d í
společnos t i A V G Technologies k detekci škodl ivého softwaru na zák ladě jeho chování ve
v i r t u á l n í m p ros t ř ed í n a m í s t o současné metody detekce, kdy ma j í j edno t l ivé s ledované akce
r u č n ě p ř idě leny váhy a jejich součet rozhoduje o tom, zda je n e z n á m ý vzorek považován za
škodl ivý či neškodný . Tato společnos t t a k é poskyt la data p o u ž i t á pro učení a t e s tován í .

V p rác i jsou p ř e d s t a v e n y zák l adn í pojmy z klasifikace, blíže jsou p ř e d s t a v e n y něk t e r é
klasifikační metody a z p ů s o b y v y h o d n o c e n í ú spěšnos t i modelu a s rovnán í r ů z n ý c h m o d e l ů
a t a k é učení s ohledem na ceny chybné klasifikace. K o n k r é t n ě je p ř e d s t a v e n a bayesovská
klasifikace, rozhodovac í stromy, neu ronové s í tě , Support Vector Machines a algoritmy A d -
aBoost a MetaCos t .

P o p s a n é klasifikační algoritmy jsou p o r o v n á n y na p o s k y t n u t é d a t a b á z i . Ukáza lo se,
že ačkoliv n ě k t e r é klasi f ikátory dosahuj í velmi d o b r ý c h výs ledků (94% úspěšnos t v pří­
p a d ě neu ronových s í t í) , na druhou stranu klasifikují pří l iš mnoho neškodných vzo rků jako
škodl ivých - více než 9 %, p ř i čemž společnos t A V G je ochotna tolerovat m a x i m á l n ě 1 %. P o
nas t aven í cen falešně poz i t ivn í klasifikace, tak aby byla tato hodnota d o d r ž e n a se ukáza lo ,
že ú spěšnos t všech klas i f ikátoru se pohybuje okolo 62 % a větš í rozdí l je pouze v čase
p o t ř e b n é m k t r énován í . N a zák ladě t ě c h t o e x p e r i m e n t ů b y l k implementaci zvolen na ivn í
bayesovský klasif ikátor, k t e r ý se ukáza l jako nejrychlejší .

Zvolený algoritmus by l i m p l e m e n t o v á n v jazyce P y t h o n a jeho s t a n d a r d n í knihovna.
Jako v s t u p n í a v ý s t u p n í fo rmát by l p o u ž i t dialekt C S V . V y t v o ř e n á aplikace p o k r ý v á všechny
p o t ř e b n é kroky - extrakci a t r i b u t ů z logů v y t v o ř e n ý c h b ě h e m ana lýzy s o u b o r ů ve v i r tuá l ­
n í m p ros t ř ed í , učení klas i f ikátoru a odhad jeho úspěšnos t i a klasifikaci n e z n á m ý c h vzorků .
Apl ikace t a k é umožňu je na s t aven í vah t r é n o v a c í m v z o r k ů m na zák l adě jejich t ř ídy , d íky
čemuž lze snadno model upravovat s m ě r e m k poz i t ivn í či nega t ivn í klasifikaci.

Výs l edky aplikace byly ověřeny na p o s k y t n u t é d a t a b á z i . Ukáza lo se, že př i na s t aven í vah
tak, že model dosahoval p o ž a d o v a n é h o max ima 1 % neškodných vzo rků o h o d n o c e n ý c h jako
škodl ivých, byla jeho úspěšnos t p o d o b n á jako současně p o u ž í v a n ý z p ů s o b klasifikace. N a
druhou stranu učení p r o b í h á zcela automaticky a není t ř e b a r u č n ě u r čova t váhy j edno t l i vých
s ledovaných akcí. Také se ukáza lo , že e l iminací n ě k t e r ý c h m é n ě dů lež i tých a t r i b u t ů lze
zk rá t i t čas p o t ř e b n ý k učení zhruba o jednu polovinu. V y t v o ř e n á aplikace neposkytuje
pro v ý b ě r a t r i b u t ů ž á d n é n á s t r o j e , n i c m é n ě pro tento úkol lze použ í t n ě k t e r ý z mnoha
existuj ících spec ia l izovaných n á s t r o j ů .

Abstract
This thesis describes the implementat ion of a classification tool for detection of unknown
malware based on their behaviour which could replace current solution, based on manually
chosen attributes ' scores and a threshold. The database used for t ra ining and testing was
provided by A V G Technologies company, which specializes i n antivirus and security systems.
F ive different classifiers were compared i n order to find the best one for implementation:
Naive Bayes, a decision tree, RandomForrest , a neural net and a support vector machine.
After series of experiments, the Naive Bayes classifier was selected. The implemented
application covers a l l necessary steps: attr ibute extraction, training, estimation of the
performance and classification of unknown samples. Because the company is wi l l ing to
tolerate false positive rate of only 1% or less, the accuracy of the implemented classifier
is only 61.7%, which is less than 1% better than the currently used approach. However it
provides automation of the learning process and allows quick re-training (in average around
12 seconds for 90 thousand t ra ining samples).

Klíčová slova
Klasifikace, dolování z dat, s t ro jové učení , škodl ivý software, antivirus, na ivn í Bayes,
Py thon .

Keywords
Classification, data mining, machine learning, malicious software, anti-virus, Naive Bayes,
Py thon .

Citace
M i c h a l Wiglasz : Opt imiza t ion of Heuris t ic Analys is of Executable Files, b a k a l á ř s k á p ráce ,
Brno , F I T V U T v B r n ě , 2012

3

Optimization of Heuristic Analysis of Executable
Files

Declaration
I declare that this thesis is my own work that has been created under the supervision of
Prof. Ing. T o m á š H r u š k a , C S c , and i n consultation wi th Pavel K r č m a . A l l sources and
literature that I have used dur ing elaboration of the thesis are correctly cited wi th complete
reference to the corresponding sources.

M i c h a l Wiglasz
Ju ly 30, 2012

Acknowledgements
I would like to thank Pavel K r č m a from the A V G Technologies company for valuable feed­
back and Ing. Jan K o u t n i k for his lead and supervision of my thesis dur ing my studies in
Switzerland. I would also like to thank al l my friends and my family for endless support
and encouragement.

© M i c h a l Wiglasz , 2012.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Goals of the Thesis 3

2 D a t a classification 5
2.1 Classification methods 5

2.1.1 Bayes classifiers 5
2.1.2 Decision trees 6
2.1.3 Neura l Networks 8
2.1.4 Support Vector Machines 9
2.1.5 Boost ing 10

2.2 Performance evaluation 11
2.2.1 Selecting t ra ining and testing data 12

2.3 Compar ing various classifiers 12
2.4 Cost-sensitive classification 13
2.5 Machine learning in malware detection 13
2.6 Machine Learning Tools 14

2.6.1 Weka 14
2.6.2 R a p i d M i n e r 14

3 D a t a set 16
3.1 Current classifier used by A V G Technologies 16

4 Choosing classification method 18
4.1 Exper imenta l results 19

4.1.1 Experiments w i t h default settings 19
4.1.2 Experiments w i th MetaCos t 20
4.1.3 Selected classifier 22

5 Appl icat ion design 23
5.1 At t r ibu te extraction 23
5.2 Tra in ing and classification 24
5.3 Es t imat ion of performance of the classifier 24

6 Implementation and evaluation 26
6.1 Implementation 26

6.1.1 P y t h o n programming language 26
6.1.2 Code organization 26
6.1.3 Reading and wr i t ing data 27

1

6.1.4 At t r ibu te extraction 27
6.1.5 Tra in ing 27
6.1.6 Classification of unknown samples 28
6.1.7 Es t ima t ion of the classifier's performance 28

6.2 Exper imenta l output 29

6.2.1 Results 29

7 Conclusions 31

A List of extracted attributes 35

B Appl icat ion user's manual 38

B . l F i l e formats 38
B . l . l C S V files 38
B.1.2 INI files - single record files 39

B .2 Usage of executable scripts 40
B.2.1 At t r ibu te extraction 40
B.2.2 Tra in ing 40
B.2.3 Spl i t t ing dataset into subsets 41
B.2.4 Performance estimation 41
B.2.5 Classification of unknown samples 42

C C D Contents 44

2

Chapter 1

Introduction

Malic ious software or malware is a term used for a l l kinds of unwanted software (viruses,
Trojan horses, worms etc.) which pose security thread to computer users. The most
important defence against these are virus scanners. These usually work w i t h database of
descriptions of known malware, in form of signatures. W h e n a new type of malware appears,
t radi t ional scanner w i l l not be able to recognize it un t i l its signature database is updated.

To be able to detect also unknown malware, heuristic analysis was introduced. Instead
of looking for signatures of specific malware instances, heuristic analysis tries to look for
suspicious behaviour. D u r i n g analysis, several features are extracted from examined file
and then these features are processed by classifier, which yields a final decision whether the
file seems to be benign or a new form of malware.

AVG Technologies1, an anti-virus company, owns a database of several mill ions examples
of bo th benign and malicious files, as a t ra ining and testing data for their heuristic analyser.
Par t of the database was examined inside a v i r tua l environment (sandbox) for performed
actions. Currently, the results of this step are then processed by a simple classification
algori thm, which rates each action by manually chosen score and the classification is based
on the to ta l score and a certain threshold. However the accuracy of this approach is poor,
only 39.3%, which is worse than random classification.

In this thesis we t ry to find the best classification method suitable for this task and
implement a tool which could be integrated into the sanbox. It describes some of the avail­
able classification methods and how they are trained and evaluated. Described classifiers
are then trained using a data set created from sandbox reports, provided by A V G Tech­
nologies. The t ra ining and testing is done using R a p i d M i n e r , a specialized data mining
tool . The results of performed experiments are evaluated and the best-performing method
is implemented as a part of application which provides a l l necessary functions: attr ibute ex­
tract ion from sandbox logs, t raining, estimation of classifier's performance and classification
of unknown samples.

1.1 Goals of the Thesis

The ma in goal is to create a new classification tool which could be embedded into sandbox
system currently used by A V G Technologies. However, the tool cannot be created without
an analysis of available classification methods, which can be used for this task, because the

1 M o r e i n f o r m a t i o n a b o u t A V G Technologies c o m p a n y c a n be found o n i ts websi te , h t t p : / /www. a v g . com/

3

their performances depends also on the data we examine. The main goal can be divided
into sub-goals as follows:

1. Analyse provided data set.

2. Exper iment w i t h various classifiers using fc-fold cross-validation.

3. Evaluate results and choose the classification method.

4. Implement application which would provide selected classifier and could be integrated
into the sandbox system.

5. Evaluate the performance of the implemented application.

The document is structured as follows: Chapter 2 gives an overview of classification,
suitable methods, presents how classifiers are evaluated and also gives some examples of
machine learning approaches to malicious code detection. Chapter 3 describes the provided
data set and also the current classification method used by the company and its perfor­
mance. Chapter 4 presents experiments performed in order to select which classifier to
implement. Chapter 5 is focused on design of the application and chapter 6 describes the
implementation of the applicat ion and evaluation of the performance of the application.

4

Chapter 2

Data classification

Classification is a task of learning a function which maps each record from input data to
one of predefined class labels based on its properties, represented as set of attributes. The
algori thm implementing this task is called classifier. Th is term is also used for the resulting
function, also called classification model . M o d e l can be represented in various forms, for
example as a set of rules, decision tree or mathematical expression.

Dur ing learning, classifier is provided by records for which we already know correct
class labels. For this reason, classification is considered as a supervised learning method,
which means that the classifier is provided by correct output for each training record. The
main goal is to find pattern which is common to a l l records (or at least to most of them)
belonging to the same class and at the same time not true for records from other classes.
W h e n the learning is finished, the classification model can be used either to determine
classes of unknown instances or also as a description of features common to instances of
the same class and different from instances of other classes.

2.1 Classification methods

This sections describes classification methods which were trained and evaluated (using
provided data set) i n order to select method for later implementation.

2.1.1 Bayes classifiers

Bayes classifiers calculate probabil i ty that a given sample belongs to a part icular class.
They are based on Bayes' theorem, named after Thomas Bayes: let X be a data tuple,
described by values of n attributes, H a hypothesis, e.g. that the data tuple belongs to a
particular class C. For classification, we want to determine P(H\X), the probabil i ty that
tuple X belongs to class C , also called the posterior probability. It can be estimated
from the prior probability P{H) (the probabil i ty that any tuple belongs to class C) ,
posterior probabi l i ty of X conditioned on H (the probabil i ty that tuple belonging to class
C equals to X) and the evidence P(X), which a l l can be estimated from training data.
The Bayes ' theorem is:

m = ™ (2 . 1 }

The classifier estimates prior and posterior probabilities for a l l m classes C i , C 2 , . . . , Cm

and compares them to each other. Because value of P(X) is constant, it can be omit ted in

5

comparison. The prior probabil i ty of class C j can be either given by an expert or estimated
from the t ra ining data as:

P(Ci) = • (2.2)

where | C j | represents the number of tuples of class C j in the t ra ining set.
To simplify calculation of class-dependent posterior probability, the N a i v e Bayes clas­

sifier assumes that a l l attributes ' values are condit ionally independent on each other, given
the class of the tuple. Thus P(X\H{) can be estimated as:

n

P(X\Hi) = l\P(xk\Hi) (2.3)
k=l

Here xk refers to value of attribute Ak for given tuple X. The probabil i ty for single
discrete attr ibute is given as number of tuples of class C-i having the value xk for Ak d ivided
by the to ta l number of tuples i n class Ci. For continuous attributes, their d is t r ibut ion is
typical ly assumed as Gaussian wi th mean // and standard deviat ion a:

1 (x-v)2

g(x,fi,a) = - ^ e (2.4)

so the probabil i ty is:

P(xk\Hi) = 9{xk,nCi,aCi) (2-5)

The classifier predicts that given tuple belongs to class C% i f and only if:

P{Hi\X)P{Hi) > P(Hj\X)P(Hj) for 1 < j < m,j + i (2.6)

Since mul t ip ly ing many probabilities could lead to floating point number underflow,
the logarithms of probabilities are added instead. Because log(xy) = log(x) + log(y) and
logari thm is monotonie function, the classification is s t i l l given by the highest value. The
products i n equation 2.6 are substituted as follows:

n

P{Hi\X)P{Hi) = log(P(Hi\X)) + J2l°S(P(xk\Hi)) (2.7)
k=l

2.1.2 D e c i s i o n trees

One of the most popular classifiers are decision trees. They are constructed by repeatedly
d iv id ing t ra ining data into subsets based on attribute values. Usual ly in each test, a value
of one at tr ibute is compared to a constant, but sometimes two attributes are compared
to each other or some function of several attributes is used. B u i l d i n g stops after certain
condit ion is reached - for example the min ima l data subset size or tree max ima l depth can
be l imi ted.

W h e n classifying an unknown record, tree is routed from a root node, following path
determined by attribute test results in internal nodes. W h e n a leaf node is reached, its
value is the result of prediction. Decision trees are also easily readable and it is visible
which attributes are the most important for the prediction.

There are several methods to bu i ld the tree and choose suitable split at tr ibute i n each
step. ID3 a lgori thm invented by Ross Qu in lan [] uses information gain measure. It

6

is based on calculat ing expected amount of information necessary to correctly classify a
record, also known as entropy. Let D be the t ra ining set, \D\ the number of instances i n D,
m number of distinct classes C i , C 2 , . . . , Cm and pi non-zero probabil i ty that a tuple from
D belongs to class C« (estimated as \C'^/\D\). The amount of information needed to classify
instance i n D is given by:

m
Info(Z?) = -] T K l o g 2 (K) (2.8)

i=l
W h e n a t ra ining set is d ivided into k subsets D\, D2, • • •, Dj by attr ibute A, the information
needed for classification after split is estimated as:

k

Info A (£>) = - Yl W x I n f o (^ ') (2 - 9)
j=i I I

Information gain is the difference between the original information requirement and the
requirement for each created subset, thus:

G a i n (A) = Info(-D) - Info A (£>) (2.10)

This measure tends to favour attributes w i th a larger number of values. For example in
extreme case, when one of the attributes had unique value for each record (e.g. ID) , split
using this attribute would result into max ima l information gain, however it is not useful
for classification. In C4.5 a lgori thm [], successor of ID3, gain ratio measure is used in
attempt to overcome this bias. A s a k ind of normalizat ion to information gain ratio, it also
considers the number of records i n each created subset. It does so by adding new "split
information" value defined as:

S P l i t Info A (L>) = - 2^ T ^ l X l o g 2 T n f (2 " U)

3=1 V I I /

The gain ratio is then estimated as:

^, . ^ • / a \ Gainful .„ , „,
G a ' " R j l t , 0 (- 4) " S p l i t l n f o j p) (2 ' 1 2)

G a i n ratio measure however tends to prefer unbalanced splits w i th one par t i t ion much
smaller than the others. Several other methods exist, but "no one attribute selection mea­
sure has been found to be significantly superior to others. Most measures give quite good
results" []. Mos t a lgori thm consider a l l attributes when deciding on split , but there are
exceptions: for example RandomTree algori thm randomly selects subset of attributes from
which the tree is bui l t . A n extension is the RandomForest a lgori thm which trains several
decision trees, each wi th randomly selected subset of attributes. The class of unknown
instance is determined by voting.

To avoid overfitting, which is the si tuation when learned tree fits t ra ining data too
well and almost a l l t ra ining records are classified correctly but it fails to correctly classify
unknown records, the tree is pruned. The pruning can be done during the bui lding process
(pre-pruning), which means that the algori thm tries to decide when to stop creating more
subtrees, or after the complete tree is buil t (post-pruning), dur ing which some subtrees are
replaced by single leaves. A l though pruning causes worse performance on the t ra ining data,
it may lead to better results w i th unseen records [].

7

2.1.3 N e u r a l N e t w o r k s

Neural networks are algorithms inspired by real biological neural systems. L ike in brain,
neural network consists of number of neurons. E a c h neuron realises part icular function
of several inputs and one output. They are organised into layers. The first layer is used
for input, number of neurons i n this layer is the same as number of attributes in data set.
The last layer servers as output - it provides the result of classification. It usually has one
output neuron for each defined class, but not necessarily - for two-class problems only one
output neuron is needed, which w i l l output "low" value for the first class and "high" for
the second class. Between these layers there are one or more hidden layers. In feed­
forward networks, neurons i n one layer are connected only to neurons i n the next layers.
Usual ly each neuron is connected to a l l neurons i n the next layer, but other layouts are also
possible. Figure 2.1 shows an example of feed- forward network for two-class classification
problem wi th each record having five attributes.

Input layer Hidden layer Output layer

F i g u r e 2.1. A n e x a m p l e of feed-forward n e u r a l n e t w o r k w i t h one i n p u t , one h i d d e n a n d one
o u t p u t layer . A t t r i b u t e s are connec ted to i n p u t layer , the o u t p u t layer y ie lds p r ed i c t ed class
l abe l . E a c h c o n n e c t i o n has ass igned i ts weight w h i c h is ad jus ted d u r i n g t r a i n i n g .

The connections between neurons have associated weights. In the beginning, they are
set to random values and during learning their values are adjusted towards desired output
of the whole network. In the back-propagation method, this is done by connecting each
record from tra ining set to the network inputs and computing the output of the network
wi th current weights. The error between the correct and actual output is then propagated
back to network and the weights are adjusted. The output is computed in forward direction
- outputs of neurons in layer k are computed before the outputs i n layer k + 1 . Each neuron
implements an act ivation function, commonly used is the sigmoid function, defined as:

/(*) = TT~^ (2-13) 1 + e x

The goal is to determine vector of weights w which minimizes the sum of squared error
which is given as:

1 N

E = - Y J (y - f W ? (2-14)
i=l

where iV is the number of records i n t ra ining set, y is the instance's real class label and
f{x) the network's output value. To solve this problem, the gradient descent method is
used. The weights of the connections are updated using formula:

8

where A is the learning rate. In back-propagation, the weights are updated i n reverse
direction - the weights at level k + 1 are updated before the weights at level k.

W h e n the whole t ra ining data set is processed, the process is repeated again. Each
repetit ion is called an epoch. The total number of performed epochs can be determined
manually or the learning process can stop when certain conditions are met, e.g. when the
average output error or number of misclassified records during one epoch is smaller then
some specified threshold.

Majo r drawback of neural network classification is that the knowledge represented by
connections and their associated weights is difficult to interpret by humans. A l so the
network topology (number of neurons and layers) must by selected which may lead to long
trial-and-error process unt i l acceptable results are achieved [15] [6].

2.1.4 S u p p o r t V e c t o r M a c h i n e s

Support Vector Machines (S V M) are based on finding the best hyperplane which separates
instances of each class - the max imum margin hyperplane. They are defined for two-
class problems, however there are modifications for classification wi th three or more classes.
Because hyperplane is a k ind of linear model, the data must be linearly separable, however
S V M can be used also of non-linearly separable problems by mapping the original data
into a different space, where the boundary between classes becomes linear. A n example of
max imum margin hyperplane is shown i n figure 2.2.

The m a x i m u m margin hyperplane is a hyperplane which separates data, so that a l l
instances are correctly classified and also gives the largest separation between classes. It is
found using support vectors and margins. M a r g i n is the distance between the hyperplane
and nearest t raining instance of either class. We expect that hyperplanes wi th larger margin
w i l l have less classifications errors for future data, so S V M searches for the hyperplane wi th
the largest possible margin.

If we have two-class problem wi th N t ra ining instances, we can denote each instance
as (xi, yi), where xi = (x j l , £ « 2 , X i d) T corresponds to the attributes of i - th instance and
Hi G —1,1 denotes its class. The hyperplane can be wri t ten as:

fl":wx + 6 = 0 (2.15)

where x and b are parameters of the model . A n y point laying above the separating hyper­
plane satisfies

w - x a + 6 > 0 (2.16)

Similarly, any point below the separating hyperplane satisfies

w - x a + 6 < 0 (2.17)

If we label a l l points above the hyperplane as class y% = \ and points below it as yi = — 1,
we can predict the class label y for any test example z:

1, if w • z + b > 0;
- 1 , if w • z + b < 0.

(2.18)

9

T w o parallel hyperplanes H\ and H2 which defines the "sides" of the margin can be
expressed if we adjust the parameters x and b as:

fli:wx + 6 = 1 (2.19)

2 : w - x + 6 = - 1 (2.20)

The margin is given by the distance of these two hyperplanes. A n y t ra ining instance
which lies on either of these hyperplanes is called as support vector. There is always
at least one for each class. The support vectors gives the most information regarding
classification and they uniquely define the m a x i m u m margin hyperplane, the rest of t raining
set is irrelevant and can be removed without changing the hyperplane.

A,

F i g u r e 2.2. A n e x a m p l e of a m a x i m u m m a r g i n h y p e r p l a n e H i n two-class p r o b l e m w i t h i n
t w o - d i m e n s i o n a l space. P o i n t s (t r a i n i n g ins tances) l y i n g o n hype rp lanes Hi a n d H2 are ca l l ed
suppor t vectors - the rest c a n be o m i t t e d w i t h o u t changes to the hype rp l ane .

The process of finding the hyperplane can be rewritten that it w i l l become a problem
known as constrained convex quadratic optimization problem. It can be solved using general
opt imizat ion software package, however for larger data sets specialized and more efficient
S V M algorithms exist. Once the support vectors are found and the m a x i m u m margin
hyperplane defined, the support vector machine is t rained and can be used for classifying
new instances [15] [6].

2.1.5 B o o s t i n g

Boost ing is an example of an ensemble or combinat ion model - it combines several models
of the same type and the resulting class is determined by voting. The votes are not equal,
each created model has assigned its weight, based on how well it performs. The models are
trained consequently and any classification method can be used for their creation. After
each model is trained, records' weights are recalculated, so incorrectly handled records are
given higher weight than records handled correctly. This means that the next trained model

10

w i l l more focus on the misclassified instances, seeking for model which would complement
the previous one.

One of widely used boosting methods is AdaBoos t (short for Adapt ive Boost ing) ,
designed especially for classification, formulated by Yoav Freund and Robert E . Schapire in
[4]. A t the beginning, a l l t ra ining records are given the same weight. Then the underlying
classifier is called to generate model based on the data and weights are adjusted - decreased
for correctly classified instances and decreased for the misclassified ones. F ina l ly , next
i teration is started - new model is buil t and t ra ining records are re-weighted. If e denotes
the classifier's error on the weighted data, new weight for correctly classified instance is
calculated as follows:

e
weight <— weight •

1 — e

Then the weights are re-normalized, so their sum remains same as before, which causes
increase of weights of misclassified instances. The modell ing is stopped when the overall
model error exceeds or equals 0.5 or when it equals 0, because then a l l weights become 0.

If the selected classification method does not support weighted instances in t raining
set, it can be s t i l l used wi th boosting. In this case, an unweighted data set is created by
re-sampling - each instance is selected into new data set w i th probabil i ty proport ional to
its weight. This means, that high weighted instances are replicated frequently and ones
wi th low weight may never be selected. The data set is provided to the classifier once it
reaches the size of the original weighted one [15].

2.2 Performance evaluation

Once classifier is trained, it is useful to measure how well it performs to classify previously
unseen data. For this reason it is tested against unlabelled test set. The test set is randomly
selected from al l available data beforehand and it is not used during learning.

Counts of correctly and incorrectly classified test set records can be visualised as a
two-dimensional confusion matrix. E a c h entry in this mat r ix represents the number of
records for which the row is their real class and the column is the predicted class. For goo
results, values on the main diagonal are large and al l other values are small , ideally zero.

To make it more convenient to compare different classifiers, confusion mat r ix can be
summarized into one number using a performance metric such as accuracy or error rate:

Number of correct predictions
Accuracy

Error rate

Tota l number of predictions

Number of wrong predictions

Tota l number of predictions

Accuracy (and error rate) calculated on the test set can be also used to compare two
different classifiers on the same domain.

Besides accuracy, the performance of a classifier can be also observed in terms of the true
positive rate (T P R , also called sensitivity) and the false positive rate (F P R) . K n o w i n g num­
ber of a l l positive (P) , negative (N) , true positive (T P) and false positive (F P) samples, these
rates can be calculated as TPR = TP/p = TP/TP + FN and FPR = FP/N = FP/FP + TN.

11

2.2 .1 Se lect ing t r a i n i n g a n d test ing d a t a

There are several options how to create t ra ining and testing data set. The simplest method
is the holdout. In this method, data are part i t ioned into two disjoint sets, one used for
t raining, one for testing. M a i n weakness of this method is that part of the data is not used
to bu i ld the classifier, thus the resulting model might not be as good as when al l records
were used. O n the other hand, the larger the t raining set is, the less reliable is the error
estimate computed from the test set. Also , the result is dependent on the composit ion of
the two sets, for example i f a l l instances of one class are present i n the test set but none
of them are i n the t raining set, classifier w i l l probably perform poorly for that class. To
improve error estimates, holdout method can be run more times and the resulting estimate
is the mean of values from each run - this scheme is called the repeated holdout method.
Stratification can also be used, which divides data into two parts keeping ratio between
classes in each subset as i n original data.

To ensure a l l records were used for both t ra ining and testing and maximize amount of
data used for training, the fc-fold cross-validation can be used. In this approach, data
is split into k subsets and the val idat ion is performed k times. In each run, one subset
is used for testing and the others for t raining. The resulting error measurement is found
by averaging results from each run. A special case is the leave-one-out method i n which
k = N, the size of the data set. In each run, exactly one record is used for testing. The
advantage is that m a x i m u m of available data is used for t raining, however it might be
computat ional ly expensive to repeat the process N times [].

2.3 Comparing various classifiers

Al though accuracy gives some overview on how different classification methods perform
compared to each other, it is good to prove that the difference between results are not
given only by chance. This can be confirmed using the Student's t-test, introduced
by W i l l i a m Sealy Gosset ("Student" was his pen name). It is a statist ical method that
can be used to determine whether the mean of two samples differ significantly or not.
Measurements observed using the same classifier but w i th different data (for example each
fold in fc-fold cross-validation) can be considered as samples from a probabi l i ty dis t r ibut ion
- i n part icular t-distribution w i th k — 1 degrees of freedom, where k equals to the number
of measurements. This dis t r ibut ion looks similar to normal (Gaussian) dis t r ibut ion, but
the defining function is different. The hypothesis (null hypothesis) tested is that the two
models are same - the difference between mean error rates is zero. If the hypothesis can be
rejected, we can conclude that the difference between the models is statist ically significant
and we can select the model w i th the lower error rate.

The test computes ^-statistic w i th k — 1 degrees of freedom. Let err (Mi) and eff(M2)
be average error rate for model M\ and M 2 , respectively and var{M\ — M2) the variance
of the difference between these two models. The ^-statistic for k — 1 degrees of freedom is
then computed as:

t = e r f (M i) - err (M 2)

The variance between the means of the two compared models is estimated as:

12

var(Mi) var(M2)
var(M1-M2) = \ + r ^ 1 2-22

y h k2

To determine if models M\ and M2 are significantly different, we compute t and select the
significance level - usually 5% or 1%. Based on the computed t and selected significance
level, the t-distr ibution value z is found - either computed or looked up i n table of selected
values. If t > z or t < —z, then t lies i n the rejection region and the nu l l hypothesis can
be rejected. Tha t means, that the difference between models M\ and M2 is statist ically
significant. If we cannot reject the nu l l hypothesis (i.e. — z < t < z), any difference between
these two models can be at t r ibuted to chance [6].

2.4 Cost-sensitive classification

W h e n dealing wi th unknown samples, i n some cases the cost of false positive classification
might be much higher than the cost of false negative classification (or vice versa). These
costs can be taken into account during the t ra ining by providing a cost matrix which
allows to bias the model to avoid costly errors.

The cost mat r ix looks similar to the confusion matr ix , however the cells contain assigned
costs instead of number of classified examples. The values on the main diagonal are always
zero (because there is no cost of correct classification).

However, some classifiers does not support cost-sensitive learning and edit ing them
might be non-tr ivial . Th is problem can be solved by using the MetaCos t method, proposed
by Pedro Domingos [] which treats underlying classifier as a black box and does not require
any changes to i t . It creates mult iple t ra ining sets using sampling wi th replacement and
learns a classifier for each of them. Probabil i t ies that each sample belongs to each of the
classes are estimated by using the trained classifiers and the t ra ining set is relabelled to
opt imal classes according to the given cost matr ix . T h i s process is repeated m times,
producing m models. W h e n an unknown sample is given to the resulting m models, the
decision is determined by voting (as a class predicted by the greatest number of models).

2.5 Machine learning in malware detection

Machine Learning was first used to detect malware by Schultz et a l . []. They used three
feature extraction approaches (program headers, strings and byte sequences), and free clas­
sification methods (R I P P E R , a rule-based classifier, Naive Bayes, and M u l t i - N a i v e Bayes).
A l l of the methods were more accurate than signature-based methods, best performing
being the M u l t i - N a i v e Bayes using byte sequences wi th accuracy of 97.76%.

Another approach is the C o m m o n N - G r a m analysis (C N G) , proposed by Abou-Assa leh
et a l . [1]. N-grams is file substrings a fixed length n. For each class, L most frequent
n-grams collected from tra ining data represents class profile. A new instance is classified
by bui ld ing its class profile and using the fc-nearest neighbours algori thm. They achieved
98% accuracy for several parameter configurations.

Kol te r and Maloo f [] also collected n-grams, each being sequence of 4 bytes, then
selecting 500 most relevant ones using information gain measure. They applied four different
machine learning methods: fc-nearest neighbours, Naive Bayes, a support vector machine
(S V M) and a decision tree. A l l of the methods, excluding fc-NN were also "boosted". Best
performance was achieved by boosted the decision tree, followed by S V M and boosted S V M .

13

They also tr ied to determine the k ind of malware (e.g. backdoor virus), omi t t ing benign
data set, w i th boosted decision tree and S V M being again the best performing methods. To
estimate results in an real-world environment operation, the authors also trained classifiers
using malware discovered before Ju ly 2003 and tested them against files discovered between
Ju ly 2003 and August 2004. The results were not as good as i n their first experiment, w i th
boosted decision tree again outperforming others classifiers.

Henchir i and Japkowicz [7] worked wi th same data set as Schultz et al . [] but w i th
different - hierarchical - feature extraction approach, selecting n-grams present at rates
above threshold wi th in specific virus family and also present in min ima l amount of fami­
lies. They evaluated several classifiers (decision trees, Naive Bayes and a support vector
machine), authors claimed they achieved better results than i n [13].

D i n g et al . [2] experimented wi th dynamic heuristic analysis using set of 8823 malicious
and 2821 benign samples. E a c h of them was run inside v i r tua l environment and monitored
by A P I tracer for Windows A P I calls, resulting into a 35-dimension feature vector, each
attr ibute representing one event (e.g. file system operations), the value indicated only
whether that event occurred or not, number of these occurrences i n each run was not
recorded. They buil t two classifiers - a statist ical model and M i x t u r e of Exper ts model.
They achieved true positives rate of 96.01% wi th statist ical and 75.2% wi th M i x t u r e of
Exper ts model.

2.6 Machine Learning Tools

W h e n dealing wi th data min ing tasks, various existing tools may be used for data pre­
processing, data visualisation, modell ing and evaluation. Two different tools were used -
Weka for data analysis and R a p i d M i n e r for t ra ining and evaluation of described classifica­
t ion methods on the given data set.

2.6.1 W e k a

Weka, (Waikato Environment for Knowledge Analys is) , is a tool developed at university of
Waikato, distr ibuted under G N U G P L license 1 . It is wri t ten i n Java and can be easily run on
most used operating systems and platforms and can be used as a stand-alone application
or integrated into custom Java applications. It provides a collection of bo th supervised
and unsupervised machine learning algorithms, and also tools for data pre-processing and
visualisation [].

2.6.2 R a p i d M i n e r

R a p i d M i n e r is an open source data mining tool developed by Rapid- I G m b H . It is available
in two editions - Communi ty E d i t i o n available under G N U A G P L l icense 2 and Enterprise
E d i t i o n which offers extended technical support and it can be also integrated into propri­
etary closed-source applications. L ike Weka, it is wri t ten in Java and can be integrated into
other Java applications. Funct ional i ty can be extended by plug-ins - for example learners
from Weka can be integrated into R a p i d M i n e r i n this way [12].

D a t a min ing tasks in R a p i d M i n e r are defined as processes consisting of various oper­
ators which are applied to input data. E a c h process is described in an X M L file and can

xhttp://www.gnu.org/licenses/gpl.html
2http://www.gnu.org/licenses/agpl-3.0.html

14

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/agpl-3.0.html

be created either manual ly or using a graphical user interface. Operators can be combined
into chains and i n some cases even nested together making the tool universally applicable to
many data mining tasks. There are more than 600 operators of various types, including ba­
sic process control (loops, branching, etc.), data transformation (attributes normalizat ion,
filtering, sampling, etc.), modell ing (classification, regression, clustering, etc.) or support
for evaluation of the created model . Operators define their inputs and outputs and their
types (e.g. data set, model, vector etc.). The types are checked during both designing and
execution of a process and when incompatible input and output are connected, R a p i d M i n e r
raises an error. There are also addi t ional outputs, not included i n normal processing flow,
which can be stored i n a log, such as execution t ime or the count of how many times an
operator was executed.

15

Chapter 3

Data set

The data set was generated using database of executable files owned by the A V G Technolo­
gies company, however only 100 000 malicious and 45 384 benign samples were used, due
to the fact that it is computat ional ly expensive to process the whole database (which con­
tains mill ions of executables). Th is part of database was then analysed using the v i r tua l
environment and each example's behaviour was monitored (namely performed Windows
A P I calls). Generated log files was then processed by specialized tool which filtered only
part of sample behaviour (file system operations, network access, Windows system registry
modifications, etc.) and produced final report for each file. For classification purposes, we
extracted a vector of 39 numeric attributes from each report. Each attribute represents
specific action and its value number of occurrences of that action.

There are many instances wi th nu l l at tr ibute vector, which means that dur ing examina­
t ion i n the v i r tua l environment, none of the monitored actions were performed. A l though
it is perfectly fine for benign files to not perform any of those actions, it is at least sus­
picious i n the case of malicious files. P robab ly some of them can determine that they are
run inside a v i r tua l environment and so they d id not perform any suspicious actions to
avoid being detected. Another option is that they perform different actions which were not
monitored. Despite the actual reason, these malicious set records wi th nu l l at tr ibute vector
were removed from the data set.

A l though the number of attributes is relatively high, not a l l of them may be significant
for classification. Removing the least significant attributes can lead to shorter learning
times without smal l or even no impact on classifier's performance. Weka toolbox provides
several algorithms to help selecting relevant attributes. The gain ratio measure was used
(which is also used to bu i ld decision trees 1). The complete list of attributes is included in
Append ix A . The attributes at the bo t tom of the list has zero value for almost a l l records
in the data set - and in the case of attr ibute " H I D E _ P R O C E S S " this is true for a l l of them.
However, if the whole database of executables (and not only provided subset) was analysed,
these attributes may become more significant.

3.1 Current classifier used by A V G Technologies

Current classifier is embedded into sandbox as a part of the tool which generates reports
for each file. The classification method is simple: each monitored action is assigned a
certain score (either negative or positive). If the to ta l score for processed file exceeds pre-

1 S e e sec t ion 2.1.2 for g a i n r a t i o de f in i t ion .

16

determined threshold, it is marked as a possible new malware, i f not, it is considered benign.
B o t h scores and threshold were chosen manually. The result is included i n the generated
report. The accuracy of this approach is 39.3% for the whole data set, which is worse
than classification by random choice (which has the accuracy of 50%). If the malicious
samples w i t h nu l l at tr ibute vector are omitted, the accuracy is higher, 61.28%. A s we
can see in table 3.1, although the false positives rate (i.e. the number of benign samples
marked as malicious) is very smal l (0.93%), most of the malicious files are not detected
(87.78% or 74.48% if nul l vector malicious samples are omitted). The scores and threshold
are intentionally set to achieve false positive rate that smal l - 1% is the m a x i m u m value
the company is wi l l ing to tolerate.

Tab le 3.1. C o n f u s i o n m a t r i x for cur ren t classifier. A l t h o u g h the false negat ives ra te is s m a l l ,
most of m a l i c i o u s samples are misc lass i f ied .

(a) W h o l e d a t a set

predicted malicious predicted benign
true malicous 12.22% 87.78%
true benign 0.93% 99.07%

(b) D a t a set w i t h o u t m a l i c i o u s records h a v i n g n u l l a t t r i b u t e vec tor

predicted malicious predicted benign
true malicous 25.52% 74.48%
true benign 0.93% 99.07%

17

Chapter 4

Choosing classification method

To choose the classification method to implement, several experiments w i th different clas­
sifiers were performed using R a p i d M i n e r (briefly described in section 2.6.2).

The experiments were performed using the provided data set without malicious samples
wi th nu l l attribute vector. F ive different classification methods described in chapter 2.1 were
tested - Naive Bayes, a decision tree (with gain ratio measure), RandomForrest algori thm,
a support vector machine and a neural net. Decision tree and neural net were also boosted
using AdaBoos t algori thm. Performances were estimated using 20-fold cross val idat ion,
i.e. by d iv id ing data set into 20 parts, 19 parts used for t ra ining and one part for testing,
repeating this process 20 times wi th different testing set each time. Accuracy, absolute
numbers of test instances classified correctly (true positives and negatives) and incorrectly
(false positives and negatives) and the learning t ime were observed.

A l l experiments were performed wi th default R a p i d M i n e r settings. Besides that, deci­
sion trees were also buil t w i th various max ima l depth settings (default 20, 15, 10 and 7).
Four different structures of neural networks were used. A l l of them had one hidden layer
wi th different numbers of neurons: 22 (default R a p i d M i n e r sett ings 1) , 15, 10 and 5.

W h e n al l results were gathered, classifiers can be compared to each other. To ensure
that the differences are not given only by chance, the Student's t-test (described in section
2.3) were performed, using accuracies recorded for each run, giving 20 samples for each
classifier.

The goal of the second set of experiments was to lower the false positive rate below 1%
which is the highest value the company would tolerate. Th is was done by using the Me ta -
Class operator together w i th the classifiers. The cost matrices were determined manually
by a trial-and-error process. The false negative cost was always set to zero and the false
positive cost was increased un t i l the average false positive rate achieved value around 1%.
The performance was estimated using 20-fold cross-validation, as i n previous experiments.
The "boosted" versions of neural nets and decision tree were not included i n this set of
experiment, because it turned out that boosting does not have any significant impact on
the performance (however it significantly increases learning time).

1 D e f a u l t n u m b e r of nodes i n h i d d e n layer is g iven as n = A~^c + 1 nodes, where A is the n u m b e r of
a t t r ibu tes a n d C the n u m b e r of classes, i n ou r case n = 3 9 ^ 2 + 1 = 2 1 . 5 « 22

18

4.1 Experimental results

This section presents obtained results of the described experiments. The collection of five
classifiers was trained on the data set - first w i th default settings and then together w i th
the MetaCos t operator (in order to achieve lower false positive rate).

4.1.1 E x p e r i m e n t s w i t h default settings

In general, a l l used classification methods performed better than the current classifier,
regarding their accuracy and true positive rate. O n the other hand, the average false
positive rate is higher for a l l of them - it varies from 1.18% for Naive Bayes to 32.71% for
RandomForrest (however results for this algori thm vary a lot for each fold). Table 4.1 and
figure 4.1 show results for a l l classifiers sorted by their accuracy.

Because t ra ining a support vector machine using standard implementat ion included in
R a p i d M i n e r turned out to be very t ime consuming, this experiment was performed using
"Fast Large M a r g i n " learner instead, which is based on fast support vector learning scheme
included i n L I B L I N E A R 2 . A l though its results are s imilar to other S V M implementations,
the t ra ining t ime is much better even for data sets containing mill ions of records and/or
attributes.

The best results were achieved using neural net w i th default R a p i d M i n e r settings. The
average accuracy is good, 93.97% (a = 0.30%). The true positive rate (T P R) is also the
best among a l l methods, being 97.31% (a = 0.90%). However, the false positive rate (F P R)
is 9.49% (a = 0.95%) which is approximately 10 times higher value than the one of the
current classifier. Networks wi th different number of neurons than default i n general had
same or almost same accuracy, however the amount of t ime necessary for t raining was twice
smaller i n the case of the smallest network.

The major drawback is the learning t ime which is one of the highest (almost 8 hours
for whole 20-fold cross validation) but it is s t i l l good compared to the t ime necessary to
analyse samples using v i r tua l environment (months). O n the other hand, i f the whole
available database (millions of samples) were used for t raining, this might be a large issue.
Another disadvantage is unclear structure of neural networks in general. For product ion
usage, a faster learning scheme than the back-propagation would be a better choice.

The second best performing classifier were decision trees, either w i th default setting of
max ima l depth (which is 20) or adjusted to 10 - difference between these two trees was
proven as statistically insignificant using the t-test. The accuracy is 92.93% (a = 0.33%)
which is lower than the neural network, however, trees have an advantage of clear structure
and the learned knowledge can be easily interpreted by human. The true positive rate
is also lower (94.85%, a = 0.46%) and the false positive rate is a l i t t le better than for
the neural network, but the difference is not significant. W h e n the max ima l depth is set to
smaller value (which leads into smaller number of tested attributes during classification), the
accuracy, T P R and F P R are also smaller, but s t i l l above 90%. Despite poorer performance,
bui lding decision trees was 12 times faster than t ra ining a neural net.

These were only two classification methods wi th accuracy better than 90%. The support
vector machine (Fast Large Margin) is t h i rd best performing. Four th best accuracy was
achieved by RandomForrest algori thm, however results for this classifier vary a lot for each
fold. This is probably due to the way RandomForrest a lgori thm works. Since it creates

2 R . - E . F a n , K . - W . C h a n g , C . - J . H s i e h , X . - R . W a n g , a n d C . - J . L i n . L I B L I N E A R : A L i b r a r y for L a r g e
L i n e a r C l a s s i f i c a t i o n . J. Mach. Learn. Res., 9 : 1 8 7 1 - 1874, J u n e 2008.

19

number of decision trees, each of them wi th randomly selected subset of attributes, some
of these trees are buil t based only on attributes which are not that useful for classification,
thus the resulting tree does not perform well . A l though the final decision is determined by
weighted voting, it seems it could not overcome this problem.

The worst accuracy among selected classifiers was obtained by the Naive Bayes classifier.
Its results were s imilar to the current approach. The main reason could be that the "naive"
assumption that a l l attributes are independent of each other is probably not true.

T w o best performing methods (neural net and decision tree) w i th default R a p i d M i n e r
settings were also trained using AdaBoos t , described in chapter 2.1.5. Regarding decision
trees, the difference of accuracy was statist ically insignificant compared to the non-boosted
version. The accuracy of the boosted neural network was even worse than the regular one
and the learning took approximately twice more time.

Tab le 4 .1 . Average resul ts for a l l classifiers e s t ima ted b y 20-fold cross v a l i d a t i o n sor ted b y
average accuracy . T h e last r ow shows values for cur ren t classif ier w h i c h were c a l c u l a t e d u s i n g
comple te d a t a set. N e u r a l ne tworks h a d one h i d d e n layer w i t h different n u m b e r of neurons .
D e c i s i o n trees were t r a i n e d u s i n g different se t t ings of m a x i m a l d e p t h .

Classifier Accuracy a T P R a F P R a Learning time
Neural net (15 neurons) 94.06% 0.19% 97.39% 0.63% 9.41% 0.80% 16 min
Neural net (22 neurons) 93.97% 0.30% 97.31% 0.90% 9.49% 0.95% 24 min
Neural net (10 neurons) 93.93% 0.31% 97.42% 0.77% 9.70% 0.91% 14 min
Neural net (5 neurons) 93.61% 0.49% 96.89% 0.73% 9.79% 0.54% 12 min
Decision tree (depth 20) 92.93% 0.33% 94.85% 0.46% 9.07% 0.55% 1 min
Decision tree (depth 10) 92.93% 0.33% 94.86% 0.45% 9.08% 0.54% 44 s
Decision tree + AdaBoost 92.93% 0.33% 94.85% 0.46% 9.07% 0.55% 26 s
Decision tree (depth 7) 92.34% 0.31% 93.40% 0.54% 8.77% 0.56% 26 s
Decision tree (depth 5) 90.34% 0.33% 88.91% 0.61% 8.17% 0.61% 13 s
S V M 84.07% 1.36% 76.23% 3.70% 7.78% 1.22% 1.5 min
Neural net + AdaBoost 82.22% 1.63% 72.84% 4.37% 8.05% 1.36% 46 min
RandomForrest 72.94% 10.59% 78.38% 16.85% 32.71% 31.55% 13 s
Naive Bayes 62.26% 0.52% 27.06% 0.94% 1.18% 0.24% 1 s
Current classifier 61.28% 25.52% 0.93% -

4.1.2 E x p e r i m e n t s w i t h M e t a C o s t

In these experiments the classifiers were tuned to achieve similar false positive rate as the
method currently used by the company, i.e. around 1%, using the MetaCos t method. Table
4.2 displays average accuracies, true positive rates and false positive rates, together w i th
average learning t ime and the value of false positive cost used during training.

The only classifier which could not be properly tuned was the decision tree. The tree
could be trained w i t h false positive rate of either 0.37% (with average accuracy of 51.7%,
which is almost the same as random classification) or 6.55% (with average accuracy of
78.99%) and nothing between; the boundary was approximately between the false positive
cost values of 9.7 and 9.75. For this reason it is not included in the summary table 4.2.

The performance of other classifiers was approximately the same - arround 62%. The
differences are probably due to the fact that the classifiers were not biased to the same
F P R value. The best performing classifier was the support vector machine wi th accuracy
of 62.51% (T P R 27.43%, F P R 1.07%), followed by the Naive Bayes classifier which had
accuracy of 62.02% (T P R 26.38%, F P R 0.96%). Aga in , the accuracy of the RandomForrest
a lgori thm varies a lot (from 49.1% to 63.8%), as we can see i n the Box-and-whisker chart
chart in figure 4.2. The ma in difference between the classifiers is their learning speed,
ranging from just a few seconds (Naive Bayes) to almost an hour (support vector machine).

20

fe= r
< J

>

— i

•

dure nl classifie r used by AVG

<)
J}

As
""-

/, Jrjf ' 4>

F i g u r e 4 .1 . B o x - a n d - w h i s k e r char t s h o w i n g a c c u r a c y of a l l t r a i n e d classifiers. T h e t op a n d
b o t t o m of the boxes co r r e spond w i t h 2 5 t h a n d 7 5 t h percent i le . T h e m e a n is p l o t t e d as a
d i a m o n d , ou t l i e r s as circles .

0,65

0,60 -

Currcn clnssil'i r used by AVG •
0,60 - •> o

i

I 0,55- I

0,50

/
- 4

F i g u r e 4.2. B o x - a n d - w h i s k e r char t s h o w i n g a c c u r a c y o f a l l t r a i n e d classifiers (combined w i t h
the M e t a C o s t a l g o r i t h m) . T h e t op a n d b o t t o m of the boxes co r r e spond w i t h 2 5 t h a n d 7 5 t h

percent i le . T h e m e a n is p l o t t e d as a d i a m o n d , ou t l i e r s as c i rc les .

21

Tab le 4.2. Average resul ts for a l l classifiers e s t ima ted b y 20-fold cross v a l i d a t i o n sor ted b y
average accuracy ; the classifiers were b ia sed u s i n g M e t a C o s t m e t h o d to achieve false pos i t i ve
ra te a r o u n d 1%. N e u r a l ne tworks h a d one h i d d e n layer w i t h different n u m b e r of neurons .

Classifier Accuracy a T P R a F P R a F P cost Learning time
S V M 62.51% 0.67% 27.43% 1.24% 1.07% 0.22% 4.25 53 min
Naive Bayes 62.02% 0.74% 26.38% 1.44% 0.96% 0.22% 999 999.0 <1 min
Neural net (15 neurons) 61.55% 2.5% 25.66% 5.3% 1.17% 0.44% 12.5 48 min
Current classifier 61.28% 25.52% 0.93% - -

Neural net (22 neurons) 60.17% 1.53% 22.71% 3.23% 0.93% 0.26% 13.75 47 min
Neural net (10 neurons) 60.16% 1.44% 22.63% 3.08% 0.86% 0.3% 12.85 48 min
Neural net (5 neurons) 59.59% 1.91% 21.58% 4.05% 0.94% 0.36% 12.75 28 min
RandomForrest 56.04% 4.34% 14.54% 9.15% 10.13% 0.76% 0.85 1.5 min

4.1.3 Selected classifier

If accuracy would be the only criterion, neural nets are the most convenient classification
method to use, followed by the decision tree. A l t h o u g h the neural net t raining is quite time
consuming, there are different and faster learning schemes for neural nets than the used
back-propagation.

However, the false positive rate of these two classifiers is much higher than what the
company is wi l l ing to tolerate (1%). The second set of experiments showed that i f the F P R
is reduced to the max ima l tolerated value, a l l tested classification methods perform wi th
almost the same accuracy and the only difference is i n the learning speed. Since only a
part of the malicious and clean samples were used during the experiments, any difference in
learning t ime could make significant impact i f the complete database of mill ions of records
would be used. Shorter learning t ime would allow to re-train the classifier more often,
allowing more flexible reactions to new threats. For this reason the Naive Bayes classifier
was selected for implementation.

22

Chapter 5

Application design

The application implemented in this thesis should be easily integrated into the executable
analyser currently used by the company. For this reason the design should allow easy
addi t ion of support of more types of input and output storages (for example databases of
various types, remote A P I s 1 , etc.). The graphical interface is not included, because the
application is meant to be run mainly automatical ly and thus the G U I is not necessary.

The application should provide these functions:

1. At t r ibu te extraction from one or more sandbox logs.

2. Tra in the classifier from a t ra ining set.

3. Classify one or more unknown samples.

4. Est imate performance of the classifier using fc-fold cross-validation

5.1 Attribute extraction

This process converts raw sandbox logs into tuples consisting of the ID , values of a l l sup­
ported attributes and the user-supplied class label . It can process many logs at once - in
this case the logs are supplied as a C S V 2 file; each row contains one log. The output is also
a C S V file: each row contains record ID , its attributes ' values and supplied class label.

The application can be also used to extract attributes from one log at a t ime. In this case
the input is the log file itself and the ID must can be either provided through a command
line argument or it can be generated from the file name. The output can be appended to
an existing C S V file or it can be saved to a INI file.

The extractor also keeps list of files created or modified during the execution i n the
sandbox v i r tua l environment. Th is is because some actions (records i n the log) may
yield different attributes based on the file used during the action. For example, the
line Run f i l e "<FILE_NAME>" may yield either RUN_FILE_OTHER or RUN_CREATED_FILE
attribute, depending on whether there is an action which created or modified the file
<FILE_NAME> somewhere earlier in the log.

The user can also specify that samples wi th nu l l at tr ibute vector should not be wri t ten
to the output C S V file. Th is is useful when extracting attributes from samples known to

a p p l i c a t i o n P r o g r a m m i n g Interface, used for c o m m u n i c a t i o n be tween different systems
2 C o m m a Sepa ra t ed Va lues . E a c h row conta ins one r ecord cons i s t i ng of severa l values , u s u a l l y separa ted

by c o m m a , hence the name .

23

be malicious, because some of them might pass the analysis without being detected, as
described i n chapter 3.

5.2 Training and classification

The input to the t ra ining process is the t ra ining set; it can be created by the application
but it is not necessary. The t ra ining set can be loaded from one or more files or directly
from the applicat ion standard input . Each record consists of its ID , values of attributes
and its correct class label. The output - t rained Naive Bayes classifier (described i n section
2.1.1) - can be stored to a file for later usage.

To t ra in the the classifier it is necessary to calculate the mean and the standard deviat ion
for each attribute and class label i n the t ra ining set and also prior probabilities for each
class. The mean of a sample consisting of N values x\, X2, • • •, XN is defined i n [6] as:

1 N

- Y X i (5.1)

and the standard deviat ion as:

N
1

(5.2)

To allow bias the model towards positive or negative classification, each class label can
be given a weight. Values of records from that class are then mul t ip l ied by the weight.
To calculate the mean, standard deviat ion and prior probabili t ies, the number of records
of each class is also mul t ip l ied by the corresponding weight. Th is results i n the same
situation as if every record appeared i n the t ra ining set mult iple times (depending on the
weight), however unlike simple dupl icat ion of the records, this allows to use also floating
point numbers as weights.

Dur ing the classification of unknown samples, the logarithms of probabilities of contin­
uous attributes are calculated using equation 2.5:

\0g{P{xk\Hi)) = - log(V27TC7 C i

Xk -
(5.3)

Because the term log(v27rcri) does not depend on the unknown sample, it is also calculated
during t ra ining and stored in order to speed up the classification.

The input to classification is either a set of unknown samples (similarly to the t raining
set) or just a single sample - i n this case it can be provided either as a log file or as a list
of attributes and their values. The output is either only the most probable class label and
optionally also calculated probabilities for a l l class labels. If the classification is done for
many samples at once, the output for each record also contain its I D and optionally the
values of the attributes.

5.3 Estimation of performance of the classifier

The val idat ion requires the same inputs as the t ra ining - the data set and the class label
weights. It is done using the A:-fold cross val idat ion (see section 2.2.1) - the number of folds
k can be chosen by user as a command line argument.

24

The application than follows the scheme described i n section 2.2.1. Fi rs t , the data set
is part i t ioned into k subsets, ideally each containing the same number of records. The ratio
between different classes i n each subset should be kept the same as i n the complete data
set. The par t i t ioning can be described as follows:

1. Prepare n buckets, where n is the number of classes i n the data set.

2. Read the data set and put the sequence number of each record into corresponding
bucket.

3. Calculate the target number of items of each class in each resulting subset.

4. For each of the resulting subsets, randomly pick calculated number of items (sequence
numbers) from the buckets.

5. Read the data set again and replace the sequence numbers wi th actual records and
save them to corresponding subset files.

In fact it is not necessary to work wi th the sequence numbers, however storing the whole
data set in the memory might not be possible for larger number of records. The work-flow
wi th sequence numbers allows to store only one record i n the memory at a t ime (the record
which is copied from the source data set into corresponding subset).

After the subsets are created, the application trains the classifier k times, each time
wi th different t ra ining and test set and collects the results. W h e n this process is finished,
the results are averaged and printed to the application standard output. It shows the
to ta l number of classified records, number of correctly and incorrectly classified records (in
to ta l and for each class) and the accuracy, the true positive and false positive rates. The
application does not require setting which class is positive and negative - it shows rates for
al l classes.

The application should also support creation of the subsets separately. Th is allows to
store the subsets into files and run the cross-validation mult iple times on the same data,
without the need to re-create the subsets each t ime from scratch.

25

Chapter 6

Implementation and evaluation

This chapter describes the implementat ion of the application described i n the previous
chapter and performed tests and achieved results of the implemented classifier.

6.1 Implementation

The applicat ion user interface was implemented as a set of command line scripts. Each
of them starts one of the functions described i n Chapter 5. The classification of unknown
samples and the attribute extraction are divided into two scripts - one for processing many
samples at once and one for processing only one sample. There is also one extra script for
creating subsets for later use in the cross-validation.

6.1.1 P y t h o n p r o g r a m m i n g language

The applicat ion was implemented using the P y t h o n language (version 2.7). Th is dynamic
interpreted language can be run on a l l major platforms. Its standard l ibrary covers most
of the common tasks, including C S V file format support (used for storing data sets) and
easy text manipula t ion (and thus log parsing). The generator functions can be used for
simple i teration over even very large data sets without the need to load them completely
into the memory in exactly the same way as i terat ing over regular memory-based arrays 1 .
P y t h o n can also be easily embedded into other applications and it can be extended by
modules wri t ten i n low-level languages like C or C + + which allows addit ional speed-up of
cr i t ical parts of applications. The language implementation, C P y t h o n , is distr ibuted under
an open source license which allows also commercial usage [9].

6.1.2 C o d e organ iza t ion

Besides the executable scripts, the code is organized into two packages. The package
c l a s s i f i c a t i o n contains implementat ion of the Naive Bayes classifier (class NaiveBayes)
and functions for loading the model from a C S V - l i k e file as well as saving trained model
(class NaiveBayesCsv). The module sampling contains function kfolcLsample which im­
plements spl i t t ing data set into k subsets using stratified sampling.

1 W i t h some l i m i t a t i o n s , for e x a m p l e i t is i m p o s s i b l e to get the n u m b e r of i t ems u s i n g the len b u i l t - i n
func t ion or to seek backwards .

26

The package dataset contains everything necessary for working wi th the data set -
loading sandbox logs, data sets and records (module readers), storing data sets and records
(module writers), and the attr ibute extraction (modules extractor and attributes).

The source code is formatted according to the PEP 8 - Style Guide for Python Code2.

6.1.3 R e a d i n g a n d w r i t i n g d a t a

For reading and wr i t ing data, there are two modules containing necessary functionality
- dataset .readers and dataset .writers. The readers and writers are implemented as
context managers. Besides the context manager interface methods, each of them contain one
method for storage access - f etch.all, returning generator yielding records one by one, and
write_record for writers. The dataset .readers module also contains two helper functions
- read_attribute_f i l e and read_multiple_attribute_f i l e s which return directly the
generator, without the need to create the reader class and enter corresponding context
(using the with statement). Thanks to the use of generators, only one record is stored in
the memory at a t ime.

The rest of the applicat ion is not dependent on the actual storage. This allows easy
implementation of new data storages or file format - one only needs to write the reader
and writers classes and/or functions and change the import <module> statements i n the
corresponding parts of the application (the executable scripts).

6.1.4 A t t r i b u t e ex trac t ion

The extraction procedure is started by one of the scripts extract_single .py and extract .py
The former takes single log file as a input . The user can supply the file name or it can be
wri t ten directly to the standard input . The extractor (object of class AttributeExtractor)
initializes a l l attribute values to zero and reads the file line by line. If the line contains text
characteristic for an attribute, the value of that attr ibute is increased by one. W h e n the end
of file is reached, the attribute vector is returned and either print to the standard output in
a INI format, (generated by the function record_to_ini from module dataset .writers)
or appended to a given C S V file (using an object of class CsvAttributeWriter).

The second script reads the logs one by one from the C S V file, using an object of class
CsvLogReader, and repeats the same procedure for each of them. The output is i n form of
a C S V file, including headers and it is wr i t ten either to the standard output or to a given
file, using an object of class CsvAttributeWriter.

6.1.5 T r a i n i n g

The t ra ining is started by executing script train.py. It takes one or more C S V files
containing the t ra ining set as an argument (or the t ra ining set can be wri t ten to the standard
input) and optionally weights assigned to some or a l l of the classes. If not specified by the
user, a class has weight of 1.

The learning itself is implemented i n the method t r a i n of the class NaiveBayes. It
reads t ra ining records from the input file(s) and stores the sum of records' weights (given
as a weight of the class label) for the entire t ra ining set and also for each class label sepa­
rately. E a c h attribute's value is mul t ip l ied by the corresponding weight and the application
calculates the sum of the values and the sum of the squared values. After the whole train­
ing set is processed, these sums of values and weights are used to calculate the required

2 P y t h o n E n h a n c e m e n t P r o p o s a l 8, h t t p : / / w w w . p y t h o n . o r g / d e v / p e p s / p e p - 0 0 0 8 /

27

http://www.python.org/dev/peps/pep-0008/

statistics (described in section): the prior probabilit ies, the mean, the standard deviat ion
and the value of the term log(v /2~7r0'i) from the equation 5.3 for each class.

The model is not represented in the application as a object of a special type, but as
a tuple consisting of 4 dict ionaries 3 (prior probabilities, means, standard deviations and
values of log(\/27rcr)).

6.1.6 Class i f i cat ion of u n k n o w n samples

Each unknown sample can be classified using the c l a s s i f y_single .py script. It takes an
INI file (which can be generated by the attribute extractor) or a raw sandbox log (in this
case the attributes are extracted before the classification). The output is also i n INI format,
w i th the label attribute changed to the result of the classification and optionally
wi th new attributes probability (<CLASS>) containing the calculated values for each class.
The INI file is read using the function ini_to_record from module dataset .readers.

If the number of unknown samples is higher, the c l a s s i f y .py script might be a better
option. It takes a C S V file (in the same format as a t ra ining set) and classifies each record.
The output is again a C S V file, containing each record's ID and its most probable class,
and opt ional ly also values of a l l attributes and/or a l l a l l calculated probabilit ies.

The classification itself is implemented i n the method c l a s s i f y of the class NaiveBayes.
It iterates over a l l classes and calculates the logar i thm of the probabil i ty that the unknown
sample belongs to each class. It returns the label of the class w i th highest calculated
probabil i ty and optionally a l l calculated values.

6.1.7 E s t i m a t i o n of the classifier's per formance

The &;-fold cross-validation process is started using the xvalidate.py script. It takes a
data set as an input in the C S V format. If not done beforehand, it is part i t ioned into k
subsets, according to scheme described i n section 5.3, however the records are not stored in
the memory, only the mappings from records' sequence numbers to corresponding subsets
are kept, to minimize memory usage.

The number of items i n each subset from each class is calculated by integer divis ion
V N , where Nc is number of records of class C and iV is the to ta l number of records. The
remainder is equally dis tr ibuted among subsets, so the difference between the size of the
smallest and largest resulting subset is at most the number of classes. A l though it can
create unbalanced subsets for smal l data sets (e.g. 10 items of 2 classes may be divided into
subsets of 4, 4 and 2 items), the difference is insignificant i n the case of larger data sets.

The application can split the data set itself, however it also supports working w i t h al­
ready created subsets. Because the spl i t t ing can be time-consuming, i f several experiments
are run on the same data, the necessary t ime can be reduced significantly by creating
the subsets only once before experimenting. The data set can be split into subsets using
the script subsets.py, which takes the data set, required number of subsets and option­
ally the output directory as arguments. The resulting subsets are saved to files named
subset_X. csv, where X is number of the subset, starting from 1.

The testing is performed using the test method of the class NaiveBayes. It takes the
trained model and a testing set as an argument and returns the confusion mat r ix as a
"two-dimensional" d ic t ionary 4 . For example, to access the number of test samples which

3 D i c t i o n a r y is a P y t h o n b u i l t - i n d a t a s t ruc tu re w h i c h m a p s keys to c o r r e s p o n d i n g values.
4 M o r e precisely, i t is a d i c t i o n a r y t ha t con ta ins ano the r d i c t iona r i e s as i t e m s ' values .

28

have correct class label "positive" and which were classified as "negative", one can write
my_value = matrix['positive']['negative'].

The application calls the test once for each subset, used as test set, other subsets are
merged together and used as the t ra ining set. The resulting values are added together.
After this process is completed, the total number of classifications and number of correctly
and incorrectly classified test samples are printed to the standard output, together w i th
the accuracy. These counts are printed also for each class label. Since the application does
not take the positive class label as an argument, it prints the true positive rate and the
false positive rate for each class. The average learning and testing t ime are also recorded
and printed. It is also shown how long (in average) it takes to classify one unknown record.
If required by the user, the results for each of the testing sub-processes can be printed as
well . A n example of the output is shown in section B.2.4, i n the l is t ing B .5 .

6.2 Experimental output

The performance of the implemented classifier was estimated using the 10-fold cross- valida­
t ion. The goal was to observe the changes i n the performance by increasing the "negative"
class weight in steps of 0.1, from 1.0 to 12.0 (which results in 111 runs). The weight of
the "positive" class was always set to 1 - since there are only two different classes, it is
not necessary (only the ratio between the weights matters, not the absolute values). Four
measures was monitored - true positive rate, false positive rate, accuracy and the average
learning t ime necessary for one i teration of the cross-validation. The same experiment was
repeated using only the 15 most significant attributes (estimated by the information gain
measure) to see how the pre-selection affects the performance and learning time.

6.2.1 Resu l t s

The figure 6.1 shows the relationship between the true and false positive rates and the
weight for both experiments. The rates (and also the accuracy) decreases as the weight
is increased. The max ima l tolerated false positive rate of 1% (0.987% to be exact) was
achieved when the weight was set to 3.8, w i t h true positive rate of 25.82%, the accuracy
was 61.73%. The average learning t ime was 12.3 seconds.

W h e n only 15 attributes were used, the accuracy, T P R and F P R d id not change much.
The required false positive rate was achieved when the weight was set to 3.9 when the F P R
was 0.970%. True positive rate and accuracy was a bit higher than i n the previous case,
62.0% (+0.27%) and 26.38% (+0.56%) respectively, however, according to the Student's
i- test 5 , these differences are not statist ically significant. The average learning t ime was 5.8
seconds, approximately one half compared to the previous experiment.

A l though the accuracy is only by less than one percentage point (+0.45 or +0.72 points,
depending on the number of attributes used) better than i n the case of the currently used
method (scores and threshold), the main advantage is that it is not necessary to manually
determine the scores of each of monitored actions (or attributes). It also allows to quickly
bias the classifier towards positive or negative classification, as required.

5 S e e sec t ion 2.3 for de sc r i p t i on .

29

39 attributes 15 attributes

39 attributes 15 attributes

0 1 2 3 4 5 6 7 8 9 10 11 12
"negative" class weight

(c) A c c u r a c y (%)

F i g u r e 6.1. T h e r e l a t i onsh ip be tween the T P R , F P R a n d a c c u r a c y o n the weight of the
"negat ive" class.

30

Chapter 7

Conclusions

This thesis describes the implementat ion of a classification tool which could be used for
detecting malicious software. The topic was proposed by an anti-virus company AVG
Technologies which also provided the data set i n a form of reports created by analysing
various executable files i n a v i r tua l environment. The complete database consists of mill ions
of samples, however only part of those were analysed, due to t ime expensiveness.

Firs t , 39 features (attributes) were extracted from the reports. It turned out that about
half of the samples from malicious set d id not perform any of the monitored Windows A P I
calls, thus the reports were empty. It is possible that these executables are able to detect
that they are running i n a v i r tua l environment and suspend any behaviour which could
be considered as malicious. Other option is that although they performed their payload,
it consists of different set of Windows A P I calls then those monitored. A l t h o u g h it is
very difficult to overcome the first issue (by using some k ind of more advanced v i r tua l
environment or emulator), the former problem can be el iminated by moni tor ing larger
number of A P I calls. Since this would means larger number of attributes i n the data set, it
would also lead to longer learning t ime. Furthermore, the significance of each feature was
estimated using information gain measure included i n Weka toolbox. This showed, that
some of them are not used i n almost a l l samples, however this might not be true for the
whole database of executables.

Selected classification methods were then trained and evaluated using 20-fold cross
val idat ion. The classifiers used were: Naive Bayes, decision trees (using four different
max ima l depth settings), the RandomForrest algori thm, a support vector machine and
neural nets (using four different structures). One decision tree and one neural net was
trained alse "boosted" using the AdaBoos t algori thm. A l l experiments were performed
using R a p i d M i n e r data mining software, using bui l t - in implementations of these classifiers
and their default settings.

A l l of the the used classifiers had better accuracy than the method currently used by
the company. The best performing classifier, i n terms of the accuracy, was the neural net.
The experiments reveal that the net structure does not affect the performance significantly
in this task (all of them had accuracy around 94%), however it does affect t ra ining time.
The second best method was the decision tree induct ion. A l though it is a l i t t le less accurate
(92.9% i n average), the t ra ining is about 24 times faster than in the case of the largest neural
net. However, there are faster neural net t ra ining methods than the used back-propagation.

Because the achieved false positive rate was higher than the m a x i m u m the company is
wi l l ing to tolerate (1%), a l l the classifiers were trained again, together w i th the MetaCos t
method, which allows to specify cost of the false positive classification. It turned out that

31

when the cost is set so the F P R reaches value around 1%, the accuracy of a l l the classifiers
does not differ as much as i n the first experiments. It varied from 56.04% in the case of the
RandomForrest algori thm, to 62.51% in the case of the support vector machine, however
the differences may be caused by the fact, that the classifiers were not set to achieve the
exactly same value of the false positive rate. The main difference between the classifiers
was i n the t ime necessary for learning and for this reason the Naive Bayes classifier (with
average t ra ining t ime under 1 minute) was selected for implementation.

The implemented application covers a l l necessary steps - attr ibute extraction from
sandbox logs, t ra ining of the Naive Bayes classifier, estimation of its performance using
fc-fold cross-validation, and classification of unknown samples. It also supports assigning
weights to records of one or another class label which allows to fine-tune the resulting true
and false positive rates.

The tests showed that when the classifier is trained so it achieves the false positive rate
lower than 1%, its performance is only sl ightly better than the accuracy of the currently
used method. O n the other hand, the current solution needed to manual ly specify scores for
each of the monitored actions and also the max ima l score which can be achieved to consider
unknown file as benign, which complicates addi t ion of new attributes and/or samples to
the database. The implemented application does not have this l imi ta t ion - the classifier is
trained fully automatical ly and wi th in just couple of minutes. In the hypothetical si tuation
when the false positive rate exceeds the tolerated m a x i m u m after new executables (or
attributes) were added to the data set, it is possible to quickly re-adjust the classifier
without the need of an expert (who would manual ly assign new scores to the attributes).

A l though the implemented classifier is very fast to t ra in - i n average around 12 seconds
for t ra ining set containing 90 thousand examples wi th 39 attributes - the necessary learning
t ime can be shortened by omit t ing attributes which are less significant for the classification,
however the application does not support either estimation of the attributes ' significance or
reduction of the attr ibute set before t raining. O n the other hand however there are many
existing tools which could be used for data set analysis (for example Weka or R a p i d M i n e r
used in this thesis) which provide almost anything one would need - estimation of the
attributes ' significance, tools for identifying correlated attributes, data visualisations and
much more.

32

Bibliography

[1] T . Abou-Assa leh , N . Cercone, V . Keselj , and R . Sweidan. N-gram-based detection of
new malicious code. In Computer Software and Applications Conference, 2004-
COMPSAC 2004- Proceedings of the 28th Annual International, volume 2, pages 41 -
42 vol.2, Sept. 2004.

[2] Jianguo Ding , J i an J i n , P . Bouvry, Yongtao H u , and Ha ib ing Guan . Behavior-based
proactive detection of unknown malicious codes. In Internet Monitoring and
Protection, 2009. ICIMP '09. Fourth International Conference on, pages 72 -77, M a y
2009.

[3] P . Domingos. Metacost: A general method for making classifiers cost-sensitive. In
Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 155-164. A C M , 1999.

[4] Yoav Freund and Rober t E . Schapire. A decision-theoretic generalization of on-line
learning and an applicat ion to boosting, 1995.

[5] Jiawei Han , Michel ine Kamber , and J i an Pe i . Data Mining: Concepts and
Techniques, chapter 8.2.2, page 344. M o r g a n Kaufmann, 3rd edition, 2011.

[6] Jiawei Han , Michel ine Kamber , and J i an Pe i . Data Mining: Concepts and
Techniques. M o r g a n Kaufmann, 3rd edition, 2011.

[7] O . Henchir i and N . Japkowicz. A feature selection and evaluation scheme for
computer virus detection. In Data Mining, 2006. ICDM '06. Sixth International
Conference on, pages 891 -895, Dec. 2006.

[8] J . Zico K o l t e r and Marcus A . Maloof . Learning to detect and classify malicious
executables in the wi ld . J. Mach. Learn. Res., 7:2721-2744, December 2006.

[9] P y t h o n Software Foundat ion. „ A b o u t P y t h o n " . Python Programming Language -
Official Website. Web. 20 J u l . 2012. h t t p : / / p y t h o n . o r g / a b o u t / .

[10] J . Ross Quin lan . Induction of decision trees. Mach. Learn., 1(1):81-106, M a r c h 1986.

[11] J . Ross Quin lan . C4-5: programs for machine learning. M o r g a n Kaufmann
Publishers Inc., San Francisco, C A , U S A , 1993.

[12] R a p i d M i n e r . Rapid- I G m b H , h t t p : / / r a p i d - i . c o m / , 2001-2012.

[13] M . G . Schultz, E . E s k i n , F . Zadok, and S.J . Stolfo. D a t a mining methods for
detection of new malicious executables. In Security and Privacy, 2001. S P 2001.
Proceedings. 2001 IEEE Symposium on, pages 38 -49, 2001.

33

http://python.org/about/
http://rapid-i.com/

[14] Weka. The Univers i ty of Waikato . h t t p : / / w w w.cs . w a i k a t o.ac . n z / m l / w e k a / ,
2002-2012.

[15] Ian H . W i t t e n and E ibe Frank. Data Mining. Morgan Kaufmann, 2nd edition, 2005.

34

http://www.cs.waikato.ac.nz/ml/weka/

Appendix A

List of extracted attributes

G a i n ratio Name

A c t i o n

0.2388 W I N S O C K _ S T A R T U P

Ini t ia l iz ing network sockets

0.1628 R E G _ S E T _ R U N

Wr i t i ng to the list of programs run on O S startup (Cur ren tVers ion \Run* re{ ̂ istry keys)

0.1511 C O N N E C T

Connect ing to remote computer

0.1427 R E G . S E T . W I N L O G O N

Wr i t i ng
keys)

to the list of programs run on O S startup (Cur ren tVers ion \WinLog on registry

0.1414 R U N _ O T H E R _ F I L E

Execut ing file not created nor modified by the monitored process

0.1413 R U N _ C R E A T E D _ F I L E

Execut ing file previously created or modified by monitored process

0.1369 C O P Y _ F I L E _ W I N

Copying ; a file into C : \ W i n d o w s directory

0.1298 C O P Y _ F I L E _ O T H E R

Copying ; a file (not into C : \ W i n d o w s directory)

0.118 R E G - S E T J E X P L O R E R _ R U N

Wr i t i ng
keys)

to the list of programs run on O S startup (Po l i c i e s \Exp lo re r \R un registry

0.1136 D N S . Q U E R Y

Sending query to D N S server

0.112 D E L E T E - O T H E R - F I L E

Deleting I file not created nor modified by the monitored process

0.1117 A P I J I O O K

35

file:///WinLog
file://C:/Windows
file://C:/Windows

Cal l i ng A P I hook function

0.1099 W R I T E _ F I L E _ E X E C

W r i t i n g to exe, d l l , sys or com file

0.1094 N E T J 3 E N D

Sending data over network

0.1017 F I R E W A L L J 3 E T J E X C E P T I O N

Creat ing exception i n Windows F i rewal l settings

0.0974 M O V E _ F I L E _0 T H E R

M o v i n g file to a locat ion different than C : \ W i n d o w s

0.0946 D O W N L O A D

Downloading a file from network using the H T T P protocol

0.0935 W R I T E _ F I L E _ O T H E R

W r i t i n g to file which is neither executable, located i n C : \ W i n d o w s nor the H O S T S file

0.0933 R E G _ S E T _ W I N D O W S

W r i t i n g to Cur ren tVers ion \Windows registry key

0.0926 F I R E W A L L _ E N A B L E _ E X C E P T I O N S

Enab l ing exceptions i n Windows F i rewal l

0.0862 W R I T E _ F I L E _ W I N

W r i t i n g to file located i n C : \ W i n d o w s

0.0845 D E L E T E _ C R E A T E D _ F I L E

Delet ing file previously created or modified by monitored process

0.0801 C R E A T E _ C R E A T E D - S E R V I C E

Registering a service driver using file previously created or modified by the monitored
process

0.0778 R E G _ S E T _ S A F E B O O T

W r i t i n g to Sys tem\CurrentContro lSet \Contro l \Safeboot registry key

0.0759 E M A I L

Sending an email

0.0651 W R I T E _ F I L E _ H O S T S

W r i t i n g to H O S T S file (list of IP addresses for selected domain names, it has larger
pr ior i ty than D o m a i n Name System, D N S)

0.0641 O P E N _ P R O C E S S

Opening another process for wr i t ing

0.0641 C R E A T E _ O T H E R _ S E R V I C E

Registering a service using file previously created nor modified by monitored process

0.0623 I M A G E J L O A D

Ca l l i ng undocumented I M A G E J L O A D Windows A P I function

36

file://C:/Windows
file://C:/Windows
file://C:/Windows
file:///Control/Safeboot

0.0613 L O A D _ O T H E R _ D R I V E R

Loading a kernel service driver using file not created nor modified by monitored process

0.0613 W I N _ O R _ S Y S T E M _ I N I

W r i t i n g to win . in i or system.ini file

0.0588 M O V E _ F I L E _ W I N

M o v i n g file into C : \ W i n d o w s directory

0.0522 L I S T E N

Star t ing listening for remote network connection

0.0358 D E L E T E . S E R V I C E

Unregistering a service

0.035 C R E A T E _ O R E A N S 3 2 _ S E R V I C E

Registering O R E A N S 3 2 service (driver used for protecting some games)

0.0228 R E G _ S E T _ S H E L L _ O P E N

Creat ing file type association wi th certain application

0 U N L O A D _D R I V E R

Unloading a kernel service driver

0 H I D E _ P R O C E S S

Ca l l i ng H I D E _ P R O C E S S Windows A P I function

0 L O A D . C R E A T E D _ D R I V E R

Loading a kernel service driver using file previously created or modified by the moni­
tored process

37

file://C:/Windows

Appendix B

Application user's manual

B . l File formats

B . l . l C S V files

C S V files are used for storing sandbox logs database, data sets and the resulting model.
The first line always contains the column headers, other lines contains data rows. The
column names are case-sensitive. A l though the applicat ion can process any type of line
endings, it is preferred to use U n i x style line endings (\n).

Fields are separated by comma (,, no spaces are allowed) and they can be enclosed in
double quotes ("). Fields can span over mult iple rows, i n which case the line endings are
not escaped. If double quotes character is part of field contents, it must be escaped by
inserting it twice (""). Comments are not supported. There are many other dialects of
C S V files which differ in the delimeter and escaping characters but they are not supported.

Sandbox logs database

The C S V files supplied to attr ibute extractor must contain at least two columns. The first
column contains the record's I D and the second column contains the log itself. The IDs are
not checked for uniqueness wi th in the file. The i r names are left to user's decision, only the
order matters. If the file contains more than two columns, the rest is ignored and it does
not raise an error.

L i s t i n g B . l . E x a m p l e of a logs da tabase file

m d 5 , l o g , a u x i l i a r y
FIR.ST_ENTR.Y_ID , " f i r s t e n t r y l o g l i n e 1
f i r s t e n t r y l o g l i n e 2 w i t h some ""quoted s t r i n g " "
f i r s t e n t r y l o g l i n e 3 " , a u x i l i a r y v a l u e
SECOND_ENTRY_ID , "second e n t r y l o g l i n e 1
second e n t r y l o g l i n e 2 " , a u x i l i a r y v a l u e

D a t a sets

The data set files generated and used by the application consist from at least three columns.
The first column is the record's ID and the last column contains its class label. A l l columns
between contains the attributes' values. The name of the ID and class label columns

38

http://FIR.ST_ENTR.Y_

are arbitrary. At t r ibu tes ' values must be va l id floating point number literals. Nomina l
attributes and missing values are not supported.

L i s t i n g B . 2 . E x a m p l e of a d a t a set file

id,ATTRIBUTE_A,ATTRIBUTE_B,label
FIR.ST_ENTR.Y_ID , 1 . 0003 ,4e4 , p o s i t i v e
SEC0ND_ENTRY_ID,0,0,negative

Models

The model file format is slightly modified compared to the previous file formats. It is
divided into two parts, each introduced by its own header.

The first part contains the class labels' prior probabilit ies. It contains two columns,
named label and prior, followed by values for each available label . The second part
contains calculated values for each combination of class label and attribute. It contains five
columns, named label, attribute, mean, stddev and log_factor 1.

L i s t i n g B . 3 . E x a m p l e of a m o d e l file

l a b e l , p r i o r
p o s i t i v e , - 0 . 6 7 4 4 3 9 8 3 4 9 1 5 2 2 2 3
negative,-0.7122111735094135
l a b e l , a t t r i b u t e , m e a n , s t d d e v , l o g _ f a c t o r
p ositive,ATTRIBUTE_A,0.27,3.05,2.03
positive,ATTRIBUTE_B,2.12e-05,0.0,-4.46
n e g a t i v e ,ATTRIBUTE_A,0.03 , 0 . 75 , 0 . 64
negative,ATTRIBUTE_B,0.0,0.001,-5.99

B . 1 . 2 I N I files — single r e c o r d files

INI files are used to store attr ibute values of a single extracted record. They can be
generated by extract.single .py from sandbox logs and they can used as an input for the
c l a s s i f y_single .py script.

A l though the INI file format is not well defined, the application follows commonly used
version, however wi th some l imitat ions - for example comments are not supported. The first
line contains the record's I D enclosed i n square brackets (similar to INI section declaration).
It is followed by attributes and their values, each on separate line. The attr ibute name and
its value are separated by single = character. There is one special attribute, label ,
which contains the record's correct class label.

The application supports reading only INI files containing one section (one record).
The last section declaration found denotes the read ID and i f any attr ibute is present more
than once, only the last value is used. Values must be val id floating point literals, nominal
attributes and missing values are not supported (an error would be raised).

L i s t i n g B . 4 . E x a m p l e of a I N I s ingle r eco rd file

[REC0RD_ID]
l a b e l = p o s i t i v e

ATTRIBUTE_A = 1 . 0003
ATTRIBUTE_B =4e-4

1 T h e va lue of the t e r m log(\/2ivai) f r o m e q u a t i o n 5.3

39

http://FIR.ST_ENTR.Y_

B.2 Usage of executable scripts

B . 2 . 1 A t t r i b u t e ex trac t ion

extract.py [-h] [-o FILE] [-1 LABEL] [-s] [input]

Extracts attributes from sandbox logs stored i n a C S V file and returns results as another
C S V file.

-o FILE
Wri te output C S V to FILE. If not specified, the result is wri t ten to the standard output.

-1 LABEL
The class label to store for a l l records. If not specified, the input file name is used. Required
if the input file is not specified.
-s
Skip records wi th nu l l at tr ibute vector. These records w i l l not be wri t ten to the output

input
Input C S V file name. If not specified, the standard input is used.

extract_single.py [-h] [-a CSV_FILE] [-d ID] [-1 LABEL] [-s] [input]

Extracts attributes from single sandbox log and returns results as a INI file or appends it
to an existing C S V file as a new row.

-a CSV_FILE
A p p e n d output to CSV_FILE as a new row. If not specified, the result is wr i t ten to the
standard output as a INI file.

-d ID
The record's I D . If not specified, the input file name or stdin is used.

-1 LABEL

The class label to store. If not specified, unknown is used,

-s
If used together w i th the -a option, i f the extracted record has nul l at tr ibute vector, it w i l l
not be wri t ten to the C S V file.
input

Input file name. If not specified, the standard input is used.

B . 2 . 2 T r a i n i n g

train.py [-h] [-o FILE] [-w [label:weight [label:weight ...]]]
[input [input . . .]]
Trains a Naive Bayes classifier from provided t ra ining set. The t ra ining set can be loaded
from mult iple files at once.

40

-o FILE
Wri te output model to FILE. If not specified, the result is wri t ten to the standard output,

-w label:weight
The weight of records having specified class label . Th is option can be repeated to specify
weights for more than one class label . If the label does not exist, the option is ignored. It
is not necessary to specify weights for a l l labels. The weights for non-specified labels are
set to 1.
input
Input C S V file name(s). If not specified, the standard input is used.

B.2 .3 S p l i t t i n g dataset into subsets

subsets.py [-h] -n N [-o DIR.] [input [input ...]]

Splits provided data set into n subsets. Each subset w i l l contain approximately the same
number of records and the ratio between classes i n subsets are w i l l be kept the same as
in the full data set (stratified sampling). The resulting subsets are saved to files named
subset_X. csv, where X is number of the subset, start ing from 1.

-n N
Number of subsets. Required,

-o DIR
Output directory name. If it does not exist, it is created automatically. If not specified,
current working directory is used.
input

Input C S V file name(s). If not specified, the standard input is used.

B.2 .4 P e r f o r m a n c e e s t imat ion

xvalidation.py [-h] [-k FOLDS] [-p] [-d] [-w [label:weight [label:weight ...]]]
[input [input . . .]]
Estimates Naive Bayes model performance using fc-fold cross-validation. The t ra ining set
can be loaded from mult iple files at once. Commented example of the output is shown in
l is t ing B .5 .
-k FOLDS

Number of folds. Default value is 20.

"P

If present, each input file is treated as an subset created from the t ra ining set, prepared for
the cross-validation. The number of folds is determined by the number of input files and
the option -f is ignored.
-d
If present, prints also detailed results for each fold separately.

41

-w label:weight
The weight of records having specified class label . Th is option can be repeated to specify
weights for more than one class label . If the label does not exist, the option is ignored. It
is not necessary to specify weights for a l l labels. The weights for non-specified labels are
set to 1.

input
Input C S V file name(s). If not specified, the standard input is used.

L i s t i n g B . 5 . E x a m p l e o u t p u t of the c ro s s -va l i da t i on process.

l e s : 92515
ecs
cs (0.001 sees per r e c o r d)

T o t a l number of c l a s s i f i e d samp
Average l e a r n i n g t i m e : 23.659 s
Average t e s t i n g t i m e : 18.765 se
C o r r e c t l y c l a s s i f i e d : 62918
M i s c l a s s i f i e d : 29597
A c c u r a c y : 68.0084 '/,

T o t a l CLASS_A count: 47131
True CLASS_A c o u n t : 18519
True CLASS_A r a t e : 40.8051 7,
F a l s e CLASS_A count : 985
F a l s e CLASS_A r a t e : 2.1704 '/,

T o t a l CLASS_B count : 45384
True CLASS_B c o u n t : 44399
True CLASS_B r a t e : 94.2034 '/,
F a l s e CLASS_B count: 28612
F a l s e CLASS_B r a t e : 60.7074 %

Number of CLASS-A records

Number of correctly classified CLASS-A records

True CLASS.A count / Total CLASS-A count

Number of CLASS-B records classified as CLASS-A

False CLASS-A count / Total CLASS-B count

Number of CLASS-B records

Number of correctly classified CLASS-B records

True CLASS-B count / Total CLASS-B count

Number of CLASS-A records classified as CLASS-B

False CLASS-B count / Total CLASS-A count

This part is printed only with the -d option.

k , T (C L A S S _ A) , F (C L A S S _ A) , T (C L A S S _ B) , F (C L A S S _ B) , l e a r n . t i m e , t e s t _ t i m e
0 ,3797 ,222,8855,5630,18.995000,15.946000
1,3629,199,8878,5797,22.677000 ,27.704000
2,3842,207,8870 ,5584,38.670000,18.743000
3 ,3587 , 173 ,8904 ,5839 , 19.054000,15.031000
4 ,3664 , 184 ,8892 ,5762 , 18.897000,16.403000

B.2 .5 Class i f i cat ion of u n k n o w n samples

classify.py [-h] -m MODEL [-o FILE] [-a] [-f] [input [input ...]]

Classifies many unknown samples at once. The output is i n the C S V format, containing
these columns:

• B y default: id, label

• W i t h the -p option: id, probability (CLASS_A), probability (CLASS_B), ..., label

• W i t h the -a option: id, ATTRIBUTE_A, ATTRIBUTE_B, ..., label

42

• W i t h both -p and -a options: id, ATTRIBUTE_A, ATTRIBUTE_B, ..., probability (CLASS_A),
probability(CLASS_B), ..., label

-m MODEL
M o d e l file, previously generated by train.py.

-o FILE

Wri te output C S V to FILE. If not specified, the result is wri t ten to the standard output.

"P

Include a l l calculated probabilities i n the output,

- a

Include attr ibute values in the output,

input
Input C S V file name. If not specified, the standard input is used.

classify_single.py [-h] -m MODEL [-e] [-p] [FILE]

Classifies many unknown samples at once. The input can be either in INI format or a raw
log. The output is in the INI format. The label at tr ibute is replaced by the most
probable class.

-m MODEL
M o d e l file, previously generated by train.py.

-e

The input is a raw log file, extract attributes first.

"P
Include a l l calculated probabilities in the output. They are added as attributes named
probability(CLASS_NAME) at the end of the file.
input
Input file name. If not specified, the standard input is used.

43

Appendix C

CD Contents

The C D contains following directories:

• thesis - this thesis source code i n the D T g X format

• pdf - this thesis in the P D F format

• implementation - the implemented application

• sample_data - sample input data

• results - results of a l l performed experiments i n OpenDocument Spreadsheet format

44

