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Abstrakt

Cilem prace bylo shrnout zédkladni vysledky kalkulu na ¢asovych skalach, zpracovat nastro-
je z funkciondlni analyzy v kontextu ¢asovych skal a vyuzit je pri studiu kvalitativnich
vlastnosti feseni konkrétnich nelinearnich dynamickych rovnic. Préce obsahuje detailné
zpracovanou problematiku derivace a integrace na ¢asovych skalach s diirazem na integral
Lebesgueova typu. Detailné jsou rozebrany alternativy k retézovému pravidlu z klasického
kalkulu. Podrobné jsou studovany prostory funkeci na casovych skalach, zejména pak pro-
stor rd-spojitych funkci na kompaktnim intervalu a prostor ohranic¢enych spojitych funkei
na nekompaktnim intervalu. Zvlastni pozornost je kladena na klicové vlastnosti prostort
jako jsou uplnost a relativni kompaktnost, které jsou doplnény detailnimi dikazy. Zave-
dené matematické prostredky jsou pozdéji vyuzity pri studiu kvalitativnich vlastnosti
konkrétnich nelinedrnich dynamickych rovnic.

Summary

The aim of the thesis was to summarize the basic results of calculus on time scales and
elaborate in detail on the tools from functional analysis in the context of the time scales
and to use them in the study of the qualitative properties of the solution of specific non-
linear dynamic equations. The thesis focuses in detail on the problem of derivation and
integration on time scales with an emphasis on the Lebesgue-type integral. Alternatives
to the chain rule from classical calculus are discussed in detail. Spaces of functions on time
scales are analyzed in depth, especially the space of rd-continuous functions on a compact
interval and the space of bounded continuous functions on a noncompact interval. Em-
phasis is placed on key properties of spaces such as completeness and relative compactness,
which are complemented by detailed proofs. Introduced mathematical instruments are
later used for a study of qualitative properties of concrete nonlinear dynamic equations.

Klicova slova
dynamické rovnice, ¢asova skéla, prostory funkci na ¢asovych skalach, integrace na ¢asovych
skalach, rd-spojita funkce, zobecnéna exponencialni funkce, véty o pevnych bodech
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integration on time scales, generalized exponential function, fixed point theorems,
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Rozsitreny abstrakt

V této praci jsou detailné zpracovany zaklady teorie Casovych skal s cilem vytvorit
funkcionalné analyticky aparat pro studium dynamickych rovnic a ukazat jeho uplatnéni
na konkrétnich nelinearnich dynamickych rovnicich.

Na zacatku je predstaven koncept ¢asové skaly a kalkulu na casovych skalach (T), ktery
je sjednocujicim pristupem (nejen) klasického diferencialniho a diferen¢niho kalkulu. Jsou
zavedeny zdkladni pojmy, jako je dopfedny skok (o), zpétny skok () a zrnitost (u), které
slouzi jako zéaklad pro klasifikaci bodl na ¢asovych skalach.

Diikladné je zkoumdana problematika derivace na ¢asovych skalach. Je zavedena tak-
zvana delta derivace (pro funkci f znaceno f2). Jednou z kli¢ovych odlisnosti oproti
tradi¢ni derivaci z diferencialniho kalkulu je, Ze neni obecné mozné primo aplikovat
tradi¢ni Tfetézové pravidlo. Z tohoto divodu jsou prezentovany tri alternativy, jez slouzi
jako jeho nahrada. Kromé toho je také predstavena modifikace véty o stfedni hodnoté,
aby byla pouzitelna v ramci kalkulu na ¢asovych skalach. Delta derivace je analyzovana
na ruznych c¢asovych skalach, zejména plati

= 1 pro T =R,
Af proT=7%Z.

Velka ¢ast prace je pak vénovana problematice integrace na casovych skalach. Jsou
zavedeny tii rizné druhy integrali s diirazem na korektnost a detailni rozbor jejich vza-
jemné rozdilnosti a také jejich podobnosti s analogiemi z diferencialniho kalkulu. Nejprve
je definovan integral Cauchyova typu na zdkladé pojmt rd-spojité funkce a antiderivaci.
Nasleduje integral Riemannova typu, ktery je v praci zkonstruovan obdobné jako v pri-
padé tradi¢niho diferencialniho kalkulu pomoci Darbouxovych hornich a dolnich sum. Ani
jeden z téchto integralt nemé dostatecné sirokou mnozinu integrovatelnych funkci a ne-
nabizi analogie vét o limitnim prechodu. S vyuzitim Carathéodoryho pristupu je proto
predstavena nejprve delta mira a nasledné pomoci jednoduchych funkci a obecné teorie
miry integral Lebesgueova typu na casovych skalach. Mnozina integrovatelnych funkci
u tohoto integralu je dostatecné velka a umoznuje zformulovat Leviho vétu o monoténni
konvergenci a Lebesgueovu vétu o dominantni konvergenci. Rozbor integrace na ¢asovych
skalach je doplnén o analogie stézejnich vysledki z tradi¢niho diferencialniho kalkulu, jako
je zékladni véta integralniho poctu, véta o substituci nebo integrace per partes. Integrace
je studovana na rtiznych casovych skalach, zejména plati pro a < b

/f DAL = {ff pro T =R,
f(k) proT=2%Z.

Déle se prace vénuje prostorim funkci na casovych skalach. Pro analyzu dynamickych
rovnic hraji dilezitou roli véty o pevnych bodech, zejména pak véta Banachova a Schau-
derova. V predpokladech obou vét figuruje vlastnost tplnosti a pro Schauderovu vétu je
klicovy pojem relativni kompaktnosti. V kapitole jsou proto uvedené prostory doplnény
o studium tuplnosti a relativni kompaktnosti. Podrobné je studovan prostor rd-spojitych
funkci na kompaktnim intervalu se supremovou normou. Diikaz tplnosti je detailné zpra-

covan na zakladé dikazu uplnosti prostoru spojitych funkci z klasického kalkulu. Ve
strucnosti jsou zminény také idey dalsich moznych pristupi k tomuto ditkazu. Déale jsou



v praci zevrubné rozebrany prostor regresivnich a pozitivné regresivnich funkci. U pro-
storu pozitivné regresivnich rd-spojitych funkci na kompaktnim intervalu jsou zminény
rizné pristupy k ditkazu dplnosti, zejména pak pristup zalozeny na izometrické izomor-
fii s prostorem rd-spojitych funkci. Déle se prace vénuje prostoru omezenych spojitych
funkci na nekompaktnim intervalu a Lebesgueovym delta prostoriim. Pro zminéné pros-
tory jsou formulovany kritéria relativni kompaktnosti s dirazem predevsim na prostor
neohranicenych spojitych funkeci na nekompaktnim intervalu, ktery je klicovy pro analyzu
zvolenych rovnic v dalsi ¢asti prace.

Strucné je zavedena zobecnénda exponencidlni funkce s vyuzitim takzvané cylindrické
transformace a pojmu regresivni funkce. Zminén je také mozny pristup definice jako reseni
pocatecniho problému

vt =pt)y, ylto) =1,
kde p je regresivni funkce. Jsou uvedeny a rozpracovany priklady pro riizné casové skaly.

Zavedeny aparat funkcionalni analyzy je vyuzit pri analyze kvalitativnich vlastnosti

nelinerani dynamické rovnice druhého radu

Y2 =p(t)g(y). (A)

Jsou vyjadreny predpoklady pro funkce g a p. Uvazuje se, Ze p je kladna rd-spojita funkce
a g je funkce, ktera je spojita a spliuje

xg(x) >0

pro x # 0. Pro takto zformulované predpoklady studujeme existenci feseni, které ma
kladnou limitu a pro velka ¢ je kladné a neklesajici. V praci je s vyuzitim Schauderovy
véty o pevném bodé dokazano, ze

| [ reasar <o (B)

je nutnou a postacujici podminkou existence reseni s pozadovanymi vlastnostmi. Jsou
rozebrany mozné modifikace podminky (B), které zaruci existenci feseni s pozadovanymi
vlastnostmi nejenom pro velka ¢, ale na celé uvazované casové skale.

Déle je studovan pripad, kdy je k predpokladim pro funkci ¢g pridan také predpoklad
na lipschitzovskou spojitost. S vyuzitim Banachovy véty o pevném bodé je dokézano, ze
podminka (B) zarudi vedle existence i jednozna¢nost feseni s pozadovanymi vlastnostmi
pro velka t.

Nakonec je analyzovana obecnéjsi rovnice

(rt)y™)> = p(t)g(y”)

K predpokladim pro p a g z ptivodné rozebraného problému jsou pripojeny predpoklady
pro r. Opét je studovana existence kladného a neklesajiciho feseni pro velkd t s kladnou
limitou ve vztahu ke splnéni podminky

/:o %t) /toop(s) AsAE < oo (©)

Ditikaz je tentokrat zalozen na vyuziti véty o substituci. Pavodni ¢asova skala je trans-
formovana na novou a studované rovnice na rovnici

uA® = B g(y7)



a podminka (C) na
/ / B(s) AsAt < oo, (D)
a Ji

Nésledné je ukdzéno, ze takto prevedeny problém je ekvivalentni problému (A), (B).
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1 INTRODUCTION

1 Introduction

The theory of time scales aims to unify differential and difference calculus. It provides
elegant means to describe differences between continuous and discrete case. Functional
analysis is crucial, when studying dynamic equations. It is therefore important to in-
troduce correctly formulated functional-analysis theory regarding dynamic equations and
demonstrate its proper application on concrete dynamic equations.

In Chapter 2, we summarize fundamentals of calculus on time scales. We explore
the differentiation on time scales and related theorems. We proceed with several varia-
tions of the chain rule substituting the version from traditional calculus. We conclude
the chapter with examples of various time scales and differentiation on them.

Chapter 3 focuses on the problem of the integration on time scales. Three different
types of integrals are explored: the Cauchy-type integral, the Riemann-type integral, and
the Lebesgue-type integral. It is demonstrated that, for our purposes, the Lebesgue-type
integral on time scales possesses convenient properties, such as a broad set of integrable
functions and analogies to the monotone convergence theorem and the dominated con-
vergence theorem.

In Chapter 4, an examination of functional spaces on time scales is conducted. The fo-
cus is on the study of various types of functions, including continuous functions, rd-
continuous functions, regressive and positively regressive functions on compact inter-
vals, bounded continuous functions on non-compact intervals, and spaces of Lebesgue-
integrable functions. Emphasis is placed on investigating the properties of these spaces,
particularly their completeness. The chapter concludes with a comprehensive exploration
of relative compactness within these spaces.

Chapter 5 focuses on the concept of a generalized exponential function. Several ex-
amples for various time scales are given.

In Chapter 6, we utilize the mathematical tools introduced in the preceding chapters
to analyze a second-order equation presented in the form

Y™ =p(t)g(y”).

on a noncompact time scale interval. We set assumptions on p and g functions and
formulate a condition necessary and sufficient for the existence of a solution positive
and nondecreasing for large ¢ with a positive limit. We subsequently refine the assump-
tions in order to ensure with the formulated condition not only the existence but also
the uniqueness of the solution.

Subsequently, we delve into the examination of a more general equation

(r(t)y™)> = pt)g(y").

We establish assumptions on functions r, p and g and again formulate a necessary and
sufficient condition for the existence of a solution with properties identical to the previous
case.

Chapter 7 is appendix dedicated to selected concepts from functional analysis. Empha-
sis is placed on completeness of metric spaces, relative compactness and related notions,
isometry and homeomorphism of normed spaces, and especially fixed point theorems,
which are the key tool for the proofs in Chapter 6.



2 Time scales

Theory of time scales was introduced by Stefan Hilger at the end of the 20th century, and
it has gained a lot of popularity. Time scales provide an elegant way to unify discrete and
continuous analysis. In this chapter, we cover fundamental principles of time scale theory.
We introduce a concept of delta (Hilger) differentiation and several variations of the chain
rule. The chapter concludes with a comprehensive exploration of various examples of time
scales, serving to provide further clarity and illustration of the discussed concepts. Note
that we do not provide detailed proofs, since we explore standard results from time scale
theory that are well-established. We use [1], [2], [3] and [4] as the main sources.

2.1 Fundamentals

The aim of this section is to provide an overview of the fundamental definitions and
theorems associated with time scales.

Definition 2.1.1 (Time scale). A time scale is an arbitrary nonempty closed subset
of the real line R. Time scale is commonly denoted by T.

Example 2.1.2. It is possible to list a lot of examples of time scales, since the definition is
broad. The natural numbers (N), integers (Z), real numbers (R), union of closed intervals,
set of isolated points combined with a union of closed intervals or the Cantor set are just
some of many. However, not all sets qualify as time scales, rational numbers (Q) or open
intervals are examples of such sets.

For following definitions we put inf ) = sup T and sup () = inf T

Definition 2.1.3 (Forward jump operator). Let ¢t € T, we define a mapping o : T — T
denoted as the forward jump operator as follows

o(t) =inf{s € T,s > t}.
Definition 2.1.4 (Backward jump operator). Let ¢ € T, we define a mapping ¢o: T — T
denoted as the backward jump operator as follows

o(t) =sup{s € T,s < t}.

Definition 2.1.5 (Right-scattered, left-scattered and isolated points). We say that ¢t € T
is right-scattered if
o(t) >t,
on the other hand if
olt) <t,
we say t is left-scattered. If t is both right- and left-scattered, we say that it is isolated.

Definition 2.1.6 (Right-dense, left-dense and dense points). A point ¢ € T satisfying
t <sup T and

o(t)=t
is called right-dense. Similarly, a point ¢ satisfying ¢ > inf T and
oft) =t

is called left-dense. A point ¢t both right- and left-dense is called dense.

4



2 TIME SCALES

Remark 2.1.7. Note that

oo(t)) =t
does not hold in general, suppose that ¢t € T is left-dense and right-scattered, then
o(o(t)) = o(t) # t. Similarly,

o(o(t)) =t

does not hold for left-scattered and right-dense points in T.

t1 to t3 t4

Figure 2.1: Point classification: t; — dense, t5 — left-dense and right-scattered, t3 —
isolated, t4 — left-scattered and right-dense

Definition 2.1.8 (Graininess). Let p be a mapping p: T\ {sup T} — [0, 00) defined as

we call this mapping the graininess.

Remark 2.1.9. Note that we can distinguish between the right- and left-graininess.
The previously defined graininess is sometimes referred to as the right-graininess, and
the left-graininess is defined as the mapping v : T \ inf T — [0, 00) given by

v(t) =1t — o(t).

It is important to note that the domain of v is T \ infT, i.e., the left endpoint of T is
excluded.

Remark 2.1.10. Since every time scale T is a closed set, the definitions given above
imply that both o(t) and o(t) belong to T when ¢t € T.

Definition 2.1.11 (T*). Let T be a time scale. We define T* as

T T — (o(sup T),sup T] if sup(T) < oo,
T if sup T = oo.

Remark 2.1.12. We introduce the following convention. Let a,b € R, then
[CL, bh‘ = [CL7 b] NT.

Similarly for (a,0) N'T, [a,b) N T and (a,b] N T.

2.2 Differentiation

In this section, we discuss the concept of differentiation on time scales and provide some
useful formulas and demonstrate their practical applications.



2.2 DIFFERENTIATION

Definition 2.2.1 (Delta derivative). We say that a function f : T — R has a delta
derivative f2(t) at t € T* if, for every € > 0, there exists > 0 such that for every
ENS (t—(S,t—i—(S)T

[(Fo(t)) = f(s)) = fEE)(o(t) = s)| < elo(t) —s] (2.2.1)
holds.

Remark 2.2.2 (Nabla derivative). We can define another type of derivative called nabla
derivative, we need to replace (2.2.1) with

|(f(o(t)) = f(5)) = [ () (e(t) — )| < elo(t) — s|.

Example 2.2.3. If T = R, then the delta and nabla derivatives coincide with the usual
derivatives, and we have f& = fV = f’. On the other hand, if T = Z, then the delta
and nabla derivatives coincide with the forward and backward difference operators, respec-
tively. Specifically, we have f2(t) = f(t+1)— f(t) = Af(t) and fV(t) = f(t)— f(t—1) =
Vf(t).

Remark 2.2.4. There are some other types of derivatives, e.g. diamond, we do not study
derivative types other than delta in this thesis any further. In the remainder of the text,
we focus only on the delta derivative. If not stated otherwise, by “derivative” we mean
the delta derivative.

Theorem 2.2.5. Let f : T — R be a function and t € T*. Then the following hold:
1. Assume f is delta differentiable at t, then f is continuous at t.

2. Assume t is right-scattered and f is continuous at t, then f is delta differentiable

e o) — 10
0‘ —
o) =
pu(t)
3. Assume t is right-dense, then f is delta differentiable at t if and only if
TS

exists, then f2(t) = a.

4. Assume t is delta differentiable t, then
Flo(t) = f(t) + ut) f2().

Theorem 2.2.6. Let f,g: T — R be delta differentiable at t € T®. Then
1. f+ g is delta differentiable at t and

(f +9)2(t) = f2(8) + g2 (1),
2. for any a € R aof : T — R is delta differentiable at t and

(af)2(t) = af2(t),



2 TIME SCALES
3. fg is delta differentiable at t and
(f9)2(t) = fR()g(t) + f(a(1)g™(t) = f(t)g™ () + f2(t)g(a (1)),
4. if fO)f(o(t)) #0, then 1/f is delta differentiable at t and
(1)A =__ 20
f fF@)f(o(t))
5. if g(t)g(o(t)) # 0, then f/g is delta differentiable at t and

NS A0 — g
(E) 0= = ge)

Example 2.2.7. Let a € R and m € N. Then
1. for f defined as f(t) = (t — a)™

-1

o)y =) (o) —a)’(t —a)" '™,

1%

3

Il
o

2. for g defined as g(t) = 1/(t — a)™

._\

m—

1
_ Cl/ m l/(t _ a,)VJrl

v=0
Remark 2.2.8. From now on we use the following convention
f7=(fo0).

Example 2.2.9. Let f,g and h be delta differentiable at t. We can calculate the delta
derivative of fgh. Since Theorem 2.2.6 holds, we can state gh is delta differentiable at ¢
and therefore also f-(gh) = fgh is delta differentiable at ¢ and the delta derivative of fgh
is given by following formula

(fgh)® = f2gh+ f7(gh)® = f2gh+ f7g°h + [ g h>.

We can generalize this for n functions, consider a function p = fi f5... f,, and suppose f;
is delta differentiable at ¢ for i € {1,...,n}, then

n j—1 n
=2 1177 11
j=1 i=0 k=n—j
We might prove this using mathematical induction.

Example 2.2.10. Again by Theorem 2.2.6
(2= D=1+ =+ )%

This expression can be again generalized for f*! as

fn+1 {Z fk fa n }



2.3 CHAIN RULE

Definition 2.2.11 (Second delta derivative). Let f : T — R be a function, suppose f*
is delta differentiable on (T*)* with delta derivative f2° = fA% = (f2)2 : (T%)" — R,
we denote this function as second delta derivative.

Remark 2.2.12. Function fg does not need to be twice delta differentiable even if f and
g are so. We know that

(f9)* =g+ f79".
Now when considering the derivative of (fg)?, it is important to note that the requirement

for delta differentiability extends beyond just f and g. In this case, the existence of f7 is
also necessary, which may not always be satisfied. If the requirement is satisfied, then

(f9)™ = (fg+ f7g™)"
— fAAg+fAUgA _|_f0'AgA —l—fngA.

2.3 Chain rule

It is well-known that if f,g : R — R and g is differentiable at ¢ and f is differentiable
at g(t), then

(fog) = f(g(t)g'(t).
We show that this chain rule does not hold in general for the time scale calculus and
provide several alternatives.

Example 2.3.1. Assume T = Z and consider f(t) = g(t) = t>. Then

A+t =1t

=43+ 612+ 4t + 1
t+1—t O At

(fog)®=(t"

and
(2 4+ 1)2 — (12)2 (L + 1)2 — 12

t2+1—1¢2 t+1—-1

F2(g(t)g™ () = =483 + 202 + 2t + 1,

then apparently for ¢t # 0
(fog)™ # [2(g(t)g™.

We introduce three alternatives to the classical chain rule.

Theorem 2.3.2 (Chain rule). Let g : R — R be continuous and suppose g : T — R is
delta differentiable on T" and f : R — R is continuously differentiable, then there exists
¢ in the real interval [t,o(t)] such that

(fo9)2(t) = f2(g(e))g™ ().

Theorem 2.3.3 (Chain rule). Let f : R — R be continuously differentiable and suppose
g : T — R is delta differentiable. Then f o g is delta differentiable and the formula

(fog) (1) = { / Flot) + fw(t)g%)dh} A 0)

holds.
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_ Let T be a time scale and v : T — R be a strictly increasing function such that
T = v(T) is also a time scale. We denote the forward jump operator on T by ¢ and
the corresponding delta derivative by A. It is true that v oo = & o v. This allows us
to introduce another chain rule.

Theorem 2.3.4 (Chain rule). Let v : T — R be strictly increasing and suppose T = v(T)
is a time scale and w : T — R. If v2(t) and w?(v(t)) exist for t € T, then

(wov)® = (wg o V)2,

Remark 2.3.5. We use Theorem 2.3.4 in order to transform a dynamic equation to a sim-
pler form later in Chapter 6.

2.4 Mean value theorem

In this section, we present the mean value theorem and related remarks.

Theorem 2.4.1 (Mean value theorem). Let a,b € T and consider a continuous function
f i [a,blr — R that is differentiable on [a,b)t. Then there exist £, T € [a,blT such that

F0) = Fla) _ s

A < B

(€)-

Remark 2.4.2. Let f be a continuous function on [a, b]r that is differentiable on [a,b)r.
If f2(t) =0 for all t € [a,b)r, then f is constant function on [a, by.

Remark 2.4.3. Let f be a continuous function on [a, b]r that is differentiable on [a, b)r.
Then f is increasing, decreasing and nonincreasing on [a, b]y if f2(t) > 0, f2(t) < 0,
fA2(t) > 0and f2(t) <0 for all t € [a,b)r, respectively.

Theorem 2.4.4. Suppose f and g are continuous functions on [a, by that are differentiable
on [a,b)r. Let moreover g~(t) > 0 for all t € [a,b)y. Then there exist &, 7 € [a,b)r such

et ) - f@) _ F20)
A0S boa S BE)

2.5 Examples of time scales

Several examples of time scales have already been mentioned, most importantly the real
numbers (R). In this section, we explore these time scales in more detail and introduce
other cases that have been less frequently studied.

Example 2.5.1 (R). Let us focus on the time scale T = R.

Forward jump, backward jump and graininess
Consider T = R, then for all t € T

o(t)=inf{s € T,s >t} =1,
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similarly
o(t) =sup{s e T,s <t} =t

Thus for allt € T
pt)=o(t)—t=t—t=0.

Derivative
Suppose T = hZ, then for a function f : T — R we have
Ay e SO = f(s)
FA(0) = lim HO=H
forall t € T.

Example 2.5.2 (hZ). Now we focus on the time scale T = hZ = {hk,k € Z}, where
h > 0.

Forward jump, backward jump and graininess
Consider T = hZ, then for all t € T the following holds

o(t)=inf{s € T,s >t} =inf{t + nh,n e T} =t +h
and
o(t)y =t — h.

Therefore for all t € T
p(t)=o(t)—t=t+h—t=h.

That means the graininess is constant.

Derivative
Let T = hZ, then for a function f : T — R we have

Ay flo@®) = f{) _ flE+h) - f)
f (t)_ u(t) - h

forallt € T.

Example 2.5.3 (P,;). In this section, we explore the time scale

o0

T =Puy = | Jlk(a+1b),k(a+b) +al,

k=0

where a,b > 0.

Forward jump and graininess
Consider T = P, ;, then the following holds

o t if t € Upeolk(a+0),k(a+b)+al,
()= t+b ifte U {k(a+b)+a}.

10
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Therefore
(1) = 0 ifteUpolk(a+b), k(a+Dd)+al,
PO ittt e U2 {k(a +0) +al.

That means the graininess is not constant and not continuous. This time scale faithfully
models the life span of cicadas or a common mayfly.

Example 2.5.4 (¢%). Let us consider the time scale
¢“ ={d" k€ L},

where ¢ > 1. We now take the time scale T = ¢Z.

Forward jump, backward jump and graininess
Assume T = ¢%, then

o(t) =inf{¢",n € [m+1,00)} = g™ =q¢™ =gt

if t =¢™ € T and ¢(0) = 0. That means we obtain for all t € T

and thus

u(t) =o(t) —t=(q— 1)t
That means T has one right dense point 0 and every other point is isolated and the grain-
iness is an unbounded function.

Derivative
Let T = ¢%, then for a function f: T — R we have

flo@®) = f(t) _ flat) = f(#)

A = =
PO=""0 (a1
for all £ € T \ {0} and provided the limit exists
o SO = fGs) o f(s) = f(0)
FE0) = lim =20 = T =

Example 2.5.5. (22') Let us consider the time scale
22" = {2% | e N},

Forward jump, backward jump and graininess
Asssume T = 22", then

O'(t) = lnf{22"’n e [m + 1’ OO)} — 22’m+l _ 22m22m _ t2
if t = 22" € T. That means we obtain for all t € T
o(t) =t

11
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and for ¢t € [16,00) NT
ot) = Vi
and thus
u(t) =o(t) —t=tt—1).
That means every point in T = 22" is isolated.

Derivative
Let T = 22N, then for a function f: T — R we have

A _
=" Ht—1)
forall t € T.
R
7, ° ° ° ° ° ° °

hZ [ ] [ [ ] [ ] [ [ ] ([ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

P

? o000 O [ ] [ ] [ ] [ ]

Figure 2.2: Selected time scales considered in this section
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3 Integration on time scales

This chapter focuses on the problem of integration on time scales. First, we introduce
the notion of the Cauchy-type integral defined by means of antiderivatives. However,
similar to classical calculus, this integral is not sufficient for our purposes. Therefore, we
briefly explore the Riemann-type integral and then the Lebesgue-type integral. It is worth
noting that, similar to derivatives, we can define delta and nabla integrals. However, we
focus only on the delta cases. Our references for this chapter are [1], [2], [4] and [6].

3.1 Cauchy-type integral

First, we introduce the Cauchy delta integral defined by means of antiderivatives (or pre-
antiderivatives). This is the original integral used on time scales introduced by Hilger.

Remark 3.1.1. Note that we use terminology based on the work of Dieudonne. The no-
tion of the Cauchy-type integral might denote another type of integral in other sources.

3.1.1 Construction of the integral

For the construction of the Cauchy-type integral, we need to introduce notion of regulated
and pre-differentiable functions.

Definition 3.1.2 (Regulated function). Let f: T — R be a function and suppose there
exists a right-sided limit for every right-dense point in T and there exists a left-sided limit
for every left-dense point in T. Then we call this function regulated.

Definition 3.1.3 (Pre-differentiable function). Let f: T — R be a continuous function,
suppose D C T*, T*\ D is countable and contains no right-scattered elements of T and f
is differentiable on D. Then we call f pre-differentiable with the region of differentiation
D.

Theorem 3.1.4. Let f be a regulated function. Then there exists a pre-differentiable
function with the region of differentiation D such that for all t € D the following holds

FA(t) = f(b). (3.1.1)

Definition 3.1.5 (Pre-antiderivatives). Let f be a regulated function, then F' is called
pre-antiderivative if it is pre-differentiable with region of differentiation D and (3.1.1)
holds for every t € D.

Definition 3.1.6. Assume f is a regulated function, then we define the indefinite integral
of this fuction by

/f(t) At =F(t)+ C,

where F' is a pre-antiderivative of f and C' is an arbitrary constant.
Following this, we can define the Cauchy delta integral by

/ () At = F(s) — F(r),

13



3.2 RIEMANN-TYPE INTEGRAL

for all s,t € T.
A function F': T — T is called an antiderivative of f : T — R if (3.1.1) holds for all
teT".

In the following, we state a theorem regarding the existence of antiderivatives. Before
we do so, it is necessary to introduce the notion of an rd-continuous function.

Definition 3.1.7 (Rd-continuous function). Let f : T — R be a function and suppose
that f is regulated and continuous at every right-dense point of T, then we call this
function rd-continuous.

Theorem 3.1.8. Let [ be an rd-continuous function if t, € T, then F' defined by

F(t) = /t: (o) Az

fort € T is an antiderivative of f.

Remark 3.1.9. The major advantage of the Cauchy-type integral is the simple way,
in which we construct it. Unlike other types of integrals, it does not require a limiting
process to be constructed. On the other hand, the main disadvantage is that it has a strict
restriction on integrability, as it can only be applied to regulated functions.

3.1.2 Improper integrals

Definition 3.1.10. Let a € T, sup T = oo, and assume f is rd-continuous on [a, 00),
then we define the improper integral by

/aoo f(t) At = lim /ab F(t) AL,

We say the improper integral converges provided the limit exists. Otherwise we say it
diverges.

3.2 Riemann-type integral

In the traditional calculus, the Riemann-type integral is usually defined using either the
Riemann sums or the Darboux sums. On time scales, we can also construct the Riemann
delta integral using both methods. In this section, we present a brief construction using
Darboux sums.

3.2.1 Construction of the integral

Consider points a,b € T such that a < b and let [a,b]r be a closed and thus bounded
interval in T. A partition of [a, b|r is any finite ordered subset

P = {to,tr, .ot}  [a,ble,

14



3 INTEGRATION ON TIME SCALES

where a =ty < t; < ... < t, = b. Let us consider the set of all partitions of [a, b and
denote it by P(a,b). Let f be a real-valued bounded function on [a, b|t, then

M =sup {f(t),t € [a,b)r}, m =inf{f(t),t € [a,b)r}

and for every i € {1,2,...,n}

M; =sup{f(t),t € [ti_1,ti)r}, my=inf{f(t),t € [ti—1,ti)r}

Let us now consider a partition P € P, then
U(f,P) :ZMi(ti—tiq) and L(f,P) :Zmi(ti—tzel%
i=1 =1

where by U(f, P) we denote the upper (delta) sum and by L(f, P) lower (delta) sum of f
with respect to P. Note that

m(b—a) < L(f,P) <U(f,P) < M(b— a). (3.2.1)

Now we can define the upper delta U(f) and lower delta L(f) integrals of f from a to b
by

U(f) = mf{U(f, P), P € P}
and

L(f) = sup{U(f, P), P € P}.
In view of (3.2.1), we state that L(f) and U(f) are finite.

Definition 3.2.1 (The Riemann delta integral). Let f : T — R be a bounded function.
We say f is delta integrable from a to b if L(f) = U(f). We denote this value by

/a ) At

and call this integral the Riemann delta integral.

Remark 3.2.2. The construction we used is called the Darboux construction. The origi-
nal Riemann construction of the Riemann-type integral is slightly different. We can prove
the equivalency of the two constructions analogically to the classical calculus.

Remark 3.2.3. It is possible to prove analogies of many theorems regarding ordinary
Riemann-type integral for the calculus on time scales, for more read [2].

Remark 3.2.4. Any bounded function on [a, bt with finitely many discontinuity points
is integrable. It can be proven, that this set is larger than the set of regulated functions.
Moreover, the Riemann-type integral suffers from problems related to a lack of reasonable
convergence results, which can restrict its applicability.

15
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3.2.2 Improper integrals

Definition 3.2.5. Suppose a € T and and sup T = oco. Now assume a real-valued
function f is defined on [a, 00)r and is integrable on the interval [a, b]y for any b € T with
b > a. Consider the integral
b
/ (1) AL

We define improper integral of f from a to oo by

/:O £ At = lim /ab (1) AL

We say the integral converges, provided the limit exists. Otherwise, we say the improper
integral diverges.

Remark 3.2.6. The improper integral defined above is the improper integral of the first
kind. We could define also the improper integral of the second kind. We consider a time
scale T and an interval [a, b]t, where b is left-dense and let f be integrable on any interval
la, c]Jr and unbounded on [a, b)y. We call the formal expression

/a b () At

an improper integral of second kind. We say f has a singularity at t = b. If the left-sided
limit

lm [ f(t) At

c—=b= J,

exists and is finite, then we say the improper integral converges. Otherwise, we say
the improper integral diverges.

3.3 Lebesgue-type integral

In this section, we focus on the Lebesgue delta integral. We introduce the Lebesgue delta
measure by means of Carathéodory-like approach. We utilize measure theory to construct
the integral. Later we present monotone and dominated convergence theorems.

3.3.1 Lebesgue delta measure

Let us first recall some concepts from general measure theory.

Definition 3.3.1 (Measure). Let X be a set. Then the system 3 of subsets of X satisfying
e X €eo,
e X\AcXforallsets AeX,
» for every countable system {A}ren of sets, if Ay € X then (J, .y Ar € .

is called o-algebra. The pair (X, o) is called a measurable space.

16
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Definition 3.3.2. Let (X, X) be a measurable space, a function pu : ¥ — [0, 00) U {oc}
satisfying

« w(0) =0,

o W(Uken Ak) = 2 pen #(Ax) for all countable collections {A;}72, of pairwise disjoint
sets in X

is called a measure. A triple (X, X, ) is called a measure space.

Now we can proceed with the construction of the Lebesgue delta measure. Let T be
a time scale and suppose sup T = oo. Let us consider the set of all left closed and right
open intervals on T of the form

[a,b)r = {t € T,a <t < b},

where a,b € T and a < b, we denote this set as Fj.
We define a mapping m; : F; — [0,00) U {o0}, that assigns to every interval [a,b)r
its length, that is
mi([a,b)r) = b — a.

This mapping is a countably additive measure. The interval [a, a)t is understood as the emp-
ty set.

Using m,, we generate the outer measure mj. Let E be a subset of T. Assume there
exists an at most countable system of intervals V; € F; for j € N such that

Ec|JVv,
jEN
then we set

mj(F) = inf Zml(vj),

where the infimum is taken over all coverings of E' by the mentioned system of intervals.
We say a set N C T is mj-measurable if
mi;=mi(ENN)+mi(EN(T\N))

for any £ C T. It can be shown, that the set of all mj-measurable subsets of T is
a o-algebra, we denote it as M(m7).

Definition 3.3.3 (The Lebesgue delta measure). Let m} be an outer measure on the fam-
ily of all subsets of bounded time scale T and M(mj) be a family of all m] measurable
subsets of T, then the restriction pa of m} to M(mf7) is called the Lebesgue delta measure.

We may extend the the Lebesgue delta measure to other types of intervals, one can
show that if a,b € T and a < b, then

pa(la,b)r) =b—a and pa((a,b)r) =b—o(a).
and if a,b € T\ {max T} and a < b, then
a((a,Be) = o(6) — o(a) and pia((ablx) = o (b) — o

The Lebesgue delta measure satisfies all the axioms of a measure and therefore it is
a measure (Definition 3.3.2) in the sense of measure theory. Similarly, (T, M(m7})) is
a measurable space and (T, M(m]), ua) is a measure space.

17
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3.3.2 Construction of the integral

We present some of the concepts from general measure and integration applied to the mea-
sure space (T, M(m3), pa).

Definition 3.3.4 (Delta measurable function). Consider (T, M(mj), ua), then we say
f:T — [—00,00] = RU{—00, 00} is delta measurable if

fH([=00,0)) = {t € T, f(t) < a} € M(m])

for any o € R.
Let E C T be delta measurable. A function f : E — [—00,00] is delta measurable
on I, if its zero extension on T is a delta measurable function.

Definition 3.3.5 (Simple function). We say a function S : T — R is simple if it is delta
measurable and takes only a finite number of different values ay, ao, ..., a,.

Remark 3.3.6. Every simple function S can be expressed using

S = Z QXA
=1

where oy, 9,...,a, € R, Ay, Ay, ..., A, are delta measurable sets and x4, is the chara-
cteristic function of A;, i.e.,

Xa,(t) =1fort e A,
XAi(t) =
Xa,(t)=0fort € T\ A,.

For the following definitions we use the convention that 0 - co = 0.

Definition 3.3.7. Suppose E C T is a delta measurable set and let S : T — [0,00) be
a simple delta measurable function with

S = Z QX A;-
j=1

The Lebesgue delta integral of S is defined by
/ S(s)As = Z%‘MA(AJ' NE).
E =

Definition 3.3.8. Suppose E C T is a delta measurable set and let f : T — [0, 00] be
a delta measurable function. The Lebesgue delta integral of f on E is then defined by

/ f(s) As = sup {/ S(s) As, S is simple delta measurable, 0 < S(t) < f(t) for t € ']I'} .
E E

Definition 3.3.9. Suppose E' C T is a delta measurable set and let f : T — [—o0, 00| be
a delta measurable function and let

[T =max{f,0}, and f~ :=max{—f,0}.

18
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Function f is then Lebesgue delta integrable on E' if at least one of the integrals

/E‘f+(S)AS and /Ef_(s)As

is finite. The Lebesgue delta integral of f on F is then defined by

/Ef(s)As:/Eer(s)As—/Ef‘(s)As.

3.3.3 Convergence theorems

We know that (T, M(m7)) is a measurable space, thus we might utilize existing results
from measure theory. In this section, we formulate the Levi monotone convergence theo-
rem and the Lebesgue dominated convergence theorem adapted to (T, M(m7)) .

Theorem 3.3.10 (Levi monotone convergence theorem). Let E C T be a delta measurable
set and suppose (fn)nen 98 a mondecreasing sequence of nonnegative delta measurable
functions f, : E — [0,00], i.e., for everyt € E and alln € N

Further lett € &
f(t) = lim f,(t).

n—oo

Then f is delta measurable and

lim [ fu(s)As = / f(s) As.
Theorem 3.3.11 (Lebesgue dominated convergence theorem). Let E C T be a delta
measurable set and suppose ()32, is a sequence of delta measurable functions f, : E —
[—00, 00] such that fort € E

f(t) = lim f,(t).

n—oo

Suppose g : E — [0,00] is a delta integrable function such that for allt € E

[fn(®)] < g(2).

Then f is delta measurable and

lim [ f.(s)As= / f(s) As.
Remark 3.3.12. The Lebesgue-type integral is far superior to all other notions of the in-
tegral on time scales. It provides the largest set of integrable functions and its derivation
is based on measure theory and many details can be avoided by quoting standard results
from measure theory.
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3.3.4 Examples of integration on time scales
In this section we discuss integrals for some special settings.

Example 3.3.13. Let a,b € T and suppose [ is Lebesgue delta integrable, then

/a ’ F(t) At = / ’ F(#)dt.

o If [a, b]y contains only isolated points, then

b Ete[a,b)w w(t) f(t) if a <0,
/ ft)At =<0 if a =b,
¢ Yty HOF(H) ifa>b.

« If T =R, then

If T=hZ = {hk,k € Z}, where h > 0, then

b Syt Fkh)hifa <D,
/f<t)At: 0 if a =0,
’ — SR (k)R ifa > b,

If T =7 = {k,k € Z}, then

, vl fk) ifa<b,
/ ft) At =<0 if a =0,
“ — ST f(k) ifa>b.

If T =¢) = {¢* k € N}J{0}, then

b Zke{a,aq ..... b/q} (q - 1>kf(k) if a < b7
/f(t)At: 0 if a =0,
’ = kefbba, /@ — DEf(E) ifa>b.

Remark 3.3.14. The fourth case from Example 3.3.13 is the special case of the third
one, where we set h = 1.

Example 3.3.15. Consider the time scale T = 22" = {t, k € N}. We know that

and
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Then

because the general term of the last series tends to 1 as k approaches infinity.

Remark 3.3.16. Example 3.3.15 yields an interesting result,

1
/ — At < 0
t2
t1

in the time scale calculus, in contrast to the classical differential calculus, does not hold
in general.

Remark 3.3.17. Unless stated otherwise, from now on by delta integrability we mean
Lebesgue delta integrability.

3.3.5 Properties of the integral

Theorem 3.3.18 (Linearity). Let T be a time scale and ¢1,co € T and suppose u and v
are delta integrable functions on |[a,b]T, then

/ab(clu + cou)(t) At = ¢, /abu(t) At + ¢ /abv(t) At

holds.

Theorem 3.3.19 (Additivity with respect to range of integration). Let a < b < c € T
and suppose u is integrable on |a, b, then

/abu(t)At:/acu(t)AtJr/cbu(t)At

We introduce the fundamental theorem of calculus.

holds.

Theorem 3.3.20 (Fundamental theorem of calculus). Suppose g is a continuous function
on [a,blt such that g is delta differentiable on [a,b)r. If g* is delta differentiable from a
to b, then

/ A (1) At = g(b) — gla).
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The previous statement combined with

(uv)A = vt + uv?

leads to an integration by parts formula.

Theorem 3.3.21 (Integration by parts). Suppose u and v are continuous functions on
[a, b]r that are delta differentiable on [a,b)r. If u® and v™ are integrable on interval [a, b,
then

b b
/ u®(t)v(t) At = u(b)v(b) — u(a)v(a) — / u’ (t)v™ (t) At. (3.3.1)
The proof of the next theorem is is based on chain rule (Theorem 2.3.4).

Theorem 3.3.22. (Substitution) Suppose v : Ty — R is a strictly increasing function
such that Ty = v(Ty) is a time scale. Denote by Ay the delta derivative on Ty and Ay
the delta derivative on Ty. Let f : Ty — R be a locally Aq-integrable (on each finite
interval) function and let v be a A;-differentiable with locally A -integrable A;-derivative.
Then, if fv™ has a Ar-antiderivative and if a,b € T,

b v(b)
/ FOA () At :/ (F 0 v~1)(s) Ags.
a v(a)
Theorem 3.3.23. Let f be a rd-continuous function and t € T, then

o(t)
F(r) AT = p(t) f (1)
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4 Function spaces on time scales

In this chapter, we discuss various function spaces endowed with a norm that are com-
monly used in the study of time scales. These spaces include generalizations of classical
function spaces such as the space of continuous functions, the space of bounded functions
and LP spaces. We also introduce function spaces that are specific to time scales. Our
primary references for this section are [2], [9], and [10].

4.1 Continuous and rd-continuous functions

Continuity on time scales is defined in the same way as in the classical calculus. We
previously defined rd-continuous functions in Definition 3.1.7. In this section, we will
discuss the spaces of functions that possess these properties.

Definition 4.1.1. Let a,b € T, such that a < b. Consider the set of rd-continuous
functions on interval [a, b]t, we denote this set by Ciqla, blr. On this set, we define the so
called supremum metric o, as follows

Qoo(f:g) ‘= sup |f(t) _g(t”v (4'1°1)

tela,bt

where f, g € Ciala, blr. The pair (Ciqla, b]t, 05 ) forms the space of rd-continuous functions
with supremum metric.

Remark 4.1.2. The mapping defined by (4.1.1) satisfies all three properties required for
a metric, thus (Ciqla, blT, ps) is & metric space. Indeed, suppose f, g, h € Cyq4la, bl, then
the following properties are satisfied

« identity of elements with zero distance: it is clear that

0 (fr9) = sup |f(t) —g(t)] =0,

t€(a,blT
if and only if f(t) = g(t) for t € [a, b]T,
e symmetry:

0o(fr9) = sup [f(t) —g(t)] = sup [g(t) = f(D)| = 0wc(g, ),

tela,blT te(a,blT

« triangle inequality: because |f(t) — g(t)| < |f(t) — h(t)| + |h(t) — g(t)|, we have for

all t € [a,b]7
0o (f,9) = sup |f(t) —g(t)|
te[aab]']l‘
< sup [f(t) —h(t)|+ sup [h(t)—g(t)]
te[avb]T te[a‘zbh'

Definition 4.1.3. Let f € Ciqla, b]r, then we define the supremum norm of f by
[fllo = sup [f(£)]- (4.1.2)

tE[a,bh-
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4.1 CONTINUOUS AND RD-CONTINUOUS FUNCTIONS

Remark 4.1.4. It is easy to show that (4.1.2) is indeed a norm, therefore Cyqla, bl and
|||, form a normed space.

Theorem 4.1.5. The space (Crala, blr, ||-||,.) is a Banach space.

Proof. We aim to prove the theorem by showing any Cauchy sequence in (Cyq[a, b, ||| ,.)
converges in the sense of the supremum norm to an element of this space. Let (f,)22, C
C'dla, bl be a Cauchy sequence. For any € > 0, there exists n. € N such that for all
m,n 2 ne,

Let us fix arbitrary ¢t € [a, b]T, then

[fa(t) = @) < sup [fo(7) = (T = [l fn = Fimll oo <

T€[a,blT

Hence (f,(t))s, is a Cauchy sequence in (R, |- |). Since (R, |- |) is complete, (f,(t))>2,
is convergent. We denote the limit of (f,(£))5, by

Tim (1) = £(t)

By taking the limit for all ¢ € [a, b1, we construct function f : [a, b]r — R.

We need to show f is rd-continuous on [a, b|T, that means f is continuous at all right-
dense points and has a finite left-sided limit at all 1d-dense points. Let us fix € > 0. We
choose N € N such that for all n,m > N

9
n— Jm < —-.
o= Fllas < 5

Let 7 € [a,b]r, then for alln > Nand m=N+1> N

fa(T) = ()] < Nlfn = Fvsall < g

We take the limit as n — oo in | f,,(7) — fv+1(7)|. Since (f,(t))22, converges in (R, |- |),
we get

() = fun(n)] < .

By the assumption, we have fyi; € Ciala,blr. Suppose t € [a,b)r is a right-dense point,
then fyi1 is continuous at ¢, i.e., there exists 6 > 0, such that if

it —7| <0,
then .
|fnvi(t) = fyva(r)| < 3
Thus
f(7) = fOI = 1f(7) = fvea(T) + [y (T) = v () + fga(t) — f(2)]

<|f(7) = fvra (D] + [y (7) = I (O] + | v (8) = F(0)]
< % + % + %
=e.
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4 FUNCTION SPACES ON TIME SCALES

This shows that f is continuous at all right-dense points.
Suppose t € (a,b|r is a left-dense point. Then there exists a left-sided limit L € R
of (fn)s2, at t. Consequently, there exists 0 > 0 such that if

T E (t—(s,t]jr,
then 9
|fna(r) = L| < 3
holds. Thus
|f(7) = LI = |f(7) = fn4a(7) + fnga(T) = L]
<|[f(7) = fnpa(T)| + [ fvga(T) = L]
e, 2
<373
=,

which shows that f has left-sided limit at all left-dense points. Hence f is rd-continuous.
As the final step, we prove (f,)5%, converges to f in the sense of supremum norm.
Let € > 0 be arbitrary and choose N € N such that for all n,m > N

€
n— Jm < —.
I = Full <

Let us fix n > N and let ¢ € [a, b]r, then for all m > N

[fa(t) = (O] < [ fr = finll oo -

Taking the limit as m — oo in || f,, — fill., We get

sup | fo(t) — F(1)] < g <e. (4.1.3)

te[(l,b]']r

We know that (4.1.3) holds for every n > N. We chose € > 0 arbitrarily, therefore for all
e > 0 there exists N € N such that for all n > N

||f’n - f||oo <E.

Thus, f, converges to f in (Cila, blr, |||l ..)-
0

Remark 4.1.6. The space of continuous functions on a closed interval with the supremum
norm from Definition 4.3.2 (Cla, b]r, ||-||,,) is a Banach space in the sense of a metric
generated by |[|-]|... The approach we would take to prove this statement is comparable
to the demonstrated proof of Theorem 4.1.5.

Remark 4.1.7. It is also important to note that Ciq[a, b]r is closed in C[a, b]r. Therefore
we could approach the proof of completeness of (Ciqla, blr, ||-||,,) differently. We could
first prove the completeness of (Cla, b]r, ||-||,) and then utilize the closedness of Cyq4[a, bt
in Cla, bt and employ Theorem 7.1.2.
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4.2 REGRESSIVE AND POSITIVELY REGRESSIVE FUNCTIONS
4.2 Regressive and positively regressive functions

In this section, we focus on the spaces of regressive functions and positively regressive
functions.

Definition 4.2.1 (Regressive function). Let g : T — R be a function on the time scale
T. We say g is regressive if for all t € T

L+ pu(t)g(t) # 0.

Definition 4.2.2 (Positively regressive function). Let g : T — R be a function on the time
scale T. We say ¢ is positively regressive if for all t € T

1+ u(t)g(t) > 0.

We denote the set of all regressive (positively regressive) functions on T by I'(T) (I'"(T)).
The set of regressive (positively regressive) functions that are in addition rd-continuous
is denoted by R(T) (R*(T)).

In order to show relation between the newly defined spaces and previously introduced
spaces, we define an important mapping known as the cylinder transformation.

Definition 4.2.3 (Cylinder transformation). Suppose p : T — R is a regressive and
rd-continuous function. By cylinder transformation of p we understand the following

function
Log(1+ u(t)p(t))
p(t) = &u(p)(t) = u(t) fu(t) >0,

where Log(z) denotes the principal value of the complex logarithm, where z # 0.

Remark 4.2.4. Note that cylinder transformation preserves rd-continuity and if p : T —
R is a positively regressive function, then p is real-valued, since complex logarithm in this
case reduces to the real valued logarithm, thus £,(R*(T)) C Cya(T).

4.2.1 Circle operations

We defined (positively) regressive functions. In this section, we focus on preserving
the property of (positive) regressivity while performing operations on these functions.
In order to achieve this goal, we introduce circle operations, which yield yet another
(positively) regressive function as their result.

Definition 4.2.5 (Circle addition). Suppose f : T — R and g : T — R are regressive
functions. We define circle addition “@®” by

(f ®9)(x) = f(x) + g(x) + p(x) f(x)g(x)

forall z € T.
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4 FUNCTION SPACES ON TIME SCALES

Definition 4.2.6 (Circle subtraction). Suppose f: T — R and g : T — R are regressive
functions. We define a function &g : T — R by

og(z) = —9l)

- Ty (4.2.1)

for all z € T. We may now define circle subtraction “S” by
feg=ra(og).

for g, f € I'(T).

Remark 4.2.7. Note that addition defined this way preserves not only regressivity, but
also rd-continuity. It can be checked that the circle addition is associative and commu-
tative. Zero constant function serves as neutral element for I'(T). For any g € I'(T),
the function ©¢g also preserves regressivity. Moreover, it is the inverse of g under &, i.e.,
g @ (©9) = (69) ® g = 0. This means (I'(T),®) constitutes a commutative group and
each of the sets I'"(T), R(T), R*(T) provides subgroup of (I'(T), ®).

Definition 4.2.8 (Circle scalar multiplication). Suppose v € R and g : T — R is
a positively regressive function. We define the circle scalar multiplication “®” by

(1+ p(z)g(z))” —1
T ©g(x) = p(x)
79() if () = 0.
Remark 4.2.9. The multiplication defined this way preserves not only positive regres-

sivity but also rd-continuity. That means positively regressive functions on a time scale
T provide a real vector space (I't(T), ®, ®) and the set R*(T) is a subspace of I'*(T).

if p(z) >0,

4.2.2 Other properties

Theorem 4.2.10. Suppose N C I'(T). Then the cylinder transformation §, : N — £, (N)
s a bijection.

Theorem 4.2.11. Assume (‘7, +,+) is a vector space of functions on T. Let V be the set
of positively regressive functions such that

geV

if and only if

5#(9) eV.

Then (V,®,®) is another vector space and &, : (V,®,®) — (‘7,+, \) is an isomorphism
between these spaces.

Theorem 4.2.12. Consider a normed space (V,+,-),|-|) of functions on a time scale
T. Then the space (V,®,®) constructed in such a way that

geV
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4.2 REGRESSIVE AND POSITIVELY REGRESSIVE FUNCTIONS

if and only if B
5#(9) eV

is also a normed space (V. |- ) with a norm given by

g1l,. = 1€u(9)
forall g e V.
Remark 4.2.13. This means {, : (V,[|-[[,) — (V,|I-]]) is an isometry.

Next we state a theorem regarding completness of ((R*[a,blr, ®, ®), [|-||,) space, we
briefly explore two approaches to the proof.

Theorem 4.2.14. Let a,b € T, then the normed linear space ((R*[a,blr, ®,®),[-][,) is
complete.

First proof of Theorem 4.2.14. Suppose (f,)>°; is a Cauchy sequence in R*[a, by with
respect to ||-|| .. To prove this theorem directly, we need to show that (f,,(¢))s; converges
to some f(t) € Rforallt € T. Then we would show that a function f : T — R constructed
this way is positively regressive. We proceed by proving that (f,)>°; converges to f
in the sense of ||-|| ,, i.e.,

lim || f, & f]], = 0.
As a final step, we would prove that p is rd-continuous. O

The proof, whose idea we have just presented, is quite complicated. There is a much
simpler way to prove Theorem 4.2.14 thanks to the following theorem.

Theorem 4.2.15. The space (R"[a,b]r, |-|,) is isometrically isomorphic to the space

(Crala, bl |-

Proof. To prove this theorem, we have to find a bijective linear mapping F : R [a, by —
Ciala, blr, which preserves the norm, i.e., for every f € R¥[a, blr

IE O, = 1l -
Theorem 4.2.12 shows that the cylinder transform ¢, satisfies these requirements and
therefore the spaces are isometrically isomorphic. Il

Second proof of Theorem 4.2.14. Since (Cyala, b]r, ||-||.,) is isometrically isomorphic to
(R*[a,blr,[I-]],,), we can utilize Theorem 7.3.4 and prove (R*[a,blr, [|-||,) is a Banach
space by proving Theorem 4.1.5. 0
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4 FUNCTION SPACES ON TIME SCALES

4.3 Bounded continuous functions on noncompact in-
terval

Definition 4.3.1 (Bounded continuous functions on noncompact interval). Let a €
T and [a,00)r. Consider a set of continuous functions f : [a,00)r — R, such that
SUDtefa00) |f(1)] < 00 and let us denote it by BCla,00)r. We define a metric oo
on BCla,c0)r by

0so(f,9) = sup |f(t) —g(t)], (4.3.1)

tela,00)

where f, g € BC[a,o0)r. The pair (BC[a,o0)t, ps) forms the space of bounded continuous
functions on noncompact interval with supremum metric.

Definition 4.3.2. Let f € BC|a, 00)r, then we define the norm of f by

1fllo = sup [f(t)]. (4.3.2)

t€la,00)T
Theorem 4.3.3. The space (BC|a,o0)r, ||-||..) is a Banach space.

Proof. Our goal is to prove the theorem by showing that any Cauchy sequence (f,)32; in
(BCla,00)r, ||-||,,) converges in the sense of the norm defined by (4.3.2) to an element
of the space. Let (f,)>2; C (BC[a,o0)r be a Cauchy sequence. For any £ > 0, there
exists n. € N such that for all m,n > n.,

1o = frullo < e
Utilizing the ideas of the proof of Theorem 4.1.5, we apply

f(t) = Tim f,(t).
n—oo
for all ¢t € [a,00)r and obtain f : [a,00)r — R. Analogically to the proof of Theorem
4.1.5, we show f is continuous and (f,,)5; converges to a bounded function f in the sense
of norm defined by (4.3.2).
O

Definition 4.3.4 (Continuous convergent functions on noncompact interval). Let a € R,
suppose T is a time scale and consider [a, co). Consider a set of functions f € BC[a, 00)r
such that there exists L € R and

lim f(t) =L

t—o0

and denote it by Cpla,oc0)r. We define a metric p,, on Cpla,00)r by (4.3.1), where
f,g € Crla,00)r. The pair (Cpla,o0)r, pso) forms the space of continuous convergent
functions on noncompact interval with supremum metric.

Remark 4.3.5. Analogically to BC[a,o0)r space, Cf[a,00)r with the norm defined by
(4.3.2) is a Banach space.

Remark 4.3.6. It is important to realise that analogically to BC|a, co)r and Cf[a, c0)T,
it is possible to study bounded rd-continuous functions on noncompact interval denoted

by BCiala,c0)r and rd-continuous convergent functions on noncompact interval denoted
by C™|a, 0o)r.
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4.4 Lebesgue delta spaces

Since the delta measure and the Lebesgue delta integral defined in Chapter 3 can be
included in general measure theory, we may define the Lebesgue delta spaces on time
scales analogically to general measure theory.

Definition 4.4.1 (L% (E)). Suppose p € [1,00) and let £ C T be a delta measurable set
and f: T — [—o0,00] be a delta measurable function. Then if

/E () As < oo,

we say f belongs to LL(E).

Definition 4.4.2. Let f, g € LY(E), we define a metric g, on L5(E) by

ot = ( [ 1766) = gt As)é

Remark 4.4.3. Similarly to the classical calculus, the problem arises, since for f,g €
Ly(E)
pp(f.9) =0
does not imply
f=y
and p, is in fact not a metric on L4 (E). We therefore utilize “almost everywhere equal”
relation ~. For f, g € LL(E), we set

f~y
if f(xz) = g(z) for x € E'\ M, where ua(M) = 0. We consider the Lebesgue delta space
as LR(E) = LE(E)/ ~, i.e., as classes of equivalence ~.

Definition 4.4.4. Let f € LL(E), we define the norm of f by

i1, = ( [ \f(S)IpAs);.

Theorem 4.4.5. The space L4 (E) is a Banach space.

Proof. The proof follows from the completeness of the general space with measure.  [J

4.5 Relative compactness

In this section, we focus on relative compactness in some of the previously introduced
spaces.

Theorem 4.5.1 (Relative compactness in BC[a,00)r). Let N C BCla, 00)t be bounded,
and assume that for every e > 0, there ezists a partition of [a,00)r in a finite numbers
of time scale intervals Iy, . . ., I, such thatsup, .. |f(t)—f(s)| < € for everyi={1,...,n}
and every f € N. Then N is relatively compact.
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4 FUNCTION SPACES ON TIME SCALES

Proof. The space (BCfa,o0)T, ||| c0) is Banach. That means, according to Theorem
7.2.5, it is sufficient to prove that N is totally bounded. In order to accomplish that,
we need to construct a finite e-net for arbitrarily chosen £>0. Let us denote ty = a and
consider the partition

I = [to, ti]r, Lo = [t1,ta)r, - -y Lot = [tn—2, tn-a]T, I = [tn—1,00)T,

where t; € T fori € {0,1,...,n—1}, t; < t;4q fori € {0,1,...,n—2} and |f(t) — f(s)| <
/5 for all s,t € I;, where j € {0,1,...,n} and f € X and € > 0 is given.

Let ¢ > 0 be arbitrarily given. Let L be such that ||f|| < L for all f € N. We know
that such L exists thanks to boundedness of N. We now take y1,vs, ..., ¥m € R, such that
L=y <y < -+ <ym=~Land yy1 —y; <e/bforie{l,...,m— 1}, as the vertical
values of the grid. The horizontal values of the grid are the numbers x4, ..., x;, where
Ty < Ty < -+ < xp and

{Il,l’g, Ce ,I‘k} = {to,tl, .. -tn—l}'

For any f € N, we might now construct a polygon ¢ defined on [tg,00) and lin-
ear on (rj,z;41) for all j € {0,1,...,k — 1} passing through the lattice points clos-
est to the graph of f. Moreover, let g be constant on [ry,00) with the value v €
{y1,y2, ..., Ym} such that

[floe) —vf = min [ f(ze) = 3l
Now we restrict ¢ to [tp,00)r and take it as an approximation of f. Suppose z; is
the closest member of {x1,..., 2} to t. For t = z; the situation is trivial and
€
(&) = 9] = |f(25) = glwj)l < ¢
holds.

On the other hand consider ¢ # x;, then
[F() =g < [fF(8) = [l + [f(x5) = ()] + [g(x;) — g(D)]

e € (4.5.1)
<zt +lglz) —g@)l.
5 5
The polygon g is monotone between adjacent x’;, that means for ¢ > x;
l9(x;) = g(®)] < lg(x;) = g(wj1)],
where j € {1,...,m — 1}. Thus
9(x;) — 9] < g(x;) = fl@)] + [f(2;) = f@je)] + [ f(@541) — 9()41)]
I N e N e (4.5.2)
5 5 5

for t > x;. For t < z; we would make the estimation analogically, instead of ;1 we
would consider x;_;.
Now (4.5.1) and (4.5.2) yield
If =9l <e
Because the number of all paths through the grid is finite (equal to m™), the set of functions
g constructed above forms a finite e-net and N is therefore totally bounded and since
(BChala, o0), ||-]|..) is a Banach space also relatively compact. O
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Next, we focus on the spaces Cf[a,00)r and C[a, b]r. We need to introduce modified
notions of equicontinuity and equiboundness on time scales.

Definition 4.5.2. Let a,b € T such that a < b and consider a set N of functions
f:la, bl — R.

o We say functions in N are equibounded on [a, b|r if there exists a positive real number
L satisfying
f@O) <L

for all t € [a,b]r and every f € N.

o We say functions in N are equicontinuous on |a, bt if for every e > 0 there exists
d > 0 such that for all £, s € [a, b7 satisfying |t — s| < § and for all f € N

|f(t) = f(s)| <e
holds.

Theorem 4.5.3 (Relative compactness in Cp[a, 00)t). Let N C Cpa, 00)y consist of equi-
continuous and equibounded functions in every compact subinterval of [a,00)r and suppose
that for any € > 0 there exist ty > 0 such that for all t >ty

|f(t) = lim f(s)] <e

$—00
holds for all f € N. Then N is relatively compact.

Theorem 4.5.4 (Relative compactness in the space of continuous functions). Let N C
Cla,blr and suppose every sequence ()2, C N is made of equicontinuous and equi-

bounded functions in [a,bly . Then N is relatively compact.

Remark 4.5.5. The two theorems stated above can be proven using ideas similar to those
of the proof of Theorem 4.5.1.

Remark 4.5.6. As far as we know, there does not exist a time scale analogy for the Fréchet—
Kolmogorov theorem, which gives a necessary and sufficient condition for relative com-
pactness in LP spaces. The criterion for relative compactness in the Lebesgue delta spaces
has not been derived yet.
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5 GENERALIZED EXPONENTIAL FUNCTION

5 (Generalized exponential function

In this chapter, we introduce and explore the generalized exponential function on time
scales. We use [3], [10] as our main sources.

5.1 Construction

The cylinder transformation, defined by (4.2.3), plays an essential role in the construction
of generalized exponential function. We use this notion in the following definition.

Definition 5.1.1 (Generalized exponential function). Let ¢,¢y € T assume p: T — R is
a regressive function, then we define the generalized exponential function by

e)(t o) = exp { /t: gﬂ(p)(T)AT} |

Theorem 5.1.2. Suppose p € R(T) and fiz to € T. Then the generalized exponential
function e,(-, 1) is the unique solution y : T — R of the dynamic initial value problem

y> =p(t)y, y(to) =1.
forallt € T.

Remark 5.1.3. We defined the generalized exponential function using the cylinder trans-
form. It should be noted that alternative approach consists of defining generalized expo-
nential function as the solution of initial value problem, which is possible thanks to The-
orem 5H.1.2.

5.2 Examples

We show examples of the generalized exponential function for several time scales derived
as the solution of initial value problem

y* =pt)y, ylto)=1.

for all t € T. We do not provide details on the case when T = R, since the generalized
exponential function in this context is evidently the same as the well /known exponential
function from the classical calculus.

Example 5.2.1 (hZ). Consider T = hZ for h > 0 and let a € R(T) be a constant
function, i.e., @ € R, then )
ea(t,0) = (1 4+ ah)r (5.2.1)

for all t € T.
Indeed, y defined by (5.2.1) satisfies

y(0) = (1+ah)’ =1
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and

() = y(t+ h})L —y(t)
(14 ah)5 = (1+ ah)f
h
(14 ah)i(1+ah—1)
h
— ol + ah)r
= ay(t).

Example 5.2.2 (¢'). Let T = ¢ for h > 0 and let p € R(T), then the problem

y* =p(t)y, y(l)=1

can be rewritten as
Yy’ =1+ (g-Dip(t))y, y(1)=1
for all £ € T. The solution of this problem is then

ep(t, )= ] 1+ (g—1)sp(s)). (5.2.2)

s€TN(0,t)

If a € R(T) is constant, then we have

calt, )= [] 1+ (g—1as).

s€TN(0,t)

Indeed, y defined by (5.2.2) clearly satisfies

y(1)= J] (+@-1)ps)s) =1

s€TN(0,1)
and
JA = y* () —y(t)

(u(t)

~ylgt) —y(t)
(g—1)t

- A+ (g = D)tp() Isernon (X + (@ = Dsp(s)) — [sernon (1 + (@ = 1)sp(s))
B (q—1)t
(g =D)tp(t) [sernoy (X + (¢ — 1)sp(s))
a (¢— 1)t
=p(t) J] 1+ (a—1)sp(s))

s€TN(0,t)
= p(t)y(?).
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6 ANALYSIS OF DYNAMIC EQUATIONS ON TIME SCALES
6 Analysis of dynamic equations on
time scales

In this chapter, we employ the tools from the previous chapters to analyze the qualitative
properties of selected dynamic equations.

6.1 Second order nonlinear dynamic equation

In this section, we explore the equation

y>® =p(t)g(y), (6.1.1)

which is considered on the interval of the form [a,o00)r. We suppose p : [a,00)r — R
is an rd-continuous function such that p(¢) > 0 for all ¢ € [a,00)y and g : R — R is a
continuous function satisfying

zg(z) >0

for all © # 0. For this equation we study a solution, by that we mean a function
y € C%la,00)r (an rd-continuous function with rd-continuous first and second delta
derivatives) satisfying (6.1.1) for all ¢ € [a,00)r. We aim to show that there exists
a solution of (6.1.1) such that

y2(t) <0,

y(t) >0 for large t, (6.1.2)

lim y(t) = c,

t—o00
where c is a given positive real number. We also discuss the existence of solutions having
a positive limit, which are positive and decreasing on the entire interval [a, co)r.

6.1.1 Conditions for existence of solution

In this section, we derive a condition necessary and sufficient for the existence of a solution
to (6.1.1) with the properties (6.1.9) for a given ¢ > 0.

Theorem 6.1.1. The coeffient p in the equation (6.1.1) satisfies

/aoo /:op(s) AsAt < o (6.1.3)

if and only if there exists a solution of (6.1.1), (6.1.2) for arbitrarily chosen positive real
number c.

Remark 6.1.2. The condition (6.1.3) with an additional (but very non-restrictive) as-
sumption

lim t/too p(s)As =0 (6.1.4)

t—o00

is in our case equivalent to

/OO o(t)p(t) At < oo.
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6.1 SECOND ORDER NONLINEAR DYNAMIC EQUATION

Indeed, we may show this using integration by parts as follows

/a”/tmp@msm:/f (1./t°°p<sms) At

Now using additional assumption (6.1.4)

[ (0 [T roas) = fe-a [Tae85] + [Ciot) - anto)ax
— [ ot -ai ot
Therefore -
/ o (t)p(t) At < o
if and only if (6.1.3) holds. )

Proof of Theorem 7.1.1. First, we prove the implication from right to left. Suppose y
is a solution of (6.1.1) with properties (6.1.2) for fixed ¢ > 0. Therefore y(t) > 0 and
y2(t) < 0 for large t, say t > t, for some ty € [a,00)r. We utilize the relation (3.1.6), i.e.,

/t A @) AT = y(s) — y(t) (6.1.5)

for arbitrary t,s € T such that ¢,s > 0 and t < s. By integrating the equation (6.1.1)
from a to b, we get

yA(s) — 2 (1) = / p()gly (x)) Ac. (6.1.6)

Since p(t) > 0 for all t € [a,00)r and y(t) > 0 for t > to, i.e., g(y°(t)) > 0 for t > ty, we
get for t >ty
y2A(t) > 0, (6.1.7)

thus yA is t >ty increasing. For t > ¢,
y2(t) < 0, (6.1.8)
also holds. From (6.1.7) and (6.1.8) we obtain

lim y2(t) = L,

t—o00

where L < 0. Suppose L < 0, then y(t) ~ Lt, i.e.,

Lt
lim — =1,
which is in contradiction with
tlim y(t) = c.
—00

Therefore
lim y*(s) = L = 0.

5§—00
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6 ANALYSIS OF DYNAMIC EQUATIONS ON TIME SCALES

By taking the limit in (6.1.6) as s — 0o, we obtain

0 y2(t) = / T p(@)g(y (2))) Ac.

/ / ) AzAt,

Now we take the limit as ©v — oo and since

We apply (6.1.5) again and get

lim y(u) = ¢,

U— 00

=c+ / / )) AxAt.
/ / ) AzAt < 0.

Thanks to lim; . y(t) = ¢, there exists K > 0 such that g(y°(¢t)) > K for all ¢ > a,

therefore
K/ / x) AzAt < / / ) AzAt < 0o
/ / x) AzAt < o0,

which clearly implies (6.1.3). The implication from right to left is proven.
Now we prove the implication from left to right. Using the Schauder fixed point
theorem (Theorem 7.4.6), we prove the existence of a solution to (6.1.1) satisfying

we get

This means

and thus

yA(t) <0, t >t

y(t) >0, t>t, (6.1.9)
lim y(t) = ¢,

t—o00

where ty € T is specified later. Let us consider a real positive number ¢ and denote

M = max g(t).
tee,2] g( )
The integral [ [ p(t) At converges. This means that for any & > 0, there exists

t. > a such that

/ / x) AzAt < e.

Set ¢ = ¢/M and denote corresponding t. by t3. We have previously established that
(BClty,o0), ||I|l,) is a Banach space for any t, € T (Theorem 4.3.3). Our current
objective is to identify a suitable set  C BC[ty, 00)r and an operator T" such that there
exists a fixed point of T" in €2, which corresponds to a solution of (6.1.1) with the desired
properties (6.1.9).
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6.1 SECOND ORDER NONLINEAR DYNAMIC EQUATION
The set (2 is considered in the form
Q={f € BCJty,0),c < f(t) <2cfort > ty}.

This set is clearly nonempty and bounded. We need to show that it is closed. Consider
a sequence (f,)52; C € converging to some f in the sense of ||-||. We must show that
f belongs to €. Since the convergence of a sequence of continuous functions (f,)%
in the sense of ||-||, norm is in fact uniform (see proof of Theorem 4.1.5), f is continu-
ous. we can conclude that f is continuous. Next, we need to establish that f satisfies
the defining inequality of €. It stands that for any ¢ > 0, there exists n. € N such that
for n > n,

sup | fu(t) — f(H)] <e.

tE[to,OO)'ﬂ‘

Let us fix an arbitrary ¢ > t,, for such ¢

Then for all n € N and fixed ¢

holds, therefore
c < f(t) < 2c.

Since t is chosen arbitrarily, f € €2 and therefore € is closed.

To prove that €2 is a convex set, we must demonstrate that for any two functions f;
and fs5 in €, their convex combination is also in 2. Let A be an arbitrary scalar between
0 and 1. We want to show that Af; + (1 — A) f2 belongs to Q. For ¢t > ¢,

Ae < Afi(t) < A2c (6.1.10)

and
(IT=XNe<(1=N)fat) < (1= A)2ec. (6.1.11)

Now by adding (6.1.10) and (6.1.11) we obtain for ¢ > tg
c < Af(t)+ (1 —N)g(t) < 2ec. (6.1.12)

It is evident that A fi+(1—M\) fo € BC[t, 00)T, therefore thanks to (6.1.12) Afi+(1—X) f2 €
) and the set 2 is convex.
We define the mapping T on 2 for ¢ > t; as follows

T =+ [ [ talals@) Aras
where f € 2. We need to prove that for t > t,
¢ < (TF)(t) < 2. (6.1.13)

Since p(t) > 0 for t > a, xg(z) > 0 for x # 0 and f7(t) > ¢ > 0 for t > ¢, it is true that
for t Z t()

/t N / " p@)g(f7 (@) Axdss > 0.

38



6 ANALYSIS OF DYNAMIC EQUATIONS ON TIME SCALES

Therefore the first inequality of (6.1.13) holds. To prove the second inequality, we need

to show that for ¢t > ¢,
/ / ) AzAs < c.

We make upper estimates of
/ / ) AzAs
as follows

/ / g(f7(z)) AzAs < M/ / x) ArAs < M/ / x) AzAs.
Since
/ / x) AzAs < <
M’

M z) AzA <M =¢
// rAs <ML
Therefore T'f € Q.

Next, we need to prove that 7" is continuous. Let (f,,)52; C Q be such that

lim || fn = fll =
n—00

we may continue with

We need to prove that
lim |7, — T, =

Let us denote A,, = T'f,, — T f and focus on the expression || A, || and rewrite it as follows

/ / g(fo(x)) AzAs — / / ) AzAs
thrs/ / ) — g(f7(x))) AzAs
< / / p(@)|(9(F2(2)) — g(f7(2)))| Azds.

Let us now denote the function ¢g(f?7) — g(f?) by G,. The function p|G,| satisfies for all
n € Nand all t > ¢,

sup | A, (t)] = sup
t>to t>to

PG (1) = 0.

Since f, converges uniformly to f and g is continuous,

lim p(t)|Gn(t)] =

n—oo

holds for all ¢ > ¢, (pointwise convergence). The function ¢ is continuous and f and f,
for all n € N are bounded functions, therefore there exists L > 0 such that |G, (t)| < L
for all t >ty and n € N and thus

pB)|Gn(t)] < Lp(t).
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6.1 SECOND ORDER NONLINEAR DYNAMIC EQUATION

We know that [ [ p(z) AzAs < oo , then ft x) Az < oo. Therefore the function
p|G| satisfies the assumptions of the Lebesgue dommated convergence theorem (Theo-
rem 3.3.11). Moreover the function

/too p(2)|G,(x)| Az (6.1.14)

is also nonnegative for t > ty and for n € N satisfies

/toop(x)|Gn(a:)| Az < L/toop(a:) Azx.

/ / x)| AxAs < 0o
/ / z)| AxAs < oo.

This means the function (6.1.14) also satisfies assumptions of Theorem 3.3.11. We
may now apply this theorem tw1ce as follows

hm/ / )Gz \Ams_/ / ) lim |G ()] AxAs
// )0 AzAs
0.

Jim [ A, ][ =

We know that

and therefore

Consequently,

and the mapping T is therefore continuous.

It remains to prove T2 is relatively compact. We operate on the space BC[ty,00)r.
Therefore to prove relative compactness, we need to demonstrate validity of the assump-
tions of Theorem 4.5.1. Evidently, T} is bounded, since T2 C € and € is bounded.
We need to show that we might, for arbitrary ¢ > 0, divide [tg, 00)T into subintervals
I, 15, ..., I such that

sup |Tf(t1) —Tf(ta)] <e (6.1.15)
t1,t2€l;
for i € {1,2,...k} for f € Q.
Fix € > 0 and suppose f € . Since

lim / / x)) AzAs =0,
t—o00
there exists t* such that for all ¢1,ty > t*

/ / x)) AzAs| < e.

(6.1.16)
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6 ANALYSIS OF DYNAMIC EQUATIONS ON TIME SCALES

On the other hand T'f is delta-differentiable on [ty,¢*)r and there exists K > 0 such
that for ¢ > ¢,

(T2 (8] = / T p(@)g(f(x) M| < K.

We utilize this fact and employ the mean value theorem (Theorem 2.4.1). Therefore
for any tq,t5 € [to,t")r such that ¢; < to, there exists £ € [t, to]r

Tf(ta) = Tf(t)| < [T2F(E)]]t2 — tal.

If we choose t1,ts € [to, t*)T to satisfy

£
‘t2 - tl’ < ?7
then -
ITf(ta) = Tf(t)] < [T2f(E)|Ita =t < K— =e. (6.1.17)

K

Using (6.1.16) and (6.1.17), we may produce the desired division of [ty, c0)r and thus 7T°Q
is relatively compact.

We have proven validity of all assumptions of the Schauder fixed point theorem, there-
fore there exist (at least one) fixed point y of the mapping 7', i.e.,

Ty =y. (6.1.18)

Now taking the second delta derivative of (6.1.18), we get clearly (6.1.1). Thanks to the form
of the set Q2

y(t) = (Ty)(t) = ¢ >0,
moreover

yo(t) = (Ty)2(t) = - /toop(x)g(y"(ff)) Az <0. (6.1.19)

Finally

Jim 0 = i (1)) = iy (c+ [ [ oot o)
The fixed point of T" is therefore a solution of (6.1.1) with properties (6.1.2). O

Remark 6.1.3. Under somewhat stronger assumptions, we can guarantee the existence
of the solution on the entire interval, i.e., Theorem 6.1.1 holds for the solution with
properties

y2(t) <0,
y(t) >0 fort >a, (6.1.20)
tligloy(t) - ¢

We consider two different situations.

1. Suppose T is discrete, i.e., consists of isolated points. Then we can prove the ex-
istence of the solution of (6.1.1), (6.1.2) for ¢ > ¢, as in the proof of Theorem 6.1.1 and
further extend it using the p operator to the interval [a,to)r as follows

to =c+ / / AI'AS
p(to)
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6.1 SECOND ORDER NONLINEAR DYNAMIC EQUATION

Obviously, y(p(to)) > 0 and since

/ / ) AzAs > / / x) AxAs,
to)

y>(p(ty)) < 0 also holds. Repeating this process, thanks to the discrete nature of T, after
a final number of steps we reach the point a and thus obtain the solution of (6.1.1) with
properties (6.1.20).

2. If we consider an arbitrary time scale T, then we can guarantee existence of the so-
lution of (6.1.1) with properties (6.1.20) if we choose ¢ in Theorem 6.1.1 such that there
exists K > 0 that satisfies

max / / Az < Ke.
u€le,(1+K)c

Now we can consider the set 2 in the form

Q={f € BClty,o),c< f(t) < (1+ K)cfor t > a}.

(TH(t) = c—l—/ / f7(z))AzAs

Then for ¢t > a

<c max / / p(z) AzAs
ue[c (1+K)c

<c+ max / / p(z) ArAs
u€le,(1+K)c

< (14 K)c,

therefore for t > a
c<Tf(t)<(1+K)c

and TQ) C €. Other assumptions would be proven almost without a change as in the proof
of Theorem 6.1.1.

6.1.2 Conditions for existence and uniqueness of solution

Let us suppose g is Lipschitz continuous (Definition 7.4.3) on R*. In this section, we aim
to show that (6.1.3) guarantees the existence and uniqueness of the solution of (6.1.1)
with properties (6.1.2) for arbitrarily chosen positive real number ¢. To achieve this we
employ the Banach fixed point theorem (Theorem 7.4.5).

Theorem 6.1.4. Suppose the function g satisfies Lipschitz condition on RY. Then (6.1.3)
holds if and only if there exists a unique solution of (6.1.1), (6.1.2) for arbitrarily chosen
positive real number c.

Proof. Let us start with the implication from right to left. As we have shown in the proof
of Theorem 6.1.1, the validity of the condition

/ / s) AsAt < 0o
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6 ANALYSIS OF DYNAMIC EQUATIONS ON TIME SCALES

follows already from the existence of the solution with required properties.
Now we focus on the implication from left to right. Suppose ¢ is Lipschitz continuous
on R with a constant L. Consider ¢, such that

1
/ / 5) AsAL < o (6.1.21)

and let Q = BC[ty, 00)r. We know (BC|tg, 00)r, ||-||,) is @ Banach space (Theorem 4.3.3).
We need to define an operator T': ) — €) that is a contraction and its unique fixed point
is the solution of (6.1.1), (6.1.2). We may again consider T" for ¢t > ¢, in the following

form satisfies
(T)(t)=c+ / / ))AzAs.

We have to show that there exists K € (0,1) such that for any fi, fo € Q

ITf = Thlle < Kllfi = fall

We know that
ITfi = Tfall = Sup (T f0)(E) = (T'f2)(t)]

and for all ¢ € [a,00)r
p(t) > 0.

g(f7(x)) AzAs — / / )) AzAs

/ / ) o7 @) - a(f5 ()] ArAss
That means

sup [(TA)(t) — (Th) (1)) < / / D) |97 (@) — g(f5 (@) Azds.  (6.1.22)

t>to

Therefore for all f € Q and t > ¢,

[(Tf1)(#) = (T f2)(1)] =

Next we employ an additional condition of Lipschitz continuity for g and make an upper

estimate of
L[ r@lotsr@n - o) ans
as follows

// ) lg(f7 (z)) — g(f5 (z IAa:As<// o)L |f7(x) — f{(x)| AzAs

< Lsup |fi(t) — folt |/ / z) AzAs.

t>to

Thanks to tg being chosen such that (6.1.21) holds, we can proceed as follows

Lsup|fi(t) — fo(t |/ / z) AzAs < Lsup |fi(t) — falt) %

t>t0 t>t0

= l:sup |f1(t) = fa(2)].

2 1>t
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Therefore it is true that

sup [(T'f1)(t) — (T f2)(1)] < %Sup 1) = fa(?)]

t>to t>to

and thus )
ITfH =Tl <51 — foll-

We have proven that T is a contraction. All assumptions of the Banach fixed point theorem
are satisfied, therefore there exists a solution of (6.1.1), (6.1.2) and it is unique. O

Remark 6.1.5. The equation (6.1.1) for the discrete case T = Z is in detail studied in

[5].

6.2 More general equation

In this section, we study an equation in a more general form

(r(t)y™)> = p(t)g(y”). (6.2.1)

We consider the equation on the interval [a,00)r and assume p : [a,00)r — R is an rd-
continuous function that fulfills p(¢) > 0 for all ¢ € T. We consider g : R — R as a con-
tinuous function satisfying

zg(z) >0
for all  # 0. Additionally, the function r : [a, 00)r — oo satisfies r(t) > 0 for ¢ € [a, c0)r,

1/r is rd-continuous and

©
/a @A:c:oo. (6.2.2)

Let us denote

R(t) = / t %m.

We study a solution, by that we mean a function y € CL[a,c0)r such that ry® €
ClJa, o)t satisfying (6.2.1) for all ¢ € [a, 00)r. We aim to show that there exists a solution
of (6.2.1) such that

(1) <0,

y(t) >0 for large t, (6.2.3)

Ji it =

where c is a given positive real number.

6.2.1 Conditions for existence of solution

In this section, we formulate a condition necessary and sufficient for the existence of a so-
lution to (6.2.1) with the properties (6.2.3) for a given ¢ > 0. Instead of adopting an ap-
proach, where we study the equation in its original general form, we opt to transform it
into a known problem described by (6.1.1) with corresponding properties (6.1.2). This
approach was introduced in [8].
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6 ANALYSIS OF DYNAMIC EQUATIONS ON TIME SCALES

Theorem 6.2.1. The functions p and r in the equation (6.2.1) satisfy

/a h % /t " ps) AsAt < o (6.2.4)

if and only if there exists a solution of (6.2.1), (6.2.3) for arbitrarily chosen positive real
number c.

Proof. Let y be a solution of (6.2.1), (6.2.3). We utilize the Theorem 3.3.22. Consider
a positive strictly increasing function v € C'[a, 00)s on T. Let us set u(s) = y(t), where
s = v(t) and denote T = {v(t),t € T}. In the view of chain rule (Theorem 2.3.4), we
transform the equation (6.2.1) using

y® = (Ut o)A, (6.2.5)

Utilizing the chain rule again, we get
A -1 A A
= [[v™) o vt o v)(u o) (6.2.6)

Thanks to properties of v, we have v o 0 = 7 o v and therefore (u o v)° = u® o v. Now
using (6.2.6), we get on T

where
7= (rv®)ov?
and
p= 1/% ov !, (6.2.7)

We set v = R. In the view of condition (6.2.2), we then get an unbounded time

scale T = v(T). More precisely, the interval [a, c0)r is transformed into [, 00)z, where
@ = v(a). Further v = 1/r, thus

7= (r/ryovt=1
This way we transformed (6.2.1) into
u® = p(s)g(u) (6.2.8)

on [a, c0)s.
We intend to utilize the Theorem 6.1.1. We know that

/: /too P(s) AsAt < co. (6.2.9)
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holds if and only if (6.2.8) has a solution u having properties (6.2.3). We need to show
the condition (6.2.10) is equivalent to (6.2.4). Using (6.2.7), we get

A= // AsAt_/ / (pr) o R™'(s) AsAt. (6.2.10)

We transform (6.2.10) using the substitution theorem (Theorem 3.3.22). Set u = R™!(s),

then
/ / p(u)r(u)— AuAt = / / AuAt.

We apply the theorem again by setting 7 = R™'(t). We get

A /:o %/Toop(u)AuAT.

Now it is clear that (6.2.4) holds if and only if (6.2.10).

Assume now (6.2.4) is satisfied. Then (6.2.10) holds as well and applying Theorem
6.1.1, we have guaranteed the existence of the solution u of (6.2.8) with properties (6.2.3).
Since u(s) = y(t), where s = v(t) and

Sliglo u(s) =c,

also
lim y(t) =

t—o00

Since v is increasing, u(s) > 0 for large s implies y(t) > 0 for large t. Because r(t) > 0
for t € [a,00)r, 1/7(t) > 0 for t € [a,00)r and since v = R is increasing, v>(t) > 0
for t € T. Therefore (6.2.5) and u®(s) < 0 for large s imply y=(t) < 0 for large t. Thus y
satisfies (6.2.3).
As for the opposite direction, if y satisfies (6.2.3), then u satisfies (6.2.3), and hence
(6.2.10) holds by Theorem 6.1.1. Consequently, (6.2.4) holds.
O
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7 Appendix: selected concepts from
functional analysis

In this section, we recall some concepts from functional analysis that are needed for our
purposes. We use [4], [5] and [7] as our main sources.

7.1 Completness of metric spaces

In this section, we start with the notion of completness of a metric space.

Definition 7.1.1 (Complete space). A metric space (M, p) is called complete if every
Cauchy sequence of points in M converges in M (has a limit also in M).
Wesay N C M is a complete set in space (M, p) if N with induced metric p is complete.

Theorem 7.1.2. Suppose (M, p) is a complete metric space. Then N is a closed subset
of M if and only if N is complete.

7.2 Relative compactness

In this section, we recall the notion of relative compactness and some related notions and
facts.

Definition 7.2.1 (Compact set). Let (M, o) be a metric space. Wesay N C M is compact
if every sequence (z,)2%, € N contains a converging subsequence (z,, )52, whose limit
isin N.

Definition 7.2.2 (Relatively compact set). Let (M, g) be a metric space. We say N C M

is relatively compact if N C M is a compact set in (M, o), where N denotes the closure
of the set N.

Definition 7.2.3 (e-net). Let (M, o) be a metric space, £ a positive real number and
N C M. A set AC M is called e-net of N if for every u € N, there exists v € A such
that o(u,v) <e.

Definition 7.2.4 (Totally bounded set). Let (M, o) be a metric space, then N C M is
called totally bounded if there exists a finite e-net for every ¢ > 0.

Theorem 7.2.5 (Relation between totally bounded and relatively compact). Let (M, o)
be a complete metric space, then a set N C M is relatively compact if and only if it is
totally bounded.

7.3 Isometry and homeomorphism of normed spaces

Definition 7.3.1 (Isometric isomorphism of normed spaces). Let (M, ||-]l,,), (N, [-]lx)
be normed vector spaces. We say that these spaces are isometrically isomorphic if there
exists a bijective linear mapping T : M — N preserving the norms, i.e., for all x € M

1Tl 5 = [l
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Definition 7.3.2 (Homeomorphism of normed spaces). Let (M, ||-|,,), (N, [|ly) be
normed vector spaces. We say that these spaces are homeomorphic if there exists a bijec-
tive linear mapping 7' : M — N and positive real constants a, b satisfying

allzlly, < Ty < bzl
for all z € M.

Remark 7.3.3. Note that isometric isomorphism evidently implies homeomorphism of nor-
med spaces.

Theorem 7.3.4. Let (M, ||-|l.,): (N, ||-|l5) be homeomorphic normed vector spaces. Then
(M, |||l,;) s a Banach space if and only if (N, ||-||y) is a Banach space.

7.4 Fixed point theorems

In this section, we focus on fixed point theorems and related notions. We give particular
attention to Banach and Schauder fixed point theorems. Detailed proofs of these theorems
can be found in [5].

Definition 7.4.1 (Fixed point). Let M be a set and let F': M — M. We say u* € M is
the fized point of the mapping F' if F(u*) = u* holds.

Definition 7.4.2 (Convex set). Let (M, ) be a metric space and let N C M. We say N
is convez if for all x,y € N and t € [0, 1] an affine combination (1 —t)z +ty € N.

Definition 7.4.3 (Lipschitz continuity). Let (M, o), (IV,0) be metric spaces, a function
f: M — N is called Liptchitz continuous if there exists a positive real L such that for all
x,y € M

o(f(z), f(y)) < Lo(z,y).

Definition 7.4.4 (Contraction). Let (M, g), (N, o) be metric spaces. We say a function
f: M — N is a contraction if there exists 0 < L < 1 such that for all z,y € M,

o(f(x), f(y)) < Le(z,y).

Theorem 7.4.5 (Banach fixed point theorem). Let (M, p) be a complete metric space and
suppose F': M — M 1is a contraction. Then there exists a unique fized point of the mapping
F, this point is in addition the limit of the sequence {u, }°,, where uy € M is arbitrary
and Uy = F(uy,) forn=2,3,4,...

Theorem 7.4.6 (Schauder fixed point theorem). Let M be a Banach space and N C
M a nonempty, convex, bounded and closed set. Moreover, suppose F' : N — M is
a continuous mapping, such that F(N) C N is a relatively compact subset of N. Then
the mapping F has a fized point u* € N.
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8 CONCLUSION

8 Conclusion

The objective of the thesis was to provide an overview of the calculus on time scales,
establish a framework of functional analysis on time scales, and utilize this framework
to investigate the qualitative properties of specific dynamic equations.

In Chapter 2, we presented a summary of the fundamental concepts in time scales
theory. We introduced a concept of the delta derivative as a means of differentiation
on time scales. Furthermore, we explored various alternatives of the chain rule adapted
for time scales and established mean value theorem.

Chapter 3 of the thesis is dedicated to the integration on time scales. We studied
three distinct types of integral. Firstly, we introduced the notion of the Cauchy-type in-
tegral defined through the use of antiderivatives. Next, we constructed the Riemann-type
integral using the Darboux sums. Additionally, we employed measure theory to define
the Lebesgue-type integral, utilizing a Carathéodory-like approach. It became apparent
that measure theory was a valuable tool for the development of the integral, as it pro-
vided efficient means for its formulation. Moreover, we established key theorems such
as the monotone convergence theorem and the dominated convergence theorem, which
are essential for the analysis of selected dynamic equations. Furthermore, essential prop-
erties of the integrals on time scales were outlined, including the possibility of integration
by parts and the substitution theorem.

In Chapter 4 we focused on function spaces on time scales. We discussed continuous
and rd-continuous functions on closed interval [a,b]r. We stated detailed proof of com-
pleteness of (Cyqla, b, ||-||.) space and mentioned briefly other approaches to the proof.
We followed with spaces of regressive and positively regressive functions. We intro-
duced an arithmetic on these spaces using circle operation and proved completeness
of (R*[a,blr,|[|,). We followed with bounded continuous functions on noncompact in-
terval and stated and proved that (BC[a, oo)r, ||-||,) is a Banach space. The second part
of the chapter is dedicated to relative compactness of introduced spaces. Special emphasis
was placed on the (BC[a, c0)r, ||-||,,) space, with a thorough proof provided for the crite-
rion of relative compactness. Furthermore, relative compactness criteria for other function
spaces, which were introduced earlier, were formulated.

In Chapter 7, we applied theoretical tools to analyze the nonlinear dynamic equation
(6.1.1). We derived the necessary and sufficient condition for the existence and uniqueness
of a solution with the specified properties. By utilizing fixed point theorems, we then pro-
vided proofs for the formulated statements concerning the existence (Theorem 6.1.1) and
uniqueness (Theorem 6.1.4) of the solution. Additionally, we examined the more general
equation (6.2.1) and formulated the necessary and sufficient condition for the existence
of the solution (Theorem 6.2.1) with the desired properties. The proof of this theorem
was accomplished through a transformation based on the substitution theorem (Theorem
3.3.22).

The main contribution of this thesis is correctly introduced functional analysis ap-
paratus on time scales and demonstration of its proper implementation on the selected
problems. The work can be further extended by studying other dynamic equations and
exploring the distinctions and similarities across various time scales.
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