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Abs t rak t 
Cílem práce bylo shrnout základní výsledky kalkulu na časových škálách, zpracovat nástro­
je z funkcionální analýzy v kontextu časových škál a využít je při studiu kvalitativních 
vlastností řešení konkrétních nelineárních dynamických rovnic. Práce obsahuje detailně 
zpracovanou problematiku derivace a integrace na časových škálách s důrazem na integrál 
Lebesgueova typu. Detailně jsou rozebrány alternativy k řetězovému pravidlu z klasického 
kalkulu. Podrobně jsou studovány prostory funkcí na časových škálách, zejména pak pro­
stor rd-spojitých funkcí na kompaktním intervalu a prostor ohraničených spojitých funkcí 
na nekompaktním intervalu. Zvláštní pozornost je kladena na klíčové vlastnosti prostorů 
jako jsou úplnost a relativní kompaktnost, které jsou doplněny detailními důkazy. Zave­
dené matematické prostředky jsou později využity při studiu kvalitativních vlastností 
konkrétních nelineárních dynamických rovnic. 

Summary 
The aim of the thesis was to summarize the basic results of calculus on time scales and 
elaborate in detail on the tools from functional analysis in the context of the time scales 
and to use them in the study of the qualitative properties of the solution of specific non­
linear dynamic equations. The thesis focuses in detail on the problem of derivation and 
integration on time scales with an emphasis on the Lebesgue-type integral. Alternatives 
to the chain rule from classical calculus are discussed in detail. Spaces of functions on time 
scales are analyzed in depth, especially the space of rd-continuous functions on a compact 
interval and the space of bounded continuous functions on a noncompact interval. Em­
phasis is placed on key properties of spaces such as completeness and relative compactness, 
which are complemented by detailed proofs. Introduced mathematical instruments are 
later used for a study of qualitative properties of concrete nonlinear dynamic equations. 
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Rozš í ř ený abstrakt 

V této práci jsou detailně zpracovány základy teorie časových škál s cílem vytvořit 
funkcionálně analytický aparát pro studium dynamických rovnic a ukázat jeho uplatnění 
na konkrétních nelineárních dynamických rovnicích. 

Na začátku je představen koncept časové škály a kalkulu na časových škálách (T), který 
je sjednocujícím přístupem (nejen) klasického diferenciálního a diferenčního kalkulu. Jsou 
zavedeny základní pojmy, jako je dopředný skok (a), zpětný skok (g) a zrnitost (//), které 
slouží jako základ pro klasifikaci bodů na časových škálách. 

Důkladně je zkoumána problematika derivace na časových škálách. Je zavedena tak­
zvaná delta derivace (pro funkci / značeno / A ) . Jednou z klíčových odlišností oproti 
tradiční derivaci z diferenciálního kalkulu je, že není obecně možné přímo aplikovat 
tradiční řetězové pravidlo. Z tohoto důvodu jsou prezentovány tři alternativy, jež slouží 
jako jeho náhrada. Kromě toho je také představena modifikace věty o střední hodnotě, 
aby byla použitelná v rámci kalkulu na časových škálách. Delta derivace je analyzována 
na různých časových škálách, zejména platí 

Velká část práce je pak věnována problematice integrace na časových škálách. Jsou 
zavedeny tři různé druhy integrálů s důrazem na korektnost a detailní rozbor jejich vzá­
jemné rozdílnosti a také jejich podobnosti s analogiemi z diferenciálního kalkulu. Nejprve 
je definován integrál Cauchyova typu na základě pojmů rd-spojité funkce a antiderivací. 
Následuje integrál Riemannova typu, který je v práci zkonstruován obdobně jako v pří­
padě tradičního diferenciálního kalkulu pomocí Darbouxových horních a dolních sum. Ani 
jeden z těchto integrálů nemá dostatečně širokou množinu integrovatelných funkcí a ne­
nabízí analogie vět o limitním přechodu. S využitím Carathéodoryho přístupu je proto 
představena nejprve delta míra a následně pomocí jednoduchých funkcí a obecné teorie 
míry integrál Lebesgueova typu na časových škálách. Množina integrovatelných funkcí 
u tohoto integrálu je dostatečně velká a umožňuje zformulovat Leviho větu o monotónní 
konvergenci a Lebesgueovu větu o dominantní konvergenci. Rozbor integrace na časových 
škálách je doplněn o analogie stěžejních výsledků z tradičního diferenciálního kalkulu, jako 
je základní věta integrálního počtu, věta o substituci nebo integrace per partes. Integrace 
je studována na různých časových škálách, zejména platí pro a < b 

Dále se práce věnuje prostorům funkcí na časových škálách. Pro analýzu dynamických 
rovnic hrají důležitou roli věty o pevných bodech, zejména pak věta Banachova a Schau-
derova. V předpokladech obou vět figuruje vlastnost úplnosti a pro Schauderovu větu je 
klíčový pojem relativní kompaktnosti. V kapitole jsou proto uvedené prostory doplněny 
o studium úplnosti a relativní kompaktnosti. Podrobně je studován prostor rd-spojitých 
funkcí na kompaktním intervalu se supremovou normou. Důkaz úplnosti je detailně zpra­
cován na základě důkazu úplnosti prostoru spojitých funkcí z klasického kalkulu. Ve 
stručnosti jsou zmíněny také idey dalších možných přístupů k tomuto důkazu. Dále jsou 

pro T = R, 
pro T = Z . 

pro T = R, 
pro T = Z . 



v práci zevrubně rozebrány prostor regresivních a pozitivně regresivních funkcí. U pro­
storu pozitivně regresivních rd-spojitých funkcí na kompaktním intervalu jsou zmíněny 
různé přístupy k důkazu úplnosti, zejména pak přístup založený na izometrické izomor-
fii s prostorem rd-spojitých funkcí. Dále se práce věnuje prostoru omezených spojitých 
funkcí na nekompaktním intervalu a Lebesgueovým delta prostorům. Pro zmíněné pros­
tory jsou formulovány kritéria relativní kompaktnosti s důrazem především na prostor 
neohraničených spojitých funkcí na nekompaktním intervalu, který je klíčový pro analýzu 
zvolených rovnic v další části práce. 

Stručně je zavedena zobecněná exponenciální funkce s využitím takzvané cylindrické 
transformace a pojmu regresivní funkce. Zmíněn je také možný přístup definice jako řešení 
počátečního problému 

yA = p(t)y, y(t0) = 1, 

kde p je regresivní funkce. Jsou uvedeny a rozpracovány příklady pro různé časové škály. 
Zavedený aparát funkcionální analýzy je využit při analýze kvalitativních vlastností 

nelinerání dynamické rovnice druhého řádu 

yAA=p(t)g(yn- (A) 

Jsou vyjádřeny předpoklady pro funkce g a p. Uvažuje se, že p je kladná rd-spojitá funkce 
a g je funkce, která je spojitá a splňuje 

xg(x) > 0 

pro i ^ O . Pro takto zformulované předpoklady studujeme existenci řešení, které má 
kladnou limitu a pro velká t je kladné a neklesající. V práci je s využitím Schauderovy 
věty o pevném bodě dokázáno, že 

OO /"OO 
p(s) AsAt < oo (B) 

je nutnou a postačující podmínkou existence řešení s požadovanými vlastnostmi. Jsou 
rozebrány možné modifikace podmínky (B), které zaručí existenci řešení s požadovanými 
vlastnostmi nejenom pro velká t, ale na celé uvažované časové škále. 

Dále je studován případ, kdy je k předpokladům pro funkci g přidán také předpoklad 
na lipschitzovskou spojitost. S využitím Banachovy věty o pevném bodě je dokázáno, že 
podmínka (B) zaručí vedle existence i jednoznačnost řešení s požadovanými vlastnostmi 
pro velká t. 

Nakonec je analyzována obecnější rovnice 

(r(t)yA)A = p(t)g(y°) 

K předpokladům pro p a, g z původně rozebraného problému jsou připojeny předpoklady 
pro r. Opět je studována existence kladného a neklesajícího řešení pro velká t s kladnou 
limitou ve vztahu ke splnění podmínky 

/»oo 2 /*oo 

/ "77^ / A s A t < ° ° ' J a r[t) Jt 

(C) 

Důkaz je tentokrát založen na využití věty o substituci. Původní časová škála je trans­
formována na novou a studovaná rovnice na rovnici 

^ A A = P(t)g(y° 
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a podmínka (C) na 

J J p(s) AsAt < oo. (D) 

Následně je ukázáno, že takto převedený problém je ekvivalentní problému (A), (B). 
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1 INTRODUCTION 

1 Introduction 
The theory of time scales aims to unify differential and difference calculus. It provides 
elegant means to describe differences between continuous and discrete case. Functional 
analysis is crucial, when studying dynamic equations. It is therefore important to in­
troduce correctly formulated functional-analysis theory regarding dynamic equations and 
demonstrate its proper application on concrete dynamic equations. 

In Chapter 2, we summarize fundamentals of calculus on time scales. We explore 
the differentiation on time scales and related theorems. We proceed with several varia­
tions of the chain rule substituting the version from traditional calculus. We conclude 
the chapter with examples of various time scales and differentiation on them. 

Chapter 3 focuses on the problem of the integration on time scales. Three different 
types of integrals are explored: the Cauchy-type integral, the Riemann-type integral, and 
the Lebesgue-type integral. It is demonstrated that, for our purposes, the Lebesgue-type 
integral on time scales possesses convenient properties, such as a broad set of integrable 
functions and analogies to the monotone convergence theorem and the dominated con­
vergence theorem. 

In Chapter 4, an examination of functional spaces on time scales is conducted. The fo­
cus is on the study of various types of functions, including continuous functions, rd-
continuous functions, regressive and positively regressive functions on compact inter­
vals, bounded continuous functions on non-compact intervals, and spaces of Lebesgue-
integrable functions. Emphasis is placed on investigating the properties of these spaces, 
particularly their completeness. The chapter concludes with a comprehensive exploration 
of relative compactness within these spaces. 

Chapter 5 focuses on the concept of a generalized exponential function. Several ex­
amples for various time scales are given. 

In Chapter 6, we utilize the mathematical tools introduced in the preceding chapters 
to analyze a second-order equation presented in the form 

yAA = p(t)g(ya)-

on a noncompact time scale interval. We set assumptions on p and g functions and 
formulate a condition necessary and sufficient for the existence of a solution positive 
and nondecreasing for large t with a positive limit. We subsequently refine the assump­
tions in order to ensure with the formulated condition not only the existence but also 
the uniqueness of the solution. 

Subsequently, we delve into the examination of a more general equation 

(r(t)yA)A=p(t)g(y°). 

We establish assumptions on functions r, p and g and again formulate a necessary and 
sufficient condition for the existence of a solution with properties identical to the previous 
case. 

Chapter 7 is appendix dedicated to selected concepts from functional analysis. Empha­
sis is placed on completeness of metric spaces, relative compactness and related notions, 
isometry and homeomorphism of normed spaces, and especially fixed point theorems, 
which are the key tool for the proofs in Chapter 6. 

3 



2 Time scales 
Theory of time scales was introduced by Stefan Hilger at the end of the 20th century, and 
it has gained a lot of popularity. Time scales provide an elegant way to unify discrete and 
continuous analysis. In this chapter, we cover fundamental principles of time scale theory. 
We introduce a concept of delta (Hilger) differentiation and several variations of the chain 
rule. The chapter concludes with a comprehensive exploration of various examples of time 
scales, serving to provide further clarity and illustration of the discussed concepts. Note 
that we do not provide detailed proofs, since we explore standard results from time scale 
theory that are well-established. We use [1], [2], [3] and [4] as the main sources. 

2.1 Fundamentals 
The aim of this section is to provide an overview of the fundamental definitions and 
theorems associated with time scales. 

Defini t ion 2.1.1 (Time scale). A time scale is an arbitrary nonempty closed subset 
of the real line M. Time scale is commonly denoted by T . 

Example 2.1.2. It is possible to list a lot of examples of time scales, since the definition is 
broad. The natural numbers (N), integers (Z), real numbers (M), union of closed intervals, 
set of isolated points combined with a union of closed intervals or the Cantor set are just 
some of many. However, not all sets qualify as time scales, rational numbers (Q) or open 
intervals are examples of such sets. 

For following definitions we put inf 0 = sup T and sup 0 = inf T 

Defini t ion 2.1.3 (Forward jump operator). Let t G T , we define a mapping a : T —> T 
denoted as the forward jump operator as follows 

a{t) = inf {s e T , s > t}. 

Defini t ion 2.1.4 (Backward jump operator). Let t G T , we define a mapping g : T —> T 
denoted as the backward jump operator as follows 

g(t) = sup {s G T , s < t}. 

Defini t ion 2.1.5 (Right-scattered, left-scattered and isolated points). We say that i G T 
is right-scattered if 

a(t) > t, 

on the other hand if 
g(t) < t, 

we say t is left-scattered. If t is both right- and left-scattered, we say that it is isolated. 

Defini t ion 2.1.6 (Right-dense, left-dense and dense points). A point t G T satisfying 
t < sup T and 

a(t) = t 

is called right-dense. Similarly, a point t satisfying t > inf T and 

g(t) = t 

is called left-dense. A point t both right- and left-dense is called dense. 

4 



2 TIME SCALES 

Remark 2.1.7. Note that 
a(g(t)) = t 

does not hold in general, suppose that t G T is left-dense and right-scattered, then 
a(Q(t)) = ( T(0 t. Similarly, 

g{a{t)) = t 

does not hold for left-scattered and right-dense points in T. 

• • • ••• • • • • 
t\ t<i £ 3 £ 4 

Figure 2.1: Point classification: t\ - dense, t2 - left-dense and right-scattered, t3 -
isolated, £4 - left-scattered and right-dense 

Defini t ion 2.1.8 (Graininess). Let \i be a mapping \i : T \ {sup T} —> [0, 00) defined as 

fi(t) = a(t) - t, 

we call this mapping the graininess. 

Remark 2.1.9. Note that we can distinguish between the right- and left-graininess. 
The previously defined graininess is sometimes referred to as the right-graininess, and 
the left-graininess is defined as the mapping v : T \ inf T —> [0, 00) given by 

u(t) = t - g{t). 

It is important to note that the domain of v is T \ inf T , i.e., the left endpoint of T is 
excluded. 

Remark 2.1.10. Since every time scale T is a closed set, the definitions given above 
imply that both a(t) and g(t) belong to T when t e l . 

Defini t ion 2.1.11 ( T K ) . Let T be a time scale. We define TK as 

T K = / T ~ ( ^ s u p T ) ' s u p T l i f s u p ( T ) < ° ° : 

I T if sup T = 00. 

Remark 2.1.12. We introduce the following convention. Let a, ft 6 R, then 

[a,b]T = [a,b] f lT . 

Similarly for (a, b) fl T , [a, b) D T and (a, b] fl T . 

2.2 Differentiation 
In this section, we discuss the concept of differentiation on time scales and provide some 
useful formulas and demonstrate their practical applications. 

5 



2.2 DIFFERENTIATION 

Defini t ion 2.2.1 (Delta derivative). We say that a function / : T —> M has a delta 
derivative fA(t) at t G TK if, for every e > 0, there exists 5 > 0 such that for every 
se{t-6,t + 6)j 

\(f(a(t)) - f(s)) - fA(t)(a(t) - s)\ < e\a(t) - s\ (2.2.1) 

holds. 

Remark 2.2.2 (Nabla derivative). We can define another type of derivative called nabla 
derivative, we need to replace (2.2.1) with 

\(f(Q(t)) - f(s)) - f(t)(g(t) -s)\< e\g(t) - s\. 

Example 2.2.3. If T = R, then the delta and nabla derivatives coincide with the usual 
derivatives, and we have fA = / v = / ' . On the other hand, if T = Z, then the delta 
and nabla derivatives coincide with the forward and backward difference operators, respec­
tively. Specifically, we have fA(t) = f(t + 1) - / (* ) = Af(t) and / v ( t ) = fit) -fit- 1) = 
v / (0 -

Remark 2.2.4. There are some other types of derivatives, e.g. diamond, we do not study 
derivative types other than delta in this thesis any further. In the remainder of the text, 
we focus only on the delta derivative. If not stated otherwise, by "derivative" we mean 
the delta derivative. 

Theorem 2.2.5. Let f : T —> K. be a function and t G TK. Then the following hold: 

1. Assume f is delta differentiate at t, then f is continuous at t. 

2. Assume t is right-scattered and f is continuous at t, then f is delta differentiable 
at t and 

f A ( t ) = i M m ^ m , 
n{t) 

3. Assume t is right-dense, then f is delta differentiate at t if and only if 

y fit) ~ f(s) 
a = hm 

s-*t t — s 

exists, then fA(t) = a. 

4- Assume t is delta differentiate t, then 

f(o-(t)) = f(t)+Kt)fA(t). 

Theorem 2.2.6. Let f, g : T ^ R be delta differentiate at t G TK. Then 

1. f + g is delta differentiate at t and 

(f + g)A(t) = fA(t) + gA(t), 

2. for any a G K. af : T —> K. is delta differentiate at t and 

(af)A(t) = afA(t), 

6 



2 TIME SCALES 

3. fg is delta differentiable at t and 

(fg)A(t) = fA(t)g(t) + f(a(t))gA(t) = f(t)gA(t) + fA(t)g(a(t)), 

4- if f(t)f(cr(t)) 7̂  0, then 1/f is delta differentiable at t and 

hYif) f A { t ) 

5. if git)g(a{t)) ^ 0, then f /g is delta differentiable at t and 

A A

( t ) fA(t)g(t)-f(t)gA(t) 
.gj g(t)g(a(t)) 

Example 2.2.7. Let a e R and m e N . Then 

1. for / defined as /(*) = (t - a)m 

m—l 
m—l—v 

m—l 

fA(t) = j2(^)-^u(t-a) 

2. for g defined as g(t) = l/(t — a 

= ~ ^ {c{t)-a)m-v{t-a)v+1' 

Remark 2.2.8. From now on we use the following convention 

r -if oa). 

Example 2.2.9. Let f,g and h be delta differentiable at t. We can calculate the delta 
derivative of fgh. Since Theorem 2.2.6 holds, we can state gh is delta differentiable at t 
and therefore also / • (gh) = fgh is delta differentiable at t and the delta derivative of fgh 
is given by following formula 

(fgh)A = fAgh + r(gh)A = fAgh + f°gAh + r g ° h A . 

We can generalize this for n functions, consider a function p — / i / 2 . . . / „ and suppose f 
is delta differentiable at t for % e { 1 , . . . , n}, then 

n j—1 n 

pA = EI l /r / f II a-
j=l i=0 k=n—j 

We might prove this using mathematical induction. 

Example 2.2.10. Again by Theorem 2.2.6 

(/2)A = (/ • /)A = fAf + FfA = (f + F)fA-

This expression can be again generalized for fn+1 as 

( / » + i ) A = )j2fk(F)n-k\fA-
. fc=0 



2.3 CHAIN RULE 

Defini t ion 2.2.11 (Second delta derivative). Let / : T —> R be a function, suppose fA 

is delta differentiable on (T K ) K with delta derivative fA* = / A A = ( / A ) A : (T K ) K -»• R, 
we denote this function as second delta derivative. 

Remark 2.2.12. Function fg does not need to be twice delta differentiable even if / and 
g are so. We know that 

(fg)A = fAg + fagA. 

Now when considering the derivative of (fg)A, it is important to note that the requirement 
for delta differentiability extends beyond just / and g. In this case, the existence of fa is 
also necessary, which may not always be satisfied. If the requirement is satisfied, then 

(fg)A2 = (fAg + FgA)A 

= fAA9 + fA(79A + r A 9 A + r g A A . 

2.3 Chain rule 
It is well-known that if / , g : R —> R and g is differentiable at t and / is differentiable 
at g(t), then 

(fogy = f'(g(t))g'(t). 

We show that this chain rule does not hold in general for the time scale calculus and 
provide several alternatives. 

Example 2.3.1. Assume T = Z and consider f(t) = g(t) = t2. Then 

(/ o g)A = ( t 4 ) A = ( t + 1 ) 4 ~ = 4t 3 + 6t2 + At + 1 

and 

fA(9(t))gA(t)=(t2^\2:|f)2(7+T-/=4t3+2t2+2t+i-> 
then apparently for t ^ 0 

(fog)A^fA(g(t))gA. 

We introduce three alternatives to the classical chain rule. 

Theorem 2.3.2 (Chain rule). Let g : R —> R be continuous and suppose g : T —> R is 
delta differentiable on TK and f : R —> R is continuously differentiable, then there exists 
c in the real interval [t,a(t)] such that 

(fog)A(t)=fA(g(c))gA(t). 

Theorem 2.3.3 (Chain rule). Let f : R —> R be continuously differentiable and suppose 
g : T —> R is delta differentiable. Then fog is delta differentiable and the formula 

(f o g)A(t) = { I f'(g(t) + h^(t)gA(t)dh } gA(t) 

holds. 
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Let T be a time scale and v : T —> K. be a strictly increasing function such that 
T = v(T) is also a time scale. We denote the forward jump operator on T by a and 
the corresponding delta derivative by A . It is true that v o a = a o v. This allows us 
to introduce another chain rule. 

Theorem 2.3.4 (Chain rule). Let v : T —> M. be strictly increasing and suppose T = v(T) 
is a time scale and w : T —> M. If uA(t) and u>A(z/(£)) exis^ for t G T K , t/ien 

(w o z/)A = (w A o v)vA. 

Remark 2.3.5. We use Theorem 2.3.4 in order to transform a dynamic equation to a sim­
pler form later in Chapter 6. 

2.4 Mean value theorem 
In this section, we present the mean value theorem and related remarks. 

Theorem 2.4.1 (Mean value theorem). Let a, b G T and consider a continuous function 
f : [a,b]j —> K. that is differentiable on [a, b)j. Then there exist £ , r G [a,b]j such that 

l\r) < M^LJM < ; A K ) . 
o — a 

Remark 2.4.2. Let / be a continuous function on [a, 6]T that is differentiable on [a,b)j. 
If fA(t) = 0 for all t G [a, b)j, then / is constant function on [a, 6]T-

Remark 2.4.3. Let / be a continuous function on [a, 6]T that is differentiable on [a,b)j. 
Then / is increasing, decreasing and nonincreasing on [a, b]j if fA(t) > 0, fA(t) < 0, 
fA(t) > 0 and fA(t) < 0 for all t G [a, 6)T, respectively. 

Theorem 2.4.4. Suppose f andg are continuous functions on [a, b]j that are differentiable 
on [a,b)j. Let moreover gA(t) > 0 for all t G [a,b)j. Then there exist £, r G [a, 6)T snc/z 

/ A ( r ) f(b)-f(a) < / A ( Q 
^ A ( r ) " 6 - a "5 A (0 ' 

2.5 Examples of time scales 
Several examples of time scales have already been mentioned, most importantly the real 
numbers (M). In this section, we explore these time scales in more detail and introduce 
other cases that have been less frequently studied. 

Example 2.5.1 (M). Let us focus on the time scale T = M. 

Forward j u m p , backward j u m p and graininess 
Consider T = M, then for all t G T 

a{t) = inf{s eT,s>t} = t, 

9 
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similarly 
g(t) = sup {s G T, s < t} = t. 

Thus for all £ G T 
^(t) = a{t) -t = t-t = 0. 

Derivat ive 
Suppose T = hZ, then for a function / : T —> K. we have 

fA(t) = \ i m m m = f ' ( t ) 
s-*t t — S 

for all t G T. 

Example 2.5.2 {hi). Now we focus on the time scale T = KL = {hk,k G Z}, where 
h > 0. 

Forward j ump , backward j u m p and graininess 

Consider T = KL, then for all t G T the following holds 

a{t) = inf{s G T,s > t} = inf {t + nh,n G T} = £ + ft 

and 
^(t) =t-h. 

Therefore for all t G T 

^(t) = a{t) - t = t + h-t = h. 

That means the graininess is constant. 

Derivat ive 
Let T = hZ, then for a function / : T —> M. we have 

_ /(*(*)) ~ /(*) _ /(* + h)- fit)  
1 [ ) ~ n(t) ~ h 

for all t G T. 

Example 2.5.3 (Pa,b)- In this section, we explore the time scale 

T = P a , b = Q [k(a + b), k(a + h) + a], 
fc=0 

where a,b > 0. 

Forward j u m p and graininess 
Consider T = Pa]&, then the following holds 

a(t) 
t if t G \JT=o[Ha + b),k(a + b) + a], 
t + b iite\JZ0{k(a + b) + a}. 

10 
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Therefore 

fi(t) 
0 iite[JZ0[k(a + b),k(a + b) + 
b iite[JZ0{k(a + b) + a}. 

a 

That means the graininess is not constant and not continuous. This time scale faithfully 
models the life span of cicadas or a common mayfly. 

Example 2.5.4 (qz). Let us consider the time scale 

qz = {qk,keZ}, 

where q > 1. We now take the time scale T = qz. 

Forward j u m p , backward j u m p and graininess 

Assume T = qz, then 

a(t) = mi{qn,ne [m + l,oo)} = qm+1 = qqm = qt 

if t = qm £ T and u(0) = 0. That means we obtain for all £ £ T 

a(t) = qt, 

m = -

and thus 
fi(t)=a(t)-t = (q-l)t. 

That means T has one right dense point 0 and every other point is isolated and the grain­
iness is an unbounded function. 

Derivat ive 
Let T = qz, then for a function / : T —> M. we have 

fA(f) = f(*(t)) ~ fit) = f(qt)-f(t)  
1 U »(t) (q-l)t 

for all t £ T \ {0} and provided the limit exists 

s^O 0 — S s->0 s 

Example 2.5.5. (22 N) Let us consider the time scale 

2 2 N = { 2 2 f e , f c £ N } . 

Forward j u m p , backward j u m p and graininess 

Asssume T = 2 2 , then 

a(t) = inf {2 2 ",n £ [m + 1, oo)} = 2 2™ + 1 = 22™22™ = t2 

if t = 22™ £ T. That means we obtain for all £ £ T 

fj(£) = £2 

11 
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and for t e [16, oo) n T 
git) = Vt 

and thus 

H(t) = a(t) -t = t(t-l) 

That means every point in T = 2 2 N is isolated. 

Derivat ive 
Let T = 2 2 , then for a function / : T —> M. we have 

fA(f) = mt)) - f(t) m - fit)  
1 u m t(t-i) 

for all t e T. 

R 

Z 

P 

Figure 2.2: Selected time scales considered in this section 
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3 Integration on time scales 
This chapter focuses on the problem of integration on time scales. First, we introduce 
the notion of the Cauchy-type integral defined by means of antiderivatives. However, 
similar to classical calculus, this integral is not sufficient for our purposes. Therefore, we 
briefly explore the Riemann-type integral and then the Lebesgue-type integral. It is worth 
noting that, similar to derivatives, we can define delta and nabla integrals. However, we 
focus only on the delta cases. Our references for this chapter are [1], [2], [4] and [6]. 

3.1 Cauchy-type integral 
First, we introduce the Cauchy delta integral defined by means of antiderivatives (or pre-
antiderivatives). This is the original integral used on time scales introduced by Hilger. 

Remark 3.1.1. Note that we use terminology based on the work of Dieudonne. The no­
tion of the Cauchy-type integral might denote another type of integral in other sources. 

3.1.1 Construction of the integral 
For the construction of the Cauchy-type integral, we need to introduce notion of regulated 
and pre-differentiable functions. 

Defini t ion 3.1.2 (Regulated function). Let / : T —> M. be a function and suppose there 
exists a right-sided limit for every right-dense point in T and there exists a left-sided limit 
for every left-dense point in T . Then we call this function regulated. 

Defini t ion 3.1.3 (Pre-differentiable function). Let / : T —> M. be a continuous function, 
suppose D C P , P \ D is countable and contains no right-scattered elements of T and / 
is differentiable on D. Then we call / pre-differentiable with the region of differentiation 

Theorem 3.1.4. Let f be a regulated function. Then there exists a pre-differentiable 
function with the region of differentiation D such that for all t 6 D the following holds 

Defini t ion 3.1.5 (Pre-antiderivatives). Let / be a regulated function, then F is called 
pre-antiderivative if it is pre-differentiable with region of differentiation D and (3.1.1) 
holds for every t G D. 

Defini t ion 3.1.6. Assume / is a regulated function, then we define the indefinite integral 
of this fuction by 

D. 

FA(t) = f(t). (3.1.1) 

where F is a pre-antiderivative of / and C is an arbitrary constant. 
Following this, we can define the Cauchy delta integral by 

13 
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for all s,teT. 
A function F : T —> T is called an antiderivative of / : T —> M if (3.1.1) holds for all 

In the following, we state a theorem regarding the existence of antiderivatives. Before 
we do so, it is necessary to introduce the notion of an rd-continuous function. 

Defini t ion 3.1.7 (Rd-continuous function). Let / : T —> M. be a function and suppose 
that / is regulated and continuous at every right-dense point of T, then we call this 
function rd-continuous. 

Theorem 3.1.8. Let f be an rd-continuous function if tQ G T, then F defined by 

for t G T is an antiderivative of f. 

Remark 3.1.9. The major advantage of the Cauchy-type integral is the simple way, 
in which we construct it. Unlike other types of integrals, it does not require a limiting 
process to be constructed. On the other hand, the main disadvantage is that it has a strict 
restriction on integrability, as it can only be applied to regulated functions. 

3.1.2 Improper integrals 
Defini t ion 3.1.10. Let a G T, sup T = oo, and assume / is rd-continuous on [a, oo), 
then we define the improper integral by 

We say the improper integral converges provided the limit exists. Otherwise we say it 
diverges. 

In the traditional calculus, the Riemann-type integral is usually defined using either the 
Riemann sums or the Darboux sums. On time scales, we can also construct the Riemann 
delta integral using both methods. In this section, we present a brief construction using 
Darboux sums. 

3.2.1 Construction of the integral 
Consider points a, b G T such that a < b and let [a,b]j be a closed and thus bounded 
interval in T. A partition of [a, b]j is any finite ordered subset 

t G T K . 

lim / f(t)At. 

3.2 Riemann-type integral 

P = { t 0 , t i , . . . , * „ } c [a,b]j 
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where a — t0 < t\ < ... < tn — b. Let us consider the set of all partitions of [a, b]j and 
denote it by V(a, b). Let / be a real-valued bounded function on [a, b]j, then 

M = sup {/(*),* G [a, 6)T}, m = inf {/(*), t e [a, 6)T} 

and for every i e {1, 2 , . . . , n} 

Mi = sup{/(*),* G [ * i - i , * i ) T } , " i i = inf {/(*),* e [*i_i,*i)T}-

Let us now consider a partition P EV, then 

n n 
U(f,P) = ^TlMi(ti-ti-1) and L ( / , P ) = J ] m i ( * i - * i _ i ) , 

i=i i=i 

where by U(/, P) we denote the upper (delta) sum and by L(f, P) lower (delta) sum of / 
with respect to P. Note that 

m(b -a)< L(f, P) < U(f, P) < M(b - a). (3.2.1) 

Now we can define the upper delta U(f) and lower delta L(f) integrals of / from a to b 
by 

U(f) = mi{U(f,P),PeV} 

and 

L(f) = snV{U(f,P),PeV}. 

In view of (3.2.1), we state that L(f) and U(f) are finite. 

Defini t ion 3.2.1 (The Riemann delta integral). Let / : T —> M. be a bounded function. 
We say / is delta integrable from a to b if L(f) = U(f). We denote this value by 

fbf(t)At 
J a 

and call this integral the Riemann delta integral. 

Remark 3.2.2. The construction we used is called the Darboux construction. The origi­
nal Riemann construction of the Riemann-type integral is slightly different. We can prove 
the equivalency of the two constructions analogically to the classical calculus. 

Remark 3.2.3. It is possible to prove analogies of many theorems regarding ordinary 
Riemann-type integral for the calculus on time scales, for more read [2]. 

Remark 3.2.4. Any bounded function on [a, 6]T with finitely many discontinuity points 
is integrable. It can be proven, that this set is larger than the set of regulated functions. 
Moreover, the Riemann-type integral suffers from problems related to a lack of reasonable 
convergence results, which can restrict its applicability. 
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3.2.2 Improper integrals 
Defini t ion 3.2.5. Suppose a G T and and sup T = oo. Now assume a real-valued 
function / is defined on [a, O O ) T and is integrable on the interval [a, b]i for any b G T with 
b > a. Consider the integral 

We say the integral converges, provided the limit exists. Otherwise, we say the improper 
integral diverges. 

Remark 3.2.6. The improper integral defined above is the improper integral of the first 
kind. We could define also the improper integral of the second kind. We consider a time 
scale T and an interval [a, b]j, where b is left-dense and let / be integrable on any interval 
[a, c]j and unbounded on [a,b)j. We call the formal expression 

an improper integral of second kind. We say / has a singularity at t = b. If the left-sided 
limit 

exists and is finite, then we say the improper integral converges. Otherwise, we say 
the improper integral diverges. 

3.3 Lebesgue-type integral 
In this section, we focus on the Lebesgue delta integral. We introduce the Lebesgue delta 
measure by means of Caratheodory-like approach. We utilize measure theory to construct 
the integral. Later we present monotone and dominated convergence theorems. 

3.3.1 Lebesgue delta measure 
Let us first recall some concepts from general measure theory. 

Defini t ion 3.3.1 (Measure). Let X be a set. Then the system £ of subsets of X satisfying 

. Xea, 

. X \ A G £ for all sets A e E . 

• for every countable system {Ak}ken of sets, if Ak G £ then IJfceN ^k G £ . 

is called a-algebra. The pair (X, a) is called a measurable space. 

We define improper integral of / from a to oo by 
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Defini t ion 3.3.2. Let (X, E) be a measurable space, a function // : E —> [0, oo) U {oo} 
satisfying 

• M0) = o, 

• MUfceN Ak) = SfceN M^fc) ^ o r a ^ countable collections {Ak}'^=1 of pairwise disjoint 
sets in E 

is called a measure. A triple (X, E,/x) is called a measure space. 

Now we can proceed with the construction of the Lebesgue delta measure. Let T be 
a time scale and suppose sup T = oo. Let us consider the set of all left closed and right 
open intervals on T of the form 

[a,b)T = {t G T,a < t < b}, 

where a, b G T and a < b, we denote this set as T\. 
We define a mapping m\ : T\ —> [0, oo) U {oo}, that assigns to every interval [a,b)j 

its length, that is 
mi([a, 6 ) T ) = b — a. 

This mapping is a countably additive measure. The interval [a, O ) T is understood as the emp­
ty set. 

Using m i , we generate the outer measure m*. Let E be a subset of T. Assume there 
exists an at most countable system of intervals Vj G T\ for j G N such that 

E C |J Vj, 

then we set 
m\{E) = inf ^ r o i ( F 3 ) ; 

3 
where the infimum is taken over all coverings of E by the mentioned system of intervals. 

We say a set N C T is m^-measurable if 

ml =m*1(EDN) + m\{E n (T \ X ) ) 

for any i? C T. It can be shown, that the set of all m^-measurable subsets of T is 
a cr-algebra, we denote it as M.(ml). 

Defini t ion 3.3.3 (The Lebesgue delta measure). Let ml be an outer measure on the fam­
ily of all subsets of bounded time scale T and M.{ml) be a family of all ml measurable 
subsets of T, then the restriction //A of m\ to A^(mJ) is called the Lebesgue delta measure. 

We may extend the the Lebesgue delta measure to other types of intervals, one can 
show that if a, b G T and a < b, then 

/ U A ( [ O , b)j) = b — a and / X A ( ( O , b)j) = b — a (a). 

and if a, b G T \ {max T} and a < b, then 

A * A ( ( O , b]j) = a{b) — a (a) and / X A ( [ O , b]j) = a{b) — a. 

The Lebesgue delta measure satisfies all the axioms of a measure and therefore it is 
a measure (Definition 3.3.2) in the sense of measure theory. Similarly, (T,Ai(m*)) is 
a measurable space and (T, M.(ml), / / A ) is a measure space. 
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3.3.2 Construction of the integral 
We present some of the concepts from general measure and integration applied to the mea­
sure space (T,M.(ml),(J,A)-

Defini t ion 3.3.4 (Delta measurable function). Consider (T, A4(mi),//A), then we say 
/ : T —» [—oo, oo] = K. U {—oo, oo} is delta measurable if 

/ - ' ( t -oo .a ) ) = {te T,f(t) <a}e M{m\) 

for any a e l . 
Let E C T be delta measurable. A function / : E —> [—oo, oo] is delta measurable 

on E, if its zero extension on T is a delta measurable function. 

Defini t ion 3.3.5 (Simple function). We say a function S : T —> M. is simple if it is delta 
measurable and takes only a finite number of different values OJI, a2,..., an. 

Remark 3.3.6. Every simple function S can be expressed using 

n 

i=l 

where OJI, a2, • • •, an G M, A1: A2,..., An are delta measurable sets and \At is the chara­
cteristic function of Aiy i.e., 

XAM = 1 for t G A , 
= 0for * eT\Ai 

For the following definitions we use the convention that 0 • oo = 0. 

Defini t ion 3.3.7. Suppose E C T is a delta measurable set and let S : T —> [0, oo) be 
a simple delta measurable function with 

n 

The Lebesgue delta integral of S is defined by 

» n 

I S(s) A s = V ajH±(Aj n £?). 
i s , = 1 

Defini t ion 3.3.8. Suppose £ C T is a delta measurable set and let / : T —> [0, oo] be 
a delta measurable function. The Lebesgue delta integral of / on E is then defined by 

/ f(s) As = sup < / S(s) As , S is simple delta measurable, 0 < S(t) < f(t) for t G T 
JE VJE 

Defini t ion 3.3.9. Suppose E C T is a delta measurable set and let / : T —> [—oo, oo] be 
a delta measurable function and let 

/ + := max{/, 0}, and / ~ := max{—/, 0}. 
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Function / is then Lebesgue delta integrable on E if at least one of the integrals 

/ f+(s)As and f / " ( s ) A s 
JE JE 

is finite. The Lebesgue delta integral of / on E is then defined by 

f f(s)As= f f+(s)As- f f-(s)As. 
J E «/E J E 

3.3.3 Convergence theorems 
We know that (T, .M(m*)) is a measurable space, thus we might utilize existing results 
from measure theory. In this section, we formulate the Levi monotone convergence theo­
rem and the Lebesgue dominated convergence theorem adapted to (T, A4(ml)) . 

Theorem 3.3.10 (Levi monotone convergence theorem). Let E C T be a delta measurable 
set and suppose (fn)nm is a nondecreasing sequence of nonnegative delta measurable 
functions fn:E—t [0, oo], i.e., for every t G E and all n G N 

0 < / „ ( * ) < fn+l(t) < O O . 

Further let t G E 
f(t) = lim fn(t). 

Then f is delta measurable and 

lim / fn(s)As= [ f(s)As. 
N ^ ° ° J E JE 

Theorem 3.3.11 (Lebesgue dominated convergence theorem). Let E C T be a delta 
measurable set and suppose (fn)^=i is a sequence of delta measurable functions fn:E^r 
[—00,00] such that for t G E 

f(t) = lim /„(*). 
n—¥00 

Suppose g : E —> [0, 00] is a delta integrable function such that for all t G E 

\fn(t)\<g(t). 

Then f is delta measurable and 

lim / fn(s)As= [ f(s)As. 
N ^ ° ° J E JE 

Remark 3.3.12. The Lebesgue-type integral is far superior to all other notions of the in­
tegral on time scales. It provides the largest set of integrable functions and its derivation 
is based on measure theory and many details can be avoided by quoting standard results 
from measure theory. 
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3.3.4 Examples of integration on time scales 
In this section we discuss integrals for some special settings. 

Example 3.3.13. Let a, b G T and suppose / is Lebesgue delta integrable, then 

. If T = R, then 

f{t) At = f'f(t)dt. 
J a 

• If [a, b]j contains only isolated points, then 

fb (E t e [ a , & ) T M * ) / ( * ) i f a < 6 , 
/ f{t) At = I 0 if a = 6, 

. If T = hZ = {hk, k G Z}, where > 0, then 

/ f(t)At= I 0 if a = 6, 

. If T = Z = {jfe,jfe G Z}, then 

f b f E t I /(*) i f« < 6, 
/ f(t)At=l 0 if a = 6, 

. If T = q^ = {qk, k G N} |J{0}, then 

fb [ 52k€{a,aq,...,b/q}(q ~ W ( * 0 if a < 6, 
/ fit) At=U if a = b, 

[ - Efc e {^,. . . ,a/g}(9 - if a > b. 

Remark 3.3.14. The fourth case from Example 3.3.13 is the special case of the third 
one, where we set h = 1. 

Example 3.3.15. Consider the time scale T = 2 2 N = {tk, k G N}. We know that 

ait) = t2 

and 
H(t) = t(t - 1). 

J <i 
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Then 

ß{tk) ,00 1 _ ^ 

/ ¥At = ^ 
Jti 1 k=i 

k 

fe=l 

= 00, 

because the general term of the last series tends to 1 as k approaches infinity. 

Remark 3.3.16. Example 3.3.15 yields an interesting result. 

00 j 
— A t < cx> 

in the time scale calculus, in contrast to the classical differential calculus, does not hold 
in general. 

Remark 3.3.17. Unless stated otherwise, from now on by delta integrability we mean 
Lebesgue delta integrability. 

3.3.5 Properties of the integral 
Theorem 3.3.18 (Linearity). Let T be a time scale and Ci ,c 2 G T and suppose u and v 
are delta integrable functions on [a, b]j, then 

rb pb pb 

i (ciu + c2v)(t) At = ci / u(t)At + c2 / v(t)At 
J a J a J a 

holds. 

Theorem 3.3.19 (Additivity with respect to range of integration). Let a < b < c G T 
and suppose u is integrable on [a, 6]T, then 

pb pc pb 

/ u{t)At= J u(t)At+ / u(t)At 
Ja Ja Je 

holds. 

We introduce the fundamental theorem of calculus. 

Theorem 3.3.20 (Fundamental theorem of calculus). Suppose g is a continuous function 
on [a,b]i such that g is delta differentiable on [a,b)j- If gA is delta dijferentiable from a 
to b, then 

I gA(t)At = g(b)-g(a) 
J a 
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The previous statement combined with 

(uv)A = uAv + uavA 

leads to an integration by parts formula. 

Theorem 3.3.21 (Integration by parts). Suppose u and v are continuous functions on 
[a, b]j that are delta differentiate on [a, b)j. IfuA and vA are integrable on interval [a, b]j, 
then 

r-6 rb 

uA{t)v{t) At = u{b)v{b) - u{a)v{a) - ua{t)vA{t) At. (3.3.1) 
J a 

The proof of the next theorem is is based on chain rule (Theorem 2.3.4). 

Theorem 3.3.22. (Substitution) Suppose v : T1 —> M is a strictly increasing function 
such that T 2 = ^(Ti) is a time scale. Denote by A1 the delta derivative on T1 and A 2 

the delta derivative on T 2 . Let f : T i —> M. be a locally A\-integrable (on each finite 
interval) function and let v be a A\-differentiable with locally A\-integrable A\-derivative. 
Then, if fvA has a A\-antiderivative and if a,b G T, 

I f(t)uA^(t)A1t= / (fou-l)(s)A2s. 
J a J via) 

-v(b) 

v(a) 

Theorem 3.3.23. Let f be a rd-continuous function and t G TK, then 

ra(t) 

J f(r)AT = n(t)f(t). 
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4 Function spaces on time scales 
In this chapter, we discuss various function spaces endowed with a norm that are com­

monly used in the study of time scales. These spaces include generalizations of classical 
function spaces such as the space of continuous functions, the space of bounded functions 
and LP spaces. We also introduce function spaces that are specific to time scales. Our 
primary references for this section are [2], [9], and [10]. 

4.1 Continuous and rd-continuous functions 
Continuity on time scales is defined in the same way as in the classical calculus. We 
previously defined rd-continuous functions in Definition 3.1.7. In this section, we will 
discuss the spaces of functions that possess these properties. 

Defini t ion 4.1.1. Let a, b G T , such that a < b. Consider the set of rd-continuous 
functions on interval [a, b]j, we denote this set by C r (j[a, b]j. On this set, we define the so 
called supremum metric as follows 

Qco(f,g):= sup \f(t)-g(t)\, (4.1.1) 
*G[a,6]T 

where f,gE C r (j[a, b]j. The pair (Crd[a, b]j, Qoo) forms the space of rd-continuous functions 
with supremum metric. 

Remark 4.1.2. The mapping defined by (4.1.1) satisfies all three properties required for 
a metric, thus (Crd[a, b]i, P O O ) is a metric space. Indeed, suppose f,g,h G CTd[a,b]i, then 
the following properties are satisfied 

• identity of elements with zero distance: it is clear that 

Qoo(f,g)= sup \f(t) - g(t)\ = 0, 

te[a,b]T 

if and only if f(t) = g(t) for t G [a, b]j, 

• symmetry: 
Qoo(f,g)= sup \f(t)-g(t)\ = sup \g(t)-f(t)\ = g0O(jg,f), 

*G[a,6]T *G[o,6]T 

• triangle inequality: because \f(t) — g(t)\ < \f(t) — h(t)\ + \h(t) — g(t)\, we have for 
all t G [a, b]i 

Qoo(f,g) = sup 1/(0 -g(t)\ 
te[a,b]T 

< sup \f(t)-h(t)\+ sup \h(t)-g(t)\ 
*G[o,6]T *G[O,6]t 

= Qootf, h) + Qoc(h,g). 

Defini t ion 4.1.3. Let / G C rd[a, b]j, then we define the supremum norm of / by 

l l / I L =
 S U P 1/(01- (4-1.2) 

*G[a,6]T 
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Remark 4.1.4. It is easy to show that (4.1.2) is indeed a norm, therefore Cr(j[a,6]T and 
I H l o o form a normed space. 

Theorem 4.1.5. The space (Crd[o, 6]TJ l l ' l l o o ) ? s

 a Banach space. 

Proof. We aim to prove the theorem by showing any Cauchy sequence in (Cr(j[a, b]j, I H l o o ) 

converges in the sense of the supremum norm to an element of this space. Let (fn)^=i Q 
Crd[a,b]f be a Cauchy sequence. For any e > 0, there exists n£ G N such that for all 
m,n > n£, 

\\fn ~ / m l l o o < £ -

Let us fix arbitrary t G [a, 6]T, then 

\fn(t) ~ fm(t)\ < SUp \fn(j) - fm{j)\ = \\fn - f^^ < £. 
T£[a,b]j 

Hence (/ n (t))^ = 1 is a Cauchy sequence in (M, | • |). Since (M, | • |) is complete, (/n(0)^=i 
is convergent. We denote the limit of ( / „ ( t ) ) ^ 1 by 

lim /„(*) = /(*)• 

By taking the limit for all t G [a, b]j, we construct function / : [a, 6]T —> M.. 
We need to show / is rd-continuous on [a, b]j, that means / is continuous at all right-

dense points and has a finite left-sided limit at all ld-dense points. Let us fix e > 0. We 
choose TV G N such that for all n,m > N 

i i / . - / . i i . 4 

Let r G [a, b]j, then for all n > N and m = N + 1 > TV 

| / „ ( r ) - / J V + i ( r ) | < | | / B - / J V + 1 | | 0 0 < | . 

We take the limit as n —> oo in | / n(T) — /jv+i(r)|. Since ( / „ ( t ) ) ^ 1 converges in (M, | • |), 
we get 

I/(t)-/n+i(t)|<|. 
By the assumption, we have / A T + I G C r d [ a , & ] T - Suppose t G [a, 6)T is a right-dense point, 
then /jv+i is continuous at t, i.e., there exists 8 > 0, such that if 

|t - T | < 5, 

then 
| / W * ) - W r ) l < | . 

Thus 

- f{t)\ = | / (r) - / A T + I ( T ) + / ^ + 1 ( r ) - / ^ + 1 ( t ) + / ^ + 1 ( t ) -
< |/(r) - fN+1(r)\ + \fN+1(r) - fN+1(t)\ + \fN+1(t) - f(t)\ 

s e e 
< 3 + 3 + 3 
= e. 
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4 FUNCTION SPACES ON TIME SCALES 

This shows that / is continuous at all right-dense points. 
Suppose t G (a, b]j is a left-dense point. Then there exists a left-sided limit L G 

of (/ n )£Li at t. Consequently, there exists S > 0 such that if 

r G ( £ - < M ] T , 

then 
2e 

\fN+l(r)-L\ < -
holds. Thus 

|/(r) - L \ = |/(r) - / A T + I ( T ) + W r ) - L | 

< | / ( r ) - W r ) | + | W r ) - L | 

< 3 + T 
= e, 

which shows that / has left-sided limit at all left-dense points. Hence / is rd-continuous. 
As the final step, we prove (fn)^Li converges to / in the sense of supremum norm. 

Let e > 0 be arbitrary and choose TV G N such that for all n,m > N 

i i / . - a . i l 4 

Let us fix n > N and let t G [a, b]j, then for all m > N 

\fn(t) ~ fm(t)\ < Wfn-UL-

Taking the limit as m —> oo in \\fn — fmW^, we get 

sup | / „ ( * ) - / ( * ) | < ^ < e - (4-1.3) 
*G[a,6]T

 Z 

We know that (4.1.3) holds for every n > N. We chose £ > 0 arbitrarily, therefore for all 
e > 0 there exists TV G N such that for all n > N 

\\fn-f\L<e. 

Thus, / „ converges to / in (Crd[a,6]T, I H I ^ ) . 

• 
Remark 4.1.6. The space of continuous functions on a closed interval with the supremum 
norm from Definition 4.3.2 (C[a, b]j, ||-|| ) is a Banach space in the sense of a metric 
generated by I H I ^ . The approach we would take to prove this statement is comparable 
to the demonstrated proof of Theorem 4.1.5. 

Remark 4.1.7. It is also important to note that C r (j[a, b]j is closed in C[a, b]j. Therefore 
we could approach the proof of completeness of (Crd[o, 6]TJ l l ' l l o o ) differently. We could 
first prove the completeness of (C[a, b]j, I H l o o ) and then utilize the closedness of C r (j[a, b]j 
in C[a, 6]T and employ Theorem 7.1.2. 
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4.2 REGRESSIVE AND POSITIVELY REGRESSIVE FUNCTIONS 

4.2 Regressive and positively regressive functions 
In this section, we focus on the spaces of regressive functions and positively regressive 
functions. 

Defini t ion 4.2.1 (Regressive function). Let g : T —> M. be a function on the time scale 
T. We say g is regressive if for all t G T 

Defini t ion 4.2.2 (Positively regressive function). Let g : T —> M. be a function on the time 
scale T. We say g is positively regressive if for all £ € T 

We denote the set of all regressive (positively regressive) functions on T by T(T) ( r + ( T ) ) . 
The set of regressive (positively regressive) functions that are in addition rd-continuous 

In order to show relation between the newly defined spaces and previously introduced 
spaces, we define an important mapping known as the cylinder transformation. 

Defini t ion 4.2.3 (Cylinder transformation). Suppose p : T —> M. is a regressive and 
rd-continuous function. By cylinder transformation of p we understand the following 
function 

where Log(z) denotes the principal value of the complex logarithm, where 2 ^ 0 . 

Remark 4.2.4. Note that cylinder transformation preserves rd-continuity and if p : T —> 
M. is a positively regressive function, then p is real-valued, since complex logarithm in this 
case reduces to the real valued logarithm, thus ^(TZ+(T)) C C r (j(T). 

4.2.1 Circle operations 
We defined (positively) regressive functions. In this section, we focus on preserving 
the property of (positive) regressivity while performing operations on these functions. 
In order to achieve this goal, we introduce circle operations, which yield yet another 
(positively) regressive function as their result. 

Defini t ion 4.2.5 (Circle addition). Suppose / : T —> M and g : T —> M. are regressive 
functions. We define circle addition "©" by 

l + fi(t)g(t)^0. 

l + fJi(t)g(t)>0. 

is denoted by K(T) (K+(T)). 

(/ © g)(x) = f(x) + g(x) + fj,(x)f(x)g(x) 

for all x G T. 
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4 FUNCTION SPACES ON TIME SCALES 

Defini t ion 4.2.6 (Circle subtraction). Suppose / : T —> M and g : T —> M. are regressive 
functions. We define a function Qg : T —> M. by 

e<7(x) = - . . (4.2.1) 

for all x G T. We may now define cz'rc/e subtraction " 0 " by 

feg = f®{eg). 

for j , / e r ( T ) . 

Remark 4.2.7. Note that addition defined this way preserves not only regressivity, but 
also rd-continuity. It can be checked that the circle addition is associative and commu­
tative. Zero constant function serves as neutral element for T(T). For any g G T(T), 
the function Qg also preserves regressivity. Moreover, it is the inverse of g under Q, i.e., 
g Q (Qg) = (Qg) Q g = 0. This means (r(T), ©) constitutes a commutative group and 
each of the sets T + (T ) , 7Z(T), TZ+(T) provides subgroup of (r(T), ©). 

Defini t ion 4.2.8 (Circle scalar multiplication). Suppose 7 G M. and g : T —> R is 
a positively regressive function. We define the circle scalar multiplication " 0 " by 

1Qg(x)={ n{x) 
^g(x) if n(x) = 0. 

Remark 4.2.9. The multiplication defined this way preserves not only positive regres­
sivity but also rd-continuity. That means positively regressive functions on a time scale 
T provide a real vector space ( r + ( T ) , ©, 0) and the set 7Z+(T) is a subspace of T + ( T ) . 

4.2.2 Other properties 
Theorem 4.2.10. Suppose N C T(T). Then the cylinder transformation ^ : N —> ̂ (N) 
is a bijection. 

Theorem 4.2.11. Assume (V, +, •) is a vector space of functions on T. Let V be the set 

of positively regressive functions such that 

geV 

if and only if 
Ug) e v. 

Then (V, 0 , 0) is another vector space and ^ : (V, 0 , 0) —> (V, +, •) is an isomorphism 
between these spaces. 

Theorem 4.2.12. Consider a normed space ((V, +,•), ||-||) of functions on a time scale 
T. Then the space (V, 0 , 0) constructed in such a way that 

geV 
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if and only if 
Ug) e v 

is also a normed space (V, ||-||M) with a norm given by 

\\9l = \\U9)\\ 

for all g G V. 

Remark 4.2.13. This means £M : (V, ||-1| ) —> (V, ||-||) is an isometry. 

Next we state a theorem regarding completness of ((7Z+[a, b]j, ©, ©), ||-1| ) space, we 
briefly explore two approaches to the proof. 

Theorem 4.2.14. Let a, b G T, then the normed linear space ((7Z+[a, b]j, ffi, ©), ||-1| ) is 
complete. 

First proof of Theorem 4-2.14- Suppose (fn)^=1 is a Cauchy sequence in TZ+[a,b]j with 
respect to I H I ^ . To prove this theorem directly, we need to show that (/n(0)n=i converges 
to some f(t) G M. for all t G T. Then we would show that a function / : T —> M constructed 
this way is positively regressive. We proceed by proving that (fn)^=1 converges to / 
in the sense of ||-|| , i.e., 

lim 11^0/11^ = 0. 

As a final step, we would prove that p is rd-continuous. • 

The proof, whose idea we have just presented, is quite complicated. There is a much 
simpler way to prove Theorem 4.2.14 thanks to the following theorem. 

Theorem 4.2.15. The space (7Z+[a, b]j, ||-1| ) is isometrically isomorphic to the space 
(C r d[a,6] T , | H | J . 

Proof. To prove this theorem, we have to find a bijective linear mapping F : lZ+[a, b]j —> 
Crd[a,b]f, which preserves the norm, i.e., for every / G TZ+[a,b]j 

WA = \\f\L-

Theorem 4.2.12 shows that the cylinder transform £M satisfies these requirements and 
therefore the spaces are isometrically isomorphic. • 

Second proof of Theorem 4-%-H- Since (Crd[a, b]j, I H I ^ ) is isometrically isomorphic to 
(7Z+[a, b]j, ||-1|M)5

 w e can utilize Theorem 7.3.4 and prove (7Z+[a, b]j, ||-1| ) is a Banach 
space by proving Theorem 4.1.5. • 
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4.3 Bounded continuous functions on noncompact in­
terval 

Defini t ion 4.3.1 (Bounded continuous functions on noncompact interval). Let a G 
T and [a, O O ) T - Consider a set of continuous functions / : [a, O O ) T —> K , such that 
sup t GrO j 0 O\ T < oo and let us denote it by BC[a, oo)j. We define a metric g^ 
on BC[a, O O ) T by 

Qoo{f,9)= sup \f(t)-g(t)\, (4.3.1) 
te[a,oo)i 

where / , g G 5C[o, O O ) T - The pair (BC[o, O O ) T , P O O ) forms the space of bounded continuous 
functions on noncompact interval with supremum metric. 

Defini t ion 4.3.2. Let / G BC[a, oo)j, then we define the norm of / by 

l l / I L =
 S U P 1/(01- (4-3.2) 

te[a,oo) T 

Theorem 4.3.3. The space (BC[a, oo)j, I H I ^ ) is a Banach space. 

Proof. Our goal is to prove the theorem by showing that any Cauchy sequence (fn)%Li in 
(BC[a,oo)j, I H I O Q ) converges in the sense of the norm defined by (4.3.2) to an element 
of the space. Let (fn)^=1 C (BC[a, O O ) T be a Cauchy sequence. For any e > 0, there 
exists n£ G N such that for all m,n> n£, 

\\fn ~ / m l l o o ^ e -

Utilizing the ideas of the proof of Theorem 4.1.5, we apply 

f(t) = lim fn(t). 

for all t G [a, O O ) T and obtain / : [a, O O ) T —> M.. Analogically to the proof of Theorem 
4.1.5, we show / is continuous and (fn)^Li converges to a bounded function / in the sense 
of norm defined by (4.3.2). 

• 
Defini t ion 4.3.4 (Continuous convergent functions on noncompact interval). Let a G M, 
suppose T is a time scale and consider [a, O O ) T - Consider a set of functions / G BC[a, O O ) T 
such that there exists L e R and 

lim /(*) = L 
t—¥00 

and denote it by Ci[a, oo)j. We define a metric on Ci[a, O O ) T by (4.3.1), where 
/, g G CL[CL, O O ) T - The pair (CL[CL, O O ) T , P O O ) forms the space of continuous convergent 
functions on noncompact interval with supremum metric. 
Remark 4.3.5. Analogically to BC[a, O O ) T space, Cx,[a, O O ) T with the norm defined by 
(4.3.2) is a Banach space. 

Remark 4.3.6. It is important to realise that analogically to BC[a, O O ) T and Ci[a, oo)j, 
it is possible to study bounded rd-continuous functions on noncompact interval denoted 
by BCrd[a, O O ) T and rd-continuous convergent functions on noncompact interval denoted 
b y Q d [ a , o o ) T . 
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4.4 Lebesgue delta spaces 
Since the delta measure and the Lebesgue delta integral defined in Chapter 3 can be 
included in general measure theory, we may define the Lebesgue delta spaces on time 
scales analogically to general measure theory. 

Defini t ion 4.4.1 (Cj(Ej). Suppose p G [1, oo) and let E C T be a delta measurable set 
and / : T —> [—oo, oo] be a delta measurable function. Then if 

f \f(s)\P As <oo, 
J E 

we say / belongs to Cj(E). 

Defini t ion 4.4.2. Let / , g G Cj(E), we define a metric gp on Cj(E) by 

QP(f,g)=(KlE\f(s)-g(s)\pAs 

Remark 4.4.3. Similarly to the classical calculus, the problem arises, since for / , <7 G 
C*(E) 

pP(f,g) = 0 

does not imply 
f = g 

and pp is in fact not a metric on Cj(E). We therefore utilize "almost everywhere equal" 
relation ~ . For f,g G Cj(E), we set 

f~9 

if f(x) = g(x) for x G E \ M, where n&{M) = 0. We consider the Lebesgue delta space 
as Lj(E) = £Jj(E)/ ~ , i.e., as classes of equivalence ~ . 

Defini t ion 4.4.4. Let / G Lj(E), we define the norm of / by 

n / i i p = ( X | / ( s ) r A s ) p • 
Theorem 4.4.5. The space Lj(E) is a Banach space. 

Proof. The proof follows from the completeness of the general space with measure. • 

4.5 Relative compactness 
In this section, we focus on relative compactness in some of the previously introduced 
spaces. 

Theorem 4.5.1 (Relative compactness in BC[a, O O ) T ) . Let N C BC[a, O O ) T be bounded, 
and assume that for every e > 0, there exists a partition of [a, O O ) T in a finite numbers 
of time scale intervals I\,..., In, such that sup4 s £ l . \f(t)—f(s)\ < e for every % = { 1 , . . . , n} 
and every f G N. Then N is relatively compact. 
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Proof. The space (BC[a, oo)T, ||-|| oo) is Banach. That means, according to Theorem 
7.2.5, it is sufficient to prove that N is totally bounded. In order to accomplish that, 
we need to construct a finite e-net for arbitrarily chosen e>0. Let us denote to = a and 
consider the partition 

h — [to, tl]l, I2 = [tl,t2\T, • • • , In-l = [tn-2, tn-l\j, In = [tn-1, Oo)f, 

where U G T for % G {0 ,1 , . . . ,n - 1}, U < ti+1 for % G { 0 , 1 , . . . , n - 2} and \f(t) -f(s)\ < 
e/5 for all s, t G Ij, where j G { 0 , 1 , . . . , n} and / G X and e > 0 is given. 

Let e > 0 be arbitrarily given. Let L be such that | | / | | < L for all / G N. We know 
that such L exists thanks to boundedness of N. We now take yi, y2, • • •, ym G M, such that 
—L = y1 < y2 < • • • < ym = L and yi+i — y^ < e/5 for % G { 1 , . . . , m — 1}, as the vertical 
values of the grid. The horizontal values of the grid are the numbers xi,... ,Xk, where 
xi < x2 < • • • < Xk and 

{xi , X2, • • • , Xk} — {to, ti, . . . t n _ i} . 

For any / G N, we might now construct a polygon g defined on [to, 00) and lin­
ear on (XJ,XJ+I) for all j G { 0 , 1 , . . . , k — 1} passing through the lattice points clos­
est to the graph of / . Moreover, let g be constant on [xu, 00) with the value v G 
{yi,l/2, • • -,ym} such that 

\f(xk)-v\= min \f(xk)-yi\. 
ie{l,2,...,m} 

Now we restrict g to [ £ O , O O ) T and take it as an approximation of / . Suppose Xj is 
the closest member of {xi,..., xk} to t. For t = Xj the situation is trivial and 

\f(t)-9(t)\ = \f(xJ)-g(xJ)\<£-

holds. 

On the other hand consider t 7̂  Xj, then 

\f(t) - g(t)\ < |/(t) - f{Xj)\ + \f(Xj) - g(xj)\ + \g(xj) - g(t)\ 

< - + - + | ^ ) - ^ ) | . 

The polygon g is monotone between adjacent x'j, that means for t > Xj 

\g(xj)-g(t)\ < \g(xj) - g(xj+l)\, 

where j G { 1 , . . . , m — 1}. Thus 

\g(xj) - g{t)\ < \g(xj) - f(xj)\ + \f(xj) - f(xj+1)\ + \f(xj+1) - g(xj+1)\ 
s e e (4.5.2) 

< - H h -
5 5 5 

for t > Xj. For t < Xj we would make the estimation analogically, instead of Xj+i we 
would consider Xj_\. 

Now (4.5.1) and (4.5.2) yield 
l l / - 0 l l o o < £ 

Because the number of all paths through the grid is finite (equal to mn), the set of functions 
g constructed above forms a finite e-net and N is therefore totally bounded and since 
(5C rd[a, O O ) T , I H I O O ) is a Banach space also relatively compact. • 
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Next, we focus on the spaces Ci[a, oo)j and C[a, b]j. We need to introduce modified 
notions of equicontinuity and equiboundness on time scales. 

Defini t ion 4.5.2. Let a, b G T such that a < b and consider a set TV of functions 
/ : [a, 6]T K . 

• We say functions in N are equibounded on [a, 6]T if there exists a positive real number 
L satisfying 

\f(t)\<L 

for all t G [a, 6]T and every / G N. 

• We say functions in TV are equicontinuous on [a, 6]T if for every e > 0 there exists 
5 > 0 such that for all t, s G [a, 6]T satisfying |t — s| < 8 and for all / G iV 

l / ( * ) - / ( * ) l < e 

holds. 

Theorem 4.5.3 (Relative compactness in Ci\a, O O ) T ) . Let N C Cx,[a, O O ) T consist of equi­
continuous and equibounded functions in every compact subinterval o/[a, oo) T and suppose 
that for any e > 0 there exist t0 > 0 such that for all t > t0 

lim <e 

/ioWs /or a// / G N. Then N is relatively compact. 

Theorem 4.5.4 (Relative compactness in the space of continuous functions). Let N C 
C[a, 6]T and suppose every sequence (fn)^=i Q N is made of equicontinuous and equi­
bounded functions in [a, b]j • Then N is relatively compact. 

Remark 4.5.5. The two theorems stated above can be proven using ideas similar to those 
of the proof of Theorem 4.5.1. 

Remark 4.5.6. As far as we know, there does not exist a time scale analogy for the Frechet-
Kolmogorov theorem, which gives a necessary and sufficient condition for relative com­
pactness in IP spaces. The criterion for relative compactness in the Lebesgue delta spaces 
has not been derived yet. 
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5 GENERALIZED EXPONENTIAL FUNCTION 

5 Generalized exponential function 
In this chapter, we introduce and explore the generalized exponential function on time 
scales. We use [3], [10] as our main sources. 

5.1 Construction 
The cylinder transformation, defined by (4.2.3), plays an essential role in the construction 
of generalized exponential function. We use this notion in the following definition. 

Defini t ion 5.1.1 (Generalized exponential function). Let i,to £ T assume p : T —> R is 
a regressive function, then we define the generalized exponential function by 

Theorem 5.1.2. Suppose p G 1Z(T) and fix to G T. Then the generalized exponential 
function ep(-,to) is the unique solution y : T —> K. of the dynamic initial value problem 

for all t G T. 

Remark 5.1.3. We defined the generalized exponential function using the cylinder trans­
form. It should be noted that alternative approach consists of defining generalized expo­
nential function as the solution of initial value problem, which is possible thanks to The­
orem 5.1.2. 

We show examples of the generalized exponential function for several time scales derived 
as the solution of initial value problem 

for all t G T. We do not provide details on the case when T = M, since the generalized 
exponential function in this context is evidently the same as the well/known exponential 
function from the classical calculus. 

Example 5.2.1 {JiL). Consider T = KL for h > 0 and let a G TZ(T) be a constant 
function, i.e., a 6 R , then 

yA = p(t)y, y(t0) = i-

5.2 Examples 

yA=p(t)y, y(t0) = l. 

(5.2.1) 

Indeed, y defined by (5.2.1) satisfies 

y(0) = (1 + ah)0 = 1 
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and 

A / , N _ V(t + h)- y(t)  
V [ t ) ~ h 

_ + - (1 + ah)* 
h 

_ (1 + ah)*(l + ah-l) 
~ h 

= ay(t). 

Example 5.2.2 (g N°). Let T = gN° for h > 0 and let peK(T), then the problem 

y

A=p(t)y, y{l) = 1 

can be rewritten as 

y° = (l + (q-l)tp(t))y, y(l) = 1 

for all £ € T. The solution of this problem is then 

e p ( M ) = II + (5.2.2) 
sGTn(0,t) 

If a € 7£(T) is constant, then we have 

e a (* , l )= J ] ( l + ( g - l ) 
seTn(o,t) 

as) 

Indeed, y defined by (5.2.2) clearly satisfies 

and 

y A 

y(l)= J ] (1 + (q - l)p(s)s) = 1 
sGTn(0,l) 

(MO 
s/(g*) - y(t) 

(q-l)t 

( i + ( ? - ! ) * ( * ) ) n seTn(o,t) 
(1 + (, - l ) a p ( a ) ) - II 

seTn(o,t) 
(1 + (g - l)sp(s)) 

( g - l ) t 
(g ~ l)fr(*) i l e T n ^ 1 + (g ~ 

p(o n ( I + ( 9 - I M « ) ) 
sGTn(0,t) 

p(*)y(*)-

34 



6 ANALYSIS OF DYNAMIC EQUATIONS ON TIME SCALES 

6 Analysis of dynamic equations on 
time scales 

In this chapter, we employ the tools from the previous chapters to analyze the qualitative 
properties of selected dynamic equations. 

6.1 Second order nonlinear dynamic equation 
In this section, we explore the equation 

yAA = p(t)g(ya), (6.1.1) 

which is considered on the interval of the form [a, O O ) T - We suppose p : [a, O O ) T —> M 
is an rd-continuous function such that p(t) > 0 for all t G [a, O O ) T and g : K. —> K. is a 
continuous function satisfying 

xg(x) > 0 

for all x 7̂  0. For this equation we study a solution, by that we mean a function 
y G C^d[a, O O ) T (an rd-continuous function with rd-continuous first and second delta 
derivatives) satisfying ( 6 . 1 . 1 ) for all t G [0,00)1-. We aim to show that there exists 
a solution of ( 6 . 1 . 1 ) such that 

yA(t) < 0 , 

y(t)>0 for large t, } (6.1.2) 

lim y(t) = c, 

where c is a given positive real number. We also discuss the existence of solutions having 
a positive limit, which are positive and decreasing on the entire interval [a, O O ) T -

6.1.1 Conditions for existence of solution 
In this section, we derive a condition necessary and sufficient for the existence of a solution 
to ( 6 . 1 . 1 ) with the properties (6.1.9) for a given c > 0 . 

Theorem 6.1.1. The coeffient p in the equation (6.1.1) satisfies 

/

oo poo 

p(s)AsAt< 00 (6.1.3) 

if and only if there exists a solution of (6.1.1), (6.1.2) for arbitrarily chosen positive real 
number c. 

Remark 6.1.2. The condition (6.1.3) with an additional (but very non-restrictive) as­
sumption 

/•oo 
lim t / p(s) As = 0 (6.1.4) 

is in our case equivalent to 
/•oo 

/ a(t)p(t) At < 00. 
•J a 
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6.1 SECOND ORDER NONLINEAR DYNAMIC EQUATION 

Indeed, we may show this using integration by parts as follows 

/

oo poo poo / poo \ 

J p(s) AsAt = J (1 • J p(s) As) At. 
Now using additional assumption (6.1.4) 

/

OO / POO \ 

(1 • J p(s) As) At = lim 

(t-a) / p(s)As 
x roo 

(a(t) - a)p{t) At 

Therefore 

if and only if (6.1.3) holds. 

poo 

/ (a(t) - a)p(t) At. 
J a 

poo 

/ a(t)p(t) At < oc 
J a 

Proof of Theorem 7.1.1. First, we prove the implication from right to left. Suppose y 
is a solution of (6.1.1) with properties (6.1.2) for fixed c > 0. Therefore y(t) > 0 and 
yA(t) < 0 for large t, say t >t0 for some t 0 G [a, O O ) T - We utilize the relation (3.1.6), i.e., 

yA(x)Ax = y(s) - y{t) (6.1.5) 

for arbitrary t, s G T such that t, s > 0 and t < s. By integrating the equation (6.1.1) 
from a to b, we get 

yA(s)-yA(t)= / p(x)g(y°(x))Ax. (6.1.6) 

Since pit) > 0 for all t G [a, O O ) T and y(t) > 0 for t > t0, i.e., g{ya{t)) > 0 for t > t 0, we 
get for t > t0 

yAA(t) > o, 

thus yA is £ > t 0 increasing. For t >t0 

yA(t) < 0, 

also holds. From (6.1.7) and (6.1.8) we obtain 

hm yA(t) = L) 

(6.1.7) 

(6.1.8) 

t—¥OQ 

where L < 0. Suppose L < 0, then y(t) ~ Lt, i.e., 

which is in contradiction with 

Therefore 

lim —^— = 1. 
t ^ o o y{t) 

lim y(t) = c. 
t—^oo 

lim yA(s) = L = 0. 
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By taking the limit in (6 .1 .6) as s —> oo, we obtain 

/

oo 

p{x)g{y(T{x)))Ax. 

We apply (6 .1 .5) again and get 

/

u poo 

J p(x)g(ya(xj) AxAt. 

Now we take the limit as u —> oo and since 

lim y(u) = c, 
u—^oo 

we get 

/

oo poo 

/ p{x)g{ya{x)) AxAt. 

This means 
poo poo 

/ / p{x)g{ya{x)) AxAt < oo. 
Jt0 Jt 

Thanks to l i i m . ^ y(t) = c, there exists K > 0 such that g{ya{t)) > K for all t > a, 
therefore 

poo poo poo poo 

K / p(x)AxAt< / / p{x)g{yc{x)) AxAt < oc 
'to Jt J to Jt 

and thus /»oo /»oo 

/ / A x A t < oo. 
J to Jt 

which clearly implies (6 .1 .3 ) . The implication from right to left is proven. 
Now we prove the implication from left to right. Using the Schauder fixed point 

theorem (Theorem 7 .4 .6 ) , we prove the existence of a solution to (6 .1 .1) satisfying 

yA(t)<o, t>to] 
y(t) > 0 , t>t0, ( (6 .1 .9) 

lim y(t) = c, 
t—>oo / 

where t0 G T is specified later. Let us consider a real positive number c and denote 

M — max g(t). 
te[c,2c] 

ts > a such that 
The integral f00f°°p(t)At converges. This means that for any e > 0, there exists 

poo poo 

/ / p(x) AxAt < e. 
Jte Jt 

Set e = c/M and denote corresponding t£ by t0. We have previously established that 
( i ? C [ t 0 , O O ) T , ll'lloo) is a Banach space for any t0 G T (Theorem 4 . 3 .3 ) . Our current 
objective is to identify a suitable set fl C BC[to, O O ) T and an operator T such that there 
exists a fixed point of T in Q, which corresponds to a solution of (6 .1 .1) with the desired 
properties ( 6 .1 .9 ) . 
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The set Q is considered in the form 

n = {/ e £ C [ t 0 , oo), c < /(t) < 2c for t > t 0 }. 

This set is clearly nonempty and bounded. We need to show that it is closed. Consider 
a sequence (fn)%Li C converging to some / in the sense of I H I ^ . We must show that 
/ belongs to Q. Since the convergence of a sequence of continuous functions (/ n)^=i 
in the sense of I H I ^ norm is in fact uniform (see proof of Theorem 4.1.5), / is continu­
ous, we can conclude that / is continuous. Next, we need to establish that / satisfies 
the defining inequality of Q. It stands that for any e > 0, there exists n£ G N such that 
for n > n£ 

sup \fn(t) -f(t)\ <e. 
tG[*0,oo)T 

Let us fix an arbitrary t > to, for such t 

hm fn(t) = fit). 

Then for all n G N and fixed t 
C < fn(t) < 2C 

holds, therefore 
c < /(*) < 2c. 

Since t is chosen arbitrarily, / G Q and therefore Q is closed. 
To prove that ft is a convex set, we must demonstrate that for any two functions f\ 

and fi in Q, their convex combination is also in Q. Let A be an arbitrary scalar between 
0 and 1. We want to show that A / i + (1 — A ) / 2 belongs to f2. For t >t0 

Ac < A/i(t) < A2c (6.1.10) 

and 

(1 - A)c < (1 - A)/ 2(t) < (1 - A)2c. (6.1.11) 

Now by adding (6.1.10) and (6.1.11) we obtain for t >t0 

c < Xf{t) + (1 - X)g{t) < 2c. (6.1.12) 

It is evident that A / i + ( l - A ) / 2 G BC[t0, oo)T, therefore thanks to (6.1.12) A / i + ( l - A ) / 2 G 
fi and the set fi is convex. 

We define the mapping T on Q for t > to as follows 

/

oo /»oo 

J p(x)g(r(x))AxAs, 

where / G Q. We need to prove that for t > to 

c< (Tf)(t) <2c. (6.1.13) 

Since p(t) > 0 for t > a, xg{x) > 0 for x ^ 0 and fa{t) > c > 0 for t > t 0, it is true that 
for t > t 0 

/

oo /»oo 

J p(x)g(fa(x))AxAs>0. 
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Therefore the first inequality of (6.1.13) holds. To prove the second inequality, we need 
to show that for t > to 

POO POO 

p(x)g(fa(x))AxAs < c. 

We make upper estimates of 
oo poo 

p(x)g(fa(x)) AxAs 

as follows 
C O O POD POO POO POO POO POO POO 

/ / p{x)g(fa(x)) AxAs < M / / p(x) Ax As < M / p(x) AxAs 
Jt Js Jt Js Jt0 Js 

Since 

we may continue with 

POO POO 

/ / p{x) AxAs < 
J t0 J S 

c 
~M' 

M 
POO POO 

/ / p(x) AxAs < M 
Jt0 Js M c. 

Therefore Tf en. 
Next, we need to prove that T is continuous. Let ( / n ) ^ i C f2 be such that 

lim | | / „ - / | | o o = 0. 

We need to prove that 
hm \\Tfn- Tf\\oo=0. 

n^-oo 

Let us denote An = Tfn — Tf and focus on the expression || A n | | and rewrite it as follows 

sup |A„(t)| = sup 
t > t 0 t > t 0 

sup 
t > t 0 

t Js 
OO POO 

t Js 

t J s 

< 
OO POO 

to J
 S 

p{x)g{rn{x)) AxAs 

p(x)(g(f:(x))-g(r(x)))AxAs 

p(x)\(g(fZ(x)) - g(r(x)))\AxAs. 

p(x)g(fa(x)) AxAs 

Let us now denote the function g(fn) — g(fa) by Gn. The function p\Gn\ satisfies for all 
n e N and all t > t0 

p(t)\Gn(t)\>0. 

Since / „ converges uniformly to / and g is continuous, 

lim p(t)\Gn(t)\ = 0 
n—¥oo 

holds for all t > to (pointwise convergence). The function g is continuous and / and fn 

for all n G N are bounded functions, therefore there exists L > 0 such that |G n(£)| < L 
for all t > to and n G N and thus 

p(t)\Gn(t)\<Lp(t). 
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We know that p(x) AxAs < oo , then p(x) Ax < oo. Therefore the function 
p\Gn\ satisfies the assumptions of the Lebesgue dominated convergence theorem (Theo­
rem 3.3.11). Moreover the function 

(6.1.14) p(x)\Gn(x)\ Ax 

is also nonnegative for t >t0 and for n G N satisfies 

p(x) Ax. 

We know that 

and therefore 

O O POO 

p(x)\Gn(x)\ Ax As < oc 

p(x)\Gn(x)\ Ax As < oo. 

This means the function (6.1.14) also satisfies assumptions of Theorem 3.3.11. We 
may now apply this theorem twice as follows 

lim 
t—¥00 

O O POO 

p(x)\Gn(x)\ Ax As 
oo POO 

oo POO 

p(x) lim \Gn(x) \ AxAs 
x—^oo 

p(x)0 Ax As 

Consequently 
lim \\Ar 0 

and the mapping T is therefore continuous. 
It remains to prove TQ is relatively compact. We operate on the space BC[to, O O ) T -

Therefore to prove relative compactness, we need to demonstrate validity of the assump­
tions of Theorem 4.5.1. Evidently, TQ is bounded, since TQ C Q and Q is bounded. 
We need to show that we might, for arbitrary e > 0, divide [t0, O O ) T into sub intervals 
Ii, J 2 , . . . , Jfc such that 

sup | T / ( t ! ) - T / ( t 2 ) | <e 
ti,t2eii 

for % G {1 ,2 , . . . A;} for feu. 
Fix e > 0 and suppose / G Q. Since 

lim 
t—>oo 

O O POO 

p(x)g(fa(x))AxAs = 0, 

there exists t* such that for all t i , t 2 > t* 

\Tf{U)-Tf{t2) 
OO POO 

tl 

<2 J S 

p(x)g(fa(x)) AxAs 

yo 

p(x)g(fa(x)) AxAs < e. 

(6.1.15) 

(6.1.16) 
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On the other hand Tf is delta-differentiable on [t0,t*)j and there exists K > 0 such 
that for t > to 

\(Tf)A(t)\ p{x)g{fa{x)) Ax < K. 

We utilize this fact and employ the mean value theorem (Theorem 2.4.1). Therefore 
for any t i , t 2 G [to,t*)j such that t i < t 2, there exists £ G [ti,t2]i-

| T / ( t 2 ) - T / ( t ! ) | < | T A / ( 0 | | * 2 - * i | . 

If we choose t i , t 2 G [to,t*)j to satisfy 

1*2 " t i l 

then 
\Tf(t2) - r / ( tO | < | T A / ( 0 | | t 2 - t i l <Kj£ = e- (6-1-17) 

Using (6.1.16) and (6.1.17), we may produce the desired division of [to, O O ) T and thus Tfl 
is relatively compact. 

We have proven validity of all assumptions of the Schauder fixed point theorem, there­
fore there exist (at least one) fixed point y of the mapping T, i.e., 

Ty = y. (6.1.18) 

Now taking the second delta derivative of (6.1.18), we get clearly (6.1.1). Thanks to the form 
of the set fl 

y(t) = (Ty)(t) > c> 0, 

moreover 

/
oo 

p(x)g(y°(x))Ax<0. (6.1.19) 
Finally 

( / • O O / ' O O 

c+ / / p(x)g(fa(x)) AxAs 
Jt J s 

C. 

The fixed point of T is therefore a solution of (6.1.1) with properties (6.1.2). • 

Remark 6.1.3. Under somewhat stronger assumptions, we can guarantee the existence 
of the solution on the entire interval, i.e., Theorem 6.1.1 holds for the solution with 
properties 

yA(t) < o, 1 
y(t) > 0 for t > a, I (6.1.20) 
lim y(t) = c. 

We consider two different situations. 
1. Suppose T is discrete, i.e., consists of isolated points. Then we can prove the ex­

istence of the solution of (6.1.1), (6.1.2) for t > to as in the proof of Theorem 6.1.1 and 
further extend it using the p operator to the interval [a, £Q)T as follows 

roo /»oo 
y(p(t0)) = c+ I p(x)ga(x)AxAs 

Jp(t0) Js 
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Obviously, y(p(t0)) > 0 and since 

/»oo /*oo /*oo /*oo 

/ / p(x)g(a(x)) AxAs > / / p(x)ga(x) AxAs. 
J p(<o) J s J to J s 

yA(p(to)) < 0 also holds. Repeating this process, thanks to the discrete nature of T, after 
a final number of steps we reach the point a and thus obtain the solution of (6.1.1) with 
properties (6.1.20). 

2. If we consider an arbitrary time scale T, then we can guarantee existence of the so­
lution of (6.1.1) with properties (6.1.20) if we choose c in Theorem 6.1.1 such that there 
exists K > 0 that satisfies 

max 
uG[c,(l+K)c] 

/*oo /*oo 
g{u) I I p(x)Ax < Kc. 

Ja J s 

Now we can consider the set fi in the form 

n = { / G BC[t0, oo), c < fit) < (1 + K)c for t > a}. 

Then for t > a 
OO /"OO 

p(x)g(f° 
f O O POO 

J s 

(Tf)(t) = c + J J p(x)g(r(x))AxAs 
/»OO /»oo 

< c + max g(u) / / p(x) A x A s 
«e[c,(i+x)c]T J s 

/»OO /»oo 

< c + max g(-u) / / p(x) A x A s 
u£[c,(i+jf)c]T ya ys 

< (l + K)c, 

therefore for t > a 
c < Tf(t) < (1 + K)c 

and Tfi C Q. Other assumptions would be proven almost without a change as in the proof 
of Theorem 6.1.1. 

6.1.2 Conditions for existence and uniqueness of solution 
Let us suppose g is Lipschitz continuous (Definition 7.4.3) on M + . In this section, we aim 
to show that (6.1.3) guarantees the existence and uniqueness of the solution of (6.1.1) 
with properties (6.1.2) for arbitrarily chosen positive real number c. To achieve this we 
employ the Banach fixed point theorem (Theorem 7.4.5). 

Theorem 6.1.4. Suppose the function g satisfies Lipschitz condition on R+. Then (6.1.3) 
holds if and only if there exists a unique solution of (6.1.1), (6.1.2) for arbitrarily chosen 
positive real number c. 

Proof. Let us start with the implication from right to left. As we have shown in the proof 
of Theorem 6.1.1, the validity of the condition 

/

oo /»oo 

p(s) As At < oc 

42 



6 ANALYSIS OF DYNAMIC EQUATIONS ON TIME SCALES 

follows already from the existence of the solution with required properties. 
Now we focus on the implication from left to right. Suppose g is Lipschitz continuous 

on M + with a constant L. Consider to such that 

/

oo POO -I 

jf p(s)AsAt<—. (6.1.21) 

and let Q = BC[to, oo)j. We know (BC[to, O O ) T , 11 * 11 oo) *s a Banach space (Theorem 4.3.3). 
We need to define an operator T : Q —> Q that is a contraction and its unique fixed point 
is the solution of (6.1.1), (6.1.2). We may again consider T for t > to in the following 
form satisfies 

POO POO 

(Tf)(t) = c + J J p(x)g(r(x))AxAs. 

We have to show that there exists K G (0,1) such that for any fll f2 G Q 
\\Tfi - Tf2\\0O < K ||/i - /aH^ . 

We know that 
l | r / i - r / 2 | | 0 0 = sup | ( r / 1 ) ( t ) - ( r / 2 ) ( t ) | 

t>to 
and for all t G [a, O O ) T 

p(t) > 0. 

Therefore for all / G Q and t > to 

l (T/i ) ( t ) - (T / 2 ) ( t ) | 
POO POO 

p(x)g(f?(x))AxAs- / / p{x)g{^{x))AxAs 
Jt Js 

oo 

< I I Pix) \g{fi{x)) -g(f2(x))\ A x A s . 
«0 

That means 
POO POO 

sup K T / x X t ) - (T/ 2 )(t) | < / / p(x) \g(f?(x)) - g{ft{x))\ AxAs. (6.1.22) 
t>to J to Js 

Next we employ an additional condition of Lipschitz continuity for g and make an upper 
estimate of 

O O POO 

t0 J S 

p{x)\g{f°{x))-g{ft{x))\ Ax As 

as follows 
C O O POO POO POO 

p{x) \g{K{x)) - g(fi(x))\ AxAs < / / p(x)L | / f (x) - f°(x)\ AxAs 
to J S J to J S 

POO POO 

< L s u p | / i ( * ) - / 2 ( t ) | / / P(x)AxAs. 
t>to J to J s t>to J t0 Js 

Thanks to t 0 being chosen such that (6.1.21) holds, we can proceed as follows 
POO POO -I 

L s u p l / ^ t ) - / ^ ) ! / / p(x)AxAs<Lsup\f1(t)-f2(t)\ — 
t>to J t0 Js t>t0 £L> 

= \ SUp \fl(t) - f2(t)\. 
1 t>t0 
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Therefore it is true that 

sup |(T/0(t) - (Tf2)(t)\ < I S up|/i(t) -/2(*)l 
t>t0 * t>t0 

and thus 
WTh-Tf^K^Wh-hW^. 

We have proven that T is a contraction. A l l assumptions of the Banach fixed point theorem 
are satisfied, therefore there exists a solution of (6.1.1), (6.1.2) and it is unique. • 

Remark 6.1.5. The equation (6.1.1) for the discrete case T = Z is in detail studied in 
[5]. 

6.2 More general equation 
In this section, we study an equation in a more general form 

(rit)yA)A=p(t)g(y°). (6.2.1) 

We consider the equation on the interval [a, O O ) T and assume p : [a, O O ) T —> K. is an rd-
continuous function that fulfills p(t) > 0 for all t G T . We consider g : M. —> K. as a con­
tinuous function satisfying 

xg(x) > 0 

for all x 7̂  0. Additionally, the function r : [a, O O ) T —> oo satisfies r(t) > 0 for t G [a, oo)T, 
1/r is rd-continuous and 

/ — - A x = oo. (6.2.2) 
Ja r(x) 

Let us denote 
H 1 

m - 1 . ^ 
We study a solution, by that we mean a function y G C]d[a, OO)T such that r y A G 
C^d[a, O O ) T satisfying (6.2.1) for all t G [a, O O ) T - We aim to show that there exists a solution 
of (6.2.1) such that 

yA(t) < o, 

y(t) > 0 for large t, ) (6.2.3) 
lim y(t) = c, 
t—^oo 

where c is a given positive real number. 

6.2.1 Conditions for existence of solution 
In this section, we formulate a condition necessary and sufficient for the existence of a so­
lution to (6.2.1) with the properties (6.2.3) for a given c > 0. Instead of adopting an ap­
proach, where we study the equation in its original general form, we opt to transform it 
into a known problem described by (6.1.1) with corresponding properties (6.1.2). This 
approach was introduced in [8]. 
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Theorem 6.2.1. The functions p and r in the equation (6.2.1) satisfy 

/ — / p{s) As At <oo (6.2.4) 
J a r\P) Jt 

if and only if there exists a solution of (6.2.1), (6.2.3) for arbitrarily chosen positive real 
number c. 

Proof. Let y be a solution of (6.2.1), (6.2.3). We utilize the Theorem 3.3.22. Consider 
a positive strictly increasing function v G Cx\a, 00)00 on T . Let us set u(s) = y(t), where 
s = u{t) and denote T = {u(t),t G T } . In the view of chain rule (Theorem 2.3.4), we 
transform the equation (6.2.1) using 

y

A = ( U

A o z / )zA (6.2.5) 

Utilizing the chain rule again, we get 

(ryA)A = (ru(uA o v))A 

-1 A 

[(rz/A) o z / _ 1 o v]{uA o i>) (6.2.6) 

[(rz/A) o z / " 1 ] ^ o visA. 

Thanks to properties of u, we have v o a = a o v and therefore [u o v)a = ua o v. Now 
using (6.2.6), we get on T 

r(s)u ) = p(s)g(u° 

where 

and 

r = (risA) o v 1 

P=^Kov~1. (6.2.7) 

We set v = R. In the view of condition (6.2.2), we then get an unbounded time 
scale T = v(T). More precisely, the interval [a, O O ) T is transformed into [a, 00) j, where 
a = z/(a). Further vA = 1/r, thus 

r = ( r / r ) o z / _ 1 = 1. 

This way we transformed (6.2.1) into 

u A A =p(s)g(u°) (6.2.8) 

on [a, oo)j. 
We intend to utilize the Theorem 6.1.1. We know that 

poo poo ^ ^ 

J p(s) As At < 00. (6.2.9) 
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6.2 MORE GENERAL EQUATION 

holds if and only if (6.2.8) has a solution u having properties (6.2.3). We need to show 
the condition (6.2.10) is equivalent to (6.2.4). Using (6.2.7), we get 

/»oo /»oo /»oo /»oo 

A= / p(s)AsAt = / / (pr) o R~1(s) As At. (6.2.10) 
J a Jt J a Jt 

We transform (6.2.10) using the substitution theorem (Theorem 3.3.22). Set u = i? _ 1 (s ) , 
then 

/*oo /*oo roo roo 
A= / p(u)r(u)-r-- AwAt = / / p(u) AuAt. 

Ja JR-Ht) r[u) Ja JR-l(t) 

We apply the theorem again by setting r = i? _ 1 ( t ) . We get 

A =l w)L  p (" ) A m A t-
Now it is clear that (6.2.4) holds if and only if (6.2.10). 

Assume now (6.2.4) is satisfied. Then (6.2.10) holds as well and applying Theorem 
6.1.1, we have guaranteed the existence of the solution u of (6.2.8) with properties (6.2.3). 
Since u(s) = y(t), where s = u(t) and 

lim u(s) = c, 

also 
lim y(t) = c. 
t—>oo 

Since v is increasing, u(s) > 0 for large s implies y(t) > 0 for large t. Because r(t) > 0 
for t G [a, O O ) T , l/r(t) > 0 for t G [a, O O ) T and since v — R is increasing, z/A(t) > 0 
for t G T. Therefore (6.2.5) and uA(s) < 0 for large s imply yA(t) < 0 for large t. Thus y 
satisfies (6.2.3). 

As for the opposite direction, if y satisfies (6.2.3), then u satisfies (6.2.3), and hence 
(6.2.10) holds by Theorem 6.1.1. Consequently, (6.2.4) holds. 

• 
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7 APPENDIX: SELECTED CONCEPTS FROM FUNCTIONAL ANALYSIS 

7 Appendix: selected concepts from 
functional analysis 

In this section, we recall some concepts from functional analysis that are needed for our 
purposes. We use [4], [5] and [7] as our main sources. 

7.1 Completness of metric spaces 
In this section, we start with the notion of completness of a metric space. 

Defini t ion 7.1.1 (Complete space). A metric space (M,p) is called complete if every 
Cauchy sequence of points in M converges in M (has a limit also in M). 

We say TV C M is a complete set in space (M, p) if N with induced metric p is complete. 

Theorem 7.1.2. Suppose (M,p) is a complete metric space. Then N is a closed subset 
of M if and only if N is complete. 

7.2 Relative compactness 
In this section, we recall the notion of relative compactness and some related notions and 
facts. 

Defini t ion 7.2.1 (Compact set). Let (M, g) be a metric space. We say TV C M is compact 
if every sequence (i„)™ j C TV contains a converging subsequence ( x „ f e ) ^ 1 , whose limit 
is in N. 

Defini t ion 7.2.2 (Relatively compact set). Let (M, g) be a metric space. We say N C M 
is relatively compact if TV C M is a compact set in ( M , g), where N denotes the closure 
of the set N. 

Defini t ion 7.2.3 (e-net). Let (M,g) be a metric space, e a positive real number and 
N C M. A set A C M is called e-net of TV if for every u G N, there exists » 6 / 4 such 
that g(u, v) < e. 

Defini t ion 7.2.4 (Totally bounded set). Let ( M , g) be a metric space, then TV C M is 
called totally bounded if there exists a finite e-net for every e > 0. 

Theorem 7.2.5 (Relation between totally bounded and relatively compact). Let (M, g) 
be a complete metric space, then a set N C M is relatively compact if and only if it is 
totally bounded. 

7.3 Isometry and homeomorphism of normed spaces 
Defini t ion 7.3.1 (Isometric isomorphism of normed spaces). Let (M, ||-||M), (N, \\-\\N) 
be normed vector spaces. We say that these spaces are isometrically isomorphic if there 
exists a bijective linear mapping T : M —> N preserving the norms, i.e., for all x G M 

ll^lliv =
 \\X\\M • 
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7.4 FIXED POINT THEOREMS 

Defini t ion 7.3.2 (Homeomorphism of normed spaces). Let (M, ||-||M), (N, \\-\\N) be 
normed vector spaces. We say that these spaces are homeomorphic if there exists a bijec-
tive linear mapping T : M —> N and positive real constants a, b satisfying 

^ I I ^ I I M — l l - ^ ' l l i v — ^ I I ^ I I M 

for all x G M. 

Remark 7.3.3. Note that isometric isomorphism evidently implies homeomorphism of nor­
med spaces. 

Theorem 7.3.4. Let (M, ||-||M), (N, \\-\\N) be homeomorphic normed vector spaces. Then 
(M, \\-\\M) is a Banach space if and only if (N, \\-\\N) is a Banach space. 

7.4 Fixed point theorems 
In this section, we focus on fixed point theorems and related notions. We give particular 
attention to Banach and Schauder fixed point theorems. Detailed proofs of these theorems 
can be found in [5]. 

Defini t ion 7.4.1 (Fixed point). Let M be a set and lei /•' : M -> M. We say u* G M is 
the fixed point of the mapping F if F(u*) — u* holds. 

Defini t ion 7.4.2 (Convex set). Let (M, g) be a metric space and let TV C M. We say TV 
is convex if for all x,y G N and t G [0,1] an affine combination (1 — t)x + tyEN. 

Defini t ion 7.4.3 (Lipschitz continuity). Let (M,g), (N,o~) be metric spaces, a function 
/ : M —> TV is called Liptchitz continuous if there exists a positive real L such that for all 
x,y G M 

a(f(x)J(y))<Lg(x,y). 

Defini t ion 7.4.4 (Contraction). Let (M, g), (N,a) be metric spaces. We say a function 
/ : M —> TV is a contraction if there exists 0 < L < 1 such that for all i , i / G M, 

a(f(x)J(y))<Lg(x,y). 

Theorem 7.4.5 (Banach fixed point theorem). Let ( M , g) be a complete metric space and 
suppose F : M —> M is a contraction. Then there exists a unique fixed point of the mapping 
F, this point is in addition the limit of the sequence {w n }~ j , where u\ G M is arbitrary 
and un+i = F{un) for n — 2, 3,4, . . . 

Theorem 7.4.6 (Schauder fixed point theorem). Let M be a Banach space and N C 
M a nonempty, convex, bounded and closed set. Moreover, suppose F : TV —> M is 
a continuous mapping, such that F(N) C TV is a relatively compact subset of N. Then 
the mapping F has a fixed point u* G N. 
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8 CONCLUSION 

8 Conclusion 
The objective of the thesis was to provide an overview of the calculus on time scales, 

establish a framework of functional analysis on time scales, and utilize this framework 
to investigate the qualitative properties of specific dynamic equations. 

In Chapter 2, we presented a summary of the fundamental concepts in time scales 
theory. We introduced a concept of the delta derivative as a means of differentiation 
on time scales. Furthermore, we explored various alternatives of the chain rule adapted 
for time scales and established mean value theorem. 

Chapter 3 of the thesis is dedicated to the integration on time scales. We studied 
three distinct types of integral. Firstly, we introduced the notion of the Cauchy-type in­
tegral defined through the use of antiderivatives. Next, we constructed the Riemann-type 
integral using the Darboux sums. Additionally, we employed measure theory to define 
the Lebesgue-type integral, utilizing a Caratheodory-like approach. It became apparent 
that measure theory was a valuable tool for the development of the integral, as it pro­
vided efficient means for its formulation. Moreover, we established key theorems such 
as the monotone convergence theorem and the dominated convergence theorem, which 
are essential for the analysis of selected dynamic equations. Furthermore, essential prop­
erties of the integrals on time scales were outlined, including the possibility of integration 
by parts and the substitution theorem. 

In Chapter 4 we focused on function spaces on time scales. We discussed continuous 
and rd-continuous functions on closed interval [a, b]j. We stated detailed proof of com­
pleteness of (Crd[a,b]i, I H l o o ) space and mentioned briefly other approaches to the proof. 
We followed with spaces of regressive and positively regressive functions. We intro­
duced an arithmetic on these spaces using circle operation and proved completeness 
of {lZ+[a1b]f11|-|| ). We followed with bounded continuous functions on noncompact in­
terval and stated and proved that (BC[a, oo)j, I H I ^ ) is a Banach space. The second part 
of the chapter is dedicated to relative compactness of introduced spaces. Special emphasis 
was placed on the (BC[a, O O ) T , 11 * 11 o o ) s P a c e > with a thorough proof provided for the crite­
rion of relative compactness. Furthermore, relative compactness criteria for other function 
spaces, which were introduced earlier, were formulated. 

In Chapter 7, we applied theoretical tools to analyze the nonlinear dynamic equation 
(6.1.1). We derived the necessary and sufficient condition for the existence and uniqueness 
of a solution with the specified properties. By utilizing fixed point theorems, we then pro­
vided proofs for the formulated statements concerning the existence (Theorem 6.1.1) and 
uniqueness (Theorem 6.1.4) of the solution. Additionally, we examined the more general 
equation (6.2.1) and formulated the necessary and sufficient condition for the existence 
of the solution (Theorem 6.2.1) with the desired properties. The proof of this theorem 
was accomplished through a transformation based on the substitution theorem (Theorem 
3.3.22). 

The main contribution of this thesis is correctly introduced functional analysis ap­
paratus on time scales and demonstration of its proper implementation on the selected 
problems. The work can be further extended by studying other dynamic equations and 
exploring the distinctions and similarities across various time scales. 
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