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A dynamical particle system as a driver for optimal statistical sampling 1 

1 Introductory remarks 

Due to the formerly unseen power of the contemporary throughput-oriented 
hardware, numerical simulations of vast, detailed models are conducted to 
complement or even replace costly physical experiments. Quite commonly, the 
output of these models is in fact a result of a complex deterministic function 
g(X) of a vector of input variables, X. The actual simulation of such a model, 
i.e. the evaluation of g(X) for a given X might be and typically is a compu­
tationally intensive task. St i l l , running a computer simulation of a complex 
model for hours or days turns out cheaper than conducting an expensive phys­
ical experiment. Furthermore, in case of numerical models that require heavy 
computational effort, one might attempt to approximate the response of these 
complex models in a similar sense as these approximate the costly physical 
experiments. Such subsequent simplification efforts of numerical models that 
are expensive to solve are commonly recognized as surrogate models, metamod-
els or response surface models, see e.g. [1]. Based on known outputs from 
a l imited number of cleverly designed runs of the more detailed model, a re­
sponse surface model aims to construct a substitute approximative function of 
the input vector X. Such a metamodel is constructed to offer an orders of 
magnitude faster evaluation in comparison to the approximated model while 
retaining a reasonably accurate output. 

It comes out natural that when conducting physical experiments, simulating 
a numerical model or constructing a metamodel, to capture the behavior of any 
modelled system, realizations of a physical or numerical experiment shall (i) be 
as many as possible in compliance wi th computational or other costs and (ii) 
shall be designed with as diverse ini t ia l configurations as possible to provide 
a maximal amount of new information about the behavior of the system. 

Efforts to optimize configurations of a finite number of realizations of an 
experiment in order to obtain unbiased and accurate results while reducing 
computational costs are often referred to as the Design of Experiments (DoE) 
[2, 3]. To design a configuration of a planned experiment, one has to set the 
value of each random variable that is considered by the numerical model or is 
under control in case of a physical experiment. A n underlying assumption for 
computer experimentation is that these simulations are fully deterministic. 
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2 A dynamical particle system as a driver for optimal statistical sampling 

1.1 Monte Carlo estimation of properties of functions of 
random vectors 

Approximat ion of properties of functions of random vectors can be computed in 
a similar fashion as the Monte Carlo method is able to approximate the solution 
of a deterministic process. The approximated value is typically considered 
to be a scalar value or a result of a scalar function of an array of outputs 
of the model. 

Let us consider a random vector X that, instead of its joint probability 
distribution function, fx(x), is described by its independent continuous random 
variables Xi, X2, ..., Xj^var along each marginal. 

Commonly evaluated properties of random variables are their respective 
statistical moments [4]. In a generalized sense, a statistical moment of a random 
variable of an n th order is defined as follows: 

CO 

fin = J (X- C)n f(x) dx, (1) 
- c o 

where c is defines an offset towards which the moment is calculated. Quite 
commonly, central moments are calculated by substituting c for the mean value 
of random variable, \±i. 

CO 

\i = J x f(x) dx. (2) 
— CO 

Furthermore, let us introduce a function g(X) = g(Xi, X2,..., X / v v a r ) that 
transforms the random vector X into a random variable Z = g(X). The func­
tion g(X) might be a kind of analytic function or can be considered to be 
an unknown operator representing a numerical model, input of which is the 
random vector X. The mean value of \iz can be solved as follows: 

CO 

Hz = /i(g(X)) = J z fz(z) dz. (3) 
— CO 

Since the density fz(z) is generally not known, the integration is performed 
over the domain of input vector X and the transformation is weighed by the 

P h . D . Thesis 



A dynamical particle system as a driver for optimal statistical sampling 3 

joint density function fx-

Vz = j J ••• J g(x)fx(x)dx. (4) 

Due to the independence among the input variables, one can substitute the 
product of marginal density functions for the joint density function fx{x). 
Moreover, by substituting for fi(xi)dxi = Fi(xi) in Equation (4) results in: 

CO CO Aj-

••• / g(x1,,...,xNvai) Y[dFi(xi). (5) 
i=l 

- c o - c o ' 1 

A t this point, it is possible to estimate the above mean value by using 
the Monte Carlo method. However, this would require sampling of points 
across the design domain of each marginal Xi, i.e. from negative to positive 
infinity. Another obstacle is that these sampling points must represent equal 
weights 1 . In this case, each sampling point must represent equal probability 
-j\T— — fi{xi)dxi = dFAxA. In other words, the distribution of sampling points 
along Xi must be uniform wi th respect to probabilities, not xi itself. Therefore, 
yet another transformation is proposed by substituting di^(a^) = dui, where 
Ui is the probability P(Xi < x), explore Figure 1: 

u. 
x 

[x)= J fi(t)dt = Fi(x). (6) 
-co 

Then, performing a spatially uniform sampling of points in the domain of 
probabilities, U = (Uq, Ui, ..., C / / v v a r - i ) , results also in an uniform sampling 
wi th respect to probabilities in the real space and that is what we have been af­
ter. The problem is hence transformed into the domain of uniformly distributed 
probabilities Ui, as oppose to the original space of X\, X2, . . . , X j v s i m : 

l l 

^z = J"' J ^ ( F i " 1 ( M i ) ' - - - ' F i v v

1

a r ( u i V v a r ) ) d m . . . d u A r v a r / (7) 
du iVv 

1 I n the example of a definite integral, these "weights" are the partial volumes represented 
each point, -j^-—. That is because i 

sim 
unlike the probability densities fi(xi). 

by each point, — . That is because the volume is uniformly distributed across the domain 
iVgi 
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4 A dynamical particle system as a driver for optimal statistical sampling 

dm = dR 

fi(xi)dxi = dF{ 

Figure 1: Computat ion of the mean value [if. of random variable X j . 

The result of the Monte Carlo approximation using NS[m points, the fol­
lowing statistics (average) is obtained to estimate the expected value E[g(X)]: 

, iVsim 
[iz = [i{g{X)) = E[Z] « — 9 {F^W,.. ^F^Ju^J) . (8) 

i=l 
It should be noted that apart from linear functions, one cannot substitute 
E[g(X)] for g(E[X]). 

1.1.1 Approximation of failure probability 

Approximat ion of the failure probability or failure rate using Monte Carlo is 
similar to the discussed definite integral. The probability of failure, pf, of the 
studied system g(X) is essentially equal to the volume of the probability domain 
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A dynamical particle system as a driver for optimal statistical sampling 5 

U— ( £7 i , . . . , £/jv v a r) where values of the function g ( . P - f ^ m ) , . . . , F^ai{uNvai)) 
signalize a failure event. Similarly to the approximation of a definite integral, 
a kind of Indicator function: 

/ \g (F-\u))] = I 1 l f 9 S ' W ) feilureevent 
L y v x v ; ; J [0 otherwise v ' 

can be integrated over U for an exact solution of pf. 
l l 

P i = I 11 ^ ( ^ ^ l d U l """ d U i V v a r = / / / d U l " ' d U i V ™ ' ^ 1 0 ^ 
0 0 D f 

where .Df is the failure domain in the unit hypercube. Finally, the approxima­
tion in the sense of Monte Carlo can be computed as follows: 

1 Nsim 

Pi « T 7 - E ^ ( ^ K i m ) ) ] - (11) AT. sim . -i sim=l 

2 General requirements on point samples 

Even from such a brief introduction to the Monte Carlo method, one can per­
ceive that the distribution of sampling points across the design domain is a cru­
cial factor that influences both convergence and error of Monte Carlo-type ap­
proximation. A recognized term that emphasizes the need for well distributed 
sampling points in the design domain is the Koksma-Hlawka inequality [5, 6]: 

<V(g)D*N(V). (12) 
v s i m -•- r* 

iVsim JJJ 

The Koksma-Hlawka inequality sets an upper bound on the error of solution 
approximation (left hand side) as a product of two independent terms: (i) V ( ^ ) , 
which depends on the variation (fluctuation) of the function g(U), see [6], and 
(ii) -Djv s i m 0^) which is the measure of discrepancy (i.e. non-uniformity) of the 
set of sampling points, V. 

As is assumed, the function g(U) that represents e.g. a numerical model is 
considered to be unknown or, at least, beyond control. Therefore, according 
to Equation (12), the only remaining way how to decrease the approximation 
error (reduce the variance) is to ensure that the layout of sampling points is as 
uniform as possible. 

P h . D . Thesis 



6 A dynamical particle system as a driver for optimal statistical sampling 

2.1 Distance-based criteria of uniformity 
A n inherent advantage of the distance-based criteria against discrepancy is 
that these may provide more information about the topology of the sample. 
For example, one can study the distribution of pair-wise distances or seek for 
points that violate a particular criterion the most. If identified, such points or 
pairs of points then might be a subject of a conscious optimization effort. 

One of natural, visual properties of a "uniformly" distributed set of points is 
that no pair of points should be situated overly close to each other. Therefore 
positions of the points that are responsible for the minimal mutual distance 
L m i n should be set farther apart to maximize this minimum distance. This 
very idea has been proposed by the M a x i m i n criterion [7]. 

A n inverse notion to the M a x i m i n criterion is the Min imax , also see [7]. It 
employs the requirement that no pair of points should be overly distant from 
each other. That way, two points that are responsible for the maximal distance 
L m a x should be brought closer together to minimize this maximum distance. 

Instead of considering only the extremal mutual distances - L m i n and - L m a x , 
certain distance-based criteria propose to take into account al l pair-wise dis­
tances. A n example of such a family of criteria is the (f>p criterion, see [8]. 
The (J)p criterion proposes a scalar-valued criterion function to rank designs of 
sampling points: 

where the exponent p upon the metric d(xi,Xj) is considered as an arbitrary 
positive integer. The authors propose to use the Manhat tan or Euclidean 
metrics. The (f>p criterion proposes to minimize the term (13) to reach an 
optimal design. The advantage of the criteria of (f>p family is that the scalar 
value of the criterion depends on al l mutual distances of points while, in a way, 
retaining the property of the M a x i m i n criterion: 

Further, wi th rising the exponent p, the contribution of pairs of closest points 
wi l l become increasingly dominant. In the l imit case of p = oo, the designs that 
minimize the (p^ criterion are the designs obtained by the M a x i m i n criterion. 

(13) 

Km ((f)p) = OO. (14) 

P h . D . Thesis 



A dynamical particle system as a driver for optimal statistical sampling 7 

Already in 1977, a predecessor criterion to the (f)p was proposed by Audze 
and Eglajs [9]. The Audze-Eglajs criterion considers the Euclidean distance 
metric and a particular value of the exponent p = 2. Not only that the Audze-
Eglajs criterion is a part of the (j)p family, it also proposes a remarkable notion 
of a physical analogy between a set of sampling points and a set of charged, 
mutually repelling particles, see Figure 2 for illustration. 

Figure 2: A system of mutually repelling particles wi thin a hypercube [0, l ] 2 . 

2.1.1 Optimization criteria combined with L H S 

The L H S method [10, 11] is often being paired wi th various optimization criteria 
in pursuit of a subsequent reduction of its variance and/or improvement of 
convergence of the estimator, if biased. The simplest approach possible is to use 
a selected optimization criterion only as an objective function when evaluating 
randomly generated L H S samples. A typical example of such an "optimization" 
is the l h s d e s i g n O function used in the M A T L A B software [12] that generates 
a set of L H S samples and, according to a user-specified parameter, returns 
the sample wi th either (i) the lowest correlation or (ii) the best value of the 
M a x i m i n criterion. In the specific, although much used, case of Mat lab , one 
should proceed wi th caution. Mat lab merely selects among Nt (user-defined) 
randomly permuted designs. This approach renders the actual optimization 
very inefficient, if not entirely unused, see also in [13]. 

For purposes of an actual optimization, L H S can be suitably coupled wi th 
heuristic optimization methods. The changes of positions of points wi thin the 
sample are typically done by mutual swapping of coordinates between a pair 

P h . D . Thesis 



8 A dynamical particle system as a driver for optimal statistical sampling 

of points that have been randomly selected or identified by the criterion. For 
instance, minimization of sample correlation has been proposed [13] by swap­
ping of coordinates of randomly selected points, controlled by the algorithm 
of simulated annealing [14]. Similar strategy of swapping of L H S coordinates 
governed by simulated annealing has been suggested in [15] by uti l izing the 
Audze-Eglajs criterion. There, the advantage that the Audze-Eglajs criterion 
(and the entire family of ^ - c r i t e r i a , respectively) is able to identify the pair 
of points that violate the criterion the most has been utilized for choosing the 
coordinates to be swapped. Also, the notion of using periodically repeated de­
sign domain first appeared in [16, 15]. A n optimization of L H S samples using 
simulated annealing combined wi th M a x i m i n or (^-criterion in [8]. However, 
it was proposed only to swap randomly selected pairs of coordinates. 

3 Refinement of the ^-criterion 

It has been mentioned above that the family of 4>p optimization criteria does 
offer the advantageous property of evaluating a sample by investigating mu­
tual distances between all pairs of points. That way, it is able to provide the 
coupled optimization algorithm not only wi th the scalar value that evaluates 
the uniformity of the sample as a whole but also wi th contribution of each pair 
of points. The Audze-Eglajs criterion proceeds even further, as it proposes to 
understand its value as the amount of potential energy stored within a system 
of charged, mutually repelling particles: 

To represent potential energy, the Audze-Eglajs criterion omits the exponent 
of 1/p above the whole sum, compare Equations (13) and (15). 

Dur ing the recent years, it has been shown that the Audze-Eglajs crite­
rion suffers from existence of boundaries of the design space [15, 16]. A rem­
edy of this behavior was proposed [15, 16], assuming periodically extended 
design hypercube and thus achieving a design domain without boundaries, 
see Figure 4b. Since then, it has been proved that optimization of point 
layouts by the introduced Periodic Audze-Eglajs ( P A E ) criterion combined 

i=i j=i+i v 
(15) 

P h . D . Thesis 



A dynamical particle system as a driver for optimal statistical sampling 9 

wi th L H S switching yields statistically uniform designs (from design to de­
sign) and to well distributed set of points in each single point layout, especially 
in two-dimensional design domain. For higher dimensions, corrupted designs 
have been observed. Their relatively good uniformity has actually been due to 
L H S that simply does not allow the malfunctioning criterion to emerge in full 
effect. 

3.1 Periodic extension of design domain 
The (J)p criterion proposes to use the Euclidean distance metric. This metric is 
arguably much desired for its property of directional independence, or isotropy. 
Let us assume that the points i and j wi th their mutual intersite distance Lij 
are repelled by the force Fij induced by the potential energy Eif 

I rLij 
Eij{Lij) = -p- = / Fij(x)dx. (16) 

^ij J oo 

B y differentiating the energy potential wi th respect to the distance, L^, the 
repulsive force is obtained, also see in Figure 3. Neglecting the constant coef­
ficient, the repulsive force is proportional to: 

FijtUj)*-^. (17) 

Equation (17) can be understood as the constitutive law governing the inter­
action of particles. 

As the particle system contains - / V s i m interacting particles, the total poten­
t ial energy of the system is a sum of contributions from all ( A r

2

i m ) individual 
pairs: 

Nsim 1 Nsim Nsim 1 Nsim -i 

E** = £ £ E I J = e ( 1 8 ) 
i=l j=i-\-l i=l j=i-\-\ l3 

The total potential energy in Equation (18) represents the value of the Audze-
Eglajs criterion to be minimized. 

The Euclidean distance between points i and j in 7Vv a r-dimensional space, 
L^, can be expressed as a function of their coordinates: 

Lij — ^ ] (xi,v xj,v) — 
\ v=l \ v=l 

P h . D . Thesis 



10 A dynamical particle system as a driver for optimal statistical sampling 

a) potential energy b) repulsive force 

L L 

Figure 3: a) Potential energy of repulsive interaction between a pair of particles, 
b) Repulsive force acting on particles. 

where A ^ = \xijV —XjjV\ is the difference in their positions projected onto the 
axis v. A simple and efficient improvement that considers a periodic extension 
of the design space has been proposed in [15]. After some simplification, one can 
derive equations for periodic Audze-Eglajs criterion ( P A E ) by replacing A ^ 
in Equation (19) wi th its periodic variant: 

W i t h such a redefined projection, a new metric is obtained and the distance 
between points i and j, called the periodic length Lij, becomes the actual 
shortest linear path between point i and the nearest image of point j [15], also 
see Figure 4: 

We note that using the nearest image of point j wi th respect to point i 
does not cover a true periodic repetition of the design domain. In a complete 
periodic repetition, an infinite number of images of point j would interact wi th 
point i. The presented approach is a simplification that has been shown in [15] 
to yield identical results to the fully repeated system in case of sufficient point 
count, -/Vgim. If the number of points in the original domain is too low for 

AijjV = m i n ( A i j > , 1 - A ^ ) . (20) 

(21) 

P h . D . Thesis 



A dynamical particle system as a driver for optimal statistical sampling 11 

Figure 4: Illustration of periodically repeated planar domain, a) the original 
two-dimensional design domain wi th pale colored intersite distances, b) peri­
odically repeated design domain wi th eight additional images of each particle. 
Periodic distances are rich colored, c) folding the design domain into a torus 
is another possible illustration of a periodical domain. Note that the computed 
distances are not defined on the toroidal surface. 

assembly of the desired self-similar pat tern 2 , considering additional periodical 
images of particles is advised. 

In this section we consider a generalized model in which a certain number 
of periodic repetitions of the original design domain are considered. Using the 
nearest image of point j wi th respect to point z, as considered in Equation 
(20), does not cover a true periodic repetition of the design domain. We argue 
that the above presented approach is a simplification that can be shown to 
yield identical results to the fully repeated system in case of sufficient point 
count -/Vgim. If the number of points in the original domain is too small to 
carry enough information about the pattern of a periodically repeated system, 
making a periodic extension to a sufficient level is desirable. In a true periodic 
domain, an infinite number of images of point j would interact wi th point i. 
When a finite number of copies of the design domain is considered, not only 
the real particle j , but also al l periodically repeated images of the particle j 

2 Simplest self-similar space-filling patterns can be assembled from simplest objects which 
contain volume in the particular dimension NvaT: line in ID (2 points), triangle in 2D (3 
points), tetrahedron in 3D (4 points), etc. 

P h . D . Thesis 



12 A dynamical particle system as a driver for optimal statistical sampling 

wi l l contribute to the potential: 

Nsim 1 ^sim / ^max Cm ax \ 

L,P,kmax) = S S ( y p /_ _ n + E E L p ( V # + s ) I ' ^ 
i=l j=i+l\Lij\Xi>X3) k=l c=l *J ^ + S c V 

where & m a x , introduced as an additional parameter, is the number of added pe­

riodical extensions (envelopes) of the design space. In the fully repeated system 

kmax = oo and analogically, for a non-extended system fcmax = 0. Therefore 

L,P) ^(L,P,O)-
A single "level" of periodic extension adds another envelope of periodically 

repeated images of al l other particles around each point, see Figure 5 and 

through Figure 8. Such an extension does provide additional information about 

the point layout within the domain. 

Ay Ay 

-©—i © - + • • — i e - H 

Ay - k Ay + k 
A h A-• 4- k 

"-max L-^IJ ~ "-max 

Figure 5: I D example of the periodic extension of level & m a x = 2. 

3.2 Selection of value of the distance exponent p 
In the work, the power is derived to be at least p > Nvar + 1. W i t h this 
power, the interaction is dominated by short-range interactions. W i t h such 
a sufficient exponent p, the convergence of the potential energy 4>(L,P) or better 
^ ( l p) towards infinity for a uniform distribution of points is a power law. Such 
a convergence signalizes self-similarity of the problem or absence of a length 
scale. 

This can be shown by studying the behavior of the radial part of the integral 
of the potential over the volume V of A/v a r-dimensional domain. The potential 
energy for a uniform design reads: 

1 1 dN™V, (23) 
LP 
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A dynamical particle system as a driver for optimal statistical sampling 13 

where L is used to denote one-dimensional distance between points (the sym­

bol d is not used to avoid confusion with the symbol d for the differential). 

Transforming this into polar coordinated gives: 

/= J ip dN-V \ J\ d L , (24) 

iVvar 

where \J\ is the Jacobian. Therefore, the integral is performed over the product 
£iVvar-i-« Performing just the radial integration leads to: 

/

r-Wvar-i r 
——dL = J L N - - ^ d L . (25) 

For p = 2 as used in the A E criterion, we get the behavior described above 

(i.e. I oc 1/L2y Using p = Nvar leads to: 

Ir = J L _ 1 d L = ln (L) , (26) 

which diverges logarithmically and the interaction is st i l l long-ranged. Using 

p = Nvar + 1 yields 

Ir = J L~2dL=^ (27) 

which has the desired asymptotic behavior dominated by short-ranged interac­

tions. Using powers p > 7V v a r + 1 only increases the (asymptotically constant) 

ratio between short-range and long-range interactions. 
Figure 6 shows the convergence of the normalized potential energy ^ ^ p ) 

wi th rise of the number of particles, A ^ s i m . Instead of presenting the results for 
the point count, A ^ s i m , we introduce a variable ^char, the characteristic length 
that involves also the dimension of the space and therefore expresses the satura­
tion of the design domain wi th integration points (particles). The characteristic 
length is defined as: 

4har = N v a r r — - ^ • (28) 
V * sim 

The geometrical meaning of the characteristic length can be illustrated using 

a regular orthogonal grid of points in A/v a r-dimensional hypercube [0, l ] J V v a r . 

The characteristic length represents the smallest distance between points within 

P h . D . Thesis 



14 A d y n a m i c a y ^ a x t i c l e s y ^ 

Figure 6: Convergence 

the exponent p. 

of the normalized potential energy 0 ( I ) P ) depending on 
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iVva,r = 2 

ĉhar 

ĉhar 
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Figure 7: Geometrical illustration of the characteristic length, W -
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A dynamical particle system as a driver for optimal statistical sampling 15 

the grid. If N is the number of points over each dimension, the characteristic 
length can be derived as follows: 

1 1 
4har = ^ = l ^ s i m = NN™ | = T v ^ = • (29) 

A t the same time, £char is the characteristic side length of the hypercubical 
volume belonging to each point in the space of sampling probabilities ( ^ v

a r

r = 
dU = 1/Nsim), see Figure 7. 

It can be seen that wi th the original exponent value p = 2 in the dimension 
Avar = 2 (p — A T v a r ) , the potential energy of the system does not converge to 
a power law but diverges logarithmically, roughly: 

^ p ) ^ , „ W i m ) + ^ - J - . (30) 
V v ' 

^ 0 

In higher dimensions Nvar > 3 , the exponent p = 2 further leads to convergence 
of the potential energy to a constant, see [17]. 

Using the above proposed exponent p = i V v a r +1 , the potential energy value 
tends to a power law as i V s i m —>• oo. Note the universality here: the quality 
of the criterion does not depend on sample size, A ^ s i m , nor on the dimension, 
N • 
1 v var• 

1 
^ L , i V v a r + l) « ( 3 1 ) 

v / ^cnar 
Such a behavior is desired as the designs for a given dimension, A T v a r , tend to 
have a universal self-similar pattern and the dependence on sample size disap­
pears (no length scale is present). Thus the character of the criterion is kept 
independent of A ^ s i m and the proportion between short-range interactions and 
long-range interactions is constant. This stabilization is obtained for a suffi­
cient number of points wi thin the design domain (a kind of Av a r -d imensional 
tile). The self-similarity manifested is by the power law dependence (a straight 
line in Figure 6). When the exponent is taken even higher (p > Nvar + 1), the 
self-similar regime is achieved for even smaller number of points (greater £char)-

Graphs in Figure 6 suggest that there must be link between (a) the exponent 
(responsible for the proportion between long- and short-range interactions) and, 
(b) the number of "dummy" copies of the design domain that also modify the 
proportions. 
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16 A dynamical particle system as a driver for optimal statistical sampling 

b ) <*(Z,2,0) Msim = 36 
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Figure 8: Disappearing of the quality of a self-similar design and the effect of 
remedies proposed. 

4 Physical analogy: a particle system 

The Audze-Eglajs criterion, and its generalization, the (J)p criterion, propose 
to understand the layout of design points as a system of interacting (mutually 
repelling) particles and evaluates the amount of potential energy stored within 
al l interactions, see Figure 4 for illustration. 

Instead of uti l izing the (J)p criterion as a norm minimized using combinato­
rial or heuristic optimization for a fixed set of L H S coordinates [13], this work 
proposes to solve the physically analogical problem by simulating a discrete dy­
namical system of mutually repelling particles, recall Figure 2. The coordinates 
of particles of the dynamical system, after reaching the static equilibrium, may 
be directly understood as coordinates of the design points, see Figure 9. 

Essential remarks about derivation using Lagrangian mechanics are pro­
vided in what follows. The general value of exponent p w i l l be utilized 
for derivation of equations of motion of the dynamical particle system. Through 
the following content, mind also Figure 10 that illustrates the interaction of two 
particles i and j. 

To begin, let us state that the dynamical behavior of a mechanical system 
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Figure 9: Illustration of the optimization process of 7V s i m =24, 7V v a r =2. a) ini t ial 
randomized sample, b) optimized sample. 

wi th a finite number of degrees of freedom can be described by the Lagrange's 
function, or shortly Lagrangian, C. Sometimes also called a kinetic potential, 
the Lagrangian £ is a functional; a sum of formulations of kinetic and potential 
energy. In case of the ^ -cond i t ioned dynamical system, the Lagrangian can 
be described as follows: 

C = EK + EP, (32) 

wi th the kinetic energy of the particle system EK being a simple sum of kinetic 

var = s 

T Xj,s -

A 

X i 

A,-13,r 

X J-r var = r 

Figure 10: Interaction of two charged particles. 
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energies of all particles of equal mass m: 

Nsim ^var 

E E * ? , (33) 
1 = 1 V = l 

where £ijV = ^j.Xi,v is the velocity of zth particle in dimension v. 
We now consider a generalized formulation of the potential energy, Ep: 

employing an arbitrary value of the exponent, p, upon the mutual distances, 
Lij. The potential energy of the model can be written as a sum of energies 
stored within all mutual inter-particle interactions: 

where the exponent is now considered as a general integer, p, (similarly to 
the ^-criterion [8]) and the metric considered is the periodic length, L^, see 
Equation (21). 

Further, it is needed to calculate the derivatives of Lagrangian C wi th re­
spect to al l state variables. In the case at hand, the state variables are the co­
ordinates XijV and velocities XijV of al l particles in each dimension. Obeying 
the Lagrange's equations of the second kind: 

one can start off wi th the assumption that, apart from the derivatives wi th 
respect to the time t, the kinetic energy Ek is further differentiable only wi th 
respect to velocities XijV and the potential energy Ep (34) is differentiable only 
wi th respect to coordinates XijV. Therefore, the left-hand side of Equation (35) 
is rather easily obtainable: 

i V s i m - l ATsi 

(34) 
i=l j=i+l 13 

(35) 

(36) 

wi th XijV = -^XijV being the acceleration of the zth particle in the dimension v. 
The right-hand side of Equation (35) becomes: 

(37) 
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The resulting equation of motion of ith particle in vth dimension as assem­
bled from Equations (35), (36) and (37) finally reads: 

Note that these are equations of motion of a conservative dynamical system as 
defined by the energy potential (32) which does not cover any form of energy 
dissipation. 

The motion of the dynamical system is therefore described by a system 
of independent equations. This awareness is of high importance while consid­
ering the possibilities for solution method and its computer implementation. 
It means that accelerations x^v of each particle in each dimension can be solved 
separately, without solving a system of equations. 

5 Performance of the parallelized solution 

Due to the heavy computational demands of such a hyper-dimensional particle 
system, it was necessary to develop an efficient, massively parallel solution using 
a G P G P U platform. Specifically, the Nv id ia C U D A archiecture has been used. 
Due to the essentially arbitrary extent (number of particles Ns-im and dimen­
sions - /V v a r ) of the particle system at hand, two main implementation branches 
have been developed: (i) a more restricted solution uti l izing the fast but l im­
ited on-chip memory and (ii) a more general (safer) solution using strictly the 
global memory of the G P U . A great portion of the doctoral thesis is devoted to 
the actual implementation as well as to the C U D A platform itself. The extent 
of the G P G P U part is beyond the scope of this P h . D . thesis, considering the 
implementation part as a tool for obtaining the optimized samples of interest. 

The main message that needs to be conveyed here is that the developed 
massively parallel solution essentially allowed feasible simulation of the parti­
cle model. Figure 11 shows the computational time required for solving 10 5 

steps of the dynamical simulation in 2 dimensions ( i V v a r = 2). The two C U D A 
implementations are compared to the ini t ial , single-thread C P U implemen­
tation in C . Clearly, a major solution speedup has been reached. 

(38) 
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Figure 11: Performance comparison of the all-pairs O (A/"2) solution while scal­
ing A ^ s i m in constant dimension of Nvar = 2. 

Next, we investigate the execution time when scaling both parameters 
of the problem; the number of particles, A T s i m , as well as the number of di­
mensions, Nvar. Figure 12a compares the execution time of solution of 10 3 

steps of the O (N2) interaction. 
Figure 12a shows that the parallel execution starts wi th linear dependency 

on NS[m. As the device starts to reach its peak bandwidth, the execution 
time scaling tends to 0{N2). As shown in Figure 12b, in the expected range 
of computation, the speedup in solution time by C U D A grows linearly wi th 
the number of particles, reaching up to 250 x . 
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Figure 12: a) Performance comparison of the O (-/V2) solution as executed 
by C P U (dashed) and G P U (solid and dotted lines) while scaling both Nsi 
and i V v a r . b) The achieved speedup of solution. 
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6 Numerical integration performance 

In the work, the performance of the dynamically optimized samples was tested 
in various use-cases of Monte Carlo-type approximation. To demonstrate the 
characteristic properties of dynamically optimized samples and the refined <j)p 

criterion, respectively, these samples wi l l be compared to a plain Monte Carlo 
integration, LHS-random samples and L H S samples optimized by the Periodic 
Audze-Eglajs criterion [15]. The nomenclature of the sampling methods used 
is summarized in Table 1. 

Mark ing Optimizat ion method used 

M C R A N D Random Monte Carlo samples 

L H S R A N D LHS samples with a random order of points evalu­
ated at strata median, see e.g. [13]. 

D Y N (j)p Intersite Optimized by the dynamical system using the re­
fined (j)p potential, intersite Euclidean metric, bor­
dered design domain 

D Y N (j)p Pe r iod ic Optimized by the dynamical system using the re­
fined (f)p potential, shortest-distance Euclidean met­
ric, periodic design domain 

D Y N 0 P Pe r iod ic 
+ L H S 

D Y N (j)p Periodic samples latinized after pre-
rotation 

L H S P A E Samples optimized by mutual swapping of LHS co­
ordinates governed by Periodic Audze-Eglajs crite­
rion as proposed in [15]. 

Table 1: Mark ing of compared optimization methods. 

It has shown as convenient to represent the results using a normalized scale 
of ^char instead the actual number of integration points Nsiin to express each do­
main is filled wi th integration points. For convenience, additional horizontal 
axis wi th the corresponding values of Nsiin w i l l be also provided. In the thesis, 
only very brief preview of the obtained results is shown. 
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6.1 Approximation of definite integral 

A n approximation of a definite integral is one benchmark problemin the work. 
Mul t ip le variants of such a problem have been tested, primarily for demon­
stration of the effect of introducing periodic boundary conditions into the (J)p 

criterion in order to achieve statistically uniform samples (unbiased estimation). 

One of such results is shown in Figure 13 that compares performance of se­
lected sampling methods in estimation of the highlighted area. It is very clear 
that without using a periodically repeated design domain, an unbiased estima­
tion cannot be obtained because the lack of statistical uniformity of samples. 
Furthermore, the dynamically optimized samples D Y N (f>p Periodic bring 
a major reduction in variance of estimation. Due to the periodically repeated 
design domain, such samples exhibit statistical uniformity, i.e. their estimates 
are unbiased. The D Y N cf)p Intersite samples optimized in a bounded domain 
tend to oversaturate boundaries of the domain and therefore are inherently bi­
ased. 

Figure 13: Estimated mean value of the circular area, J ^ , wi thin a unit square 
(ave, a v e ± ssd). 
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6.2 Sum of exponentials of normal variables 
One of the numerical examples in this work aims to represent an approximation 
of characteristics of a function of random variables. The selected problem has 
been featured in [18] and also in [15] for evaluating of performance of L H S 
samples optimized by switching governed by the Audze-Eglajs criterion that 
considers periodically repeated design domain (periodic Audze-Eglajs P A E ) . 

The studied example considers a function gexp(X) of input random vec­
tor X: 

Nvar -̂V var 

9 e x p ( X ) = e X P (~Xv) = E ( ^ _ 1 K ) 2 ) • (39) 
v=l v=l 

The input random variables Xi,... , ^ i v v a r are considered as independent and 
identically distributed (IID) random variables wi th standard normal distribu­
tion 7V(0,1). 

The numerical results of this example are presented for the case of i V v a r = 2. 
Results of estimation of the mean value /iexp (see Figure 14), and the standard 
deviation <7exp (see Figure 15), are presented. 

Because the function gexp(X) represents a sum of independent marginals, 
any deterministic L H S sample is going to estimate the mean value /iexp without 
any variance. In the two-dimensional case, the poor performance of D Y N (f)p 

Intersite samples is also shown to remind the improvement of using period­
ically repeated design domain. 

The D Y N (f)p Periodic samples bring reduction in variance of the estimated 
values. In fact, using the D Y N (f>p Periodic samples leads to enhanced rate 
of convergence. If using D Y N (pp Periodic samples the attained asymptotic rate 
of convergence is (9(1/v^V^m), whereas Monte Carlo samples exhibit the 
expected 0(1/V-^sim) rate of convergence. 
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Figure 14: Estimated mean value of g e x P , 2 d (ave, a v e i s s d ) . 

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

Figure 15: Estimated standard deviation of gexP,2d (ave, a v e i s s d ) . 
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6.3 Engineering example — Failure of a structure 
Assume now an engineering problem of estimation of deflection and failure 
probability of a truss structure. The model is similar to the truss model used 
in [19] where it served as one of benchmark problems for comparison of methods 
for estimating structural reliability. The setup of the numerical experiment is 
illustrated in Figure 16. 

P P P P „ , P P 

Figure 16: A n illustration of the studied model of truss structure. 

The input random vector of the model consists of five random variables: 
the material properties of horizontal members (Young's modulus E\ and cross-
section area Ai), the material properties of diagonal members (Young's mod­
ulus E2 and cross-section area A2) and the loading forces P in top joints. The 
properties of input random variables are summarized in Table 2. The task is 
to estimate the mean value and standard deviation of the midspan deflection 
w and the probability of failure, respectively. The failure is defined to occur 
when the deflection w exceeds the given value of 0.11m. 

Random variable Distr ibution Mean value c.o.v. 

Young's modulus E\ [GPa] Log-normal 210 0.1 

Young's modulus E-i [GPa] Log-normal 210 0.1 

Cross-section area A\ [m2] Log-normal 2.0 x 10" 3 0.1 

Cross-section area A2 [m2] Log-normal 1.0 x 10" 3 0.1 

Load P [kN] Gumbel 50 0.15 

Table 2: Random variables of truss example and their properties. 

This engineering example has been solved using multiple approaches to 
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estimation of failure probability. Along wi th the original 5d model, its reduced 
3d equivalent model has been derived. Bo th variants have been also evaluated 
using the Importance sampling method. For a detailed analysis of the results, 
see the dissertation thesis. Only essential remarks wi l l be provided here. 

6.4 Comparison of approaches to estimation of pf 

For each individual sampling method, the convergence of estimation of failure 
probability is plotted as attained in the 5d space of the original problem and 
the benefit of using IS around the design point in 5d and the reduced 3d space. 

Through the Figures 18, 19, 20, and 21, one can study the effect of reducing 
the dimension and IS for M C R A N D , L H S R A N D , and both versions of D Y N 
4>p samples. The following plots use a universal measure that is the number 
of integration points (particles), NS[m, which in practical sense represents the 
number of numerical experiments required. 

It can be concluded that both variants of the dynamically optimized sam­
ples perform well also in this engineering example, yielding a rather significant 
decrease of required computing time. Compare especially the highlighted num­
bers of model evaluations required to attain 10% C o V in estimation of pt. 

Figure 17: Left: The probability on the failure surface of the reduced 3d model and 
the position of the design point in the probability space. Right: Results of simulations 
in sampling points. 
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Figure 18: Monte Carlo approximation: comparison of convergence of esti­
mated failure probability, pf, in the 5d space of the original problem and the 
benefit of using IS in 5d and the reduced 3d space (ave, a v e i s s d ) . 

101 102 180 370 io 3 1400 
Model evaluations 

Figure 19: Random L H S approximation: comparison of convergence of esti­
mated failure probability, pf, in the 5d space of the original problem and the 
benefit of using IS in 5d and the reduced 3d space (ave, a v e i s s d ) . 
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10 1 82 io 2 io 31255 
Model evaluations 

Figure 20: D Y N (f)p Periodic samples: comparison of convergence of estimated 
failure probability, pf, in the 5d space of the original problem and the benefit 
of using IS in 5d and the reduced 3d space (ave, a v e i s s d ) . 

10 1 75 io 2 183 io 3 1180 
Model evaluations 

Figure 21: Latinized D Y N cf)p Periodic samples: comparison of convergence of 
estimated failure probability, pt, in the 5d space of the original problem and 
the benefit of using IS in 5d and the reduced 3d space (ave, a v e i s s d ) . 
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7 Concluding remarks 
The presented doctoral thesis was devoted to development of a new efficient tool 
for optimization of point samples that are spatially and statistically uniform. 
The primary use-case of these point sets is intended to be the usage as optimized 
sets of integration points in statistical analyses of computer models using Monte 
Carlo type integration. 

The first task of the work has been a survey of literature concerning prop­
erties of existing statistical sampling methods a criteria used for evaluation 
and/or optimization of uniformity of point sets. A n increased attention has 
been devoted to the distance-based (J)p criterion [8]. A substantial part of this 
work is dedicated to the refinement of the entirely general definition of the (f>p 

criterion aiming at: 

• reaching statistical uniformity of optimized samples. This means that the 
probability of appearance of a sampling point is equal al l across the design 
domain. That way, using such samples shall yield statistically unbiased 
estimation, 

• attaining well distributed points wi thin each individual point sample, 
preferably in noncollapsible patterns, leading to a decrease in variance 
of Monte Carlo estimation, 

• attaining self-similar patterns of design points, that is to obtain ideally 
optimized patterns for any sample size, NS[m, and dimension 7 V v a r , 

• developing a criterion that also takes into account the dimension of the 
problem, 7 V v a r . 

It can be concluded that these goals have been completed by (i) incorporating 
the periodic extension of the design domain as first suggested in [15], (ii) de­
riving the minimal value of the exponent p wi thin the (j)p criterion that results 
in self-similarity of the criterion value itself and also in self-similar patterns 
in arbitrary dimension, 7 V v a r , and finally, by (hi) introducing latinization of 
samples as a possible post-processing step. 

As the next cornerstone of the work can be considered the task of actually 
materializing the notion of the related Audze-Eglajs criterion [9] that suggests 
to understand the evaluated set of points as a system of mutually repelling 
particles. 
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The actual numerical simulation of the derived dynamical particle system 
is a task wi th heavy computational demands, far beyond capabilities of a single 
C P U thread. A substantial effort has been therefore allocated to author's self-
study of the massively parallel computing platform Nvid ia C U D A . 

It can be stated that the dynamically optimized samples may not necessarily 
surpass the L H S samples optimized by combinatorial optimization (switching) 
as in [13]. However, their performance in Monte Carlo estimation is not worse 
and the efficiency of the dynamical optimization is far superior to the combi­
natorial approach. The conclusions above indicate that ini t ial objectives of the 
work were accomplished. 

7.1 Future work 

One of future tasks directly connected to the present work is to create an 
open-access database to offer the optimized point samples for other research 
fellows. 

The next paper in preparation concerns replacing the Qhul l algorithm by 
the fast parallelized approximation of Voronoi diagram in relevant sample op­
timization techniques (such as the Min imax criterion [7]). Also, demonstrat­
ing the performance of samples gradually extended by the developed sample 
extension algorithm is considered as important, especially for engineering ap­
plications. 

Due to the encountered numerical issues, the next goal is to develop a nu­
merically stable, pseudo-dynamical particle system that is governed by the 
M a x i m i n criterion, which is the l imit case of the (j)p criterion (p = oo). 

Another future topic is the development of an efficient tool for sampling op­
timization that yields directionally invariant, hyper-dimensional samples. Such 
samples, invariant wi th respect to rotation, are considered desirable when deal­
ing wi th functions that contain strong interactions of input random variables. 

One of goals for more distant future is to expand the gained knowledge 
into another field of interest. That is to begin the development of an efficient 
solver for lattice particle models of materials that wi l l benefit from the modern 
massively parallel platforms (such as C U D A [20] or O p e n C L [21]) in the largest 
possible extent. 
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Abstract 
The presented doctoral thesis aims at development a new efficient tool for op­
timization of uniformity of point samples. One of use-cases of these point sets 
is the usage as optimized sets of integration points in statistical analyses of 
computer models using Monte Carlo type integration. The tasks of the work 
concern a survey of currently used criteria for evaluation and/or optimization 
of uniformity of point sets. A crit ical evaluation of their properties is pre­
sented, leading to suggestions towards improvements in spatial and statistical 
uniformity of resulting samples. A refined variant of the general formulation 
of the (j)p optimization criterion has been derived by incorporating the period­
ically repeated design domain along wi th a scale-independent behavior of the 
criterion. 

Based on a notion of a physical analogy between a set of sampling points 
and a dynamical system of mutually repelling particles, a hyper-dimensional 
N-body system has been selected to be the driver of the developed optimization 
tool. Because the simulation of such a dynamical system is known to be a com­
putationally intensive task, an efficient solution using the massively parallel 
G P G P U platform Nvid ia C U D A has been developed. A n intensive study of 
properties of this complex architecture turned out as necessary to fully exploit 
the possible solution speedup. 

Apar t from statistical uniformity, the samples optimized by efficient dy­
namical simulations also tend to consist of uniform, self-similar point patterns. 
Furthermore, the desired self-similarity of samples also results in well optimized 
point layouts in al l subspaces of the design domain. Due to the advantageneous 
formulation of the particle model, the possibility of additional sample size ex­
tension one-by-one is inherently possible. The performance of the dynamically 
optimized samples if used Monte Carlo estimation has proven to be superior to 
the commonly used sampling methods and comparable to samples optimized 
by brute-force combinatorial optimization. Due to the efficiency of the paral­
lelized solution, obtaining the dynamically optimized samples requires orders 
of magnitude lower computational time. 
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