VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

DIPLOMOVÁ PRÁCE

Brno, 2022

Bc. Josef Mička

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV RADIOELEKTRONIKY

DEPARTMENT OF RADIO ELECTRONICS

FLÍČKOVÁ ANTÉNNÍ ŘADA PRO PÁSMO IFF

PATCH ANTENNA ARRAY FOR IFF BAND

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Josef Mička

VEDOUCÍ PRÁCE SUPERVISOR

doc. Ing. Jaroslav Láčík, Ph.D.

BRNO 2022

Diplomová práce

magisterský navazující studijní program Elektronika a komunikační technologie

Ústav radioelektroniky

Student: Bc. Josef Mička Ročník: 2 *ID*: 203290 *Akademický rok*: 2021/22

NÁZEV TÉMATU:

Flíčková anténní řada pro pásmo IFF

POKYNY PRO VYPRACOVÁNÍ:

Navrhněte anténní řadu pro střední frekvence 1,03 GHz a 1,09 GHz se šířkou každého pásma 20 MHz. V těchto pásmech musí mít anténa PSV menší než 1,5 a zisk alespoň 12 dBi. Dovolená maximální šířka antény je 0,5 m a délka 1,0 m. Pro splnění zadaného požadavku prostudujte a následně využijte metody ke zvýšení zisku a šířky pásma antény pomocí napájecí sítě založené na napájení jednotlivých prvků štěrbinami. Anténní řadu modelujte a optimalizujte ve vhodném programu s cílem dosažení požadovaných parametrů. Navrženou anténu realizujte a experimentálně ověřte její vlastnosti. Diskutujte dosažené výsledky.

DOPORUČENÁ LITERATURA:

 [1] ABDELGWAD, Ahmad. Microstrip Patch Antenna Enhancement Techniques. International Journal of Electronics and Communication Engineering (IJECE). Tainan City: International Research Publication House, 2018, 2018(12), 8. ISSN 0974-2166. Dostupné z: doi:doi.org/10.5281/zenodo.1474773
 [2] BALANIS, Constantine. Antenna Theory: Analysis and Design. 3. New Jersey: Wiley, 2005. ISBN 0-471-66782-X Printed.

Termín zadání: 11.2.2022

Termín odevzdání: 25.5.2022

Vedoucí práce: doc. Ing. Jaroslav Láčík, Ph.D.

prof. Dr. Ing. Zbyněk Raida předseda rady studijního programu

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

ABSTRAKT

Diplomová práce se zabývá návrhem a realizací anténního pole pro pásmo IFF. Návrh zahrnuje simulaci anténního elementu a návrh napájecí sítě pro anténní pole. Anténní prvek je navržen jako širokopásmový a v každém pásmu vykazuje *PSV* nižší než 1,5. Pro dosažení požadované šířky pásma jsou použity dva flíčky umístěné nad sebou. Flíčky jsou napájeny pomocí štěrbiny. Pro napájení je použito asymetrické stripline vedení. Simulované anténní pole vykazuje dobré vlastnosti z hlediska impedančního přizpůsobení i zisku. V záverečné části diplomové práce jsou porovnány změřené výsledky zhotoveného anténního pole s výsledky simulací. Na závěr je uveden uveden pokus o vylepšení *PSV* zhotoveného anténního pole.

KLÍČOVÁ SLOVA

stripline, vícevrstvá anténa, napájení štěrbinou, anténní pole

ABSTRACT

This master thesis deals with designing and implementing an antenna array for the IFF band. The design includes an antenna element simulation and a feeding network design for the antenna array. The antenna element is designed as broadband and has an SWR of less than 1.5 in each band. Two stacked patches are used to achieve the required bandwidth. The patches are fed through a slot. An asymmetric stripline line is used for the feeding network. The simulated antenna array shows good impedance matching and gain properties. The final part of the master thesis compares the measured results with the simulated results. Finally, an attempt is made to improve the SWR of the manufactured antenna array.

KEYWORDS

stripline, multilayer antenna, aperture-coupled, antenna array

Vysázeno pomocí balíčku thesis verze 4.03; http://latex.feec.vutbr.cz

MIČKA, Josef. *Flíčková anténní řada pro pásmo IFF*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav radioelektroniky, 2022, 55 s. Diplomová práce. Vedoucí práce: doc. Ing. Jaroslav Láčík, Ph.D.

Prohlášení autora o původnosti díla

Jméno a příjmení autora:	Bc. Josef Mička
VUT ID autora:	203290
Typ práce:	Diplomová práce
Akademický rok:	2021/22
Téma závěrečné práce:	Flíčková anténní řada pro pásmo IFF

Prohlašuji, že svou závěrečnou práci jsem vypracoval samostatně pod vedením vedoucí/ho závěrečné práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené závěrečné práce dále prohlašuji, že v souvislosti s vytvořením této závěrečné práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom následků porušení ustanovení §11 a následujících autorského zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

Brno

podpis autora*

^{*} Autor podepisuje pouze v tištěné verzi.

PODĚKOVÁNÍ

Děkuji vedoucímu diplomové práce panu doc. Ing. Jaroslavu Láčíkovi, Ph.D. za odborné vedení, konzultace, trpělivost a podnětné návrhy k práci. Dále děkuji panu Ing. Matějovi Martincovi za odbornou pomoc při fyzické realizaci antény a následném měření.

Obsah

Ú١	vod	12
1	Flíčkové antény 1.1 Flíček 1.2 Metody napájení flíčku	13 13 13
3	Mikropáskové a stripline vedení	15
	3.1 Mikropáskové vedení	15 15
4	Návrh anténního prvku	16
	4.1 Návrh flíčků	16
	4.2 Návrh napájení štěrbinou	16
	4.3 Potlačení vlivu parallel-plate vedení	18
	4.4 Impedanční přizpůsobení anténního prvku	20
5	Návrh stripline vedení	22
6	Navržený anténní element	24
7	Návrh anténního pole	27
	7.1 Vychýlení hlavního laloku	28
	7.2 Výsledné anténní pole	28
8	Návrh napájecí sítě	31
	8.1 Dělení výkonu	31
	8.2 Transformace impedance	32
	8.2.1 Čtvrtvlnná transformace	32
	8.2.2 Binomiální rozložení	33
	8.2.3 Chebyshevovo rozložení	34
	8.3 Simulace a porovnání transformačních metod	35
	8.4 Geometrické rozměry vedení	37
9	Zhotovené anténní pole	38
10	Měření anténního pole	40
	10.1 Měření vyzařovacího diagramu	40
	10.2 Měření PSV	40
	10.3 Výsledky měření	40

11 Úpravy antény a nové měření	44
11.1 Úprava umístění konektoru	44
11.2 Vylepšení mechanické konstrukce	46
Závěr	50
Literatura	51
Seznam symbolů a zkratek	53

Seznam obrázků

3.1	Mikropáskové vedení	15
3.2	Stripline vedení	15
4.1	Nákres anténního prvku	16
4.2	Nákres anténního prvku – pohled z boku	17
4.3	Nákres anténního prvku – pohled shora na flíčky	17
4.4	Velikost elektrického pole v řezu asymetrického stripline vedení se	
	šterbinou ($f = 1030 \text{ MHz}, h_{s1} = 3 \text{ mm}, h_{s2} = 0.8 \text{ mm}, W_f = 1.2 \text{ mm},$	
	$Z_0 = 48,2\Omega)\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	18
4.5	Velikost elektrického pole v řezu symetrického stripline vedení se šter-	
	binou ($f = 1030 \text{ MHz}, h_{s1} = 0.8 \text{ mm}, h_{s2} = 0.8 \text{ mm}, W_f = 1.2 \text{ mm},$	
	$Z_0 = 38,2\Omega)\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	18
4.6	Nákres anténního prvku – pohled shora na štěrbinu	19
4.7	Vliv parametru $W_{\rm stub}$ na impedanční přizpůsobení antény – Smithův	
	diagram	21
4.8	Vliv parametru $L_{\rm stub}$ na impedanční přizpůsobení antény – Smithův	
	diagram	21
4.9	Vliv parametru $h_{\rm A2}$ na impedanční přizpůsobení antény – Smithův	
	diagram	21
4.10	Vliv parametru $h_{\rm A}$ na impedanční přizpůsobení antény – Smithův	
	diagram	21
5.1	Výřez okna programu Saturn PCB Design Toolkit Version 8.06	22
5.2	Šířka stripline vedení v závislosti na jeho charakteristické impedanci $% \mathcal{S}(\mathcal{A})$.	23
6.1	<i>PSV</i> navrženého anténního prvku	25
6.2	Realizovaný zisk anténního elementu	25
6.3	Vyzařovací diagram anténního elementu rovině E (XZ–elevace)	26
6.4	Vyzařovací diagram anténního elementu rovině H (YZ–azimut)	26
7.1	Nákres anténního pole	27
7.2	Čtyřportové napájení pole	28
7.3	Vychýlení maxima hlavního laloku v závislosti na fázovém posunu	
	napájecího signálu	29
7.4	Simulované PSV anténního pole	30
7.5	Simulovaný realizovaný zisk anténního pole v závislosti na frekvenci $% \mathcal{L}^{(n)}$.	30
8.1	Schéma transformátorů impedance	35
8.2	Simulovaný parametr S_{11} pro různé transformační vedení	36
9.1	Zhotovené anténní pole	38
9.2	Sub. 1 – spodní strana \ldots	38
9.3	Sub. 1 – horní strana \ldots	38

9.4	Sub. 2 – spodní strana \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 3	39
9.5	Sub. 2 – horní strana \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 3	39
9.6	Podpůrná konstrukce	39
10.1	Referenční měření	11
10.2	Měření vyzařovací charakteristiky anténního pole 4	1 1
10.3	Naměřené PSV anténního pole $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 4$	42
10.4	Vyzařovací diagram v rovině E (XZ – elevace) anténního pole, X –	
	křížová složka polarizace	13
10.5	Vyzařovací diagram v rovině H (YZ – azimut) anténního pole, X –	
	křížová složka polarizace	13
11.1	Původní konektor (připájen na zemní plochu) 4	14
11.2	Původní konektor (připájen ke stripline vedení) 4	14
11.3	Nový konektor (horní strana antény)	45
11.4	Horní substrát (otvor pro střední vodič konektoru) 4	45
11.5	Střední vodič konektoru připájený ke stripline vedení 4	45
11.6	Zahloubení do spodního substrátu	15
11.7	Naměřené PSV po výměně konektoru	46
11.8	Navrtaný plech tloušťky 3 mm	17
11.9	Sešroubovaná anténa s plechem	17
11.10)Přišroubovaný plech ze spodní strany	17
11.1	1 Hrana olepená hliníkovou páskou 4	17
11.12	2Naměřené PSV po zpevnění konstrukce pomocí plechu 4	18
11.13	3Nákres umístění děr pro přídavné šrouby	19

Seznam tabulek

6.1	Rozměry navrženého anténního prvku	24
6.2	Souhrn simulovaných parametrů anténního elementu	25
7.1	Rozměry navrženého anténního pole	29
8.1	Hodnoty impedancí pro binomiální rozložení 3. řádu	33
8.2	Impedance úseků vedení pro čtvrtvlnný, binomiální a Chebysheův	
	transformátor	36
8.3	Teoreticky určený a simulovaný parametr S_{11} na vstupu jednotlivých	
	$\operatorname{usek}^{\mathrm{u}}$	36
8.4	Šířka úseků vedení binomiálního transformátor u $\ .\ .\ .\ .\ .\ .$	37
10.1	Parametry měřicí/referenční antény R&S®HL562E ULTRALOG	40
10.2	Souhrn simulovaných parametrů anténního pole	42

Úvod

IFF (Identification, Friend or Foe) je vojenská technologie určená pro identifikaci vlastních a cizích cílů. Tato technologie se řadí mezi tzv. sekundární radary (SSR – Secondary Surveillance Radar). Kromě IFF se do této kategorie také řadí civilní systémy ATCRBS (Air Traffic Control Radar Beacon System). Systémy SSR jsou založeny na komunikaci mezi interogátorem a transpondérem, kdy interogátor je umístěn na pozemním stanovišti a transpondér na pohyblivém dopravním prostředku. Komunikace probíhá obousměrně tak, že interogátor odesílá kódovaný signál a transpondér následně odpovídá [1].

Navrhovaný anténní systém má být určen pro pracovní pásma se středními kmitočty 1030 MHz a 1090 MHz. Z pohledu zadání je potřeba provést návrh tak, aby *PSV* na vstupu antény bylo menší než 1,5, zisk dosahoval alespoň 12 dBi a maximum hlavního laloku bylo vychýleno o 10° v elevaci. Dále nesmí být překročena velikost antény 1 m × 0,5 m. S ohledem na vyzařovací diagram byly zadány další požadavky, které však nejsou kritické. Tyto parametry jsou šířka hlavního laloku v azimutu 20° ± 3°, šířka hlavního laloku v elevaci 45° ± 2° a potlačení postranních laloků v azimutu alespoň o 21 dB a v elevaci alespoň o 16 dB.

Anténní pole má pracovat v pásmech od 1020 MHz do 1040 MHz a od 1080 MHz do 1100 MHz, tudíž může být anténa realizována jako dvoupásmová nebo širokopásmová pracující od 1020 MHz do 1100 MHz. Pokud bude k anténě přistupováno jako k širokopásmové, bude muset vykazovat dobré vlastnosti v šířce pásma 80 MHz, tj. přibližně 7,5%. Běžné flíčkové antény realizované na substrátu dosahují impedanční šířky pásma řádově jednotek procent, a to pro PSV < 2 [4]. Z tohoto pohledu je návrh širokopásmové flíčkové antény pro přísnější požadavek PSV < 1,5zajímavým problémem.

Způsobů pro zvětšení šířky pásma flíčkových antén bylo v minulosti publikováno více. Obvykle se jedná o vytvoření slotů ve flíčku, např. slot tvaru písmene "U" [3], nebo dva obdélníkové sloty, čímž vznikne flíček tvaru písmene "E" [2]. Další možností řešení je použití více flíčků umístěných nad sebou, kdy je možné docílit šířky pásma až 20 % pro PSV < 1,5, nebo dokonce 44 % za cenu poklesu předozadního poměru [9].

1 Flíčkové antény

Flíčkové antény, též nazývané mikropáskové, fungují jako planární rezonátory, které vyzařují ze svých hran. Tyto antény jsou tvořeny vodivým obrazcem, tzv. flíčkem, umístěným nad zemní plochou. Prostor mezi zemní plochou a flíčkem je obvykle vyplněn dielektrikem. Flíčkové antény lze vyrobit běžně používanými metodami pro výrobu plošných spojů [4].

1.1 Flíček

Flíček je tvořen vodivou plochou libovolného tvaru, přičemž nejpoužívanějším tvarem je čtverec nebo obdélník. Pro návrh rozměrů flíčku se běžně používá model vedení. Tento popis je dobře funkční pro planární antény s relativně malou výškou substrátu h. Rozměry flíčku v tomto modelu lze přibližně určit pomocí vztahů 1.1 a 1.2, kde W_p je šířka flíčku, L_p je rezonanční délka flíčku a c je rychlost světla. Délka flíčku L_p má zásadní vliv na rezonanční frekvenci antény f.

$$W_{\rm p} = \frac{c}{2 f \sqrt{\varepsilon_{\rm r}}} \tag{1.1}$$

$$L_{\rm p} = \frac{c}{2 f \sqrt{\varepsilon_{\rm reff}}} - 2 \,\Delta \tag{1.2}$$

 $\varepsilon_{\rm r}$ je relativní permitivita prostředí a $\varepsilon_{\rm reff}$ je efektivní relativní permitivita, kterou lze přibližně určit ze vztahu 1.3. Vlivem rozptylových polí se rezonanční délka flíčku prodlužuje o Δ na obou okrajích. Aby anténa rezonovala na požadované frekvenci, je potřeba flíček zkrátit o 2 Δ . Prodloužení lze přibližně vypočítat vztahem 1.4 [4].

$$\varepsilon_{\rm reff} = \frac{\varepsilon_{\rm r} + 1}{2} + \frac{\varepsilon_{\rm r} - 1}{2} \left(1 + \frac{10h}{W_{\rm p}} \right)^{-1/2} \tag{1.3}$$

$$\Delta = 0.412 \frac{\varepsilon_{\text{reff}} + 0.300}{\varepsilon_{\text{reff}} - 0.258} \frac{W_{\text{p}}/h + 0.262}{W_{\text{p}}/h + 0.813} h$$
(1.4)

1.2 Metody napájení flíčku

Napájení flíčkové antény lze realizovat pomocí sondy nebo šterbiny. Napájení sondou umožňuje přesně definovat bod napájení a změnou tohoto bodu lze snadno měnit impedanční přizpůsobení antény [4]. Nevýhodou tohoto řešení však je galvanické propojení flíčku a napájecího vedení. Toto propojení lze v případě výroby flíčkové antény na substrátu realizovat prokovem. Při použití vzduchového substrátu však již propojení pomocí prokovu není možné a je nutné provést propojení jiným způsobem, např. vytvořit sondu z drátu. Napájení pomocí štěrbiny nevyužívá galvanické propojení, ale šterbinu vytvořenou v zemní ploše pod flíčkem. Z hlediska fyzické realizace lze napájení štěrbinou považovat za jednodušší.

1.3 Vazba mezi vedením a štěrbinou

Pro získání vazby mezi vedením a šterbinou je potřeba na vedení vytvořit maximum stojatého vlnění proudu, které by mělo vzniknout v místě štěrbiny. Toho lze docílit dvěma způsoby, a to zakončením vedení nakrátko nebo naprázdno. Vedení zakončené nakrátko je galvanicky propojeno pomocí prokovu se zemní plochou na vzdálenějším okraji štěrbiny. Na konci vedení zakončeného nakrátko vznikne stojaté vlnění s maximem proudu. V případě vedení zakončeného naprázdno je potřeba vedení prodloužit o přibližně čtvrtinu vlnové délky $\lambda_{\rm g}$ za štěrbinu. V tomto případě lze impedanční přizpůsobení antény ladit změnou délky vzniklého úseku [4]. Počáteční výpočet $L_{\rm stub}$ zobrazuje následující vztah:

$$L_{\rm stub} \approx \frac{\lambda_{\rm g}}{4}$$
 (1.5)

kde λ_g je vlnová délka v prostředí s relativní permitivitou větší než 1 a lze ji vypočítat pomocí vztahu:

$$\lambda_{\rm g} = \frac{c}{f\sqrt{\varepsilon_{\rm r}}} \tag{1.6}$$

Další pomocnou metodou pro impedanční přizpůsobení antény je rozšíření napájecího vedení v oblasti štěrbiny [9].

2 Anténní řady a pole

Anténní řady a anténní pole jsou uspořádané struktury anténních zářičů. Použití více anténních prvků umožňuje dosáhnout většího zisku a menší šířky hlavního laloku. Obecně lze říci, že při použití více prvků bude lalok užší. Fázovým posunem napájení mezi jednotlivými prvky lze docílit vychýlení hlavního laloku vyzařovacího diagramu [4].

3 Mikropáskové a stripline vedení

3.1 Mikropáskové vedení

Mikropáskové vedení je běžně používané vedení ve vysokofrekvenčních a mikRovlných obvodech. Toto vedení je jednoduše realizovatelné pomocí dvouvrstvých plošných spojů, kdy jedna strana je pokryta nepřerušenou zemní plochou a na druhé straně se nachází vodivý pásek s šířkou $W_{\rm f}$. Nákres vedení je zobrazen na obrázku 3.1 [8].

3.2 Stripline vedení

Stripline vedení je tvořeno tenkým vodivým páskem s šířkou $W_{\rm f}$ uzavřeným mezi dvěma vrstvami substrátu. Na vnějších stranách substrátů jsou zemní plochy. Nákres stripline vedení je uveden na obrázku 3.2. Výšky substrátů $h_{\rm s1}$ a $h_{\rm s2}$ mohou být rozdílné, potom se jedná o asymetrické vedení, případně mohou být použity substráty s rozdílnou relativní permitivitou, takto realizované vedení se nazývá nehomogenní. Stripline vedení je oproti vedení mikropáskovému výhodnější z hlediska parazitního vyzařování, které je díky zemním plochám výrazně potlačeno. Charakteristická impedance vedení je určena příčnými parametry vedení $h_{\rm s1}$, $h_{\rm s2}$ a šířkou pásku $W_{\rm f}$ [8].

Obr. 3.1: Mikropáskové vedení

Obr. 3.2: Stripline vedení

4 Návrh anténního prvku

Pro návrh byla zvolena vícevrstvá struktura se dvěma flíčky umístěnými nad sebou. Tato struktura poskytuje dobré vlastnosti z hlediska zisku a impedanční šířky pásma. Návrh takové struktury využívající napájení sondou pracující v okolí 8 GHz je popsán v [11]. Podobné struktury využívající napájení pomocí štěrbniny jsou popsány v [9] a [10]. Uvedené zdroje však prezentují antény pro vyšší frekvenční pásma a všechny antény využívají mikropáskové vedení. Kvůli potlačení zpětného vyzařování je vyžadováno stripline vedení. Nákres uvažovaného anténního prvku je uveden na obrázku 4.1. Simulace anténního prvku byly provedeny v Ansys HFSS.

Obr. 4.1: Nákres anténního prvku

4.1 Návrh flíčků

Pro prvotní odhad velikosti flíčků byly použity vztahy 1.1 a 1.2. Výsledných rozměrů flíčků bylo dosaženo experimentálně pomocí parametrické analýzy.

Kromě velikosti flíčků bylo potřeba určit jejich vertikální umístění. Výška $h_{\rm A}$ musí být zvolena tak, aby mezi štěrbinou a spodním flíčkem byla silná vazba a vzdálenost $h_{\rm A2}$ musí zajitit slabou vazbu mezi horním a spodním flíčkem [11]. Vliv změny $h_{\rm A}$ a $h_{\rm A2}$ na impedanční přizpůsobení je zobrazen na obrázcích 4.10 a 4.9.

4.2 Návrh napájení štěrbinou

Napájení štěrbinou není rovnocenné pro mikropásek a stripline vedení. Přidáním štěrbiny do zemní plochy dojde ke změně distribuce proudů a tím k vyzařování štěrbiny. Jelikož stripline vedení má zemní plochy dvě, vytvoření štěrbiny v jedné z těchto vodivých ploch nezpůsobí stejné vyzařování jako v případě mikropáskového vedení. Pro vytvoření dobré vazby mezi vedením a štěrbinou je potřeba použít vrchní substrát s výškou h_{s2} menší než h_{s1} . Tím vznikne asymetrické stripline vedení. V jednoduchosti se dá říci, že asymetrické stripline vedení se blíží vedení mikropáskovému [7]. Vliv asymetrického stripline vedení na rozložení elektrického pole lze pozorovat na obrázcích 4.4 4.5.

Obr. 4.2: Nákres anténního prvku – pohled z boku

Obr. 4.3: Nákres anténního prvku – pohled shora na flíčky

Obr. 4.4: Velikost elektrického pole v řezu asymetrického stripline vedení se šterbinou ($f = 1030 \text{ MHz}, h_{s1} = 3 \text{ mm}, h_{s2} = 0.8 \text{ mm}, W_f = 1.2 \text{ mm}, Z_0 = 48.2 \Omega$)

Obr. 4.5: Velikost elektrického pole v řezu symetrického stripline vedení se šterbinou $(f = 1030 \text{ MHz}, h_{s1} = 0.8 \text{ mm}, h_{s2} = 0.8 \text{ mm}, W_f = 1.2 \text{ mm}, Z_0 = 38.2 \Omega)$

4.3 Potlačení vlivu parallel-plate vedení

Dalším problémem spojeným se stripline vedením je vybuzení vyšších módů vlivem zpětného vyzařování šterbiny. Tyto vyšší módy vznikají mezi zemními deskami, které se chovají jako parallel-plate vedení. K potlačení tohoto jevu lze použít vhodně umístěné prokovy mezi zemními deskami [12] [4].

Nabízí se otázka, jak umístit prokovy, aby vyzařování šterbiny nebylo ovliněno.

Dobrou odpovědí je umístění řad prokovů souběžných se šterbinou ve vzdálenosti čtvrtiny vlnové délky od středu šterbiny a přidání bočních řad prokovů. Vznikne tak rezonanční dutina s módem TE_{10} . Ve středu rezonanční dutiny se vybudí minimum stojatých vln proudu. Uprostřed dutiny je umístěna šterbina. Tím dojde k buzení šterbiny pouze proudy tekoucími po stripline vedení [4].

Obr. 4.6: Nákres anténního prvku – pohled shora na štěrbinu

Délka rezonanční dutiny $L_{\rm w}$ byla přibližně určena jako jedna polovina vlnové délky v prostředí substrátu ($\varepsilon_{\rm r} = 4,38$) pro nejnižší kmitočet pásma $f_{\rm L}$ [4]:

$$L_{\rm w} = \frac{c}{2 f_{\rm L} \sqrt{\varepsilon_{\rm r}}}$$

$$L_{\rm w} \doteq \frac{3 \cdot 10^8}{2 \cdot 1020 \cdot 10^6 \cdot \sqrt{4,38}}$$

$$L_{\rm w} \doteq 70 \,\rm{mm}$$

$$(4.1)$$

Šířka rezonanční dutiny $W_{\rm w}$ by měla být větší než polovina vlnové délky ve volném prostoru [4]. Přibližná velikost rozměru $W_{\rm w}$ byla určena následovně:

$$W_{\rm w} > 0.5 \cdot \frac{c}{f_{\rm L}}$$

$$W_{\rm w} \doteq 0.55 \cdot \frac{3 \cdot 10^8}{1020 \cdot 10^6}$$
(4.2)

$W_{\rm w} \doteq 160 \,\mathrm{mm}$

Aby se řada prokovů chovala jako celistvá stěna a bylo tak eliminováno prosakování skrze stěny, musí být prokovy umístěny dostatečně blízko sebe [13]. Velké množství prokovů však vyžaduje více vrtaných děr a to vede nákladnější výrobě. Počet prokovů byl určen tak, aby vzdálenost prokovů p byla menší než $\lambda_{\rm g}/20$ na nejvyšším kmitočtu pásma:

$$p = \frac{1}{20} \cdot \frac{c}{f_{\rm H}\sqrt{\varepsilon_{\rm r}}}$$
(4.3)
$$p = \frac{1}{20} \cdot \frac{3 \cdot 10^8}{1100 \cdot 10^6 \sqrt{4.38}}$$
$$p \doteq 6.5 \,\rm{mm}$$

potom počet prokovů na stěně délky $W_{\rm w}$ můžeme určit jako:

$$N_{\rm w} > \frac{W_{\rm w}}{p} \tag{4.4}$$
$$N_{\rm w} > \frac{160}{6.5} \doteq 24.6$$

a počet prokovů na stěně délky $L_{\rm w}$ jako:

$$N_{\rm l} > \frac{L_{\rm w}}{p} \tag{4.5}$$
$$N_{\rm l} > \frac{70}{6.5} \doteq 10.8$$

Byly tedy zvoleny počty prokovů $N_1 = 11 + 2 = 13$ a $N_w = 25 + 2 = 27$, přičemž přidané dva prokovy jsou prokovy umístěné v rozích. Výsledná vzdálenost mezi prokovy je tedy menší než původně uvažovaná. Na jedné stěně o šířce W_w je o jeden prokov méně z důvodu vytvoření prostoru pro napájecí vedení.

Z důvodů omezeného prostoru na substrátu byla šířka W_w zmenšena na 120 mm. Tato změna byla simulována a nezpůsobila žádnou změnu v parametrech antény.

4.4 Impedanční přizpůsobení anténního prvku

Impedannčí přizpůsobení anténního prvku bylo provedeno pomocí rozměrů vazebního vedení W_{stub} a L_{stub} . Výchozí délka vazebního vedení byla určena jako čtvrtina vlnové délky v substrátu:

$$L_{\rm stub} \approx \frac{c}{4f\sqrt{\varepsilon_{\rm r}}}$$

$$L_{\rm stub} \approx \frac{3 \cdot 10^8}{4 \cdot 1060 \cdot 10^6 \sqrt{4.38}}$$

$$L_{\rm stub} \approx 33.8 \,\rm{mm}$$

$$(4.6)$$

Velmi užitečným nástrojem pro ladění impedančního přizpůsobení je Smithův diagram, pomocí kterého je možné dobře sledovat vliv jednotlivých parametrů na činitel odrazu. Vliv délky $L_{\rm stub}$ ukazuje obrázek 4.8 a vliv šířky $W_{\rm stub}$ ukazuje obrázek 4.7.

Obr. 4.7: Vliv parametru W_{stub} na impedanční přizpůsobení antény – Smithův diagram

Obr. 4.8: Vliv parametru L_{stub} na impedanční přizpůsobení antény – Smithův diagram

1

Obr. 4.9: Vliv parametru h_{A2} na impedanční přizpůsobení antény – Smithův diagram

Obr. 4.10: Vliv parametru $h_{\rm A}$ na impedanční přizpůsobení antény – Smithův diagram

5 Návrh stripline vedení

Pro vytvoření lepší vazby mezi stripline vedením a šterbinou bylo zvoleno asymetrické stripline vedení. Výška obou substrátů byla zvolena z běžně dostupných rozměrů. Byly zvoleny rozměry 0,508 mm a 1,524 mm. Pro počáteční určení charakteristické impedance vedení je nejjednodušším způsobem použití dostupného softwaru, jako je např.: *Saturn PCB Design Toolkit Version 8.06*. Šířka pásku určená pomocí uvedeného softwaru je 0,6 mm, což lze považovat za dobrý startovní bod pro určení přesnější hodnoty pomocí Ansys HFSS.

Obr. 5.1: Výřez okna programu Saturn PCB Design Toolkit Version 8.06

Lepší představu o závislosti mezi charakteristickou impedancí a šířkou vedení udává obrázek 5.2. Jednotlivé body byly vypočítány pomocí Ansys HFSS. Následně byly tyto body proloženy polynomem 3. řádu, aby při dalším návrhu bylo možné pohodlně určit šířku vedení. Získaný polynom má následující tvar:

$$W_{\rm f} = -3.146238 \cdot 10^{-5} Z_0^{\ 3} + 0.005064 Z_0^{\ 2} - 0.297486 Z_0 + 6.876223 \tag{5.1}$$

Obr. 5.2: Šířka stripline vedení v závislosti na jeho charakteristické impedanci

6 Navržený anténní element

Anténní element je navržen jako vícevrstvá struktura se dvěma čtvercovými flíčky umístěnými nad sebou. Flíčky jsou v rozích rozepřeny distančními sloupky z polyamidu s uvažovanou relativní permitivitou $\varepsilon_r = 4,3$ a ztrátovým činitelem tan $\delta = 0,004$. Parametry polyamidu byly vyčteny z materiálové knihovny Ansys HFSS. Simulací bylo ověřeno, že distanční sloupky nemají vliv na vlastnosti antény a není tedy potřeba znát přesné hodnoty polyamidu.

Nápájecí vedení je navrženo jako asymetrické stripline vedení se zakončením naprázdno. Jako substrát byl zvolen Kappa[®] 438 s relativní permitivitou $\varepsilon_r = 4,38$. Tento substrát slouží jako náhrada za běžně užívané materiály FR-4 a jeho výhodou oproti bežným substrátům FR-4 je definovaná relativní permitivita [14]. Nákres navrženého anténního prvku lze vidět na obrázcích 4.1, 4.2, 4.6 a 4.3, jeho rozměry jsou uvedeny v následující tabulce:

Rozměr	[mm]	Rozměr	[mm]
$h_{\rm s1}$	$1,\!524$	$h_{\rm s2}$	0,508
$h_{ m A}$	4	$h_{\rm A2}$	11
SW	5	SL	70
L_{stub}	23	W_{stub}	2
$E_{\rm of}$	3	$r_{\rm s}$	6
$L_{\rm w}$	70	$W_{\rm w}$	160
$L_{ m p}$	$113,\!5$	$W_{\rm p}$	$113,\!5$
W_{f}	0,7	$r_{\rm via}$	$0,\!4$
N_{l}	13	$N_{ m w}$	27

Tab. 6.1: Rozměry navrženého anténního prvku

Simulovaný průběh PSV anténního elementu je zobrazen na obrázku 6.1. Anténní prvek se podařilo impedančně přizpůsobit tak, aby PSV v obou pásmech bylo menší než 1,32. Vyzařovací diagramy v rovině E (XZ – elevace) jsou zobrazeny na obrázku 6.3 a diagramy pro rovinu H (YZ – azimut) na obrázku 6.4. Souhrn parametrů anténního prvku je zobrazen v tabulce 6.2.

f [MHz]	PSV[-]	$G_{\rm real} [{\rm dBi}]$	$\Theta_E \ [^\circ]$	Θ_H [°]
1020	1,31	9,3		
1030	1,28	$9,\!4$	56	66
1040	1,30	9,4		
1080	1,26	$9,\!6$		
1090	$1,\!25$	9,7	52	66
1100	1,32	9,7		

Tab. 6.2: Souhrn simulovaných parametrů anténního elementu

Obr. 6.1:PSVnavrženého anténního prvku

Obr. 6.2: Realizovaný zisk anténního elementu

Obr. 6.3: Vyzařovací diagram anténního elementu rovině E (XZ-elevace)

Obr. 6.4: Vyzařovací diagram anténního elementu rovině H (YZ–azimut)

7 Návrh anténního pole

Navržený anténní element dosahuje maximálního zisku $G = 9,2 \,\mathrm{dBi}$. Pro dosažení zadaných požadavků je potřeba zisk zvýšit přibližně o 3 dB. Jelikož platí, že $10^{\frac{3}{10}} \doteq 2$, musí být zisk dvojnásobný. Pro zdojnásobení zisku je potřeba zdvojnásobit počet použitých prvků. Hlavní lalok v rovině E má být vychýlen o 10° , musí být v této rovině použity minimálně dva prvky, které budou napájeny se vzájemným fázovým posunem. Jelikož je návrh omezen rozměry, není možné použít více než 2 prvky v této rovině.

Pro snížení finančních nákladů bylo rozhodnuto, že i v rovině H budou použity pouze dva prvky. Se dvěma prvky však nelze docílit dostatečně úzkého svazku hlavního laloku. Pro dosažení požadavků na vyzařovací diagram v této rovině by bylo potřeba použít prvků více.

Rozměry d_{gndE} a d_{gndH} byly omezeny možnostmi výroby, maximální rozměry desek plošných spojů byly 400 mm × 520 mm.

Obr. 7.1: Nákres anténního pole

7.1 Vychýlení hlavního laloku

Vzdálenost dl (viz obrázek 7.1) se dá označit za vzdálenost napájecího bodu od fázové nuly. Tuto vzdálenost lze vypočítat jako:

$$dl = \frac{1}{2} \frac{\delta}{360^{\circ}} \lambda_{\rm g} \tag{7.1}$$

kde δ je fázový rozdíl napájení anténních elementů. Parametr δ lze určit z grafu uvedeném na obrázku 7.3. Tento graf byl získán rozmítáním fázového posunu na portech 3 a 4 při simulaci. Simulovaná struktura a rozmístění portů jsou zobrazeny na obrázku 7.2. Pro požadované $\theta_{max} = 10^{\circ}$ je δ přibližně 45°. Vzdálenost *dl* je:

$$dl = \frac{1}{2} \frac{45^{\circ}}{360^{\circ}} \cdot 135 \doteq 8 \,\mathrm{mm}$$

Obr. 7.2: Čtyřportové napájení pole

7.2 Výsledné anténní pole

Simulované hodnoty PSV navrženého anténního pole zobrazuje obrázek 7.4. Je zřejmé, že se zvětšující se výškou flíčku se PSV mírně zhoršuje. Pro výšku $h_{\rm p} = 0.8 \,\mathrm{mm}$ je hodnota PSV stále přijatelná.

Obr. 7.3: Vychýlení maxima hlavního laloku v závislosti na fázovém posunu napájecího signálu

Tab. 7.1: Rozměry navrženého anténního pole

Rozměr	[mm]	Rozměr	[mm]
d_{gndE}	380	d_{gndH}	430
dE	174	dH	174
dl	8		

Obr. 7.4: Simulované PSVanténního pole

Obr. 7.5: Simulovaný realizovaný zisk anténního pole v závislosti na frekvenci

8 Návrh napájecí sítě

Síť pro napájení jednotlivých anténních prvků musí zajistit dělení výkonu a fázový posun mezi prvky pro vychýlení hlavního laloku. Nevýhodou stripline vedení je ztížená montáž součástek, jako jsou rezistory. Pro jejich montáž by bylo nutné vyfrézovat do substrátu otvor. Z tohoto důvodu je vhodnější se montáži součástek vyhnout a upřednostnit dělič typu T před Wilkinsonovým, který vyžaduje použití rezistoru.

Při návrhu napájecí sítě je potřeba zvážit i geometrické rozměry vedení. Pro vysoké impedance by totiž šířka vodivé cesty mohla být příliš malá a kvůli výrobní odchylce by se hodnota impedance mohla lišit od požadované. Jelikož je šířka cesty při $Z_0 = 50 \Omega$ jen přibližně 0,7 mm, je z uvedeného důvodu lepší transformovat impedanci na nižší hodnoty, kdy bude šířka vedení větší. Proto zvolíme jako největší hodnotu použité impedance 50 Ω .

8.1 Dělení výkonu

Ve výsledné struktuře jsou navrženy 4 anténní prvky v rozložení 2×2 . Pro N prvků je potřeba platí, potřeba použít N - 1 děličů. Pro 4 prvky jsou potřeba 3 děliče.

Výkon vstupující do děliče P_{in} můžeme vyjádřit jako [8]:

$$P_{in} = \frac{1}{2} \frac{U^2}{Z_{in}}$$
(8.1)

Obdobně můžeme vyjádřit výkon na výstupních portech:

$$P_x = \frac{1}{2} \frac{U^2}{Z_x} \tag{8.2}$$

Pro dělení výkonu na poloviny platí:

$$P_x = \frac{1}{2} P_{in} \tag{8.3}$$

Po dosazení 8.1 a 8.2 do 8.3 získáme výraz:

$$\frac{1}{2}\frac{U^2}{Z_x} = \frac{1}{4}\frac{U^2}{Z_{in}} \tag{8.4}$$

Z toho lze dále odvodit impedanci na výstupních portech:

$$Z_x = 2Z_{in} \tag{8.5}$$

Pro dělení výkonu dvěma musí být charakteristická impedance na výstupních portech dvakrát větší, než charakteristická impedance na vstupním portu. Největší hodnota impedance vedení byla zvolena jako 50Ω , uvažujme tedy tuto hodnotu jako Z_x . Potom musí být vstupní impedance $Z_{in} = 0.5Z_x$ a tedy $Z_{in} = 25 \Omega$.

8.2 Transformace impedance

Jelikož se konektory běžně vyrábějí s charakteristickou impedancí 50 Ω , je potřeba provést transformaci z 50 Ω na impedanci vstupu děliče 25 Ω . Pro dodržení kompatibility s tabulkami a vzorci uvedenými v [8] přiřadíme impedancím označení: $Z_L = 50 \Omega$ a $Z_0 = 25 \Omega$. Impedanční přizpůsobení budeme provádět v poměru:

$$\frac{Z_L}{Z_0} = 2$$

Pokud je k dispozici dostatek prostoru, je vhodné pro transformaci impedance použít delší vedení s více úseky, které zajistí pozvolnou transformaci a tím nižší *PSV* na větší šířce pásma. Mezi nejvíce používané tvary charakteristik činitele odrazu v závislosti na frekvenci patří binomiální a Chebyshevovo rozložení [8]. Jelikož impedanční přizpůsobení antény je nejdůležitější v pásmu 1020 MHz až 1100 MHz, bude vstupním parametrem pro výpočet šířka pásma vyjádřená v procentech:

$$B_{\%} = \frac{1100 - 1020}{1060} \cdot 100\% = 7,5472\%$$

Pro výpočet impedančního přizpůsobení vyjdeme ze vztahů uvedených v [8]. Délku vedení vyjádřenou v radiánech na nejnižším kmitočtu pásma (1020 MHz) lze vyjádřit jako:

$$\theta_m = \frac{2 - B}{4} \cdot \pi$$

$$\theta_m = \frac{2 - 7,5472/100}{4} \cdot \pi = 1,5115 \,\mathrm{rad} = 86,6038^\circ$$
(8.6)

Z hlediska prostoru není problém umístit na substrát tři úseky vedení o délce $\lambda_{\rm g}/4$. Počet úseků určuje řád aproximace, pro tři úseky je tedy řád N = 3. Výsledky výpočtů je potřeba uvést s dostatečnou přesností, jinak by zanikl charakter dané aproximace. Z toho důvodu jsou výsledky uvedeny na 4 desetinná místa.

8.2.1 Čtvrtvlnná transformace

Nejjednodušším principem pro impedanční přizpůsobení je čtvrtvlnný transformátor, kdy je transformace provedena pomocí jednoho úseku vedení o impedanci Z_T :

$$Z_T = \sqrt{Z_0 Z_L} \tag{8.7}$$
$$Z_T = \sqrt{25 \cdot 50} = 35,3553 \,\Omega$$

Hodnotu činitele odrazu na okraji pásma lze vypočítat následovně:

$$\Gamma_m = \sqrt{\frac{1}{1 + \left(\frac{2 \cdot \sqrt{Z_0 Z_L}}{Z_L - Z_0} \sec \theta_m\right)^2}}$$
(8.8)

$$\Gamma_m = \sqrt{\frac{1}{1 + (\frac{2 \cdot \sqrt{25 \cdot 50}}{50 - 25} \sec 86, 6038^\circ)^2}}$$

$$\Gamma_m = 0,0209$$

a v decibelové míře:

$$S_{11} = 20 \cdot \log 0,0209 = -33,5804 \,\mathrm{dB}$$

8.2.2 Binomiální rozložení

Binomiální rozložení umožňuje získat maximálně plochou charakteristiku v okolí středního kmitočtu. Pro výpočet činitele odrazu na okrajích vedení je potřeba určit koeficient A:

$$A = 2^{-N} \cdot \frac{Z_L - Z_0}{Z_L + Z_0}$$

$$A = 2^{-3} \cdot \frac{50 - 25}{50 + 25}$$

$$A = 0,0417$$
(8.9)

Hodnotu činitele odrazu na okraji pásma lze vypočítat jako:

$$\Gamma_m = |A| (2\cos\theta_m)^N$$
(8.10)

$$\Gamma_m = 0.0417 \cdot (2\cos 86.6038^\circ)^3$$

$$\Gamma_m = 6.9301 \cdot 10^{-5}$$

Pro lepší porovnání vyjádříme činitele odrazu v decibelech:

$$S_{11} = 20 \cdot \log \Gamma_m = 20 \cdot \log 0.0417 \cdot (2 \cdot \cos 86.6038^\circ)^3 = -83.1852 \,\mathrm{dB}$$

Hodnoty impedancí binomiálního rozložení lze určit pomocí tabulky dostupné v [8]. V tabulce 8.1 jsou uvedeny koeficienty a hodnoty impedancí pro binomiální rozložení 3. řádu. Hodnoty impedancí se pomocí koeficientů vypočítají následovně (n = 1):

$$Z_1 = 1,0907 \cdot Z_0 = 1,0907 \cdot 25 = 27,2675 \,\Omega$$

Tab. 8.1: Hodnoty impedancí pro binomiální rozložení 3. řádu

n	Z_n/Z_0	$Z_n [\Omega]$
1	1,0907	27,2675
2	1,4142	$35,\!355$
3	1,8337	$45,\!8425$

8.2.3 Chebyshevovo rozložení

Další možností pro impedanční přizpůsobení je vedení s více úseky a Chebyshevovým rozložením odrazu. Budeme uvažovat vedení o 3 úsecích, z toho vyplývá, že budeme uvažovat Chebyshevovo rozložení 3. řádu. Maximální odraz Γ_m na okraji pásma lze vyjádřit:

$$\Gamma_m = \frac{\ln \left(Z_L / Z_0 \right)}{2 \cdot \cosh \left(N \cdot \operatorname{arccosh} \left(\sec \left(\theta_m \right) \right) \right)}$$

$$\Gamma_m = \frac{\ln \left(50 / 25 \right)}{2 \cdot \cosh \left(3 \cdot \operatorname{arccosh} \left(\sec \left(86,6038^\circ \right) \right) \right)}$$

$$\Gamma_m = 1,8061 \cdot 10^{-5}$$
(8.11)

Z Γ_m lze dále určit činitel odrazu na rozhranní jednotlivých úseků:

$$\Gamma_0 = \frac{\Gamma_m \cdot \sec^3\left(\theta_m\right)}{2} \tag{8.12}$$

$$\Gamma_{0} = \frac{1,8061 \cdot 10^{-5} \cdot \sec^{3}(86,6038^{\circ})}{2}$$

$$\Gamma_{0} = 0,0434$$

$$\Gamma_{1} = \frac{3 \cdot \Gamma_{m} \cdot (\sec^{3}(\theta_{m}) - \sec(\theta_{m}))}{2}$$
(8.13)
$$\Gamma_{1} = \frac{3 \cdot 1,8061 \cdot 10^{-5} \cdot (\sec^{3}(86,6038^{\circ}) - \sec(86,6038^{\circ}))}{2}$$

$$\Gamma_{1} = 0,1299$$

Díky symetrii můžeme jednoduše určit zbývající činitele odrazu:

$$\Gamma_3 = \Gamma_0 \tag{8.14}$$

$$\Gamma_3 = 0,0434$$

 $\Gamma_2 = \Gamma_1$
(8.15)

 $\Gamma_2 = 0,1299$

Díky znalosti činitelů odrazu na jednotlivých přechodech můžeme určit výsledné impedance vedení:

$$Z_1 = Z_0 \cdot \exp\left(2 \cdot \Gamma_0\right) \tag{8.16}$$

$$Z_2 = Z_1 \cdot \exp\left(2 \cdot \Gamma_1\right) \tag{8.17}$$

$$Z_3 = Z_2 \cdot \exp\left(2 \cdot \Gamma_2\right) \tag{8.18}$$

$$Z_1 = 25 \cdot \exp(2 \cdot 0.0434) = 27,2689 \,\Omega$$
$$Z_2 = 27,2689 \cdot \exp(2 \cdot 0.1299) = 35,3553 \,\Omega$$

$$Z_3 = 35,3553 \cdot \exp(2 \cdot 0,1299) = 45,8397 \,\Omega$$

Pro porovnání činitele odrazu jej vyjádříme v decibelech:

$$S_{11} = 20 \log \Gamma_m$$
$$S_{11} = 20 \cdot \log 1,8061 \cdot 10^{-5} = -94,8652 \, \mathrm{dB}$$

Toto rozložení bylo navrženo až po zhotovení antény. Je zde uvedeno jen pro srovnání jako další alternativa.

8.3 Simulace a porovnání transformačních metod

Pro ověření získaných výsledků teoretickým výpočtem byly transformátory simulovány pomocí úseků vedení v obvodovém simulátoru Ansys. Schéma transformátorů je uvedeno na obrázku 8.1. Parametry jednotlivých komponent jsou uvedeny v tabulce 8.2. Délka všech úseků je čtvrtina vlnové délky pro frekvenci 1060 MHz.

Obr. 8.1: Schéma transformátorů impedance

Tabulka 8.3 zobrazuje souhrn výsledků teoretických výpočtů a simulací. Simulované hodnoty jsou graficky zobrazeny na obrázku 8.2, který umožňuje názorné porovnání jednotlivých impedančních transformátorů. Je zřetelné, že nejlepšího přizpůsobení dosahuje Chebyshevovo rozložení, které však bylo simulováno až po zhotovení antény a může tedy sloužit jako další alternativa pro případné budoucí úpravy. Rozdíl impedancí binomiálního a Chebyshevova transformátoru je však malý a výsledný dopad na impedanční přizpůsobení by byl zanedbatelný.

Čtvi	rtvlnný	Bine	omiální	Che	byshev
Úsek	$Z [\Omega]$	Úsek	$Z [\Omega]$	Úsek	$Z [\Omega]$
T1	35,3553	T2	27,2675	Τ8	27,2689
		T3	$35,\!355$	T9	$35,\!3553$
		T4	$45,\!8425$	T10	$45,\!8397$

Tab. 8.2: Impedance úseků vedení pro čtvrtvlnný, binomiální a Chebysheův transformátor

Tab. 8.3: Teoreticky určený a simulovaný parametr S_{11} na vstupu jednotlivých úseků

	Vypočten max. S_{11} [dB]	Simulován max. S_{11} [dB]
Čtvrtvlnný	-33,58	-33,58
Binomiální	-83,19	-82,72
Chebyshevův	-94,87	-84,80

Obr. 8.2: Simulovaný parametr S_{11} pro různé transformační vedení

8.4 Geometrické rozměry vedení

Výslednou šířku vedení lze získat dosazením hodnot impedancí do vztahu 5.1. Rozměry úseků vedení pro zvolené binomiální rozložení jsou uvedeny v tabulce 8.4. Zde již nemá význam zobrazovat hodnoty s výsledkem na 4 desetinná místa, jelikož při výrobě není možné docílit tak přesného výsledku. Tyto hodnoty byly použity pro výsledný model anténního pole. Délka úseků vedení je $\lambda_g/4 = 33.7$ mm.

	$\mathbf{Z} [\Omega]$	$W_{\rm f} \ [{\rm mm}]$
0	25	$2,\!11$
1	$27,\!2675$	$1,\!89$
2	$35,\!355$	$1,\!30$
3	$45,\!8425$	0,85
L	50	0,73

Tab. 8.4: Šířka úseků vedení binomiálního transformátoru

9 Zhotovené anténní pole

Jako základ anténního pole byl použit substrát Kappa[®] 438. Na substrátu byla vytvořena napájecí síť (obrázek 9.4), štěrbiny pro napájení flíčků (obrázek 9.5) a prokovy mezi vodivými vstvami na substrátech. Substráty jsou na sebe přitlačeny a tím dochází k vodivému spojení mezi prokovy. Přítlak obstarávají kovové šrouby v rozích a plastové šrouby použité pro uchycení flíčků. Flíčky byly zhotoveny z nerezové oceli o tloušťce 0,8 mm. Pro rozepření flíčků byly použity distanční sloupky z polyamidu s výškou 4 mm a 11 mm. Dále byla vytvořena hliníková konstrukce (obrázek 9.6) pro zvýšení mechanické odolnosti antény. Podpůrná konstrukce byla v rozích uchycena čtyřmi kovovými šrouby M3.

Obr. 9.1: Zhotovené anténní pole

Obr. 9.2: Sub. 1 – spodní strana

Obr. 9.3: Sub. 1 – horní strana

Obr. 9.4: Sub. 2 – spodní strana

Obr. 9.5: Sub. 2 – horní strana

Obr. 9.6: Podpůrná konstrukce

10 Měření anténního pole

Měření anténního pole bylo provedeno v anténní komoře firmy RAMET a.s. Měřeny byly vyzařovací diagramy a PSV na vstupu antény.

10.1 Měření vyzařovacího diagramu

Měření bylo provedeno ve vzdálené oblasti substituční metodou. Metoda je založena na provedení referenčního měření s anténami, jejichž vlastosti jsou známy. Po provedení referenčního měření byla referenční anténa umístěná na točně zaměněna za měřené anténní pole. Výstupem měření jsou výkonové úrovně signálu v závislosti na natočení točny α . Zisk měřené antény byl následně vypočítán podle vztahu:

$$G(\alpha) = G_{ref} + P_{\alpha} - P_{ref} \tag{10.1}$$

kde $G(\alpha)$ je vypočtený zisk v závislosti na natočení α , G_{ref} je zisk referenční antény v dBi, P_{ref} je úroveň měřeného výkonu při použití referenční antény v dBm a P_{α} je změřená úroveň výkonu v závislosti na natočení α .

Jako měřicí i referenční anténa byla použita anténa R&S®HL562E ULTRALOG. Jako zdroj signálu byl použit signální generátor HEWLETT PACKARD 83732B a jako měřič výkonu Anritsu ML2437A s externím detektorem.

Tab. 10.1: Parametry měřicí/referenční antény R&S®HL562E ULTRALOG

$f \left[\mathrm{MHz} \right]$	Gain[dBi]	PSV[-]
1030,00	8,06	1,19
1090,00	8,40	$1,\!20$

10.2 Měření PSV

Pro měření PSV byl použit Anritsu MS2028C. Měřená anténa byla při měření umístěna v anténní komoře tak, aby výsledek měření nebyl ovlivněn odrazy prostředí.

10.3 Výsledky měření

Změřené hodnoty PSV jsou zobrazeny na obrázku 10.3. Je zřejmé, že změřená hodnota neodpovídá zadaným požadavkům, jeliokž PSV v žádném z míst charakteristiky není nižší než 1,5.

Obr. 10.1: Referenční měření

Obr. 10.2: Měření vyzařovací charakteristiky anténního pole

Vyzařovací diagramy pro rovinu E jsou zobrazeny na obrázku 10.4 a vyzařovací diagramy pro rovinu H jsou zobrazeny na obrázku 10.5. Průběhy označené písmenem "X" v legendě značí křížovou složku polarizace, bez označení se jedná o soufázovou složku. Simulované i změřené charakteristiky soufázové složky mají velmi podobný tvar, ale grafy změřených hodnot mají hodnoty přibližně o 6 dB nižší, pro případ roviny H a kmitočtu 1,03 GHz to je asi 10 dB. Naměřená křížová složka polarizace je oproti simulované vyšší, což je nežádoucí. Výrazně zvýšená křížová složka je především v rovině H.

Při měření vyžařovacích diagramů byl kladen důraz na určení úhlu vychýlení

hlavního svazku. Na naměřených grafech v rovině E (obrázek 10.4) lze pozorovat mírné vychýlení hlavního laloku. Změřená hodnota vychýlení je $4,5^{\circ}$ pro frekvenci 1030 MHz a $6,5^{\circ}$ pro 1090 MHz.

Obr. 10.3: Naměřené PSVanténního pole

f [MHz]	PSV[-]	$G_{\rm real} \left[{\rm dBi} \right]$	$\Theta_E \ [^\circ]$	Θ_H [°]
1020	1,43	$12,\!35$		
1030	1,39	12,44	41	42
1040	$1,\!35$	$12,\!54$		
1080	1,23	$12,\!89$		
1090	1,26	$12,\!90$	39	40
1100	1,42	$12,\!84$		

Tab. 10.2: Souhrn simulovaných parametrů anténního pole

Obr. 10.4: Vyzařovací diagram v rovině E (XZ – elevace) anténního pole, X – křížová složka polarizace

Obr. 10.5: Vyzařovací diagram v rovině H (YZ – azimut) anténního pole, X – křížová složka polarizace

11 Úpravy antény a nové měření

Jelikož změřené výsledky neodpovídaly simulovaným hodnotám, bylo potřeba hledat možné příčiny a případné řešení problémů. Prvním problémem, který byl při měření pozorován, byl vliv pohybu kabelu. Při pohybu propojovacího kabelu mezi anténou a měřicím přístrojem byla pozorována změna PSV. Bylo usouzeno, že problematická část sestavy je konektor, respektive přechod mezi konektorem a stripline vedením. Z toho důvodu byla provedena úprava konektoru tak, aby byl pevněji připojen a tvořil tak stabilní spoj. Původní uchycení konektoru lze vidět na obrázku 11.1 a 11.2. Původní konektor byl připojen ze strany substrátu, kdy do substrátu o tloušťce h_{s1} byl vyhlouben prostor pro střední vodič konektoru tak, aby bylo možné substráty umístit na sebe.

Obr. 11.1: Původní konektor (připájen na zemní plochu)

Obr. 11.2: Původní konektor (připájen ke stripline vedení)

11.1 Úprava umístění konektoru

Nejlepším dostupným řešením pro výměnu konektoru bylo použít úhlový konektor určený pro montáž do panelu a přišroubovat jej k substrátu pomocí šroubů. Problém s připojením konektoru však byl ten, že napájecí síť je realizována na horním substrátu a není tedy možné střední vodič konektoru připájet k vodivé cestě stripline vedení a současně jej umístit ze spodní strany antény. Proto bylo rozhodnuto, že bude konektor umístěn z horní strany antény (obrázek 11.5). Bylo tak rozhodnuto i přesto, že takto umístěný konektor může ovlivnit charakteristiku *PSV*, případně vyzařovací diagram.

Substrát byl upraven tak, aby jím mohl střední vodič konektoru procházet (obrázek 11.6). Střední vodič konektoru byl zkrácen na délku 1 mm. Jelikož vodič konektoru částečně přesahoval do spodního subtrátu, byl do něj vyhlouben prostor, který však neprocházel skrz. Cesta stripline vedení byla zkrácena, aby netvořila pahýl, který by mohl ovlivnit vstupní impedanci antény. Konektor byl přišroubován plastovými šrouby.

Obr. 11.3: Nový konektor (horní strana antény)

Obr. 11.5: Střední vodič konektoru připájený ke stripline vedení

Obr. 11.4: Horní substrát (otvor pro střední vodič konektoru)

Obr. 11.6: Zahloubení do spodního substrátu

Změřené PSV po výměně konektoru je zobrazeno na obrázku 11.7. Z grafu lze pozorovat, že výsledek stále nesplňuje požadavky pro PSV menší než 1,5.

Obr. 11.7: Naměřené PSV po výměně konektoru

11.2 Vylepšení mechanické konstrukce

Bylo zjištěno, že *PSV* se mění nejen kvůli pohybu kabelu, ale i z důvodů mechanického prohnutí antény. Další úvaha tedy byla, že jsou substráty nedostatečně stlačeny a dochází tak k nedokonalému spoji mezi vrtstvami. Pro odstranění tohoto problému byla vytvořena podpůrná vrstva z ocelového plechu o tloušťce 3 mm (obrázek 11.8), která byla umístěna pod spodní substrát a pomocí šroubů spojena se substráty (obrázky 11.10 a 11.9). Takto zpevněná konstrukce se již neprohýbala. Hrany substrátů byly olepeny hliníkovou fólií pro lepší propojení zemních ploch. Substráty byly provrtány a pevně spojeny pomocí kovových šroubů procházejících skrz. Kovové šrouby byly nejlepším řešením pro dosažení pevného spoje. Je však otázkou, zda kovové šrouby a hliníková páska negativně neovlivní elektrické vlastnosti antény, jelikož kovový šroub se v substrátu chová jako prokov.

Konstrukce se stabilizovala a tedy PSV se nemění s mechanickým namáháním. Ani po mechanické stabilizaci však nebylo dosaženo dobrého výsledku z hlediska PSV (viz obrázek 11.12). Hodnota PSV je v celém pásmu menší než 2, což lze považovat za hranici použitelnosti antény, ale zadaní stále nebylo splněno.

Obr. 11.8: Navrtaný plech tloušťky 3 mm

Obr. 11.10: Přišroubovaný plech ze spodní strany

Obr. 11.9: Sešroubovaná anténa s plechem

Obr. 11.11: Hrana olepená hliníkovou páskou

Obr. 11.12: Naměřené PSVpo zpevnění konstrukce pomocí plechu

Obr. 11.13: Nákres umístění děr pro přídavné šrouby

Závěr

V této práci byl popsán návrh anténního pole pro pásmo IFF. Anténní pole a jeho komponenty byly navrženy pro frekvenční pásmo od 1020 MHz do 1100 MHz. Pro dosažení návrhu anténního pole bylo potřeba řešit dílčí části. Návrh se zabýval problematikou stripline vedení a jeho použití pro štěrbinové buzení flíčků, dále návrhem anténního elementu, napájecí sítě pro anténní pole a návrhem výsledného anténního pole. Anténní prvek, byl navržen jako vícevrstvá struktura se dvěma čtvercovými flíčky umístěnými nad sebou. Navržený anténní prvek vykazuje dobré vlastnosti z hlediska impedančního přizpůsobení, kdy je maximální hodnota PSV menší než 1,32 na uvedeném pásmu. Maximum realizovaného zisku anténního prvku je větší než 9,3 dBi. Výsledné anténní pole je složeno ze 4 anténních prvků. Napájecí síť je založena na deličích typu T a pro transformaci impedance jsou použity impedanční transformátory s binomiálním rozložení činitele odrazu, zajišťující impedanční přizpůsobení v celé šířce pásma. Takto navržené anténní pole vykazuje PSV menší než 1,43 a realizovaný zisk větší než 12 dBi. Vytvořením vhodného fázového posunu mezi prvky bylo dosaženo vychýlení maxima hlavního laloku o 10° v elevaci, jak bylo požadováno v zadání.

Navržené anténní pole bylo zhotoveno a změřeno. Měřeny byly vyzařovací charakteristiky a *PSV*. Výsledky měření vykazovaly velkou odchylku od simulovaných hodnot. Měřený maximální zisk byl oproti simulaci nižší o 5 až 10 dB a měřené *PSV* nebylo nižší než 1,5, což nelze považovat za dobrý výsledek.

Jelikož měření původního výrobku neposkytlo dobré výsledky, byla snaha o mechanické zpevnění anténního pole za úmyslem dosažení lepších výsledků. Byl kladen důraz především na pevnější uchycení konektoru a na pevnější spojení substrátů. Provedené pokusy však výsledky příliš nevylepšily. Charakteristika *PSV* v celé šířce pásma poklesla pod 2, tuto hodnotu však nelze považovat za uspokojivou, protože nesplňuje zadání.

Jelikož navržený model má v simulaci velmi dobré výsledky, bylo by škoda je zahodit a v práci nepokračovat. Pro odhalení problému fyzického modelu by bylo vhodné začít s ověřením parametrů samotného anténního elementu. Následně prověřit parametry napájecí sítě a anténního pole. Pomocí tohoto postupu se pokusit problém najít a odstranit.

Literatura

- IEEE Standard for Radar Definitions. *IEEE Std 686-2017 (Revision of IEEE Std 686-2008)*, 2017, s.1-54, ISBN 978-1-5044-4062-2.
- [2] YANG, F.; ZHANG, XUE-XIA; YE, XIAONING; RAHMAT-SAMII Y. Wideband E-shaped patch antennas for wireless communications. *IEEE Transactions* on Antennas and Propagation, 2001, vol. 49, no. 7, s. 1094–1100. ISSN 1558-2221.
- [3] TONG, KIN-FAI; LUK, KWAI-MAN; LEE, KAI-FONG; LEE, R. Q. A broad-band U-slot rectangular patch antenna on a microwave substrate. *IEEE Transactions on Antennas and Propagation*, 2001, vol. 49, no. 7, s. 1094–1100. ISSN 1558-2221.
- [4] MILLIGAN, T.A. Modern antenna design. 2. vyd. John Wiley & Sons, Inc., 2005. 500 s. ISBN 9780471457763
- [5] ABDOLAHI, M.; POURGHOLAMHOSSEIN, Z.; SADEGHI, H. M.; FADAEI, M. Design and analysis performance of a new patch array antenna for SSR. 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), 2017, vol. 43, no. 7, s. 2539-2545. ISBN 978-1-5090-6269-0.
- [6] Saturn PCB Design Toolkit Version 8.06 [online]. [cit. 2. 1. 2022]. Dostupné z URL: ">https://saturnpcb.com/saturn-pcb-toolkit/>.
- [7] BRACHAT, P.; BARACCO, J. M. Dual-polarization slot-coupled printed antennas fed by stripline. *IEEE Transactions on Antennas and Propagation*, 1995, vol. 43, no. 7, s. 738–742. ISSN 1558-2221.
- [8] POZAR, D. M. Microwave engineering. 4. vyd. John Wiley & Sons, Inc., 2011.
 752 s. ISBN 978-0-470-63155-3
- [9] TARGONSKI, S. D.; WATERHOUSE, R. B.; POZAR, D. M. Design of wideband aperture-stacked patch microstrip antennas. *IEEE Transactions on Antennas and Propagation*, 1998, vol. 46, no. 9, s. 1245–1251. ISSN 1558-2221.
- [10] CROQ, F.; POZAR, D. M. Millimeter-wave design of wide-band aperturecoupled stacked microstrip antennas. *IEEE Transactions on Antennas and Propagation*, 1991, vol. 39, no. 12, s. 1770-1776. ISSN 1558-2221.
- [11] WATERHOUSE, R.B. Design of probe-fed stacked patches. *IEEE Transactions on Antennas and Propagation*, 1999, vol. 47, no. 12, s. 1780-1784. ISSN 1558-2221.

- [12] BHATTACHARYYA, A.; FORDHAM, O.; LIU, Y. Analysis of stripline-fed slot-coupled patch antennas with vias for parallel-plate mode suppression. *IEEE Transactions on Antennas and Propagation*, 1998, vol. 46, no. 4, s. 538-545. ISSN 1558-2221.
- [13] XU F.; WU K. Guided-wave and leakage characteristics of substrate integrated waveguide *IEEE Transactions on Microwave Theory and Techniques*, 2005, vol. 53, no. 1, s. 66-73. ISSN 1557-9670.
- [14] Kappa[®] 438 Laminates [online]. Chandler: Rogers Corporation, 2019 [cit. 29. 12. 2021]. Dostupné z URL: https://rogerscorp.com/-/media/ project/rogerscorp/documents/advanced-electronics-solutions/ english/data-sheets/kappa-438-laminates-data-sheet.pdf> https://rogerscorp.com/advanced-electronics-solutions/ kappa-438-laminates>.

Seznam symbolů a zkratek

IFF	Identification, Friend or Foe	
\mathbf{SSR}	Secondary Surveillance Radar	
ATCRBS	Air Traffic Control Radar Beacon System	
HFSS	High-Frequency Structure Simulator	
B_{30}	nižší frekvenční pásmo se středním kmitočtem $1030{\rm MHz}$	
B_{90}	vyšší frekvenční pásmo se středním kmitočtem $1090{\rm MHz}$	
PSV	poměr stojatých vln	
S_{11}	parametr S_{11}	
С	rychlost světla $(3 \cdot 10^8 \mathrm{ms^{-1}})$	
λ_0	vlnová délka ve volném prostoru	
$\lambda_{ m g}$	vlnová délka v prostředí s relativní permitivitou větší než 1	
W_{f}	šířka napájecího stripline vedení	
$W_{ m stub}$	šířka vazebního vedení	
L_{stub}	polovina Délky vazebního vedení	
h	výška substrátu	
$h_{ m s1}$	výška spodního substrátu	
$h_{ m s2}$	výška vrchního substrátu	
$h_{ m A}$	výška spodní vzduchové vrstvy	
$h_{ m A2}$	výška vrchní vzduchové vrstvy	
$h_{ m p}$	výška flíčku (kovové vrstvy)	
SW	šířka štěrbiny	
SL	délka štěrbiny	
$r_{\rm s}$	poloměr distančních sloupků	
$E_{\rm of}$	odsazení distančních sloupků od okraje flíčku	

$W_{ m w}$	šířka dutiny vytvořené prokovy
$L_{\rm w}$	délka dutiny vytvořené prokovy
$L_{\rm p}$	rezonanční délka flíčku
$W_{ m p}$	šířka flíčku
dl	vzdálenost napájecího bodu od fázové nuly
dE	vzdálenost středů anténních prvků v rovině E
dH	vzdálenost středů anténních prvků v rovině H
δ	fázový rozdíl napájení anténních elementů
$ heta_{max}$	vychýlení maxima hlavního laloku v rovině E
$r_{ m via}$	poloměr prokovů
p	vzdálenost mezi prokovy
$N_{ m w}$	počet prokovů na stěně délky $W_{\rm w}$
N_{l}	počet prokovů na stěně délky $L_{\rm w}$
$f_{ m L}$	nejnižší kmitočet pásma B_{30}
$f_{ m H}$	nejvyšší kmitočet pásma B_{90}
$\varepsilon_{ m r}$	relativní permitivita prostředí
$\varepsilon_{ m reff}$	efektivní relativní permitivita
Δ	prodloužení délky flíčku
$G_{ m Eco}$	souhlasná složka zisku v rovině E
$G_{ m Hco}$	souhlasná složka zisku v rovině H
$G_{ m Ecross}$	křížová složka zisku v rovině E
$G_{ m Hcross}$	křížová složka zisku v rovině H
$G_{\rm real}$	realizovaný zisk
Θ_E	šířka svazku hlavního laloku v rovině E pro pokles zisku o $3\mathrm{dB}$
Θ_H	šířka svazku hlavního laloku v rovině H pro pokles zisku o $3\mathrm{dB}$

- $G(\alpha)$ vypočtený zisk v závislosti na natočení α
- G_{ref} zisk referenční antény
- ${\cal P}_{ref}$ úroveň měřeného výkonu při použití referenční antény
- P_{α} změřená úroveň výkonu v závislosti na natočení α
- $Z_0 ~~$ charakteristická impedance vedení