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Abstract 7

ABSTRACT

This thesis deals with overhead power lines movemmamitoring. This may cover voltages
from 70 kV to 400 kV. Sensors are placed on thalootors and the main objective is to evaluate
their mechanical behaviour from low frequencieadfion of Hz) to high frequencies (some tens
of Hz). This document has evaluated the poss#slitio reproduce large low frequency
movements as those observed in large turbulent,vahdrt-circuit, ice shedding, galloping or
any other cause. This aims to help operators asigmuers make decisions. The robustness of the
development includes the introduction/combinatibne@wv sensors, the appropriate mathematical
development needed to reproduce what has been madaand this has been done on records
obtained either by simulations, laboratory testaciual measurements on line.

KEY WORDS: overhead power lines, vibrations, large movemsgdalman filter
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ABSTRAKT

Tahle prace se zabyva monitorovanim venkovnich kgsa@tovych vedenich, coz mohou
byt vedeni od 70kV do 400kV. Senzory jsou ugmigt na vodéi a hlavni mysSlenkou je
vyhodnotit mechanické chovani vedj a to od nizkych frekvenci (zlomky Hz) az po vysok
frekvence (desitky Hz). Tahle prace se zabyvalaylpplo nizkych frekvencich a vysokych
amplitudach a popsala moznosti sestaveightd pohyli na zaklad méreni ze senzér
Konkrétre se jednd o pohyby viipact silného ¥tru, zkratu, opadavani ledu nebo dalSich.
VSechno tohle pomaha operdtotkélat rozhodnuti ohledn provozovani siti. Vyvoj zahrnuje
piidani/kombinaci novych senzgrpopsani matematického algoritmu fethého k sestaveni
pohybu na zéklad toho co bylo znseno, & uZ se jedna o hodnoty ziskané simulaci,
laboratornim testem nebo realnynstenim na vedeni.

KLI COVA SLOVA: venkovni vysokonagova vedeni, vibrace, nestandardni pohyby,
Kalmanv filtr
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1 INTRODUCTION

Thermal rating of the lines depends on many pararseind factors like weather and current
flow. And it is well known that thermal rating ahés changes continually, because parameters
and factors included are changing continually ab. weansmission lines are designed in worst
weather conditions (maximum solar heating, maximexternal temperature, minimum wind
speed ...) to control the maximum sag. But the epee shows that in practice, actual ambient
conditions are less restrictive (generally morentB8% of the time) than those designed in the
standards. So if we could have a possibility to sneathe actual sag of lines in real time, we can
better use existing overhead lines and save mardyuilding new overhead lines. An increased
ampacity of the conductor depending on the actwdtier condition is thus generally available
most of the time. Moreover there is still 2% of tirme when actual weather conditions could be
worse than those supposed and there exists risikls.rééal time sag monitoring device we know
“exact” information about sag. All in all, real termonitoring is a quick applicable solution at a
reasonable cost for better usage of existing oaeftiaes.

500
450 +
LOADING DISTRIBUTIONS
400 - STATIC RATING BASED ON WORST-
TOkV 400 kV / GASE WEATHER ASSUMPTIONS
350 \ ‘
300 - '

Hours/year

ACTUAL DYNAMIC RATING
DISTRIBUTION

150 200 250 300
% static linit

Figure 1-1 Comparison of Loading and actual Ratihsgtributions [1]

In Figure 1-1 is a comparison of loading and actatihg distributions for an overhead line
over one year. It shows virtual example based dnahdoading for a 70 kV and 400 kV of
Belgian line and actual rating based on a publisizesg (Dale Douglas, PTI).
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2 AMPACIMON ®

Ampacimon device, system and method have been tpdten September 2005, with a
particular emphasis on EMC (electromagnetic corbpdyi) protection. Patent number: WO
2007/031435 (Al).

2.1 What is Ampacimon®

Due to increasing consumption of electrical eneegypacity determination is a key factor
for the huge market around the world. Especiallgrafprs of overhead high voltage lines are
interested in upgrading existing overhead lines thailding new ones. Still more important is
the impact of market release in Europe and USA lwkdl force to have real time information
on main lines. In a deregulated market environmiet,priority of the market is to maximize
their profit. It means to maximize the ability sdbhsmission in a secured way and to minimize
serious disturbances and time of inactive linesrddeer power systems in European regions as
well as North American ones will be operated clagetheir limits, because of difficulties to
build new lines and growing demand of electric powe most countries. Under the above
described stressed conditions, thermal overloadss{ng sag) are critical threats to system
operation. But there will be a greater possibibfycascade tripping. The Italian blackout (Sept
28th, 2003) as well as the New York blackout (Augtdth, 2003) have their origin in a
flashover between trees and power lines. More tBgcen November 4th, 2006 a major blackout
in the whole Europe has been hopefully avoided. éi@w, it affected 15 million people after the
cascading event.

Figure 2-1 Black out in New York in 2003 [1]

2.2 Ampacimon® method

Ampacimon device allows real time monitoring of seql other motion characteristics based
on frequency analysis. Precision on sag is about PBanks to this low frequency analysis
provided by accelerometers, Ampacimon device dat¢sneed any line nor any environmental
data to determine the sag. Therefore, this metkocthare reliable than other determination
methods.

Ampacimon device monitor even vibration (0 to 10Dz evaluate effects of fatigue. It
helps to take preventive control of conductors dachpers.

Another advantage is that Ampacimon is autonomaasst(is directly powered by the line)
and can be located anywhere on the span, it reqonoecalibration for first use, and moreover, it
can be installed live-line in roughly 15 minutessdves lots of time and money.



2 Ampacimon®

18

Figure 2-3 Live-line installation [1]
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Figure 2-5 Ambient temperature and sag as dedugefinppacimon vs. time [1]
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2.3Who is concerned by Ampacimofi?

Using real time systems increases thermal ratinghe$ of about 10 to 15 % on average. It
could be higher in some cases depending on thegoiedesign of the line. Information sent by
Ampacimon are useful for the utilities using theek as their business, to make a more efficient
use of existing overhead lines and thus a bettdr ®®e informed in real time of troubles on the
network, to detect the lines on which vibrationsels are not sufficiently protected, to be
informed about damages, to prevent black-outsiligitinnecessary cascade tripping, to evaluate
the evolution of the fatigue of their lines, ando® informed early enough of incoming troubles
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to inform their maintenance staff and/or to redird® power flow not to loose customers, in
other words, to save money. For the new developedhead lines to better monitor their
behaviour. (Real time sag, snow or ice overloadaction against wind blow, vibration level,
etc.) All these advantages will help to maintai@ tustomers in acceptable service conditions.

2
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Figure 2-6 Typical Ampacimon outputs for Aeoliabration analysis [1]

2.4 Design of Ampacimor?

The size of the last version of the device is 20st5and it weighs about 7kg. Internal part is
containing microelectronics and current transformsgecially designed for Ampacimon
application from 70 to 765kV. Anticorona design@dspecial design is used to protect the wiring
from short circuit currents, lightning over voltagédhe power level demand of this system is a
few Watts. The microelectronics system is equippet four 2D accelerometers (in such a way
that 3D movement can be analyzed). Measurementngpfmdm gyroscopes could be added to
the actual design. The sampling rate is about 200Measurements are possible to send to the
antennas. First antenna is a 433 MHz antenna wmitited power emission (depending on local
standards), able to transmit license free at ah@Qtm. Second one uses mobile phone network
using frequencies 900/1800/1900 MHz. All materais carefully chosen to be able to work with
temperature ranging from -40°C to 85°C.

Figure 2-7 Typical installation on 220 kV line irlBium (2005) [1]
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Figure 2-8 CAO view and actual view of the lastsi@n of Ampacimon (2008) [1]
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3 CONDUCTOR MOTION

There are three main types of power line vibra(@aiter Orawski 1993), indicating Aeolian
vibration. This is shown in wake-induced oscillatiand galloping, with their ranges of loop
lengths and amplitude.

Figure 3-1 Three main types of conductor motion [2]

3.1 Aeolian vibrations

Aeolian vibration is one of the most prevalent peofis in transmission lines. It causes
fatigue failure of conductor strands or of othesms associated with conductor. In low to
moderate winds, this type of conductor motion cetuo at almost any time and any transmission
line. Reliable transmission-line design requirbattAeolian vibration of the conductors be
controlled below critical levels to avoid fatiguardage.

Facts of Aeolian vibrations:

Characteristic frequencies are in the approximabtge of 3-200 Hz. The frequency
range depends on many conditions. Mainly the sizktensile load of the conductor.
Lower frequencies are typical for large conductorslow winds, while upper
frequencies are typical for small ground wires iod@rate winds.

Maximum possible amplitude is equal to the condudiameter.
Records of vibration at a point on a conductor skayure 3-2

Conductor vibration causes localized bending, whdelpends on its level, causes
fatigue failures of the conductor strands or treangs of spacers and other devices
installed on the conductor. The conductor vibratiway also cause fatigue damage to
items associated with the support and protectiai@iconductor itself — tower arms,
spacers and dampers.

The most serious Aeolian vibrations occurs whenctireuctor tensions are high, the
terrain is smooth, with frequent, low-to-moderatteady winds, and the spans are
long.

There is a possibility to control this vibrationing dampers.



3 Conductor motion 23

Figure 3-2 Record of vibration at a point on a cantbr. [2]

3 .

. N
are .\t

Figure 3-3 Fatigue failure of conductor strandstla¢ suspension clamp. [2]

The design of transmission line is made to con@blian vibrations of conductors below
critical levels to avoid fatigue damage. With thesign rules based on past experiences we are
able to know strength of the Aeolian vibrations. W& also measure existing lines to know the
conditions using special-purpose measuring instrisie

The second way to identify the conditions is byngsihe analytical approach to stimulate
behaviour of the conductor and other related devigais approach can be used successfully to
investigate alternatives in design process, alsthendirect design of the damping system for a
new line. The most used analytical models are basdtie Energy Balance Principle (EBP), and
they give an estimate of expected vibratory motidieese kinds of things are described in [1], |
didn’t use the analytical models.

When it was recognized that conductor strand faikauses Aeolian vibration, a number of
protection devices were developed following two maoncepts. The first concept sought to
provide reinforcement against the effect of vilmatof the conductor. The second concept took
into consideration the application of energy-diasiqy devices, which were able to reduce the
level of conductor Aeolian vibrations. The secandthod was soon recognized as the most
practical and effective method, and a number afatibn dampers have been developed to date.
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Figure 3-5 Vibration damper of Stockbridge type [2]

3.2 Fatigue

The most common form of damage resulting from Asolvibration is fatigue failure of
strands in overhead conductors. But influencedo#iner line components such as armour rods,
dampers, ties, insulators, and tower members. Giodiéatigue may also result from galloping
and from wake-induced oscillation, but mainly isigad by Aeolian vibration. Fatigue occurs at
support locations, suspension clamps, insulatord,dead ends. They also include damper and
bundle conductor spacer clamps, hot-line tapsgegliand armour rod end clamps. The incidence
of fatigue relative to the above locations is dise@ssociated with the rigidity with which
conductor motion is restrained. Fatigue of condiustrands is caused by the cyclic bending of
the conductors where their motion is restrainedthWhcreasing bending amplitude fatigue life
decreases.

The complications of relating the measurable vibrabf conductor to know the chance of
fatigue of its strands is a complicated matterirgiprimarily from two facts. First, the stresses
that cause the failures are complex and not rel@tedsimple way to the gross motions of the
conductor. Second, the failures are located orasartontact between components. Inspection
and failure analysis of a large number of fatigueaks from field and laboratory spans indicate
that the fatigue always takes place where the lorskend was in contact with another strand or
another related component. The stresses at thesgolos are combinations of static stresses due
to conductor tension, bending, and the compregsree between the members.
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Figure 3-7 Prototype Electro-magneto-acoustic tidunser (EMAT) device for detecting broken
conductor strands [2]

3.3 Galloping

Since the time galloping of iced conductors wasthunumerous research programs in the
world have been done. Aimed to solve the probledhwvamious devices and techniques have been
developed to prevent or minimalism effect of galhgp Many methods were used to prevent
galloping with mixed results. No practical protectimethod has been developed to prevent all
types of galloping under any ice and wind condgioApproach to this problem is in analytical
way and with the growth of computer capability arany solutions of complex problem in the
analysis of galloping behaviour. But even whenralevant parameters of weather and line
construction are known, there are still areas afediainty and isn’t possible to know exact
behaviour.
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Galloping is a low-frequency (0,1-1Hz), large arydie (x0,1 times - £1 times sag of the
span), wind-induced vibration of both single or Bienconductors, with a single or a few loops of
standing waves per span. This type of motion isedlby moderately strong, steady crosswind
acting upon an asymmetrically iced conductor sefddis type of motion has major impact on
the design of overhead lines and tower load. Theepetween lines has to be enough to prevent
flashovers between lines, which are the most comeffatt of galloping. Large, repeated loads
may cause bending of towers and cross arms.

There are two basic forms of galloping, standingvesaand travelling waves, or a
combination of them. From the beginning are waess tof meters long, with amplitudes of a
few centimetres. In the time, they grow in lengtld @amplitude and can interact with one another
to create standing waves. From several loops pam gp the beginning will be later only few
loops per span. Observed peak-to-peak amplitudgallmiping are often as great as the sag in the
span and in case of short spans should be greater.

Typical conductor motions are vertical in gallopitgit there is often motion in horizontal
direction. These motions aren’t often in phaseahsanotions are elliptical.

= J00QNI0

Figure 3-8 Percentage of observations of varioulbogéng ellipse shapes and tilts [2]

Galloping caused various kinds of structural damegeverhead lines because of large
forces that galloping motion applies to deviceslld@ping causes damage to cross arms,
insulators, towers, vibration dampers, and conduwuttings. When galloping amplitudes are great
enough, flashover can occur between phases orgtase to ground and it causes damage to the
conductor.

Figure 3-9 Damage due to galloping on towers [2]

Figure 3-10 Damage due to galloping on a stringa$pension insulators [2]
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Figure 3-12 Broken strands resulting from shortait due to two-phase fault induced by
galloping [2]

3.4 Bundle Conductor Oscillations

Bundle conductor oscillation (or wake-induced datibn), is another motion recognized as
a problem in transmission lines of bundle condwtéirdoesn’t cause as serious of a problem
like previous motions and damage had been limitedapid wear in suspension hardware or
fatigue of spacers or other accessories.
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A. SUBSPAN MODE
OR BREATHING

C. HORIZONTAL GALLOPING D. ROLLING
OR SNAKING OR TWISTING

Figure 3-13 Classification of wake-induced moti¢2is

Figure 3-14 Twin spacer-damper with Figure 3-15 Triple spacer-damper with two
cantilever clamps [2] articulations per arm and hinge type clamps

[2]

Figure 3-16 Quad spacer-damper with
elastomer-lined clamp and helical rod
attachment [2]

Figure 3-17 Six-bundle spacer-damper with
rubber-lined clamps [2]
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3.5 0ther motions

Other types of motion:

Short-Circuit Forces in Power Lines and Substations
Bundle Conductor Rolling

Ice and Snow Shedding

Gust Response

Vibration of Tower Members

Noise from Overhead Lines

Earthquake Effects on Overhead Conductors
Corona Vibration

Station Bus Vibration

3.5.1Short-Circuit Forces in Power Lines and Substations

Forces generated by short-circuit are very importanhigh-voltage bundle conductor lines,
medium-voltage distribution lines, and substatidfe. bundle conductor lines, during a fault, the
sub conductors of the bundle move closer to edoér alue to strong attraction forces because of
the very short distance between sub conductors.

Figure 3-18 Short circuit test [2]

Figure 3-18 shows an example of quad bundle befodeduring short-circuit test at 50 kA,
showing distortion of the sub conductors. One béxispacer is at midspan. The sub conductor
movements occur at very high acceleration. For gana 40 kA fault on a twin bundle of 620



3 Conductor motion 30

mm? conductor, with a separation of 40 cm, may haveelacation up to several tens of g,
depending on the instantaneous current value.

Very large movements may be seen on distributioasli Figure 3-19 shows the motion
produced during testing on an actual line. Thisdm an actual three-phase short-circuit test on a
15-kV distribution line. The photo shows an instargous position of the conductors taken
during the test. The fault current level was 3 KA.

Figure 3-19 Instantaneous position of the condustaken during three-phase short-circuit test
on 15-kV [2]

3.5.2Ice and snow shedding

It is a natural process that occurs when accundilete is removed. Sudden ice or snow
shedding from transmission lines may result in fagtplitude vibrations or jump of the
conductor. Therefore is important in design of srarssion line to predict both, the maximum
jump height of the unloaded span and the maximwp dr the span that remains loaded to avoid
flashover. As well, it is necessary to predict iti@ximum cable tension.

(L)

cable
suspension vibration
rotation

cable + ice
vibration

ice

fall off

Figure 3-20 Ice shedding from one span and theltiegumotions [2]
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4 M EASURING DEVICES

In space there are 6 degrees of freedom. Therthiae rotations and three movements. If |
need to know instantaneous position and orientaticspace, | need to measure acceleration in
three dimensions and angular velocity in three dsmns by 3D accelerometer and 3D
gyroscope. From these values | am able to countigro$n case of known nine initial conditions
as you can see from the equations below (in case thave enough high sampling frequency to
suppose constant discrete values of acceleratiomagular velocity).

e = [ ([ 48it)dt=[(a 2+, ) dt:%m JE AV, [T, (4.1)
¢xyz = I wxyzdt = wxyg + ¢0 XY, (42)

4.1 Gyroscope

Gyroscope is an object formed in the shape of dimaisit can be any object. Necessary is to
produce effective gyroscopic behaviour. Disc oftexve a large heavy ring because the mass
should be as far away from the centre as possileen the gyroscope isn't rotating it behaves
like any other object, however when the gyroscapeotating at high speed it has special
behaviour by resisting movements in certain diceti

Forew A

Figure 4-1 Engine of car like gyroscope [11]

Gyroscope contains large amounts of stored enehgnvit is rotating. Newton's first law of
motion says, “Every object in a state of uniformtimo tends to remain in that state of motion
unless an external force is applied to it.” It me#mat when | will apply force to gyroscope, the
gyroscope will try to compensate because of thisigdorce.

Often the engine of cars behaves as a gyroscopmube®f its shape, mass and rotations.
Let’'s have gyroscope/engine which is spinning laiga speed in a clockwise direction as seen on
the picture above. When the car is turned to tlet fiorces A and B are applied to the structure
of the car forcing the front end of the car dowd #me back end up. If the car is turned to the left
then the front end of the car is forced up andkhek end forced down. If the gyroscope is
spinning in the opposite direction then the revevdiehappened.

However if the car was moved directly upwards, derards, forwards, back-wards or side-
to-side the gyroscope would not apply any extradser The gyroscope only applies extra forces
when the car is moving at an angle. This effekhiswn as gyroscopic precession.
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Figure 4-2 Gyroscope Figure 4-3 Gyroscope Figure 4-4 Gyroscope
principle [11] principle [11] principle [11]

The Figure 4-2 shows a bicycle wheel acting likgyeoscope being supported at both ends
of the axle, if left this way the gyroscope woult slowly stop spinning. However if the right
support is removed then gravity exerts a force mgskhe right hand side of axle down. As
described in earlier, gyroscopic precession witcéothe wheel to precess around its axis, as
shown in Figure 4-3 and Figure 4-4 by the red astoe direction the precession takes depends
on the rotational direction of the gyroscopes, shawthe diagram as green arrows. If the wheel
is continuously unsupported then the wheel willtoare to rotate around its axis.

It means that if | know angular velocity and inlittandition of angle in one axis | can count
instantaneous angle position. And if | have 3D ggape, | can know orientation in space on
conditions of known three time derivations of amgulelocities and three initial conditions of
angles.

4.2 Accelerometer

An accelerometer is a device that measures thetiobr or acceleration of motion of a
structure. The force caused by vibration or a ceangnotion (acceleration) causes the mass to
"squeeze" the piezoelectric material which produereselectrical charge that is proportional to
the force exerted upon it. Since the charge isgntagnal to the force, and the mass is a constant,
then the charge is also proportional to the acaggar.

There are two types of piezoelectric accelerometing first type is a "high impedance”
charge output accelerometer. In this type of acoeieter the piezoelectric crystal produces an
electrical charge which is connected directly ® treasurement devices.

The charge output measurement requires speciapmgut most commonly found in
research facilities. This type of accelerometerlso used in high temperature applications
(>120°C) where low impedance models can not be.used

The second type of accelerometer is a low impedamaput accelerometer. A low
impedance accelerometer has a charge acceleroasatsrfront end but has a tiny built-in micro-
circuit and FET transistor that converts that ckardo a low impedance voltage that can easily
interface with standard devices. This type of aamwgheter is commonly used in industry.

It means that if | know the acceleration and ihidanditions of speed and position in one
axle | can count instantaneous position. And iavd 3D accelerometer, | can know position in
space on conditions of the known three instantameaccelerations and the three initial
conditions of speed and the three initial condgioha position.
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4.3 Devices in Ampacimorf

Here (in Ampacimofi module), are used MEMS sensors (accelerometerggmscopes).
MEMS are not piezoelectric accelerometers and thereo rotating movement in MEMS
gyroscopes.

Typical MEMS accelerometer is composed of movahieop mass with plates that is
attached through a mechanical suspension systemetf@rence frame. Movable plates and fixed
outer plates represent capacitors. The deflectigpgranf mass is measured using the capacitance
difference. It is capacitance changes due to clsaofdistance between capacitor plates.

See [28] for understanding of MEMS sensors.
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5 KALMAN FILTER

5.1 Example applications

An example application would be providing accuratmtinuously-updated information
about the position and velocity of an object givarly a sequence of observations about its
position, each of which includes some error. lised in a wide range of engineering applications
from radar to computer vision. Kalman filtering am important topic in control theory and
control systems engineering.

For example, in a radar application, where onatesrésted in tracking a target, information
about the location, speed, and acceleration ofténget is measured with a great deal of
corruption by noise at any time. The Kalman filexploits the dynamics of the target, which
govern its time evolution, to remove the effectstltd noise and get a good estimate of the
location of the target at the present time (filig)i at a future time (prediction), or at a timethe
past (interpolation or smoothing). A simplified siem of a Kalman filter is the alpha beta filter,
still commonly used, which has static weighting stants instead of using co-variance matrices.

5.2 Naming and historical development

The filter is named after Rudolf E. Kalman, thou@horvald Nicolai Thiele and Peter
Swerling actually developed a similar algorithmliear Stanley F. Schmidt is generally credited
with developing the first implementation of a Kalmidter. It was during a visit of Kalman to the
NASA Ames Research Center that he saw the applityalof his ideas to the problem of
trajectory estimation for the Apollo program, leaglto its incorporation in the Apollo navigation
computer. The filter was developed in papers byriwge(1958), Kalman (1960), and Kalman
and Bucy (1961).

The filter is sometimes called Stratonovich-Kalntaurey filter because it is a special case of
a more general, non-linear filter developed eabieRuslan L. Stratonovich. In fact, equations of
the special case, linear filter appeared in theges by Stratonovich that were published before
summer 1960, when Kalman met with Stratonovichrdua conference in Moscow.

In control theory, the Kalman filter is most comrhomeferred to adinear quadratic
estimation (LQE).

A wide variety of Kalman filters have now been deped, from Kalman's original
formulation, now called theimple Kalman filter, to Schmidt'extendedfilter, the information
filler and a variety ofsquare-rootfilters developed by Bierman, Thornton, and matiyecs.
Perhaps the most commonly used type of Kalmarr fétéhe phase-locked loop now ubiquitous
in radios, computers, and nearly any other typaago or communications equipment.

5.3 Underlying dynamic system model

Kalman filters are based on linear dynamical systeimscretised in the time domain. They
are modelled on a Markov chain built on linear apers perturbed by Gaussian noise. The state
of the system is represented as a vector of reabets. At each discrete time increment, a linear
operator is applied to the state to generate thest&te, with some noise mixed in, and optionally
some information from the controls on the systenth#y are known. Then, another linear
operator mixed with more noise generates the ésbitputs from the hidden state. The Kalman
filter may be regarded as analogous to the hiddark® model, with the key difference that the
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hidden state variables take values in a contingpase (as opposed to a discrete state space as in
the hidden Markov model). Additionally, the hiddbtarkov model can represent an arbitrary
distribution for the next value of the state valégh in contrast to the Gaussian noise model that
is used for the Kalman filter. There is a strongldy between the equations of the Kalman Filter
and those of the hidden Markov model. A reviewhi$ and other models is given in Roweis and
Ghahramani (1999).

In order to use the Kalman filter to estimate th&einal state of a process given only a
sequence of noisy observations, one must modglrteess in accordance with the framework of
the Kalman filter. This means specifying the maisi€,, Hy, Qk, Rk, and sometimeBy for each
time-stepk as described below.

visible

ssssanssnsgeasssnguasnnsssnduaoiErsssnsnsnnnspsansssnnsssnnnsnnn

hidden

k+1

Figure 5-1 Model underlying the Kalman filter. [5]

Circles are vectors, squares are matrices, and sémresent Gaussian noise with the
associated covariance matrix at the lower right.

The Kalman filter model assumes the true statera it is evolved from the state & € 1)
according to

Xk:Fkl}k—l-*_Bkl]]k-i_Wk (51)

where
* Fgis the state transition model which is applieth previous stabte.;;
« Byis the control-input model which is applied to ttwatrol vectouuy;

* W is the process noise which is assumed to be dfewma zero mean multivariate
normal distribution with covariand@.

w, [1N(0,Q,) (5.2)
At time k an observation (or measurementdf the true statg, is made according to
Zk:HkD(k+Vk (53)

whereHy is the observation model which maps the true spéee into the observed space
and vy is the observation noise which is assumed to Ibe meman Gaussian white noise with
covarianceRy.

v, UN(O,R,) (5.4)
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The initial state, and the noise vectors at eagh §&, w, ...,Wy, V1 ... vy} are all assumed to
be mutually independent.

Many real dynamical systems do not exactly fit ttmedel; however, because the Kalman
filter is designed to operate in the presence @a)@n approximate fit is often good enough for
the filter to be very useful. Variations on the ialn filter described below allow richer and more
sophisticated models.

5.4 The Kalman filter

The Kalman filter is a recursive estimator. Thisame that only the estimated state from the
previous time step and the current measuremenneeded to compute the estimate for the
current state. In contrast to batch estimation riegles, no history of observations and/or
estimates is required. It is unusual in being pueetime domain filter; most filters (for example,
a low-pass filter) are formulated in the frequedoynain and then transformed back to the time
domain for implementation. In what follows, the akn )A(n‘m, represents the estimate f at

time n given observations up to, and including time

The state of the filter is represented by two \@es:

f(k‘k, the estimate of the state at tikngiven observations up to and including tikpe

P

k- the error covariance matrix (a measure of thaneséd accuracy of the state

estimate).

The Kalman filter has two distinct phas&sedict andUpdate. The predict phase uses the
state estimate from the previous time step to predan estimate of the state at the current time
step. In the update phase, measurement informatitime current time step is used to refine this
prediction to arrive at a new, more accurate statenate, again for the current time step.

5.4.1Predict

Predicted state
)A(k\k—l =F &k—j 1T B g (5.5)

Predicted estimate covariance

Pk = R P (R + Qs (5.6)

5.4.2Update
Innovation or measurement residual

Y :Zk_Hklj(k\k—l (5.7)
Innovation (or residual) covariance

S =H, P

klk-1

H +R, (5.8)

Optimal Kalman gain
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Ky =Pya H B (5.9)
Updated state estimate
f(k\k :§(I4k—1+Kk ' (5.10)
Updated estimate covariance
Pk\k:(l _Kk[H'Ik)lekﬂ (5.11)

The formula for the updated estimate covariance/@l® only valid for the optimal Kalman
gain. Usage of other gain values requires a moreptex formula found in thelerivations

section.
/_\M‘asurcnmnt Update (““Correct™)

ime Update (*Predict”
Time Update (*Predict™) (1) Compute the Kalman gain
roject the state ahea - - - -1
D Pm_\uﬁt the state ahead K,'( — PkHT(HPkHT + R)
Y = Fi
(2) Update estimate with measurement z;
(2) Project the error covariance ahead = = 3 " (- _H5%
_\_ e X, = & + K (g, -HX,)
Pk = FPk _ IF + Q (3) Update the error covariance
L_/ - “_AkH)Pk
Initial estimates for X'A _jand Py

Figure 5-2 How Kalman filter works [7]

5.4 .3Invariants

If the model is accurate, and the values fgyand P, accurately reflect the distribution of

the initial state values, then the following inaris are preserved: all estimates have mean error
equal to zero.

E| X =R |7 B[ X =Ky | =0 (5.12)
E[y,]=0 (5.13)
where Ef] is the expected value df, and covariance matrices accurately reflect the
covariance of estimates
P = cov(xk - k@k) (5.14)
P

Kk-1 COV( X ™ g(@ k—l) (5.15)

S, =cov(¥,) (5.16)
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5.5 Examples

Consider a truck on perfectly frictionless, infedit long straight rails. Initially the truck is
stationary at position 0, but it is buffeted thiayand that by random acceleration. We measure
the position of the truck evemyt seconds, but these measurements are imprecisejaneto
maintain a model of where the truck is and whavé®city is. We show here how we derive the
model from which we create our Kalman filter.

There are no controls on the truck, so we igmxanduy. SinceF, H, R andQ are constant,
their time indices are dropped.

The position and velocity of the truck is descrillthe linear state space

_ X
%=l (5.17)

Where is the velocity, that is, the derivative osjiion with respect to time.

We assume that between tHe—(1)" and K" time step the truck undergoes a constant
acceleration ofgx that is normally distributed, with mean 0 and d&nd deviations,. From
Newton's laws of motion we conclude that

X, =FX,_, +G &, (5.18)
where
F= 1At 5.19
O 1 ( - )
and
a
G=| 2 (5.20)
At
We find that

Q=cov(G@)=E|(GH)IGH |=GIH &]6' =G[0?]B" =0 BB (5.21)

(sinceo, is a scalar).

At each time step, a noisy measurement of the pagtion of the truck is made. Let us
suppose the noise is also normally distributedy wiean 0 and standard deviatign

z, =HX, +V, (5.22)
where
H=(1 0) (5.23)

and
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R=E(v, IV} )=(0?) (5.24)

We know the initial starting state of the truckwgerfect precision, so we initialize

. (0
Xo\o_ 0 (5.25)

and to tell the filter that we know the exact piosit we give it a zero covariance matrix:

Pyo = (O Oj (5.26)
0 0

If the initial position and velocity are not knovperfectly the covariance matrix should be
initialized with a suitably large number, sByon its diagonal.

P_BO 27
©|o B (5.27)

The filter will then prefer the information fromeHirst measurements over the information
already in the model.

5.6 Derivations

5.6.1Deriving the posterior estimate covariance matrix
Starting with our invariant on the error covariafgas above

Pok = COV( X~ 5(@ k) (5.28)
substitute in the definition (ﬁk‘k
P :COV(Xk_(g(@H"'KkEVk)) (5.29)
and substitutey,
P =cov(xk —(RHk_l+Kk[(]zk—H k&W))) (5.30)
andz,
Pk‘k = cov(xk _(kﬁk—l +K, [@H DX v —H k@kk_l))) (5.31)

and by collecting the error vectors we get

Py :cov((l —Kk[H-Ik)[(]xk—ik‘k_l)—K M k) (5.32)
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Since the measurement enmlis uncorrelated with the other terms, this becomes

P =0ov((1 =K, )i, %, )|+ covk @ ,) (5.33)

by the properties of vector covariance this becomes

Py = (1 =K, ) ov{x X, )Tl -K (B )T+ oo JK T, (5.34)

which, using our invariant oBq.1 and the definition oR, becomes

Pk\k :(I _KkDHk)[E)I#k—l[ql -K  [H k)T +K B K Tk (5.35)

This formula (sometimes known as thiiSeph forn' of the covariance update equation) is
valid no matter what the value K. It turns out that iKy is the optimal Kalman gain, this can
be simplified further as shown below.

5.6.2Kalman gain derivation

The Kalman filter is a minimum mean-square errdinegtor. The error in the posterior state
estimation is

Xie ™ Xk (5.36)
We seek to minimize the expected value of the sgwdrthe magnitude of this vector,

2
E(‘xk —f(k‘k‘ j This is equivalent to minimizing the trace of thesterior estimate covariance

matrix Pk‘k. By expanding out the terms in the equation alamdcollecting, we get:

Pk\k:P‘#k—l_Kkl}lklPlﬁk—l_PkHEHlDKL"'K k[(H k[Bk\k—l[EH Tl-<+R k)IK[ Tk=

— T T T (5'37)
- Pk\k—l_ Ky H [EP@k—l_Paml}l K KB
The trace is minimized when the matrix derivativeero:
5tr(Pk ) T
k) _ _
Tk_—thmupkk_l) +20K, 3, =0 (5.38)
Solving this forKy yields the Kalman gain:
T T
Kk |:‘O'\Dk :(Hkmk‘k—l) ZP@k_l[Hk (539)
Ky =Py B B (5.40)

This gain, which is known as theptimal Kalman gainis the one that yields MMSE
estimates when used.



5 Kalman filter 41

5.6.3Simplification of the posterior error covariance famula

The formula used to calculate the posterior erimradance can be simplified when the
Kalman gain equals the optimal value derived abbudtiplying both sides of our Kalman gain
formula on the right bBK ', it follows that

Ky 3, K} =Py, LK (5.41)
Referring back to our expanded formula for the @agst error covariance,

P

K|k

=P

I{k—l_KkDHkDP

1" P HEHLDKT<+K S K (5.42)

¥ k

we find the last two terms cancel out, giving

P

Kk

ZPHk—l_Kk[H-IkDPRI'elz(l_Kk[H-Ik)[E)PFk—l (5.43)
This formula is computationally cheaper and thuariyealways used in practice, but is only
correct for the optimal gain. If arithmetic preoisiis unusually low causing problems with
numerical stability, or if a non-optimal Kalman gais deliberately used, this simplification
cannot be applied; the posterior error covariancatila as derived above must be used.

5.7 Relationship to the digital filter

The Kalman filter can be regarded as an adaptwepass infinite impulse response digital
filter, with cut-off frequency depending on theioabetween the process and measurement (or
observation) noise, as well as the estimate cavegiaFrequency response is, however, rarely of
interest when designing state estimators sucheaKdlman Filter, whereas for digital filters such
as IIR and FIR filters, frequency response is Ugual primary concern. For the Kalman Filter,
the important goal is how accurate the filter is @his is most often decided based on empirical
Monte Carlo simulations, where "truth” (the truats) is known.

COPIED FROM HTTP ://[EN.WIKIPEDIA .ORG/WIKI /[KALMAN _FILTER
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6 2D MOVEMENT RECONSTRUCTION IN EXAMPLE

This chapter will take care how reproduce movemer2D, based on measurements from
2D accelerometer and rated gyroscope. The aim willto apply movement with device on
known path and reproduce the movement using Kalittaring on it and compare real path with
non-filtered observed path and filtered path. Valaeen’'t coming from measurement, they are
fictitious!

6.1 Counting the path

Table 6-1 Known data

f sampling frequency 200 Hz
0

g acceleration due to gravity (_9 81} miE?

matrix of measured accelerations (aﬂ Be.,. 5o am] 2
a iX u [ miE

g a, a, a, a, M5
0} matrix of measured angular velocitk{g{ W -, wn) rad &1
Table 6-2 Initialisation
I position in “X” axis 0 m
Iyo position in “y” axis 0 m
Vxo speed in “X” axis -10 mig?
Vyo speed in “y” axis -2 mis?
do angle of rotation 0 rad
Time stepdt:
1
dt=— (6.1)

Vi

XH
Ym

K

Figure 6-1 2D movement
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Angle y:
a
Y, = arctano (6.2)
angl
Angle ¢ :
9= Py + i Ldit (6.3)

Relative acceleratioag, divided to absolute axes &) :

ag, =/(ad,+ ad,) Cos(4, + )

(6.4)
ag,, = (a "+ a yl) [tos(¢, +y,~ 0,57)

Without acceleration due to gravity is acceleratansing movement in absolute axes

a=ag~-g (6.5)
Absolute speed/:
v, =a, [t + v, (6.6)
Positionsr:
r., =0,5@, [dt* +v  [dt+r (6.7)

6.2 Filtering the path
Table 6-3 Input data

1 00O0O0O
01 00O00O0
Q process noise matrix c []0 01000
0 001O00
000010
0 00O0O01
.1 0
R measurement noise matrix D EEO J
1 0 d 0 o0.5dt 0
0 1 0 dt 0 0.50t?
F model matrix 00 1 O dt 0
0 00 1 0 dt
0 00 O 1 0
0 00 O 0 1
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000010
H observation model (O 0000 1)
Table 6-4 Initialisation
1000 00
01 00O00O
Pyo estimate covariance B DO 01000
000100
000010
0 00O0O0O1
er
o
>“<0‘0 state estimate Vyo
Vyo
A
aV1

*Coefficients B, C, D will be found by filter tuning.

6.2.1Kalman filter

Now is applied algorithm shown in Figure 5-2. Ouyman see 5.4 The Kalman filter, 5.4.1
Predict and 5.4.2 Update.

Matrix of filtered positionsr, :

ik =Xk (6.8)

6.2.2Filter tuning

Let's suppose that we had noisy two-row matrix otederation and vector of angular
velocity. When we used some coefficients for draihe filtered path, now we can tune the
filter by slider.
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<} [slider

Parameter B (intizl postion)
1
1 [ »
0 20
Parareter C (G matrix - process)
0.00%
1 | +
0.0 1041
Parameter O (R matrix - messuremert)
0.03]
1 ¢
0001 | [ 101
Mirirmurr walue for B is 0, for C and D is 1E-3 and minimum diference between Min and Max is 1E-3

Figure 6-2 Slider for filter tuning

So less is B parameter, so better we know thealmiosition. When B is equal to zero, we
know the exact initial position. So less is C pagtan so better is system predictable and so less
is D parameter so bigger is measurement valualtie.slider has 100 steps and minimum and
maximum values are freely changeable. But minimatne/ for C and D parameter is limited to
0.001. And minimum difference between minimal arekimum value is limited to 0.001.

6.2.3Results

Finally were found constants B=1, C=0.008 and D30Nbon filtered and filtered path could
be seen in Figure 6-3. By blue colour is drawn filbered path; by red colour is drawn filtered
path with cyan prediction and magenta correction.

Figure 6-3 2D movement

M-files eventually other input data are on enclo€&lin directory - Movement_20Values.
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7 VERTICAL MOVEMENT RECONSTRUCTION

':: H~ 267060 :’;
‘::---..____ 62,462m 1
T T e
Ampacimon ~ kg
F6.8m :5__‘
&3, 53m

Figure 7-1 Test span in Canada

In Canada there is a test span where Ampacimon tearse Ampacimon device to measure
in case of different movements. | am interestedniovement when was Ampacimon device
moved down by hands and released. Details of pest are in Figure 7-1 and in Table 7-1.

Table 7-1 Parameters of test span

Number of strands — aluminium/steel 54/7 -
Total diameter 26,3 mm
Mass per unit length 1,369 kg/m
Rated strength 117,2 kN
Aluminium strand diameter 2,9 mm
Aluminium area 362,6 | mm
Steel strand diameter 29 mm
Steel area 47 mnt
Module of elasticity 68,3 GPa
Dilatation coefficient 19,3 10°/°C

7.1 Observed data

For the measurement were used two accelerometerandlY3 in opposite directions.
Calibration and offset were done. Final acceleratar movement reconstruction was count like
(Y1-Y3)/2; acceleration due to gravity was subtedctin theoretical way measurement from Y1
and Y3 should be the same with opposite sign arid¥(3)/2 should be equal to Y1 as to —Y3.
And (Y1+Y3)/2 should be equal to zero. In the nealld it is different and will be shown below.
Sampling frequency is 200Hz; time of one step iS5ND data from gyroscope were used in this
experiment.



7 Vertical movement reconstruction 47

s p
_BD 1DIDD ZDbD SDIDD 4DIDD SDIDD EDIDD ?DIDD BDIDD 9000 -BD 1060 QDIDD SDIDD 4DIDD SDIDD EDIDD ?DIDD BDIDD 000
step step
Figure 7-2 observed from Y1 Figure 7-3 observed from Y3
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Figure 7-5 noise of meas. - (Y1+Y3)2  Figure 7-6 noise of meas. - (Y1+Y3)/2 in detail
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7.2 Signal processing of observed measurement

Because of serious noise in measurement and evprooess, | will be interested only in
first few seconds of reproducing the path and ieneugh for the final application. | suppose
initial position approximately 6cm (it is a choieel is not critical point) below steady state and
initial velocity equal to zero.

g

a [m*s-2]
—
———
L ———

o
[N
w
-
;|
@
-~
@
]
=]

Figure 7-7 Measured (blue) and filtered (red) aecation by Kalman filter

008+
0.0 -
0041
0ozt
al
02t \/4\

d [m]

-0.04 -

-0.06

0.08 1 1 ! ! 1 1 1 1 1 ]
1] 1 2 3 4 & B 7 g 9 10

Figure 7-8 Non-filtered observed (blue) and filtérged) position by Kalman filter
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Due to the fact that | suppose initial velocityzero, but it should be a little bit more than
zero and due to the fact that each step used valmasprevious step and actual values are never
corrected by other external system is in Figureshi@& of position. It is impossible to reconstruct
signal only from known accelerations.

M-files eventually other input data are on enclo€&din directory - Movement_CA.

7.3 Signal processing of acceleration observed from metiof span

By the method of finite elements is possible toenmodel of the span mentioned before and
do all experiments on computer to verify truth esults. Even if is the measurement of
acceleration very noisy and | want to verify algfom for movement reproducing, it is possible to
check it.

Details:
« number of element : 426

« time integration : automatic time integration (rioeed time step, adapted variable
time step)

e excitation: applied constant force 250N aligned hwigravity (vertical force
downwards) during 4 seconds (between t=2s and.t=6s)

1 5 T T T T T T

10 .

a [m*s-2]

_1D | 1 1 | | 1
a 2 4 ] g 10 12

t[5]

Figure 7-9 Acceleration from model (simulated)
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0.03 T T T T T T 0.03

002+ B 002k
0.01 B 0.01F
of 1 of

0.01F 1 001 -

d [m]
d [m]

o0k 4 002r

o3k 4 003

004 b i -0.04

nos b 1 -0.05F

. . . . . . . 0.0 1 1 ! 1 1 L
D'UED 2 4 [ a 10 12 14 0 2 4 B g 10 12 14

t[s] t[s]

Figure 7-10 non-filtered calculated movement Figure 7-11 movement from model (simulated)
using acceleration data from simulated model

M-files eventually other input data are on enclo€&din directory - Movement_CA_model.
7.4 Reasons of incorrectness of time integration

7.4.1Numerical integration

Real generated acceleration is continuous curveiamdpresented in Figure 7-12 by red
colour. But | cannot observe this curve, but | anteao observe discrete points with sampling
frequency (in my case 200Hz) represented by blue. diol suppose zero noise of measurement,
blue dots are on the red curve. | need to twice aerigally integrate acceleration to observe
position. First integration is shown below.

Correct integration:

v(t)= [ a(r)itir+v(37,5m3 7.1)

37,5ms

Numerical integration:
v(40mg = d40m$0dt (35 ms= 105 (v35 (7.2)

Difference between these ways of integration isegsgnted by green colour in figure below.
If there was no difference between those two irdgns, areas “A” and “B” would be the same.
But they are not the same and difference betwetsyiations is represented by difference
between areas “A” and “B”. And integrating a secdinte to get the position will lead to further
error in calculation, given the already distortedise observed by first integration.
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a [m*s-2]

10
1

\

dt

30 35 40 45

t [ms]

it

Figure 7-12 Numerical integration of discrete paint
7.4.2Noise of measurement

In the caption above | have supposed zero noiseeafsurement. But in the real world there
is no way to know exact values. In each step | nlesexact value plus noise and | do not know

how big the noise is and how big exact value igust work with observed values. My
observation (blue dots) in comparison with realrealis shown in Figure 7-13.

a [m*s-2]

-

dt

30 35 40 45

t [ms]

Figure 7-13 Measurement error
7.4.3Error Propagation

As you can see at the beginning of chapter 4, MeasWDevices, each calculation step
considers values from previous step such that émwar previous step is growing with each step
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As one second calculation is done in 200 time stéygsabove mentioned errors will grow with
error propagation resulting in a simulation totallyusable within a few seconds.

For example if | would have error in acceleratitoaterl = 0.1m5?:
er2=%[®r1[t2 =0.500.0016= ®n (7.3)

It causes error 5m in position in ten seconds!

The problem continuing even with using Kalman filg.

7.5 Summary of vertical movement reconstruction

It is possible to reproduce movement only in a ®gonds from the reasons as mentioned
above in case of known initial conditions. Eveth# Ampacimon device is in steady state, there
is no zero acceleration and | observe some noisenrshn Figure 7-14 and it causes that in
simulation is not device in the same position bef@easing as is shown in Figure 7-15. Again is
observed acceleration and non-filtered observedipogepresented by blue colour and filtered
values are represented by red colour.

05+
04r
03
0.2r
0.1

118

a[m's-2]
dm]

-01rF

-0.2-

-0.3-

-04r

_0_50 I ! 1 ! I ! 1 1 _0.08

L L L 1 1 1 I}
05 1 15 2 25 3 3.5 4 0 05 1 15 25 3 35 4
t[s]

2
t[s]
Figure 7-14 Acceleration in steady state Figure 7-15 Movement in steady state

Another reason why that are those two movementsrdiit is that | do not know all details
about the Canadian experiment and even observegs/élom measurement and model should
be done in different conditions.

Last reason what | will mention is that even ifill\lknow all of the details of experiment, in
real world it will be a little bit different thanni simulation by method of finite elements.
Comparison is in Figure 7-16 and in Figure 7-17.
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Figure 7-16 Observed movement from meas. Figure 7-17 Movement observed from model
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8 2D MOVEMENT RECONSTRUCTION EXPERIMENT

For these experiments were used special built dewith two 2D accelerometers and two
linear gyroscopes. Data sheets are attached oasexcCD. Device is supplied by 9V battery and
connected by RS232 to PC. Data are collected byrano Netbeans.

Figure 8-1 Measuring device

First of all is necessary to calibrate the accehamters in all axes. Is necessary to measure
+G and —G and then set offset and conversion fatuid these experiments only with one 2D
accelerometer.

Table 8-1 Calibrating table

axis and direction| measured count offset count/G
- X 1223,7 -824,3
+9,45 814,85
+X 2853,4 805,4
-Y 1223,5 -824,5
+3,3 821,2
+Y 2865,9 817,9
Example:
count, = measured, —2048= 1223, 7+ 2048 - 824 (8.1)
offset, =( count, + count )/2=(-824,3+ 8054 /2 9,4 (8.2)
count/ G, =( count, — count )/2=(805,4+ 824,B /Z 814,¢ (8.3)

8.1 Without rotation

The first experiment was making a simple movemdrthe measuring device from left to
right, then up and down in one row, about tenseatimetres in each direction.
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ax [m*s-2]
ay [m*s-2]
o

. . . \ .
o 05 1 15 2 25

w
w
o

Figure 8-2 Measured acceleration in x axis  Figure 8-3 Measured acceleration in y axis

As you can see from Figure 8-2 even in steady $tatiest 1,4s is not the acceleration (or
average of noisy acceleration) equal to zero ared fi,4s will be used for additional offset
setting. It is caused by angle between “x” axis aoceleration due to gravity which is not exact
90° and a small part of mentioned acceleratiovénen “x” (horizontal) direction.

03r
035

02r

0.15

E nosf

-0.05

0.1+
-0.15

07 ! ! ! ! ! ! ! ! ! I
-1 09 08 07 06 05 -04 03 -02 -0.1 0

®[m]

Figure 8-4 Reconstruction from measurement (dsiffue to the offset in x axis)
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ax [m's-2)]

ay [m*s-2]
o

. | . | .
o 05 1 15 2 25
ts]

w
w
o

Figure 8-5 Observed acceleration in x axis with Figure 8-6 Observed acceleration in y axis with
1.4s calibration 1.4s calibration

018

¥ [m]

L 1 1 L 1 1
-0.04 0oz 0 0.0z 0.04 0.06 0.0a 01 0.1z
* [m]

Figure 8-7 Observed movement after calibration

As you can see from Figure 8-7 here is final mova&mdoser to real movement, but
subtraction of negative acceleration was exceediitesbit. By experimental modification of the
signal should be finally found movement very simila real movement, represented in Figure
8-8.
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Figure 8-8 Observed movement after calibration argerimental modification
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Figure 8-9 Observed x position in time Figure 8-10 Observed y position in time

8.1.1Conclusion

In the caption above a very easy experiment wase deith 2D accelerometer. After
calibrating the device, there was still a small gdracceleration due to gravity applied in x axis.
This part was integrated for the first 1.4s andrage of this value was applied on accelerations
in X axis to be corrected. The result of observesitpn is in Figure 8-7. As you can see there is
a small part of positive acceleration in x axivtoremoved experimentally. After that correction
was observed final Figure 8-8. Real movement wamlasi to that, but error is very serious if |
will take into consideration time of integration lpn2.1s and no rotation were take into
consideration. Of course it is impossible to makevement with device with no rotation, so |
cannot say now, it is possible to continue by Way, or if it is totally useless.
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8.2 With rotation

Now | will take into consideration even informatidrom gyroscope. In Figure 8-12 is
observed angle between moving and global axes. &#ioned above, this movement was just
vertical and horizontal movement without rotatibut it is impossible to do it with no rotation,
so small angular velocities were observed as yawsea in Figure 8-11.
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Figure 8-11 Observed angular velocity Figure 8-12 Observed angle of rotation

Let’s have a look on results, if they will be betbe worse.
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Figure 8-13 2D movement with gyroscope

As you can see in Figure 8-13 the movement islyothfferent from original one and it is
impossible to reproduce movement based only on uneaent of accelerometers and gyroscope.
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On earth there is a permanent acceleration of flthei orientation horizontally is off by the
biggest error represented in Figure 8-12, say,daegeee, we will get an acceleration error e

g =g8inl° = 0,1712ns° (8.4)

Integrating the acceleration error ®vice, this results in an accumulated positiorores
after 10 seconds of:

e, =0,50,[F = 0,500,1712110= 8,56 (8.5)

M-files eventually other input data are on enclo€&lin directory - Movement_2D.

8.2.1Conclusion

In the caption above, an experiment of movemerdmngituction in a plane was performed.
In plane, there are three degrees of freedom, targslations and one rotation; two devices were
used for measurement, one 2D accelerometer andysascope. With that device was done very
easy movement for reconstruction. Result of thipeexnent is in Figure 8-13 and is totally
different from the original one. This type of movemh reconstruction is called “open loop” and
for our usage is unusable even for first few sesoiitdror propagation is illustrated in Figure
8-14 and Figure 8-15.
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Figure 8-14 Error propagation Figure 8-15 Log-Log error propagation

Solution should be found in usage of Kalman filtercombine or fuse information from
different sensors. The basic idea is to use thenKalfilter to weigh the different mediums most
heavily in the circumstances where they each parfoest, thus providing more accurate and
stable estimates than a system based on any onemrmatbne. The indirect feedback Kalman
filter shown in Figure 8-16 (also called a completaey or error-state Kalman filter) is often
used to combine the two mediums. In such a cordigur, the Kalman filter is used to estimate
the difference between the current inertial andcap{or acoustic, magnetic, GPS or combination
of them) outputs, it continually estimates the errothe inertial estimates by using the optical
(e.g.) system as a second reference. This erronadst is then used to correct the inertial
estimates. In our application is correction of iosiby GPS unusable because of low precision
of about one meter but GPS get very precise infoamaabout velocity and velocity could be
corrected by GPS.
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. Inertial estimate (corrected)
p=| [nertial . -
|
Y 'v
Corrections : : Optical estimate .
rrech Kalman | OpUCK eSUMAte} ¢y )
to inertial filter (redundant)

Figure 8-16 The Kalman filter used in an indireeeflback configuration to optimally weight
inertial and optical information. [7]
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O DETERMINING LINE POSITION USING G-DIRECTION

9.1 Using real data from Ampacimon

Ampacimon device is placed on line near the coastBelgium and is measuring
continuously with sampling frequency 12,5Hz anddseg data by GSM network to Montefiore

Institute.

Connecteur
~ _Alimentation

Figure 9-1 Accelerometers position and orientatioAmpacimon

| am interested in axes ,X3" and ,Y3" of module ,&hd using data measured 12.1.2009 and
try to determine position of the cable using steadgntation of acceleration due to gravity.
Explained in Figure 9-3.

Figure 9-2 Offsets and conversion factors

Accelerometer

Conversion factor

axis name | axis numbern Module reference Offset [count] [count/G]
Y1 1 1 1E001 16.5 770
X3 4 1 1E002 -9.5 774.5
Y3 5 1 1E002 -16.5 770.5
Y1 1 2 1E007 -7/ 778
X3 4 2 1E008 -35.5 773.5
Y3 S 2 1E008 10 770
Y1 1 3 1E011 -3.5 773.5
X3 4 3 1E012 -13 769
Y3 S 3 1E012 -17 770
Y1 1 4 1E013 -17 775
X3 4 4 1E014 -2 773
Y3 5 4 1E014 -15.5 770.5




9 Determining line position using G-direction 62

R
h
)
. -~ \
- . -, Ampacimon

B

Figure 9-3 Position of line between span in winddition
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Figure 9-4 Horizontal acceleration Figure 9-5 Vertical acceleration

Because measurement is very noisy and | am inésteshly in low-frequency large
movement, | will do FFT and | will use only low ffeency component and DC component.
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Figure 9-6 FFT of horizontal acceleration Figure 9-7 FFT of vertical acceleration

In Figure 9-6 is FFT of horizontal accelerationheitit 0, 7539n[ks° DC component and in

Figure 9-7 is FFT of vertical acceleration withd;#512n5> DC component. When | have a

look on low frequencies (e.g. <0,5Hz) there ar@&xpressive components corresponding huge
movement. | don’t have real measurement of reallyehmovement and | will use model of line
to observe accelerations corresponding huge moveiméime next chapter. From the FFT is seen
expressive component of about 1,7Hz and is postibday that it is probably Aeolian vibration.
Average angle of line deflexion could be observad tb constant orientation of acceleration due
to gravity.

Average anglen:

o = arctar) Ze | = arcta60’7—539;: 4,5 (9.1)
ay3,c 9,451

It will be discussed more deeply in the next chapte

M-files eventually other input data are on enclo€&din directory - Ampacimon_real_data.

9.2 Using data observed from model of span

Because | don’t have measurement from huge movenientll use model of span to
simulate huge movement and | will work with obsehaccelerations. Observed acceleration
from a simulation program (SAMCEF Field V6.3) isabsolute axes and without acceleration
due to gravity (9,81 m*§. From information about displacement is countegle of line
deflection, acceleration due to gravity is addedthe vertical axis and information about
acceleration is recounted to relative axes resgaygtiThen is applied Gaussian noise with signal
to noise ration (SNR) 10dB. Now | have input datagrocessing.

Details of model:

* Left pylon is 58m high, right one is 55 m and dst@& between them is 448,23 m.
Line is fixed on pylons.

« Two forces are simulated wind

* Initial condition — stress in the middle of spar2#&514 N
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* Average length of element is 2,5 m

Table 9-1 Parameters of span model

Mass per unit length 1,713 kg/m
Rated strength 20 kN
Diameter 31,5 mm
Area 621 mnf
Module of elasticity 59 GPa
Dilatation coefficient 23 10°%°C
A
\
\
\
i
agry
&

aaz

Figure 9-8 Orientation of axes
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Figure 9-9 Exact horizontal acceleration Figure 9-10 Exact vertical acceleration
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Figure 9-11 Noisy horizontal acceleration Figure 9-12 Noisy vertical acceleration

Because measurement is very noisy and | am inegteshly in low-frequency huge
movement, | will do FFT and | will use only low ffeency components and DC component.

07 : : : ; 0.18

06l | 016}
0.14

05F

= 012

kLl‘.l

E 04 —

= ‘; 01

2 E

B o3 008

o [

5

[v]

i
[

L
= &
e
§ :
[a)
=
(=)
=

0 2 4 B ) 10 0

2 4 g 8 10
f[Hz]

f[Hz]

Figure 9-13 FFT of horizontal acceleration Figure 9-14 FFT of vertical acceleration

In Figure 9-13 is FFT of horizontal acceleratiorthsut —1,2003n32 DC component and

in Figure 9-14 is FFT of vertical acceleration withh 9,7264nx° DC component. Frequency
resolution is 601 values. (Sampling frequencyOsl2.)

To subtract noise eventually other type of motiomill tag together signal from FFT using
low frequencies and high amplitudes only. For exlanipl want to take only dominant parts of
FFT I will take into consideration frequencies bveld,5Hz and amplitudes over 0,1 in horizontal
acceleration and 0.05 in vertical acceleration. ig&ge in the real world it should be defined by
relative values, but in this one case | am usingohite values. Algorithm for signal
reconstruction and all other signal processing isfile on enclosed CD.
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Figure 9-15 Reconstructed horizontal accelerationFigure 9-16 Reconstructed vertical acceleration

Angle y:

Y= arctar{%j (9.2)
ay

Than should be compared angle of deflexion witHeapg
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Figure 9-17 Exact angle of deflection Figure 9-18 Angley

9.3 Conclusion

Result of angley depends on parts of FFT which are taken into demation and should be
different but it is difficult to say which resul the best. For example if | subtract dominant part
around 0.5Hz in horizontal acceleration result mglay will be different and is in Figure 9-19.
But the most important information is about maximangle of deflection and it is known really
precisely and it is a little bit less than 12°. Betresults could be observed using Kalman filgrin
with combination of information from gyroscope.
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Figure 9-19 Angley

M-files eventually other input data are on enclo€&in directory - Simulation_huge__
movement.
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10 SUMMARY

The main aim of this thesis was to be able to rettant huge movements of overhead lines
based on measurement from accelerometers and gpexsasing Kalman filtering. | started only
with acceleration in one axis and tried to rebtile movement.

0.08F
0.06
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0.021-

d [m]
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-0.08 1 1 | | 1 1 1 1 1 |

Figure 10-1 Non-filtered observed (blue) and fi#er(red) position by Kalman filter

Due to the fact that | suppose initial velocityzero, but it should be a little bit more than
zero and due to the fact that each step are udadsvikom previous step and actual values are
never corrected by other external system is inreidi0-1 shift of position. It is impossible to
reconstruct signal only from known acceleration@rébver | don’t know all the details about
this experiment and real result either so | decittkedlo my own experiment with measuring
devices to be sure about initial conditions andtesl details.

| took the box with measurement devices and digglgrmovement about tens centimetres to
left and back and then up and back.
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Figure 10-2 Observed movement after calibration

As you can see the result is different than the enwant | did. Moreover | didn’t take into
consideration measurement from gyroscope and Inthgement without rotation. Using even
measurement from gyroscope is reconstructed movetoitly different than original one.

For this reconstruction algorithm called “open [be@s used, it means that | took velocity
and position from previous step and never correemt by indirect-feedback for example. It
causes big error due to error propagation in fexoises.
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Figure 10-3 Error propagation

Solution should be found in usage of Kalman filtercombine or fuse information from
different sensors. The basic idea is to use thenKalfilter to weigh the different mediums most
heavily in the circumstances where they each parfoest, thus providing more accurate and
stable estimates than a system based on any onemmaetbne. The indirect feedback Kalman
filter shown in Figure 10-4 (also called a completaey or error-state Kalman filter) is often
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used to combine the two mediums. In such a cordigum, the Kalman filter is used to estimate
the difference between the current inertial andcap{or acoustic, magnetic, GPS or combination
of them) outputs, it continually estimates the errothe inertial estimates by using the optical
(e.g.) system as a second reference. This erronadst is then used to correct the inertial
estimates. In our application is correction of posiby GPS unusable because of low precision
of about one meter but GPS get very precise infoamabout velocity and velocity could be
corrected by GPS.

X Inertial estimate (corrected)
p=| [nertial

Y

I
Y 'v
Corrections Kalman __ Optical estimate
to inertial filter " (redundant)

Optical

Figure 10-4 The Kalman filter used in an indireeeflback configuration to optimally weight
inertial and optical information. [7]

How to know exact initial position or how to corteposition time to time remain
unanswered questions to be solved in future.

Other approach to line position was done usingfdlcethat acceleration due to gravity has
the same direction all the time. To subtract naise high frequencies was used FFT which took
into consideration only dominant parts of FFT iwl&requencies part. Then was counted angle
between accelerations in two axes where accelerdtie to gravity is applied. See Figure 9-17,
Figure 9-18 and Figure 9-19 for results. More eciesult should be observed subtracting
acceleration causing movement and have only aatelerdue to gravity divided in axes. It
could be done using Kalman filter with indirect-ddack with information about angle of
deflection from gyroscope.
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