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Abstract 7 

ABSTRACT 
This thesis deals with overhead power lines movement monitoring. This may cover voltages 

from 70 kV to 400 kV. Sensors are placed on the conductors and the main objective is to evaluate 
their mechanical behaviour from low frequencies (fraction of Hz) to high frequencies (some tens 
of Hz). This document has evaluated the possibilities to reproduce large low frequency 
movements as those observed in large turbulent wind, short-circuit, ice shedding, galloping or 
any other cause. This aims to help operators and designers make decisions. The robustness of the 
development includes the introduction/combination of new sensors, the appropriate mathematical 
development needed to reproduce what has been measured and this has been done on records 
obtained either by simulations, laboratory tests or actual measurements on line. 

 

 

KEY WORDS:  overhead power lines, vibrations, large movements, Kalman filter 
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ABSTRAKT  
Tahle práce se zabývá monitorováním venkovních vysokonapěťových vedeních, což mohou 

být vedení od 70kV do 400kV. Senzory jsou umístěny na vodiči a hlavní myšlenkou je 
vyhodnotit mechanické chování vodičů, a to od nízkých frekvencí (zlomky Hz) až po vysoké 
frekvence (desítky Hz). Tahle práce se zabývala pohyby o nízkých frekvencích a vysokých 
amplitudách a popsala možnosti sestavení těchto pohybů na základě měření ze senzorů. 
Konkrétně se jedná o pohyby v případě silného větru, zkratu, opadávání ledu nebo dalších. 
Všechno tohle pomáhá operátorů dělat rozhodnutí ohledně provozování sítí. Vývoj zahrnuje 
přidání/kombinaci nových senzorů, popsání matematického algoritmu potřebného k sestavení 
pohybu na základě toho co bylo změřeno, ať už se jedná o hodnoty získané simulací, 
laboratorním testem nebo reálným měřením na vedení. 

 

 

KLÍ ČOVÁ SLOVA :  venkovní vysokonapěťová vedení, vibrace, nestandardní pohyby, 
Kalmanův filtr 



Contents 9 

CONTENTS 

1 INTRODUCTION...................................................................................................................................16 

2 AMPACIMON ®.......................................................................................................................................17 

2.1 WHAT IS AMPACIMON ® ...................................................................................................................17 

2.2 AMPACIMON ® METHOD ...................................................................................................................17 

2.3 WHO IS CONCERNED BY AMPACIMON ®? ........................................................................................19 

2.4 DESIGN OF AMPACIMON ® ................................................................................................................20 

3 CONDUCTOR MOTION.......................................................................................................................22 

3.1 AEOLIAN VIBRATIONS ......................................................................................................................22 

3.2 FATIGUE ............................................................................................................................................24 

3.3 GALLOPING ......................................................................................................................................25 

3.4 BUNDLE CONDUCTOR OSCILLATIONS ............................................................................................27 

3.5 OTHER MOTIONS ..............................................................................................................................29 
3.5.1 SHORT-CIRCUIT FORCES IN POWER LINES AND SUBSTATIONS..............................................29 
3.5.2 ICE AND SNOW SHEDDING.......................................................................................................30 

4 MEASURING DEVICES .......................................................................................................................31 

4.1 GYROSCOPE......................................................................................................................................31 

4.2 ACCELEROMETER ............................................................................................................................32 

4.3 DEVICES IN AMPACIMON ®...............................................................................................................33 

5 KALMAN FILTER.................................................................................................................................34 

5.1 EXAMPLE APPLICATIONS .................................................................................................................34 

5.2 NAMING AND HISTORICAL DEVELOPMENT ....................................................................................34 

5.3 UNDERLYING DYNAMIC SYSTEM MODEL ........................................................................................34 

5.4 THE KALMAN FILTER ......................................................................................................................36 
5.4.1 PREDICT..................................................................................................................................36 
5.4.2 UPDATE...................................................................................................................................36 
5.4.3 INVARIANTS ............................................................................................................................37 

5.5 EXAMPLES ........................................................................................................................................38 

5.6 DERIVATIONS ...................................................................................................................................39 
5.6.1 DERIVING THE POSTERIOR ESTIMATE COVARIANCE MATRIX.................................................39 
5.6.2 KALMAN GAIN DERIVATION ...................................................................................................40 
5.6.3 SIMPLIFICATION OF THE POSTERIOR ERROR COVARIANCE FORMULA.....................................41 

5.7 RELATIONSHIP TO THE DIGITAL FILTER ........................................................................................41 

6 2D MOVEMENT RECONSTRUCTION IN EXAMPLE............ .......................................................42 

6.1 COUNTING THE PATH .......................................................................................................................42 

6.2 FILTERING THE PATH .......................................................................................................................43 
6.2.1 KALMAN FILTER .....................................................................................................................44 
6.2.2 FILTER TUNING .......................................................................................................................44 
6.2.3 RESULTS..................................................................................................................................45 

7 VERTICAL MOVEMENT RECONSTRUCTION ................. ............................................................46 



Contents 10 

7.1 OBSERVED DATA ..............................................................................................................................46 

7.2 SIGNAL PROCESSING OF OBSERVED MEASUREMENT .....................................................................48 

7.3 SIGNAL PROCESSING OF ACCELERATION OBSERVED FROM MODEL OF SPAN ..............................49 

7.4 REASONS OF INCORRECTNESS OF TIME INTEGRATION .................................................................50 
7.4.1 NUMERICAL INTEGRATION .....................................................................................................50 
7.4.2 NOISE OF MEASUREMENT.......................................................................................................51 
7.4.3 ERROR PROPAGATION.............................................................................................................51 

7.5 SUMMARY OF VERTICAL MOVEMENT RECONSTRUCTION .............................................................52 

8 2D MOVEMENT RECONSTRUCTION EXPERIMENT ............ .....................................................54 

8.1 WITHOUT ROTATION .......................................................................................................................54 
8.1.1 CONCLUSION...........................................................................................................................57 

8.2 WITH ROTATION ..............................................................................................................................58 
8.2.1 CONCLUSION...........................................................................................................................59 

9 DETERMINING LINE POSITION USING G-DIRECTION...... ......................................................61 

9.1 USING REAL DATA FROM AMPACIMON ...........................................................................................61 

9.2 USING DATA OBSERVED FROM MODEL OF SPAN .............................................................................63 

9.3 CONCLUSION ....................................................................................................................................66 

10 SUMMARY............................................................................................................................................68 

REFERENCES...........................................................................................................................................71 

 

 



Picture contents 11 

PICTURE CONTENTS  
Figure 1-1  Comparison of Loading and actual Rating distributions [1]......................................16 

Figure 2-1 Black out in New York in 2003 [1]...............................................................................17 

Figure 2-2 Typical installation on live line in France at 90kV on HT ACSS conductor [1] .........18 

Figure 2-3 Live-line installation [1] ..............................................................................................18 

Figure 2-4 Ampacimon vibration analysis method to deduce line sag and material fatigue [1] ..19 

Figure 2-5 Ambient temperature and sag as deduced by Ampacimon vs. time [1] .......................19 

Figure 2-6 Typical Ampacimon outputs for Aeolian vibration analysis [1] ..................................20 

Figure 2-7 Typical installation on 220 kV line in Belgium (2005) [1] ..........................................20 

Figure 2-8 CAO view and actual view of the last version of Ampacimon (2008) [1]....................21 

Figure 3-1 Three main types of conductor motion [2]...................................................................22 

Figure 3-2 Record of vibration at a point on a conductor. [2]......................................................23 

Figure 3-3 Fatigue failure of conductor strands at the suspension clamp. [2] .............................23 

Figure 3-4 Vibration dampers [2]..................................................................................................24 

Figure 3-5 Vibration damper of Stockbridge type [2]...................................................................24 

Figure 3-6 Radiographic inspection procedure [2].......................................................................25 

Figure 3-7 Prototype Electro-magneto-acoustic transducer (EMAT) device for detecting broken 
conductor strands [2] .............................................................................................................25 

Figure 3-8 Percentage of observations of various galloping ellipse shapes and tilts [2] .............26 

Figure 3-9 Damage due to galloping on towers [2] ......................................................................26 

Figure 3-10 Damage due to galloping on a string of suspension insulators [2] ...........................26 

Figure 3-11 Damage due to galloping on a triple bundle conductor in China [2] .......................27 

Figure 3-12 Broken strands resulting from short circuit due to two-phase fault induced by 
galloping [2]...........................................................................................................................27 

Figure 3-13 Classification of wake-induced motions [2] ..............................................................28 

Figure 3-14 Twin spacer-damper with cantilever clamps [2] .......................................................28 

Figure 3-15 Triple spacer-damper with two articulations per arm and hinge type clamps [2] ....28 

Figure 3-16 Quad spacer-damper with elastomer-lined clamp and helical rod attachment [2]...28 

Figure 3-17 Six-bundle spacer-damper with rubber-lined clamps [2] ..........................................28 

Figure 3-18 Short circuit test [2] ...................................................................................................29 

Figure 3-19 Instantaneous position of the conductors taken during three-phase short-circuit test 
on 15-kV [2] ...........................................................................................................................30 

Figure 3-20 Ice shedding from one span and the resulting motions [2]........................................30 

Figure 4-1 Engine of car like gyroscope [11]................................................................................31 



Picture contents 12 

Figure 4-2 Gyroscope principle [11] .............................................................................................32 

Figure 4-3 Gyroscope principle [11] .............................................................................................32 

Figure 4-4 Gyroscope principle [11] .............................................................................................32 

Figure 5-1 Model underlying the Kalman filter. [5]......................................................................35 

Figure 5-2 How Kalman filter works [7] .......................................................................................37 

Figure 6-1 2D movement................................................................................................................42 

Figure 6-2 Slider for filter tuning...................................................................................................45 

Figure 6-3 2D movement................................................................................................................45 

Figure 7-1 Test span in Canada.....................................................................................................46 

Figure 7-2 observed from Y1..........................................................................................................47 

Figure 7-3 observed from Y3..........................................................................................................47 

Figure 7-4 Final acceleration ........................................................................................................47 

Figure 7-5 noise of meas. -  (Y1+Y3)/2..........................................................................................47 

Figure 7-6 noise of meas. -  (Y1+Y3)/2 in detail............................................................................47 

Figure 7-7 Measured (blue) and filtered (red) acceleration by Kalman filter ..............................48 

Figure 7-8 Non-filtered observed (blue) and filtered (red) position by Kalman filter...................48 

Figure 7-9 Acceleration from model (simulated)...........................................................................49 

Figure 7-10 non-filtered calculated movement using acceleration data from simulated model ...50 

Figure 7-11 movement from model (simulated) .............................................................................50 

Figure 7-12 Numerical integration of discrete points....................................................................51 

Figure 7-13 Measurement error.....................................................................................................51 

Figure 7-14 Acceleration in steady state .......................................................................................52 

Figure 7-15 Movement in steady state ...........................................................................................52 

Figure 7-16 Observed movement from meas. ................................................................................53 

Figure 7-17 Movement observed from model ................................................................................53 

Figure 8-1 Measuring device .........................................................................................................54 

Figure 8-2 Measured acceleration in x axis ..................................................................................55 

Figure 8-3 Measured acceleration in y axis ..................................................................................55 

Figure 8-4 Reconstruction from measurement (drift is due to the offset in x axis)........................55 

Figure 8-5 Observed acceleration in x axis with 1.4s calibration.................................................56 

Figure 8-6 Observed acceleration in y axis with 1.4s calibration.................................................56 

Figure 8-7 Observed movement after calibration..........................................................................56 

Figure 8-8 Observed movement after calibration and experimental modification........................57 

Figure 8-9 Observed x position in time..........................................................................................57 



Picture contents 13 

Figure 8-10 Observed y position in time........................................................................................57 

Figure 8-11 Observed angular velocity .........................................................................................58 

Figure 8-12 Observed angle of rotation.........................................................................................58 

Figure 8-13 2D movement with gyroscope ....................................................................................58 

Figure 8-14 Error propagation......................................................................................................59 

Figure 8-15 Log-Log error propagation........................................................................................59 

Figure 8-16 The Kalman filter used in an indirect-feedback configuration to optimally weight 
inertial and optical information. [7] ......................................................................................60 

Figure 9-1 Accelerometers position and orientation in Ampacimon.............................................61 

Figure 9-2 Offsets and conversion factors .....................................................................................61 

Figure 9-3 Position of line between span in wind condition..........................................................62 

Figure 9-4 Horizontal acceleration ...............................................................................................62 

Figure 9-5 Vertical acceleration....................................................................................................62 

Figure 9-6 FFT of horizontal acceleration ....................................................................................63 

Figure 9-7 FFT of vertical acceleration ........................................................................................63 

Figure 9-8 Orientation of axes.......................................................................................................64 

Figure 9-9 Exact horizontal acceleration ......................................................................................64 

Figure 9-10 Exact vertical acceleration ........................................................................................64 

Figure 9-11 Noisy horizontal acceleration ....................................................................................65 

Figure 9-12 Noisy vertical acceleration ........................................................................................65 

Figure 9-13 FFT of horizontal acceleration ..................................................................................65 

Figure 9-14 FFT of vertical acceleration ......................................................................................65 

Figure 9-15 Reconstructed horizontal acceleration ......................................................................66 

Figure 9-16 Reconstructed vertical acceleration...........................................................................66 

Figure 9-17 Exact angle of deflection............................................................................................66 

Figure 9-18 Angle γ ......................................................................................................................66 

Figure 9-19 Angle γ ......................................................................................................................67 

Figure 10-1 Non-filtered observed (blue) and filtered (red) position by Kalman filter.................68 

Figure 10-2 Observed movement after calibration........................................................................69 

Figure 10-3 Error propagation......................................................................................................69 

Figure 10-4 The Kalman filter used in an indirect-feedback configuration to optimally weight 
inertial and optical information. [7] ......................................................................................70 

 



Table contents 14 

TABLE CONTENTS  
Table 6-1 Known data ....................................................................................................................42 

Table 6-2 Initialisation...................................................................................................................42 

Table 6-3 Input data .......................................................................................................................43 

Table 6-4 Initialisation...................................................................................................................44 

Table 7-1 Parameters of test span..................................................................................................46 

Table 8-1 Calibrating table............................................................................................................54 

Table 9-1 Parameters of span model .............................................................................................64 

 

 

 

 

 



Table of symbols and shortcuts 15 

TABLE OF SYMBOLS AND SHORTCUTS  

Symbol Quantity Unit

a acceleration m*s-2

Bk control-input model

B,C,D parametres of filter tuning
dt time increment s
f frequency Hz

Fk state transition model 

g acceleration due to gravity m*s-2

Hk observation model

I identity matrix
K k optimal Kalman gain

Pk error covariance matrix
Qk process noise covariance

r position m
Rk measurement noise covariance
Sk residual covariance

t time s
uk control vector

v velocity m*s-1

vk measurement noise
wk process noise
xk state vector

measurement residual
zk measurement
γ angle between axe "xr" and acceleration ° (rad)

ϕ angle between axis ° (rad)
ω angular velocity °*s-1 (rad*s-1)

Subscripts:
0 initial condition
k step

x,y,z axis information

Superscripts:
∧ estimate
T transpose of a matrix

ky%

 

 

 

 



1 Introduction  16 

1 INTRODUCTION  
Thermal rating of the lines depends on many parameters and factors like weather and current 

flow. And it is well known that thermal rating of lines changes continually, because parameters 
and factors included are changing continually as well. Transmission lines are designed in worst 
weather conditions (maximum solar heating, maximum external temperature, minimum wind 
speed ...) to control the maximum sag. But the experience shows that in practice, actual ambient 
conditions are less restrictive (generally more than 98% of the time) than those designed in the 
standards. So if we could have a possibility to measure the actual sag of lines in real time, we can 
better use existing overhead lines and save money for building new overhead lines. An increased 
ampacity of the conductor depending on the actual weather condition is thus generally available 
most of the time. Moreover there is still 2% of the time when actual weather conditions could be 
worse than those supposed and there exists risks. With real time sag monitoring device we know 
“exact” information about sag. All in all, real time monitoring is a quick applicable solution at a 
reasonable cost for better usage of existing overhead lines. 

 

Figure 1-1  Comparison of Loading and actual Rating distributions [1] 

In Figure 1-1 is a comparison of loading and actual rating distributions for an overhead line 
over one year. It shows virtual example based on actual loading for a 70 kV and 400 kV of 
Belgian line and actual rating based on a published case (Dale Douglas, PTI). 
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2 AMPACIMON ® 
Ampacimon device, system and method have been patented in September 2005, with a 

particular emphasis on EMC (electromagnetic compatibility) protection. Patent number: WO 
2007/031435 (A1). 

2.1 What is Ampacimon® 
Due to increasing consumption of electrical energy, ampacity determination is a key factor 

for the huge market around the world. Especially operators of overhead high voltage lines are 
interested in upgrading existing overhead lines than building new ones. Still more important is 
the impact of market release in Europe and USA which will force to have real time information 
on main lines. In a deregulated market environment, the priority of the market is to maximize 
their profit. It means to maximize the ability of transmission in a secured way and to minimize 
serious disturbances and time of inactive lines. Moreover power systems in European regions as 
well as North American ones will be operated closer to their limits, because of difficulties to 
build new lines and growing demand of electric power in most countries. Under the above 
described stressed conditions, thermal overloads (causing sag) are critical threats to system 
operation. But there will be a greater possibility of cascade tripping. The Italian blackout (Sept 
28th, 2003) as well as the New York blackout (August 14th, 2003) have their origin in a 
flashover between trees and power lines. More recently on November 4th, 2006 a major blackout 
in the whole Europe has been hopefully avoided. However; it affected 15 million people after the 
cascading event. 

 

Figure 2-1 Black out in New York in 2003 [1]  

2.2 Ampacimon® method 
Ampacimon device allows real time monitoring of sag and other motion characteristics based 

on frequency analysis. Precision on sag is about 2%. Thanks to this low frequency analysis 
provided by accelerometers, Ampacimon device does not need any line nor any environmental 
data to determine the sag. Therefore, this method is more reliable than other determination 
methods. 

Ampacimon device monitor even vibration (0 to 100Hz) to evaluate effects of fatigue. It 
helps to take preventive control of conductors and dampers. 

Another advantage is that Ampacimon is autonomous (as it is directly powered by the line) 
and can be located anywhere on the span, it requires no calibration for first use, and moreover, it 
can be installed live-line in roughly 15 minutes. It saves lots of time and money. 
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Figure 2-2 Typical installation on live line in France at 90kV on HT ACSS conductor [1] 

 

Figure 2-3 Live-line installation [1] 
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Figure 2-4 Ampacimon vibration analysis method to deduce line sag and material fatigue [1] 

 

Figure 2-5 Ambient temperature and sag as deduced by Ampacimon vs. time [1] 

2.3 Who is concerned by Ampacimon®? 
Using real time systems increases thermal rating of lines of about 10 to 15 % on average. It 

could be higher in some cases depending on the previous design of the line. Information sent by 
Ampacimon are useful for the utilities using the lines as their business, to make a more efficient 
use of existing overhead lines and thus a better ROI, to be informed in real time of troubles on the 
network, to detect the lines on which vibrations levels are not sufficiently protected, to be 
informed about damages, to prevent black-outs limiting unnecessary cascade tripping, to evaluate 
the evolution of the fatigue of their lines, and to be informed early enough of incoming troubles 
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to inform their maintenance staff and/or to redirect the power flow not to loose customers, in 
other words, to save money. For the new developed overhead lines to better monitor their 
behaviour. (Real time sag, snow or ice overloads, reaction against wind blow, vibration level, 
etc.) All these advantages will help to maintain the customers in acceptable service conditions. 

 

Figure 2-6 Typical Ampacimon outputs for Aeolian vibration analysis [1] 

2.4 Design of Ampacimon® 
The size of the last version of the device is 20x15 cm and it weighs about 7kg. Internal part is 

containing microelectronics and current transformer specially designed for Ampacimon 
application from 70 to 765kV. Anticorona designed. A special design is used to protect the wiring 
from short circuit currents, lightning over voltages. The power level demand of this system is a 
few Watts. The microelectronics system is equipped with four 2D accelerometers (in such a way 
that 3D movement can be analyzed). Measurement coming from gyroscopes could be added to 
the actual design. The sampling rate is about 200 Hz. Measurements are possible to send to the 
antennas. First antenna is a 433 MHz antenna with limited power emission (depending on local 
standards), able to transmit license free at about 100 m. Second one uses mobile phone network 
using frequencies 900/1800/1900 MHz. All materials are carefully chosen to be able to work with 
temperature ranging from -40°C to 85°C. 

 

Figure 2-7 Typical installation on 220 kV line in Belgium (2005) [1] 
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Figure 2-8 CAO view and actual view of the last version of Ampacimon (2008) [1] 



3 Conductor motion  22 

3 CONDUCTOR MOTION  
There are three main types of power line vibration (after Orawski 1993), indicating Aeolian 

vibration. This is shown in wake-induced oscillation and galloping, with their ranges of loop 
lengths and amplitude. 

 

Figure 3-1 Three main types of conductor motion [2] 

3.1 Aeolian vibrations 
Aeolian vibration is one of the most prevalent problems in transmission lines. It causes 

fatigue failure of conductor strands or of other items associated with conductor. In low to 
moderate winds, this type of conductor motion can occur at almost any time and any transmission 
line.  Reliable transmission-line design requires that Aeolian vibration of the conductors be 
controlled below critical levels to avoid fatigue damage. 

Facts of Aeolian vibrations: 

• Characteristic frequencies are in the approximate range of 3-200 Hz. The frequency 
range depends on many conditions. Mainly the size and tensile load of the conductor. 
Lower frequencies are typical for large conductors in low winds, while upper 
frequencies are typical for small ground wires in moderate winds. 

• Maximum possible amplitude is equal to the conductor diameter. 

• Records of vibration at a point on a conductor show Figure 3-2 

• Conductor vibration causes localized bending, which depends on its level, causes 
fatigue failures of the conductor strands or the clamps of spacers and other devices 
installed on the conductor. The conductor vibration may also cause fatigue damage to 
items associated with the support and protection of the conductor itself – tower arms, 
spacers and dampers. 

• The most serious Aeolian vibrations occurs when the conductor tensions are high, the 
terrain is smooth, with frequent, low-to-moderate, steady winds, and the spans are 
long. 

• There is a possibility to control this vibration using dampers. 
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Figure 3-2 Record of vibration at a point on a conductor. [2] 

 

Figure 3-3 Fatigue failure of conductor strands at the suspension clamp. [2] 

The design of transmission line is made to control Aeolian vibrations of conductors below 
critical levels to avoid fatigue damage. With the design rules based on past experiences we are 
able to know strength of the Aeolian vibrations. We can also measure existing lines to know the 
conditions using special-purpose measuring instruments. 

The second way to identify the conditions is by using the analytical approach to stimulate 
behaviour of the conductor and other related devices. This approach can be used successfully to 
investigate alternatives in design process, also in the direct design of the damping system for a 
new line. The most used analytical models are based on the Energy Balance Principle (EBP), and 
they give an estimate of expected vibratory motions. These kinds of things are described in [1], I 
didn’t use the analytical models. 

When it was recognized that conductor strand failure causes Aeolian vibration, a number of 
protection devices were developed following two main concepts. The first concept sought to 
provide reinforcement against the effect of vibration of the conductor. The second concept took 
into consideration the application of energy-dissipating devices, which were able to reduce the 
level of conductor Aeolian vibrations.  The second method was soon recognized as the most 
practical and effective method, and a number of vibration dampers have been developed to date.  
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Figure 3-4 Vibration dampers [2] 

 

Figure 3-5 Vibration damper of Stockbridge type [2] 

3.2 Fatigue 
The most common form of damage resulting from Aeolian vibration is fatigue failure of 

strands in overhead conductors. But influenced are other line components such as armour rods, 
dampers, ties, insulators, and tower members. Conductor fatigue may also result from galloping 
and from wake-induced oscillation, but mainly is caused by Aeolian vibration. Fatigue occurs at 
support locations, suspension clamps, insulators, and dead ends. They also include damper and 
bundle conductor spacer clamps, hot-line taps, splices, and armour rod end clamps. The incidence 
of fatigue relative to the above locations is directly associated with the rigidity with which 
conductor motion is restrained.  Fatigue of conductor strands is caused by the cyclic bending of 
the conductors where their motion is restrained. With increasing bending amplitude fatigue life 
decreases. 

The complications of relating the measurable vibration of conductor to know the chance of 
fatigue of its strands is a complicated matter arising primarily from two facts. First, the stresses 
that cause the failures are complex and not related in a simple way to the gross motions of the 
conductor. Second, the failures are located on surface contact between components. Inspection 
and failure analysis of a large number of fatigue breaks from field and laboratory spans indicate 
that the fatigue always takes place where the broken strand was in contact with another strand or 
another related component. The stresses at these locations are combinations of static stresses due 
to conductor tension, bending, and the compressive force between the members. 
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Figure 3-6 Radiographic inspection procedure [2] 

 

Figure 3-7 Prototype Electro-magneto-acoustic transducer (EMAT) device for detecting broken 
conductor strands [2] 

3.3 Galloping 
Since the time galloping of iced conductors was found, numerous research programs in the 

world have been done. Aimed to solve the problem and various devices and techniques have been 
developed to prevent or minimalism effect of galloping. Many methods were used to prevent 
galloping with mixed results. No practical protection method has been developed to prevent all 
types of galloping under any ice and wind conditions. Approach to this problem is in analytical 
way and with the growth of computer capability are many solutions of complex problem in the 
analysis of galloping behaviour. But even when all relevant parameters of weather and line 
construction are known, there are still areas of uncertainty and isn’t possible to know exact 
behaviour.  
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Galloping is a low-frequency (0,1-1Hz), large amplitude (±0,1 times - ±1 times sag of the 
span), wind-induced vibration of both single or bundle conductors, with a single or a few loops of 
standing waves per span. This type of motion is caused by moderately strong, steady crosswind 
acting upon an asymmetrically iced conductor surface. This type of motion has major impact on 
the design of overhead lines and tower load. The space between lines has to be enough to prevent 
flashovers between lines, which are the most common effect of galloping. Large, repeated loads 
may cause bending of towers and cross arms.  

There are two basic forms of galloping, standing waves and travelling waves, or a 
combination of them. From the beginning are waves tens of meters long, with amplitudes of a 
few centimetres. In the time, they grow in length and amplitude and can interact with one another 
to create standing waves. From several loops per span at the beginning will be later only few 
loops per span. Observed peak-to-peak amplitudes of galloping are often as great as the sag in the 
span and in case of short spans should be greater.  

Typical conductor motions are vertical in galloping, but there is often motion in horizontal 
direction. These motions aren’t often in phase, so the motions are elliptical.  

 

Figure 3-8 Percentage of observations of various galloping ellipse shapes and tilts [2] 

Galloping caused various kinds of structural damage in overhead lines because of large 
forces that galloping motion applies to devices. Galloping causes damage to cross arms, 
insulators, towers, vibration dampers, and conductor strings. When galloping amplitudes are great 
enough, flashover can occur between phases or from phase to ground and it causes damage to the 
conductor.  

 

Figure 3-9 Damage due to galloping on towers [2] 

 

Figure 3-10 Damage due to galloping on a string of suspension insulators [2] 
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Figure 3-11 Damage due to galloping on a triple bundle conductor in China [2] 

 

Figure 3-12 Broken strands resulting from short circuit due to two-phase fault induced by 
galloping [2] 

3.4 Bundle Conductor Oscillations 
Bundle conductor oscillation (or wake-induced oscillation), is another motion recognized as 

a problem in transmission lines of bundle conductors. It doesn’t cause as serious of a problem 
like previous motions and damage had been limited to rapid wear in suspension hardware or 
fatigue of spacers or other accessories.  
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Figure 3-13 Classification of wake-induced motions [2]  

 

Figure 3-14 Twin spacer-damper with 
cantilever clamps [2] 

 

Figure 3-15 Triple spacer-damper with two 
articulations per arm and hinge type clamps 

[2] 

 

Figure 3-16 Quad spacer-damper with 
elastomer-lined clamp and helical rod 

attachment [2] 

 

Figure 3-17 Six-bundle spacer-damper with 
rubber-lined clamps [2] 
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3.5 Other motions 
Other types of motion: 

• Short-Circuit Forces in Power Lines and Substations 

• Bundle Conductor Rolling 

• Ice and Snow Shedding 

• Gust Response 

• Vibration of Tower Members 

• Noise from Overhead Lines 

• Earthquake Effects on Overhead Conductors 

• Corona Vibration 

• Station Bus Vibration 

3.5.1 Short-Circuit Forces in Power Lines and Substations 
Forces generated by short-circuit are very important for high-voltage bundle conductor lines, 

medium-voltage distribution lines, and substations. For bundle conductor lines, during a fault, the 
sub conductors of the bundle move closer to each other due to strong attraction forces because of 
the very short distance between sub conductors. 

 

Figure 3-18 Short circuit test [2] 

Figure 3-18 shows an example of quad bundle before and during short-circuit test at 50 kA, 
showing distortion of the sub conductors. One flexible spacer is at midspan. The sub conductor 
movements occur at very high acceleration. For example, a 40 kA fault on a twin bundle of 620 
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mm2
 conductor, with a separation of 40 cm, may have acceleration up to several tens of g, 

depending on the instantaneous current value. 

Very large movements may be seen on distribution lines. Figure 3-19 shows the motion 
produced during testing on an actual line. This is from an actual three-phase short-circuit test on a 
15-kV distribution line. The photo shows an instantaneous position of the conductors taken 
during the test. The fault current level was 3 kA.  

 

Figure 3-19 Instantaneous position of the conductors taken during three-phase short-circuit test 
on 15-kV [2] 

3.5.2 Ice and snow shedding 
It is a natural process that occurs when accumulated ice is removed. Sudden ice or snow 

shedding from transmission lines may result in high-amplitude vibrations or jump of the 
conductor. Therefore is important in design of transmission line to predict both, the maximum 
jump height of the unloaded span and the maximum drop in the span that remains loaded to avoid 
flashover. As well, it is necessary to predict the maximum cable tension. 

 

Figure 3-20 Ice shedding from one span and the resulting motions [2]  
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4 MEASURING DEVICES 
In space there are 6 degrees of freedom. There are three rotations and three movements. If I 

need to know instantaneous position and orientation in space, I need to measure acceleration in 
three dimensions and angular velocity in three dimensions by 3D accelerometer and 3D 
gyroscope. From these values I am able to count position in case of known nine initial conditions 
as you can see from the equations below (in case that I have enough high sampling frequency to 
suppose constant discrete values of acceleration and angular velocity). 

 ( ) ( ) 2
0 0 0

1

2xyz xyz xyz xyz xyz xyz xyzdt dt t dt t t= = ⋅ + = ⋅ ⋅ + ⋅ +∫ ∫ ∫r a a v a v r  (4.1) 

 0xyz xyz xyz xyzdt tϕ ω ω ϕ= = +∫  (4.2) 

4.1 Gyroscope 
Gyroscope is an object formed in the shape of discs, but it can be any object. Necessary is to 

produce effective gyroscopic behaviour. Disc often have a large heavy ring because the mass 
should be as far away from the centre as possible. When the gyroscope isn't rotating it behaves 
like any other object, however when the gyroscope is rotating at high speed it has special 
behaviour by resisting movements in certain directions. 

 

Figure 4-1 Engine of car like gyroscope [11] 

Gyroscope contains large amounts of stored energy when it is rotating. Newton's first law of 
motion says, “Every object in a state of uniform motion tends to remain in that state of motion 
unless an external force is applied to it.” It means that when I will apply force to gyroscope, the 
gyroscope will try to compensate because of this acting force.  

Often the engine of cars behaves as a gyroscope because of its shape, mass and rotations. 
Let’s have gyroscope/engine which is spinning at a high speed in a clockwise direction as seen on 
the picture above. When the car is turned to the right forces A and B are applied to the structure 
of the car forcing the front end of the car down and the back end up. If the car is turned to the left 
then the front end of the car is forced up and the back end forced down. If the gyroscope is 
spinning in the opposite direction then the reverse will happened. 

However if the car was moved directly upwards, downwards, forwards, back-wards or side-
to-side the gyroscope would not apply any extra forces. The gyroscope only applies extra forces 
when the car is moving at an angle. This effect is known as gyroscopic precession. 
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Figure 4-2 Gyroscope 
principle [11] 

 

Figure 4-3 Gyroscope 
principle [11] 

 

Figure 4-4 Gyroscope 
principle [11]

The Figure 4-2 shows a bicycle wheel acting like a gyroscope being supported at both ends 
of the axle, if left this way the gyroscope would just slowly stop spinning. However if the right 
support is removed then gravity exerts a force pushing the right hand side of axle down. As 
described in earlier, gyroscopic precession will force the wheel to precess around its axis, as 
shown in Figure 4-3 and Figure 4-4 by the red arrows. The direction the precession takes depends 
on the rotational direction of the gyroscopes, shown in the diagram as green arrows. If the wheel 
is continuously unsupported then the wheel will continue to rotate around its axis. 

It means that if I know angular velocity and initial condition of angle in one axis I can count 
instantaneous angle position. And if I have 3D gyroscope, I can know orientation in space on 
conditions of known three time derivations of angular velocities and three initial conditions of 
angles.  

4.2 Accelerometer 
An accelerometer is a device that measures the vibration, or acceleration of motion of a 

structure. The force caused by vibration or a change in motion (acceleration) causes the mass to 
"squeeze" the piezoelectric material which produces an electrical charge that is proportional to 
the force exerted upon it. Since the charge is proportional to the force, and the mass is a constant, 
then the charge is also proportional to the acceleration.  

There are two types of piezoelectric accelerometers. The first type is a "high impedance" 
charge output accelerometer. In this type of accelerometer the piezoelectric crystal produces an 
electrical charge which is connected directly to the measurement devices. 

The charge output measurement requires special equipment most commonly found in 
research facilities. This type of accelerometer is also used in high temperature applications 
(>120°C) where low impedance models can not be used. 

The second type of accelerometer is a low impedance output accelerometer. A low 
impedance accelerometer has a charge accelerometer as its front end but has a tiny built-in micro-
circuit and FET transistor that converts that charge into a low impedance voltage that can easily 
interface with standard devices. This type of accelerometer is commonly used in industry.  

It means that if I know the acceleration and initial conditions of speed and position in one 
axle I can count instantaneous position. And if I have 3D accelerometer, I can know position in 
space on conditions of the known three instantaneous accelerations and the three initial 
conditions of speed and the three initial conditions of a position.  
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4.3 Devices in Ampacimon® 
Here (in Ampacimon® module), are used MEMS sensors (accelerometers and gyroscopes). 

MEMS are not piezoelectric accelerometers and there is no rotating movement in MEMS 
gyroscopes.  

Typical MEMS accelerometer is composed of movable proof mass with plates that is 
attached through a mechanical suspension system to a reference frame. Movable plates and fixed 
outer plates represent capacitors. The deflection of proof mass is measured using the capacitance 
difference. It is capacitance changes due to changes of distance between capacitor plates.  

See [28] for understanding of MEMS sensors. 
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5 KALMAN FILTER  

5.1 Example applications 
An example application would be providing accurate continuously-updated information 

about the position and velocity of an object given only a sequence of observations about its 
position, each of which includes some error. It is used in a wide range of engineering applications 
from radar to computer vision. Kalman filtering is an important topic in control theory and 
control systems engineering. 

For example, in a radar application, where one is interested in tracking a target, information 
about the location, speed, and acceleration of the target is measured with a great deal of 
corruption by noise at any time. The Kalman filter exploits the dynamics of the target, which 
govern its time evolution, to remove the effects of the noise and get a good estimate of the 
location of the target at the present time (filtering), at a future time (prediction), or at a time in the 
past (interpolation or smoothing). A simplified version of a Kalman filter is the alpha beta filter, 
still commonly used, which has static weighting constants instead of using co-variance matrices. 

5.2 Naming and historical development 
The filter is named after Rudolf E. Kalman, though Thorvald Nicolai Thiele and Peter 

Swerling actually developed a similar algorithm earlier. Stanley F. Schmidt is generally credited 
with developing the first implementation of a Kalman filter. It was during a visit of Kalman to the 
NASA Ames Research Center that he saw the applicability of his ideas to the problem of 
trajectory estimation for the Apollo program, leading to its incorporation in the Apollo navigation 
computer. The filter was developed in papers by Swerling (1958), Kalman (1960), and Kalman 
and Bucy (1961). 

The filter is sometimes called Stratonovich-Kalman-Bucy filter because it is a special case of 
a more general, non-linear filter developed earlier by Ruslan L. Stratonovich. In fact, equations of 
the special case, linear filter appeared in these papers by Stratonovich that were published before 
summer 1960, when Kalman met with Stratonovich during a conference in Moscow. 

In control theory, the Kalman filter is most commonly referred to as linear quadratic 
estimation (LQE). 

A wide variety of Kalman filters have now been developed, from Kalman's original 
formulation, now called the simple Kalman filter, to Schmidt's extended filter, the information 
filter and a variety of square-root filters developed by Bierman, Thornton, and many others. 
Perhaps the most commonly used type of Kalman filter is the phase-locked loop now ubiquitous 
in radios, computers, and nearly any other type of video or communications equipment. 

5.3 Underlying dynamic system model 
Kalman filters are based on linear dynamical systems discretised in the time domain. They 

are modelled on a Markov chain built on linear operators perturbed by Gaussian noise. The state 
of the system is represented as a vector of real numbers. At each discrete time increment, a linear 
operator is applied to the state to generate the new state, with some noise mixed in, and optionally 
some information from the controls on the system if they are known. Then, another linear 
operator mixed with more noise generates the visible outputs from the hidden state. The Kalman 
filter may be regarded as analogous to the hidden Markov model, with the key difference that the 
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hidden state variables take values in a continuous space (as opposed to a discrete state space as in 
the hidden Markov model). Additionally, the hidden Markov model can represent an arbitrary 
distribution for the next value of the state variables, in contrast to the Gaussian noise model that 
is used for the Kalman filter. There is a strong duality between the equations of the Kalman Filter 
and those of the hidden Markov model. A review of this and other models is given in Roweis and 
Ghahramani (1999). 

In order to use the Kalman filter to estimate the internal state of a process given only a 
sequence of noisy observations, one must model the process in accordance with the framework of 
the Kalman filter. This means specifying the matrices Fk, Hk, Qk, Rk, and sometimes Bk for each 
time-step k as described below. 

  

Figure 5-1 Model underlying the Kalman filter. [5] 

Circles are vectors, squares are matrices, and stars represent Gaussian noise with the 
associated covariance matrix at the lower right. 

The Kalman filter model assumes the true state at time k is evolved from the state at (k − 1) 
according to 

 1k k k k k k−= ⋅ + ⋅ +x F x B u w  (5.1) 

where 

• Fk is the state transition model which is applied to the previous state xk−1;  

• Bk is the control-input model which is applied to the control vector uk;  

• wk is the process noise which is assumed to be drawn from a zero mean multivariate 
normal distribution with covariance Qk.  

 ( )0,k kNw Q�  (5.2) 

At time k an observation (or measurement) zk of the true state xk is made according to 

 k k k k= ⋅ +z H x v  (5.3) 

where Hk is the observation model which maps the true state space into the observed space 
and vk is the observation noise which is assumed to be zero mean Gaussian white noise with 
covariance Rk. 

 ( )0,k kNv R�  (5.4) 
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The initial state, and the noise vectors at each step {x0, w1, ..., wk, v1 ... vk} are all assumed to 
be mutually independent. 

Many real dynamical systems do not exactly fit this model; however, because the Kalman 
filter is designed to operate in the presence of noise, an approximate fit is often good enough for 
the filter to be very useful. Variations on the Kalman filter described below allow richer and more 
sophisticated models. 

5.4 The Kalman filter 
The Kalman filter is a recursive estimator. This means that only the estimated state from the 

previous time step and the current measurement are needed to compute the estimate for the 
current state. In contrast to batch estimation techniques, no history of observations and/or 
estimates is required. It is unusual in being purely a time domain filter; most filters (for example, 
a low-pass filter) are formulated in the frequency domain and then transformed back to the time 
domain for implementation. In what follows, the notation ˆ n mx ,  represents the estimate of x , at 

time n given observations up to, and including time m. 

The state of the filter is represented by two variables: 

• ˆ
k kx , the estimate of the state at time k given observations up to and including time k;  

• k kP , the error covariance matrix (a measure of the estimated accuracy of the state 

estimate).  

The Kalman filter has two distinct phases: Predict and Update. The predict phase uses the 
state estimate from the previous time step to produce an estimate of the state at the current time 
step. In the update phase, measurement information at the current time step is used to refine this 
prediction to arrive at a new, more accurate state estimate, again for the current time step. 

5.4.1 Predict 
Predicted state 

 1 11 1 1
ˆ ˆk k kk k k k − −− − −= ⋅ + ⋅x F x B u  (5.5) 

Predicted estimate covariance 

 11 1 1
T

k k kk k k k −− − −= ⋅ ⋅ +P F P F Q  (5.6) 

5.4.2 Update 
Innovation or measurement residual 

 1
ˆk k k k k−= − ⋅y z H x%  (5.7) 

Innovation (or residual) covariance 

 1
T

k k k kk k−= ⋅ ⋅ +S H P H R  (5.8) 

Optimal Kalman gain 
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 1
1

T
k k kk k

−
−= ⋅ ⋅K P H S  (5.9) 

Updated state estimate 

 1
ˆ ˆ k kk k k k−= + ⋅x x K y%  (5.10) 

Updated estimate covariance 

 ( ) 1k kk k k kI −= − ⋅ ⋅P K H P  (5.11) 

The formula for the updated estimate covariance above is only valid for the optimal Kalman 
gain. Usage of other gain values requires a more complex formula found in the derivations 
section. 

 

Figure 5-2 How Kalman filter works [7] 

5.4.3 Invariants 
If the model is accurate, and the values for 0 0x̂ and 0 0P  accurately reflect the distribution of 

the initial state values, then the following invariants are preserved: all estimates have mean error 
equal to zero. 

 1
ˆ ˆ 0k kk k k kE E −

   − = − =   x x x x  (5.12) 

 [ ] 0kE =y%  (5.13) 

where E[ξ] is the expected value of ξ, and covariance matrices accurately reflect the 
covariance of estimates 

 ( )ˆcov kk k k k= −P x x  (5.14) 

 ( )1 1
ˆcov kk k k k− −= −P x x  (5.15) 

 ( )covk k=S y%  (5.16) 
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5.5 Examples 
Consider a truck on perfectly frictionless, infinitely long straight rails. Initially the truck is 

stationary at position 0, but it is buffeted this way and that by random acceleration. We measure 
the position of the truck every ∆t seconds, but these measurements are imprecise; we want to 
maintain a model of where the truck is and what its velocity is. We show here how we derive the 
model from which we create our Kalman filter. 

There are no controls on the truck, so we ignore Bk and uk. Since F, H, R and Q are constant, 
their time indices are dropped. 

The position and velocity of the truck is described by the linear state space 

 k

x

x

 
=  
 

x
&

 (5.17) 

Where is the velocity, that is, the derivative of position with respect to time. 

We assume that between the (k − 1)th and kth time step the truck undergoes a constant 
acceleration of ak that is normally distributed, with mean 0 and standard deviation σa. From 
Newton's laws of motion we conclude that 

 1k k ka−= ⋅ + ⋅x F x G  (5.18) 

where 

 
1

0 1

t∆ 
=  
 

F  (5.19) 

and 

 

2

2

t

t

 ∆
 =
  ∆ 

G  (5.20) 

We find that 

 ( ) ( ) ( ) 2 2 2cov
T T T T

a aa E a a E a σ σ     = ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ = ⋅ = ⋅ ⋅    
Q G G G G G G G G G  (5.21) 

(since σa is a scalar).  

At each time step, a noisy measurement of the true position of the truck is made. Let us 
suppose the noise is also normally distributed, with mean 0 and standard deviation σz. 

 k k k= ⋅ +z H x v  (5.22) 

where 

 ( )1 0=H  (5.23) 

and 



5 Kalman filter  39 

 ( ) ( )2T
k k zE σ= ⋅ =R v v  (5.24) 

 

We know the initial starting state of the truck with perfect precision, so we initialize 

 0 0

0
ˆ

0

 
=  
 

x  (5.25) 

and to tell the filter that we know the exact position, we give it a zero covariance matrix: 

 0 0

0 0

0 0

 
=  
 

P  (5.26) 

If the initial position and velocity are not known perfectly the covariance matrix should be 
initialized with a suitably large number, say B, on its diagonal. 

 0 0

0

0

B

B

 
=  
 

P  (5.27) 

The filter will then prefer the information from the first measurements over the information 
already in the model. 

5.6 Derivations 

5.6.1 Deriving the posterior estimate covariance matrix 
Starting with our invariant on the error covariance Pk|k as above 

 ( )ˆcov kk k k k= −P x x  (5.28) 

substitute in the definition of ˆ k kx  

 ( )( )1
ˆcov k k kk k k k−= − + ⋅P x x K y%  (5.29) 

and substitute ky%  

 ( )( )( )1 1
ˆ ˆcov k k k kk k k k k k− −= − + ⋅ − ⋅P x x K z H x  (5.30) 

and kz  

 ( )( )( )1 1
ˆ ˆcov k k k k k kk k k k k k− −= − + ⋅ ⋅ + − ⋅P x x K H x v H x  (5.31) 

and by collecting the error vectors we get 

 ( ) ( )( )1
ˆcov k k k k kk k k kI −= − ⋅ ⋅ − − ⋅P K H x x K v  (5.32) 
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Since the measurement error vk is uncorrelated with the other terms, this becomes 

 ( ) ( )( ) ( )1
ˆcov covk k k k kk k k kI −= − ⋅ ⋅ − + ⋅P K H x x K v  (5.33) 

by the properties of vector covariance this becomes 

 ( ) ( ) ( ) ( )1
ˆcov cov

T T
k k k k k k k kk k k kI I−= − ⋅ ⋅ − ⋅ − ⋅ + ⋅ ⋅P K H x x K H K v K  (5.34) 

which, using our invariant on Pk|k-1 and the definition of Rk becomes 

 ( ) ( )1

T T
k k k k k k kk k k kI I−= − ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅P K H P K H K R K  (5.35) 

This formula (sometimes known as the "Joseph form" of the covariance update equation) is 
valid no matter what the value of K k. It turns out that if K k is the optimal Kalman gain, this can 
be simplified further as shown below. 

5.6.2 Kalman gain derivation 
The Kalman filter is a minimum mean-square error estimator. The error in the posterior state 

estimation is 

 ˆk k k−x x  (5.36) 

We seek to minimize the expected value of the square of the magnitude of this vector, 
2

ˆk k kE − 
 

x x . This is equivalent to minimizing the trace of the posterior estimate covariance 

matrix k kP . By expanding out the terms in the equation above and collecting, we get: 

 
( )1 1 1 1

1 1 1

T T T T
k k k k k k k k kk k k k k k k k k k

T T T
k k k k k k kk k k k k k

− − − −

− − −

= − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ =

= − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅

P P K H P P H K K H P H R K

P K H P P H K K S K
 (5.37) 

The trace is minimized when the matrix derivative is zero: 

 
( ) ( )1

tr
2 2 0

Tk k

k k kk k
k

δ

δ −= − ⋅ ⋅ + ⋅ ⋅ =
P

H P K S
K

 (5.38) 

Solving this for K k yields the Kalman gain: 

 ( )1 1

T
T

k k k kk k k k− −⋅ = ⋅ = ⋅K S H P P H  (5.39) 

 1
1

T
k k kk k

−
−= ⋅ ⋅K P H S  (5.40) 

This gain, which is known as the optimal Kalman gain, is the one that yields MMSE 
estimates when used. 
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5.6.3 Simplification of the posterior error covariance formula 
The formula used to calculate the posterior error covariance can be simplified when the 

Kalman gain equals the optimal value derived above. Multiplying both sides of our Kalman gain 
formula on the right by SkK k

T, it follows that 

 1
T T T

k k k k kk k−⋅ ⋅ = ⋅ ⋅K S K P H K  (5.41) 

Referring back to our expanded formula for the posterior error covariance, 

 1 1 1
T T T

k k k k k k kk k k k k k k k− − −= − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅P P K H P P H K K S K  (5.42) 

we find the last two terms cancel out, giving 

 ( )1 1 1k k k kk k k k k k k kI− − −= − ⋅ ⋅ = − ⋅ ⋅P P K H P K H P  (5.43) 

This formula is computationally cheaper and thus nearly always used in practice, but is only 
correct for the optimal gain. If arithmetic precision is unusually low causing problems with 
numerical stability, or if a non-optimal Kalman gain is deliberately used, this simplification 
cannot be applied; the posterior error covariance formula as derived above must be used. 

5.7 Relationship to the digital filter 
The Kalman filter can be regarded as an adaptive low-pass infinite impulse response digital 

filter, with cut-off frequency depending on the ratio between the process and measurement (or 
observation) noise, as well as the estimate covariance. Frequency response is, however, rarely of 
interest when designing state estimators such as the Kalman Filter, whereas for digital filters such 
as IIR and FIR filters, frequency response is usually of primary concern. For the Kalman Filter, 
the important goal is how accurate the filter is, and this is most often decided based on empirical 
Monte Carlo simulations, where "truth" (the true state) is known. 

COPIED FROM HTTP ://EN.WIKIPEDIA .ORG/WIKI /KALMAN _FILTER  
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6 2D MOVEMENT RECONSTRUCTION IN EXAMPLE  
This chapter will take care how reproduce movement in 2D, based on measurements from 

2D accelerometer and rated gyroscope. The aim will be to apply movement with device on 
known path and reproduce the movement using Kalman filtering on it and compare real path with 
non-filtered observed path and filtered path. Values aren’t coming from measurement, they are 
fictitious! 

6.1 Counting the path 
Table 6-1 Known data 

f  sampling frequency 200 Hz  
 
g  

 
acceleration due to gravity 

0

9.81

 
 − 

 
 

2m s−⋅  

 

rag  
 
matrix of measured accelerations  

1 2

1 2

x x xm xn

y y ym yn

a a a a

a a a a

 
 
 

L  
 

2m s−⋅  

ω  matrix of measured angular velocities ( )1 2 m nω ω ω ωL  1rad s−⋅  

Table 6-2 Initialisation 

rx0 position in “x” axis 0 m  
ry0 position in “y” axis 0 m  
vx0 speed in “x” axis -10 1m s−⋅  
vy0 speed in “y” axis -2 1m s−⋅  
ϕ0 angle of rotation 0 rad  

 

Time step dt : 

 
1

dt
f

=  (6.1) 

 

Figure 6-1 2D movement 
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Angle γ : 

 1
1

1

arctan ry

rx

ag

ag
γ =  (6.2) 

Angle ϕ : 

 1 0 1 dtϕ ϕ ω= + ⋅  (6.3) 

Relative acceleration rag  divided to absolute axes is ag : 

 
( ) ( )

( ) ( )

2 2
1 1 1 1 1

2 2
1 1 1 1 1

cos

cos 0,5

x rx ry

y rx ry

ag ag ag

ag ag ag

ϕ γ

ϕ γ π

= + ⋅ +

= + ⋅ + − ⋅
 (6.4) 

Without acceleration due to gravity is acceleration causing movement in absolute axes a : 

 1 1= −a ag g (6.5) 

Absolute speed v : 

 1 1 0dt= ⋅ +v a v  (6.6) 

Positions cr : 

 2
,1 1 0 ,00,5c cdt dt= ⋅ ⋅ + ⋅ +r a v r  (6.7) 

6.2 Filtering the path 
Table 6-3 Input data 

 
 
 
Q  

 
 
 
process noise matrix *

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

C

 
 
 
 

⋅ 
 
 
  
 

 

 

 
R  

 
measurement noise matrix 

* 1 0

0 1
D

 
⋅ 
 

 
 
 

 
 
 
F  

 
 
 
model matrix 

2

2

1 0 0 0.5 0

0 1 0 0 0.5

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

dt dt

dt dt

dt

dt

 ⋅
 ⋅ 
 
 
 
 
  
 
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H  

 
observation model 

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 

 
 

Table 6-4 Initialisation 

 
 
 

0 0P  

 
 
 
estimate covariance *

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

B

 
 
 
 

⋅ 
 
 
  
 

 

 

 
 
 

0 0x̂  

 
 
 
state estimate 

0

0

0

0

1

1

x

y

x

y

x

y

r

r

v

v

a

a

 
 
 
 
 
 
 
 
 
 

 

 

*Coefficients  , ,B C D will be found by filter tuning. 

6.2.1 Kalman filter 
Now is applied algorithm shown in Figure 5-2. Or you can see 5.4 The Kalman filter, 5.4.1 

Predict and 5.4.2 Update. 

Matrix of filtered positions fr : 

 , ˆf k k k=r x  (6.8) 

6.2.2 Filter tuning 
Let’s suppose that we had noisy two-row matrix of acceleration and vector of angular 

velocity. When we used some coefficients for drawing the filtered path, now we can tune the 
filter by slider.  
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Figure 6-2 Slider for filter tuning 

So less is B parameter, so better we know the initial position. When B is equal to zero, we 
know the exact initial position. So less is C parameter so better is system predictable and so less 
is D parameter so bigger is measurement valuable. The slider has 100 steps and minimum and 
maximum values are freely changeable. But minimum value for C and D parameter is limited to 
0.001. And minimum difference between minimal and maximum value is limited to 0.001. 

6.2.3 Results 
Finally were found constants B=1, C=0.008 and D=0.03. Non filtered and filtered path could 

be seen in Figure 6-3. By blue colour is drawn non filtered path; by red colour is drawn filtered 
path with cyan prediction and magenta correction. 

 

Figure 6-3 2D movement 

M-files eventually other input data are on enclosed CD in directory - Movement_20Values. 
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7 VERTICAL MOVEMENT RECONSTRUCTION  

 

Figure 7-1 Test span in Canada 

In Canada there is a test span where Ampacimon team to use Ampacimon device to measure 
in case of different movements. I am interested in movement when was Ampacimon device 
moved down by hands and released. Details of test span are in Figure 7-1 and in Table 7-1. 

Table 7-1 Parameters of test span 

Number of strands – aluminium/steel 54/7 - 

Total diameter  26,3 mm 

Mass per unit length 1,369 kg/m 

Rated strength 117,2 kN 

Aluminium strand diameter 2,9 mm 

Aluminium area 362,6 mm2 

Steel strand diameter 2,9 mm 

Steel area 47 mm2 

Module of elasticity 68,3 GPa 

Dilatation coefficient 19,3 10-6/°C 

 

7.1 Observed data 
For the measurement were used two accelerometers Y1 and Y3 in opposite directions. 

Calibration and offset were done. Final acceleration for movement reconstruction was count like 
(Y1-Y3)/2; acceleration due to gravity was subtracted. In theoretical way measurement from Y1 
and Y3 should be the same with opposite sign and (Y1-Y3)/2 should be equal to Y1 as to –Y3. 
And (Y1+Y3)/2 should be equal to zero. In the real world it is different and will be shown below. 
Sampling frequency is 200Hz; time of one step is 5ms. No data from gyroscope were used in this 
experiment. 
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Figure 7-2 observed from Y1 Figure 7-3 observed from Y3 

 

Figure 7-4 Final acceleration 

 

Figure 7-5 noise of meas. -  (Y1+Y3)/2 

 

Figure 7-6 noise of meas. -  (Y1+Y3)/2 in detail 
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7.2 Signal processing of observed measurement 
Because of serious noise in measurement and even in process, I will be interested only in 

first few seconds of reproducing the path and it is enough for the final application. I suppose 
initial position approximately 6cm (it is a choice – I is not critical point) below steady state and 
initial velocity equal to zero. 

 

Figure 7-7 Measured (blue) and filtered (red) acceleration by Kalman filter 

 

Figure 7-8 Non-filtered observed (blue) and filtered (red) position by Kalman filter 
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Due to the fact that I suppose initial velocity to zero, but it should be a little bit more than 
zero and due to the fact that each step used values from previous step and actual values are never 
corrected by other external system is in Figure 7-8 shift of position. It is impossible to reconstruct 
signal only from known accelerations.  

M-files eventually other input data are on enclosed CD in directory - Movement_CA. 

7.3 Signal processing of acceleration observed from model of span 
By the method of finite elements is possible to have model of the span mentioned before and 

do all experiments on computer to verify truth of results. Even if is the measurement of 
acceleration very noisy and I want to verify algorithm for movement reproducing, it is possible to 
check it.  

Details: 

• number of element : 426 

• time integration : automatic time integration (not fixed time step, adapted variable 
time step) 

• excitation: applied constant force 250N aligned with gravity (vertical force 
downwards) during 4 seconds (between t=2s and t=6s).  

 

Figure 7-9 Acceleration from model (simulated) 
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Figure 7-10 non-filtered calculated movement 
using acceleration data from simulated model 

 

Figure 7-11 movement from model (simulated) 

M-files eventually other input data are on enclosed CD in directory - Movement_CA_model. 

7.4 Reasons of incorrectness of time integration 

7.4.1 Numerical integration 
Real generated acceleration is continuous curve and is represented in Figure 7-12 by red 

colour. But I cannot observe this curve, but I am able to observe discrete points with sampling 
frequency (in my case 200Hz) represented by blue dots. If I suppose zero noise of measurement, 
blue dots are on the red curve. I need to twice numerically integrate acceleration to observe 
position. First integration is shown below.  

Correct integration: 

 ( ) ( ) ( )
37,5

37,5
t

ms

t d v msτ τ= ⋅ +∫v a
 

(7.1) 

Numerical integration: 

 ( ) ( ) ( ) ( )40 40 35 10 5 35v ms a ms dt v ms v ms= ⋅ + = ⋅ +  (7.2) 

Difference between these ways of integration is represented by green colour in figure below. 
If there was no difference between those two integrations, areas “A” and “B” would be the same. 
But they are not the same and difference between integrations is represented by difference 
between areas “A” and “B”. And integrating a second time to get the position will lead to further 
error in calculation, given the already distorted value observed by first integration. 
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Figure 7-12 Numerical integration of discrete points 

7.4.2 Noise of measurement 
In the caption above I have supposed zero noise of measurement. But in the real world there 

is no way to know exact values. In each step I observe exact value plus noise and I do not know 
how big the noise is and how big exact value is. I just work with observed values. My 
observation (blue dots) in comparison with real values is shown in Figure 7-13. 

 

Figure 7-13 Measurement error 

7.4.3 Error Propagation 
As you can see at the beginning of chapter 4, Measuring Devices, each calculation step 

considers values from previous step such that error from previous step is growing with each step. 
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As one second calculation is done in 200 time steps, the above mentioned errors will grow with 
error propagation resulting in a simulation totally unusable within a few seconds.  

For example if I would have error in acceleration about 21 0.1er m s−= ⋅ : 

 2 21
2 1 0.5 0.1 10 5

2
er er t m= ⋅ ⋅ = ⋅ ⋅ =  (7.3) 

It causes error 5m in position in ten seconds!  

The problem continuing even with using Kalman filtering.  

7.5 Summary of vertical movement reconstruction 
It is possible to reproduce movement only in a few seconds from the reasons as mentioned 

above in case of known initial conditions. Even if the Ampacimon device is in steady state, there 
is no zero acceleration and I observe some noise shown in Figure 7-14 and it causes that in 
simulation is not device in the same position before releasing as is shown in Figure 7-15. Again is 
observed acceleration and non-filtered observed position represented by blue colour and filtered 
values are represented by red colour. 

Figure 7-14 Acceleration in steady state 

 

Figure 7-15 Movement in steady state 

Another reason why that are those two movements different is that I do not know all details 
about the Canadian experiment and even observed values from measurement and model should 
be done in different conditions.  

Last reason what I will mention is that even if I will know all of the details of experiment, in 
real world it will be a little bit different than in simulation by method of finite elements. 
Comparison is in Figure 7-16 and in Figure 7-17. 
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Figure 7-16 Observed movement from meas. 

 

Figure 7-17 Movement observed from model 
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8 2D MOVEMENT RECONSTRUCTION EXPERIMENT  
For these experiments were used special built device with two 2D accelerometers and two 

linear gyroscopes. Data sheets are attached on enclosed CD. Device is supplied by 9V battery and 
connected by RS232 to PC. Data are collected by program Netbeans.  

 

Figure 8-1 Measuring device 

First of all is necessary to calibrate the accelerometers in all axes. Is necessary to measure 
+G and –G and then set offset and conversion factor. I did these experiments only with one 2D 
accelerometer. 

Table 8-1 Calibrating table 

axis and direction measured count offset count/G 

- X  1223,7 -824,3 

+X 2853,4  805,4 
+9,45 814,85 

- Y 1223,5 -824,5 

+Y 2865,9  817,9 
+3,3 821,2 

 

Example: 

 2048 1223,7 2048 824,3X Xcount measured− −= − = − = −  (8.1) 

 ( ) ( )/ 2 824,3 805,4 / 2 9,45X X Xoffset count count− += + = − + =  (8.2) 

 ( ) ( )/ / 2 805,4 824,3 / 2 814,85X X Xcount G count count+ −= − = + =  (8.3) 

8.1 Without rotation 
The first experiment was making a simple movement of the measuring device from left to 

right, then up and down in one row, about tens of centimetres in each direction.  

X 

Y 
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Figure 8-2 Measured acceleration in x axis 
 

Figure 8-3 Measured acceleration in y axis 

As you can see from Figure 8-2 even in steady state in first 1,4s is not the acceleration (or 
average of noisy acceleration) equal to zero and first 1,4s will be used for additional offset 
setting. It is caused by angle between “x” axis and acceleration due to gravity which is not exact 
90° and a small part of mentioned acceleration is even in “x” (horizontal) direction.  

 

Figure 8-4 Reconstruction from measurement (drift is due to the offset in x axis) 
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Figure 8-5 Observed acceleration in x axis with 
1.4s calibration 

 

Figure 8-6 Observed acceleration in y axis with 
1.4s calibration 

 

Figure 8-7 Observed movement after calibration 

As you can see from Figure 8-7 here is final movement closer to real movement, but 
subtraction of negative acceleration was exceeded a little bit. By experimental modification of the 
signal should be finally found movement very similar to real movement, represented in Figure 
8-8. 
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Figure 8-8 Observed movement after calibration and experimental modification 

 

Figure 8-9 Observed x position in time 
 

Figure 8-10 Observed y position in time 

8.1.1 Conclusion 
In the caption above a very easy experiment was done with 2D accelerometer. After 

calibrating the device, there was still a small part of acceleration due to gravity applied in x axis. 
This part was integrated for the first 1.4s and average of this value was applied on accelerations 
in x axis to be corrected. The result of observed position is in Figure 8-7. As you can see there is 
a small part of positive acceleration in x axis to be removed experimentally. After that correction 
was observed final Figure 8-8. Real movement was similar to that, but error is very serious if I 
will take into consideration time of integration only 2.1s and no rotation were take into 
consideration. Of course it is impossible to make movement with device with no rotation, so I 
cannot say now, it is possible to continue by this way, or if it is totally useless.  
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8.2 With rotation 
Now I will take into consideration even information from gyroscope. In Figure 8-12 is 

observed angle between moving and global axes. As mentioned above, this movement was just 
vertical and horizontal movement without rotation, but it is impossible to do it with no rotation, 
so small angular velocities were observed as you can see in Figure 8-11. 

 

Figure 8-11 Observed angular velocity 
 

Figure 8-12 Observed angle of rotation 

Let’s have a look on results, if they will be better or worse.  

 

Figure 8-13 2D movement with gyroscope 

As you can see in Figure 8-13 the movement is totally different from original one and it is 
impossible to reproduce movement based only on measurement of accelerometers and gyroscope. 
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On earth there is a permanent acceleration of 1g, if the orientation horizontally is off by the 
biggest error represented in Figure 8-12, say, one degree, we will get an acceleration error e1: 

 2
1 sin1 0,1712e m s−= ⋅ ° = ⋅g  (8.4) 

Integrating the acceleration error e1 twice, this results in an accumulated position error e2 
after 10 seconds of: 

 2 2
2 10,5 0,5 0,1712 10 8,56e e t m= ⋅ ⋅ = ⋅ ⋅ =  (8.5) 

M-files eventually other input data are on enclosed CD in directory - Movement_2D. 

8.2.1 Conclusion 
In the caption above, an experiment of movement reconstruction in a plane was performed. 

In plane, there are three degrees of freedom, two translations and one rotation; two devices were 
used for measurement, one 2D accelerometer and one gyroscope. With that device was done very 
easy movement for reconstruction. Result of this experiment is in Figure 8-13 and is totally 
different from the original one. This type of movement reconstruction is called “open loop” and 
for our usage is unusable even for first few seconds. Error propagation is illustrated in Figure 
8-14 and Figure 8-15.  

 

Figure 8-14 Error propagation 

 

Figure 8-15 Log-Log error propagation 

Solution should be found in usage of Kalman filter to combine or fuse information from 
different sensors. The basic idea is to use the Kalman filter to weigh the different mediums most 
heavily in the circumstances where they each perform best, thus providing more accurate and 
stable estimates than a system based on any one medium alone. The indirect feedback Kalman 
filter shown in Figure 8-16 (also called a complementary or error-state Kalman filter) is often 
used to combine the two mediums. In such a configuration, the Kalman filter is used to estimate 
the difference between the current inertial and optical (or acoustic, magnetic, GPS or combination 
of them) outputs, it continually estimates the error in the inertial estimates by using the optical 
(e.g.) system as a second reference. This error estimate is then used to correct the inertial 
estimates. In our application is correction of position by GPS unusable because of low precision 
of about one meter but GPS get very precise information about velocity and velocity could be 
corrected by GPS. 
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Figure 8-16 The Kalman filter used in an indirect-feedback configuration to optimally weight 
inertial and optical information. [7] 



9 Determining line position using G-direction  61 

9 DETERMINING LINE POSITION USING G-DIRECTION  

9.1 Using real data from Ampacimon 
Ampacimon device is placed on line near the coast in Belgium and is measuring 

continuously with sampling frequency 12,5Hz and sending data by GSM network to Montefiore 
Institute.  

 

Figure 9-1 Accelerometers position and orientation in Ampacimon 

I am interested in axes „X3“ and „Y3“ of module „1“ and using data measured 12.1.2009 and 
try to determine position of the cable using steady orientation of acceleration due to gravity. 
Explained in Figure 9-3. 

Figure 9-2 Offsets and conversion factors 

axis name axis number Module Accelerometer 
reference 

Offset [count] Conversion factor 
[count/G] 

Y1 1 1 1E001 16.5 770 

X3 4 1 1E002 -9.5 774.5 

Y3 5 1 1E002 -16.5 770.5 

Y1 1 2 1E007 -7 778 

X3 4 2 1E008 -35.5 773.5 

Y3 5 2 1E008 10 770 

Y1 1 3 1E011 -3.5 773.5 

X3 4 3 1E012 -13 769 

Y3 5 3 1E012 -17 770 

Y1 1 4 1E013 -17 775 

X3 4 4 1E014 -2 773 

Y3 5 4 1E014 -15.5 770.5 

Cable 
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Figure 9-3 Position of line between span in wind condition 

 

Figure 9-4 Horizontal acceleration Figure 9-5 Vertical acceleration 

Because measurement is very noisy and I am interested only in low-frequency large 
movement, I will do FFT and I will use only low frequency component and DC component. 
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Figure 9-6 FFT of horizontal acceleration 
 

Figure 9-7 FFT of vertical acceleration 

In Figure 9-6 is FFT of horizontal acceleration without 20,7539m s−⋅  DC component and in 

Figure 9-7 is FFT of vertical acceleration without 29,4512m s−⋅  DC component. When I have a 

look on low frequencies (e.g. <0,5Hz) there aren’t expressive components corresponding huge 
movement. I don’t have real measurement of really huge movement and I will use model of line 
to observe accelerations corresponding huge movement in the next chapter. From the FFT is seen 
expressive component of about 1,7Hz and is possible to say that it is probably Aeolian vibration. 
Average angle of line deflexion could be observed due to constant orientation of acceleration due 
to gravity.  

Average angle α : 

 
ax3 0,7539

α arctan arctan 4,56
ay3 9,4512

DC

DC

   = = = °   
  

 (9.1) 

It will be discussed more deeply in the next chapter. 

M-files eventually other input data are on enclosed CD in directory - Ampacimon_real_data. 

9.2 Using data observed from model of span 
Because I don’t have measurement from huge movement, I will use model of span to 

simulate huge movement and I will work with observed accelerations. Observed acceleration 
from a simulation program (SAMCEF Field V6.3) is in absolute axes and without acceleration 
due to gravity (9,81 m*s-2). From information about displacement is counted angle of line 
deflection, acceleration due to gravity is added to the vertical axis and information about 
acceleration is recounted to relative axes respectively. Then is applied Gaussian noise with signal 
to noise ration (SNR) 10dB. Now I have input data for processing. 

Details of model: 

• Left pylon is 58m high, right one is 55 m and distance between them is 448,23 m. 
Line is fixed on pylons. 

• Two forces are simulated wind 

• Initial condition – stress in the middle of span is 24 514 N 
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• Average length of element is 2,5 m 

Table 9-1 Parameters of span model 

Mass per unit length 1,713 kg/m 

Rated strength 20 kN 

Diameter 31,5 mm 

Area 621 mm2 

Module of elasticity 59 GPa 

Dilatation coefficient 23 10-6/°C 

 

 

Figure 9-8 Orientation of axes 

 

Figure 9-9 Exact horizontal acceleration 
 

Figure 9-10 Exact vertical acceleration 
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Figure 9-11 Noisy horizontal acceleration 
 

Figure 9-12 Noisy vertical acceleration 

Because measurement is very noisy and I am interested only in low-frequency huge 
movement, I will do FFT and I will use only low frequency components and DC component. 

 

Figure 9-13 FFT of horizontal acceleration 
 

Figure 9-14 FFT of vertical acceleration 

In Figure 9-13 is FFT of horizontal acceleration without 21,2003m s−− ⋅  DC component and 

in Figure 9-14 is FFT of vertical acceleration without 29,7264m s−⋅  DC component. Frequency 

resolution is 601 values.  (Sampling frequency is 20Hz.) 

To subtract noise eventually other type of motion I will tag together signal from FFT using 
low frequencies and high amplitudes only. For example if I want to take only dominant parts of 
FFT I will take into consideration frequencies below 0,5Hz and amplitudes over 0,1 in horizontal 
acceleration and 0.05 in vertical acceleration. For usage in the real world it should be defined by 
relative values, but in this one case I am using absolute values. Algorithm for signal 
reconstruction and all other signal processing is in m-file on enclosed CD. 
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Figure 9-15 Reconstructed horizontal acceleration Figure 9-16 Reconstructed vertical acceleration 

Angle γ : 

 arctan
 

=  
 

ax
γ

ay
 (9.2) 

Than should be compared angle of deflexion with angle γ . 

Figure 9-17 Exact angle of deflection 

 

Figure 9-18 Angle γ  

9.3 Conclusion 
Result of angle γ depends on parts of FFT which are taken into consideration and should be 

different but it is difficult to say which result is the best. For example if I subtract dominant part 
around 0.5Hz in horizontal acceleration result of angle γ will be different and is in Figure 9-19. 
But the most important information is about maximum angle of deflection and it is known really 
precisely and it is a little bit less than 12°. Better results could be observed using Kalman filtering 
with combination of information from gyroscope. 
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Figure 9-19 Angle γ  

M-files eventually other input data are on enclosed CD in directory - Simulation_huge_ 
movement. 
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10 SUMMARY  
The main aim of this thesis was to be able to reconstruct huge movements of overhead lines 

based on measurement from accelerometers and gyroscopes using Kalman filtering. I started only 
with acceleration in one axis and tried to rebuild the movement. 

 

Figure 10-1 Non-filtered observed (blue) and filtered (red) position by Kalman filter 

Due to the fact that I suppose initial velocity is zero, but it should be a little bit more than 
zero and due to the fact that each step are used values from previous step and actual values are 
never corrected by other external system is in Figure 10-1 shift of position. It is impossible to 
reconstruct signal only from known accelerations. Moreover I don’t know all the details about 
this experiment and real result either so I decided to do my own experiment with measuring 
devices to be sure about initial conditions and related details. 

I took the box with measurement devices and did simple movement about tens centimetres to 
left and back and then up and back. 
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Figure 10-2 Observed movement after calibration 

As you can see the result is different than the movement I did. Moreover I didn’t take into 
consideration measurement from gyroscope and I did movement without rotation. Using even 
measurement from gyroscope is reconstructed movement totally different than original one. 

For this reconstruction algorithm called “open loop” was used, it means that I took velocity 
and position from previous step and never correct them by indirect-feedback for example. It 
causes big error due to error propagation in few seconds.  

 

Figure 10-3 Error propagation 

Solution should be found in usage of Kalman filter to combine or fuse information from 
different sensors. The basic idea is to use the Kalman filter to weigh the different mediums most 
heavily in the circumstances where they each perform best, thus providing more accurate and 
stable estimates than a system based on any one medium alone. The indirect feedback Kalman 
filter shown in Figure 10-4 (also called a complementary or error-state Kalman filter) is often 
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used to combine the two mediums. In such a configuration, the Kalman filter is used to estimate 
the difference between the current inertial and optical (or acoustic, magnetic, GPS or combination 
of them) outputs, it continually estimates the error in the inertial estimates by using the optical 
(e.g.) system as a second reference. This error estimate is then used to correct the inertial 
estimates. In our application is correction of position by GPS unusable because of low precision 
of about one meter but GPS get very precise information about velocity and velocity could be 
corrected by GPS. 

 

Figure 10-4 The Kalman filter used in an indirect-feedback configuration to optimally weight 
inertial and optical information. [7] 

How to know exact initial position or how to correct position time to time remain 
unanswered questions to be solved in future. 

Other approach to line position was done using the fact that acceleration due to gravity has 
the same direction all the time. To subtract noise and high frequencies was used FFT which took 
into consideration only dominant parts of FFT in low frequencies part. Then was counted angle 
between accelerations in two axes where acceleration due to gravity is applied. See Figure 9-17, 
Figure 9-18 and Figure 9-19 for results. More precise result should be observed subtracting 
acceleration causing movement and have only acceleration due to gravity divided in axes. It 
could be done using Kalman filter with indirect-feedback with information about angle of 
deflection from gyroscope.  
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