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Abstract 7

ABSTRACT

This thesis deals with overhead power lines movement monitoring. This may cover voltages
from 70 kV to 400 kV. Sensors are placed on the conductors and the main objective is to evaluate
their mechanical behaviour from low frequencies (fraction of Hz) to high frequencies (some tens
of Hz). This document has evaluated the possibilities to reproduce large low frequency
movements as those observed in large turbulent wind, short-circuit, ice shedding, galloping or
any other cause. This aims to help operators and designers make decisions. The robustness of the
development includes the introduction/combination of new sensors, the appropriate mathematical
development needed to reproduce what has been measured and this has been done on records
obtained either by simulations, laboratory tests or actual measurements on line.

KEY WORDS: overhead power lines, vibrations, large movements, Kalman filter
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ABSTRAKT

Tahle price se zabyva monitorovanim venkovnich vysokonapétovych vedenich, coZ mohou
byt vedeni od 70kV do 400kV. Senzory jsou umistény na vodi¢i a hlavni mySlenkou je
vyhodnotit mechanické chovani vodicl, a to od nizkych frekvenci (zlomky Hz) az po vysoké
frekvence (desitky Hz). Tahle priace se zabyvala pohyby o nizkych frekvencich a vysokych
amplitudich a popsala mozZnosti sestaveni téchto pohybil na zdkladé meéfeni ze senzoru.
Konkrétné se jednd o pohyby v pfipad¢ silného vétru, zkratu, opadavéani ledu nebo dalSich.
Vsechno tohle pomahd operatord délat rozhodnuti ohledné provozovani siti. Vyvoj zahrnuje
pridani/kombinaci novych senzort, popsani matematického algoritmu potiebného k sestaveni
pohybu na zdkladé toho co bylo zmeéfeno, at uZ se jednd o hodnoty ziskané simulaci,
laboratornim testem nebo redlnym métfenim na vedend.

KLICOVA SLOVA: venkovni vysokonap&fovd vedeni, vibrace, nestandardni pohyby,
Kalmanuv filtr
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1 INTRODUCTION

Thermal rating of the lines depends on many parameters and factors like weather and current
flow. And it is well known that thermal rating of lines changes continually, because parameters
and factors included are changing continually as well. Transmission lines are designed in worst
weather conditions (maximum solar heating, maximum external temperature, minimum wind
speed ...) to control the maximum sag. But the experience shows that in practice, actual ambient
conditions are less restrictive (generally more than 98% of the time) than those designed in the
standards. So if we could have a possibility to measure the actual sag of lines in real time, we can
better use existing overhead lines and save money for building new overhead lines. An increased
ampacity of the conductor depending on the actual weather condition is thus generally available
most of the time. Moreover there is still 2% of the time when actual weather conditions could be
worse than those supposed and there exists risks. With real time sag monitoring device we know
“exact” information about sag. All in all, real time monitoring is a quick applicable solution at a
reasonable cost for better usage of existing overhead lines.

500

LOADING DISTRIBUTIONS
400 1 STATIC RATING BASED ON WORST-
TOKV 400 kV / GASE WEATHER ASSUMPTIONS

Hours/year
%)
3

ACTUAL DYNAMIC RATING
DISTRIBUTION

0 50 100 150 200 250 300
%o static linit

Figure 1-1 Comparison of Loading and actual Rating distributions [1]

In Figure 1-1 is a comparison of loading and actual rating distributions for an overhead line
over one year. It shows virtual example based on actual loading for a 70 kV and 400 kV of
Belgian line and actual rating based on a published case (Dale Douglas, PTT).
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2 AMPACIMON®

Ampacimon device, system and method have been patented in September 2005, with a
particular emphasis on EMC (electromagnetic compatibility) protection. Patent number: WO
2007/031435 (Al).

2.1 What is Ampacim0n®

Due to increasing consumption of electrical energy, ampacity determination is a key factor
for the huge market around the world. Especially operators of overhead high voltage lines are
interested in upgrading existing overhead lines than building new ones. Still more important is
the impact of market release in Europe and USA which will force to have real time information
on main lines. In a deregulated market environment, the priority of the market is to maximize
their profit. It means to maximize the ability of transmission in a secured way and to minimize
serious disturbances and time of inactive lines. Moreover power systems in European regions as
well as North American ones will be operated closer to their limits, because of difficulties to
build new lines and growing demand of electric power in most countries. Under the above
described stressed conditions, thermal overloads (causing sag) are critical threats to system
operation. But there will be a greater possibility of cascade tripping. The Italian blackout (Sept
28th, 2003) as well as the New York blackout (August 14th, 2003) have their origin in a
flashover between trees and power lines. More recently on November 4th, 2006 a major blackout
in the whole Europe has been hopefully avoided. However; it affected 15 million people after the
cascading event.

Figure 2-1 Black out in New York in 2003 [1]

2.2 Ampacimon® method

Ampacimon device allows real time monitoring of sag and other motion characteristics based
on frequency analysis. Precision on sag is about 2%. Thanks to this low frequency analysis
provided by accelerometers, Ampacimon device does not need any line nor any environmental
data to determine the sag. Therefore, this method is more reliable than other determination
methods.

Ampacimon device monitor even vibration (0 to 100Hz) to evaluate effects of fatigue. It
helps to take preventive control of conductors and dampers.

Another advantage is that Ampacimon is autonomous (as it is directly powered by the line)
and can be located anywhere on the span, it requires no calibration for first use, and moreover, it
can be installed live-line in roughly 15 minutes. It saves lots of time and money.
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Figure 2-3 Live-line installation [1]
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Figure 2-4 Ampacimon vibration analysis method to deduce line sag and material fatigue [1]
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Figure 2-5 Ambient temperature and sag as deduced by Ampacimon vs. time [1]

2.3 Who is concerned by Ampacim0n®?

Using real time systems increases thermal rating of lines of about 10 to 15 % on average. It
could be higher in some cases depending on the previous design of the line. Information sent by
Ampacimon are useful for the utilities using the lines as their business, to make a more efficient
use of existing overhead lines and thus a better ROI, to be informed in real time of troubles on the
network, to detect the lines on which vibrations levels are not sufficiently protected, to be
informed about damages, to prevent black-outs limiting unnecessary cascade tripping, to evaluate
the evolution of the fatigue of their lines, and to be informed early enough of incoming troubles
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to inform their maintenance staff and/or to redirect the power flow not to loose customers, in
other words, to save money. For the new developed overhead lines to better monitor their
behaviour. (Real time sag, snow or ice overloads, reaction against wind blow, vibration level,
etc.) All these advantages will help to maintain the customers in acceptable service conditions.
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Figure 2-6 Typical Ampacimon outputs for Aeolian vibration analysis [1]

2.4 Design of Ampacimon®

The size of the last version of the device is 20x15 cm and it weighs about 7kg. Internal part is
containing microelectronics and current transformer specially designed for Ampacimon
application from 70 to 765kV. Anticorona designed. A special design is used to protect the wiring
from short circuit currents, lightning over voltages. The power level demand of this system is a
few Watts. The microelectronics system is equipped with four 2D accelerometers (in such a way
that 3D movement can be analyzed). Measurement coming from gyroscopes could be added to
the actual design. The sampling rate is about 200 Hz. Measurements are possible to send to the
antennas. First antenna is a 433 MHz antenna with limited power emission (depending on local
standards), able to transmit license free at about 100 m. Second one uses mobile phone network
using frequencies 900/1800/1900 MHz. All materials are carefully chosen to be able to work with
temperature ranging from -40°C to 85°C.

Figure 2-7 Typical installation on 220 kV line in Belgium (2005) [1]
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Figure 2-8 CAO view and actual view of the last version of Ampacimon (2008) [1]
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3 CONDUCTOR MOTION

There are three main types of power line vibration (after Orawski 1993), indicating Aeolian
vibration. This is shown in wake-induced oscillation and galloping, with their ranges of loop
lengths and amplitude.

Figure 3-1 Three main types of conductor motion [2]

3.1 Aeolian vibrations

Aeolian vibration is one of the most prevalent problems in transmission lines. It causes
fatigue failure of conductor strands or of other items associated with conductor. In low to
moderate winds, this type of conductor motion can occur at almost any time and any transmission
line. Reliable transmission-line design requires that Aeolian vibration of the conductors be
controlled below critical levels to avoid fatigue damage.

Facts of Aeolian vibrations:

Characteristic frequencies are in the approximate range of 3-200 Hz. The frequency
range depends on many conditions. Mainly the size and tensile load of the conductor.
Lower frequencies are typical for large conductors in low winds, while upper
frequencies are typical for small ground wires in moderate winds.

Maximum possible amplitude is equal to the conductor diameter.
Records of vibration at a point on a conductor show Figure 3-2

Conductor vibration causes localized bending, which depends on its level, causes
fatigue failures of the conductor strands or the clamps of spacers and other devices
installed on the conductor. The conductor vibration may also cause fatigue damage to
items associated with the support and protection of the conductor itself — tower arms,
spacers and dampers.

The most serious Aeolian vibrations occurs when the conductor tensions are high, the
terrain is smooth, with frequent, low-to-moderate, steady winds, and the spans are
long.

There is a possibility to control this vibration using dampers.
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Figure 3-2 Record of vibration at a point on a conductor. [2]
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Figure 3-3 Fatigue failure of conductor strands at the suspension clamp. [2]

The design of transmission line is made to control Aeolian vibrations of conductors below
critical levels to avoid fatigue damage. With the design rules based on past experiences we are
able to know strength of the Aeolian vibrations. We can also measure existing lines to know the
conditions using special-purpose measuring instruments.

The second way to identify the conditions is by using the analytical approach to stimulate
behaviour of the conductor and other related devices. This approach can be used successfully to
investigate alternatives in design process, also in the direct design of the damping system for a
new line. The most used analytical models are based on the Energy Balance Principle (EBP), and
they give an estimate of expected vibratory motions. These kinds of things are described in [1], I
didn’t use the analytical models.

When it was recognized that conductor strand failure causes Aeolian vibration, a number of
protection devices were developed following two main concepts. The first concept sought to
provide reinforcement against the effect of vibration of the conductor. The second concept took
into consideration the application of energy-dissipating devices, which were able to reduce the
level of conductor Aeolian vibrations. The second method was soon recognized as the most
practical and effective method, and a number of vibration dampers have been developed to date.
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Figure 3-5 Vibration damper of Stockbridge type [2]

3.2 Fatigue

The most common form of damage resulting from Aeolian vibration is fatigue failure of
strands in overhead conductors. But influenced are other line components such as armour rods,
dampers, ties, insulators, and tower members. Conductor fatigue may also result from galloping
and from wake-induced oscillation, but mainly is caused by Aeolian vibration. Fatigue occurs at
support locations, suspension clamps, insulators, and dead ends. They also include damper and
bundle conductor spacer clamps, hot-line taps, splices, and armour rod end clamps. The incidence
of fatigue relative to the above locations is directly associated with the rigidity with which
conductor motion is restrained. Fatigue of conductor strands is caused by the cyclic bending of
the conductors where their motion is restrained. With increasing bending amplitude fatigue life
decreases.

The complications of relating the measurable vibration of conductor to know the chance of
fatigue of its strands is a complicated matter arising primarily from two facts. First, the stresses
that cause the failures are complex and not related in a simple way to the gross motions of the
conductor. Second, the failures are located on surface contact between components. Inspection
and failure analysis of a large number of fatigue breaks from field and laboratory spans indicate
that the fatigue always takes place where the broken strand was in contact with another strand or
another related component. The stresses at these locations are combinations of static stresses due
to conductor tension, bending, and the compressive force between the members.
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Figure 3-7 Prototype Electro-magneto-acoustic transducer (EMAT) device for detecting broken
conductor strands [2]

3.3 Galloping

Since the time galloping of iced conductors was found, numerous research programs in the
world have been done. Aimed to solve the problem and various devices and techniques have been
developed to prevent or minimalism effect of galloping. Many methods were used to prevent
galloping with mixed results. No practical protection method has been developed to prevent all
types of galloping under any ice and wind conditions. Approach to this problem is in analytical
way and with the growth of computer capability are many solutions of complex problem in the
analysis of galloping behaviour. But even when all relevant parameters of weather and line
construction are known, there are still areas of uncertainty and isn’t possible to know exact
behaviour.
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Galloping is a low-frequency (0,1-1Hz), large amplitude (£0,1 times - £1 times sag of the
span), wind-induced vibration of both single or bundle conductors, with a single or a few loops of
standing waves per span. This type of motion is caused by moderately strong, steady crosswind
acting upon an asymmetrically iced conductor surface. This type of motion has major impact on
the design of overhead lines and tower load. The space between lines has to be enough to prevent
flashovers between lines, which are the most common effect of galloping. Large, repeated loads
may cause bending of towers and cross arms.

There are two basic forms of galloping, standing waves and travelling waves, or a
combination of them. From the beginning are waves tens of meters long, with amplitudes of a
few centimetres. In the time, they grow in length and amplitude and can interact with one another
to create standing waves. From several loops per span at the beginning will be later only few
loops per span. Observed peak-to-peak amplitudes of galloping are often as great as the sag in the
span and in case of short spans should be greater.

Typical conductor motions are vertical in galloping, but there is often motion in horizontal
direction. These motions aren’t often in phase, so the motions are elliptical.

= J0QNI0

Figure 3-8 Percentage of observations of various galloping ellipse shapes and tilts [2]

Galloping caused various kinds of structural damage in overhead lines because of large
forces that galloping motion applies to devices. Galloping causes damage to cross arms,
insulators, towers, vibration dampers, and conductor strings. When galloping amplitudes are great
enough, flashover can occur between phases or from phase to ground and it causes damage to the
conductor.

Figure 3-9 Damage due to galloping on towers [2]
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Figure 3-10 Damage due to galloping on a string of suspension insulators [2]
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Figure 3-12 Broken strands resulting from short circuit due to two-phase fault induced by
galloping [2]

3.4 Bundle Conductor Oscillations

Bundle conductor oscillation (or wake-induced oscillation), is another motion recognized as
a problem in transmission lines of bundle conductors. It doesn’t cause as serious of a problem
like previous motions and damage had been limited to rapid wear in suspension hardware or
fatigue of spacers or other accessories.
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C. HORIZONTAL GALLOPING D. ROLLING
OR SNAKING OR TWISTING

Figure 3-13 Classification of wake-induced motions [2]

Figure 3-14 Twin spacer-damper with Figure 3-15 Triple spacer-damper with two
cantilever clamps [2] articulations per arm and hinge type clamps
[2]

Figure 3-16 Quad spacer-damper with
elastomer-lined clamp and helical rod
attachment [2]

Figure 3-17 Six-bundle spacer-damper with
rubber-lined clamps [2]
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3.5 Other motions
Other types of motion:

e Short-Circuit Forces in Power Lines and Substations
¢ Bundle Conductor Rolling

® JIce and Snow Shedding

® Gust Response

® Vibration of Tower Members

¢ Noise from Overhead Lines

¢ Earthquake Effects on Overhead Conductors

e Corona Vibration

e Station Bus Vibration

3.5.1 Short-Circuit Forces in Power Lines and Substations

Forces generated by short-circuit are very important for high-voltage bundle conductor lines,
medium-voltage distribution lines, and substations. For bundle conductor lines, during a fault, the
sub conductors of the bundle move closer to each other due to strong attraction forces because of
the very short distance between sub conductors.

Figure 3-18 Short circuit test [2]

Figure 3-18 shows an example of quad bundle before and during short-circuit test at 50 kA,
showing distortion of the sub conductors. One flexible spacer is at midspan. The sub conductor
movements occur at very high acceleration. For example, a 40 kA fault on a twin bundle of 620
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mm? conductor, with a separation of 40 cm, may have acceleration up to several tens of g,
depending on the instantaneous current value.

Very large movements may be seen on distribution lines. Figure 3-19 shows the motion
produced during testing on an actual line. This is from an actual three-phase short-circuit test on a
15-kV distribution line. The photo shows an instantaneous position of the conductors taken
during the test. The fault current level was 3 kKA.

Figure 3-19 Instantaneous position of the conductors taken during three-phase short-circuit test
on 15-kV [2]

3.5.2 Ice and snow shedding

It is a natural process that occurs when accumulated ice is removed. Sudden ice or snow
shedding from transmission lines may result in high-amplitude vibrations or jump of the
conductor. Therefore is important in design of transmission line to predict both, the maximum
jump height of the unloaded span and the maximum drop in the span that remains loaded to avoid
flashover. As well, it is necessary to predict the maximum cable tension.

)

) cable
suspension vibration
rolation »

cable + ice
vibration

ice

fall off

Figure 3-20 Ice shedding from one span and the resulting motions [2]
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4 MEEASURING DEVICES

In space there are 6 degrees of freedom. There are three rotations and three movements. If I
need to know instantaneous position and orientation in space, I need to measure acceleration in
three dimensions and angular velocity in three dimensions by 3D accelerometer and 3D
gyroscope. From these values I am able to count position in case of known nine initial conditions
as you can see from the equations below (in case that I have enough high sampling frequency to
suppose constant discrete values of acceleration and angular velocity).

1
r, = I(Iawzdt)dt = j(am v, )dt = RIS . 4.1)
(nyz = Iwwzdt = wxyzt + (DOxyz (42)

4.1 Gyroscope

Gyroscope is an object formed in the shape of discs, but it can be any object. Necessary is to
produce effective gyroscopic behaviour. Disc often have a large heavy ring because the mass
should be as far away from the centre as possible. When the gyroscope isn't rotating it behaves
like any other object, however when the gyroscope is rotating at high speed it has special
behaviour by resisting movements in certain directions.

F-:-r\ca-?
\

——

Forre &

Figure 4-1 Engine of car like gyroscope [11]

Gyroscope contains large amounts of stored energy when it is rotating. Newton's first law of
motion says, “Every object in a state of uniform motion tends to remain in that state of motion
unless an external force is applied to it.” It means that when I will apply force to gyroscope, the
gyroscope will try to compensate because of this acting force.

Often the engine of cars behaves as a gyroscope because of its shape, mass and rotations.
Let’s have gyroscope/engine which is spinning at a high speed in a clockwise direction as seen on
the picture above. When the car is turned to the right forces A and B are applied to the structure
of the car forcing the front end of the car down and the back end up. If the car is turned to the left
then the front end of the car is forced up and the back end forced down. If the gyroscope is
spinning in the opposite direction then the reverse will happened.

However if the car was moved directly upwards, downwards, forwards, back-wards or side-
to-side the gyroscope would not apply any extra forces. The gyroscope only applies extra forces
when the car is moving at an angle. This effect is known as gyroscopic precession.
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Figure 4-2 Gyroscope Figure 4-3 Gyroscope Figure 4-4 Gyroscope
principle [11] principle [11] principle [11]

The Figure 4-2 shows a bicycle wheel acting like a gyroscope being supported at both ends
of the axle, if left this way the gyroscope would just slowly stop spinning. However if the right
support is removed then gravity exerts a force pushing the right hand side of axle down. As
described in earlier, gyroscopic precession will force the wheel to precess around its axis, as
shown in Figure 4-3 and Figure 4-4 by the red arrows. The direction the precession takes depends
on the rotational direction of the gyroscopes, shown in the diagram as green arrows. If the wheel
is continuously unsupported then the wheel will continue to rotate around its axis.

It means that if I know angular velocity and initial condition of angle in one axis I can count
instantaneous angle position. And if I have 3D gyroscope, I can know orientation in space on
conditions of known three time derivations of angular velocities and three initial conditions of
angles.

4.2 Accelerometer

An accelerometer is a device that measures the vibration, or acceleration of motion of a
structure. The force caused by vibration or a change in motion (acceleration) causes the mass to
"squeeze" the piezoelectric material which produces an electrical charge that is proportional to
the force exerted upon it. Since the charge is proportional to the force, and the mass is a constant,
then the charge is also proportional to the acceleration.

There are two types of piezoelectric accelerometers. The first type is a "high impedance"
charge output accelerometer. In this type of accelerometer the piezoelectric crystal produces an
electrical charge which is connected directly to the measurement devices.

The charge output measurement requires special equipment most commonly found in
research facilities. This type of accelerometer is also used in high temperature applications
(>120°C) where low impedance models can not be used.

The second type of accelerometer is a low impedance output accelerometer. A low
impedance accelerometer has a charge accelerometer as its front end but has a tiny built-in micro-
circuit and FET transistor that converts that charge into a low impedance voltage that can easily
interface with standard devices. This type of accelerometer is commonly used in industry.

It means that if I know the acceleration and initial conditions of speed and position in one
axle I can count instantaneous position. And if I have 3D accelerometer, I can know position in
space on conditions of the known three instantaneous accelerations and the three initial
conditions of speed and the three initial conditions of a position.
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4.3 Devices in Ampacimon®

Here (in Ampacimon® module), are used MEMS sensors (accelerometers and gyroscopes).
MEMS are not piezoelectric accelerometers and there is no rotating movement in MEMS
gyroscopes.

Typical MEMS accelerometer is composed of movable proof mass with plates that is
attached through a mechanical suspension system to a reference frame. Movable plates and fixed
outer plates represent capacitors. The deflection of proof mass is measured using the capacitance
difference. It is capacitance changes due to changes of distance between capacitor plates.

See [28] for understanding of MEMS sensors.
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5 KALMAN FILTER

5.1 Example applications

An example application would be providing accurate continuously-updated information
about the position and velocity of an object given only a sequence of observations about its
position, each of which includes some error. It is used in a wide range of engineering applications
from radar to computer vision. Kalman filtering is an important topic in control theory and
control systems engineering.

For example, in a radar application, where one is interested in tracking a target, information
about the location, speed, and acceleration of the target is measured with a great deal of
corruption by noise at any time. The Kalman filter exploits the dynamics of the target, which
govern its time evolution, to remove the effects of the noise and get a good estimate of the
location of the target at the present time (filtering), at a future time (prediction), or at a time in the
past (interpolation or smoothing). A simplified version of a Kalman filter is the alpha beta filter,
still commonly used, which has static weighting constants instead of using co-variance matrices.

5.2 Naming and historical development

The filter is named after Rudolf E. Kalman, though Thorvald Nicolai Thiele and Peter
Swerling actually developed a similar algorithm earlier. Stanley F. Schmidt is generally credited
with developing the first implementation of a Kalman filter. It was during a visit of Kalman to the
NASA Ames Research Center that he saw the applicability of his ideas to the problem of
trajectory estimation for the Apollo program, leading to its incorporation in the Apollo navigation
computer. The filter was developed in papers by Swerling (1958), Kalman (1960), and Kalman
and Bucy (1961).

The filter is sometimes called Stratonovich-Kalman-Bucy filter because it is a special case of
a more general, non-linear filter developed earlier by Ruslan L. Stratonovich. In fact, equations of
the special case, linear filter appeared in these papers by Stratonovich that were published before
summer 1960, when Kalman met with Stratonovich during a conference in Moscow.

In control theory, the Kalman filter is most commonly referred to as linear quadratic
estimation (LQE).

A wide variety of Kalman filters have now been developed, from Kalman's original
formulation, now called the simple Kalman filter, to Schmidt's extended filter, the information
filter and a variety of square-root filters developed by Bierman, Thornton, and many others.
Perhaps the most commonly used type of Kalman filter is the phase-locked loop now ubiquitous
in radios, computers, and nearly any other type of video or communications equipment.

5.3 Underlying dynamic system model

Kalman filters are based on linear dynamical systems discretised in the time domain. They
are modelled on a Markov chain built on linear operators perturbed by Gaussian noise. The state
of the system is represented as a vector of real numbers. At each discrete time increment, a linear
operator is applied to the state to generate the new state, with some noise mixed in, and optionally
some information from the controls on the system if they are known. Then, another linear
operator mixed with more noise generates the visible outputs from the hidden state. The Kalman
filter may be regarded as analogous to the hidden Markov model, with the key difference that the
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hidden state variables take values in a continuous space (as opposed to a discrete state space as in
the hidden Markov model). Additionally, the hidden Markov model can represent an arbitrary
distribution for the next value of the state variables, in contrast to the Gaussian noise model that
is used for the Kalman filter. There is a strong duality between the equations of the Kalman Filter
and those of the hidden Markov model. A review of this and other models is given in Roweis and
Ghahramani (1999).

In order to use the Kalman filter to estimate the internal state of a process given only a
sequence of noisy observations, one must model the process in accordance with the framework of
the Kalman filter. This means specifying the matrices Fy, Hy, Qx, Ry, and sometimes By for each
time-step k as described below.

visible

.............................................................

hidden

k+1

Figure 5-1 Model underlying the Kalman filter. [5]

Circles are vectors, squares are matrices, and stars represent Gaussian noise with the
associated covariance matrix at the lower right.

The Kalman filter model assumes the true state at time k is evolved from the state at (k— 1)
according to

x,=F x,_ +B, -u +w, (5.1)

k
where
e F, is the state transition model which is applied to the previous state X;_i;
e By is the control-input model which is applied to the control vector uy;

® wy is the process noise which is assumed to be drawn from a zero mean multivariate
normal distribution with covariance Q.

w, U N(0.Q,) (5.2)
At time k an observation (or measurement) z; of the true state x; is made according to
z, =H, -x, +v, (5.3)

where Hy is the observation model which maps the true state space into the observed space
and v, is the observation noise which is assumed to be zero mean Gaussian white noise with
covariance Ry.

v, UN(O.R,) (5.4)
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The initial state, and the noise vectors at each step {Xo, Wi, ..., Wk, V1 ... V¢} are all assumed to
be mutually independent.

Many real dynamical systems do not exactly fit this model; however, because the Kalman
filter is designed to operate in the presence of noise, an approximate fit is often good enough for
the filter to be very useful. Variations on the Kalman filter described below allow richer and more
sophisticated models.

5.4 The Kalman filter

The Kalman filter is a recursive estimator. This means that only the estimated state from the
previous time step and the current measurement are needed to compute the estimate for the
current state. In contrast to batch estimation techniques, no history of observations and/or
estimates is required. It is unusual in being purely a time domain filter; most filters (for example,
a low-pass filter) are formulated in the frequency domain and then transformed back to the time
domain for implementation. In what follows, the notation ﬁn‘m, represents the estimate of x, at

time n given observations up to, and including time m.
The state of the filter is represented by two variables:

° ﬁk‘k , the estimate of the state at time k given observations up to and including time k;

° Pk‘k, the error covariance matrix (a measure of the estimated accuracy of the state
estimate).

The Kalman filter has two distinct phases: Predict and Update. The predict phase uses the
state estimate from the previous time step to produce an estimate of the state at the current time
step. In the update phase, measurement information at the current time step is used to refine this
prediction to arrive at a new, more accurate state estimate, again for the current time step.

5.4.1 Predict
Predicted state

ﬁk‘k—l =F, 'ﬁk-l\k-l +B,-u (5.5)
Predicted estimate covariance
—_ T
Pk|k—l =F 'Pk—1|k—1 Fe+Qy (5.6)

5.4.2 Update

Innovation or measurement residual
y.=z,—H, Xkt (5.7)
Innovation (or residual) covariance

S,=H, P

k-1

‘H; +R, (5.8)

Optimal Kalman gain
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K, = Pk\k—l HI{ 'SZl (5.9)
Updated state estimate
ﬁk|k :ﬁk|k—l +K, -y, (5.10)
Updated estimate covariance
Py =(I-K,.-H,) Py, (5.11)

The formula for the updated estimate covariance above is only valid for the optimal Kalman
gain. Usage of other gain values requires a more complex formula found in the derivations
section.

Measurement Update (*Correct™)

Time Update (“Predict” .
ime Update (“Predict™) (1) Compute the Kalman gain

‘ojec state ahed § § =1
(1) Pm_\cn_t the state ahead Kk — PkHT(HPkHT + R)
Y = FY_y
(2) Update estimate with measurement z;
(2) Project the error covariance ahead o= i - _Hx%.
) Proj ¢ ; X, = X + K (z,-HXy)
Pk = FPk _ IF + Q (3) Update the error covariance

P, = (I-KH)P,

Initial estimates for X; _ and PA-— 1

Figure 5-2 How Kalman filter works [7]

5.4.3 Invariants
If the model is accurate, and the values for )ACO‘O and PO‘0 accurately reflect the distribution of

the initial state values, then the following invariants are preserved: all estimates have mean error
equal to zero.

E|x,~%, |=E|x,~%, ,|=0 (5.12)

E[§,]=0 (5.13)

where E[&] is the expected value of &, and covariance matrices accurately reflect the
covariance of estimates

P,, =cov(x, -%,,| (5.14)
P, =cov(x,—%, | (5.15)

S, =cov(¥,) (5.16)



5 Kalman filter 38

5.5 Examples

Consider a truck on perfectly frictionless, infinitely long straight rails. Initially the truck is
stationary at position 0, but it is buffeted this way and that by random acceleration. We measure
the position of the truck every At seconds, but these measurements are imprecise; we want to
maintain a model of where the truck is and what its velocity is. We show here how we derive the
model from which we create our Kalman filter.

There are no controls on the truck, so we ignore By and u. Since F, H, R and Q are constant,
their time indices are dropped.

The position and velocity of the truck is described by the linear state space

X
X, :[) (5.17)
X

Where is the velocity, that is, the derivative of position with respect to time.

We assume that between the (k—1)™ and ™ time step the truck undergoes a constant
acceleration of a; that is normally distributed, with mean O and standard deviation o,. From
Newton's laws of motion we conclude that

x, =F-x_,+G-q, (5.18)
where
F= LA 5.19
“lo 1 (5.19)
and
s
At
We find that

a

Q=cov(G-a)=E|(G-a):(G-a) |=G-E[a’ -G =G[0]]- 6" =07-G-G" (5.21)

(since o, is a scalar).

At each time step, a noisy measurement of the true position of the truck is made. Let us
suppose the noise is also normally distributed, with mean 0 and standard deviation o,.

z,=H-x, +v, (5.22)
where
H= (1 O) (5.23)

and
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R=E(v v,)=(0?) (5.24)

We know the initial starting state of the truck with perfect precision, so we initialize

X 0 5.25
X, = )
00 0 ( )
and to tell the filter that we know the exact position, we give it a zero covariance matrix:
P — 0 0
=g o (5.26)

If the initial position and velocity are not known perfectly the covariance matrix should be
initialized with a suitably large number, say B, on its diagonal.

P—BO 5.2
O\O_OB (5.27)

The filter will then prefer the information from the first measurements over the information
already in the model.

5.6 Derivations

5.6.1 Deriving the posterior estimate covariance matrix

Starting with our invariant on the error covariance Py as above

Pk|k =cov (Xk _ﬁk‘k ) (5.28)
substitute in the definition of X,
Pk|k = COV(Xk _(ﬁk\k—l +K, -y, )) (5.29)
and substitute y,
P, =cov(x, —(R, +K, (2, —H, %, ))) (5.30)
and z,
Pk|k =cov (Xk _(ﬁk\k—l +K, (Hk X, +v,—H, 'ﬁk|k—1))) (5.31)

and by collecting the error vectors we get

P, = cov((I—Kk H,) (x,~%,)-K, ~vk) (5.32)
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Since the measurement error v, is uncorrelated with the other terms, this becomes

Pk|k = COV((I -K,-H, )(Xk _’A‘k|k—1 )) +cov (K, - v,) (5.33)
by the properties of vector covariance this becomes

Pk|k =(I-K, 'Hk)'COV(Xk _ﬁk\k—l)'(l_Kk ‘H, )T +K, -cov(v,) K| (5.34)

which, using our invariant on Py.; and the definition of Ry becomes

P, =(/-K,-H,)-P

kfk-1

(I-K,-H,) +K, -R, K’ (5.35)

This formula (sometimes known as the "Joseph form" of the covariance update equation) is
valid no matter what the value of K;. It turns out that if K; is the optimal Kalman gain, this can
be simplified further as shown below.

5.6.2 Kalman gain derivation

The Kalman filter is a minimum mean-square error estimator. The error in the posterior state
estimation is

r X

Kk (5.36)

We seek to minimize the expected value of the square of the magnitude of this vector,

g

matrix Pk|k . By expanding out the terms in the equation above and collecting, we get:

2
X, —f(k‘k j This is equivalent to minimizing the trace of the posterior estimate covariance

Pk|k = Pk|k—l -K,-H, 'Pk\k—l _Pk|k—l Hf Kf +K, (Hk 'Pk\k—l Hz +R, )Kf = (5.37)
= Pk|k—l -K,-H, 'Pk\k—l _Pk|k—l Hi KI{ +K, 'S, K]{
The trace is minimized when the matrix derivative is zero:
otr|P r
%:—Z(Hk?ﬂ_l) +2-K, S, =0 (5.38)
k
Solving this for Ky yields the Kalman gain:
T T
K, S = (Hk 'Pk|k—1) = Pk\k—l -H, (5.39)
K, = Pk‘k_l ‘H] -S;' (5.40)

This gain, which is known as the optimal Kalman gain, is the one that yields MMSE
estimates when used.
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5.6.3 Simplification of the posterior error covariance formula

The formula used to calculate the posterior error covariance can be simplified when the
Kalman gain equals the optimal value derived above. Multiplying both sides of our Kalman gain
formula on the right by S.K,, it follows that

K, -S, KI{ = Pk\k—l Hz Kf (5.41)

Referring back to our expanded formula for the posterior error covariance,

Pk\k = Pk\k—l -K,-H, 'Pk|k—1 _Pk\k—l Hz Kf +K, S, Kf (5.42)
we find the last two terms cancel out, giving
Pk\k = Pk\k—l -K,-H, 'Pk|k—1 = (I_Kk -H, )'Pk\k—l (5.43)

This formula is computationally cheaper and thus nearly always used in practice, but is only
correct for the optimal gain. If arithmetic precision is unusually low causing problems with
numerical stability, or if a non-optimal Kalman gain is deliberately used, this simplification
cannot be applied; the posterior error covariance formula as derived above must be used.

5.7 Relationship to the digital filter

The Kalman filter can be regarded as an adaptive low-pass infinite impulse response digital
filter, with cut-off frequency depending on the ratio between the process and measurement (or
observation) noise, as well as the estimate covariance. Frequency response is, however, rarely of
interest when designing state estimators such as the Kalman Filter, whereas for digital filters such
as IIR and FIR filters, frequency response is usually of primary concern. For the Kalman Filter,
the important goal is how accurate the filter is, and this is most often decided based on empirical
Monte Carlo simulations, where "truth" (the true state) is known.

COPIED FROM HTTP://EN.WIKIPEDIA.ORG/WIKI/KALMAN_FILTER
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6 2D MOVEMENT RECONSTRUCTION IN EXAMPLE

This chapter will take care how reproduce movement in 2D, based on measurements from
2D accelerometer and rated gyroscope. The aim will be to apply movement with device on
known path and reproduce the movement using Kalman filtering on it and compare real path with
non-filtered observed path and filtered path. Values aren’t coming from measurement, they are
fictitious!

6.1 Counting the path
Table 6-1 Known data

f sampling frequency 200 Hz
0
g acceleration due to gravity 9381 m-s>
axl ax2 axm axn
a matrix of measured accelerations m-s>
& dyy Gy Ay, 4y,
® matrix of measured angular velocities (0 o 0, @) rad s~

Table 6-2 Initialisation

I'x0 position in “x” axis 0 m

Iyo position in “y” axis 0 m

Vx0 speed in “x” axis -10 mes”
Vy0 speed in “y” axis -2 m-s!
o angle of rotation 0 rad

Time step dt :

dr =— 6.1)

Vi

Xﬂ

Figure 6-1 2D movement
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Angle y:
a
¥, =arctan B (6.2)
agrxl
Angle ¢:
¢1:¢0+w1'dt (6.3)

Relative acceleration ag, divided to absolute axes is ag :

ag. = (agrle"'agrzyl)'cos((ol‘i'%)

as =,/(ag,2xl +agfyl)~cos(qol +7, —O,5~7;)

Without acceleration due to gravity is acceleration causing movement in absolute axes a :

(6.4)

a,=ag, —g (6.5)
Absolute speed v:
v, =a,-dt+v, (6.6)
Positions r.:
r.,=0,5a-d’ +v,-di+r,, (6.7)

6.2 Filtering the path
Table 6-3 Input data

1 000 0O
01 00 0O
Q process noise matrix c. 001000
0001 00
00 0O0T1O0
00 00 01
. (1 0
R measurement noise matrix D (O J
1 0 d 0 05-df 0
01 0 dt 0 0.5-dt’
F model matrix 00 1 0 dt 0
00 0 1 0 dt
000 O 1 0
000 O 0 1
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000 01O
H observation model (O 00 0 0 J
Table 6-4 Initialisation
1 000O0O
01 00O0O0
PO‘0 estimate covariance B 00 1000
0 001O0O0
0 00O0T1FO
0 000 O0 1
er
"o
)20‘0 state estimate Vyo
Vo
a,
a

yl

*Coefficients B,C,D will be found by filter tuning.

6.2.1 Kalman filter

Now is applied algorithm shown in Figure 5-2. Or you can see 5.4 The Kalman filter, 5.4.1
Predict and 5.4.2 Update.

Matrix of filtered positions r, :

K|k (6.8)

6.2.2 Filter tuning

Let’s suppose that we had noisy two-row matrix of acceleration and vector of angular
velocity. When we used some coefficients for drawing the filtered path, now we can tune the
filter by slider.
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-} [slider

Parameter & (intisl postion)

1

Parameter C (G matrix - process)

Parameter D (R matrix - measuremert)

0.03 !

0.0 ] 101

Minimurm walue for B iz 0, for C and D iz 1E-3 and minimum diference between Min snd Max is 1E-3

Figure 6-2 Slider for filter tuning

So less is B parameter, so better we know the initial position. When B is equal to zero, we
know the exact initial position. So less is C parameter so better is system predictable and so less
is D parameter so bigger is measurement valuable. The slider has 100 steps and minimum and
maximum values are freely changeable. But minimum value for C and D parameter is limited to
0.001. And minimum difference between minimal and maximum value is limited to 0.001.

6.2.3 Results

Finally were found constants B=1, C=0.008 and D=0.03. Non filtered and filtered path could
be seen in Figure 6-3. By blue colour is drawn non filtered path; by red colour is drawn filtered
path with cyan prediction and magenta correction.

//‘F/
A —
T -
/// b‘"“/
351 /*-/ a‘_ff"/
/
3t /
£
{
251 +

‘ o
M 3 [ 05

Figure 6-3 2D movement

M-files eventually other input data are on enclosed CD in directory - Movement_20Values.



7 Vertical movement reconstruction 46

7 VERTICAL MOVEMENT RECONSTRUCTION

S / H~ 26706N §
N 62,462m 1
~ \ M 7
Ampacimon ~ Skg
563 }‘
63, 53m

Figure 7-1 Test span in Canada

In Canada there is a test span where Ampacimon team to use Ampacimon device to measure
in case of different movements. I am interested in movement when was Ampacimon device
moved down by hands and released. Details of test span are in Figure 7-1 and in Table 7-1.

Table 7-1 Parameters of test span

Number of strands — aluminium/steel 54/7 -

Total diameter 26,3 mm
Mass per unit length 1,369 | kg/m
Rated strength 117,2 | kN
Aluminium strand diameter 2,9 mm
Aluminium area 362,6 mm?
Steel strand diameter 2,9 mm
Steel area 47 mm”
Module of elasticity 68,3 GPa
Dilatation coefficient 19,3 10°%/°C

7.1 Observed data

For the measurement were used two accelerometers Y1 and Y3 in opposite directions.
Calibration and offset were done. Final acceleration for movement reconstruction was count like
(Y1-Y3)/2; acceleration due to gravity was subtracted. In theoretical way measurement from Y1
and Y3 should be the same with opposite sign and (Y1-Y3)/2 should be equal to Y1 as to —Y3.
And (Y1+Y3)/2 should be equal to zero. In the real world it is different and will be shown below.
Sampling frequency is 200Hz; time of one step is Sms. No data from gyroscope were used in this
experiment.
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Hr -
-BD 1DIDD ZDIDD SDIDD 4DIDD SDIDD EDIDD ?DIDD BDIDD 9000 -ED 1DbD ZDIDD SDIDD 4DIDD SDIDD EDIDD ?DIDD BDIDD 000
step step
Figure 7-2 observed from Y1 Figure 7-3 observed from Y3
8 T T T T T T T T
B i
4k i
2t _
o
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£
0 MH e
a2k i
Ak i
_E | 1 1 | 1 | 1 1
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step
Figure 7-4 Final acceleration
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el | 0B
04
s i
02k
2F i
3 &0
¢ ’
o f~{llbdpnni «
-02F
2 1 o4t
atb i a6k .
-0.8

I 1 I 1 1 1 1 1
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step

5 1 1 1 1 1 ! 1 1
o 1000 2000 3000 4000 5000 BO0O0 7OOO 8000 S000
step

Figure 7-5 noise of meas. - (Y1+Y3)/2 Figure 7-6 noise of meas. - (YI1+Y3)/2 in detail
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7.2 Signal processing of observed measurement

Because of serious noise in measurement and even in process, I will be interested only in
first few seconds of reproducing the path and it is enough for the final application. I suppose
initial position approximately 6¢cm (it is a choice — I is not critical point) below steady state and
initial velocity equal to zero.

5

a [m*s-2]
———
L ————

———
——
—_—

[}
(=]
[}
=
=
m
-1
m
w
=]

tls]

Figure 7-7 Measured (blue) and filtered (red) acceleration by Kalman filter

ook
006
004t
nozh
ok
o0t \ﬂ

0.06

o [m]

008 1 1 1 1 1 1 1 1 1 |

Figure 7-8 Non-filtered observed (blue) and filtered (red) position by Kalman filter
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Due to the fact that I suppose initial velocity to zero, but it should be a little bit more than
zero and due to the fact that each step used values from previous step and actual values are never
corrected by other external system is in Figure 7-8 shift of position. It is impossible to reconstruct
signal only from known accelerations.

M-files eventually other input data are on enclosed CD in directory - Movement_CA.

7.3 Signal processing of acceleration observed from model of span

By the method of finite elements is possible to have model of the span mentioned before and
do all experiments on computer to verify truth of results. Even if is the measurement of
acceleration very noisy and I want to verify algorithm for movement reproducing, it is possible to
check it.

Details:
e number of element : 426

® time integration : automatic time integration (not fixed time step, adapted variable
time step)

e excitation: applied constant force 250N aligned with gravity (vertical force
downwards) during 4 seconds (between t=2s and t=6s).

1 5 T T T T T T

10+ .

a [m*s-2]

_1E| | 1 1 | | 1
a 2 4 ] d 10 12

t[5]

Figure 7-9 Acceleration from model (simulated)
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0.03 T T T T T T 0.03

002+ B 002

001+ B 001

0 B 001

E E
= oot 1 = ooz}
003 4 003+
004 - N 004t
-0.05 - 4 005+
DDBU 2 4 3 8 10 12 14 0o 2 4 6 3 10 12 14
t[z] tls]
Figure 7-10 non-filtered calculated movement Figure 7-11 movement from model (simulated)

using acceleration data from simulated model

M-files eventually other input data are on enclosed CD in directory - Movement_CA_model.
7.4 Reasons of incorrectness of time integration

7.4.1 Numerical integration

Real generated acceleration is continuous curve and is represented in Figure 7-12 by red
colour. But I cannot observe this curve, but I am able to observe discrete points with sampling
frequency (in my case 200Hz) represented by blue dots. If I suppose zero noise of measurement,
blue dots are on the red curve. I need to twice numerically integrate acceleration to observe
position. First integration is shown below.

Correct integration:

v(t)= _t[ a(7)-dr+v(37,5ms) (7.1)

37,5ms

Numerical integration:
v(40ms) = a(40ms)-dt+v(35ms)=10-5+v(35ms) (7.2)

Difference between these ways of integration is represented by green colour in figure below.
If there was no difference between those two integrations, areas “A” and “B” would be the same.
But they are not the same and difference between integrations is represented by difference
between areas “A” and “B”. And integrating a second time to get the position will lead to further
error in calculation, given the already distorted value observed by first integration.
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a [In*s-2]

10
L

\

dt

30 35 40 45 t [ms]
it

Figure 7-12 Numerical integration of discrete points

7.4.2 Noise of measurement

In the caption above I have supposed zero noise of measurement. But in the real world there
is no way to know exact values. In each step I observe exact value plus noise and I do not know

how big the noise is and how big exact value is. I just work with observed values. My
observation (blue dots) in comparison with real values is shown in Figure 7-13.

a [m*s-2]

'/

dt

30 35 40 45

t [ms]

Figure 7-13 Measurement error

7.4.3 Error Propagation

As you can see at the beginning of chapter 4, Measuring Devices, each calculation step
considers values from previous step such that error from previous step is growing with each step.
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As one second calculation is done in 200 time steps, the above mentioned errors will grow with
error propagation resulting in a simulation totally unusable within a few seconds.

For example if I would have error in acceleration abouterl =0.1m- s~
1
er2:E~er1~t2:O.5~O.l~102:5m (7.3)

It causes error Sm in position in ten seconds!

The problem continuing even with using Kalman filtering.

7.5 Summary of vertical movement reconstruction

It is possible to reproduce movement only in a few seconds from the reasons as mentioned
above in case of known initial conditions. Even if the Ampacimon device is in steady state, there
is no zero acceleration and I observe some noise shown in Figure 7-14 and it causes that in
simulation is not device in the same position before releasing as is shown in Figure 7-15. Again is
observed acceleration and non-filtered observed position represented by blue colour and filtered
values are represented by red colour.

05
04r
03
0.2
0.1

ok

a[m's-2]

-01F

-0.2r

-03r

04

_0.5 1 L L L 1 L L I -0, L L 1 1 1 1 1 I
0 0.5 1 15 2 25 3 35 4 g 080 05 1 15 2 i i
t[s] t[s]

Figure 7-14 Acceleration in steady state Figure 7-15 Movement in steady state

Another reason why that are those two movements different is that I do not know all details
about the Canadian experiment and even observed values from measurement and model should
be done in different conditions.

Last reason what I will mention is that even if I will know all of the details of experiment, in
real world it will be a little bit different than in simulation by method of finite elements.
Comparison is in Figure 7-16 and in Figure 7-17.
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Figure 7-16 Observed movement from meas. Figure 7-17 Movement observed from model
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8 2D MOVEMENT RECONSTRUCTION EXPERIMENT

For these experiments were used special built device with two 2D accelerometers and two
linear gyroscopes. Data sheets are attached on enclosed CD. Device is supplied by 9V battery and
connected by RS232 to PC. Data are collected by program Netbeans.

Figure 8-1 Measuring device

First of all is necessary to calibrate the accelerometers in all axes. Is necessary to measure
+G and -G and then set offset and conversion factor. I did these experiments only with one 2D
accelerometer.

Table 8-1 Calibrating table

axis and direction | measured | count offset count/G
-X 12237 -824,3
49,45 814,85
+X 28534 805,4
-Y 12235 -824.5
+3.3 821,2
+Y 28659 817,9
Example:
count_, =measured_, —2048 =1223,7-2048 = —-824,3 (8.1)
offset, =(count_, +count,, )/2=(-824,3+805,4)/2=9,45 (8.2)
count |G, =(count,, —count_, )/2=(805,4+824,3)/2=814,85 (8.3)

8.1 Without rotation

The first experiment was making a simple movement of the measuring device from left to
right, then up and down in one row, about tens of centimetres in each direction.
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ax 52
ay [m*s-2]
in
T
I

w;
I
o

“o 05 1 15 2 25

Figure 8-2 Measured acceleration in x axis Figure 8-3 Measured acceleration in y axis

As you can see from Figure 8-2 even in steady state in first 1,4s is not the acceleration (or
average of noisy acceleration) equal to zero and first 1,4s will be used for additional offset
setting. It is caused by angle between “x” axis and acceleration due to gravity which is not exact
90° and a small part of mentioned acceleration is even in “x” (horizontal) direction.

03r-

025
0.2F
0154
01}
E 005t

-0.05

-0.15

07 ! ! ! ! ! 1 ! ! ! I
-1 -09 -08 07 06 05 -04 -03 -02 -0.1 0

x[m]

Figure 8-4 Reconstruction from measurement (drift is due to the offset in x axis)
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ax 52
ay [m*s-2]
in
T
I

w;
I
o

“o 05 1 15 2 25

Figure 8-5 Observed acceleration in x axis with Figure 8-6 Observed acceleration in y axis with
1.4s calibration 1.4s calibration

0181

¥ [m]

1 1 1 1 1 1
0.04 002 0 0.02 0.04 0.05 0.08 0.1 0.12
*[m]

Figure 8-7 Observed movement after calibration

As you can see from Figure 8-7 here is final movement closer to real movement, but
subtraction of negative acceleration was exceeded a little bit. By experimental modification of the
signal should be finally found movement very similar to real movement, represented in Figure
8-8.
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Figure 8-8 Observed movement after calibration and experimental modification
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Figure 8-9 Observed x position in time Figure 8-10 Observed y position in time

8.1.1 Conclusion

In the caption above a very easy experiment was done with 2D accelerometer. After
calibrating the device, there was still a small part of acceleration due to gravity applied in x axis.
This part was integrated for the first 1.4s and average of this value was applied on accelerations
in x axis to be corrected. The result of observed position is in Figure 8-7. As you can see there is
a small part of positive acceleration in x axis to be removed experimentally. After that correction
was observed final Figure 8-8. Real movement was similar to that, but error is very serious if I
will take into consideration time of integration only 2.1s and no rotation were take into
consideration. Of course it is impossible to make movement with device with no rotation, so I
cannot say now, it is possible to continue by this way, or if it is totally useless.
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8.2 With rotation

Now I will take into consideration even information from gyroscope. In Figure 8-12 is
observed angle between moving and global axes. As mentioned above, this movement was just
vertical and horizontal movement without rotation, but it is impossible to do it with no rotation,
so small angular velocities were observed as you can see in Figure 8-11.

100 T T T T T T 1

a0} i o

eets 1]

mega [deg
degree

40
0

L L L L L L
05 1 15 2 25 3 35 -15

Figure 8-11 Observed angular velocity Figure 8-12 Observed angle of rotation

Let’s have a look on results, if they will be better or worse.

02r

y [m]

1 1 1 1 1 1 1
0 0.2 0.4 05 0.8 1 1.2
i [m]

Figure 8-13 2D movement with gyroscope

As you can see in Figure 8-13 the movement is totally different from original one and it is
impossible to reproduce movement based only on measurement of accelerometers and gyroscope.
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On earth there is a permanent acceleration of 1g, if the orientation horizontally is off by the
biggest error represented in Figure 8-12, say, one degree, we will get an acceleration error e;:

e, =g-sinl°=0,1712m-s (8.4)

Integrating the acceleration error e; twice, this results in an accumulated position error e,
after 10 seconds of:

e,=0,5¢-1=0,5-0,1712-10> = 8,56m (8.5)

M-files eventually other input data are on enclosed CD in directory - Movement_2D.

8.2.1 Conclusion

In the caption above, an experiment of movement reconstruction in a plane was performed.
In plane, there are three degrees of freedom, two translations and one rotation; two devices were
used for measurement, one 2D accelerometer and one gyroscope. With that device was done very
easy movement for reconstruction. Result of this experiment is in Figure 8-13 and is totally
different from the original one. This type of movement reconstruction is called “open loop” and
for our usage is unusable even for first few seconds. Error propagation is illustrated in Figure
8-14 and Figure 8-15.
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Figure 8-14 Error propagation Figure 8-15 Log-Log error propagation

Solution should be found in usage of Kalman filter to combine or fuse information from
different sensors. The basic idea is to use the Kalman filter to weigh the different mediums most
heavily in the circumstances where they each perform best, thus providing more accurate and
stable estimates than a system based on any one medium alone. The indirect feedback Kalman
filter shown in Figure 8-16 (also called a complementary or error-state Kalman filter) is often
used to combine the two mediums. In such a configuration, the Kalman filter is used to estimate
the difference between the current inertial and optical (or acoustic, magnetic, GPS or combination
of them) outputs, it continually estimates the error in the inertial estimates by using the optical
(e.g.) system as a second reference. This error estimate is then used to correct the inertial
estimates. In our application is correction of position by GPS unusable because of low precision
of about one meter but GPS get very precise information about velocity and velocity could be
corrected by GPS.
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. Inertial estimate (corrected)
p=| [nertial (correc

Y

I
Y IV
Corrections Kalman __ Optical estimate Optical
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Figure 8-16 The Kalman filter used in an indirect-feedback configuration to optimally weight
inertial and optical information. [7]



9 Determining line position using G-direction

61

9 DETERMINING LINE POSITION USING G-DIRECTION

9.1 Using real data from Ampacimon

Ampacimon device is placed on line near the coast in Belgium and is measuring
continuously with sampling frequency 12,5Hz and sending data by GSM network to Montefiore

Institute.

Figure 9-1 Accelerometers position and orientation in Ampacimon

Connecteur
~ _Alimentation

I am interested in axes ,,X3“ and ,,Y3* of module ,,1* and using data measured 12.1.2009 and
try to determine position of the cable using steady orientation of acceleration due to gravity.
Explained in Figure 9-3.

Figure 9-2 Offsets and conversion factors

axis name | axis number | Module Ac::;gz:zter Offset [count] COH;:JZ?;é?Ctor
Yl 1 1 1E001 16.5 770
X3 4 1 1E002 -9.5 774.5
Y3 5 1 1E002 -16.5 770.5
Yl 1 2 1E007 -7 778
X3 4 2 1E008 -35.5 773.5
Y3 5 2 1E008 10 770
Yl 1 3 1EO11 -3.5 773.5
X3 4 3 1E012 -13 769
Y3 5 3 1E012 -17 770
Yl 1 4 1E013 -17 775
X3 4 4 1E014 -2 773
Y3 5 4 1E014 -15.5 770.5
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Figure 9-3 Position of line between span in wind condition
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Figure 9-4 Horizontal acceleration Figure 9-5 Vertical acceleration

Because measurement is very noisy and I am interested only in low-frequency large
movement, [ will do FFT and I will use only low frequency component and DC component.
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Figure 9-6 FFT of horizontal acceleration Figure 9-7 FFT of vertical acceleration

In Figure 9-6 is FFT of horizontal acceleration without 0,7539m-s~> DC component and in
Figure 9-7 is FFT of vertical acceleration without 9, 4512m-s DC component. When I have a
look on low frequencies (e.g. <0,5Hz) there aren’t expressive components corresponding huge
movement. [ don’t have real measurement of really huge movement and I will use model of line
to observe accelerations corresponding huge movement in the next chapter. From the FFT is seen
expressive component of about 1,7Hz and is possible to say that it is probably Aeolian vibration.
Average angle of line deflexion could be observed due to constant orientation of acceleration due
to gravity.

Average angle a.:

o = arctan 3pe. = arctan [ 0.7539 ] =4,56° 9.1)
ay3 9,4512

It will be discussed more deeply in the next chapter.

M-files eventually other input data are on enclosed CD in directory - Ampacimon_real_data.

9.2 Using data observed from model of span

Because I don’t have measurement from huge movement, I will use model of span to
simulate huge movement and I will work with observed accelerations. Observed acceleration
from a simulation program (SAMCEF Field V6.3) is in absolute axes and without acceleration
due to gravity (9,81 m*s?). From information about displacement is counted angle of line
deflection, acceleration due to gravity is added to the vertical axis and information about
acceleration is recounted to relative axes respectively. Then is applied Gaussian noise with signal
to noise ration (SNR) 10dB. Now I have input data for processing.

Details of model:

e Left pylon is 58m high, right one is 55 m and distance between them is 448,23 m.
Line is fixed on pylons.

e Two forces are simulated wind

e Initial condition — stress in the middle of span is 24 514 N
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e Average length of element is 2,5 m
Table 9-1 Parameters of span model
Mass per unit length 1,713 kg/m
Rated strength 20 kN
Diameter 31,5 mm
Area 621 mm”
Module of elasticity 59 GPa
Dilatation coefficient 23 10°/°C
\
)
\
\
o
agry
s
agz
Figure 9-8 Orientation of axes
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Figure 9-9 Exact horizontal acceleration
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Figure 9-10 Exact vertical acceleration
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Figure 9-11 Noisy horizontal acceleration Figure 9-12 Noisy vertical acceleration

Because measurement is very noisy and I am interested only in low-frequency huge
movement, [ will do FFT and I will use only low frequency components and DC component.
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Figure 9-13 FFT of horizontal acceleration Figure 9-14 FFT of vertical acceleration

In Figure 9-13 is FFT of horizontal acceleration without —1, 2003m-s~*> DC component and

in Figure 9-14 is FFT of vertical acceleration without 9,7264m-s> DC component. Frequency
resolution is 601 values. (Sampling frequency is 20Hz.)

To subtract noise eventually other type of motion I will tag together signal from FFT using
low frequencies and high amplitudes only. For example if I want to take only dominant parts of
FFT I will take into consideration frequencies below 0,5Hz and amplitudes over 0,1 in horizontal
acceleration and 0.05 in vertical acceleration. For usage in the real world it should be defined by
relative values, but in this one case I am using absolute values. Algorithm for signal
reconstruction and all other signal processing is in m-file on enclosed CD.
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Figure 9-15 Reconstructed horizontal acceleration — Figure 9-16 Reconstructed vertical acceleration

Angle y:

ax
Y = arctan E 9.2)

Than should be compared angle of deflexion with angle .
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Figure 9-17 Exact angle of deflection Figure 9-18 Angle 'y

9.3 Conclusion

Result of angle y depends on parts of FFT which are taken into consideration and should be
different but it is difficult to say which result is the best. For example if I subtract dominant part
around 0.5Hz in horizontal acceleration result of angle y will be different and is in Figure 9-19.
But the most important information is about maximum angle of deflection and it is known really
precisely and it is a little bit less than 12°. Better results could be observed using Kalman filtering
with combination of information from gyroscope.
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Figure 9-19 Angle y

M-files eventually other input data are on enclosed CD in directory - Simulation_huge_
movement.
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10 SUMMARY

The main aim of this thesis was to be able to reconstruct huge movements of overhead lines
based on measurement from accelerometers and gyroscopes using Kalman filtering. I started only
with acceleration in one axis and tried to rebuild the movement.
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Figure 10-1 Non-filtered observed (blue) and filtered (red) position by Kalman filter

Due to the fact that I suppose initial velocity is zero, but it should be a little bit more than
zero and due to the fact that each step are used values from previous step and actual values are
never corrected by other external system is in Figure 10-1 shift of position. It is impossible to
reconstruct signal only from known accelerations. Moreover I don’t know all the details about
this experiment and real result either so I decided to do my own experiment with measuring
devices to be sure about initial conditions and related details.

I took the box with measurement devices and did simple movement about tens centimetres to
left and back and then up and back.
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Figure 10-2 Observed movement after calibration

As you can see the result is different than the movement I did. Moreover I didn’t take into
consideration measurement from gyroscope and I did movement without rotation. Using even
measurement from gyroscope is reconstructed movement totally different than original one.

For this reconstruction algorithm called “open loop” was used, it means that I took velocity
and position from previous step and never correct them by indirect-feedback for example. It

causes big error due to error propagation in few seconds.
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Figure 10-3 Error propagation
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Solution should be found in usage of Kalman filter to combine or fuse information from
different sensors. The basic idea is to use the Kalman filter to weigh the different mediums most
heavily in the circumstances where they each perform best, thus providing more accurate and
stable estimates than a system based on any one medium alone. The indirect feedback Kalman
filter shown in Figure 10-4 (also called a complementary or error-state Kalman filter) is often
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used to combine the two mediums. In such a configuration, the Kalman filter is used to estimate
the difference between the current inertial and optical (or acoustic, magnetic, GPS or combination
of them) outputs, it continually estimates the error in the inertial estimates by using the optical
(e.g.) system as a second reference. This error estimate is then used to correct the inertial
estimates. In our application is correction of position by GPS unusable because of low precision
of about one meter but GPS get very precise information about velocity and velocity could be
corrected by GPS.

Inertial estimate (corrected)

= Inertial . -
|
Y IV
Corrections Kalman __ Optical estimate Onptical
to inertial filter " (redundant) P

Figure 10-4 The Kalman filter used in an indirect-feedback configuration to optimally weight
inertial and optical information. [7]

How to know exact initial position or how to correct position time to time remain
unanswered questions to be solved in future.

Other approach to line position was done using the fact that acceleration due to gravity has
the same direction all the time. To subtract noise and high frequencies was used FFT which took
into consideration only dominant parts of FFT in low frequencies part. Then was counted angle
between accelerations in two axes where acceleration due to gravity is applied. See Figure 9-17,
Figure 9-18 and Figure 9-19 for results. More precise result should be observed subtracting
acceleration causing movement and have only acceleration due to gravity divided in axes. It
could be done using Kalman filter with indirect-feedback with information about angle of
deflection from gyroscope.
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