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Abstract 
This work deals with the speech recognition of overlapping speakers using a neural net­
work. It examines the problem of speech recognition from multiple speakers and the ways 
in which this problem is solved. Specifically, in addition to traditional components such as 
convolutional neural networks, L S T M , etc., it is also an application of special components: 
attention mechanism and gated convolution. And also the application of a technique called 
permutation invariant training. Part of this work is to apply these approaches to assigned 
training data, which consists of artificially created mixtures of two speakers reading articles 
from the Wall Street Journal. The next step was to train the respective architectures using 
the combinations of the elements mentioned above. The models in this work replace the 
acoustic model. There were two architectures using different types of attention mechanism 
and one without it. Experiments have shown that architectures using the attention mecha­
nism in this type of task have not surpassed more traditional architecture by suffering from 
gated convolution. Nevertheless, they showed potential. 

Abstrakt 
Tato práce se zabývá rozpoznáváním řeči překrývajících se řečníků pomocí neuronové sítě. 
Zkoumá problém rozpoznávání řečí od vícero řečníků a způsoby, jimiž se tento daný prob­
lém řeší. Jedná se konkrétně o aplikaci kromě tradičních komponentů jako konvoluční 
neuronové sítě, L S T M atd. také speciálních komponentů: attention mechanismus a gated 
konvoluce. A dále také aplikace techniky zvanou permutation invariant training. Součástí 
této práce je aplikování těchto přístupů na přidělená trénovací data, která jsou tvořena 
uměle vytvořenými směsmi dvou řečníků předčítající články z Wall Street Journal. Dalším 
krokem bylo natrénování příslušných architektur používající kombinující prvky zmíněné na­
hoře. Modely v této práci nahrazují akustický model. Jednalo se o dvě architektury užívající 
různé typy attention mechanismu a o jednu bez něj. Experimenty ukázaly, že architektury 
užívající attention mechanismus v tomto typu úlohy nepřekonaly tradičnější architekturu s 
užitím gated konvolucí. Přesto ale ukázaly potenciál. 
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Rozšířený abstrakt 
Díky technologickému pokroku učiněném v posledních letech, zvláště v oblasti umělé in­
teligence a strojového učení, zaznamenala technologie automatického rozpoznávání řeči 
značný pokrok. Stále však jsou oblasti, kde rozpoznávání řeči nečiní tak velké pokroky. 
Jedna z těchto oblastí je překrývající se řeč vícero řečníků. 

V rámci této práce je rozebrán jeden z možných přístupů, jak tento problém řešit. Jedná 
se o techniku nazvanou permutation invariant training (PIT), navrženou pro řešení právě 
tohoto typu úloh. Tato technika se aplikuje v rámci trénování neuronových sítí. Tato práce 
popisuje aplikaci této techniky na neuronové síti, která v rámci rozpoznávání řeči nahrazuje 
akustický model a přímo klasifikuje jednotlivé rámce. Model v této práci kombinuje tradiční 
prvky jako je např. konvoluční neuronová síť, L S T M , dopředná neuronová síť apod. a 
novější prvky využívané právě v rámci tohoto a podobných typů úloh. Jedná se o tzv. 
gated konvoluce a attention mechanismus. 

Společně s těmito jednotlivými prvky pak byl příslušný model neuronové sítě trénován, 
aby dokázal rozpoznat překrývající se řečníky z datasetu WSJO, kde jednotliví řečníci 
předčítají články z Wall Street Journal, a jejich směsi poté slouží jako základ pro onen 
model. 

Příslušný model neuronové sítě byl implementován v jazyce Python s využitím knihovny 
pro strojové učení PyTorch. Jak již bylo zmíněno výše, neuronová síť na svém vstupu bere 
akustické příznaky, které posléze klasifikuje do příslušných tříd. Implementovaný model 
neuronové síťě nevyužívá attention mechanismus, který autoři navrhli v původním článku 
[3]. Místo toho byl vybrán jiný druh, který je méně náročný na výpočetní prostředky, navíc 
ve dvou variantách. V rámci experimentování byly trénovány celkem tři variace modelu s 
různou learning rate. 

Experimenty s těmito modely ukázaly velmi zajímavé výsledky. V rámci trénování byly 
trénovány dva modely s attention mechanismem a jeden bez, který místo toho dispono­
val jednou vrstvou obousměrné L S T M navíc. Modely byly trénovány na jiném datasetu, 
než který byl použit pro evaluaci. Dataset pro evaluaci neobsahoval stejné řečníky jako 
tréninkový dataset. Hlavní metrikou pro určení úspěšnosti modelu byla široce užívaná 
metrika v rámci rozpoznávání řeči, W E R (Word error rate). V rámci experimentů bylo 
zjištěno, že všechny modely mají tendenci se v pozdějších fázích trénování přetrénovávat 
(angl. overfitting). 

Mimo to ale ještě předtím bylo také zjištěno, že příslušné modely kromě jednoho pro­
dukují překvapivé výsledky. Jedná právě o jeden z attention mechanismů, tzv. Multihead 
attention, který si v rámci experientů vedl nejhůře, jinak řečeno, neprodukoval tak dobré 
výsledky jako dvě zbylé varianty. Ty právě naopak vyprodukovaly velice dobré výsledky. 

Nad všechna očekávání se jedná právě o model bez attention mechanismu, který vypro­
dukoval ze všech modelů nejlepší výsledky. Nejlepší výsledek tohoto modelu v rámci ex­
perimentů činí 28.4% W E R , což je o 2.6% lepší, než nejlepší varianta modelu z původního 
článku, který dosáhl hodnoty 31%. I nejlepší varianta s tzv. Scaled Dot-Product attention 
mechanismem překonala nejlepší výsledek původního článku s celkovými 29.8% W E R , tedy 
o 1.2% lepší. Nejlepší Multihead attention varianta naopak zaostávala s celkovými 34.5% 
W E R . 

Tyto experimenty ukázaly, že v rámci této úlohy mohou tradiční prvky společně s Gated 
konvolucemi a se správnou technikou dosáhnout lepších výsledků než modely s attention 
mechanismem. Ačkoliv attention mechanismus by mohl vykazovat lepší výsledky s větším 
modelem, jelikož všechny modely obsahovaly z důvodu výpočetní náročnosti menší kompo­
nenty o jednu vrstvu B L S T M méně, než model bez attention mechanismu. 



Modely by mohly dosáhnout ještě lepšího výsledku při aplikaci tvz. regularizačních 
technik, které se právě používají jako prevence jevu přetrénování. 
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Chapter 1 

Introduction 

As modern deep learning technology research progresses, there are more and more require­
ments from it, including a field of speech recognition. Today's level of speech recognition 
is very high when compared to the past decade yet there are still various cases, where the 
advancement of speech recognition is not so great. One of these cases in this field is an 
overlapped speech from multiple speakers at the same time. While speech recognition of 
one person is well-developed, multi-talker speech recognition is not. It is due to its greater 
complexity when compared to the speech recognition of one person. 

However, with mentioned technological advances there are developed various approaches 
on how to resolve the problem of multi-talker speech recognition. One of the possible strate­
gies was developed by researchers in [3]. They propose the use of a neural network with a 
new architecture containing new elements, namely gated convolutional layers and attention 
mechanism. This type of architecture along with a training technique called permutation 
invariant training should be able to improve the level of the multi-speaker speech recogni­
tion. The main goal of this thesis is to implement a neural network architecture using these 
new elements with the use of the machine learning library and to evaluate it on a standard 
dataset. 

The thesis is structured into various chapters. Chapter 2 introduces the concept of 
neural networks and their use in speech recognition. Chapter 3 describes the principles 
and basic methods of speech recognition and multi-talker scenario. Chapter 4 describes the 
nature and characteristics of a dataset used for the training and evaluation of the network. 
Chapter 5 contains information about the implementation of the network based on the 
mentioned article [3] and chapter 6 summarizes experiments realized with implemented 
network. 
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Chapter 2 

Neural networks 

This chapter describes a concept of the neural network, the type of neural networks that are 
used in Automatic speech recognition(ASR), and the other elements used to improve their 
overall performance. Information in this chapter about a structure of the neural network 
and its training mechanics were derived from publications [2, 7, 17]. 

2.1 Inner structure 

The concept of the neural network started in the 1950s and 1960s when scientists discovered 
an artificial neuron. They called it perceptron. This unit is connected to several inputs. 
These inputs can be equal only to one or zero. Perceptron then takes these inputs and 
multiplies them with a set of parameters called weights. They represent the strength of the 
individual connections, i.e. how much these connections will influence the output. In the 
case of the perceptron, the output can only be equal to either zero when the weighted sum of 
its inputs is lesser or equal to zero or one when the weighted sum is greater than one which 
causes the perceptron to be activated. Today the artificial neurons are more sophisticated 
and can produce more outputs than only zero or one when other functions are used for 
their activation. These neurons can then be put together and influence each other. There 
are in total three different possibilities of how to connect neurons. This depends on their 
position in the model. 

The first possibility is to use them as inputs of the model inside the input layer. Here 
they take input information and send it more forward into the model. The second possibility 
is to connect them in the part of the model which is referred to as hidden layer. In this layer 
neurons forward the inputs they receive further through the model. There can be multiple 
hidden layers. The number of the hidden layers then determines what „depth" model has. 
The final possibility of how to connect neurons is to use them as the output units, which 
form the output layer. These principles described above are typical for one class of neural 
networks called a feed-forward network or multilayered perceptron. This type is typical for 
having all the connections only in one direction, i.e. it does not have any connections which 
would feed the output of any of the neurons back to the model. This is depicted in figure 
2.1. 

Neurons can use linear or non-linear activation functions. Linear functions have lim­
ited capabilities over those non-linear. Non-linear functions allow to perform non-linear 
transformations. Mathematically this process can be expressed for concrete neuron by the 
following formula: 
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n 

y = a(y] XjWj + w0) (2.1) 
i=l 

where a stands as the activation function, wq represents a bias value which is a value not 
connected to any input and which can influence the activation of the neuron, x is a vector 
of the inputs, w is a vector of the weights and n is a number of the input connections. 
Currently one of the most recommended activation function is called ReLU or rectified 
linear unit. Others quite popular are logistic sigmoid and hyperbolic tangent. 

The output neurons also use activation function on their outputs depending on how 
they should be interpreted. For example, if outputs of the neurons are to be interpreted as 
probabilities they use a softmax function. To learn, the model must compute the gradients of 
the selected activation functions. The next section describes the characteristics of learning 
during the training process. 

Hidden layer 

Figure 2.1: A n example of a feed-forward network with one hidden layer, inspired by figure 
from [17]. 

2.2 Training process 

Training is defined as a process, during which the model runs iteratively through the set 
of training data and modifies the weights of the neurons. These modifications allow the 
model to learn and to improve its performance after each iteration. 

The whole process of training can be divided into three steps: 

1. Forwarding of the data through the network and calculation of the loss value indicat­
ing how well model performs, calculated by a cost function. 

2. Backpropagation algorithm for a calculation of the gradient of the cost function with 
respect to the weights of the neural network. 

3. A n update of the weights with a method called gradient descent which is an opti­
mization algorithm used to minimize a loss. Gradient descent modifies weights in a 
direction of decreasing the value of the cost function. 

5 



There are various types of the cost functions used in neural network models, the most 
commonly used are mean squared error function and cross-entropy function. Loss L of 
the cross-entropy function for produced n-th output probability yj? and C target classes is 
defined by following formula: 

Where is probability indicating that the target value equals to the class C. 

Every model has various parameters called hyperparameters which are used to tune the 
model's performance. One of these hyperparameters is learning rate. This hyperparameter 
needs to be tuned correctly. It determines the size of a step used in the optimization 
algorithm when moving towards a minimum of the cost function. Otherwise, the training 
could diverge or its progress would be too slow. 

2.2.1 Cross-validation and overfitting 

To discover whether the model is capable of learning and recognizing new related data not 
present in the training dataset, a technique called cross-validation is performed. During 
this process, the model encounters a new type of data separated from the training dataset. 
Apart from that during this process, the model does not use the backpropagation algorithm. 

This technique is very beneficial because it can indicate the behavior of the model 
through the calculated loss of the cross-validation dataset. Then it can be compared with 
the loss of the training dataset from the corresponding iteration and the comparison can 
reveal if the model is training the right way or not. Typically is very distant from the loss 
of training data. One of the typical problems is called overfitting, a situation when the 
model produces correct predictions on the training data but incorrect for data not present 
in the training dataset. 

There exist some techniques to prevent this phenomenon. These techniques are com­
monly known as regularization techniques. There are various regularization techniques used 
among the field, here are some of the most used: 

• Dataset augmentation - augmentation of the training dataset causes that the network 
will not overfit so easily due to the larger number of data. However, because obtaining 
more data for training can be expensive and difficult, there is a possibility to enlarge 
the dataset artificially. This means that it is possible to take training data and then 
modify them to be the same with a slightly different form. However, this approach is 
not fitted for every task, for example, a density estimation task. 

• Parameter norm penalties - these techniques add a parameter norm penalty into the 
cost function. The penalty is chosen so that only the weights are penalized, not the 
biases. The reason behind it is that the biases require fewer data to fit and as a 
result, they do not add much of the variance. One of the most widely applied is L2 

regularization or weight decay. These techniques cause the model to learn smaller 
weights and the larger ones will be included only if their inclusion will reduce the loss 
of the cost function. 

• Dropout [23] - this technique changes the model itself by temporarily dropping a few 
neurons from the hidden layers by multiplying their outputs by zero. The model 

c 

n k=l 

6 



calculates a random binary mask for each training sample. This mask then decides 
what particular neurons will participate in the training process. Because training 
with the Dropout technique will cause more of the hidden neurons to be active after 
training due to larger weights, the weights are scaled by ^, where p is a probability 
that determines if the neuron is to be retained. This is called the weight scaling 
inference rule. 

• Early stopping - this technique involves an observation of the validation loss. If the 
validation will get only worse with further training, the training is stopped and the 
best state of the model is stored. 

2.3 Convolutional neural network 

Another widely used type of neural network, besides the feed-forward network, is called 
convolutional neural network (CNN). 

Neighboring neurons from the output layer are connected to other neighboring neurons 
from the input layer [16]. The whole operation can be understood as extracting features 
from the input data by performing a convolution operation with a set of learnable kernels, 
a feature extractor of a certain size moving all along the input data and scanning them 
[7]. The convolution can be performed along vectors or matrices [14]. The convolution of 
matrices which is also used in the implemented model is defined by the following formula 
[14]: 

-xy / / O-uv^x—u+\,y—v+\ (2.3) 

where the convolution operation with matrix A of n x m size representing kernel is 
performed over the input matrix B of k x I size produces the output matrix C is of the 
(n + k — 1) x (m + 1 — 1) size, u and v represent ranges of all legitimate moves of convolu­
tion for elements auv and b x - u + \ j y - v + \ . 

Then in the next layer, called subsampling layer, the network will reduce the dimen­
sionality of the produced output [16]. This operation, also referred to as pooling, helps to 
prevent output values from getting affected by small translations of the input [7]. This 
process is illustrated in figure 2.2. It is also worth to mention that neurons in the C N N 
layer share a single vector of weights among them [16]. 

Input data 

n x m matrix 

Conv, layer Subs, layer 
(n+k-l) x (m+l-1) matrix 

,*tl* p x q matrix 

[j I T ' 

Conv. layer Subs, layer 

(p+r-l) x (q+s-1) matrix w x z m a t r i x 

• • 

Figure 2.2: A n example of convolutional neural network, Inspired by figure from [16] 
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2.3.1 Gated convolution 

Details about the gated convolutional layer were derived from [3]. In the article [3] authors 
proposed the use of a special type of the convolutional layer, called gated convolutional 
layer displayed in figure 2.3. The layer consists of two separate convolutional layers each 
one having their weight parameters. One of the layers is using sigmoid activation function 
on its output, while the other uses linear activation. The outputs are then merged using 
element-wise multiplication thus producing the final output of the layer. This process is 
described by the following formula: 

where X is the input matrix, W, V are weight parameters, b, d are biases, a is the 
sigmoid function, * is the convolution operation and (8) is the element-wise product. One 
of the capabilities of this layer is that it can control the data stream of its output. 

h(X) = (X*W + b)® a(X * V + d) (2.4) 

Figure 2.3: A Gated convolutional layer structure taken from [3] 
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2.4 Recurrent neural network 

Details about the Recurrent neural networks were derived from [7, 18]. Recurrent neural 
network (RNN) is a type of neural network that is capable to use its previous outputs to 
produce new ones. It does so by sending the produced output through the connection back 
to itself. The R N N can be also seen as a chain-like structure, as depicted in figure 2.4. 
Here, block A corresponds to the computation performed in one time-step, with input xt 
and output ht- The outputs are reused in the next time step. Reusing these outputs helps 
R N N to learn the patterns between the elements of the input sequence. 

RNNs are due to their characteristics widely used in tasks like speech recognition, lan­
guage modeling, etc. However, RNNs have a problem in cases of Long-Term Dependencies, 
i.e., memorization of the previous inputs for a longer period of time. 

Figure 2.4: A a example of the R N N structure schematic taken from [18] 

2.4.1 Long short-term memory network 

Details about Long Short-Term Memory (LSTM) were derived from [6, 18]. Long short-
term memory (LSTM) is a subclass of R N N . It was created to counter the shortcoming of 
the R N N . Like the RNNs, L S T M also can be depicted as the chain-like structure as shown 
in figure 2.5. A calculation of a next state is realized in one time step by block A, but in 
case of the L S T M , the block is more complex, when compared to the R N N block in the 
figure 2.6. 

In comparison with RNNs, L S T M additionally contains a cell state value Ct, a horizontal 
line running through the top of the figure 2.5. It is a value capable of storing information, 
which is transferred between particular time steps. It realizes this with the use of a com­
ponent called a memory block, a structure containing a cell state. Then there are gating 
units, units with a sigmoid neural net layer, and pointwise multiplication operation, as can 
be seen in 2.5, which can let pass information through that particular block. These gating 
units are responsible for the protection and control of the cell state in the block. Cell state 
is in every step modified depending on the actual input and hidden state, with the use 
of forget gate (forgetting the information) and input gate (inserting the new information). 
The output is then calculated from the actual input, hidden state, and the actual cell state 
with the use of an output gate. 
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Figure 2.5: A n example of the L S T M block structure taken from [18] 

Figure 2.6: A n example of the normal R N N block structure taken from [18] 

2.4.2 Bidirectional L S T M 

Apart from the standard RNNs, there also exists another type of RNNs architecture called 
Bidirectional RNN (BRNN). It is a type of R N N network, processing input sequence in 
two directions - forward and backward [7]. This allows them to capture not only the 
past but also the future context of the input information [7]. Into this group also belongs 
Bidirectional LSTM (BLSTM) , originally introduced in [8]. B L S T M type is also used in 
the model of the proposed architecture from [3]. 

2.5 Attention mechanism 

Attention mechanism is used in machine learning, especially in language translation, image 
captioning, dialog generation, etc. as a component capable of showing to the network 
where to concentrate its focus when making predictions of an element by his relations to 
the others. It does so by creating an attention vector, a vector carrying pieces of information 
about relations of the element to other elements in the form of the attention weights [25]. 
Description of the attention mechanism was derived from [24, 25] 

Although a different type of attention mechanism is proposed in the original article 
[3], we use a different type in this work because of its computational efficiency It is the 
attention mechanism based on the paper [24] which proved to produce state-of-art results. 
Its main advantage over the other types of mechanisms consists of the possibility to realize 
the process without the use of R N N , a common element among the other types. 

This architecture uses linear transformations to produce three different vectors called 
keys, queries, and values from the input. Keys and queries have the same size of dimension 
dk and values are of dimension dv. Attention function then maps key-value pairs and 
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queries to output as shown in figure 2.7. At the start, a vector of weights is calculated 
by a compatibility function of the keys and queries to assign a score in this type of the 
architecture defined by the following formula: 

QKT 

score(Q,K) = softmax(—•=•) (2.5) 
v 4 

where K and Q are packed matrices of the keys and queries vectors. -A= represents 
a scaling factor where dimension dk is an input sequence length. Its use is motivated by 
a possibility of the long input which could cause that softmax function will produce a 
very small gradients which are ineffective for learning. Then all weights are assigned to 
the corresponding values from packed matrix V and after that, a result is calculated as a 
weighted sum of the values, producing the Scaled Dot-Product attention: 

Attention^, K, V) = score(Q, K)V (2.6) 

M a t M u l 

SoftMax I 

I Scale 1  
t 

M a t M u l \ 

t t 
Q K V 

Figure 2.7: A Scaled-Dot attention mechanism principle, Figure modified from [24] 

This principle is then developed further in the [24]. It proposes to use Multihead At­
tention. This principle proposes instead of using only a single attention function to use 
linear projections of the queries, keys and the values h times with different projections to 
the dimensions of the keys and values, shown in figure 2.8. This approach is defined by 
following formula: 

MultiHead(<3, K, V) = Concat(headi,head2, head3....headh)W° (2.7) 

where the head is defined as: 

headi = Attention(QWf, KW?, VWY) 

where QW^ , KW^ , VWi , and W are projection matrices to be learned. 
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This principle allows calculating multiple outputs by different layers called heads, which 
are then concatenated into the final output. This allows the model to learn to attend with 
every single head to the different parts of the input information. This is according to [24] 
inhibited when using only a single Scaled Dot-product layer, by an averaging of the output. 

[ Concat] 

S c a l e d D o t - P r o d u c t 
A t t e n t i o n 

I Linear [ Linear [ Linear "jj TT T 
V K Q 

Figure 2.8: A multihead attention mechanism principle taken from [24] 
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Chapter 3 

Multi-talker speech recognition 

This chapter describes the functioning and architecture of the Automatic speech recognition 
(ASR) system. As next, it explains the basics of functioning of an acoustic model and its 
importance in ASR, methods that are used in the field of speech recognition, separation of 
speech, and an application of the acoustic model in the multi-talker scenario. 

3.1 Overview of Automatic speech recognition system 

The main sources of information about Automatic speech recognition (ASR) architecture 
were derived from [4, 22]. Automatic speech recognition (ASR) refers to a transformation of 
input speech waveform into a sequence of recognized words. In practice, there are various 
approaches to how to process the speech signal. One approach is called Dynamic Time 
Warping. Although this technique proved to be efficient in matching words, it does not 
perform so well in case of recognition of a continuous speech. Due to this fact, a different 
approach is used in the recognition of continuous speech. 

Figure 3.1 demonstrates the A S R system, where a decoder aims to find a sequence W of 
words W which best matches X representing an acoustic feature sequence extracted from 
the input data. This can be expressed by the following formula: 

In this formula P(X\W), which is modeled by an acoustic model represents how well 
sequence X corresponds with a word sequence W. PiW) represents the probability of 
the word sequence to appear in the current language. This probability is computed by a 
language model. P(X) represents a prior probability of the feature sequence independent 
from the acoustic and language model and can be ignored. Valid words of the particular 
language are composed of the sequences of the basic unit of sound called phonemes. They 
are specified by a pronunciation lexicon. 

3.2 Acoustic model 

Details about the acoustic model were derived from publications [11, 22]. Before sending 
a speech signal into the acoustic model, the extraction of the features must be performed. 

W = argmax^ P(W\X) (3.1) 

where 
P{W\X) 

P(X\W)P(W) 
pJx) 

(3.2) 
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Figure 3.1: A n architecture of the A S R system, inspired by figure from [4] 

This transforms the signal into the form better fitted for speech recognition. The signal 
is divided into frames representing approximately 25 ms of time of the signal with time 
shift between successive overlapping frames being typically 10 ms. After that, a vector of 
features is extracted from each of these frames. 

After the extraction, the features are sent into the acoustic model. In ASR, the acoustic 
model is a component that can greatly affect the overall accuracy. Upon the extracted 
features, the acoustic model creates their statistical representation. One of the most ap­
plied acoustic models is the Hidden Markov Model (HMM). H M M s are used due to their 
capability of representing the acoustic features and matching sequences of variable length. 

H M M , can be viewed as Finite-State automaton. It is displayed in figure 3.2. This 
automaton has probabilistic transitions between individual states, i.e. their total sum must 
be equal to one. Let a%j be a transition probability between i-th and j-th states. Following 
formula explains this relationship for iV possible transitions from i-th state: 

N 

Yl °*J = 1 ( 3- 3) 

The model can transition into another state or stay in the current one. Transitions 
occur every time frame of time t. Each of the states, when entered, generates an observed 
acoustic feature vector. 

H M M also contains two special states. Both are reached only once when the model 
starts and terminates its task. Apart from these two every state as mentioned generates 
an observation vector xt through the emitting probability distribution bj(xt). Using these 
elements it is possible to formulate a calculation of the likelihood of acoustic feature vector 
X given A which represents acoustic components representing concrete words from sequence 
W by the following formula: 

P(X\X) = Y,P(s,X\X) (3.4) 
s 

Here s represents a vector of the states of H M M . 
The joint probability of vector X and states in s given A is formulated this way: 

T 

P(s,X\X) = l[bSt(xt)a 
StSt+l 

(3.5) 
t=i 
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Here s^+i represents an exit state of the model. 

Figure 3.2: Model of phoneme states using H M M s , inspired by figure from [11] 

3.2.1 Neural networks in acoustic model 

The main sources of information for this subsection were derived from the [10]. 
As mentioned in the previous section, H M M s are a very popular tool in A S R sys­

tems. H M M s began to be used widely in this field with the discovery of the Expectation-
Maximization algorithm. This method is used for training H M M s . This algorithm allowed 
to represent the probability density for each H M M state through Gaussian mixture mod­
els [10]. „A Gaussian Mixture Model (GMM) is a parametric probability density function 
represented as a weighted sum of Gaussian component densities." [21]. G M M s and H M M s 
were since then used in combination as G M M - H M M s . 

However, G M M s aren't very successful when the data require a non-linearity for their 
representation. Because of this, the neural networks began to be used instead. The neural 
networks are used because of their capability of modeling complex systems requiring a 
non-linearity and they showed to outperform G M M - H M M s . 

In current time, neural networks as the acoustic model consist of many hidden layers 
and produce large outputs where each output corresponds with a certain state of the H M M . 

3.3 Multi- talker acoustic model 

3.3.1 Speech separation 

As was mentioned in the introduction chapter, despite great advances in speech recognition 
tasks there are still scenarios really difficult to handle. One of them is the ability to recognize 
the speech from the noisy environment along with other people talking simultaneously. This 
problem is often addressed as a cocktail-party problem [26]. It tends to get even worse in 
the case of a single-channel speech mixture [12]. This is also the case when there is no prior 
information about speakers themselves, a speaker-independent scenario [12]. Here come 
monoaural speech separation techniques, whose goal is to extract the individual source of 
each speaker from the mixture. 

One of the approaches how to deal with the multi-talker scenario is to separate individual 
signals from the mixture and then send those separated signals as the input into a classic 
single-speaker acoustic model. 

For the separation process, there are two most popular approaches. One of them is called 
Deep Clustering [9]. „Deep clustering is a recently introduced deep learning architecture 
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that uses discriminatively trained embeddings as the basis for clustering."'[12]. However, 
this method has its shortcomings because of the clustering step, it takes as a prerequisite 
that the time-frequency bin is dominated by only one speaker and although it proved to 
produce good final approximations, it is not an optimal way [26]. 

The second approach is called Permutation invariant training (PIT) [26] Using this 
approach, as can be seen in figure 3.3, at first, the neural network model produces the 
output masks from the multiple output layers and then these masks are used to produce 
individual signals [26]. Then using the cost function, the total losses of separated signals 
and targets are computed, however, because there is no prior information about speakers, 
there is no possibility to determine to which separated signal corresponds to which targets, 
a situation known as a label permutation problem [26]. To counter this situation PIT 
approach calculates loss for each permutation between all predictions and targets, then 
summing those obtained losses to produce a total loss of that permutation [26]. Then total 
losses of those permutations are compared and the least loss value is selected to optimize 
the model [26]. 

outpu t l 

input input 

Clean speech 1 Clean speech 2 
(M frames) (M frames) 

Pairwise scores 

Ma ski 
(M frames) 

T 
•+ x 

hrror 
(assignment 1) 

Cleaned speech 1 Cleaned speech 2 
(M frames) (M frames) 

Mixed speech 
(Mframes) 

input 

Neural network 

T 
X 

Error 
(assignment 2) 

Minimum error 

output.2 

Mask 2 
(M frames) 

Feature 
[N frames) input 

Figure 3.3: Process of permutation invariant training of 2 speakers, Figure modified from 
[26] 

3.3.2 Direct multi-talker acoustic model 

Instead of realizing the process of separation separately from the acoustic model, there is 
a possibility to design the acoustic model in a way, that it can recognize the speech of two 
speakers. In [3] authors use the neural network with the PIT cost function, however, this 
time it does not estimate the separated signal, it directly classifies the individual frames 
into phonemes. This whole process for S speaker sources can be formulated this way [3]: 

J = \ / min ] T ] T C £ ( / / , O f ) , s = l , . . . , S (3.6) 

where permu(S) is the set of permutations of the 1...S, CE is cross-entropy function, 
0s, s = 1,...,S are output predictions produced by the model and If are corresponding 
targets. 
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Chapter 4 

Dataset 

This chapter describes the main characteristics of a speech dataset used for training and 
evaluation of the implemented models. 

4.1 C S R - I (WSJO) 

CSR-I (WSJO) [5] is the name of a corpus that was used for the creation of another dataset, 
originally introduced used by M E R L in the paper [9]. The complete corpus also known as 
LDC93S6A consist of two parts: LDC93S6B and LDC93S6C [5]. LDC93S6B part contains 
utterances captured by a close-talking Sennheiser HMD414 microphone and LDC93S6C 
part contains utterances captured by a secondary microphone [5]. Both parts mainly consist 
of recorded utterances of persons reading Wall Street Journal articles and texts selected 
for reading for both parts had to satisfy a requirement to fall within a 5,000-word or a 
20,000-word subset of the Wall Street Journal text corpus [5]. 

These recordings were then artificially mixed under the name „wsj-2mix" by M E R L in 
[9]. This mixtures form in total three datasets: training, cross-validation and test dataset 
of various lengths shown in table 4.1: 

Dataset type Length in hours 

Train 30 

Cross-validation 10 

Test 5 

Table 4.1: Table of dataset lengths 

The process of creation of these datasets is the same is practically the same for all 
of them [9]. It consists of selecting randomly individual utterances of different speakers 
from the particular dataset and then these utterances are paired and mixed at various 
random signal-to-noise ratio in a range between OdB and lOdB [9]. For the creation of 
the first two datasets was used the WSJO si_tr_s dataset [9]. For the creation of the 
test evaluation dataset were used the WSJO development dataset si_dt_05 and evaluation 
dataset si_et_05 where the utterances were selected from 16 different speakers which are 
not present in other datasets [9]. 
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4.2 Test evaluation dataset 

The test dataset used for the evaluation of models during the experiment stage contains 
different speakers from those in training and cross-validation datasets as mentioned in the 
previous section. There are in total three different groups of overlapped utterances: 1. 
mixtures containing only male speakers, 2. mixtures containing only female speakers and 
3. mixtures where one speaker is male and the other one is female. The total share of each 
of the groups can be seen in the following table: 

Gender Number of utterances 

Men 867 

Women 530 

Mixed 1603 

Table 4.2: A distribution of utterances from test dataset by gender of speakers 

During the experiments with test validation set the whole utterances were kept in the 
original state and processed individually, i.e. they weren't segmented by cutting procedure 
explained in subsection 5.2.2. It was because otherwise the W E R metric couldn't be applied 
as it measures whole words and in addition, there would not be otherwise possible to observe 
if models did learn continuity patterns in the utterances. The following figure 4.1 shows 
the length of individual utterances used in experiments. 

Figure 4.1: Histogram of lengths of utterances of test dataset. 
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As mentioned in section 4, the mixtures were created by mixing utterances at various 
SNR. Figure 4.2 shows an overall distribution of utterances regarding the values of SNR of 
the first speaker over the second. 

Signal-to-noise ratio (SNR) [13] is the measure which is used to determine how is the 
signal powerful over the background noise. It is measured in decibels (dB). It calculated 
by the following formula: 

SNR= 10 l o g 1 0 ^ (4.1) 
-r/V 

where P$ is the power of the signal and P/v is the power of the noise. 
It is possible to observe various levels of SNR in the utterances. This imitates the 

cocktail party scenario. 
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Figure 4.2: Histogram of SNR of one speaker over the other from test dataset. 
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Chapter 5 

Implementation 

This chapter describes an implementation of the described neural network elements, tools 
used for development, and overall approach to the task. As mentioned in the introduction, 
the model, shown in figure 5.1, is inspired by [3] and uses some alternative approaches. As 
first, the chapter describes PyTorch [19], a machine learning library used to implement the 
model. As next, it describes individual parts of the implemented system. 

Network modu le 
Speech u t te rances 

Prepared data 

Gated CNN 

Gated CNN 

CNN layer 

BLSTM layer 

Scale-Dot Multihead 
attention attention 

Linear layer Linear layer 

Predict ions 1 Predict ions 2 

Data collector 
module 

Figure 5.1: Scheme of the implemented architecture modules 

5.1 PyTorch 

PyTorch 1 [19] is an open-source machine learning library. It is primarily developed by 
Facebook's A I Research lab. It has a Python interface along with highly optimized C++ 
and C U D A 2 core. 

x h t t p s : //pytorch.org 
2 h t t p s : //developer.nvidia.com/cuda-zone 
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As a basic unit for computation tasks PyTorch uses a tensor, an n-dimensional array of 
the base data types. To perform calculations it uses a computational graph, a graph repre­
senting a flow of the data between corresponding tensors representing specific operations to 
obtain the output. PyTorch can perform its calculations on CPUs and GPUs, where GPUs 
are used for faster computations. 

PyTorch allows special handling and loading of the data through classes Dataset and 
Dataloader. A Dataset class is used for the preparation of data into a format for class 
Dataloader. Dataloader is then used to serve data to the model when required, allowing to 
use features like data shuffling, setting a batch size or mechanism called collate function, a 
function, or a class executed before serving the particular portion of required data. 

Many well known neural network classes like C N N , L S T M , or feed-forward networks 
are already implemented in this library. This allows creating models and building layers of 
those types. It also provides utilities needed for training like activation and loss functions. 
To train a model PyTorch offers a module containing optimizers to update weights of the 
neurons. 

It is also worth mentioning that PyTorch allows saving parameters of the trained model 
in the form of a Python dictionary. It can also convert it into formats such as ONNX'^. 

5.2 Parts of the system 

This section contains a detailed description of individual implemented components and 
their role in the models. 

5.2.1 Data collector 

A data collector module creates necessary files and folders for the data collection of the 
training, cross-validation, and evaluation process. These files are always created in a sym­
bolic path from which the system is executed. It collects total accuracy and total loss from 
every epoch as well as the accuracy and loss of every batch in the training and validation 
processes. The collected data are stored in the form of a Python list with a Python module 
called Pickle 1. 

5.2.2 Data loader and preparation 

A data loader module uses a PyTorch classes Dataset and Dataloader, mentioned in section 
5.1 above. Wi th the use of the PyTorch class Dataset, a module loads data from provided 
files and then prepares the loaded data into a format for the system to process. The datasets 
are composed of various acoustic feature vectors with variable lengths, as can be seen in 
figure 5.2. However, to process them they all must be of the same length. 

To achieve this, the module has at its disposal two different approaches available. First 
consists of an use of zero-padding where all sequences and corresponding targets with shorter 
lengths than the longest one from a batch are padded with zero frames to fill in the missing 
space, shown in figure 5.3. 

The targets are padded with frames containing a value equal to -100 because it serves for 
PyTorch as an indicator for overlooking the padded parts of sequences during the calculation 

3 h t t p s : //onnx.ai/ 
4 A m o d u l e used for sav ing a n d l oad ing P y t h o n ob jec t s t r u c t u r e , h t t p s : / / d o c s . p y t h o n . O r g / 3 / l i b r a r y / 

p i c k l e . h t m l 
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Figure 5.2: Original acoustic feature vectors 

X i x 2 x 3 x 4 x 5 x 6 

X a x b X c X d X e 0 

X a Xß x Y 0 0 0 

Figure 5.3: Zero-padded acoustic feature vectors 

of the loss. It is important to realize this, otherwise, the model would include them into 
the learning process and they could corrupt it. 

This approach, while sufficient, carries with itself a complication though. It is very 
demanding on computational resources because it creates padded sequences based on the 
length of the longest one and it can occupy a considerably large part of the memory. 
This situation is solved by the second approach. The approach in some ways is similar to 
the first one. It also creates frames for padding, however, these frames are not omitted. 
Furthermore, this method divides the input sequences and targets into smaller fragments 
of the selected size. 

X , x 2 X 3 x 4 x 5 X6 Xy 

Figure 5.4: Uncut original speech sequence 

Vectors smaller than the selected size of the cut are dropped. In the case of vectors 
bigger than the size of the cut there almost always remains a piece smaller than the size of 
the cut. This piece is not dropped, however. Instead, the module cuts an additional part 
from the particular sequence to fill missing frames. The module obtains this additional 
part by selecting the appropriate point in the particular input sequence, from which the 
number of frames is equal to the selected size of the cut. This part is then separated and 
added to the others. This process is illustrated in figure 5.5 where the original sequence 
from figure 5.4 was divided into pieces with a size of the cut being equal to three. This 
approach minimizes the memory requirements as well as the required computational power. 
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To explain why the smaller sequences than the size of the cut are dropped is that they could 
create invalid conjunction because there is no valid part to fill the missing space. 

X i x 2 x 3 

x 4 Xs X6 
x 5 x 6 x 7 

Figure 5.5: Sequence-padded acoustic feature vectors with size of the cut being equal to 
three. 

The size of the cut, however, must be selected wisely as if it is too small, the model 
might not learn continuity patterns from the cut sequences and if it is too large, it might 
suffer from the same problems as the zero-padding method. 

5.2.3 Network modules 

As mentioned at the beginning of the section, the implementation contains two modules 
with different sizes. The first one has a size that is smaller when compared to the model 
variations in [3], at least in the case of the B L S T M layers, and then the larger one. It 
allows choosing between the models depending on the available computational resources. 

The module is capable to run three different modes: 1. with Scaled Dot-Product atten­
tion, 2. with Multihead attention and 3. run without attention. When running in the first 
two modes, the module can save attention weights from selected attention mechanism in the 
form of NumPy ' arrays for further analysis. The attention mechanisms are implemented 
as Python classes. If the mode without attention mechanism is selected, the mechanism 
part is substituted by the linear layer. The module produces two outputs for each speaker. 

5.2.4 Mode l loader module 

This module is responsible for saving and loading the current state of the network model. 
It saves the state depending on the selected type of model. There are in total of two types 
of saving model states: 1. saving of the best state - the state of the model is saved based 
on the collected statistics. The calculated train loss from the particular iteration must be 
lower than it was during the iteration when the model produced the best results and the 
same condition must be satisfied in case of the cross-validation loss. This prevents saving 
overfitted states and helps to preserve the best performance. 2. saving of the next state 
- the state of the model is saved directly after the completion of the particular training 
iteration. It saves them separately, thus allowing more experimenting with different states. 
Similarly, it allows the loading of the desired status of the model, the best, or from the last 
iteration. 

5 A library written in Python designed for scientific computing, https://numpy.org 
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5.2.5 Training, cross-validation, and test modules 

These modules start the desired process of training or validation of the model on selected 
datasets. The training module comes in two different versions. Each one will launch the 
training of the selected model of the corresponding size. The cross-validation process is 
launched by the training module every time after each training epoch. Then depending on 
the selected saving mode it decides whether to save the current status of the model. The 
test module is capable to save more to save can also save predictions of the model for both 
speakers in the form of Numpy arrays or accuracies of produced predictions for individual 
utterances identified by their name in the form of the Python dictionary. 

A l l modules use a P IT cost function to determine the best permutation of the speakers 
and then calculate corresponding accuracies, although they do not scale final loss as in [3] 
due to experiments with various learning rates. If input sequences were zero-padded these 
padded frames are ignored during the calculation of the accuracy. If it is possible, the 
modules switch automatically to perform the computations on one G P U possessing C U D A . 
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Chapter 6 

Experiments 

This chapter describes performed experiments to evaluate the efficacy of the implemented 
model. There were inspected various architectures of the attention modules. First, there 
are introduced metrics applied to evaluate the overall performance of the model. Then 
chapter describes the evaluation dataset used for experiments and after that, it describes 
experiments with each architecture. 

6.1 Metrics for model evaluation 

To evaluate the performances of the individual models the following metrics were used: 

• Prediction accuracy - This metric takes a total number of correct predictions of frames 
with respect to the permutation with the lowest loss by the total number of frames 
in each iteration. If there is zero-padding used, the model will automatically exclude 
the padded frames. 

• Word error rate - Word error rate (WER) [1] is an evaluation metric, used to evaluate 
the performances of A S R systems. Value of this metric defines the total percentage of 
errors calculated from the alignment of reference words with predicted words produced 
by A S R system [1]. It is can be defined by following formula [1]: 

WER = I + S

N

+ D x 100 (6.1) 

where / represents a number of the inserted words, S represents a number of the 
substituted words, D represents a number of the deleted of the words and iV is a 
number of the reference words. 

Apart from listed metrics we also observed the overall losses of training and validation 
sets to determine possible overfitting or other strange behavior of models. To determine, if 
the particular attention mechanism works properly there were analyzed produced attention 
weights of that mechanism. 

6.2 Neural network models 

This thesis explores the performances of three different implemented models. Previous 
chapters described various components. These three models combine these to determine 
their efficacy in dealing with the problem of overlapping utterances. 
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As mentioned in the introduction, the implemented models differ from the proposed 
ones. They share almost the same elements from previous chapters with the model varia­
tions from the original article [3]. But they are all of the different sizes, an order of those 
elements is different from the variations from [3]. And the major difference comes with 
the attention mechanism. The implemented models use the attention mechanism inspired 
by the article [24], explained in 2.5, different from the proposed one. Although Multihead 
attention differs slightly from the original [24], explained below. The different size is used 
mainly due to the extension of the dataset and shortage of computational resources. How­
ever, as mentioned in chapter 5, the system does contain also large-sized variations for 
experimenting if there is a sufficient number of resources. However, these variations were 
not were used in the experiments. 

Apart from the attention mechanisms modules, the variations use a Leaky ReLU as the 
activation function. It is a special modification of the R e L U function created to compensate 
its drawback in the form of not learning when the activation is equal to zero [7]. To adjust 
the network weights with gradient descent the models use Adam optimizer [15]. 

A l l models share the same number of two gated convolution layers. The first layer is 
comprised of two C N N layers, each of size 20 and in the second the C N N layers have a 
size of 100. After them succeeds the convolutional layer. This layer is comprised of 200 
neurons. In the end, there are two output linear layers of size 3368 which is equal to the 
total number of classes. The rest of the architecture differs in each of the models. These 
differences are explained in the following subsections. 

The pre-trained systems first produce predictions and save them in the form of a Numpy 
array along with a collection of the loss and accuracy statistics from test validation. After 
the completion, predictions are then evaluated which will then evaluate the overall level of 
W E R of the particular model for both speakers. 

6.2.1 The model without attention mechanism 

This model variation does not possess any of the attention mechanisms described in section 
2.5. Instead, it, as can be seen in figure 6.1 contains two B L S T M layers, each one having 
a hidden equal to 200 and a linear layer of size 516. This layer does not separate the 
predictions as it is in case of attention mechanisms. The separation is done by output 
layers. The number of B L S T M layers is higher than in the case of the other variations. 
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Figure 6.1: The model architecture without attention mechanism with individual layers. 

6.2.2 The model using Scaled Dot-Product attention mechanism 

In this model variation, shown in figure 6.2, the linear layer from the previous variation 
is substituted by the Scaled Dot-Product attention layer. This layer first uses three linear 
layers of size 200 to produce three different outputs for the creation of keys, queries, and 
values. Before this model performs non-linear transformation with ReLU activation func­
tion over these outputs. Then they are sent into the next three linear layers of size 516 to 
produce keys, queries, and values sets. This process is performed over the input data for 
each speaker separately. It also contains only a single B L S T M layer where its hidden size 
is equal to 200, mainly due to a lack of computational resources. 

6.2.3 The model architecture using Multihead attention mechanism 

This model variation, shown in figure 6.3, as the previous from subsection 6.2.2 also contains 
a single B L S T M layer where its hidden size is equal to 200. uses the same process to 
produce keys, queries, and values. It, however, uses the Multihead approach explained in 
2.5. There are three heads for one speaker, thus six for both, each consisting of the set of six 
linear layers of size 172. The first three produce the output more fitted for the creation of 
attention vectors. They use also use ReLU activation function for transformation. This is 
the difference between the Multihead attention mechanism from [24] and the implemented 
model. In [24], there was no activation function used in attention module. The other three 
produce the keys, etc. Then their outputs are concatenated and sent to another parametric 
linear layer of size 516. This process is also performed over the input data for each speaker 
separately. 
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Figure 6.2: The Scaled Dot-Product architecture model scheme with individual layers. 
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Figure 6.3: The Multihead architecture model scheme with individual layers. 
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6.3 Model experiments 

To train and evaluate model variations were from the described datasets extracted 40-
dimensional acoustic features and corresponding targets using Kaldi 1 toolkit [20]. There 
are in total 3386 possible output classes. 

A l l of the described models from above were trained on one G P U and each one was 
trained for 200 epochs. The following subsections contain detailed descriptions of experi­
ment results conducted on the test evaluation dataset. There were tested various learning 
rates for each model. The final results of the best experiments can be found in table 6.5. 
The following subsections describe the experiments with each model group. A l l the figures 
containing statistics from experiments in these subsections were created from performances 
of the best model instances of each variation. 

W E R on test dataset was also evaluated using another provided evaluation program 
using the Kaldi toolkit. Other statistics were collected directly by the model itself. 

6.3.1 Experiments with the model without attention mechanism 

Despite having the simplest structure from variations this model showed results beyond 
expectations. As can be seen in figure 6.4 in the first picture, the training loss tends to 
decrease and training accuracy also increases as can be observed in the second picture of 
figure 6.4, so the model trained correctly. However, in the case of cross-validation loss in 
the first picture of figure 6.4, it is possible to observe a tendency of a curve to grow in an 
increasing number of epochs. In the case of cross-validation accuracy in the second picture 
of figure 6.4 it grows but then it settles in level around 45%. These are signs of overfitting. 
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Number of epochs 
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Figure 6.4: On the left, progress of total train and cross-validation loss from each epoch, 
On the right, progress of total train and cross-validation accuracy from each epoch of the 
best instance of no attention model. 

X A toolkit used for speech recognition, written in C+-1-, https://kaldi-asr.org/ 
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In table 6.1 is possible to observe all experiments performed with no attention model. 

Learning rate W E R value Avg. frame accuracy 

0.001 28.4% 46.3% 

0.0006 32.5% 46.5%. 

Table 6.1: W E R level, learning rate and average frame accuracy of each model of no 
attention variation. 

The model with learning rate being equal to 0.001 produced very good results which 
even exceeded all model variations without attention mechanism and even models with 
attention mechanism from article [3]. 

Because experiments with this model produced the very best results from all performed 
experiments, it is worth to evaluate regarding this thesis the possible influence of the length 
of utterances and SNR to the accuracy of predictions. 

The effect of length utterances of the accuracy of predictions of frames is captured 
in figure 6.5. It can be observed a certain level linear dependency between them which 
was proved by calculation of the Pearson correlation coefficient, a value indicating 
how much two variables are dependent on each other. Its value equals 0.24666169 which 
indicates a positive correlation, which indicates a certain level of dependency between the 
accuracy of the prediction and the lengths of the utterances. 

o.o -L, , , , , , , ,J 
250 500 750 1000 1250 1500 1750 2000 

Length [frames] 

Figure 6.5: Dependency of the accuracy of predictions on length of the utterance of test 
dataset captured from the best model performance. 

In the case of the influence of the SNR on the accuracy of predictions, the correlation 
coefficient is equal to 0.1392165. This also indicates a positive correlation and a certain 
level of dependency between the accuracy of the prediction and the SNR of the utterances. 
The effect is displayed in the following figure. 
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SNR [dB] 

Figure 6.6: Dependency of the accuracy of predictions on the SNR of the utterances. 

In following table are average accuracies of frame predictions for each group of speakers 
based on their gender: 

Gender Avg. frame accuracy 

Women 48.1% 

Men 43.9% 

Mixed 46.9%. 

Table 6.2: Average accuracies of frame predictions for each group of speakers based on their 
gender. 
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6.3.2 Experiments with Scaled Dot-Product attention mechanism model 

Experiments conducted on this model variation also produced interesting results. The use 
of the attention mechanism showed that it learns correctly. The overfitting problem is also 
apparent, however, with a closer look at figure 6.7 it is possible to observe that loss of 
Scaled Dot-Product variation does not grow so rapidly as in case of no attention variation 
meaning the attention model tends to get overfitted slowly. Still, it didn't perform as well 
as its predecessor in terms of accuracy and W E R . Here, in figure 6.7 on the right picture, 
the accuracy level stops around 40% and even training accuracy is worse than in case of no 
attention model but is very close to it. 

In figure 6.8 is displayed an array containing the attention weights from the utterance 
which scored the highest accuracy. It is possible to observe the attention weights of the 
mechanism over concentrated along the main diagonal across the time axes. Figure 6.9 
displaying the utterance with worst scored accuracy also shows a major concentration of 
the attention weights along the main diagonal meaning the attention mechanism works 
correctly even in this case. 

12-

2-1 I 
0 25 50 75 100 125 150 175 200 0 25 5D 75 100 125 150 175 200 

Number of epochs Number of epochs 

Figure 6.7: On the left, progress of total train loss from each epoch, On the right, progress 
of total cross-validation loss from each epoch of the best instance of Scaled Dot-Product 
model. 
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Figure 6.8: Attention weights of utterances of the best instance of Scaled Dot-Product 
model. 
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Figure 6.9: Attention weights of utterances of the best instance of Scaled Dot-Product 
model. 
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The following table shows the results of the performed experiments. 

Learning rate W E R value Avg. frame accuracy 

0.001 29.8% 46.0%. 

0.0008 31.1% 44.9%. 

0.0004 36.4% 37.4%, 

Table 6.3: W E R level, learning rate and average frame accuracy of each model of Scaled 
Dot-Product attention variation. 

From this table is possible to see that model with learning rate being equal to 0.001 pro­
duced the best results. It also exceeded all model variations without attention mechanism 
and variations with attention mechanism from article [3]. 

6.3.3 Experiments with Multihead attention mechanism model 

The overall results of the conducted experiments showed that the Multihead attention 
mechanism does not outperform the performance of other model variations. Instead, it 
produces quite strange levels of W E R , shown in table 6.5. Only the model with learning 
being equal to 0.001 produced reasonable W E R . In terms of accuracy, as can be seen in figure 
6.10, the model performs similarly to the Scaled Dot-Product model in cross-validation 
accuracy. Observing figure 6.10, cross-validation loss once again shows the overfitting of 
the model as did previous models. The curve of the cross-validation loss is more stable in 
comparison with no attention cross-validation loss and is more similar to the one of the 
Scaled Dot-Product model, i.e. it does not grows so quickly. Although it produces the 
highest losses from all variations. 

7^ | | , | | , , I i i i i i i i i i 

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 

Number of epochs Number of epochs 

Figure 6.10: On the left, progress of total train loss from each epoch, On the right, progress 
of total cross-validation loss from each epoch of the best instance of Scaled Dot-Product 
model. 
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The most interesting aspect to watch is, however, the distribution of attention weights 
of the individual heads. From figure 6.11 can be seen the attention of the individual 
heads of best prediction, each shows to have a different distribution of the weights over 
the matrix. Weights in the second and third head show a certain form of attention along 
the main diagonal, however, not as clear as in the case of the Scaled Dot-Product model. 
They all have a different distribution, proving that each one is concentrating on other parts 
of the input sequence. In figure 6.12 are heads containing weights from utterance with 
worst accuracy, they also show different distributions and in the first two heads, there 
are more concentrated brighter regions than in the case of utterance best accuracy. This 
might indicate that in case of this utterance heads attend more to the wrong parts of input 
information. 

Figure 6.11: Attention weights of individual heads from the best-scoring utterance of the 
best instance of Multihead model. 

In the following table is possible to observe the results of the individual experiments. It 
only outperformed two variations with no attention with the worst W E R mechanism and 
variation with attention mechanism without Gated convolutions with worst W E R equal to 
34.6% from [3]. 

Learning rate W E R value Avg. frame accuracy 

0.001 34.1 i % 40.4% 

0.0006 40.8 \% 42.3%. 

0.0004 39.C i % 38.9%. 

0.0002 40.C i % 38.1% 

Table 6.4: W E R level, learning rate and average frame accuracy of each model of Multihead 
attention variation 
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Length [frames] Length [frames] Length [frames] 

0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04 0.05 

Figure 6.12: Attention weights of individual heads from the worst-scoring utterance of the 
best instance of Multihead model. 

6.4 Summary of experiments 

Model type Learning rate W E R value 

No attention 0.001 28.4% 

Scaled Dot-Product att 0.001 29.8%. 

Multihead att. 0.001 34.5% 

Table 6.5: Best result of each model variation and its learning rate. 

Wi th performed experiments with each model variation, it was demonstrated, as can 
be seen in the figures 6.4, 6.7 and 6.10 that the case of overfitting was present in all 
experiments. However, before it started, all models saved their best status to evaluate the 
W E R value. One of the possible explanations of why models are overfitting is because the 
models weren't optimally tuned as all models use different learning rates. It is possible to 
observe that when learning is equal to 0.001 the W E R level of each model decreases. Moving 
the level of learning rate only just by one-thousandth of its value can have dramatic results 
as can be observed in the case of the Scaled Dot-Product attention model. Experiments 
also showed that higher frame accuracy does not guarantee a better W E R value. 

It was demonstrated that models using the attention mechanism did not produce better 
results than the model without it. One of the possible explanations consists of the loss 
of the context because the utterances were fragmented during the training procedure due 
to the hardware limitations and because of this, the attention mechanisms maybe did not 
learn the whole context of where to attend. 

What is, however, interesting is the fact that the model using Multihead attention has 
the worst results as can be seen in table 6.5. This again can be caused by a low number of 
heads as there are only three heads in the Multihead attention model or that one part of the 
mechanism uses activation function before producing keys, queries, and values. However, 
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as can be seen in figure 6.11 the Multihead attention does learn some information in each 
head. Better results may be achieved by increasing the number of total heads or delete 
activation functions entirely from the Multihead attention mechanism, as they may have 
affected its performance because they aren't part of the original. Or it may be caused by 
insufficient size. 

The following table shows a comparison between the best results of implemented models 
and best models from the article [3]. 

Model type W E R value 

Implemented 

No attention 

Scaled Dot-Product att 

Multihead att. 

From the article 

No attention 32.7% 

With attention mech. 31.0% 

With attention mech. + gated conv. 31.6% 

Table 6.6: Comparison of best results of implemented models with best models from article 
[3]. 

As can be seen in table 6.6, the implemented no attention model outperformed all 
best-scoring model variations from [3]. 

Also, Scaled Dot-Product attention variation produced reasonable W E R results. It also 
outperformed the best model variations from [3] and it also outperformed the Multihead 
attention which might indicate that it is better suited for this type of task, but this might 
change with the possible modifications of the model mentioned above. Also, variations with 
attention mechanisms had only one B L S T M layer which might have some possible influence 
on the final performance. 

There might be a suggestion that the system proved to be better due to lower a lower 
number of output classes than in the original article. However, the difference is not that 
huge as 3368 output classes aren't much greater than 3429 which is a number of output 
classes from [3]. It might have affected the total accuracy of the predictions of frames, 
however, it does not affect the W E R as the same words were used to get the W E R level. 

6.4.1 Possible improvements 

This subsection contains a list of possible improvements of the implemented models for 
future contexts: 

• Tuning of parameters - as shown in tables of performances of each variation, the learn­
ing rate can have a great impact on the final results of this model. Because the experi-

28.4% 

29.8%. 

34.5% 
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merits are quite expensive to perform, there aren't results for a wider range of learning 
rates. There is also the possibility to experiment with the size of the individual layers 
and their order in the model. 

• Application of overfitting countermeasures - all types of models suffer from over-
fitting. Regularization techniques are key to prevent this, especially in the case of the 
larger models. It might be also the key for the attention mechanism to work more 
properly as a large-sized model along with regularization techniques could perform 
better because in experiments it was shown that the model learned with it some pat­
terns and the layers would prevent the overfitting. Data augmentation is not the way 
as there is sufficient data already present in used datasets and adding more would 
only cost more time to train the model and more resources. The early stopping is 
already partially applied, i.e. models are capable to save their best states. 
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Chapter 7 

Conclusion 

The main objective of this thesis was to implement neural network architecture using the 
combination of the described components and technique used to improve the multi-talker 
speech recognition described by the [3]. There were built three different model variations, 
one without attention mechanism and two with it. The variations using the attention 
mechanism have each one a different type of this mechanism. Both mechanisms are based 
on [24]. They are different from the attention mechanism used in [3]. 

Implemented models were then trained and evaluated on the standard datasets intro­
duced by [9]. On the implemented model variations were then conducted experiments to 
explore their capabilities. The models proved to produce good results, especially Scaled 
Dot-Product attention variation and no attention variation. 

The performed experiments showed, that the model without attention mechanism can 
produce better results than those with it. The best no attention model with W E R being 
28.4% outperformed the best result from [3] by 2.6%, where the best model which contains 
attention mechanism produced W E R 31.0%. This shows that in this type of task models 
with the attention mechanism did not outperform the model without it. 

However, the Scaled Dot-Product attention model is very close to the best result of the 
no attention model with W E R being 29.8%. The difference between their best W E R results 
is only 1.4% and Scaled Dot-Product attention also outperformed the best result from [3] 
by 1.2%. 

Multihead attention model did not perform so well as did the first two. Its best W E R 
result was 34.5% which is not better than the best result from [3]. This, however, might 
also be the result, that Multihead attention is not the entirely same as in [24] or that there 
is a low number of heads, etc. 

However, there is also some space to improve the performance as suggested in 6.4.1, 
especially in the case of Multihead attention. The mechanism might also improve its per­
formance with the larger model. However, because it was proved that all model variations 
suffer from overfitting phenomenon, the first step to improve them is to apply the regu-
larization techniques. Then, if they improve, it will depend on further experimenting with 
the individual parameters of each model. And because models showed certain potential it 
might be interesting to explore other possibilities of these architectures. 
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Append i x A 

Content of attached C D 

• src folder - folder containing all source files of neural network models. 

• pre-trained models folder - folder containing pre-trained neural network models. 

•Hradil bachelor thesis latex.zip file - file containing source code for Latex to gen­
erate bp.pdf. 

• bp.pdf file - file containing pdf file of the bachelor thesis. 

• R E A D M E . t x t file - file containing detailed description of individual items on C D and 
guide how to use network scripts. 
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