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Abstract

The main objective of this work is to estimate ¢figciency of the avail-
able software for similarity search in documenteaxdlons and on two in
particular, Semantic Vectors and Lecene’s classM&eThis. The paper
provides a comparison of those two approachesrdrauces methods that
can lead to improving the quality of the resultagyated by a search.
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Chapter 1

1. Introduction

One of the major problems our days in the subjét#xd information
storage and retrieval is how to represent the obmtietext documents in a
manner that provides not computationally expensif@mation retrieval
and documents comparing.

The main subjective of this work is to present approaches of similar-
ity search. The Semantic Vectors package as a pemhapproach of de-
ploying modern matching technologies and LucenksscMoreLikeThis.
The source of motivation can be found in the risiaghber of scientific ar-
ticles provided to the community of researchestaedlifficulty to organize
them in a way the will provide time saving informaat retrieval.

Chapter 3 goes through the basic issues and teasirglated to the in-
formation retrieval and text mining. In deep argcdissed the main steps of
the document’s indexing process and the relatioalales between the
items in the index.

Chapter 4 brings up details specific to Apache begegackage along
with discussion about the parameters of the indakdan be created by the
package supported by interesting test data. Th@#asof the chapter is
dedicated to Lucene’s class class MoreLikeThis.

Chapter 5 is a brief overview over the main feawkthe Semantic Vec-
tors package. The used approach for similarityckemrdiscussed empha-
sizing on the probabilistic dimension reduction Inegls including its base
concepts, application areas and future development.

Chapter 6 is again dedicated to the Semantic Vethes time rather than
theoretically the chapter is trying to provide tbader with some test data
and conception conclusions.

Chapter 7 is trying to compare the efficiency & both approaches dis-
cussed in the previous chapters, MoreLikeThis ard&htic Vectors.

Chapter 8 is chasing another challenging taskdjsctive is to investi-
gate the possible approaches of implementing thitasity search system
that is to take manual user’s feedback in account.

Chapter 9 is looking forward in the future. The iea is looking for the
answer whether Semantic Vectors package can befaisednaging the
task of clustering text documents that it self ddug considered as impor-
tant unsupervised learning problem.
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Chapter 2

2. Motivation

This paper was motivated from the everyday increpsumber of scien-
tific articles and memos provided by magazinesdifidrent scientific
events and the issues that this fact provokes.

The fact that we have to deal with a large numlbelocuments implies a
demand of a system that can maintain relationsdmtvthe documents
based on meta data or some other method. Web bppidation like Cite-
Seer and Google Scholar in fact comply fully whistidea and provide a
full text search in a large number of documenta@hvith basic relation be-
tween the items stored in the system. If we taka particular example the
CiteSeer web application we can notice that it keefrack of the number
of articles that quotes certain document. Thispatar makes difference
mainly in the order number of the article in thsuls list. If an article is
guoted often then can be assumed that the qudlastiole is high. This
idea is well know already. The most popular Seargyine today Google
uses almost the same technique but instead of gjacteused the number of
hyperlinks from other web sites that point to taeked web site.

However those methods are working pretty well betare highly moti-
vated to look on the problem from a different asp@te will try to come
up with a new idea and approach the matter fromosgective that differs
for the once mention above. In this relation wetarmvestigate the possi-
bility of creating a system that can obtain marusar feedback and use this
data to parameterize a similar following searches.

For this purpose we are to make a small researehtbe features and
matters related to the efficiency of two freelytdimited projects that could
provide similarity document search for our syst@mucial here will be the
speed with witch the products provide the resuitsthe index size and
structure.

As a final step the software product that perfobatéer will be employed
In out system. In case the results are encouragengould chase another
challenging task. Its objective will be to implemetustering of text docu-
ments using the method of user’s feedback metadatderstanding the
complexity of the text documents clustering taskassume the work on
this issue as a preparation for future researthdararea of the Information
retrieval.
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Chapter 3

3. Information retrieval and text mining

3.1. Document indexing
During indexing documents are prepared for usenbinérmation
Retrieval system. This means preparing the raw mead collection
into an easily accessible representation of doctsnéhis transforma-
tion from a document text into a representatiotesf is known as in-
dexing the documents. The indexing is normally diort&e following
four steps

3.1.1.Document linearization
Document Linearization is the process by which eudwent is
reduced to a stream of terms. This is usually doeo steps and
as follows:
v Markup and format removal
During this phase, all markup tags and special &bting
are removed from the document. Thus, for an htralido
ment all tags and text inside these are removed. dr-
mally would include all element attributes, scrjpgsmment
lines and text placed into these. Some commerealh
engines may keep text placed inside the titleitagge alt
attribute, table summary attribute and meta desaerifiag.
Other systems may not care for element attributeseda
data at all.
v Tokenization
During this phase, all remaining text is parseddie
cased, all punctuation removed along with stramgfeaau-
meric characters and Cascading Style Sheets (QSi®)a-
tions.
3.1.2.Filtration
Filtration refers to the process of deciding whietms should
be used to represent the documents so that thedeeassed for:
v" describing the document's content.
v' discriminating the document from the other docurs@mthe
collection.

Frequently used terms cannot be used for this jgerfar two
reasons. First, the number of documents that éreamst to a query
is likely to be a small proportion of the collecticA term that will
be effective in separating the relevant documenots the non-
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relevant documents, then, is likely to be a terat #ppears in a

small number of documents. This means that higjuiacy terms
are poor discriminators. The second reason igé¢hais appearing
in many contexts do not define a topic or sub-t@bia document.

3.1.3.Stemming

Stemming in its base is process of reducing teonigdir stems
or root variant. Thus, "computer"”, "computing", hepute" will be
modified to "comput" and "walks", "walking" and "Wkar" is re-
duced to "walk". Not all implementations use thmedype of
stemmer. The specifics of every language or at tpasip of lan-
guages will demand specific stemmer [29]. For Efglthe most
popular stemmer is Martin Porter's Stemming Aldponq13].

On one hand stemming process reduces the size ofwtarted file
but on the other hand too much stemming is nottigal@nd can
be annoying for the user.

3.1.4.Weighting

Weighting is the final stage in most Informationtfeval in-
dexing implementations. Terms are weighted accgrtbra given
weighting model which may include local weightiggpbal
weighting or both. If local weights are used, tierm weights are
normally expressed as term frequencies (tf). Ibglaveights are
used, the weight of a term is given by inverseduduent fre-
guency(idf) values. The most common (and basicyateig
scheme is one in which local and global weightsusezl (weight
of a term = tf*idf). This is commonly referred te #*idf weight-
ing.

3.2. Term frequency and Inverse document frequency [26]

Term frequency can be defined in several ways hataf the most
common used is the number of occurrence of the thwded by the
sum of the occurrence of all terms in the document.

n.i_J

>k Pk

Inverse document frequency like term frequency haa@y modifica-
tions but always the purpose is on: to measuregémeral importance
of the term. One of the most popular definitiordais:

| D]
{d:t; € d}|

tfi_j =

idf; = log
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Where D is the number of documents Hd 1 € ﬂf}| IS the number
of documents that contain the term.

The product of the multiplication of the term fremey and inverse
document frequency is usually used to score a terandocument ac-
cording to an index.

tfldf|J = t'fi,j X ldf,

The score has a height value when the term hasghtHeaquency in
the document and appears rarely in the rest addcements.

As an example we can consider a document contailrdf words
and the word Lucene appears 5 times. Followingtbeiously defined
formulas, the term frequency for Lucene is thel®5.MNow, assume
we have 5 million documents and Lucene appeaiserhiundred of
these. Then, the inverse document frequency isl églzg(5 000 000 /
500 ) = 4. The tf-idf score is the product : 0.08 = 0.12.

3.3. Inverted index [27]

Inverted index is a index data structure that adldw text search.
The data structure stores mapping of the locatiamonds in a set of
documents. This main feature makes it most poitacture for the
purposes of information retrieval.

There two types of inverted indexes:

» Record level inverted index — maps a term to afistocuments
that comprise this term.

> Full inverted index — maps a term to couples oitgig he first
digit of each couple provides the document thatprose the term and
the second digit provides the position of the terihe document.

3.4. Cosine-distance ratio

This ratio is used as a similarity measure betvaasntwo vectors
representing documents or queries. The ratio defime cosine angle
between the vectors, with values between 0 andittas was normal-
ize the DOT product.

AeB _ X1°x2 + y1*y2

Sim(A, B) = cosine 8 = =
( ) JAIIBl  (x12 + y12)12 (x22 + y22)112

When the angle between two vectors is getting &ntike cosine
product approaches 1. The angel between the tworgetan express
similarity or other relation of whatever the vest@resents. A cosine
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product approaching 1 means more common groundHat ever the
vectors represent.

This is a convenient way of ranking documents;tireowords by
measuring how close their vectors are to a quecioveHowever this
method has one drawback. Longer documents are givatier term
weights and smaller documents are favored overeoages. Pivoted
Unique Normalization [28] tries to correct it basgdthe document
length, the probability that a document is relevaamd the probability
that the document will be retrieved.

For the purposes of ranking we should create texchov model.
Vector space model [6](or term vector model) isabyebraic model for
representing text documents (and any objects,nergd) as vectors of
identifiers, such as index terms. It is used iinfation filtering[8],
information retrieval[7], indexing and relevancykigs.

A document is represented as a vector. Each dimesirresponds to
a separate term. If a term occurs in the docunitsntalue in the vector
IS non-zero. Several different ways of computingsthvalues, also
known as (term) weights, have been developed. Otleedest known
schemes is tf-idf weighting.

The cosine similarity (cosine angle) between q@eny documents
Is represented as follows:

Zw 0, Wi.;
Sim(Q.D; )= 1

2 2
\/Zw 3. \/Z“i,j

]

where the sigma symbol means "the sum of", Q iseayq D is a
document relevant to Q and w are weights. Weightsbe defined in
terms of variants of tf and idf, each one with tleevn customized
definition and theoretical interpretation.

In short Term Vector Theory is applying the Vedhoralysis tech-
nique to the Information Retrieval problem.
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Chapter 4

4. Apache Lucene

Lucene is a free Java solution providing indexing searching for text
documents. Lucene is not complete application réadyse but is a library
implemented in a way that implies easy deploymerifferent kind of ap-
plications intended to work with versatile text dowents. Further on is pro-
vided a list of typical application software thaincake advantage of Lu-
cene.

>

>

>

4.1.

>

Web pages- weblog, wiki software.
E-mail clients — full-text mailbox search and email log indexing.

Specific Search engines intended for developers for searching source
code, job offers, shopping.

Fundamental Lucene’s classes for indexing text.

IndexWriter - IndexWriter is used to create a new index anddd
Documents to an existing index.

Analyzer - Before text is indexed, it is passed throughAaalyzer.
Analyzers are in charge of extracting indexablestskout of text to
be indexed, and eliminating the rest. They are alsed when
searching. Because the search string has to begzed the same
way that the indexed text was processed, it isiaght@ use the same
Analyzer for both indexing and searching. Not uding same Ana-
lyzer will result in invalid search results.

The Analyzer class is an abstract class, but Lucengs with a few
concrete Analyzers that pre-process their inputifferent ways.
Should we need to pre-process input text and gueria way that is
not provided by any of Lucene's Analyzers, we wékd to imple-
ment a custom Analyzer. If we are indexing texthwiton-Latin
characters, for instance, we will most definiteged to do this.

Document - An index consists of a set of Documents, ancheac
Document consists of one or more Fields.

Field - Each Field has a name and a value. Lucene dffersliffer-
ent classes that specifies the fields from whickeaeloper can
choose.

+Field.Index - Specifies whether and how a fieldwdtide indexed.
+Field.Store - Specifies whether and how a fieldusthde stored.

19



4.2. Lucene’s index structure

Typical Lucene index is stored in a single diregtor the filesys-
tem on a hard disk.
The core elements of such an index are segmentsamts, fields,
and terms. Every index consists of one or more se¢sn Each seg-
ment contains one or more documents. Each docuheesmtone or
more fields, and each field contains one or mon@de Each term is a
pair of Strings representing a field name and ae/alh segment con-
sists of a series of files. The exact number efsfihat constitute each
segment varies from index to index, and dependshennumber of
fields that the index contains. All files belongitythe same segment
share a common prefix and differ in the suffix. Eaegment is as a
sub-index, although each segment is not a fullgpeehdent index.

» Indexing speed factor

One of the settings that have impact on the seagyctpeed is how
often the changes buffered in memory are flusheithéandex on the
hard disk. The default is to flush when random aseeemory usage is
16 megabytes. For better indexing speed flushiraylshby done by
usage of a large random access memory buffer. Aiti@oal issue is
that flushing just moves the internal bufferedestati IndexWriter into
the index, but these changes are not visible teXReéader until either
commit() or close() is called.

» Merging indexes

To optimize an index, method optimize() should bied on an In-
dexWriter instance. This will cause all documentshie memory to be
flushed to the disk and all index segments to begetkinto a single
segment, reducing the number of files in the index.the other hand,
optimizing an index does not help improve indexuegformance. Ac-
tually, optimizing an index during the indexing pess will slow
things down. Despite this, optimizing may sometirhesnecessary in
order to keep the number of open files under canfi@r instance, op-
timizing an index during the indexing process mayneeded in situa-
tions where searching and indexing happen condlyresince both
processes keep their own set of open files. A gatedof thumb is that
If more documents will be added to the index saatljng optimize()
should be avoided. If, on the other hand, the ingidxot be modified
for a while, and the index will only be searcheds ia good time to op-
timize it. That will reduce the number of segmeffiles on the disk),
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and improve search performance. The number of fired Lucene
should open during the search influence directird@ng speed.

» Indexing performance parameters

« Normal index

Files number 10 000
Words number 53100173
Time elapsed 219881 milliseconds ( 3 min 39 sec)
Milliseconds per file 21,98 milliseconds per file.
Size on disk 73 MB
+ Positional index
Files number 10 000
Words number 53100173
Time elapsed 474218 milliseconds ( 7 min 54 sec )
Milliseconds on file 47,42 milliseconds per file.
Size on disk 182 MB

4.3. Searching related documents with Lucene

Lucene’s class MoreLikeThis uses all the methodscrileed in
Chapter 3 to find related documents in an indeth&®oone provided.
For this purpose the content of the source documsesmtalyzed using
content of the index. The result of this procedsara query that is exe-
cuted and this way a result list of related docushenobtained.

There a two main options that MoreLikeThis offeos providing
the source file. The file can be in the Lucene xde can be parsed
from an external source. We tested both methodsaticed some dif-
ference in the score results that sometimes exde&@l€s. Further on
we will discuss only the case when we use as iapdbcument from
the index. The documents in the index are idewitibg unique docu-
ment number (docNum) that we will employ to identdur source
document.

Along with the source file, MoreLikeThis offers aption a set of
parameters to be provided that will guide the parsrocess. One of
them is to provide a set of field names that arbedaken in account.
If no fields are provided, MoreLikeThis will obtaall fields from the
index that are marked as “indexed”.

The next step that MoreLikeThis undertakes is aplover the list
of the fields (method retrieveTerms) obtaining tiien frequency vec-
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tor for each field, if during the indexing processm frequency vector
for the field is created, or obtains directly tleenis in the field calcu-
lating their frequency. Both options are dismissatigstop words from
the result list. The structures obtained this wey acumulated in a
HashMap, where the key is the term and the valdkesount of the
term in the document (method addTermFrequenciex)e k checked
the parameter maxNumTokensParsed. This parameteotigor the

whole document but only for a field.

The HashMap provided from retrieveTerms methodasspd to the
createQeueu method. The method computes five p&esnelated to
a term. All of them are inserted into an array dfe€ots. All arrays are
sorted in a PriorityQueue that is returned as alré®m createQueue
method. The PriorityQueue is sorted according ttwres parameter.
The other important parameter except socre isiéd for a term. This
Is a field in that the term is most often used. Tdwt of the parameters
are saved for debug purposed (IndexSearcher.e¥plain

The createQueue method loops throughout all wordbke Hash-
Map provided as an input. First checks if a termpesps in the docu-
ment more than minTermFreq parameter. If this & dhse, the next
step is to be determined the topfield parameterdotfreq parame-
ters. The topField parameter is the field in thadekin which the term
Is used most often. The docFreq is sum of the nurabéme used
terms has been used in this fields in all the denimin the index. The
docFreq parameter computed in this way must betgrehan min-
DocFreq parameter.

When we have the docFreq parameter we need the atuaib
documents in the whole index as well in order taabke to calculate
the inverse document frequency. How the idf willdxactly calculated
Is defined in a class that inherits the abstraascBimilarity. As an ex-
ample in Apendix A is described the implementatminthe De-
faultSimilarity class where can be found more dethinformation of
how idf is calculated.

The last and most important parameter that shoeldatculated is
the score. The score is calculated as a produbeaiumber of times a
term is used in the source file (term frequency)tiplied by the idf
(inverse document frequency).

As a last step the five parameters (topfield, sculfe docFreq,tf)
and the term are inserted in the priority queue.

Now, when we have all the terms in the priority ggiecan go fur-
ther on and create a Lucene query. As we mentibeéate to accom-
plish this task we will use only the name of thertethe topfield and
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the score. How many terms from the top of the gyiatueue will be
taken in account in the creating process is sdahénsetMaxQuery-
Terms parameter. The other parameter that is mneeéwathe Lucene
guery creation is boost flag. If the flag is setttae” every term in the
query will be boosted by the product of the scdréhe term divided
by the score of the term form the top of the ptyogueue.

Lucene has many Query types (TermQuery, BooleanQ@on-
stantScoreQuery, MatchAllDocsQuery, etc.) but therg parser does
not create all types. Most of the queries are mapebasic queries
like TermQuery and BooleanQuery. This is the caskloreLikeThis
Class as well where BooleanQuery type is employed.

Ones the query is generated is passed to the Sewttiod of the
IndexSearcher class. In the Search method firstlied the method
BooleanQuery.createWeight. This function returnsolject of type
BooleanWeight for the query.(BooleanWaight is actags of Boo-
leanQuery and implements interface Weight). As sdiep is called
method BooleanWeight.score that returns a Booleane®2 class
(BooleanScorer2 inherits Score class). As third last step is called
method BooleanScorer2.score that will iterates ole@uments match-
ing a query and return a result list of related uwhents. Scores are
computed using a given Similarity implementatioe(dg@pendix A).

Example of scoring :

Score: 0.21167752 is sum of :
0.052198052 = weight(content:program in DocID),duct of:

0.4598019 = queryWeight(content:program), proddict o
1.0953102 = idf(docFreg=9, numDocs=11)
0.4197915 = queryNorm

0.11352291 = fieldWeight(content:program), prodafct
6.6332498 = tf(termFreqg(content:program)=44)
1.0953102 = idf(docFreq=9, numDocs=11)
0.015625 = fieldNorm(field=content, doc=8)

0.039045364 = weight(content:model in DoclID), prodof:

0.38326484 = queryWeight(content:model), product of
0.9129886 = idf(docFreq=11, numDocs=11)
0.4197915 = queryNorm

0.10187567 = fieldWeight(content:model), product of
7.1414285 = tf(termFreqg(content:model)=51)
0.9129886 = idf(docFreq=11, numDocs=11)
0.015625 = fieldNorm(field=content, doc=8)
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Chapter 5

5. Semantic Vectors

The Semantic Vectors package is trying to fill tfag between the prom-
ising research results and the practical implentiemta@f the semantic idea.
The package creates semantic vectors for wordslatuiments applying a
Random Projection algorithm to term-document masicreated using
Apache Lucene. The result of those sets of matheah&tansformations is
that similar concepts vectors are near to eaclr atltee space. This ad-
vance technique make possible applying in pratticme extend the idea
of automatically matching related concepts.

5.1. Wordspace model [3]
The Semantic Vectors package creates a WordSpadel mdhe
concept of the WordSpace models lays on repreggtanget items in
a high directional vector space.

Semantic Vectors build the model in three stages:
+ Create basic random vectors for each document.

+» Create term vectors by summing the basic documectbxs
the term occurs in.

+ Create new document vectors by summing the terrokec
of the terms that occur in each document.

For the default indexes there is an interestingsipdgy called
training cycles that returns the result from stédmyee to stage two.

5.2. Probabilistic dimension reduction methods [1]

There are several methods in favor of dimensiodsigieg. The
most popular among them our days is the Latent Saenénaly-
sis[25].

Latent Semantic Analysis is completely straightwiard mathe-
matical method for finding relations between wordsext documents.
It does not use dictionaries, grammars or semaatisers. The input
stream is a raw text parsed into words separatedmeaningful parts
as sentences or paragraphs.

LSA [12] represents the text document as a matriwlhich each
row stand for a unique word and every column stdods text para-
graph or other meaningful passage. Each cell imtagix represents
the number of appearance of a word in a paragrafhedl from the
column index.[5] As a next step a preliminary tfan®ation is ap-
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plied on the matrix in which each cell is estimabgda function that
expresses both the word's importance in the p#atitext domain and
the degree to which the word provides informatiothie text passage.
Further the LSA applies singular value decompasii8VD) to the
matrix. SVD [11] decomposed the matrix to threeeotfmatrices. One
component matrix describes the original row ergias vectors of de-
rived orthogonal factor values, another descrilbwesdriginal column
entities in the same way, and the third is a diagomatrix containing
scaling values such that when the three componardgs matrix-
multiplied, the original matrix is reconstructechéere is a mathemati-
cal proof that any matrix can be so decomposedepityf using no
more factors than the smallest dimension of thgimal matrix. When
fewer than the necessary number of factors are, tisedeconstructed
matrix is a least-squares best fit. One can rethue@imensionality of
the solution simply by deleting coefficients in tti@gonal matrix, or-
dinarily starting with the smallest. (In practider computational rea-
sons, for very large corpora only a limited numbg&dimensions can
be constructed.)

Regardless of the give robust performance of tha tit® authors
of the Semantic Vectors package choose to use enaththod for
their purposes. This change was demanded due &farmpance is-
sues. The goals that were set in front of the Sémafectors de-
manded computationally less expensive approachaasid®n projec-
toin.

Random projections [1][4] is a powerful Locality riisgive Hash-
ing (LSH) method for dimensionality reduction. Thaain idea of
those type of methods is to separate the input wag that similar
items will fall to the same group where the numbegroups is much
smaller than the possible universe of the inpuhgte
Typical application areas are the processing ol lnmtisy and noise-
less images, and information retrieval in text doeants.

Whether this kind of experiment will bring the exped good per-
formance of the package is still under questiorerEthough it is as-
sumed that the random projection algorithm willefective enough to
give robust performance the author have left a dagk solution. The
package is implemented in way that the change @fdilmension re-
duction method can be done with minimum effecthte dther mod-
ules.

It is a hard task to compare LSA and Random Priojectbut
mainly Random Projection was preferred becaus@efdllowing ar-
guments:
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+ Random Projection performs comparably well as LiaBs
mantic Analysis.

* The Random Projection algorithm is the simpler, Hrete-
fore best for implementation, for testing and fotlaborating
with the rest of the code.

¢ It is easy to update a basic Random Projection adee-
mentally.

5.3. Software architecture

There are several reasons why Semantic VectorsaBadkecomes
so popular in such a short time.

s It is written in Java, that make it platform indegent
* It has only one dependency (Apache Lucene)
s It is easy to use

The package has two main functions

% Building a WordSpace Model. - The main utility Bild-
Model It creates a termvectors and docvectors files Qe
started with the following options:

o -d vector length or number of dimensions

0 -s [seed length] number of non-zero entries in dasi
vectors

0 -m [minimum term frequency]

0 -tc [training cycles]

0 -docs [incrementallinmemory] Switch between build-

ing doc vectors incrementally" (requires positioimal
dex) or all in memory (default case).

An option of the default model building is buildirsg
Posisional Index with thdBuildPositionallndex utility.
This utility will requite a positional index crealtdy Lu-
cene’s toolindexFilePositions Creating the model this
way will take account of the word order. A specHigu-
ment that must be provided is the window size wiliteise
a odd number defining the count of words in botlesiof
the word. The Positional Index created by Lucesme lze
used by the default model just will take more planethe
disk.

Further enhancement is the Permutation index. It is
created in the same manner like the standard Bwaiti
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Index with option -indextype permutation or -indgpe
directional. A permutation index encodes the positof
each term relative to each other term within airsfjdvin-
dow, while a directional index encodes whetherrn tec-
curs before or after each other term in this stjdanndow.

% Document Search — Semantic Vectors package offges-a
satile set of searching utilities. Their detail cigstion and
performance is objective of the next chapter.
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Chapter 6

6. Similarity search with Semantic vectors

The major subject of this section is to revise éiad the searching
features provided by the package and to try to sama® their effi-
ciency of finding related documents. This fact ireplgood grasp of
the ideas related to the search implementations Thapter will pay
more attention exactly to those modules of the agek

6.1. Search type arguments
% SUM - default option
v Searching for Documents using Terms

java pitt.search.semanticvectors.Search -g terrak®bin -s docvec-
tors.bin term

v Using Documents as Queries

java pitt.search.semanticvectors.Search -g dockgebin -s termvec-
tors.bin - lowercase false bible_chapters/Genelag@r 1

% SPARSESUM
Build a query as with SUM option, but quantize parse
vectors before taking scalar product at search.time

java pitt.search.semanticvectors.Search -searchépaesesum terml
term2

% SUBSPACE
"Quantum disjunction” - gets vectors for each quiemm,
create a representation for the subspace spannéueby vec-
tors, and score by measuring cosine similarity witls sub-
space.

% MAXSIM

"Closest disjunction" - get vectors for each queiryn, score
by measuring distance to each term and taking themam.
% TENSOR
A product similarity that trains by taking orderedirs of
terms, a target query term, and searches for the wdose ten-
sor product with the target term gives the largasilarity with
training tensor.
% CONVOLUTION

Similar to Tensor, product similarity that traing taking or-
dered pairs of terms, a target query term, andckearfor the
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term whose convolution product with the target teyives the
largest similarity with training convolution.

s PERMUTATION SEARCH

The technique of using vector coordinate permutati@lso
interpreted as rotations) to investigate the eftdcivord order
on vector semantics [2]

6.2. Graphical user interface application

The first thing that occurred to our minds at tregding of this
work was that some graphical user interface wilkenenonitoring of
the process of indexing, creating a model and kesgcthe model
much more comprehensive. The Semantic Vectors gackad Lu-
cene Apache provide as with a lot of alternativasamly for searching
but even how to create the index and the model.eSainthe alterna-
tive options are connected through dependencyiorfatFor example
certain type of searches expected a certain typedeik. That is why
as a first step we created a Java applicationishiat provide us with
all possible options trough a graphic user intexfaod at the same
time will look after the dependences between tharpaters through-
out the creation and searching process. Not da#telace it will pro-
vide us with the ability for faster testing and oppnity to put outs
new ideas and new knowledge gained about Semaattoké package
capabilities right in the application.

=10fx]

File Help

Create Lucene Index I Create Semantic Vectors  Semantic Search I Lucene Full examples I Lucens Search I Lucene Search Help I MoreLikeThis I

Choose Document o Term ICIank;f_f':lr_index\Hurnaime\D3b-Pr-Jp-:sa\F-:rMethDdsT-Jo\ng.txt Browse i
Lucene index I Bromse I
Quary Yactor Stars i docvectors.bin :j Browse |
Search Vectore Store i docvectors.bin _ﬂ Browse |

Fesult numbar I 1599
Szarch Type iSUM _Vj Search I
I Lowercase I Text Index

Searching term vectors, searchtyps SUM ... :]
Search output follows ...

1| 1.0:E:"Clanky for index'Humaine'D3b-ProposalForMethodsToalbox.txt

2| 0.8821614:E:"Clanky for_index'lrec’2002"87.txt

3| 0.8810541&:E:'Clanky for_ index'Humains'Déc_potsntial sxemplars_intsraction.txt
4| 0.8790798:8: Clanky for index’Coling'.2000%41.txt

5| 0.8788062:E: Clanky for_ index'Humaine'D4c potential exemplars signals to_signs.
&| D.8781144:E: \Clanky for index'lrec 2004"NCMessags.txt

7] 0.8745102:E:"Clanky for_ index’Humaine'DSc potential exemplars usability.txt
5] 0.8705881:E: Clanky for index'Coling 2000%28.txt

G| 0.8672786:E: \Clanky for index'Coling'2000%40,txt

10| 0.8&6847147:E:|\Clanky for index’lrec’2004JMM=ssage.txt

11| 0.8&38176:E: \Clanky for index’lrec’Z004%I.txt

12| 0.8£283314:8: Clanky for index'.Humaine'D3d potential exemplars databases.txt
13| 0.8818788:E:"Clanky for_index'lrec’ 2004 kIII.txt

14| 0.88187585:E: Clanky for index' Humaine'.DEb.txt

15| D0.B&097£93:E:\&lanky for index'lrec'200081.txt

1

bl |
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6.3. Automated testing

The GUI application give us a good start but inad out that it
will be hard to implement automated tests for Sdroarectors pack-
age in this environment. The results produced byeBeic Vectors are
in plain text. It made us think about an environirtiat will provide
us with powerful tools for text manipulation.

A popular decision of our concern are the Unix lsh&ur choice
was the Bash shell. This shell is one of the mopufar and creating a
scripts is relatively easy.

The corpora used for testing comprise a large amotuscientific
publications presented on the different kind ofrese The fact that
those articles were prepared for events with agetti@pic of relatively
narrow scientific research areas make us thinkdbatto this fact we
could assume that the articles from one event ieerhkely to be rec-
ognized by the Semantic Vector Package as docuntaatshave
common semantic ground.

Test cases presented further on are motivated tlhencommon is-
sues currently attracting the attention of the aed®es working in the
field of natural languages linguistic computer es@ntations.

6.3.1.Bash scripts set

The bash scripts set implemented for those tesiscamprised
from three main files and has one dependency. et £xpected that
will find “pdftotext” executable file in the currewlirectory. This file is
part of the poppler-utils rpm package.

Theauto_sem_vec_test.shripts provide a preprocessing of the
documents set and convert the pdf files to textgipdftotext tool.

Thestart_sem_test.sécript parses the input parameters from the
command line estimate them and executesém_test.shcript with
the appropriate parameters.

The sem_test.sh script looks for the most simitaudnents for
each document from the index with the provideddeag option,
parses the output and estimates the results.

6.3.2.Searching algorithms’ productivity
The first test compares the SUM, SUBSPACE and MAXSI
searching options provided by Semantic Vectors agek The specif-
ics’ of each of the searching options was alreasigussed.
The test file set comprises 237 docs (1 036 508Isyoseparated
by topic relevance to ten folders. Each folder cosgs at least fifteen
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documents and every document comprises at least Hiwndreds
words. The Semantic vectors index is created inrgening cycles.

To each result line is assigned a number from &.tGhe test
scripts run a search for every document from thesd add the num-
ber of the result line that provides a documeninfitbhe folder where
the file resigns to a common sum. At the very dreldum is divided
by the number of the files processed.

Method Results
SUM 16.443037974
SUBSPACE 16.443037974
MAXSIM 16.443037974

The result of the test is quite weird. The outdudlbthree different
types of searches is the same. The authors wemeratl about this is-
sue.

Additionally the test provides the average numbdesimilar docu-
ments found in the result set of documents thagmes in the same
folder. The value is 4.772151898 for list resultsem documents. It is
a little less than 50 %.

6.3.3.Training cycles

In this test we will try to investigate the impamdt more training
cycles on the Semantic Vectors’ search performance.

Method One cycle Five cycles Ten cycles Twenty cgsl
SUM 0.796762389  1.896564933 2.758944822 2.795733724

SPARSESUM 14.045226130 17.145728643 25.2562814Q7.185929648
SUBSPACE 2.160514266  1.156582368 2.758944823 2.795733716
MAXSIM 2.870141037  1.139624238 2.758944822 2.795733724

The result of the test seems quite optimistic. {Ese proves the ef-
ficiency of the model training feature. From theuks can conclude
that a training of ten cycles is optimal.

6.4. Indexing performance parameters

» Semantic Vectors index
o Normal index

Number of documents 10 000
Number of terms 688677
Training Cycles 1

Time elapsed 55 seconds
Size on disk Tems 55 MB

Size on disk Docs 8 MB
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Number of documents

Number of terms
Training Cycles
Time elapsed
Size on disk Tems
Size on disk Docs

o Positional indexes

10 000
688677

10

378 seconds
55 MB
8 MB

= Permutation index

Number of docs
Number of terms
Vector length
Window size
Time elapsed
Size on disk Perm

Size on disk Random

Number of docs
Number of terms
Vector length
Window size
Time elapsed
Size on disk Tems
Size on disk Docs

Number of docs
Number of terms
Vector length
Window size
Time elapsed
Size on disk Tems
Size on disk Docs

10 000

68477
200
3

164 seconds (2 min 44 sec)
55 MB
55 MB

10 000
68477

200

11

509 seconds (8 min 29 sec)
55 MB

55 MB

10 000
68477

100

138
28 MB
28 MB
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= |ncremental index

Number of docs 10 000

Number of terms 68477

Vector length 100

Window size 3

Time elapsed 162 (2 min 42 sec)

Size in Disk drxnterm 55 MB

For building this index is used the Lucene’s intleat provided the
numbers discussed in Chapter 4. The Buildindexsatasated for this
index 1257308 terms and 28643 docs in 135 secdwd#/e can see
the Semantic Vectors’ index comprise almost oneshod documents
less than the Lucene’s index. This is because dneersion process
from pdf to text is not on hundred percent sucegsSiome times the
result text document has not enough recognizablelsvand the Se-
mantic Vectors failed to build a vector for thiscdment. In case that
we provide such document that has no vectors imntdhex as a search
parameter the Sum, Sparsesum and Maxsim seareb ggmerate no
output. On the other hand searching with type Satespill generate
error output that can cause problems in automattsas unpredictable
output. This problem is handles in function testrSke res in
sem_test.sh script.
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Chapter 7

7. MoreLikeThis vs. Semantic Vectors

In this chapter we will try to estimate some teatadthat should
give us an answer of the question how well perftrenadvanced tech-
niques used by Semantic Vectors versus the Mordhilseapproach.

The test was done on a set of 237 text files trekwlustered into
ten folders. This way each folder claimed to cosgpnielated docu-
ments that are less related to the files in theakethe set of folders.

We are to look for similar documents for each of @37 text
documents. We will expect that most of the reswls resign in the
same directory as the one provided as an inpust fEut we will em-
ploy to estimate the performance of the methodséarching related
documents. The method that places more documemtsthre directory
where the source document resign in the resulviitbe estimated as
more successful. The result list will be compriséten document.

There is one specific thing related to the Semangictors package
that should be taken into account. The Semantidove@ackage not
always provide the same result list in case thexrfies were recre-
ated. Due to this fact we decided to run the tsttimes and compute
an average set of results based on the resuliseof single execution.

For all of the tests bellow we created a Lucenetex (class In-
dexFiles) with default values for all options. Thias not the case with
the Semantic Vectors’ indexes. Trying to improve gerforms of the
Semantic Vectors package we experiment on vectafs dvfferent
length.

In the searching procedure for Semantic vectorsisesl the stan-
dard approach for related documents search poinbiotp query
searching vectors to docvectors*.bin.

For searching with MoreLikeThis class we created @un class
that in addition obtaineds the “path” field for thacene’s index for
the purposes of the test. The other change thahade was based on
results of our previous research work on MoreLikeTn this work
we found out that the MoreLikeThis performs besewkhe number of
terms in the query is about one hundred.

The test results are presented in a simple takl@agiing only the
average number of times when for a search for &@ioesource file a
given method obtained more files from the folderevihe source file
resign that the other method. The last row is xeskfor the number of
time when both methods performed equal.
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» The table below represent the result of the feest.tin this
test case Lucene’s class MoreLike this performedhrhet-
ter than Semantic Vectors.

Training Cycles 1 (default)
Vector length or num- 200 (default)
ber of dimensions

Vector Seed Length - 20 (default)
Number of non-zero en-

tries in basic vectors

MoreLikeThis 119.4
Semantic Vectors 70.5
Equal 47.1

» The results from the previous test made us thinking way
how to improve the performance of the Semantic &ect
package. We started with the most logical approacheas-
ing the values of the Vector Length and Vector Sesapth.
In addition put in practice the training index f@& of the
package and trained the index ten times (see tts fer
SV).

Case 1:
Training Cycles 10
Vector length or num- 200
ber of dimensions
Vector Seed Length - 50
Number of non-zero en-
tries in basic vectors

MoreLikeThis 123.1
Semantic Vectors 69.4
Equal 44.5
Case 2:

Training Cycles 10

Vector length or num- 200
ber of dimensions

Vector Seed Length - 50
Number of non-zero en-
tries in basic vectors
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MoreLikeThis 123.1

Semantic Vectors 69.4
Equal 44.5
Case 3:

Training Cycles 10

Vector length or num- 400
ber of dimensions

Vector Seed Length - 20
Number of non-zero en-
tries in basic vectors

MoreLikeThis 117.9
Semantic Vectors 71.7
Equal 47.4
Case 4:

Training Cycles 10

Vector length or num- 400
ber of dimensions

Vector Seed Length - 20
Number of non-zero en-
tries in basic vectors

MoreLikeThis 117.9
Semantic Vectors 71.7
Equal 47.4

As we can see despite our efforts to provide afispgue
combination of options the results do not differamu

> As a last attempt we decided to dramatically ineeghe val-
ues of the Vector length and Vector Seed Length levels
ten times higher than the default ones.

Training Cycles 10
Vector length or num- 2000
ber of dimensions

Vector Seed Length - 100
Number of non-zero en-
tries in basic vectors
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MoreLikeThis 111.1
Semantic Vectors 79.5
Equal 47.4

In the results of this search we can see that S#nan
Vectors starts to perform better but the questofor what
price. As we can see we go ten time over the nodetult
values. This cause the creating of the index texteemely
slow and to need a lot of system resources. Tloisnfakes
this case nearly impossible to be put in practice.
The software (Java, Perl) that provide the testbmafound on the

CD attached. The software is independent from thexubry structure
or filenames so the test can be executed on athsiskts as well.
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Chapter 8

8. Similarity search in collections according to

user's feedback

In this chapter we will go for chasing another tdvajing task. Our
objective will be to investigate the possible agmttes of implement-
ing the similarity search system that is to takennad user feedback in
account. Further on we can even dare thinking dfimgaa record of
the user feedback and use it for automatically owed similarity
search.

In the previous parts of this work we presented approaches of
similarity search along with some test performatiag. In those stud-
les the Semantic Vectors, as a representative ridva attractive se-
mantic similarity search method, were performindl et still less ef-
fective than Lucene’s class MoreLikeThis. When weravthinking
about which method to employ in our system, thessus experience
convince as that Lucene and MoreLikeThis will be thore appropri-
ate way to achieve our goal.

The system architecture is based on a three lesdemThe first
stage is Searching followed by Retrieving useradfeck and once
again Adjusted Searching according to the datzewetd in stage two.
As we already mentioned above for the searchingwpaintent to em-
ploy Lucene’s MoreLikeThis class. The main crux enavith high
probability will be the middle part or how to retve the user’s feed-
back in order the following search to be more aaisur

Retrieving the user’'s feedback will be in closeatieh with the
way how MorelLikeThis implements the similarity sgar A good
grasp of this could help us to find out what kindirdormation the
user could provide for us the can be used for raoceirate search.

As we described in details in the previous chapidoseLikeThis
requires a source text file as an input parametdrpsoduces a query.
The query itself is a set of terms along with the&ights. Then this
guery is applied to the whole index and result deeots list is ob-
tained. The documents in the list are documentsvfoch the terms in
the query are estimated with height weight.

What first occurred in our minds was to ask ther igeselect one
document from the result list obtained from a serggarch that accord-
ing to him is not related to the document providsdn input.

Having this document we can find the terms in thlected docu-
ment that match with the query. We will providestlist to the user
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with the position of the term in the selected doentand the poison
of term in the source document. The user can tle&ttsa bunch of
terms that think that are not appropriate. Thosedwavill be auto-
matically added to the stop words list. Stop wdrsisis a feature of
MoreLikeThis that comprises words that should nettaken in ac-
count in comprising the query.

The words that probably should be added to the wtwgls list are
words that have small order number in the seledtediment and big
order number in the source document. This will nsetliat the term is
important for the selected document and not so rtapdb for the
query.

If we look in how the score is calculated in Lucewe will noticed
that the number of overlapping terms between tleeygand the docu-
ment is important from it self.

Experimenting with this method it turned out thiatve select all
terms that have position greater than half of therg length in the
source document, the selected document step dovenasgosition in
the result list.

=1 x]

Basic Application Example i ]

Insett File to the Index  More Like This Search I

Diocument ¢ |:'|,aaaINetBeans1,W0rkspacelLucene_Index_FieIdsICEUR_For_Index_aIIIFoIder_DIFoIder_U_FiIe_lD.txt Browse |
Min Term Freg I 252 i Word Len I 332 Max Query Terms 1005 Fields : [ Title [ authors
Min Doc Freg I 553 Max Word Len I Oai Max Num Tokens Parsed | 5,000 W content [ summary

Skop Words |Iogic programs formula variable

™ Boost words Number of results E Search |
Reslts Nurnber Score ' DoclD | Doc Folder File Name Doc Tite

1 0.91392666 |8 folder_0 Folder_0_file_10.txt |Automated Formal Verification of PLC Programs Writken in IL ‘i

2 0,39955494 4 folder_0 Folder_0_file_6.txt  |Symbolic Faulk Injection

3 0.36093072 5 folder_0 Folder_0_File_7.txt  |A Termination Checker for Isabelle Hoare Logic

4 0.251216 7 folder_0 Folder_0_File_9.txt  |Fully Verified JAVA CARD API Reference Implementation

5 9 olde [Folder_0_File_11.txt |Combining Deduction and Algebraic Constraints For Hybrid System Analysis

3 0.22044659 |3 Falder_0 Folder_0_file_S.txt  |A History-based Verification of Distributed Applications

7 0.20309332 |10 Falder_0 Folder_0_file_12.txt |A Sequent Calculus For Integer Arithmetic with Counterexample Generation

i} 02012648 |6 Falder_0 Folder_0_file_8.kxt  |The Heterogeneous Tool Set

] 0.19727838 [0 folder_0 folder_0_filz_2.kxt  |Farmal Device and Pragramming Madal for a Serial Interface

10 0,17544544 |1 Folder_0 Folder_0_filz_3.txt  |Combinations of Theoties and the Bernays-Sch™nfinkel-Ramseay Class

11 0.1565813 |35 folder_3 Folder_3 file_1.txt  |Modeling Data & Processes for Service Specifications in Colombao

12 0.14172813 |2 Folder_0 Folder_0_file_4.txt  |An Advanced Logic For Inkeractive Componenk Enginesring ;!

Interesting terms in the sel=cted document that are comman with the query Common: 22

Pasition in the query

Pasition in the selected document

variables

36 systems 36
1 [variable 12
46 symbalic 41
47 states 7
50 state El
53 have 78
60 24

which
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Example: We made a test search with our systenpdobfication
“Using Formal Concept Analysis Using Formal ConcApalysis for
Heterogeneous Information Retrieval” from workshdpl-162. For
our surprise the best result for the search wadiqation “LSI vs.
Wordnet Ontology in Dimension Reduction for Infortioa Retrieval”
from workshop Vol-98.

We were determined to find out why this happensaAsst step
we decide to remove all words that are common &th Ipublications
but obviously do not bring any meaning. Those wovdee :

document, concepts, concept, recall, calculatedyean, from

The following adjusted search places our documeset osition
down in the list. This was unsatisfying result &t So we decide to go
further and remove another set of words that weteapic spesific:

model, precision, set, threshold.

The result of this action was that the document mased seven
positions down. Given that both publications hawenmon ground,
the Information retrieval, we were satisfied frome tresult. The words
that left were:

retrieval, vector, query, collection, similaritynpformation, data-
base, search.

41






Chapter 9

9. Future work and clustering of document
collections

Clustering can be considered as the most impotastipervised
learning problem [22]. The purpose of a clustemgprithm is to add
structure to a set of data. A loose definition lofstering could beal-
gorithm that groups together objects with simikattires”. Often simi-
larity is estimated as distance between the it&msh item within a
cluster would be similar, and dissimilar betweean®nts in other
clusters.

In the case displayed on the scheme above is edsy tdentified
four clusters into which the data can be dividelde Bimilarity meas-
ure is distance. The main objective is to put togetin one cluster
items that are “close” in geometrical matter. Thygproach is well
known as distance-based clustering.

9.1. Clustering methods

9.1.1.Hierarchical agglomerative clustering

Hierarchical algorithms find clusters using prewlyuestablished
clusters. Hierarchical algorithms can be agglonnezaf'bottom-up")
or divisive ("top-down"). Agglomerative algorithnigegin with each
element as a separate cluster and merge themangger Iclusters. Divi-
sive algorithms begin with the whole set and prdceedivide it into
smaller clusters.

Steps of the Hierarchical Clustering Algorithm are

» First N*N document similarity matrix is formed. Badocument is
placed into its own cluster.
» The following two steps are repeated until only ohester exists.
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o0 The two clusters that have the highest similanig/faund.

0 These two clusters are combined, and the similastyeen
the newly formed cluster and remaining clustersomec
puted.

> As the larger cluster is formed, the clusters thatged together
are tracked and form a hierarchy.

There are different methods to calculate the sihitylaneasure be-
tween two clusters like Single Link Clustering, Cuete Linkage,
Group Average etc.

Once the hierarchy is generated, it is necessatgtiermine which
portion of the hierarchy should be searched.

A top-down search starts at the root of the tred @mpares the
guery vector to the centroid for each subtree. Stietree with the
greatest similarity is then searched. The processiraies until a leaf
Is found or the cluster size is smaller than a @teuinined threshold.

The alternative method is a bottom-up searchsstath the leaves
and move upwards.

9.1.2.Clustering without a precomputed matrix

In this case data are grouped in an exclusive s@ayhat if a cer-
tain object belongs to a certain cluster then itldmot be included in
another cluster. As an example of this group obr@tlgms can be poin-
ted out K-means.

K-means algorithm was presented by MacQueen in .196i5 is
one of the simplest unsupervised learning algostithat solve the
well known clustering problem. The procedure folkow simple and
easy way to classify a given data set to a certamber of clusters
(assume k clusters) fixed before hand. The maia ideto define k
centroids, one for each cluster. These centroidsildibe placed in a
specific way because of different location causéferént result. So,
the better choice is to place them as much aslgessir away from
each other. The next step is to take each poimngeig to a given
data set and associate it to the nearest centWhien no point is left,
the first step is completed and early clusterindase. At this point we
need to re-calculate k new centroids as centetiseo€lusters resulting
from the previous step. After we have these k newtroids, a new
binding has to be done between the same data is#$ jamd the near-
est new centroid. A loop has been generated. Assaltrof this loop
we may notice that the k centroids change theiatlon step by step
until no more changes are done. In other wordsr@ielstdo not move
any more.
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Finally, the algorithm objective is to minimize anttion, in this
case a squared error function.
LA ] ] 2
J = Z:Z”"{FII _'5.;-'"
J=1 iml
<[ - . .
Where ™ 7l is a chosen distance measure between a data point

[l . . . .
"and the cluster centrés , is an indicator of the distance of the n

data points from their respective cluster centers.

Although it can be proved that the procedure willagys terminate,
the k-means algorithm does not necessarily findrbst optimal con-
figuration, corresponding to the global objectiwandtion minimum.
The algorithm is also significantly sensitive te timitial randomly se-
lected cluster centers. The k-means algorithm canrum multiple
times to reduce this effect.

9.1.3.Efficiency issues related to the document clusterg

In our days when an efficiency problem is facedftrst thing that
comes to mind is to try to divide the processingratependent parts
and execute each of them simultaneously on sepeoakssors. This
of course in not always a trivial task.

From the common algorithms used for clustering icst Sight the
hierarchical clustering seems to have potentialpfnallel processing
[20]. According to some research papers these idlgms often have
large computational overhead or where the resuéisaaceptable the
hierarchical clustering algorithm is applied on tett data.

The light in the tunnel brings the Arrays with Refigurable Opti-
cal Buses(AROB) and the Parallel Random Access MaclPRAM)
[14]. These algorithms have better performance oreaghan existing
algorithms

However there is one more quite attractive possibthat can
speed up the clustering. Canopy clustering [24bmpletely new con-
cept for which | heard for the first time don atlee about MapRe-
duce. MapReduce is a Google software framework suwgtports
distributed computing on large data sets on clastécomputers. The
functionality and the name are inspired by the raag@ reduce func-
tions that are commonly used in functional prograngmn

The idea is to perform clustering in two stagesstfa rough and
quick stage that divides the data into overlapinigsets we call cano-
pies, then a final stage in which expensive disgameasurements are
only made among points that occur in a common candipis differs

X
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from other clustering methods in that it uses twiberent distance
metrics for the two stages, and forms overlappaggans.

Clustering based on canopies can be applied to whffieyent un-
derlying clustering algorithms, including K-meari3]2

All the very fast distance metrics for text usedskearch engines
are based on the inverted index. An inverted index matrix in
which, for each word, there is a list of documarastaining that word.
When we want to found all documents close to argyeery, we do
not need explicitly to measure the distance tdatluments in the col-
lection, but need only examine the list of docureexgsociated with
each word in the query. The documents, which hawaards in
common with the query will never be considered.Stwe can use an
inverted index as a distance metric that is baseith® number of
words two documents have in common.

9.2. Clustering with Semantic vectors

In the first part of this work we tried to examitiee robustness of
the main features of the Semantic Vectors pack@ige.results were
encouraging and we decided to investigate the Ipiligsiof real appli-
cations deployment. We needed an application thabth solving up
to date issue and related to the area of docunocamparison.

With the increasing number of documents and weburegs ac-
cessible on Internet the document clustering ofudwmnts becomes
very attractive. The enormous number of resultyides by the mod-
ern searching machines implies the need of categgan. An example
of this idea is “Clusty” (http://clusty.com/)[213, searching engine de-
veloped in Carnegie Mellon Universitiiat is trying to discover the
most important word and phrases for each resulpanhd in a separate
category named according to those core expressidrsauthor of the
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project expects that this feature will be veryaative to the user and
will make the searching easier and more efficient.

Our initial goal was to try simulating the searciu dhe categoriza-
tion process as a part of a searching engine.

For a document set for the search we carefullycesdedocuments
and separate them in ten categories. After thatstaged a testing
process, which aim was to discover the documerais dbmprise the
core of each the category. We assumed for corendeais, those
documents that are similar at least to for oth@udwent from the same
category according to the Semantic Vectors packagdt search. All
documents that were not in this range were dismisse

Given that now we had well preformed categoriescaidd go for
the next step of the test. In order to check tlpabdity of the Seman-
tic Vectors package to perform clustering we wergull out two files
from each category. The set collected this way usk for input of a
cluster algorithm.

The algorithm that was to determine witch inpug fib witch cate-
gory will belongs is as most intuitive and simplde separation was
to be done according to the number of files fromtase category in the
result set of documents. The category that comptise biggest num-
ber of file from the result set will be destinatifmider of the input file.

For the purposes of the test a naming conventiausad for nam-
ing the files and the directories. This way frome ttame was clear to
witch category each file belongs. This approach twabkelp as a lot
with estimating the results of the test.

The estimation method was based on how many fikre watego-
rized to different folder than the folder that thesed to belong.

During the tests a weird behavior of the Semargictars package
was noticed. After recreating both index files, tlesult of the same
search were similar, but not the same. This madeoasy, weather the
Semantic vector package will manage the clustetasg due to this
light variations of the results.

To estimate the results we start the test ten tiamed average
mishints were less then 10 % that we take as aalokept

The approach that we used actually does not impleaeeal clus-
tering, because we used predefined categories|9N¥Bat we did is
more or less categorization[19] but according te thsults we can
claim that implementation of K-mean algorithm oe thase of Seman-
tic Vectors package will perform well. There is pne crucial issue
ahead of us where we could face problems and ghilsei speed. The

47



combination of K-means and Canopy that was discusd®ve can
probably solve this issue.
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Chapter 10
10. Summing up

At the end we will try to make a summary of the éf@n that
brings this work.

At first place we hope that the results of thesestd the applica-
tions that were created during preparing this waeitkbe valuable for
other researches working in the area of the Inftionaetrieving and
especially for those who intend to use the Semafdtors package or
Lucene’s class MoreLikeThis.

With MoreLikeThis we showed that obtaining a feedbf&iom the
user is not “causa perduta”’. Collecting this datd ase it in similar
searches can be a topic for a future work.

We also managed to show that Semantic Vectors padkaa reli-
able software product that can be benefit for ttedamic community
and with its scalability implies commercial usage veell. Semantic
Vector package could help researches and develdpersncentrate
their efforts on the linguistic properties of saeitext. There were sev-
eral light problems that we provided to the authafrthe package as a
feedback. We did appreciate their fast and detaigdies that once
more convinced us that there is not doubt thatpitogect is run by
team full of enthusiasm. We hope that this commatioa was useful
for both sites and will help Semantic Vectors pgekeo come up with
new ideas and push the limits further.
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Appendix A

The search scoring in Lucene is defined in therabsstlass Similarity.
DefaultSimilarity.java inherits Similarity and ingrhents a default weight
scheme for scoring the queries and documents.

The score of query q for document d is computecasne-distance or
dot-product between document and query vectors\eaor Space Model
(VSM) of Information Retrieval. A document whosect@ is closer to the
guery vector in that model is scored higher. Tharesgés computed as fol-
lows:

score(q,d) = coord(q,d) - queryNorm(q)Z: (tf(t ind) - idf(t)2 - t.getBoost()- norm(t,d))
ting
The detail description of the default implementatitom the De-
faultSimilarity class follows:

> tf(tin d) computes the term's frequency, defined as the auofitimes
term t appears in the currently scored documebBbduments that have
more occurrences of a given term receive a higtmes The default
computation for tf(t in d) in is:

tittind) = Frequenc;y2

> idf(t) stands for Inverse Document Frequency. This vialegual to the
inverse of docFreq (the number of documents in wthe term t ap-
pears). This means rarer terms give higher coritabuo the total score.
The default computation for idf(t) in is:

numDocs
idf(t) = 1+log ( _ )
docFreq+1

» coord(qg,d) is a score factor based on how many of the quemd are
found in the specified document. Typically, a doemtrthat contains
more of the query's terms will receive a highersdban another docu-
ment with fewer query terms. This is a search fias¢or computed in
coord(q,d) by the Similarity in effect at searainei

» queryNorm(q) is a normalizing factor used to make scores batwee-
ries comparable. This factor does not affect docunmenking (since all
ranked documents are multiplied by the same fadboit)rather just at-
tempts to make scores from different queries (enalifferent indexes)
comparable. This is a search time factor compuyettid Similarity in ef-
fect at search time. The default computation is:
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1

gueryNorm(q) = quer yNor n{ sumf Squar edWei ght's) = L
sumOquuaredWeights/2

The sum of squared weights (of the query termsjommputed by the
query Weight object. For example, a boolean quemputes this value
as:

. 2
sumOf Squar edWei ghts = . get Boost () 2. Z ( idf(t) - t.getBOOSt())
ting

> t.getBoost()is a search time boost of term t in the query gpesified in
the query text, or as set by application callsetBeost().There is really
no direct API for accessing a boost of one terra multi term query, but
rather multi terms are represented in a query ds frermQuery objects,
and so the boost of a term in the query is acdesbip calling the sub-
guery getBoost().

» norm(t,d) encapsulates a few (indexing time) boost and Fefagttors:

Document boost- set by calling doc.setBoost() before adding the
document to the index.

Field boost- set by calling field.setBoost() before adding field

to a document.

lengthNorm(field) - computed when the document is added to the
index in accordance with the number of tokens ffield in the
document, so that shorter fields contribute mordaéoscore.
LengthNorm is computed by the Similarity classfieet at index-

ing.

When a document is added to the index, all the alf@stors are mul-
tiplied. If the document has multiple fields withetsame name, all their
boosts are multiplied together:

norm(t,d) = doc.getBoost() - lengthNorm(field) H f.getBoost()

field f in d named a$

However the resulted norm value is encoded asgheshyte before
being stored. At search time, the norm byte vaduead from the index
directory and decoded back to a float norm valdnes €ncod-
ing/decoding, while reducing index size, comes \tih price of preci-
sion loss - it is not guaranteed that decode(er(gpde x. For instance,
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decode(encode(0.89)) = 0.75. Also that searchisn@o late to modify
this norm part of scoring, e.g. by using a differ8milarity for search.
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