

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

Hledání souvisejících dokumentů na webu
Similarity Search in Document Collections

DIPLOMOVÁ PRÁCE
MASTER‘S THESIS

AUTOR PRÁCE
AUTHOR

Bc. Dimitar Jordanov

VEDOUCÍ PRÁCE
SUPERVISOR

RNDr. Pavel Smrž, Ph.D

Brno 2009

 3

Zadání

 5

Abstract
The main objective of this work is to estimate the efficiency of the avail-

able software for similarity search in document collections and on two in
particular, Semantic Vectors and Lecene’s class MoreLikeThis. The paper
provides a comparison of those two approaches and introduces methods that
can lead to improving the quality of the results generated by a search.

Keywords
Semantic Vector , Random Projection algorithm, Apache Lucene, Match-

ing technologies, Natural Language Processing, Text Clustering, Mo-
reLikeThis.

 7

Declaration
I confirm that this final project is my own work, except where I have ex-

plicitly indicated otherwise. The list of all sources I have used in the process
of creating this work are provided at the very end of the paper.

Acknowledgments
I would like to thank my supervisor, doc. RNDr. Pavel Smrž, Ph.D for

the, encouragement, the patient guidance and advices that he provided
throughout the time I was preparing this work. I have been extremely lucky
to have a supervisor who cared so much about my work, and who was re-
sponding to my questions and queries so effectively.

Brno, 26 May 2009
….……………………
Bc. Dimitar Jordanov

 9

Contents

1. Introduction...11
2. Motivation ...13
3. Information retrieval and text mining... 15
 3.1. Document indexing. .. 15
 3.1.1. Document linearization ... 15
 3.1.2. Filtration..15
 3.1.3. Stemming.. 16
 3.1.4. Weighting ... 16
 3.2. Term frequency and Inverse document frequency...................... 16
 3.3. Inverted index.. 17
 3.4. Cosine-distance ratio.. 17
4. Apache Lucene.. 19
 4.1. Fundamental Lucene's classes for indexing text 19
 4.2. Lucene's index structure ... 20
 4.3. Searching related documents with Lucene 21
5. Semantic vectors ... 25
 5.1. Wordspace model.. 25
 5.2. Probabilistic dimension reduction methods................................ 25
 5.3. Software architecture.. 27
6. Similarity search with Semantic vectors... 29
 6.1. Search type arguments.. 29
 6.2. Graphical user interface application.. 30
 6.3. Automated testing ... 31
 6.3.1. Bash scripts set .. 31
 6.3.2. Searching algorithms’ productivity 31
 6.3.3. Training cycles... 32
 6.4. Indexing performance parameters.. 32
7. MoreLikeThis vs. Semantic vectors .. 35
8. Similarity search in collections according to user's feedback 39
9. Future work and clustering of document collections 43
 9.1. Clustering methods ... 43
 9.1.1. Hierarchical agglomerative clustering............................... 43
 9.1.2. Clustering without a precomputed matrix 44
 9.1.3 Efficiency issues related to the document clustering............ 45
 9.2. Clustering with Semantic vectors ... 46
10. Summing up... 49
Appendix A..51
References ... 53
List of attachments .. 57

 11

Chapter 1
1. Introduction

One of the major problems our days in the subject of text information
storage and retrieval is how to represent the content of text documents in a
manner that provides not computationally expensive information retrieval
and documents comparing.

The main subjective of this work is to present two approaches of similar-
ity search. The Semantic Vectors package as a prominent approach of de-
ploying modern matching technologies and Lucene’s class MoreLikeThis.
The source of motivation can be found in the rising number of scientific ar-
ticles provided to the community of researches and the difficulty to organize
them in a way the will provide time saving information retrieval.

Chapter 3 goes through the basic issues and techniques related to the in-
formation retrieval and text mining. In deep are discussed the main steps of
the document’s indexing process and the relational values between the
items in the index.

Chapter 4 brings up details specific to Apache Lucene package along
with discussion about the parameters of the index that can be created by the
package supported by interesting test data. The last part of the chapter is
dedicated to Lucene’s class class MoreLikeThis.

Chapter 5 is a brief overview over the main features of the Semantic Vec-
tors package. The used approach for similarity search is discussed empha-
sizing on the probabilistic dimension reduction methods including its base
concepts, application areas and future development.

Chapter 6 is again dedicated to the Semantic Vectors this time rather than
theoretically the chapter is trying to provide the reader with some test data
and conception conclusions.

Chapter 7 is trying to compare the efficiency of the both approaches dis-
cussed in the previous chapters, MoreLikeThis and Semantic Vectors.

Chapter 8 is chasing another challenging task. Its objective is to investi-
gate the possible approaches of implementing the similarity search system
that is to take manual user’s feedback in account.

Chapter 9 is looking forward in the future. The chapter is looking for the
answer whether Semantic Vectors package can be used for managing the
task of clustering text documents that it self could be considered as impor-
tant unsupervised learning problem.

 13

Chapter 2
2. Motivation

This paper was motivated from the everyday increasing number of scien-
tific articles and memos provided by magazines and different scientific
events and the issues that this fact provokes.

The fact that we have to deal with a large number of documents implies a
demand of a system that can maintain relations between the documents
based on meta data or some other method. Web based application like Cite-
Seer and Google Scholar in fact comply fully with this idea and provide a
full text search in a large number of documents along with basic relation be-
tween the items stored in the system. If we take as a particular example the
CiteSeer web application we can notice that it keeps a track of the number
of articles that quotes certain document. This parameter makes difference
mainly in the order number of the article in the results list. If an article is
quoted often then can be assumed that the quality of article is high. This
idea is well know already. The most popular Search engine today Google
uses almost the same technique but instead of quotes are used the number of
hyperlinks from other web sites that point to the ranked web site.

However those methods are working pretty well but we are highly moti-
vated to look on the problem from a different aspect. We will try to come
up with a new idea and approach the matter from a prospective that differs
for the once mention above. In this relation we are to investigate the possi-
bility of creating a system that can obtain manual user feedback and use this
data to parameterize a similar following searches.

For this purpose we are to make a small research over the features and
matters related to the efficiency of two freely distributed projects that could
provide similarity document search for our system. Crucial here will be the
speed with witch the products provide the results and the index size and
structure.

As a final step the software product that performs better will be employed
in out system. In case the results are encouraging we could chase another
challenging task. Its objective will be to implement clustering of text docu-
ments using the method of user’s feedback metadata. Understanding the
complexity of the text documents clustering task we assume the work on
this issue as a preparation for future research in the area of the Information
retrieval.

 15

Chapter 3
3. Information retrieval and text mining

3.1. Document indexing
During indexing documents are prepared for use by an Information

Retrieval system. This means preparing the raw document collection
into an easily accessible representation of documents. This transforma-
tion from a document text into a representation of text is known as in-
dexing the documents. The indexing is normally done in the following
four steps

3.1.1. Document linearization
Document Linearization is the process by which a document is

reduced to a stream of terms. This is usually done in two steps and
as follows:

� Markup and format removal
During this phase, all markup tags and special formatting

are removed from the document. Thus, for an html docu-
ment all tags and text inside these are removed. This nor-
mally would include all element attributes, scripts, comment
lines and text placed into these. Some commercial search
engines may keep text placed inside the title tag, image alt
attribute, table summary attribute and meta description tag.
Other systems may not care for element attributes or meta
data at all.

� Tokenization
During this phase, all remaining text is parsed, lower-

cased, all punctuation removed along with strange alphanu-
meric characters and Cascading Style Sheets (CSS) instruc-
tions.

3.1.2. Filtration
Filtration refers to the process of deciding which terms should

be used to represent the documents so that these can be used for:
� describing the document's content.
� discriminating the document from the other documents in the

collection.
Frequently used terms cannot be used for this purpose for two

reasons. First, the number of documents that are relevant to a query
is likely to be a small proportion of the collection. A term that will
be effective in separating the relevant documents from the non-

 16

relevant documents, then, is likely to be a term that appears in a
small number of documents. This means that high frequency terms
are poor discriminators. The second reason is that terms appearing
in many contexts do not define a topic or sub-topic of a document.

3.1.3. Stemming
Stemming in its base is process of reducing terms to their stems

or root variant. Thus, "computer", "computing", "compute" will be
modified to "comput" and "walks", "walking" and "walker" is re-
duced to "walk". Not all implementations use the same type of
stemmer. The specifics of every language or at least group of lan-
guages will demand specific stemmer [29]. For English, the most
popular stemmer is Martin Porter's Stemming Algorithm [13].
On one hand stemming process reduces the size of the inverted file
but on the other hand too much stemming is not practical and can
be annoying for the user.

3.1.4. Weighting

Weighting is the final stage in most Information Retrieval in-
dexing implementations. Terms are weighted according to a given
weighting model which may include local weighting, global
weighting or both. If local weights are used, then term weights are
normally expressed as term frequencies (tf). If global weights are
used, the weight of a term is given by inversed document fre-
quency(idf) values. The most common (and basic) weighting
scheme is one in which local and global weights are used (weight
of a term = tf*idf). This is commonly referred to as tf*idf weight-
ing.

3.2. Term frequency and Inverse document frequency [26]
Term frequency can be defined in several ways but one of the most

common used is the number of occurrence of the term divided by the
sum of the occurrence of all terms in the document.

Inverse document frequency like term frequency have many modifica-
tions but always the purpose is on: to measure the general importance
of the term. One of the most popular definition follows:

 17

Where D is the number of documents and is the number
of documents that contain the term.

The product of the multiplication of the term frequency and inverse
document frequency is usually used to score a term in a document ac-
cording to an index.

The score has a height value when the term has a height frequency in
the document and appears rarely in the rest of the documents.

As an example we can consider a document containing 1000 words
and the word Lucene appears 5 times. Following the previously defined
formulas, the term frequency for Lucene is then 0.005. Now, assume
we have 5 million documents and Lucene appears in five hundred of
these. Then, the inverse document frequency is equal to log(5 000 000 /
500) = 4. The tf-idf score is the product : 0.03 * 4 = 0.12.

3.3. Inverted index [27]
Inverted index is a index data structure that allows full text search.

The data structure stores mapping of the location of words in a set of
documents. This main feature makes it most popular structure for the
purposes of information retrieval.
There two types of inverted indexes:
� Record level inverted index – maps a term to a list of documents

that comprise this term.
� Full inverted index – maps a term to couples of digits. The first

digit of each couple provides the document that comprise the term and
the second digit provides the position of the term in the document.

3.4. Cosine-distance ratio
This ratio is used as a similarity measure between any two vectors

representing documents or queries. The ratio defines the cosine angle
between the vectors, with values between 0 and 1 and this was normal-
ize the DOT product.

When the angle between two vectors is getting smaller the cosine
product approaches 1. The angel between the two vectors can express
similarity or other relation of whatever the vectors presents. A cosine

 18

product approaching 1 means more common ground for what ever the
vectors represent.

This is a convenient way of ranking documents; in other words by
measuring how close their vectors are to a query vector. However this
method has one drawback. Longer documents are given smaller term
weights and smaller documents are favored over longer ones. Pivoted
Unique Normalization [28] tries to correct it based on the document
length, the probability that a document is relevant and the probability
that the document will be retrieved.

For the purposes of ranking we should create term vector model.
Vector space model [6](or term vector model) is an algebraic model for
representing text documents (and any objects, in general) as vectors of
identifiers, such as index terms. It is used in information filtering[8],
information retrieval[7], indexing and relevancy rankings.
A document is represented as a vector. Each dimension corresponds to
a separate term. If a term occurs in the document, its value in the vector
is non-zero. Several different ways of computing these values, also
known as (term) weights, have been developed. One of the best known
schemes is tf-idf weighting.

The cosine similarity (cosine angle) between query and documents
is represented as follows:

where the sigma symbol means "the sum of", Q is a query, D is a
document relevant to Q and w are weights. Weights can be defined in
terms of variants of tf and idf, each one with their own customized
definition and theoretical interpretation.

In short Term Vector Theory is applying the Vector Analysis tech-
nique to the Information Retrieval problem.

 19

Chapter 4
4. Apache Lucene

Lucene is a free Java solution providing indexing and searching for text
documents. Lucene is not complete application ready to use but is a library
implemented in a way that implies easy deployment to different kind of ap-
plications intended to work with versatile text documents. Further on is pro-
vided a list of typical application software that can take advantage of Lu-
cene.

� Web pages – weblog, wiki software.

� E-mail clients – full-text mailbox search and email log indexing.

� Specific Search engines – intended for developers for searching source
code, job offers, shopping.

4.1. Fundamental Lucene’s classes for indexing text.
� IndexWriter - IndexWriter is used to create a new index and to add

Documents to an existing index.

� Analyzer - Before text is indexed, it is passed through an Analyzer.
Analyzers are in charge of extracting indexable tokens out of text to
be indexed, and eliminating the rest. They are also used when
searching. Because the search string has to be processed the same
way that the indexed text was processed, it is crucial to use the same
Analyzer for both indexing and searching. Not using the same Ana-
lyzer will result in invalid search results.
The Analyzer class is an abstract class, but Lucene comes with a few
concrete Analyzers that pre-process their input in different ways.
Should we need to pre-process input text and queries in a way that is
not provided by any of Lucene's Analyzers, we will need to imple-
ment a custom Analyzer. If we are indexing text with non-Latin
characters, for instance, we will most definitely need to do this.

� Document - An index consists of a set of Documents, and each
Document consists of one or more Fields.

� Field - Each Field has a name and a value. Lucene offers two differ-
ent classes that specifies the fields from which a developer can
choose.

♦ Field.Index - Specifies whether and how a field should be indexed.

♦ Field.Store - Specifies whether and how a field should be stored.

 20

4.2. Lucene’s index structure
Typical Lucene index is stored in a single directory in the filesys-

tem on a hard disk.
The core elements of such an index are segments, documents, fields,
and terms. Every index consists of one or more segments. Each seg-
ment contains one or more documents. Each document has one or
more fields, and each field contains one or more terms. Each term is a
pair of Strings representing a field name and a value. A segment con-
sists of a series of files. The exact number of files that constitute each
segment varies from index to index, and depends on the number of
fields that the index contains. All files belonging to the same segment
share a common prefix and differ in the suffix. Each segment is as a
sub-index, although each segment is not a fully-independent index.

� Indexing speed factor

One of the settings that have impact on the searching speed is how
often the changes buffered in memory are flushed to the index on the
hard disk. The default is to flush when random access memory usage is
16 megabytes. For better indexing speed flushing should by done by
usage of a large random access memory buffer. An additional issue is
that flushing just moves the internal buffered state via IndexWriter into
the index, but these changes are not visible to IndexReader until either
commit() or close() is called.

� Merging indexes

To optimize an index, method optimize() should be called on an In-
dexWriter instance. This will cause all documents in the memory to be
flushed to the disk and all index segments to be merged into a single
segment, reducing the number of files in the index. On the other hand,
optimizing an index does not help improve indexing performance. Ac-
tually, optimizing an index during the indexing process will slow
things down. Despite this, optimizing may sometimes be necessary in
order to keep the number of open files under control. For instance, op-
timizing an index during the indexing process may be needed in situa-
tions where searching and indexing happen concurrently, since both
processes keep their own set of open files. A good rule of thumb is that
if more documents will be added to the index soon, calling optimize()
should be avoided. If, on the other hand, the index will not be modified
for a while, and the index will only be searched, it is a good time to op-
timize it. That will reduce the number of segments (files on the disk),

 21

and improve search performance. The number of files that Lucene
should open during the search influence directly searching speed.

� Indexing performance parameters

❖ Normal index

Files number 10 000
Words number 53 100 173
Time elapsed 219881 milliseconds (3 min 39 sec)
Milliseconds per file 21,98 milliseconds per file.
Size on disk 73 MB

❖ Positional index

Files number 10 000
Words number 53 100 173
Time elapsed 474218 milliseconds (7 min 54 sec)
Milliseconds on file 47,42 milliseconds per file.
Size on disk 182 MB

4.3. Searching related documents with Lucene
Lucene’s class MoreLikeThis uses all the methods described in

Chapter 3 to find related documents in an index to the one provided.
For this purpose the content of the source document is analyzed using
content of the index. The result of this procedure is a query that is exe-
cuted and this way a result list of related documents is obtained.

There a two main options that MoreLikeThis offers for providing
the source file. The file can be in the Lucene index or can be parsed
from an external source. We tested both methods and noticed some dif-
ference in the score results that sometimes exceeded 30 %. Further on
we will discuss only the case when we use as input a document from
the index. The documents in the index are identified by unique docu-
ment number (docNum) that we will employ to identify our source
document.

Along with the source file, MoreLikeThis offers an option a set of
parameters to be provided that will guide the parsing process. One of
them is to provide a set of field names that are to be taken in account.
If no fields are provided, MoreLikeThis will obtain all fields from the
index that are marked as “indexed”.

The next step that MoreLikeThis undertakes is to loop over the list
of the fields (method retrieveTerms) obtaining the term frequency vec-

 22

tor for each field, if during the indexing process term frequency vector
for the field is created, or obtains directly the terms in the field calcu-
lating their frequency. Both options are dismissing all stop words from
the result list. The structures obtained this way are accumulated in a
HashMap, where the key is the term and the value is the count of the
term in the document (method addTermFrequencies). Here is checked
the parameter maxNumTokensParsed. This parameter is not for the
whole document but only for a field.

The HashMap provided from retrieveTerms method is passed to the
createQeueu method. The method computes five parameters related to
a term. All of them are inserted into an array of Objects. All arrays are
sorted in a PriorityQueue that is returned as a result from createQueue
method. The PriorityQueue is sorted according the score parameter.
The other important parameter except socre is top field for a term. This
is a field in that the term is most often used. The rest of the parameters
are saved for debug purposed (IndexSearcher.explain)

The createQueue method loops throughout all words in the Hash-
Map provided as an input. First checks if a term appears in the docu-
ment more than minTermFreq parameter. If this is the case, the next
step is to be determined the topfield parameter and docFreq parame-
ters. The topField parameter is the field in the index in which the term
is used most often. The docFreq is sum of the number of time used
terms has been used in this fields in all the documents in the index. The
docFreq parameter computed in this way must be greater than min-
DocFreq parameter.

When we have the docFreq parameter we need the number of
documents in the whole index as well in order to be able to calculate
the inverse document frequency. How the idf will be exactly calculated
is defined in a class that inherits the abstract class Similarity. As an ex-
ample in Apendix A is described the implementation of the De-
faultSimilarity class where can be found more detailed information of
how idf is calculated.

The last and most important parameter that should be calculated is
the score. The score is calculated as a product of the number of times a
term is used in the source file (term frequency) multiplied by the idf
(inverse document frequency).

As a last step the five parameters (topfield, score, idf, docFreq,tf)
and the term are inserted in the priority queue.

Now, when we have all the terms in the priority queue, can go fur-
ther on and create a Lucene query. As we mentioned before to accom-
plish this task we will use only the name of the term, the topfield and

 23

the score. How many terms from the top of the priority queue will be
taken in account in the creating process is set in the setMaxQuery-
Terms parameter. The other parameter that is relevant to the Lucene
query creation is boost flag. If the flag is set to “true” every term in the
query will be boosted by the product of the score of the term divided
by the score of the term form the top of the priority queue.

Lucene has many Query types (TermQuery, BooleanQuery, Con-
stantScoreQuery, MatchAllDocsQuery, etc.) but the query parser does
not create all types. Most of the queries are mapped to basic queries
like TermQuery and BooleanQuery. This is the case in MoreLikeThis
Class as well where BooleanQuery type is employed.

Ones the query is generated is passed to the Search method of the
IndexSearcher class. In the Search method first is called the method
BooleanQuery.createWeight. This function returns an object of type
BooleanWeight for the query.(BooleanWaight is a subclass of Boo-
leanQuery and implements interface Weight). As second step is called
method BooleanWeight.score that returns a BooleanScorer2 class
(BooleanScorer2 inherits Score class). As third and last step is called
method BooleanScorer2.score that will iterates over documents match-
ing a query and return a result list of related documents. Scores are
computed using a given Similarity implementation(see Appendix A).

Example of scoring :

Score: 0.21167752 is sum of :
0.052198052 = weight(content:program in DocID), product of:

0.4598019 = queryWeight(content:program), product of:
1.0953102 = idf(docFreq=9, numDocs=11)
0.4197915 = queryNorm

0.11352291 = fieldWeight(content:program), product of:
6.6332498 = tf(termFreq(content:program)=44)
1.0953102 = idf(docFreq=9, numDocs=11)
0.015625 = fieldNorm(field=content, doc=8)

0.039045364 = weight(content:model in DocID), product of:
0.38326484 = queryWeight(content:model), product of:

0.9129886 = idf(docFreq=11, numDocs=11)
0.4197915 = queryNorm

0.10187567 = fieldWeight(content:model), product of:
7.1414285 = tf(termFreq(content:model)=51)
0.9129886 = idf(docFreq=11, numDocs=11)
0.015625 = fieldNorm(field=content, doc=8)

 25

Chapter 5

5. Semantic Vectors
The Semantic Vectors package is trying to fill the gap between the prom-

ising research results and the practical implementation of the semantic idea.
The package creates semantic vectors for words and documents applying a
Random Projection algorithm to term-document matrices created using
Apache Lucene. The result of those sets of mathematical transformations is
that similar concepts vectors are near to each other in the space. This ad-
vance technique make possible applying in practice to some extend the idea
of automatically matching related concepts.

5.1. Wordspace model [3]
The Semantic Vectors package creates a WordSpace model . The

concept of the WordSpace models lays on representing target items in
a high directional vector space.

Semantic Vectors build the model in three stages:

� Create basic random vectors for each document.

� Create term vectors by summing the basic document vectors
the term occurs in.

� Create new document vectors by summing the term vectors
of the terms that occur in each document.

For the default indexes there is an interesting possibility called
training cycles that returns the result from stage three to stage two.

5.2. Probabilistic dimension reduction methods [1]
There are several methods in favor of dimensions reducing. The

most popular among them our days is the Latent Semantic Analy-
sis[25].

Latent Semantic Analysis is completely straight forward mathe-
matical method for finding relations between words in text documents.
It does not use dictionaries, grammars or semantic parsers. The input
stream is a raw text parsed into words separated into meaningful parts
as sentences or paragraphs.

LSA [12] represents the text document as a matrix in which each
row stand for a unique word and every column stands for a text para-
graph or other meaningful passage. Each cell in the matrix represents
the number of appearance of a word in a paragraph defined from the
column index.[5] As a next step a preliminary transformation is ap-

 26

plied on the matrix in which each cell is estimated by a function that
expresses both the word's importance in the particular text domain and
the degree to which the word provides information in the text passage.
Further the LSA applies singular value decomposition (SVD) to the
matrix. SVD [11] decomposed the matrix to three other matrices. One
component matrix describes the original row entities as vectors of de-
rived orthogonal factor values, another describes the original column
entities in the same way, and the third is a diagonal matrix containing
scaling values such that when the three components are matrix-
multiplied, the original matrix is reconstructed. There is a mathemati-
cal proof that any matrix can be so decomposed perfectly, using no
more factors than the smallest dimension of the original matrix. When
fewer than the necessary number of factors are used, the reconstructed
matrix is a least-squares best fit. One can reduce the dimensionality of
the solution simply by deleting coefficients in the diagonal matrix, or-
dinarily starting with the smallest. (In practice, for computational rea-
sons, for very large corpora only a limited number of dimensions can
be constructed.)

Regardless of the give robust performance of the LSA the authors
of the Semantic Vectors package choose to use another method for
their purposes. This change was demanded due to a performance is-
sues. The goals that were set in front of the Semantic Vectors de-
manded computationally less expensive approach as Random projec-
toin.

Random projections [1][4] is a powerful Locality Sensitive Hash-
ing (LSH) method for dimensionality reduction. The main idea of
those type of methods is to separate the input in a way that similar
items will fall to the same group where the number of groups is much
smaller than the possible universe of the input items.
Typical application areas are the processing of both noisy and noise-
less images, and information retrieval in text documents.

Whether this kind of experiment will bring the expected good per-
formance of the package is still under question. Even though it is as-
sumed that the random projection algorithm will be effective enough to
give robust performance the author have left a backdoor solution. The
package is implemented in way that the change of the dimension re-
duction method can be done with minimum effect to the other mod-
ules.

It is a hard task to compare LSA and Random Projection but
mainly Random Projection was preferred because of the following ar-
guments:

 27

� Random Projection performs comparably well as Latent Se-
mantic Analysis.
� The Random Projection algorithm is the simpler, and there-
fore best for implementation, for testing and for collaborating
with the rest of the code.
� It is easy to update a basic Random Projection model incre-
mentally.

5.3. Software architecture
There are several reasons why Semantic Vectors Package becomes

so popular in such a short time.

� It is written in Java, that make it platform independent

� It has only one dependency (Apache Lucene)

� It is easy to use

The package has two main functions

� Building a WordSpace Model. - The main utility is Build-
Model. It creates a termvectors and docvectors files. Can be
started with the following options:

o -d vector length or number of dimensions
o -s [seed length] number of non-zero entries in basic

vectors
o -m [minimum term frequency]
o -tc [training cycles]
o -docs [incremental|inmemory] Switch between build-

ing doc vectors incrementally" (requires positional in-
dex) or all in memory (default case).
An option of the default model building is building a

Posisional Index with the BuildPositionalIndex utility.
This utility will requite a positional index created by Lu-
cene’s tool IndexFilePositions. Creating the model this
way will take account of the word order. A specific argu-
ment that must be provided is the window size where it is
a odd number defining the count of words in both sides of
the word. The Positional Index created by Lucene can be
used by the default model just will take more place on the
disk.

Further enhancement is the Permutation index. It is
created in the same manner like the standard Positional

 28

Index with option -indextype permutation or -indextype
directional. A permutation index encodes the position of
each term relative to each other term within a sliding win-
dow, while a directional index encodes whether a term oc-
curs before or after each other term in this sliding window.

� Document Search – Semantic Vectors package offers a ver-
satile set of searching utilities. Their detail description and
performance is objective of the next chapter.

 29

Chapter 6

6. Similarity search with Semantic vectors
The major subject of this section is to revise in detail the searching

features provided by the package and to try to summaries their effi-
ciency of finding related documents. This fact implies good grasp of
the ideas related to the search implementation. This chapter will pay
more attention exactly to those modules of the package.

6.1. Search type arguments
� SUM - default option

� Searching for Documents using Terms

java pitt.search.semanticvectors.Search -q termvectors.bin -s docvec-
tors.bin term

� Using Documents as Queries

java pitt.search.semanticvectors.Search -q docvectors.bin -s termvec-
tors.bin - lowercase false bible_chapters/Genesis/Chapter_1

� SPARSESUM
Build a query as with SUM option, but quantize to sparse

vectors before taking scalar product at search time.

java pitt.search.semanticvectors.Search -searchtype sparsesum term1
term2

� SUBSPACE
"Quantum disjunction" - gets vectors for each query term,

create a representation for the subspace spanned by these vec-
tors, and score by measuring cosine similarity with this sub-
space.

� MAXSIM
"Closest disjunction" - get vectors for each query term, score

by measuring distance to each term and taking the minimum.
� TENSOR

A product similarity that trains by taking ordered pairs of
terms, a target query term, and searches for the term whose ten-
sor product with the target term gives the largest similarity with
training tensor.

� CONVOLUTION
Similar to Tensor, product similarity that trains by taking or-

dered pairs of terms, a target query term, and searches for the

 30

term whose convolution product with the target term gives the
largest similarity with training convolution.

� PERMUTATION SEARCH
The technique of using vector coordinate permutations (also

interpreted as rotations) to investigate the effect of word order
on vector semantics [2]

6.2. Graphical user interface application
The first thing that occurred to our minds at the begging of this

work was that some graphical user interface will make monitoring of
the process of indexing, creating a model and searching the model
much more comprehensive. The Semantic Vectors package and Lu-
cene Apache provide as with a lot of alternatives not only for searching
but even how to create the index and the model. Some of the alterna-
tive options are connected through dependency relations. For example
certain type of searches expected a certain type of index. That is why
as a first step we created a Java application that is to provide us with
all possible options trough a graphic user interface and at the same
time will look after the dependences between the parameters through-
out the creation and searching process. Not at the last place it will pro-
vide us with the ability for faster testing and opportunity to put outs
new ideas and new knowledge gained about Semantic Vectors package
capabilities right in the application.

 31

6.3. Automated testing
The GUI application give us a good start but it turned out that it

will be hard to implement automated tests for Semantic Vectors pack-
age in this environment. The results produced by Semantic Vectors are
in plain text. It made us think about an environment that will provide
us with powerful tools for text manipulation.

A popular decision of our concern are the Unix shells. Our choice
was the Bash shell. This shell is one of the most popular and creating a
scripts is relatively easy.

The corpora used for testing comprise a large amount of scientific
publications presented on the different kind of events. The fact that
those articles were prepared for events with certain topic of relatively
narrow scientific research areas make us think that due to this fact we
could assume that the articles from one event is more likely to be rec-
ognized by the Semantic Vector Package as documents that have
common semantic ground.

Test cases presented further on are motivated from the common is-
sues currently attracting the attention of the researches working in the
field of natural languages linguistic computer representations.

6.3.1. Bash scripts set
The bash scripts set implemented for those tests are comprised

from three main files and has one dependency. The script expected that
will find “pdftotext” executable file in the current directory. This file is
part of the poppler-utils rpm package.

The auto_sem_vec_test.sh scripts provide a preprocessing of the
documents set and convert the pdf files to text using pdftotext tool.

The start_sem_test.sh script parses the input parameters from the
command line estimate them and execute the sem_test.sh script with
the appropriate parameters.

The sem_test.sh script looks for the most similar documents for
each document from the index with the provided searching option,
parses the output and estimates the results.

6.3.2. Searching algorithms’ productivity
The first test compares the SUM, SUBSPACE and MAXSIM

searching options provided by Semantic Vectors package. The specif-
ics’ of each of the searching options was already discussed.

The test file set comprises 237 docs (1 036 508 words) separated
by topic relevance to ten folders. Each folder comprises at least fifteen

 32

documents and every document comprises at least five hundreds
words. The Semantic vectors index is created in ten training cycles.

To each result line is assigned a number from 8 to 1. The test
scripts run a search for every document from the set and add the num-
ber of the result line that provides a document from the folder where
the file resigns to a common sum. At the very end the sum is divided
by the number of the files processed.

Method Results
SUM 16.443037974

SUBSPACE 16.443037974
MAXSIM 16.443037974

The result of the test is quite weird. The output of all three different
types of searches is the same. The authors were informed about this is-
sue.

Additionally the test provides the average number of similar docu-
ments found in the result set of documents that resigned in the same
folder. The value is 4.772151898 for list results of ten documents. It is
a little less than 50 %.

6.3.3. Training cycles
In this test we will try to investigate the impact of more training

cycles on the Semantic Vectors’ search performance.

Method One cycle Five cycles Ten cycles Twenty cycles
SUM 0.796762389 1.896564933 2.758944822 2.795733724

SPARSESUM 14.045226130 17.145728643 25.256281407 27.185929648
SUBSPACE 2.160514266 1.156582368 2.758944823 2.795733716

MAXSIM 2.870141037 1.139624238 2.758944822 2.795733724

The result of the test seems quite optimistic. The test proves the ef-
ficiency of the model training feature. From the results can conclude
that a training of ten cycles is optimal.

6.4. Indexing performance parameters
� Semantic Vectors index

o Normal index
Number of documents 10 000
Number of terms 688677
Training Cycles 1
Time elapsed 55 seconds
Size on disk Tems 55 MB
Size on disk Docs 8 MB

 33

Number of documents 10 000
Number of terms 688677
Training Cycles 10
Time elapsed 378 seconds
Size on disk Tems 55 MB
Size on disk Docs 8 MB

o Positional indexes

� Permutation index

Number of docs 10 000
Number of terms 68477
Vector length 200
Window size 3
Time elapsed 164 seconds (2 min 44 sec)
Size on disk Perm 55 MB
Size on disk Random 55 MB

Number of docs 10 000
Number of terms 68477
Vector length 200
Window size 11
Time elapsed 509 seconds (8 min 29 sec)
Size on disk Tems 55 MB
Size on disk Docs 55 MB

Number of docs 10 000
Number of terms 68477
Vector length 100
Window size 3
Time elapsed 138
Size on disk Tems 28 MB
Size on disk Docs 28 MB

 34

� Incremental index

Number of docs 10 000
Number of terms 68477
Vector length 100
Window size 3
Time elapsed 162 (2 min 42 sec)
Size in Disk drxnterm 55 MB

For building this index is used the Lucene’s index that provided the
numbers discussed in Chapter 4. The BuildIndex class created for this
index 1257308 terms and 28643 docs in 135 seconds. As we can see
the Semantic Vectors’ index comprise almost one thousand documents
less than the Lucene’s index. This is because the conversion process
from pdf to text is not on hundred percent successful. Some times the
result text document has not enough recognizable words and the Se-
mantic Vectors failed to build a vector for this document. In case that
we provide such document that has no vectors in the index as a search
parameter the Sum, Sparsesum and Maxsim search types generate no
output. On the other hand searching with type Subspace will generate
error output that can cause problems in automates test as unpredictable
output. This problem is handles in function test_Search_res in
sem_test.sh script.

 35

Chapter 7
7. MoreLikeThis vs. Semantic Vectors

In this chapter we will try to estimate some test data that should
give us an answer of the question how well perform the advanced tech-
niques used by Semantic Vectors versus the MoreLikeThis approach.

The test was done on a set of 237 text files that were clustered into
ten folders. This way each folder claimed to comprise related docu-
ments that are less related to the files in the rest of the set of folders.

We are to look for similar documents for each of the 237 text
documents. We will expect that most of the results will resign in the
same directory as the one provided as an input. This fact we will em-
ploy to estimate the performance of the methods for searching related
documents. The method that places more documents from the directory
where the source document resign in the result list will be estimated as
more successful. The result list will be comprised of ten document.

There is one specific thing related to the Semantic Vectors package
that should be taken into account. The Semantic Vectors package not
always provide the same result list in case the index files were recre-
ated. Due to this fact we decided to run the test ten times and compute
an average set of results based on the results of every single execution.

For all of the tests bellow we created a Lucene’s index (class In-
dexFiles) with default values for all options. This was not the case with
the Semantic Vectors’ indexes. Trying to improve the performs of the
Semantic Vectors package we experiment on vectors with different
length.

In the searching procedure for Semantic vectors we used the stan-
dard approach for related documents search pointing both query
searching vectors to docvectors*.bin.

For searching with MoreLikeThis class we created our own class
that in addition obtaineds the “path” field for the Lucene’s index for
the purposes of the test. The other change that we made was based on
results of our previous research work on MoreLikeThis. In this work
we found out that the MoreLikeThis performs best when the number of
terms in the query is about one hundred.

The test results are presented in a simple table displaying only the
average number of times when for a search for a certain source file a
given method obtained more files from the folder were the source file
resign that the other method. The last row is reserved for the number of
time when both methods performed equal.

 36

� The table below represent the result of the first test. In this
test case Lucene’s class MoreLike this performed much bet-
ter than Semantic Vectors.

Training Cycles 1 (default)
Vector length or num-
ber of dimensions

200 (default)

Vector Seed Length -
Number of non-zero en-
tries in basic vectors

20 (default)

MoreLikeThis 119.4
Semantic Vectors 70.5
Equal 47.1

� The results from the previous test made us thinking of a way
how to improve the performance of the Semantic Vector
package. We started with the most logical approach, increas-
ing the values of the Vector Length and Vector Seed Length.
In addition put in practice the training index feature of the
package and trained the index ten times (see the tests for
SV).
Case 1:

Training Cycles 10
Vector length or num-
ber of dimensions

200

Vector Seed Length -
Number of non-zero en-
tries in basic vectors

50

MoreLikeThis 123.1
Semantic Vectors 69.4
Equal 44.5

Case 2:
Training Cycles 10
Vector length or num-
ber of dimensions

200

Vector Seed Length -
Number of non-zero en-
tries in basic vectors

50

 37

MoreLikeThis 123.1
Semantic Vectors 69.4
Equal 44.5

Case 3:
Training Cycles 10
Vector length or num-
ber of dimensions

400

Vector Seed Length -
Number of non-zero en-
tries in basic vectors

20

MoreLikeThis 117.9
Semantic Vectors 71.7
Equal 47.4

Case 4:
Training Cycles 10
Vector length or num-
ber of dimensions

400

Vector Seed Length -
Number of non-zero en-
tries in basic vectors

20

MoreLikeThis 117.9
Semantic Vectors 71.7
Equal 47.4

As we can see despite our efforts to provide all possible
combination of options the results do not differ much.

� As a last attempt we decided to dramatically increase the val-
ues of the Vector length and Vector Seed Length to a levels
ten times higher than the default ones.

Training Cycles 10
Vector length or num-
ber of dimensions

2000

Vector Seed Length -
Number of non-zero en-
tries in basic vectors

100

 38

MoreLikeThis 111.1
Semantic Vectors 79.5
Equal 47.4

In the results of this search we can see that Semantic
Vectors starts to perform better but the question is for what
price. As we can see we go ten time over the normal default
values. This cause the creating of the index to be extremely
slow and to need a lot of system resources. This fact makes
this case nearly impossible to be put in practice.

The software (Java, Perl) that provide the test can be found on the
CD attached. The software is independent from the directory structure
or filenames so the test can be executed on other files sets as well.

 39

Chapter 8

8. Similarity search in collections according to
user's feedback

In this chapter we will go for chasing another challenging task. Our
objective will be to investigate the possible approaches of implement-
ing the similarity search system that is to take manual user feedback in
account. Further on we can even dare thinking of making a record of
the user feedback and use it for automatically improved similarity
search.

In the previous parts of this work we presented two approaches of
similarity search along with some test performance data. In those stud-
ies the Semantic Vectors, as a representative of a new attractive se-
mantic similarity search method, were performing well but still less ef-
fective than Lucene’s class MoreLikeThis. When we were thinking
about which method to employ in our system, this previous experience
convince as that Lucene and MoreLikeThis will be the more appropri-
ate way to achieve our goal.

The system architecture is based on a three level model. The first
stage is Searching followed by Retrieving user’s feedback and once
again Adjusted Searching according to the data retrieved in stage two.
As we already mentioned above for the searching part we intent to em-
ploy Lucene’s MoreLikeThis class. The main crux here with high
probability will be the middle part or how to retrieve the user’s feed-
back in order the following search to be more accurate.

Retrieving the user’s feedback will be in close relation with the
way how MoreLikeThis implements the similarity search. A good
grasp of this could help us to find out what kind of information the
user could provide for us the can be used for more accurate search.

As we described in details in the previous chapters MoreLikeThis
requires a source text file as an input parameter and produces a query.
The query itself is a set of terms along with their weights. Then this
query is applied to the whole index and result documents list is ob-
tained. The documents in the list are documents for which the terms in
the query are estimated with height weight.

What first occurred in our minds was to ask the user to select one
document from the result list obtained from a single search that accord-
ing to him is not related to the document provided as an input.

Having this document we can find the terms in the selected docu-
ment that match with the query. We will provide this list to the user

 40

with the position of the term in the selected document and the poison
of term in the source document. The user can then select a bunch of
terms that think that are not appropriate. Those words will be auto-
matically added to the stop words list. Stop words list is a feature of
MoreLikeThis that comprises words that should not be taken in ac-
count in comprising the query.

The words that probably should be added to the stop words list are
words that have small order number in the selected document and big
order number in the source document. This will means that the term is
important for the selected document and not so important for the
query.

If we look in how the score is calculated in Lucene, we will noticed
that the number of overlapping terms between the query and the docu-
ment is important from it self.

Experimenting with this method it turned out that if we select all
terms that have position greater than half of the query length in the
source document, the selected document step down several position in
the result list.

 41

Example: We made a test search with our system for publication
“Using Formal Concept Analysis Using Formal Concept Analysis for
Heterogeneous Information Retrieval” from workshop Vol-162. For
our surprise the best result for the search was publication “LSI vs.
Wordnet Ontology in Dimension Reduction for Information Retrieval”
from workshop Vol-98.

We were determined to find out why this happens. As a first step
we decide to remove all words that are common for both publications
but obviously do not bring any meaning. Those words were :

document, concepts, concept, recall, calculated, answer, from.

The following adjusted search places our document one position
down in the list. This was unsatisfying result for as. So we decide to go
further and remove another set of words that were not topic spesific:

 model, precision, set, threshold.

The result of this action was that the document was moved seven
positions down. Given that both publications have common ground,
the Information retrieval, we were satisfied from the result. The words
that left were:

 retrieval, vector, query, collection, similarity, information, data-
base, search.

 43

Chapter 9
9. Future work and clustering of document
collections

Clustering can be considered as the most important unsupervised
learning problem [22]. The purpose of a clustering algorithm is to add
structure to a set of data. A loose definition of clustering could be “al-
gorithm that groups together objects with similar features”. Often simi-
larity is estimated as distance between the items. Each item within a
cluster would be similar, and dissimilar between elements in other
clusters.

In the case displayed on the scheme above is easy to be identified

four clusters into which the data can be divided. The similarity meas-
ure is distance. The main objective is to put together in one cluster
items that are “close” in geometrical matter. This approach is well
known as distance-based clustering.

9.1. Clustering methods
9.1.1. Hierarchical agglomerative clustering

Hierarchical algorithms find clusters using previously established
clusters. Hierarchical algorithms can be agglomerative ("bottom-up")
or divisive ("top-down"). Agglomerative algorithms begin with each
element as a separate cluster and merge them into larger clusters. Divi-
sive algorithms begin with the whole set and proceed to divide it into
smaller clusters.

Steps of the Hierarchical Clustering Algorithm are :
� First N*N document similarity matrix is formed. Each document is

placed into its own cluster.
� The following two steps are repeated until only one cluster exists.

 44

o The two clusters that have the highest similarity are found.
o These two clusters are combined, and the similarity between

the newly formed cluster and remaining clusters recom-
puted.

� As the larger cluster is formed, the clusters that merged together
are tracked and form a hierarchy.

There are different methods to calculate the similarity measure be-
tween two clusters like Single Link Clustering, Complete Linkage,
Group Average etc.

Once the hierarchy is generated, it is necessary to determine which
portion of the hierarchy should be searched.

A top-down search starts at the root of the tree and compares the
query vector to the centroid for each subtree. The subtree with the
greatest similarity is then searched. The process continues until a leaf
is found or the cluster size is smaller than a predetermined threshold.

The alternative method is a bottom-up search starts with the leaves
and move upwards.

9.1.2. Clustering without a precomputed matrix
In this case data are grouped in an exclusive way, so that if a cer-

tain object belongs to a certain cluster then it could not be included in
another cluster. As an example of this group of algorithms can be poin-
ted out K-means.

K-means algorithm was presented by MacQueen in 1967. This is
one of the simplest unsupervised learning algorithms that solve the
well known clustering problem. The procedure follows a simple and
easy way to classify a given data set to a certain number of clusters
(assume k clusters) fixed before hand. The main idea is to define k
centroids, one for each cluster. These centroids should be placed in a
specific way because of different location causes different result. So,
the better choice is to place them as much as possible far away from
each other. The next step is to take each point belonging to a given
data set and associate it to the nearest centroid. When no point is left,
the first step is completed and early clustering is done. At this point we
need to re-calculate k new centroids as centers of the clusters resulting
from the previous step. After we have these k new centroids, a new
binding has to be done between the same data set points and the near-
est new centroid. A loop has been generated. As a result of this loop
we may notice that the k centroids change their location step by step
until no more changes are done. In other words centroids do not move
any more.

 45

Finally, the algorithm objective is to minimize a function, in this
case a squared error function.

Where is a chosen distance measure between a data point

and the cluster centre , is an indicator of the distance of the n
data points from their respective cluster centers.

Although it can be proved that the procedure will always terminate,
the k-means algorithm does not necessarily find the most optimal con-
figuration, corresponding to the global objective function minimum.
The algorithm is also significantly sensitive to the initial randomly se-
lected cluster centers. The k-means algorithm can be run multiple
times to reduce this effect.

9.1.3. Efficiency issues related to the document clustering
In our days when an efficiency problem is faced the first thing that

comes to mind is to try to divide the processing on independent parts
and execute each of them simultaneously on several processors. This
of course in not always a trivial task.

From the common algorithms used for clustering on first sight the
hierarchical clustering seems to have potential for parallel processing
[20]. According to some research papers these algorithms often have
large computational overhead or where the results are acceptable the
hierarchical clustering algorithm is applied on not text data.

The light in the tunnel brings the Arrays with Reconfigurable Opti-
cal Buses(AROB) and the Parallel Random Access Machine (PRAM)
[14]. These algorithms have better performance measures than existing
algorithms

However there is one more quite attractive possibility that can
speed up the clustering. Canopy clustering [24] is completely new con-
cept for which I heard for the first time don a lecture about MapRe-
duce. MapReduce is a Google software framework that supports
distributed computing on large data sets on clusters of computers. The
functionality and the name are inspired by the map and reduce func-
tions that are commonly used in functional programming.

The idea is to perform clustering in two stages, first a rough and
quick stage that divides the data into overlapping subsets we call cano-
pies, then a final stage in which expensive distance measurements are
only made among points that occur in a common canopy. This differs

 46

from other clustering methods in that it uses two different distance
metrics for the two stages, and forms overlapping regions.

Clustering based on canopies can be applied to many different un-
derlying clustering algorithms, including K-means[23].

All the very fast distance metrics for text used by search engines
are based on the inverted index. An inverted index is a matrix in
which, for each word, there is a list of documents containing that word.
When we want to found all documents close to a given query, we do
not need explicitly to measure the distance to all documents in the col-
lection, but need only examine the list of documents associated with
each word in the query. The documents, which have no words in
common with the query will never be considered. Thus we can use an
inverted index as a distance metric that is based on the number of
words two documents have in common.

9.2. Clustering with Semantic vectors
In the first part of this work we tried to examine the robustness of

the main features of the Semantic Vectors package. The results were
encouraging and we decided to investigate the possibility of real appli-
cations deployment. We needed an application that is both solving up
to date issue and related to the area of document comparison.

With the increasing number of documents and web resources ac-
cessible on Internet the document clustering of documents becomes
very attractive. The enormous number of results provided by the mod-
ern searching machines implies the need of categorization. An example
of this idea is “Clusty” (http://clusty.com/)[21], a searching engine de-
veloped in Carnegie Mellon University that is trying to discover the
most important word and phrases for each result and put it in a separate
category named according to those core expressions. The author of the

 47

project expects that this feature will be very attractive to the user and
will make the searching easier and more efficient.

Our initial goal was to try simulating the search and the categoriza-
tion process as a part of a searching engine.

For a document set for the search we carefully selected documents
and separate them in ten categories. After that we started a testing
process, which aim was to discover the documents that comprise the
core of each the category. We assumed for core documents, those
documents that are similar at least to for other document from the same
category according to the Semantic Vectors package result search. All
documents that were not in this range were dismissed.

Given that now we had well preformed categories we could go for
the next step of the test. In order to check the capability of the Seman-
tic Vectors package to perform clustering we were to pull out two files
from each category. The set collected this way will use for input of a
cluster algorithm.

The algorithm that was to determine witch input file to witch cate-
gory will belongs is as most intuitive and simple. The separation was
to be done according to the number of files from certain category in the
result set of documents. The category that comprises the biggest num-
ber of file from the result set will be destination folder of the input file.

For the purposes of the test a naming convention was used for nam-
ing the files and the directories. This way from the name was clear to
witch category each file belongs. This approach was to help as a lot
with estimating the results of the test.

The estimation method was based on how many files were catego-
rized to different folder than the folder that they used to belong.

During the tests a weird behavior of the Semantic vectors package
was noticed. After recreating both index files, the result of the same
search were similar, but not the same. This made as worry, weather the
Semantic vector package will manage the clustering task due to this
light variations of the results.

To estimate the results we start the test ten times and average
mishints were less then 10 % that we take as acceptable.

The approach that we used actually does not implement a real clus-
tering, because we used predefined categories[9][10]. What we did is
more or less categorization[19] but according to the results we can
claim that implementation of K-mean algorithm on the base of Seman-
tic Vectors package will perform well. There is only one crucial issue
ahead of us where we could face problems and this is the speed. The

 48

combination of K-means and Canopy that was discussed above can
probably solve this issue.

 49

Chapter 10
10. Summing up

At the end we will try to make a summary of the benefits that
brings this work.

At first place we hope that the results of the tests and the applica-
tions that were created during preparing this work will be valuable for
other researches working in the area of the Information retrieving and
especially for those who intend to use the Semantic Vectors package or
Lucene’s class MoreLikeThis.

With MoreLikeThis we showed that obtaining a feedback from the
user is not “causa perduta”. Collecting this data and use it in similar
searches can be a topic for a future work.

We also managed to show that Semantic Vectors package is a reli-
able software product that can be benefit for the academic community
and with its scalability implies commercial usage as well. Semantic
Vector package could help researches and developers to concentrate
their efforts on the linguistic properties of source text. There were sev-
eral light problems that we provided to the authors of the package as a
feedback. We did appreciate their fast and detailed replies that once
more convinced us that there is not doubt that the project is run by
team full of enthusiasm. We hope that this communication was useful
for both sites and will help Semantic Vectors package to come up with
new ideas and push the limits further.

 51

Appendix A
The search scoring in Lucene is defined in the abstract class Similarity.

DefaultSimilarity.java inherits Similarity and implements a default weight
scheme for scoring the queries and documents.

The score of query q for document d is compute as cosine-distance or
dot-product between document and query vectors in a Vector Space Model
(VSM) of Information Retrieval. A document whose vector is closer to the
query vector in that model is scored higher. The score is computed as fol-
lows:

score(q,d) = coord(q,d) · queryNorm(q) ∑ (tf(t in d) · idf(t) 2 · t.getBoost()· norm(t,d))
t in q

The detail description of the default implementation from the De-
faultSimilarity class follows:
� tf(t in d) computes the term's frequency, defined as the number of times

term t appears in the currently scored document d. Documents that have
more occurrences of a given term receive a higher score. The default
computation for tf(t in d) in is:

 tf(t in d) = Frequency½

� idf(t) stands for Inverse Document Frequency. This value is equal to the
inverse of docFreq (the number of documents in which the term t ap-
pears). This means rarer terms give higher contribution to the total score.
The default computation for idf(t) in is:

idf(t) = 1 + log (
numDocs
–––––––––
docFreq+1

)

� coord(q,d) is a score factor based on how many of the query terms are
found in the specified document. Typically, a document that contains
more of the query's terms will receive a higher score than another docu-
ment with fewer query terms. This is a search time factor computed in
coord(q,d) by the Similarity in effect at search time.

� queryNorm(q) is a normalizing factor used to make scores between que-
ries comparable. This factor does not affect document ranking (since all
ranked documents are multiplied by the same factor), but rather just at-
tempts to make scores from different queries (or even different indexes)

comparable. This is a search time factor computed by the Similarity in ef-
fect at search time. The default computation is:

 52

queryNorm(q) = queryNorm(sumOfSquaredWeights) =

1

––––––––––––––

sumOfSquaredWeights½

The sum of squared weights (of the query terms) is computed by the
query Weight object. For example, a boolean query computes this value
as:

sumOfSquaredWeights = q.getBoost() 2 · ∑ (idf(t) · t.getBoost()) 2
 t in q

� t.getBoost() is a search time boost of term t in the query q as specified in
the query text, or as set by application calls to setBoost().There is really
no direct API for accessing a boost of one term in a multi term query, but
rather multi terms are represented in a query as multi TermQuery objects,
and so the boost of a term in the query is accessible by calling the sub-
query getBoost().

� norm(t,d) encapsulates a few (indexing time) boost and length factors:

• Document boost - set by calling doc.setBoost() before adding the
document to the index.

• Field boost - set by calling field.setBoost() before adding the field
to a document.

• lengthNorm(field) - computed when the document is added to the
index in accordance with the number of tokens of this field in the
document, so that shorter fields contribute more to the score.
LengthNorm is computed by the Similarity class in effect at index-
ing.

When a document is added to the index, all the above factors are mul-
tiplied. If the document has multiple fields with the same name, all their
boosts are multiplied together:

norm(t,d) = doc.getBoost() · lengthNorm(field) · ∏ f.getBoost()

 field f in d named as t

However the resulted norm value is encoded as a single byte before
being stored. At search time, the norm byte value is read from the index
directory and decoded back to a float norm value. This encod-
ing/decoding, while reducing index size, comes with the price of preci-
sion loss - it is not guaranteed that decode(encode(x)) = x. For instance,

 53

decode(encode(0.89)) = 0.75. Also that search time is too late to modify
this norm part of scoring, e.g. by using a different Similarity for search.

 55

References

[1] Dominic Widdows, Kathleen Ferraro, Semantic Vectors : A Scal-
able Open Source Package and Online Technology Management Appli-
cation University of Pittsburgh, 2008.

[2] Magnus Sahlgren, Anders Anders Holst, Permutations as a
Means to Endcode Order in Word Space. Available on :
http://www.sics.se/~mange/papers/permutationsCogSci08.pdf (02.2009)
Swedish Institute of Computer Science, Kista, Sweden.

[3] Marnus Sahlgren, The Word – Space Model .
Department of Linguistics, Stockholm University (2006).

[4] Magnus Sahlgren , An Introduction to Random Indexing
Swedish Institute of Computer Science, 2005.
http://www.sics.se/~mange/papers/RI_intro.pdf (04.2009)

[5] Landauer, T. K., Dumais, S. T, The Latent Semantic Analysis
theory of the acquisition, induction, and representation of knowledge
(1997).
http://lsa.colorado.edu/papers/plato/plato.annote.html

[6] Magnus Sahlgren, Towards pertinent evaluation methodologies
for word-space models, SICS, Swedish Institute of Computer Science,
Kista, Sweden (2006).
http://www.sics.se/~mange/papers/lrec2006.pdf (04.2009)

[7] Amit Singhal ,Modern Information Retrieval, Google, Inc (2001).
http://singhal.info/ieee2001.pdf (04.2009)

[8] Nicholas J. Belkin, W. Bruce Croft, Information filtering and in-
formation retrieval: Two sides of the same coin?(1992).
http://www.ischool.utexas.edu/~i385d/readings/Belkin_Information_92.
pdf

[9] David D. Lewis, An evaluation of phrasal and clustered represen-
tations on a text categorization task, Center for Informaiton and Lan-
guage studies University of Chicago.

[10] ZHOU Qiang, ZHENG Yabin, Integrate Text Clustering Fea-
tures in Text Categorization System, Dept. of Computer Science and
technology, Tsinghua University, Beijing.

 56

[11] Virginia Kleman J. Laub, The Singular Value Decomposition:Its
Computation and Some Applications.

[12] S. Deerwester, S Dumais, Indexing by latent semantic analysis,
Journal of the American society for information science, 1990.

[13] M.F. Porter, ,An algorithm for suffix stripping , Computer Labora-
tory, Cambridge, UK.

[14] Sanguthevar Rajasekaran, Efficient Parallel Hierarchical Clus-
tering Algorithms.

[15] Kristina Lerman, Document Clustering in Reduced Dimension
Vector Space, Information Sciences Institute.

[16] Makoto Iwayama, Cluster - Based Text Categorization: A Con-
parison of Category Search Strategies, Department of Computer Sci-
ence, Tokyo.

[17] Eric C. Jensen, Steven M. Beitzel, Parallelizing the Buckshot Al-
gorithm for Efficient Document Clustering, Illinois Institute of Tech-
nology, Chicago.

[18] Sugato Basu, Semi-supervised Clustering: Probabilistic Models,
Algorithms and Experiments, The University of Texas at Austin.

[19] Paolo Rosso, Edgardo Ferretti, Text Categorization and Informa-
tion Retrieval UsingWordNet Senses, National University of San Luis,
Argentina.

[20] Manoranjan Dash, Simona Petrutiu, Peter Scheuermann, Effi-
cient Parallel Hierarchical Clustering, Department of Information Sys-
tems, Nanyang Technological University, Singapore, 2004.

[21] Florian Beil, Martin Ester, Xiaowei Xu, Frequent Term-Based
Text Clustering, Institute for Computer Science Ludwig-Maximilians-
Universitaet Muenchen Munich, Germany.

[22] Magnus Rosell, Introduction to Information Retrieval and Text
Clustering, Magnus Rosell, 2006.

[23] Paul S. Bradley, Usama M. Fayyad, Refining Initial Points for K-
Means Clustering, Microsoft Research, 2006.

 57

[24] Andrew McCallum, Kamal Nigam, Efficient Clustering of High-
Dimensional Data Sets with Application to Reference Matching, School
of Computer Science Carnegie Mellon University Pittsburgh, PA USA.

[25] Michael W. Berry, Susan T. Dumais and Gavin W. O'Brien,Using
Linear Algebra for Intelligent Information Retrieva l, Society for Indus-
trial and Applied Mathematics, 1995.

[26] Karen Spärck Jones, A statistical interpretation of term specific-
ity and its application in retrieval, Computer Laboratory, University of
Cambridge, Cambridge, UK, 1972

[27] Justin Zzobel, Alistair Moffat, Inverted Files for Text Search En-
gines, The University of Melbourne, Australia.

[28] Amit Singhal, Chris Buckley, Mandar Mitra, Pivoted Document
Length Nornalization, Department of computer science, Cornell Uni-
versity, Ithaca.

[29] Asuncion Honradot, Ruben Leon A Word Stemming Algorithm
for the Spanish Language, Laboratorio de Linguistica Informitica, Uni-
versidad Autonoma de Madrid.

 59

List of attachments

Attachment 1: CD.

