
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FEDCM API INTEGRATION INTO KEYCLOAK
INTEGRACE FEDCM API DO SYSTÉMU KEYCLOAK

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ŠIMON VACEK
AUTOR PRÁCE

SUPERVISOR doc. Ing. RADEK BÜRGET, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

T BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

B a c h e l o r ' s T h e s i s A s s i g n m e n t

Institut: Department of Information Systems (DIFS) 156111
Student: Vacek Šimon
Programme: Information Technology
Title: FedCM API Integration into Keycloak
Category: Information Systems
Academic year: 2023/24

Assignment:

1. Learn about the architecture and use of KeyCloak for centralized identity and access management.
2. Study current practices and protocols for implementing single sign-on in web applications. Focus on

the emerging FedCM standard.
3. Based on your consultations with RedHat, propose a way to extend KeyCloak to support the FedCM

API.
4. Implement the proposed solution using appropriate technologies.
5. Validate the functionality of the designed solution in appropriate applications.
6. Evaluate the achieved results.

Literature:
• Bertocci, V.: OAuth2 and OpenID Connect: The Professional Guide, Okta, Inc., 2022
• Dále dle pokynů vedoucího.

Requirements for the semestral defence:
Items 1 to 3

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor:
Head of Department:
Beginning of work:
Submission deadline:
Approval date:

Bürget Radek, doc. Ing., Ph.D.
Kolář Dušan, doc. Dr. Ing.
1.11.2023
9.5.2024
30.10.2023

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
Because of security concerns, trustworthiness, and ongoing privacy-oriented changes, third-
party cookies are to be phased out in web browsers. These play a key role in federating
user identities in single sign-on applications, so a unified solution with a focus on preserving
privacy is being developed. The Federated Credential Management A P I is the proposed
solution; at this time, it is not yet standardized. This thesis deals with implementing the
specification of this A P I to a Cloud Native Computing Foundation incubating project Key-
cloak. It is an open source single-sign-on application with Red Hat as the main contributor.
The OpenID Connect and OAuth 2.0 are discussed together with how they work together
with FedCM and all of its extensions. The result is implemented as a service provider
interface extension to Keycloak.

Abstrakt
Kvůli obavám o bezpečnost, důvěryhodnost a kvůli probíhajícím změnám v bezpečnosti
dochází ve webobých prohlížečích k zákazu Cookies třetích stran. Ty hrají klíčovou roli
při federování identit uživatelů v aplikacích jednotného přihlášení, proto se vyvíjí jednotné
řešení s důrazem na ochranu soukromí. Federated Credential Management A P I je v tuto
chvíli navržené a prozatím nestandardizované řešení. Tato práce se zabývá implementací
specifikace tohoto A P I do Cloud Native Computing Foundation inkubačního projektu Key­
cloak. Jde o aplikaci jednotného přihlášení s otevřeným zdrojovým kódem, jejíž hlavní
přispěvatel je firma Red Hat. OpenID Connect a OAuth 2.0 jsou popsány společně s t ím
jak fungují dohromady s FedCM a všemi jeho rozšířeními. Výsledek je implementován jako
rozšíření rozhraní poskytovatele služeb Keycloaku.

Keywords
Keycloak, single sign-on, third-party cookies, FedCM, federated identity, user identity, so­
cial login

Klíčová slova
Keycloak, jednotné přihlášení, cookies třetích stran, FedCM, federovaná identita, identita
uživatele, sociální přihlášení

Reference
V A C E K , Simon. FEDCM API INTEGRATION INTO KEYCLOAK. Brno, 2024. Bache­
lor's thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
doc. Ing. Radek Bürget, Ph.D.

Rozšířený abstrakt
Při brouzdání internetovými stránkami je běžné, že se uživatel musí přihlásit, aby získal

přistup k veškerým jejich funkcím. Na základě informací o uživateli může stránka, nebo
klient, zobrazovat relevantnější informace. Např. webový portál s databází filmů a ser­
iálů IMDb po přihlášení umožní uživateli hodnotit zhlédnuté filmy, vytvářet seznamy pro
pozdější zhlédnutí a doporučovat další obsah. Počet účtů, kterými běžný člověk disponuje,
je ale značný a pro každý z nich by měl mít jedinečné a bezpečné heslo. Proto tyto portály
umožňují použít účet od některého z poskytovatelů identit. Např. Google, nebo Facebook
nabízí takovouto službu pod tlačítkem "Přihlásit se přes Tuto službu poskytuje i Cloud
Native Computing Foundation inkubační projekt Keycloak. Jedná se o systém jednotného
přihlášení (SSO), který umožňuje mnoho věcí, například jednotnou správu identit a snadné
zabezpečení aplikací pro velké i malé firmy

Obdobné aplikace pro svojí funkčnost používají malé soubory dat uložené v prohlížeči,
označované jako cookies. Tyto cookies se dělí podle svého původu a mohou být zneužívány
pro sledování pohybu uživatele napříč webovými stránkami. Proto se tyto cookies patřící
do jiných domén v prohlížečích blokují. Aby bylo zachováno fungování aplikací jako je
Keycloak, iniciativa Privacy Sandbox for the Web přichází s návrhem jak tyto cookies
využít bezpečným způsobem a umožnit přihlášení skrze třetí stranu - poskytovatele identit.
Tato práce přibližuje principy serveru Keycloak a protokoly, které používá pro autentizaci
a autorizaci. A také se zabývá aktuálním řešením v případě blokovaných cookies. Zmíněné
protokoly jsou OpenID Connect a OAuth 2.0. U těchto protokolů jsou popsány jejich
základní principy a datové struktury.

Dále je do hloubky rozebráno ono řešení - aplikační programové rozhraní pro správu
federovaného pověření (Federated Credential Management A P I , zkráceně FedCM API) .
Specifikace tohoto rozhraní je v době psaní této práce nestandardizovaná a otevřená pro
případné změny. Zmíněny jsou proto i vlastnosti, které jsou prozatím pouze prototypizovány
a nejsou plně adoptovány. Je popsáno nejen rozhraní, které se implementuje na straně
Keycloaku, ale také rozhraní prohlížeče, který hraje klíčovou roli při předávání identity
uživatele klientské aplikace. Velký důraz je přitom kladen na potvrzení uživatele, který
musí odsouhlasit toto předání.

Cílem této práce je FedCM A P I integrovat do projektu Keycloak, demonstrovat jeho
aplikovatelnost a kriticky zhodnotit jeho použití v budoucnu. Výsledné řešení je navrženo
jako rozšíření projektu za využití rozhraní poskytovatele služeb (Service Provider Interface).
To umožňuje dynamicky přidávat funkcionalitu Keycloak serveru bez zásahu do kódu ap­
likace. Hotová implementace pokrývá základní požadavky specifikace a umožní klientské ap­
likaci vytvořit žeton (anglicky též token), který aplikace může využít pro identifikování uži­
vatele a přistoupení uživatelově zdrojům. Toto řešení není pro projekt takovýchto rozměrů
s důrazem na bezpečnost zcela dostačující. Jako ověření konceptu, nabízí ale důležitý bod,
odkud lze dále vycházet při aplikaci komplexnejších požadavků a např. použití protokolu
S A M L .

Federated Credential Management je zhodnocen jako odvážná iniciativa, kterou bude
nezbytné adoptovat. Rozhodnutí nevázat se na žádné jiné protokoly může ale v budoucnu
způsobit překážky, které ztíží plnou integraci dalšími poskytovateli identit a může způsobit
přepisování již existujících řešení.

F E D C M A P I I N T E G R A T I O N I N T O K E Y C L O A K

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of doc. Ing. Radek Burget, Ph.D. The supplementary information
was provided by Jon Koops and Stian Thorgersen. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Šimon Vacek
May 7, 2024

Acknowledgements
I would like to thank doc. Ing. Radek Burget, Ph.D., for supervising my thesis. Many
thanks also belong to Jon Koops and Stian Thorgersen from Red Hat for giving me this
opportunity, consulting my work, and their leadership. M y appreciation goes as well to my
colleagues Michal Hajas, Hynek Mlnafik, and Martin Bartos for helping me understand the
sometimes confusing Keycloak.

Contents

1 Introduction 5

2 OpenID Connect and OAuth 2.0 7
2.1 ID token 8
2.2 Access token 8
2.3 Refresh token 8
2.4 OIDC Authentication flows 9

2.4.1 Authorization code flow 9
2.4.2 Implicit flow 11
2.4.3 Hybrid flow 11

3 Keycloak Server 14
3.1 Javascript Adapter 15

3.1.1 Session Management 15
3.1.2 Silent authentication 16
3.1.3 Browser tracking protection 16

4 Federated Credential Management A P I 18
4.1 Identity Provider H T T P A P I 19

4.1.1 The Well-Known File 20
4.1.2 The config file 20
4.1.3 Accounts endpoint 20
4.1.4 Client Metadata endpoint 21
4.1.5 Identity assertion endpoint 21
4.1.6 Disconnect endpoint 21

4.2 The Browser A P I 22
4.2.1 The Login Status A P I 22

4.3 Example flow in detail 23
4.4 Proposals and extensions 26

4.4.1 Auto-reauthentication 26
4.4.2 Button mode 27
4.4.3 Dynamic sign-in flow 28

5 Design 29
5.1 Keycloak Service Provider Interface 29
5.2 The Federated Credential Management A P I design 31

6 Implementation 34

1

6.1 Endpoints Implementation 34
6.1.1 Connecting a user account 35
6.1.2 Disconnect and logging-out 36

6.2 Implementation plans in the future 37
6.2.1 The Weil-Known File location 37
6.2.2 Merge into the upstream 38

6.3 Authorization extension 38

7 Testing 40

8 Conclusion 44

Bibliography 45

A Federated Credential Management A P I Keycloak extension 47
A . l Prerequisites 49
A.2 Building the project 49

A.2.1 Compile 49
A.2.2 Generate Javadocs 49

A . 3 Running the project 49
A.3.1 Running with Docker 49
A . 3.2 Running with Maven 51

B Testing manual 53
B. l Prerequisites 53
B.2 Keycloak credentials 54
B.3 Instructions for testing FedCM functionality 54

B. 3.1 First sign-up 54
B.3.2 Following sign-ins 55
B.3.3 Login status A P I and Button mode 55
B.3.4 Dynamic sign in-flow 56

2

List of Figures

2.1 Example of a successful authorization code flow authentication with client
credentials and a refresh request. H T T P requests and responses are taken
from the OIDC specification [18] 10

2.2 Example of a successful implicit flow authentication with an id_token token
response type, which issues both an ID token and an access token. The ac­
cess token is optionally validated. H T T P requests and responses are taken
from the OIDC specification [18] 12

2.3 Example of a successful hybrid flow authentication requesting an authoriza­
tion code and an access token. The authorization code can be used on the
token endpoint precisely as in the authorization code flow pictured in Figure
2.1. H T T P requests and responses are taken from the OIDC specification [18]. 13

3.1 When a user accesses an application, it requests authentication from Key-
cloak, verifying the user's identity and granting access to protected services.
This chart is based on a public Key cloak chart [10] 15

3.2 A n example of initialization of the Key cloak Javascript adapter on a client-
side application [11] 16

4.1 A n R P notifies a user agent via a JavaScript interface of an intent to log in
a user. The user agent then performs a series of H T T P requests to endpoints
implemented on the Identity provider's side. This figure is remodeled after
a scheme from the FedCM A P I specification [7] 19

4.2 A client's Javascript call to initiate federated login via FedCM [7] 22
4.3 A client's Javascript call to log out a user and remove the client-IdP-user

connection [5] 22
4.4 A n example of a Set-Login header sent by an IdP after successful authenti­

cation in implicit code flow (2.4.2) of only repsonse_type=id_token. . . . 23
4.5 A FedCM successful first-time login flow. A n extended diagram from the spec­

ification [7] 24
4.6 Browser presenting an account chooser for a first-time user (left) and a re­

turning user (right) 25
4.7 The account chooser widget notifies the user the login is being processed. . 25
4.8 A successful FedCM sign-out flow 26
4.9 A user agent's slightly different widget showing a user is being automatically

reauthenticated 27
4.10 A n account chooser in button mode is a slightly larger pop-up, here displayed

with two users who have this client in a list of approved clients 28

3

4.11 When a user is supposed to be signed in but is not, a different widget opens
up (left) asking them to sign in with IdP, which opens a new window (right)
for authentication) 28

5.1 Example of a Service Provider Interface directory hierarchy compliant with
Keycloak the SPI 30

5.2 A class diagram with a custom C S V user storage SPI example. Note that
the entities do not include all fields and methods from the real interfaces, as
they add no extra value to this demonstration 32

5.3 A class diagram of interfaces and classes designed for the FedCM A P I inte­
gration. Entities with dashed frames denote interfaces already implemented
in Keycloak 33

6.1 Example of obtaining a UserModel of an authenticated user in Keycloak. . 34
6.2 A pseudo JSON object showing the expected role definition and values for

a model example-client 35
6.3 A browser UI shown to a user when an error during identity assertion is

encountered - utilization of Error A P I 36
6.4 A feature toggle available to Keycloak administrators enabling the FedCM

flow within a realm 38

7.1 Keycloak admin console confirming the user has an active session in example-
client 41

7.2 Keycloak account console confirming the user has an active session in example-
client 41

7.3 The client application used for testing displaying user information after a
successful federated log-in 43

7.4 The access token obtained by the client application 43

A . l Contents of the submitted directory. The keycloak-f edcm directory is de­
compressed keycloak-f edcm ZIP file on the media 48

4

Chapter 1

Introduction

Every website, application, or service seems to require an account to use their service.
The number of passwords needed to remember is too significant, so many developers have
decided to use some form of social login. The famous ,J5ign in with Facebook" or Google
or other social media has become very popular. This brings the benefit that there is no
need to create an account or an identity for every online app used. The identity is simply
federated to another application. Unfortunately, the underlying mechanisms are abused
to track users without their consent or complete understanding.

To make the identity federation work, identity providers, for example, Facebook or
Google, use small chunks of data stored in the browser called cookies to initiate login
and hold information about the authentication status. In this context, the cookies are
third-party cookies because they belong to a different website than the website trying to
establish the user's identity. Starting the year 2024 with the initiative Privacy Sandbox
for the Web, third-party cookies will be phased out. Using them at all will not be possible
by the end of the year. To preserve applications relying on their use, the Federated
Credential Management A P I is introduced as a solution.

The Keycloak project is an open-source server that handles authentication, authoriza­
tion, user management, and single sign-on (SSO). That means it allows the user to log
in only once and be authenticated across multiple applications registered in Keycloak.
That way, a user, for example, logs in to Keycloak and then access their Google account
and the company intranet. Wi th the already ongoing cookie restrictions, Keycloak had to
adapt and provide workarounds. These are unsustainable and worsen the user experience.
This affects namely the Javascript library, which could hopefully be deprecated altogether
in the future.

Federated Credential Management A P I introduces a mechanism that is a part of the in­
ternet browser and an identity provider. It places the browser as a trustworthy party
in the communication that negotiates the identity federation from the identity provider to
the client website, the relying party. As of the writing and publishing of this thesis, FedCM
A P I is not yet standardized and is open for change. The outlined specification is open
for developers to adopt the technology and prototype and give feedback on the missing or
not working pieces in the specification.

In chapter 2, the thesis describes the underlying protocols OpenID Connect and OAuth
2.0 used in Keycloak for authenticating and authorizing. It is important to understand par­
ticularly the issued tokens bearing the actual credentials. The chapter 3 discusses Keycloak
and its concepts, such as realms. Part of the chapter also mentions the current solu­
tion to the third-party cookies issue and points out two important features in danger for

5

the phase-out. This text's core is the FedCM specification discussed in chapter 4. Not only
the mandatory part of the specification for both the web browser and the identity provider
is examined, but experimental features like the dynamic sign-in flow are also examined.
Finally, chapter 5 outlines the proposal for how this A P I could be integrated into Keycloak
using the Service Provider Interface. The results of the implementation process and plans
for the Keycloak FedCM extension's future are in the last chapter 6.

G

Chapter 2

OpenID Connect and OAuth 2.0

Before delving into the Federated Credential Management A P I , the context of Keycloak and
the protocols it uses for authentication and authorization must first be explained. Although
it is more sensible to first approach Keycloak itself, the Keycloak chapter 3 already needs
and mentions parts of these protocols, so these need to be explored first. This thesis
discusses the integration of F e d C M 1 A P I into Keycloak, which utilizes two protocols for
authentication and authorization: S A M L 2 and O I D C 3 . For the sake of simplicity, I have
decided to go with only OIDC as it is a newer standard working with J S O N 1 rather than
X M L 5 files.

Keycloak serves as an authentication and authorization server. It holds information
about a user and controls access by other applications to this information (resources)
and any other resources selected to be protected. Therefore, Keycloak can be an authenti­
cation server and a resource server. The resource owner is an end-user who can grant per­
mission to third-party applications to access these resources on their behalf. The OAuth 2.0
Authorization Framework was designed as a secure way to do just this. So, the third-party
application does not need to use the end user's credentials and store them; it introduces
a new set of credentials, tokens, issued by the authorization server, which are used to access
the resource owner's protected resources. It builds an authorization layer.

OpenID Connect 1.0 is a simple identity layer on top of the OAuth 2.0 [18]. Essentially,
it extends the O A U T H 2.0 specification to provide authentication and information about
the user. There are three actors referred to the specification:

• End-User, a user

• Openld Provider (OP), the authentication server

• Relying party (RP), a client, an application asking for authentication

The ultimate goal of an R P is to obtain tokens from the OP, which they can use to access
protected resources and provide personalized services. These tokens include an Access
token, a Refresh token, and an ID token.

1Not to be confused with https://fedcm.org/ — Federation of Christian Ministries
2 Security Assertion Markup Language
3 OpenID Connect
4JavaScript Object Notation
5 Extensible Markup Language

7

https://fedcm.org/

2.1 ID token

According to the OpenID Connect Core, the ID Token is a security token that contains
Claims about the Authentication of an End-User by an Authorization Server when using
a Client and potentially other requested Claims. The ID Token is represented as a JSON
Web Token (J W T) 6 [18]. Claims are pieces of information included in a token. It could be
an email, name, user ID, and information needed for authentication, like the U R L of the to­
ken's issuer, the timestamp when it was issued, and the timestamp when this token expires.
This token establishes the end-user's identity and must be signed using J W S 7 (JSON Web
Signatures). The latter two tokens are used to authorize an R P repeatedly.

2.2 Access token

A n Access token is defined in the OAuth 2.0 specification as a string representing an au­
thorization issued to the client [8]. The specification alone does not describe what the to­
ken should look like other than it is usually opaque to the client (that means the client is
not meant to understand the contents). This token authorizes the client to access protected
resources; the Client does not need to prove its legitimacy when using it.

Later, a Bearer token defined in RFC6750 8 was introduced as a type of token that
could be used as an Access token. The specification requires using T L S 9 when making re­
quests with bearer tokens. The client must validate the T L S certificate chain [9]. This elim­
inates some of the potential security concerns.

Because the OIDC protocol is described in this thesis in the context of the Keycloak
project, it is worth mentioning that Keycloak uses JWTs for Access Tokens. This is because,
as a widely used standard format, it does not pose much trouble to integrate. The token
is based on JSON, so it can be easily parsed and worked with in any programming lan­
guage [20].

2.3 Refresh token

The refresh token serves a special purpose: obtain a new access token and, optionally, a new
ID token from the authorization server (Keycloak). Because of security concerns, the access
token has a time assigned to it (usually a short period) when it expires, and resource servers
must no longer accept it. A refresh token has a longer lifetime. The refresh token is issued
optionally when requested (refresh_token value is present in the grant_type parameter
in the refresh request [18]) and is included together with an access token. It is to be used
only for the authorization server and never a resource server. It is, again, usually opaque
to the client application.

6

https: //www.rfc-editor.org/rfc/rfc7519
7

https: //www.rfc-editor.org/rfc/rfc7515
8

https: //www.rfc-editor.org/rfc/rfc6750
9Transport Layer Security

8

http://www.rfc-editor.org/rfc/rfc7519
http://www.rfc-editor.org/rfc/rfc7515
http://www.rfc-editor.org/rfc/rfc6750

2.4 O I D C Authentication flows

There are three ways to authenticate with OIDC. Two of these flows are taken from OAuth
2.0 specification and extended. A developer decides which flow is the most suitable for
their client (the RP) based on its capabilities. Based on the client's ability to authenticate
securely with the authorization server, clients are divided into two groups [8]:

• Confidential: this client is capable of secure client authentication

• Public: this client is not capable of secure client authentication, typically a native
application or a web-browser-based application

Client authentication is recommended and is typically done during client registration
with the OP. The client registration can be done in Keycloak in the administration console
via an H T M L form. The admin provides a list of valid redirect URIs (used to redirect
a user back to the client after authenticating them) and chooses a client type. If the type
is confidential (in Keycloak, the Client authentication is turned on), the typical client
authentication is with a chosen client id and a generated client secret.

2.4.1 Authorization code flow

The authorization code flow is the most secure flow OIDC offers and is redirection-based.
The clients using it are typically confidential, and it is recommended to have some client
authentication established. It starts with a client sending an authentication request, which
triggers the user agent to redirect to the authorization endpoint of the OP. The OP's
authorization server validates the request with its parameters and optionally authenticates
the client at this point. The server authenticates the end-user and gathers their consent
to share the requested claims with the RP.

If successful, the end-user is redirected back to the client using a URI defined in
the redirect_uri parameter in the authentication request, which must also match the list
of redirect URIs set during client registration. The successful response contains an au­
thorization code in the code parameter. Wi th this very short-lasting code and a redirect
URI (the same as the one sent to the authorization endpoint) in the parameters, the client
sends a token request directly to the OP's token endpoint. If the client type is confiden­
tial, it must be authenticated. Another series of checks is performed, including validating
the authorization code and checking if it was issued to the authenticated client or not used
before. The client is then issued an ID token, an access token, and optionally a refresh to­
ken. These are returned straight to the client, which validates the response, the ID token,
and the access token. 1 0 For these validations, a nonce value is interesting.

The advantage of this flow is the security, the issuance of all three tokens, and the fact
that the tokens are sent directly to the client, eliminating their exposure to the user agent.
A n example of a successful authorization code flow is in figure 2.1.

'More can be found in sections 3.1.3.7. and 3.1.3.8. [18].

9

Figure 2.1: Example of a successful authorization code flow authentication with client
credentials and a refresh request. H T T P requests and responses are taken from the OIDC
specification [18].

OpenID Provider

Client User agent
Authorization

endpoint
Token endpoint

Redirect to authenticate

Validate
responsi

Validate
ID token

HTTP 302 Found
Location: https://server.com/authorize?

response_type=code
&scope=openid profile email
&client_id=123
&redirect_uri=https://client.org/cb

Successful Authentication response

Authentication request

GET /authorize?
response_type=code
&scope=openid profile email
&client_id=123
&redirect_uri=https://client.org/cb

Host: server.com

Successful Authentication redirect

Validate

<—-
^ r e q u e s t

Authenticate user

Success

^ 1

Request consent

^ Consent

GET https://client.org/cb?
code=SplxlOBeZQQYbYS6Wx

P .
Validate

response

HTTP 200 OK
Content-Type: application/json
Cache-Control: no-store
{

"accessjoken": "SIAV32hkKG",
"token_type": "Bearer",
"refreshjoken": "8xLOxBtZp8",
"expires_in": 3600,
"id_token": "eyJhbGciOU..."

}

HTTP 302 Found
Location: https://client.org/cb?

code=SplxlOBeZQQYbYS6Wx

Token request
1 ~

POST /token
Host: server.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa...

grant_type=authorization_code
&code=SplxlOBeZQQYbYS6Wx
&redirect_uri=https://cl ient.example.org/cb

Successful Token response
^

Access token expires
or the client needs a

different set of scopes

Refresh request

POST/token
Host: server.com
Content-Type: application/x-www-form-urlencoded

client_id=123
&client_secret=some_secret12345
&grant_type=refresh_token
&refresh_token=8xLOxBtZp8
&scope=openid profile

^Successful Refresh response

HTTP 200 OK
Content-Type: application/json
Cache-Control: no-store
{

"accessjoken": "TIBN45jURg",
"token_type": "Bearer",
"refreshjoken": "9yNOxJtZa5",
"expires_in": 3600

}

—..Validate
.) request

Authenticate
client

Validate
refresh token

Verify client
authentication

10

https://server.com/authorize
https://client.org/cb
https://client.org/cb
http://server.com
https://client.org/cb
https://client.org/cb
http://server.com
https://cl
http://ient.example.org/cb
http://server.com

2.4.2 Implicit flow

This flow is best suited for clients implemented in a browser that cannot securely store
client credentials. For this type of client, the public value is reserved. They are typi­
cally implemented using a scripting language such as Javascript. The Authorization Server
does not perform Client Authentication.

The implicit flow is similar to the authorization code flow, with some exceptions. The to­
ken endpoint is not utilized at all, and an ID token and an access token are issued straight
from the authorization endpoint. Obtaining a refresh token is impossible, so once the tokens
expire, the client must perform the entire flow again.

The authentication starts with a request to the authorization endpoint of the OP with
a redirect_uri that must match the registered redirect uris at the OP and a required nonce
parameter. These two parameters were mentioned in 2.4.1. The redirect_uri defines an
RP's URI the OP redirects to with an authentication response (be it a success or an error).
The nonce is a string value that associates a client session with an ID token. This value
can be used only once, which serves as a protection against replay attacks [18]. The OP
validates the request, authenticates the end-user, and acquires their consent. If everything
is in order, the user agent is redirected back to the client with an ID token and optionally
an access token if the response mode parameter was set to id_token token; all response
modes and their relation to issued tokens are described in [16].

This flow does not provide the same security as the authorization code flow, as the tokens
are exposed to the end-user and applications with access to the user agent. Still, it is quicker
and does not require as many requests to the OP when authenticating.

Figure 2.2 displays communication in a successful Implicit flow.

2.4.3 H y b r i d flow

As the name suggests, the hybrid flow combines the previous two flows. The client sends
an authentication request and receives an authorization code and either an ID token or
an access token or both, depending on the response_type values in the request. The au­
thorization code should be used on the token endpoint in exchange for an access token.
The OP does not have to invalidate the previously issued access token, so it is possible
to have more than one access token valid. This was also possible with the authorization
code flow. This feature is usually used to request a token with a different scope. See
figure 2.3 for a hybrid flow communication example.

11

OpenID Provider

User

Cl ient User agent

Redirect to authenticate

HTTP 302 Found
Location: https://server.com/authorize?

response_type=id_token token
&scope=openid profile
&client_id=123
&redirect_uri=https://client.org/cb
&nonce=n-0S6_WzA2Mj

Successful Authentication response

GET https://client.org/cb?
access_token=SIAV32hkKG
&token_type=bearer
&id_token=eyJ0NiJ9.eyJ1c...
&expires_in=3600

Validate
response

Author izat ion
endpoint

Authentication request

GET /authorize?
response_type=id_token token
&scope=openid profil
&client_id=123
&redirect_uri=https://client.org/cb
&nonce=n-0S6_WzA2Mj

Host: server.com

Successful Authentication redirect

Validate
request

Authenticate user

>
Success

Request consent

< •
Consent

HTTP 302 Found
Location: https://client.org/cb?

access_token=SIAV32hkKG
&token_type=bearer
&id_token=eyJ0NU9.eyJ1c...
&expires_in=3600

~) Validate
j^S\D token

acci
Validate

M * " a c c e s s token

Figure 2.2: Example of a successful implicit flow authentication with an id_token token
response type, which issues both an ID token and an access token. The access token
is optionally validated. H T T P requests and responses are taken from the OIDC specifica­
tion [18].

12

https://server.com/authorize
https://client.org/cb
https://client.org/cb
https://client.org/cb
http://server.com
https://client.org/cb

OpenID Provider

User

Client User agent

Redirect to authenticate

HTTP 302 Found
Location: https://server.com/authorize?

response_type=code token
&scope=openid profile email
&client_id=123
&redirect_uri=https://client.org/cb
&nonce=n-0S6_WzA2Mj

Successful Authentication response

GET https://client.org/cb?
code=SplxlOBeZQQYbYS6Wx
&access_token=SIAV32hkKG
&token_type=Bearer
& expires_in=3600

2
3

Validate
response

Validate
access token

Validate
authorization

code

Author izat ion
endpoint

Token endpoint

Authentication request

GET /authorize?
response_type=code token
&scope=openid profile email
&client_id=123
&redirect_uri=https://client.org/cb
&nonce=n-0S6_WzA2Mj

Host: server.com

, Successful Authentication redirect

Validate
request

4 Authenticate user
1 r

Success
^ 1

Request consent

^
1 r

Consent

HTTP 302 Found
Location: https://client.org/cb?

code=SplxlOBeZQQYbYS6Wx
&access_token=SIAV32hkKG
&token_type=Bearer
& expires_in=3600

Client can then use the authorization
code in exchange for an id_token, an
access_token and a refresh_token
in the same manner as in the
authorization code flow

Figure 2.3: Example of a successful hybrid flow authentication requesting an authoriza­
tion code and an access token. The authorization code can be used on the token endpoint
precisely as in the authorization code flow pictured in Figure 2.1. H T T P requests and re­
sponses are taken from the OIDC specification [18].

13

https://server.com/authorize
https://client.org/cb
https://client.org/cb
https://client.org/cb
http://server.com
https://client.org/cb

Chapter 3

Keycloak Server

Keycloak 1 is an Identity and Access Management (IAM) solution providing centralized
authentication and authorization to applications and APIs. It was created in 2014 and had
become an upstream project of a Red Hat product - Red Hat Single Sign-On; in 2024,
rebranded to Red Hat build of Keycloak 2 . It is written in Jakarta E E , and the Keycloak
distribution is based on Quarkus'^. As of Apr i l 2023, Keycloak became an incubating project
of Cloud Native Computing Foundation'1.

Keycloak provides an easy solution to securing applications and R E S T services with
minimum effort. This includes storing users, centralized management of users, authenticat­
ing, authorizing, and single sign-on for not only web applications. The users can be stored
in the local Keycloak user database or federated from an external storage. The storage can
be a relational database, Active Directory, or an L D A P server. Social logins are also a vi­
able option. Social Identity Providers can be integrated with a Keycloak instance, enabling
delegating authentication to a social media account such as Google, Facebook, Twitter,
GitHub, Linkedln, Microsoft, and Stack Overflow. User accounts can then be managed via
the administration console or by users in the account console included in Keycloak.

To secure an application with Keycloak, an administrator must register a client in
the Keycloak admin console. Keycloak implements the realm mechanism. A realm is a set
of users and clients with its own configuration. Keycloak can have a theoretically unlimited
number of realms, each completely separate from the others. A l l applications within one
realm „share" the same user's session, meaning once a user logs in to one of the clients
with Keycloak, they are logged in all the applications in this realm. The same applies
to logging out. This is the core concept of an SSO 0 application. In a typical scenario,
an administrator of an example IT company using Keycloak can have one realm with
a database of their employees where they leverage the SSO for their intranet, git repository
host, and Google services. Another realm would be for customers and the company customer
portal. A mockup of a general communication involving Keycloak is in figure 3.1.

A user can sign into an account in each realm in one moment, but only if these ac­
counts are in different realms. A realm can be considered a singular identity provider.
This knowledge is important for the FedCM A P I 6 implementation.

x https: //www.keycloak.org//
2 https: //access.redhat.com/products/red-hat-build-of-key cloak
3 https: //quarkus.io/
4 https: //www.cncf . 1 0 /
5 Single Sign-On
6Federated Credential Management Application Programming Interface

14

http://www.keycloak.org//
http://redhat.com/products/red-
http://www.cncf

Applications

Request Authentication

) > f ' Invoke f ' Invoke
L

Keycloak

Realm Realm

1 Clients 1 Clients

1 Users 1 Users

1 Roles and Groups | 1 Roles and Groups |

1 Identity Providers | 1 Identity Providers |

1 User Stores 1 User Stores

©
Verify

Services

Figure 3.1: When a user accesses an application, it requests authentication from Keycloak,
verifying the user's identity and granting access to protected services. This chart is based
on a public Keycloak chart [10].

3.1 Javascript Adapter

To help developers with integration with their applications, Keycloak offers several libraries
or client adapters in different programming languages and frameworks. These adapters
serve different purposes, such as the Keycloaklnstalled Java adapter for CLI/Desktop ap­
plications, the Keycloak Node.js adapter to protect server-side JavaScript apps, and most
importantly, the Keycloak JavaScript adapter. It is a client-side Javascript library called
keycloak-js, which operates on the OIDC protocol (discussed more in chapter 2).

This library is used for client-side applications considered public clients, as they can not
securely store client credentials. By default, it uses the authorization code flow (see 2.4.1).
Still, it can be configured during adapter initialization to use the implicit flow (2.4.2) as well
as the hybrid flow (2.4.3). Before its use, the adapter needs to be initialized as shown
in figure 3.2.

Once Keycloak is instantiated, the login function can be called to authenticate a user
for the application. For a better user experience, Keycloak implements OIDC Session
Management [15] and Silent authentication.

3.1.1 Session Management

A session typically starts once the authentication flow is finished and the client validates
the ID token. The status of a session is sent as a parameter in the authentication or error
response from the Open ID Connect provider. The status of the session can change over
time. For example, a user is signed in to two clients, client A , and client B, in one browser
window, each in a separate tab. Clients A and B share the same user session. If the user
decides to perform a single sign-out on client A , client B must be notified about this change
so they can act accordingly.

The specification defines two iframe elements that are embedded in the client. The in­
visible R P iframe, which is loaded from itself, periodically sends messages to the OP iframe,
which checks for changes in the session status. The OP iframe is loaded with an ID as-

15

import Keycloak from 'keycloak-js';

const keycloak = new Keycloak({

url: 'http://keycloak-server${kc_base_path)-',

realm: 'myrealm',

clientld: 'myapp'

});

try {

const authenticated = await keycloak.init({

onLoad: 'check-sso',

silentCheckSsoRedirectUri: '${location.origin}/silent-check-sso.html'

});
console.log('User is ${authenticated ? 'authenticated' : 'not authenticated'

>');
} catch (error) {

console.error('Failed to i n i t i a l i z e adapter:', error);

}

Figure 3.2: A n example of initialization of the Keycloak Javascript adapter on a client-side
application [11].

signed by the R P and listens for postMessage signals from the RP's origin. Upon receiving
such a signal, it calculates the session's status, typically using an OP cookie, and compares
it to the status passed as a parameter in the postMessage. The result is sent back to
the R P iframe.

While the concept remains similar, Keycloak is not standard-compliant. It embeds only
the OP iframe called the login status iframe. This iframe leverages cookies with a session ID
and sends messages to Keycloak to check this cookie. If a change is detected and the user
needs to be authenticated again, the client is redirected for authentication to Keycloak,
or if configured in the adapter, it can use silent authentication.

3.1.2 Silent authentication

Silent authentication allows a client application to receive tokens from Keycloak without
a browser redirecting them to Keycloak. Part of the OIDC core specification describes
a prompt parameter in the authentication request, which can be set to a value none.
This tells the authorization server not to display any authentication or consent user in­
terface. The silent authentication, or more suitably re-authentication, creates a hidden
Keycloak iframe on the client's side, which makes standard requests to Keycloak. Still,
the redirects happen only within this iframe. A n existing session with Keycloak identified
by an ID in a cookie must exist. Had the session not been there and the user not authen­
ticated, the iframe would have received an error from the Keycloak endpoint.

3.1.3 Browser tracking protection

Cookies are crucial for these two features to work. Unfortunately, they can also be used
to track users, so some browsers limit their use or block them completely. Because of this,
session management and silent authentication become unfeasible. If Keycloak could still

16

http://keycloak-server$%7bkc_base_path)-'

set these cookies, but the session ID cookie was set for client A , Keycloak could not access
this cookie for client B, which is the key for session management. There are mechanisms
in place to mitigate this issue, but they spoil the user experience.

In the case of the login status iframe (the session management), the Javascript adapter
performs two steps before loading the iframe. In the first step, it checks with the browser's
Javascript interface if cookies are enabled, but because the support for this is inconsistent
across user agents, it also sets two cookies that serve the purpose of being read in the next
step. If, in the call to the second-step Keycloak endpoint, it is found these two cookies from
the previous step are not set, the login status iframe would be useless and would not be
used. Admins of clients experiencing this issue are advised to set the life span of tokens to
a very short time, so in case of a single sign-out, the change in the session status would be
found when refreshing tokens. Had the login status iframe been active, the change in session
status would have been discovered sooner.

As per the silent authentication and cookies disabled, keycloak-js falls back to the redi­
rect flow. The process stays the same, but the redirect happens on the browser level instead
of in an iframe. The user is redirected from a client to Keycloak, and if an active session is
found, they are redirected back to the client. The client could be in some state, and after
Keycloak redirects back, this state is lost and wiped out.

17

Chapter 4

Federated Credential Management
A P I

This section paraphrases and describes the proposed Federated Credential Management
A P I solution described in the specification [7], namely the sections affecting the Identity
provider. As mentioned, at the time of writing this thesis, it is not yet standardized.
It is a community draft report published by the Federated Identity Community Group 1

developed in a public Github FedCM repository 2. As it is an open specification, multiple
articles, blog posts, and GitHub issues are also cited in these paragraphs.

The Federated Credential Management A P I aims to bridge the gap for the federated
identity designs that relied on third-party cookies [7]. The main explainer file for us­
ing FedCM states: „The Federated Credential Management A P I provides a use case spe­
cific abstraction for federated identity flows on the web. The identity specific APIs allow
the browser to understand the context in which the R P and IDP exchange information,
inform the user as to the information and privilege levels being shared and prevent unin­
tended abuse." [1]. It is not the goal to replace already used OIDC, S A M L , and OAuth but
to reuse as much of them as possible.

Similarly to OIDC, it has the Relying Party (RP) actor, then an IdP (Identity Provider,
in the scope of this thesis Keycloak) and a user agent (an internet browser). The user
agent is placed in the middle as a mediator between the R P and the IdP. The changes impact
mostly the user agent and the IdP (in which this A P I is implemented) and minimally the RP,
which makes a simple Javascript call to the user agent to obtain the user's permission
to log in with the IdP and receive a token able to access the user's information.

As of writing this thesis, the FedCM is implemented to some extent in Chromium-
based browsers, mainly Google Chrome, with plans to implement it in other user agents,
such as Mozilla Firefox.

x

https://www.w3.org/community/fed-id/
2

https: //github. com/f edidcg/FedCM

18

https://www.w3.org/community/fed-id/

4.1 Identity Provider H T T P A P I

The IdP must implement and expose a set of H T T P APIs, which the user-agent calls
on behalf of an RP . These endpoints are captured in figure 4.1 and consist of:

. The Weil-Known File

. The Config file

• Accounts endpoint

• Client Metadata endpoint

• Identity assertion endpoint

• Disconnect endpoint

A l l requests sent to the IdP's A P I must contain the header Sec-Fetch-Dest with
a newly defined value webidentity. This serves as a protection against a Cross-site script­
ing attack because it cannot be set by random websites [7].

Additionally, all successful requests to the identity provider must respond with a JSON
object that can be converted to a respective data structure implemented in a browser.

Relying Party

JavaScript

User Agent

Federated
Credential

Management
API

HTTP

Identity
Provider

Well_Known

Config

Accounts

Client
Metadata

Assertion

Disconnect

Figure 4.1: A n R P notifies a user agent via a JavaScript interface of an intent to log in
a user. The user agent then performs a series of H T T P requests to endpoints implemented
on the Identity provider's side. This figure is remodeled after a scheme from the FedCM
A P I specification [7].

Each request to the IdP's endpoints contains different information. The data shared to the re­
spective endpoints is shown in table 4.1.

19

Table 4.1: Information shared in requests to the IdP H T T P APIs. A n extended version of
a table from the FedCM A P I specification [7].

Endpoint Method
Sec-Fetch-Dest
header IdP Cookies client_id Origin

The Weil-Known
File

G E T webidentity no no no

The Config file G E T webidentity no no no
Account list G E T webidentity yes no no
Client Metadata G E T webidentity no yes yes
Identity assertion P O S T webidentity yes yes yes
Disconnect P O S T webidentity yes yes yes

4.1.1 The Weil -Known File

This well-known file must be served in a pre-defined location at the root of the IdP. The ex­
act location is / . well-known/web-identity of the IdP's eTLD+1, which prevents the man­
ifest fingerprinting attack [7]. This attack can reveal a user's identity without their consent.
A n eTLD stands for effective top-level domain under which users can directly register their
own domains. They are available in a Public Suffix L i s t 3 . The +1 then represents an ad­
ditional level to the eTLD.

This JSON file contains a provider_urls list of URLs pointing at config files. The con-
fig files themselves can then be anywhere. At the moment of writing, the number of config
files in a well-known file is limited to only one'1.

4.1.2 The config file

This is a manifest file with IdP's H T T P APIs defined in this specification, the name of
the IdP, and IdP's branding preferences. The branding preferences modify the prompt
a user agent presents to the user when choosing the appropriate account and granting their
permission to use this account. They include colors and a displayed icon.

4.1.3 Accounts endpoint

This endpoint returns a list of accounts the user is logged in at the IdP in this browser.
Because some IdPs allow more users to be logged in simultaneously, this list can contain
multiple accounts. Each account must have an ID (which is IdP-specific) and information
about the user. This information is used only to display in a widget, so the user can decide
which account they want to use via this G U I 5 element.

For each account, the IdP keeps a list of approved clients. These are the clients for
whom this user has already granted permission to use their account. This list is used when
displaying privacy policy and terms of service. These policies are described in section 4.1.4.
If a c l i e n t _ i d in this list matches a c l i e n t _ i d provided by the R P (set up during client
registration with the IdP), the policies are not displayed.

Two more lists are returned in the JSON object: login_hints and domain_hints.
A n R P can use these to request only accounts matching these hints.

3

https: //publicsuf fix.org/
4

https: //github.com/f edidcg/FedCM/issues/333
5 Graphical User Interface

20

http://fix.org/

Because FedCM A P I does not provide an option to log in directly at the IdP, they must
be logged in before initiating the federated login flow.6

4.1.4 Client Metadata endpoint

As the name suggests, this interface returns a JSON object with metadata about the client.
The specification does not say how the IdP obtains a link for the privacy_policy_url
and terms_of _service_url, which are in the response. When creating the connection
between an R P and an IdP account for the first time, these must be displayed to the user.
A c l i e n t _ i d can be utilized by the IdP to decide which client's policies to display.

4.1.5 Identity assertion endpoint

This is the final step in the federated login flow. After the user confirms their desire
to connect this account with the R P via a user agent's UI, the user agent sends a P O S T
request to this IdP's endpoint. The request contains a c l i e n t _ i d , account_id of the chosen
account, a boolean value whether the user was shown what information will be shared with
the R P in the disclosure_text_shown parameter, and a nonce. If present, the IdP should
validate the nonce value to prevent CSRF-style attacks. This value was initially set by
the R P requesting the user accounts from the IdP; it is encoded in the obtained token
and verified to be the same.

After checking the Origin header of the request matches the c l i e n t _ i d , the IdP returns
a token, which is passed back to the client. It is not specified what token should be returned
as the FedCM does not rely on authentication or authorization protocols. „The content of
the token is opaque to the user agent and can contain anything that the IDP would like
to pass to the R P to facilitate the login" [7]. Upon receiving the token, the R P is expected
to validate the token.

Wi th a successful response, the user agent creates a record in its internal storage.
Into the Connected Accounts set is added a new triple identifying the connection con­
sisting of RP's origin, IdP's origin, and an account ID.

4.1.6 Disconnect endpoint

The disconnect endpoint removes the previously created connection of the account, the RP,
and the IdP. It notifies the user agent to remove this record from its connected accounts set.
A disconnect request is facilitated in C O R S mode with the c l i e n t _ i d and an account_hint.
The CORS mode means the request includes an Origin header. If the server recognizes
the Origin of the client, it responds with a header Access-Control-
Allow-Origin with the originally shared value of Origin.

If successful, the IdP responds with a JSON object containing an account_id, which
allows the user agent to disconnect the account. It also allows the IdP to log the user
out of the RP.

6There is a proposal for a „button" mode providing the user agent an option to redirect to the IdP. More
described in 4.4.2

7Cross-Origin Resource Sharing

21

4.2 The Browser A P I

The browser is a trusted party between the user and the identity provider. It exposes an A P I
for an R P and an IdP, which facilitates and intermediates the exchange of the user's iden­
tity [7]. The most notable is the Sign-up/Sign-in A P I 8 , which allows an R P to initiate
the flow via a Javascript call and obtain a token.

This simple call depicted in figure 4.2 passes control to the user agent, which negotiates
the federated login, and the client receives a token. As the client receives a token, the user
agent creates a new connection with an account, RP 's origin, and IdP's origin and stores
it in the Connected Accounts set. This is a set of triples the user has used FedCM
to log in to the R P via the IdP account [7].

Because some calls require IdP's cookies (in the context of a third party), the web
browser passes them along as if they were from the same origin.

Part of the browser A P I is the IdentityCredential interface. It is a new type
of Credential, defined in [19] (currently a work in progress labeled as W3C Editor's draft).
This interface exposes a disconnect method which when given clientld, configUrl and
accountHint removes the connection account, RP, IdP from the connected accounts set.
The use of the disconnect method is in figure 4.3

const credential = await navigator.credentials.get({

identity: {

providers: [{

configURL: "https://idp.example/manifest.json",

clientld: "123",

}]
}

}):

Figure 4.2: A client's Javascript call to initiate federated login via FedCM [7].

await IdentityCredential.disconnect({

configURL: "https://idp.example/manifest.json",

clientld: "123",

accountHint: "user@example.com"

});

Figure 4.3: A client's Javascript call to log out a user and remove the client-IdP-user
connection [5].

4.2.1 The Login Status A P I

Similarly to the connected accounts set mentioned in the Identity assertion and the Discon­
nect endpoint, the user agent also holds a Login Status Map. This persists data about
a connected account of an IdP. The values are IdP's origin and an enum of either unknown,
logged-in, or logged-out.

8Not to be confused with the Login Status API.

22

https://idp.example/manifest.json
https://idp.example/manifest.json
mailto:user@example.com

A n IdP can modify the set to inform the user agent about the login status via a new
H T T P response header Set-Login, an example can be seen in figure 4.4. After authenti­
cating a user through its interface, an IdP can then notify the browser about a successful
login by including this header in a response9 with the value logged-in.

HTTP/1.1 302 Found

Set-Login: "logged-in"

Location: https://client.org/cb#id_token=eyJONiJ9.eyJlc...

Figure 4.4: A n example of a Set-Login header sent by an IdP after successful authentication
in implicit code flow (2.4.2) of only repsonse_type=id_token.

A n alternative to the H T T P header A P I is a Javascript A P I . In that case an IdP can
call navigator.login.setStatus(^aLite). Further information about the Login Status
A P I is available in [7].

4.3 Example flow in detail

In an example flow, where a user signs up with FedCM to an R P for the first time (figure 4.5),
the user agent's internal Login Status map will be empty. To succeed, the user must
be already logged in to an IdP's account. As mentioned in the previous section, the IdP
must notify the user agent about the login status via the provided APIs. Once the client
decides to obtain the user's federated identity, it calls the browser's JavaScript interface.
The user agent takes control and mediates the exchange with IdP via H T T P .

The client must be aware of where the config file is located. The browser makes two
requests in parallel, one fetch for the config file and one for the well-known file. Had
the config file not been among the URLs in the provider_urls list in the well-known
file or the list size greater than 1, the user agent would throw an exception, and the flow
would have ended. This approach mitigates Manifest Fingerprinting attacks, further reading
in section 7.3.1. of [7]. The contents of the config file are URLs for the rest of IdP's endpoints
which were until now unknown to the user agent (along with the branding preferences,
see 4.1.2.

Another request is sent to the accounts list endpoint with IdP's cookies. The IdP
gathers information about all signed-in users in the browser (if it allows more than 1 user)
and returns a list in a JSON object of items of type IdentityProviderAccount

1 0

. Because
it is the first time this account is used for federated login for this client, the returned account
has an empty list of approved_clients. One more request is sent in the background to get
the URLs for the RP's terms of service and privacy policy. IdP can distinguish the files
by a client ID in the request parameters. This implies the IdP is aware of these two items
in advance.

This is enough information to present the user with a widget prompt where they choose
an account. Wi th a name, an email, and a picture, the dialog displays what information
will be shared with the R P and renders 2 links to the policies gained in the previous step.
Once this flow finishes this R P is saved in the list of approved clients and there will be
no need to show these two links in the widget again, see figure 4.6.

9This response can also be an http-redirect.
1 0

https: //fedidcg.github.io/FedCM/#dictdef-identity-provider account

23

https://client.org/cb%23id_token=eyJONiJ9.eyJlc

Relying
Party

User
Agent

Ident i ty
Provider

Authenticate

R P invokes the API

n a vig ato r. credentials, get ({
identity:

providers: [{
configURL: "https://idp.example/manifest.json"
clientld: "123",

}]
}

Notify user agent

Access website navigator.login.setStatus("logged-in")

Return IdentityCredential

Validate manifest
files

Fetch list of accounts

Retrieve Well-Known file
G E T /.we 11-known/web-id entity

Retrieve config file

GET /config.json

<

GET /accounts
Cookie: name=value

Fetch metadata

GET/cl ient metadata?client id=123

Present user an account chooser widget

{ provider_urls: [...]

{accounts_endpoint:
client_metadata_end point:

branding:...}

{accounts: [
{"id":...,

"name":...
•••>.]>

Account chosen

{terms_of_service_url:...
privacy_policy_url:...}

Validate
token

{token:
isAutoSelected: boolean
id: . . .
type: "identity"}

POST /assertion
Origin:...
Content-Type: application/x-www-form-urlencoded
Cookie: name=value

T

account_id=...&client_id=123
&nonce=...&

Issue a token

{token:...}

Check Origin
header

Validate
nonce

Figure 4.5: A FedCM successful first-time login flow. A n extended diagram from the spec­
ification [7].

24

https://idp.example/manifest.json

Q Sign up to localhost w i th localhost

Šimon Vacek

Kvacek10@stud.fit.vutbr.cz

Cont inue as Šimon

To continue, localhost will share your name, email

address, and profile picture with this site. See this

site's privacy policy and terms of service.

0 -l ign up to localhost w i th localhost X

?>
Šimon Vacek

xvacek10@stud.f it.vuthr.cz

J Cont inue as Šimon J

Figure 4.6: Browser presenting an account chooser for a first-time user (left) and a returning
user (right).

If the user decides this is what they want and presses a continue button, the user agent
creates and sends the last request to the identity assertion endpoint. It is up to the identity
provider to ensure the Origin header value corresponds to the client ID so a malicious R P
does not receive a token. The client ID is IdP-specific, so the browser can not do this
validation. The IdP is also advised to validate the nonce in the parameter. The IdP then
issues a new token and sends a JSON object, which must have a single item, a token. While
this communication is happening in the background, the user interface is changed to let
the user know work is being done (see figure 1.7). User agent processes this and returns
the R P an IdentityCredential

1 1

 object containing the token.

Q Veri fy ing.. . X

A . Šimon Vacek

xvacekl 0@stud.f i t .vutbr.cz

Figure 4.7: The account chooser widget notifies the user the login is being processed.

In a logout flow (figure 4.8), the R P calls the the IdentityCredential.disconnect

method, and the user agent takes control. Same as in the sign-in/sign-up flow, a browser
fetches the manifest files and validates them in the same way. Thereafter, it requests logout
on the disconnect U R L from the config file. The IdP finds the ID of the account being
disconnected and returns it. Wi th this, the user agent removes a connection of (account
ID, R P origin, IdP origin) from the Connected Accounts set.

n

https: //f edidcg.github.io/Fed.CM/#browser-api- identity- credential- interface

25

mailto:Kvacek10@stud.fit.vutbr.cz
http://it.vuthr.cz
mailto:0@stud.fit.vutbr.cz
http://edidcg.github.io/Fed.CM/

Relying
Party

User
Agent

Identity
Provider

0 R P invokes the API to logout the user

ldentityCredential.disconnect({
configURL: "https://idp.example/manifest.json",
clientld: "123",
accountHint: "user@example.com"

})

Retrieve Weil-Known file

GET /.well-known/web-identity

Retrieve config file

GET/config.json

{ provider_urls: [...]}

{accounts_endpoint:
client_metadata_end point:

branding:...}
Validate manifest

Request logout

POST /logout
Origin:...
Content-Type: application/x-www-form-urlencoded
Cookie: name=value

client_id=123&account_hint=user@example.com

{account_id:...}

Remove
'connection

Figure 4.8: A successful FedCM sign-out flow.

4.4 Proposals and extensions

While the FedCM A P I specification is a draft and could be labeled as unofficial, there
are also proposals and experimental features that are not part of the specifications. These
features are implemented exclusively in the Google Chrome browser. Some of these features
are hidden behind a feature flag which enables them. 1 2

4.4.1 Auto-reauthentication

Auto-reauthentication is designed to improve the user experience for those who „used only
one account with FedCM A P I to sign into the website on this browser and the user is signed
into the IdP with that account" [4]. It offers a faster way to proceed without user interaction:
a widget showing the login process is still displayed but does not require the user to click
the „Continue" button, see figure 4.9.

The R P can negotiate auto-reauthentication with a mediation parameter. The follow­
ing code snippet demonstrates its use:

1 2 The flags can be turned on inside Google Chrome when accessing chrome://flags/ and searching for
„FedCM"

26

https://idp.example/manifest.json
mailto:user@example.com
mailto:user@example.com

const cred = await navigator.credentials.get({

identity: {

providers: [{

configURL: "https://idp.example/fedcm.json",

clientld: "1234",

}],

},
mediation: 'optional', // this is the default

});

In the context of FedCM, it can be of four values:

• required: Auto-reauthentication is not possible, and the user must always click
the „Continue" button

• optional: Use auto-reauthentication if possible; fall back to the user mediation oth­
erwise

• silent: Use auto-reauthentication if possible; fail the flow silently if not

Signing you in . . .

Šimon Vacek

xvacek10@stud.fit.vutbr.cz

Figure 4.9: A user agent's slightly different widget showing a user is being automatically
reauthenticated.

4.4.2 Button mode

This proposal suggests having an alternate flow, a „button mode," which could be chosen
instead of the current „widget flow". Unlike the widget flow, the button flow is not meant
to be invoked when the user lands on RP. Instead, it is used after the user performs an
action, like clicking a button.

The motivation for it is the current inability of a user to log in with their account if
they are not already logged in at the IdP. In the current widget flow, if the user is not
signed in to their account, the accounts list endpoint 4.1.3 returns an empty list, causing
the federated login to „fail silently," and the user does not receive any message about this.
The idea is, in the bigger widget (displayed on figure 4.10) of the button flow, the user
is instead presented with an option to sign in to the IdP in a pop-up window and, after
successful authentication, continue in the fedcm flow.

This was discussed and summarized in a comment on „A not-yet logged in IDP has
no route to success with this flow" issue 1 3, which led to „An intent to Experiment: FedCM
Button Mode A P I and Use Other Account A P I " . This feature can be turned on with flag
#fedcm-button-mode.

13

https://github.com/fedidcg/FedCM/issues/442#issuecomment-1949323416
1 4

https: //groups.google.com/a/chromium.org/g/blink-dev/c/bQqXXv2S9qO/m/XDBDuhrOAgAJ

27

https://idp.example/fedcm.json
mailto:xvacek10@stud.fit.vutbr.cz
https://github.com/fedidcg/FedCM/issues/442%23issuecomment-1949323416

o
Sign up to localhost with localhost
Choose an account to continue

r± Simon Vacek
* > wacek10@stud.fit.vutbr.cz

• y Radek Bürget
bjrgetr@fit.vut.cz

Cancel !

Figure 4.10: A n account chooser in button mode is a slightly larger pop-up, here displayed
with two users who have this client in a list of approved clients.

4.4.3 Dynamic sign-in flow

This similar feature enables users to sign in to an IdP account. In this case, however,
the prompt to sign in on the Identity Provider is presented only if the user was signed
in, but the session expired, or the sign-in status was not updated. It means the browser
expects a user to be signed in with the IdP (based on the record in the Login Status Map),
but the IdP's accounts list endpoint returns an empty list [2].

The IdP provides a signin_url in its config file for the dynamic sign-in flow to work.
After the user authenticates in the pop-up window, the IdP notifies the user agent about
a successful login described in section 4.2.1 and calls IdentityProvider. close() to close
the popup window. See figure 4.11 for the implementation in Google Chrome. This feature
is enabled with #f edcm-idp-signin-status-api flag.

0 Sign up to localhost w i t h localhost X

You can use your localhost account on th is site.
To continue, sign in to localhost.

Sign intofedcm-realm... - • K
© Localhost: 8 QSOyreaLmsVfedcm-reaLrWpr...

FEDCM-REALM

Sign in to you r accoun t

Username or emai

1
'asswcrd

Sign In

Figure 4.11: When a user is supposed to be signed in but is not, a different widget opens up
(left) asking them to sign in with IdP, which opens a new window (right) for authentication)

28

mailto:wacek10@stud.fit.vutbr.cz
mailto:bjrgetr@fit.vut.cz

Chapter 5

Design

The motivation for implementing and integrating the FedCM A P I into Keycloak is the third-
party cookie phase-out. Keycloak could not provide users the same service and experience
without their usage. The problem described and the solution to the phasing out (see sec­
tion 3.1.3) are unsustainable. Wi th FedCM A P I , at least a session negotiation for a client
application could happen. It could answer the following questions:

• Is a user authenticated?

• Who is the user?

• Which account does the client and user want?

• Is there an active session? Can it be given to me?

Ideally, the whole Keycloak Javascript adapter could be removed. Further experiment­
ing with FedCM and future additions to the specification will clarify whether it can be
a complete replacement. The current specification avoids being tied down with existing
protocols and focuses on identity, not session management. The goal of this thesis, in par­
ticular, is to provide a proof of concept and decide if the FedCM A P I is a good match for
Keycloak.

5.1 Keycloak Service Provider Interface

The most suitable option for implementing and integrating the FedCM A P I into Keycloak
is to use a Service Provider Interface (SPI). This design pattern is used in Java ecosystems
to enable better extendibility of existing applications, even for third parties, without mod­
ifying the original codebase. The SPI does not need to be compiled and packaged with
the original application. It can be delivered later and loaded dynamically at runtime [17].
Keycloak uses the SPI for many components, allowing the community to make custom ex­
tensions such as Keycloakify 1 for creating Keycloak themes with React or Python client 2

library for Python applications.
A custom SPI can be created, or an existing one can be overridden. A n SPI fundamen­

tally defines a contract for certain functionality within Keycloak. Keycloak has two key
interfaces: Provider and ProviderFactory. A n SPI must implement these two interfaces

x

https: //www.keycloakif y.dev/
2

https: //github.com/keycloak-client/keycloak-client/

29

http://www.keycloakif

(or create interfaces extending them and have classes implementing those). Additionally,
a service configuration file [13] is needed.

A provider factory creates instances of a given provider that has the actual business logic.
There is only one instance of a factory per Keycloak server. This factory must be registered
in a configuration file in the resources/META-INF/services directory. Figure 5.1 depicts
an exemplary directory hierarchy of an SPI.

The semantics are that the name of the configuration file corresponds to the full name
of the factory (including the package) this factory is implementing and contains an item
with this factory's fully qualified class name. This is used at Keycloak boot time when
a Provider Loader scans for and loads all provider factories.

For example, in this implementation, there is a FedCMProviderFactory in package
org.keycloak.fedcm that creates instances of FedCMProvider. It implements the Realm
ResourceProviderFactory interface, so the service configuration file would look as follows:
f "V

org.keycloak.services.resource.RealmResourceProviderFactory

org.keycloak.fedcm.FedCMProviderFactory

src

L
main

_ java

L o r g

L keycloak

1 fedcm

FedCMProviderFactory.j ava

1 FedCMProvider.j ava

resources

application.properties

META-INF

beans.xml

services

1 org.keycloak.services.resource.RealmResourceProviderFactory

Figure 5.1: Example of a Service Provider Interface directory hierarchy compliant with
Keycloak the SPI.

The concept of providers is widely used across Keycloak. Thanks to that, many compo­
nents can be modified to change the behavior. For the Provider interface, there are almost
700 implementations of it in Keycloak. One example of this design pattern is the User
Storage SPI. Keycloak offers integration with various storage options for users. One may
still find no suitable option for their needs. If so, they can extend Keycloak to support their
user storage. A developer can implement their version for the UserStorageProvider and
UserStorageProviderFactory. The methods defining, locating, and managing users are
in other capability interfaces from which a developer can choose. These include UserLookup
Provider (for methods needed to log in users from the custom storage), UserQueryMethods
Provider (for more complex user queries), or UserRegistrationProvider (to support
modifying the storage - add and remove users). [13]

30

Let's say a developer wants to extend Keycloak to support C S V files as storage. They
would have a class CsvUserStorageProviderFactory and CsvUserStorageProvider. Their
relation to the base user storage interfaces is illustrated in figure 5.2. In the provider class,
the developer can implement methods like getUserByld(userlD) to iterate through the file
lines to find the user. Once the user is found, it must be mapped into an implementation
of UserModel and returned. For some methods from the user storage SPI (getUserByld
in particular), all storage providers implementing these interfaces are looped through until
one implementation does not return null. Other configurations are not necessary. Key-
cloak automatically finds the storage provider if the required interfaces are implemented
and registered in a configuration file.

A developer is not required to wire it further into the codebase. These SPIs are allowed
to be packaged standalone. Assuming the C S V user storage provider is a maven project,
only a dependency for artifact keycloak-server-spi is added to the pom file. To regis­
ter the whole provider, the project will be built and packaged in a J A R 3 . The developer
downloads a Keycloak distribution from the official website'1 and extracts the Keycloak
archive. The J A R archive with a custom SPI is placed in the keycloak/providers direc­
tory. Keycloak can then be built with . /keycloak/kc. sh build and afterwards run with
. /keycloak/kc. sh start (if the server is not running in production but only in develop­
ment mode, start-dev can be used instead). The user storage SPI is loaded automatically.

The following section defines the providers and their factories used in the implementa­
tion.

5.2 The Federated Credential Management A P I design

The Service Provider Interface can be leveraged to add custom R E S T endpoints to the Key­
cloak server. Based on the specification, the endpoints can be divided into two groups.
As mentioned in section 3, each realm within Keycloak has its own set of users and clients.
Each realm is a separate identity provider. One group of endpoints is realm-based, which in­
cludes all of them except the well-known file endpoint. The second group is only the well-
known file that needs to be globally accessible at the root of the Keycloak server.

Based on this, a design for two providers can be proposed. The first is the FedCMProvider
and its factory. The second needs to be accessible at the root, and Keycloak does not have
an SPI hooking R E S T endpoints at the very root. Two ways can be taken. One would be
a WellKnownFileResource class with jax-rs annotations hooked directly to the / .well-
known/web-identity path. But with best practices in mind, a more suited solution is
to define a reusable RootResourceSpi interface serving endpoints at the root along with
interfaces RootResourceProvider and RootResourceProviderFactory. Our well-known
file endpoint can be served in new classes implementing these interfaces.

As per the FedCMProvider, thanks to implementing the RealmResourceProvider, it
will have access to additional information needed for a FedCM flow, such as the user model,
the client model, and authentication services.

This design allows the whole implementation to be a standalone extension of the Key­
cloak server, which can be added as described in section 5.1

See figure 5.3 for a complete overview of the designed classes and interfaces that imple­
ment the necessary SPIs.

3 Java archive
4

https: //www.keycloak.org/downloads

31

http://www.keycloak.org/downloads

«lnterface»
UserQueryMethodsProvider

+ searchForUserStream(RealmModel, String):Stream<UserModel>
+ searchForUserByAttributeStream(RealrriModel, String, String):Stream<UserModel>

" 5 "

«lnterface»
UserStorageProvider

+ preRemove(RealmModel)

7 \ ~

<r

->

«lnterface»
UserLookupProvider

+ getUserByld(RealmModel, String):UserModel
+ getUserByUsername(RealmModel, String):UserModel
+ getUserByEmail(RealmModel, String):UserModel

«lnterface»
UserRegistrationProvider

+ addUser(RealmModel, String):UsenVlodel
+ removeUser(RealmModel, UserModel):boolean

CsvUserStorageProvider

« create »

«lnterface»
UserStorageProviderFactory

+ getldO:String
+ create(KeycloakSession, ComponenModel):UserStorageProvider
+ init(Config.scope)
+ postlnit(KeycloakSessionFactory)

5

CsvUserStorageProviderFactory

+ PROVIDER_NAME:St r ing

Figure 5.2: A class diagram with a custom C S V user storage SPI example. Note that the
entities do not include all fields and methods from the real interfaces, as they add no extra
value to this demonstration.

32

«lnterface»
Spi

;+ getNameO: String
1+ getProviderClass():Class<? extends Provider>
j+ getProviderFactoryClass():Class<? extends ProviderFactory> ;

" A "

; RealmResourceSpi
i-

RootResourceSpi

\J/
«lnterface»

Provide rFactory

! + getld():String
| + create(KeycloakSession):Provider;
i + initO
! + postlnitQ

« create »

" A "

-Ex tends - -Ex tends -

«lnterface»
Realm ResourceProviderFactory

A

«lnterface»
RootResourceProviderFactory

A = =

FedCMProviderFactory WellKnownFileProviderFactory

«lnterface»
Realm ResourceProvider

+ getResource():Object

V . Y . .
«lnterface»

Provider

+ close()

Extends "I

«lnterface»
RootResourceProvider

+ getResourceO:Object

Extends

7 T

FedCMProvider

• session:KeycloakSession

+ fetchConfigFileO

+ fetchAccountsO

+ fetchClientMetadataO

+ fetchldentityAssertionO

+ disconnectQ

WellKnownFileProvider

• session:KeycloakSession

+ getWellKnownFileQ

Figure 5.3: A class diagram of interfaces and classes designed for the FedCM A P I integra­
tion. Entities with dashed frames denote interfaces already implemented in Keycloak.

33

Chapter 6

Implementation

Implementing the FedCM A P I specification was problematic at times. As it is a new
technology, a developer must follow the specifications and explore other sources. Currently,
FedCM is implemented in the Chrome browser in the Origin trial status. The specification
is open for feedback, so it can change to fulfill the needs of all parties involved. A prototype
is expected to be built to find what is missing and provide feedback to the community
group. Therefore, some features are implemented in the origin trial before adding them
to the specification (also mentioned in section 4.4). The most resourceful proved to be
the Privacy Sandbox blog 1 and issues tracked on the GitHub repository 2. This could
also mean some exciting and crucial features can be simply overlooked. Let's start with
implementation details before moving on to proposals for the future.

6.1 Endpoints Implementation

The design outlined in figure 5.3 applies. The provider classes implement all the necessary
endpoints. These endpoints use the jax-rs annotations from the package Jakarta.ws.rs
to define the H T T P method, path, request parameters, and other relevant configurations.
The user information used in the f etchAccountsList () method and the following imple­
mentations of endpoints are thanks to the KEYCLOAK_IDENTITY cookie passed in the re­
quest. As shown in figure 6.1, if a user has signed in with Keycloak, an instance of
AuthenticationManager can be used to obtain an AuthResult in a given realm containing
authentication-related information, including the UserModel.

AuthResult authResult = (new AuthenticationManager())

.authenticateldentityCookie(session, realmModel);

i f (authResult == null) { // user i s probably not authenticated

throw new WebApplicationExceptionO;

>

UserModel user = authResult.getUserO;

Figure 6.1: Example of obtaining a UserModel of an authenticated user in Keycloak.
x

https://developers.google.com/privacy-sandbox/blog/
2

https: //github.com/f edidcg/FedCM/issues

34

https://developers.google.com/privacy-sandbox/blog/

Information that needs to be stored and remembered is harder to implement in Keycloak.
The specification lists two things: the list of approved clients returned from the accounts
endpoint 4.1.3 and the client metadata in the client metadata endpoint 4.1.4. For each
user, there is a collection of attributes. They typically hold user information such as name,
email, and other affiliated metadata [12]. This collection allows the mapping of multiple
values to a single key, which is why it was used for storing clients consented to by a user.

Some of these attributes can be managed on the user profile. A user profile attribute
can be added and configured in the admin console and then optionally managed by users
in the account console. As profile pictures are not in Keycloak by default, they can be
added this way. When retrieving a picture in the accounts endpoint, if there is no value
set for this attribute, the JSON field is simply filled with an empty String, a valid response
to the FedCM A P I .

The privacy policy U R L and terms of service also don't cause an error if not supplied but
should be if available. My approach is sufficient for a prototype but needs future improve­
ment. It makes use of client policies. These are intended to dynamically enforce security
configurations and compliance requirements across different clients based on predefined
conditions. Clients also have a collection of attributes; however, unlike the user attributes,
they can not be accessed and managed in the admin console. A Keycloak administrator
is expected to create a role „policies" and provide links for two attributes: privacy-policy
and terms-of-service. The names must perfectly match, and their definition is in figure 6.2.

"roles": {

" c l i e n t " : {

"example-client": {

"name": "policies"

"attributes": {

"privacy-policy": ["example-client.com/privacy-policy/"]

"terms-of-service": ["example-client.com/tos/"]

}
>

}

}

Figure 6.2: A pseudo JSON object showing the expected role definition and values for
a model example-client.

There is currently no proper solution for the branding preferences of Keycloak supplied
in the config file (see 4.1.2). To simply demonstrate their use, they are fixedly hard-coded
in the implementation.

6.1.1 Connecting a user account

Keycloak, as an Identity Provider, must notify the browser when a user logs in. This is
the only instance when the original Keycloak codebase has been tampered with. After a suc­
cessful login, Keycloak returns a redirect response of type j akarta. ws.rs. core. Response.
This response is extended by the extra header Set-Login: "logged-in" (figure 4.4).

35

When the identity assertion endpoint receives a request, Key cloak mints a token and at­
taches a client session to the user session. Before that, an authentication session model
is created and supplied with authenticated user and client scopes. These scopes are cru­
cial for the token as it needs them to determine what information it authorizes access to.
The nonce passed as a request parameter will be included in the token and can be checked
by the client, who is waiting for a response from the user agent. Wi th the specification being
vague about the token classification and only one requirement, which is that the response
from this endpoint must return a JSON object with a single value, three credentials could be
minted. A n ID token, an access token, or an authorization code. Knowing the client desires
a credential to access the user's resources, the access token is the only choice for Keycloak.

Wi th sessions prepared, a TokenManager generates a new access token. At this point,
the user has granted consent to use their account at the R P and should be put on the list
of approved clients.

This endpoint also uses the proposed Error A P I . It allows Keycloak to signal errors
encountered during identity assertion. Through a JSON object, Keycloak declares a type
of error and a link to a page with information about the error [3]. It is realized with
an enum structure ErrorTypes with values being directly convertible to a jax-rs Response
type. In this prototype iteration, the links lead to a custom error endpoint that redirects
to online Keycloak documentation, with a link to a relevant chapter, see figure 6.3.

Open JDK - Keycloak - Google Chrome _ • x

key c loak.org: gett ing-starled/gett ing-i tarted-zip#_Log_in_tn_the_ad...

Log in to the Admin Console
1. Go to the K e y d o a k Admin Console.

2. Log in with the username and password you created earlier.

Create a realm
A realm in Keycloak is equivalent to a tenant. Each realm allows
an administrator to create isolated groups of applications and
users. Initially, Keydoak includes a singLe realm, called m a s t e r .
Use this reaLm onlyfor managing Keycloakand notfor managing
any applications.

Use these steps to create the first realm.

1. Open the K e y d o a k Admin Console.

2. Click the word master in the top-left corner, then click
Create Realm.

3. Enter inyrealm in the Realm name field.

4. Click Create.

Figure 6.3: A browser UI shown to a user when an error during identity assertion is en­
countered - utilization of Error A P I .

6.1.2 Disconnect and logging-out

The disconnect endpoint is responsible for disconnecting a previously made federated login
connection [7]. It is unclear what exactly happens on IdP's side. Keycloak could sign
the user out of all applications, terminating their session. Or terminating only the client
session and leaving the user signed in to the rest of the clients. This uncertainty was

Q Sign up to localhost with localhost

Check that you chose the right account
Check if the selected account is supported.
Choose "More details" below to get more
information from localhost.

More details Got it

36

http://cloak.org

brought up on FedCM GitHub issue3. Only the client session was decided to be terminated
by modifying the set of client sessions associated with the user. The user can log in with
FedCM again and possibly sign in with another identity provider. If the user pleases, they
can sign out of all clients, for example, in the account console. Keycloak notifies the browser
about a login status change in the same manner as when a user signs in during a regular
OIDC flow.

6.2 Implementation plans in the future

The current prototype certainly has flaws that need fixing. The obvious is the brand­
ing preferences dictionary, which could be integrated with customizable Keycloak themes.
Keycloak server administrators could modify the visuals of the visuals based on their de­
ployment and preferences. Another issue is the dynamic sign-in flow (see section 4.4.3).
While it is possible to engage in the flow, and a pop-up window appears where a user
can sign in, Keycloak is expected to close this window with IdentityProvider. close()
once the authentication is successful. This does not happen now. This process could be
automated by including a parameter, for example, f edcm_popup=true in the login_url.

This parameter would be passed along in the redirection URI to the OIDC authorization
endpoint. Once a user signs in, Keycloak can propagate the value again to the account con­
sole, which is redirected to. If this value is detected, the Javascript could execute closing
the pop-up window.

6.2.1 The Weil -Known File location

The Weil-Known file needs to be served by an IdP on an eTLD+1 on path /.well-known/
webidentity. That is a problem for these reasons:

• Keycloak can not guarantee where a customer or system administrator deploys the Key­
cloak server. The most common deployment is keycloak.mycompany.com, where
mycompany.com would be an eTLD registered in the public suffix list (4.1.1). How­
ever, the structure is entirely up to the Keycloak server administrator.

• Each realm is essentially an identity provider with its set of FedCM endpoints.
The config file has to be served in each realm, so the well-known file has a list of
provider_urls containing all the realms. The specification currently does not allow
to have more than one config file. That is not a big issue. Because of security reasons,
Keycloak does not want to expose all available realms publicly.

A reverse proxy could be used on the Keycloak side to mitigate these issues. A well-
known file will be served in each realm, so only one config file is present in providers_urls.
Keycloak will provide documentation for server administrators on how to set up the proxy,
which would forward requests to Keycloak and appear to the client as if the well-known file
was on the root. The proxy would do as follows:

rea l/n-na/ne-keycloak.mycompany. com/.well — known/web — identity
->
keycloak. mycompany. com/realms / realm-name/ fedcm/.well — known/web — identity

3

https: //github.com/fedidcg/FedCM/issues/558

37

http://keycloak.mycompany.com
http://mycompany.com
http://github.com/fedidcg/FedCM/issues/558

6.2.2 Merge into the upstream

The proof of concept is packaged as an SPI or an extension. It is not part of the main
codebase. Users and clients wanting to try it out are free to do so. In the near future,
the implementation should become part of Keycloak. The FedCM A P I would be a feature
not enabled by default but turned on by a parameter at Keycloak start-up. This way,
Keycloak users can try it with their applications and provide additional feedback that
benefits its development. The feature would be purely experimental and not advertised as
a supported solution. At least not for now.

The feature could be enabled per realm in the Keycloak admin console. A UI change
enabling a FedCM feature had already been made at the beginning of implementation
(displayed in figure 6.4) but was abandoned because it required further changes to support
and was not the main goal of this thesis.

= 4WKEYCLOAK •
f e d C m - r e a l m E n a b l e d A c t i o n -

Rea lm se t t i ngs are se t t i ngs tha t cont ro l the opt ions for JserSj app l ica t ions , roles, and g roups in t he current rea lm. Lea rn more

General Login Email Themes Keys Events Localization Security defenses Sessions Tokens >

"li'jp ;iy rial

H T M L Display riairn

Frontend U R L 0

Require S S L 0 Ex te rna l reques ts

A C R - l o L Q A Mapping No attributes haye :-eer ,:leJir,ec yet. Click the below

outton to add attributes, key and value are required for a

© Add an attribute

O p e n I D Endpo in t Con f igu ra t ion Gfj

S A M L 2.0 Identity Prov ider M e t a d a t a El

Figure 6.4: A feature toggle available to Keycloak administrators enabling the FedCM flow
within a realm.

6.3 Authorization extension

A crucial extension of the Federated Credential Management A P I was discovered very late
in development. Unti l now, how FedCM deals with authorization and how clients can
request OAuth 2.0 scopes to access different Keycloak functionality has not been discussed.
When the OAuth 2.0 protocol was built, certain measures had to be taken to make it more
secure. One of the key elements was transparency to the resource owner and keeping them
informed at all times. The user should always be in control of the authorization process

38

and get all information to make informed decisions. This is realized by presenting a user
with a user consent form [14]. This is specifically used and required for public clients
without a secret. These are the clients secured by the Keycloak Javascript adapter. The
Federated Credential Management can obtain the user's consent (shown in the left picture
of figure 4.6). Still, it is only for the basic scope represented in Keycloak as a „profile."

The authorization extension for FedCM enables the client to request additional non-
profile OAuth scopes and other parameters relevant to the IdP [6]. It also introduces
a new field list with parameters that are irrelevant to the user agent but are to the identity
provider. When the browser detects non-profile scopes, it does not recognize them and can
not prompt the user to consent to them. Simply because the browser does not know
the semantics, it does not know what, for example, „calendar" means. So, the FedCM flow
is modified so that a new IdP window pops up where the consent is obtained, and the flow
returns.

A Javascript call requesting other scopes would be modified this way:

const credential = await navigator.credentials.get({

identity: {

providers: [{

configURL: "https://idp.example/manifest.json",

clientld: "123",

responseType: ["id_token"],

scope: ["profile", "email", "phone", "roles"] ,

params: {

"code_challenge":

"code_challenge_method": "plain"

}
}]

}
});

Modifications to the flow occur during the identity assertion. After the user chooses
an account, the user agent looks at the list of scopes. If the browser finds non-profile
scopes, it sends a request to the IdP with the scopes in parameters and allows it to return
a JSON object with a continue_on U R L instead of a token. This is an address on IdP's
domain where it can display a consent form listing the shared information with the R P in its
own words. It happens in a pop-up window. After the consent is gathered and a token
is minted, the IdP can close the window and send the token with the identity provider
interface: IdentityProvider.resolve(token) and window.close().

This addition to the specification is the missing piece Keycloak very much needs. It also
resolves the question about the token, but sadly, it is not currently implemented. Wi th
so many sources for the implementation, it is not easy to find all the information. Missing
this feature in the implementation is simply an error by the author. Still, this extension is
not part of the specification and, therefore, not in the scope of this thesis.

39

https://idp.example/manifest.json

Chapter 7

Testing

The implementation of the FedCM A P I on the side of Keycloak is not very graphic. The A P I
does nothing until it is invoked by a relying party, a client application. For this reason,
a simple Javascript application was also developed to call the browser interface and test
the functionality. This application is part of the submission and is described in the ap­
pendices. It runs in the browser, in this case, Google Chrome version 124. The whole
functionality can be narrowed down to two Javascript calls. One is for the sign-in (see fig­
ure 4.2), and one is for the disconnect (or sign-out) in figure 4.3. Both these actions can
also be checked in the Keycloak administration console.

Once a user consents to the federated login, the FedCM Keycloak extension creates
a session for the client. The session can be confirmed and viewed in the „Sessions" section
of the admin console (figure 7.1) and in the „Applications" section of the account console
(figure 7.2).

For the sign-in, it is vital to verify that only an authenticated user with Keycloak
can succeed in the FedCM sign-in flow (unless the button mode is used). If there are
no users, Chrome already knows this, as there is no connection in the connected accounts
set, and an error is returned. This error message is only displayed in the browser's console
and can not be caught and displayed to the user. This is intended as the browser keeps
the connected users a secret until they specifically allow it. It returns an „error retriev­
ing a token" message, the same as when the user cancels the dialog. That is also why
the example R P application displays generic error messages.

For testing, Chrome needed to be configured to support other FedCM functionality
and ensure, for example, the environment is ready for the third-party cookies phaseout.
These flags are:

• #test-third-party-cookie-phaseout: Enabled

• #fedcm-button-mode: Enabled

• #fedcm-disconnect: Enabled

• #fedcm-error: Enabled

• #fedcm-idp-signin-status-api: Enabled

• #fedcm-skip-well-known-for-same-site: Disabled

• #fedcm-without-well-known-enforcement: Disabled

40

= < « K E Y C L O A K ® admin T 3
fed cm-realm »

S e S S i o n S Act ion -

Sessions are sessions of users in this realm and the clients that they access within the session. Learn more G£

Manage

Clients
X All session types T Q, Search session C? Refresh 1-1 •»

Client scopes User Type Started Last access IP address Clients

Realm roles jser REGULAR 4/4/2024,10:00:03 PM 4/4/2024,10:00:03 PM 192.168.1.120 account-console example-client

Users

Groups
1-1 '

Events

Con f i gu re

Realm settings

Authentication

Identity providers

User federation

Figure 7.1: Keycloak admin console confirming the user has an active session in example-
client.

— {•1KEYCLOAK Šimon Vacek »

Personal info A p p l i c a t i o n

Account security >

Applications

View applications your account has access to

Name App l ica t ion type Sta tus

> Account Console G£ Internal In use

> example-cl ient Internal In use

Figure 7.2: Keycloak account console confirming the user has an active session in example-
client.

41

A l l screenshots included in chapter 4: Federated Credential Management A P I were
taken during testing on the client application. The requirement for the Sec-Fetch-Dest:
webidentity in the requests can be tested by a simple comparison of accessing the Keycloak
URLs (for example, the well-known file on keycloak:8080/.well-known/web-identity)
from a browser, which fails with the 400 status code, and via a curl command providing
the header:

curl - i http://localhost:8080/.well-known/web-identity \

-H "Sec-Fetch-Dest: webidentity"

The rest of the functionality was tested manually in the browser environment. In­
structions for verification of the functionality are included on the application's main page,
as well as in the appendices. These include checking the token has the user data, ensuring
the correct user account is obtained, the client metadata is displayed during the user's first
login, the login status is updated, the dynamic sign-in is fired when the session expires,
and a scenario where a client with an unknown client ID tries to obtain user's identity.

In figure 7.3 is the client application displaying the user's information after a successful
federated log-in. It includes a button to display the J W T access token shown in figure 7.4.

During this process, Chrome sometimes disables third-party sign-in. When that hap­
pens, it needs to be re-enabled for the client in the settings.1

1

chrome://settings/content/iederatedldentityApi

42

http://localhost:8080/.well-known/web-identity

Example client-side Javascript application My Profile Logout

User Profile

First name: Šimon

Last name; Vacek

Email: xvaceklO@stuci.fit,vutbr.cz - M
Tr

Show Acccess token

FedCM configuration

SC80 Keycloak
part

Flow made * Widget mode
O Button mode

Type of
mediation

8 Mediation required
O Mediation optional

Figure 7.3: The client application used for testing displaying user information after a suc­
cessful federated log-in.

blob:http://bcalhost:3081^7cc0aeed-cb28-4fda-8f5c-d027d73cB T„ • x

O bLob:http:/;io<:alho5t:S0S1/7cc0aeed-cbZ8-4fda-Sf5c-d027d73cSd0f

P r e t t y - p r i n

{"exp": 171458227l/'iat" : 1714581971 H " j t i " : "4cf4bc2a-4bb8-4a88-a37c-
395f 8cc45252" ,"aud": "account 1', "typ": "Bearer 1', "azp": "example-
c l i e n t " / ' s i d 1 ' :"f2b917S2-13a4-462e-8eac-20E5c3b34f02" J 'acr 1' :"1","allowed-
o r i g i n s 1 ' : [" "] , "realm_acces£1' : { " r o l e s 1 1 : ["off l i n e _ a c c e s s " , "def ault-roLes-fedcm-
realm" , "Lma_authorizatiorT]} (" r e s o u r c e _ a c c e s s " : {"account": { " r o l e s " : ["manage-
account","manage-account-links","view-profile"]}},"scope":"openid p r o f i l e
e m a i l " , " e m a i l _ v e r i f i e d " : t r u e , "name": "Šimon
Vacek", "preferred_useiname , r: "user", "given_name'r: ''Šimon", "f a m i l y _ n a i i e " : "Vacek" (

"email": "xvaceklBfrstud. f i t . v utbr. cz'\ ''picture": " h t t p s : / /media. licdn.com/dms/im
age/C4E03AQF6EEKol9spig/profile-displayphoto-shrink_80B_e0B/O/16459937B9821?
e=21474S3647&v=beta&t=YE-E©c3pZM4SEPetgnjina_Iy43LHGAR3P3U10dw0MU"}

Figure 7.4: The access token obtained by the client application.

43

mailto:xvaceklO@stuci.fit
http://vutbr.cz
http://bcalhost:3081%5e7cc0aeed-cb28-4fda-8f5c-d027d73cBT�
http://licdn.com/dms/im

Chapter 8

Conclusion

The goal of this thesis was to study, implement, and integrate the Federated Creden­
tial Management A P I into Keycloak. This developing non-standardized specification, part
of the Privacy Sandbox initiative, brings a solution to the third-party cookie phase-out
in the second half of 2024. The same cookies being abused to track users are also used
and relied on by identity providers to identify users and manage active sessions.

Before implementation, the current authentication and authorization protocols, with
a focus on Openld Connect and OAuth 2.0, had to be studied. The individual flows
of the OIDC protocol, tokens enabling access to user's information, and resources protected
by Keycloak in client applications provided the know-how of how Keycloak works and how
the FedCM can be integrated along these protocols. The current solution in the Key­
cloak Javascript adapter mitigating the issues with blocking third-party cookies was ex­
plored. Two main features were identified to be affected the most - session management
and silent authentication. Finally, to provide the full context, the proposed solution of
FedCM A P I was explored in detail, along with other experimental features currently pro­
totyped in the Google Chrome browser.

A solution was designed leveraging the Keycloak service provider interfaces, which allow
easy extendability and the creation of custom R E S T endpoints. The final implementation
satisfies the main requirements set by the specification and the extra Error A P I , which
sends a message to a user when the login fails. The FedCM authorization extension is
identified as a great addition to the specification and one of the first steps to be taken
in future implementation in Keycloak.

Through the research of FedCM, it is clear that the specification tries to be independent
of any other protocols to allow more freedom in implementation. However, this could lead
to future revisions, adding more security layers incompatible with existing solutions in other
protocols. This would result in re-inventing the wheel and ending up doing the opposite
of what it tries to do: to reuse parts of what already exists as much as possible.

Future iterations of the Keycloak FedCM extension will explore the use of S A M L clients
with FedCM and integration with other standards built on top of OIDC and OAuth,
such as the Proof Key for Code Exchange (PKCE) used in public clients and Demonstrating
Proof-of-Possession (DPoP). Future experimentation and cooperation on the specification
will tell whether FedCM can replace the Keycloak Javascript adapter or at least help miti­
gate the issues with the third-party cookie phaseout.

44

Bibliography

[1] Federated Credential Management (FedCM) [online]. 2024 [cit. 2024-04-03]. Available
at: https : //github.com/f edidcg/FedCM/blob/main/explainer.md.

[2] G O O G L E . FedCM updates: IdP Sign-In Status API, Login Hint, and more [online].
2023 [cit. 2024-04-03]. Available at:
https: //developers.google.com/privacy-sandbox/blog/fedcm-chrome-116-updates.

[3] G O O G L E . FedCM updates: Login Status API, Error API, and Auto-selected Flag API
[online]. 2023 [cit. 2024-04-03]. Available at:
https://developers.google.com/privacy-sandbox/blog/fedcm-chrome-120-updates.

[4] G O O G L E . Support auto-reauthentication in FedCM [online]. 2023 [cit. 2024-04-03].
Available at:
https://developers.google.com/privacy-sandbox/blog/fedcm-auto-reauthn.

[5] G O O G L E . FedCM updates: Disconnect API and two updates [online]. 2024 [cit.
2024-04-19]. Available at:
https: //developers.google.com/privacy-sandbox/blog/fedcm-chrome-122-updates.

[6] Authorizing non-profile oauth scopes [online]. 2024 [cit. 2024-04-20]. GitHub issue.
Available at: https://github.com/fedidcg/FedCM/issues/477.

[7] G O T O , S. and M O R E N O , N . P., ed. Federated Credential Management API [online].
Federated Identity Community Group and Google, 2024 [cit. 2024-03-22]. Available
at: https : / / f edidcg.github.io/FedCM/.

[8] H A R D T , D . The OAuth 2.0 Authorization Framework [online]. October 2012 [cit.
2024-03-22]. Available at: https://www.rfc-editor.org/rfc/rfc6749.

[9] J O N E S , M . and H A R D T , D . The OAuth 2.0 Authorization Framework: Bearer Token
Usage [online]. Microsoft and Independent, October 2012 [cit. 2024-03-22]. Available
at: https : //www.rf c-editor.org/rfc/rfc6750.

[10] K E Y C L O A K . Keycloak Logos, Diagrams and more [online]. 2024 [cit. 2024-04-19].
GitHub repository. Available at: https://github.com/keycloak/keycloak-misc.

[11] K E Y C L O A K . Securing Applications and Services Guide [online]. User manual, 24.0.0.
March 2024. Available at: https://www.keycloak.org/docs/24.0.0/securing_apps.

[12] K E Y C L O A K . Server Administration Guide [online]. User manual, 24.0.0. March 2024.
Available at: https: //www.keycloak.org/docs/24.0.0/server_admin.

45

http://github.com/
http://google.com/privacy-sandbox/blog/fedcm-chrome-116-updates
https://developers.google.com/privacy-sandbox/blog/fedcm-chrome-120-updates
https://developers.google.com/privacy-sandbox/blog/fedcm-auto-reauthn
http://google.com/privacy-sandbox/blog/fedcm-chrome-122-updates
https://github.com/fedidcg/FedCM/issues/477
http://edidcg.github.io/FedCM/
https://www.rfc-editor.org/rfc/rfc6749
http://www.rf
http://c-editor.org/rfc/rfc6750
https://github.com/keycloak/keycloak-misc
https://www.keycloak.org/docs/24.0.0/securing_apps
http://www.keycloak.org/docs/24.0.0/server_admin

[13] K E Y C L O A K . Server Developer Guide [online]. User manual, 24 .0 .0 . March 2024.

Available at: https: //www.keycloak.org/docs/24.0.0/server_development.

[14] L O D D E R S T E D T , T., M C G L O I N , M . and H U N T , P. OAuth 2.0 Threat Model and
Security Considerations [online]. Deutsche Telekom A G and I B M and Oracle, January
2013 [cit. 2024-04-20]. Available at: https://www.rfc-editor.org/rfc/rfc6819.

[15] M E D E I R O S , B . de, J O N E S , M . B . , B R A D L E Y , J . , S A K I M U R A , N . and A G A R W A L , N .
OpenID Connect Session Management 1.0 [online]. Google and Microsoft and
NAT.Consulting and Yubico, September 2022 [cit. 2024-04-21]. Available at:
https: / / openid.net/specs/openid- connect- session-l_0.html.

[16] M E D E I R O S , B . de, S C U R T E S C U , M . , T A R J A N , P. and J O N E S , M . B . OAuth 2.0
Multiple Response Type Encoding Practices [online]. Google and Facebook and
Microsoft, 2014 [cit. 2024-03-22]. Available at:
https: / / openid.net/specs/oauth-v2-multiple-response-types-l_0.html.

[17] M U Z I K A R , V . Approvals System for Keycloak server. 2018. [cit. 2024-04-22]. Master's
thesis. Masaryk University, Faculty of Informatics, Brno. Supervisor B A Y E R , J .
Written in Czech. Available at: https://is.muni.cz/th/yltxu/?lang=en.

[18] S A K I M U R A A N D , N . , B R A D L E Y , J . , J O N E S , M . B. , M E D E I R O S , B . de and M O R T I M O R E ,
C. OpenID Connect Core 1.0 [online]. NAT.Consulting and Yubico and Self-Issued
Consulting and Google and Disney, 2023 [cit. 2024-03-22]. Available at:
https: / / openid.net/specs/openid- connect- core- l_0.html.

[19] S A T R A G N O , N . , H O D G E S , J . and W E S T , M . , ed. Credential Management Level 1
[online]. Web Application Security Working Group and Google, 2024 [cit. 2024-04-07].
Section 2.2. Available at: https://w3c.github.io/webappsec-credential-management.

[20] T H O R G E R S E N , S. and S I L V A , P. I. Keycloak - Identity and Access Management for
Modern Applications. 2nd ed. Packt Publishing, 2023. ISBN 978-1-80461-644-4.

46

http://www.keycloak.org/docs/24.0.0/server_development
https://www.rfc-editor.org/rfc/rfc6819
http://openid.net/
http://openid.net/
https://is.muni.cz/th/yltxu/?lang=en
http://openid.net/
https://w3c.github.io/webappsec-credential-management

Appendix A

Federated Credential Management
A P I Keycloak extension

This chapter describes the contents of the memory media submitted, the process of build­
ing, configuring, generating A P I documentation, and running both the Keycloak with
the FedCM extension and the demo client application in two ways. The first is the preferred
way to use the provided container images at the root of the directory. The second is using
Maven and http-server node package, which could be unreliable and leave data after.

The submitted directory contains the source files, including the code and scripts nec­
essary for the project and all the required project configurations. Additionally, it contains
the Docker images for executing the project.

The implementation leverages the Keycloak service provider interfaces, which can be
compiled and delivered separately. It, however, needs a Keycloak distribution to run.
The Keycloak project is huge, takes a long time to compile, and could cause trouble with the
packaging. Because minimal modifications were made to the base Keycloak codebase, Key­
cloak was compiled, packaged, and included in the keycloak-dist directory. The changes
made in Keycloak are produced by git d i f f commit2 commit 1 and included in the file
keycloak.diff. It can also be used to apply the patch on the Keycloak source code with
patch -pi < path/to/keycloak.diff.

The data directory contains the configuration for Keycloak, ready for a demo test­
ing of the functionality. In docs/javadoc/, generated A P I documentation will be placed
once generated, and docs/report holds the technical report, the thesis text.

The docker directory contains files for generating the Docker images for execution
and manual testing. The keycloak.tar and c l i e n t . t a r archives are exported Docker
images. They were generated by their Dockerfiles.

As mentioned, the Keycloak distribution is in keycloak-dist. This is used in case
the project is executed with Maven. If it is, the built fedcm extension is placed inside it
during the server's start.

The mvnw script was generated from the pom.xml file. The Maven wrapper script is
the preferred method of building.

The src directory has the source code for both the main Keycloak FedCM extension,
the object of this thesis, and a Javascript application for testing the FedCM functionality.

The diagram A . l shows and describes the contents of the submitted media.

47

c l i e n t . t a r Docker image with the runnable demo client application

keycloak-fedcm

data

fedcm-demo.json Keycloak configuration for import

fedcm-demo-original. json Backup configuration

docker

client .Dockerfile Dockerfile for the client application

entrypoint-keycloak.sh Starts within the Keycloak container

keycloak.Dockerfile Dockerfile for Keycloak

docs

javadoc Generated the Java API documentation

.report

L xvaceklO-thesis. pdf Technical report

keycloak.diff D i f f of changes done to base Keycloak

keycloak-dist

l_keycloak-999.0.0-SNAPSH0T Prepared di s t r i b u t i o n of Keycloak

mvnw Maven wrapper script

package.json NPM dependencies declaration

pom.xml Maven Project Object Model

README.md Readme f i l e similar to the Appendix A

src

client-demo Source code for the demo client application

main

Java Source code for the keycloak-f edcm SPI extension

resources Configuration f i l e s for the SPI extension

target Generated outputs of build

keycloak.tar Docker image with Keycloak di s t r i b u t i o n

xvaceklO-report-sources.zip HgXsources for the technical report

Figure A.l: Contents of the submitted directory. The keycloak-f edcm directory is decom­
pressed keycloak-f edcm ZIP file on the media.

18

A . l Prerequisites

This project M U S T be built and run on Linux distributions as it relies on bash
and other utilities.
Open J D K 17 is recommended for building.
Maven wrapper requires the JAVA_H0ME environment variable to be set.

A.2 Bui lding the project

The FedCM extension to Keycloak is a Java Maven project. It uses a Maven wrapper for
building and execution but is less preferred to Docker images.

A.2.1 Compile

To compile the extension and package it run:
./mvnw exec:execOcompile

A.2.2 Generate Javadocs

To generate the A P I documentation, run:
./mvnw j avado c:j avado c

A.3 Running the project

The project is run and tested locally. Both Keycloak and the client application must
be hosted on localhost. The default port for Keycloak is 8180 and for the client application
8080. After successful execution, open the client application on localhost: 8080 and follow
the instructions there.

A.3.1 Running with Docker

This guide can be followed exactly step by step. It is advised not to run the containers
in detached mode, especially for Keycloak, which runs a script depending on user input.

The provided images do not rely on Docker. A daemonless container tool, Podman,
could be used as an alternative to Docker—if Podman is preferable, substitute docker for
podman in these commands.

Running the client application

1. Load the Docker image:
docker load - i cl ient.tar

2. Set environment variable for the client application port. The application will be
hosted on this port:
CLIENT_P0RT=8080

3. Run the container:
docker run - i t —name client-app -p \$CLIENT_P0RT:\$CLIENT_P0RT

-e CLIENT_P0RT=\$CLIENT_P0RT fedcm-demo-app

49

If it is discovered the port for the client was wrong, the container needs to be removed
and started again:

1. Stop the container:
Press Control+C or docker stop client-app

2. Remove the container:
docker rm client-app

3. Set environment variable for a different client application port:
CLIENT_P0RT=8080

4. Run the container:
docker run - i t —name client-app -p $CLIENT_PORT:$CLIENT_PORT

-e CLIENT_PORT=$CLIENT_PORT fedcm-demo-app

The container can be stopped and run again:

1. Stop the container
Press Control+C or docker stop client-app

2. Start the stopped container again
docker start - i a client-app

Once the testing is done, remove the container and the image:

1. Remove the container
docker rm client-app

2. Remove the image
docker image rm fedcm-demo-app

Running Keycloak

Because the chosen default ports may not be available, the container starts an interactive
script that lets the user configure the ports. Three actions are defined:

• start - This option starts Keycloak

• reconfigure - This allows changing the Keycloak configuration for the client appli­
cation port. It presents the user with another choice:

— port port of the client application

— default restores the original configuration for Keycloak set in the Docker image.

— These options only change the configuration file. This configuration must be
imported to work. They also modify only the original configuration file, meaning
all other data stored in Keycloak is lost if it was not in the configuration already

• import - This option imports the configuration file.

1. Load the Docker image:
docker load - i keycloak.tar

50

2. Set environment variable for the port of Keycloak:
KEYCL0AK_P0RT=8180

3. Run the container:
docker run - i t —name keycloak -p $KEYCL0AK_P0RT:$KEYCL0AK_P0RT

-e KEYCLOAK_PORT=$KEYCLOAK_PORT keycloak-fedcm

If it is discovered the port for Keycloak was wrong, the container needs to be removed and
started again:

1. Stop the container:
Control+C or docker stop keycloak

2. Remove the container:
docker rm keycloak

3. Set environment variable for a different Keycloak port:
KEYCL0AK_P0RT=8180

4. Run the container:
docker run - i t —name keycloak -p $KEYCL0AK_P0RT:$KEYCL0AK_P0RT

-e KEYCLOAK_PORT=$KEYCLOAK_PORT keycloak-fedcm

The container can be stopped and run again:

1. Stop the container:
Control+C or docker stop keycloak

2. Start the stopped container again
docker start - i a keycloak

Once testing is done, remove the container and the image:

1. Remove the container:
docker rm keycloak

2. Remove the image:
docker image rm keycloak-fedcm

A.3.2 Running with Maven

Running the client application

The client application does not use Maven. It is a plain H T M L and Javascript application
with some Bootstrap CSS. It needs to be served on localhost, and the default port for it
is 8080. The http-server package is used to serve the client. It can be downloaded from
the dependencies.

1. Download the http-server package:
npm i n s t a l l

2. Create an alias for the http-server executable:
a l i a s http-server=node_modules/http-server/bin/http-server

51

3. Run the server. Other ports than 8080 can be used, but it requires reconfiguring
Key cloak, as described below,
http-server ./src/client-demo/ -p 8080

Running Keycloak

The project needs to be built before executing the Keycloak extension. The Keycloak server
requires importing a configuration file with realms, users, and clients for testing. Then, it
can be run.

• To compile the project run:
./mvnw exec: exec@compj.le

• The configuration file can be modified if the client application is running on a different
port than 8080:
./mvnw -Dclient.port=8080 exec:exec@reconfigure

• If a mistake was made in the configuration, it can be restored:
./mvnw exec:exec@config-default

• To import the configuration, run:
./mvnw exec:execOimport

• This command then runs the Keycloak server. The variable for a port can be omitted
for a default value or changed.
./mvnw exec:exec@start -Dkeycloak.port=8180

• Typically, the whole execution would look like this:
./mvnw -Dclient.port=8080 -Dkeycloak.port=8180 exec:execOcompile

exec:exec@reconfigure exec:exec@import exec:exec@start

52

mailto:exec@compj.le

Appendix B

Testing manual

This manual gives instructions on how to verify the functionality of the FedCM extension
via the client application. This manual is available on the client application at the root. 1

B . l Prerequisites

• Make sure to use Google Chrome version 124. Your current version can be found
by entering „chrome://version" in the search bar

• Enter „chrome://flags/" in Chrome search bar and set the following flags:

— #test-third-party-cookie-phaseout : Enabled

— ̂ fedcm-without-well-known-enforcement : Disabled

— #fedcm-skip-weU-known-for-same-site : Disabled

— #fedcm-idp-signin-status-api : Enabled

— ̂ fedcm-error : Enabled

— #fedcm-disconnect : Enabled

— #fedcm-button-mode : Enabled

• Enable Third-party sign-in in settings.2

Sometimes Chrome automatically blocks it for a specific address during testing.
Mostly when a user cancels the sign-in dialog. If that happens, the address needs to
be manually allowed to show third-party sign-in prompts.

• Run Key cloak on localhost. The port can be modified, but the default and
preferred is 8180.

• Make sure this application is run on localhost on port 8080. If this port can
not be used, this client needs to be reconfigured in the Keycloak admin console.

x

http://localhost:8080
2

chrome://settings/content/federatedldentityApi

53

http://localhost:8080

B.2 Keycloak credentials

Keycloak is already pre-configured with a realm and two users. These are the credentials
used for signing in to Keycloak:

• Keycloak account console3

— Username: user

— Password: password

• Keycloak admin console1

— Username: admin
— Password: admin

B.3 Instructions for testing F e d C M functionality

Before proceeding, it is recommended to open a new browser tab so the instructions can be
read through while following them. Open also the Keycloak account console and the Key­
cloak admin console. Ensure the admin console opens in the fedcm-realm and not the master
realm.

It is also good to have the settings page open in case the third-party sign-in is disabled.
The settings page is on chrome://settings/content/federatedIdentityApi.

B.3.1 First sign-up

1. Sign in to the Keycloak account console.

2. Navigate to the profile page on the client application by clicking the „My Profile"
button at the top of the page

3. (Optional) Set the port for the Keycloak server.

4. Do not set any other values in the form and click the „Sign in" button.

5. In the opened widget, confirm two links for the privacy policy and terms of service
are present.

6. Click Continue

7. If the sign-in is successful, the Sign in button changes to Sign out, and the user
information is displayed.

8. Click on the „Sign out" button.

9. The access token is now deleted, and the User Profile section is empty.
3

http://localhost:8180/realms/fedcm-realm/account
4

http://localhost:8180/admin/master/console/#/fedcm-realm

54

http://localhost:8180/realms/fedcm-realm/account
http://localhost:8180/admin/master/console/%23/fedcm-realm

B.3.2 Following sign-ins

1. Sign in to the Key cloak account console.

2. Navigate to the profile page on the client application by clicking the „My Profile"
button at the top of the page

3. (Optional) Set the port for the Keycloak server.

4. In the configuration form, click the „Mediation optional" option. Leave the rest of
the options as they are.

5. Click on the „Sign in" button.

6. No prompt for the user is shown, the user is authenticated with Keycloak, and
the User Profile is displayed.

7. Verify there is a client session for „example-client" by navigating to the Keycloak
account console and clicking the „Applications" item in the menu.

8. Navigate back to the client application and the profile page.

9. Click on the „Show Access token" to display the J S O N token in a new window.

10. The information in the User Profile section is parsed from the access token. To confirm
the access token can be used for requests to Keycloak, click the „Send request to
Keycloak". This sends a request with the token to the OIDC userinfo endpoint and
displays the JSON response.

11. Press the „Sign out" button and sign in again. This time, the automatic re-authentication
is disabled, and the widget prompts again for consent.

12. Press the „Sign out" button.

B.3.3 Login status A P I and Button mode

1. If signed in the Keycloak account console, sign out.

2. Navigate to the profile page on the client application by clicking the „My Profile"
button at the top of the page.

3. (Optional) Set the port for the Keycloak server.

4. Make sure the Widget mode is chosen.

5. Click on the „Sign in" button.

6. After a while, an error is returned. That is because Keycloak notified the browser
that there is no active session in this realm.

7. Sign in to the account console.

8. From the flow modes, choose „Button mode" and sign in.

9. In the modal window, pick the account that should have the same information shown
in the account console. Sign out.

55

B.3.4 Dynamic sign in-flow

Before proceeding, it should be known that the current implementation does not inform the
browser about a sign-in status if the session is terminated, only when sign-out is performed.

1. Sign in to the Key cloak account console.

2. Navigate to the admin console. Ensure you are in the „fedcm-realm".

(a) Click on „Sessions" in the left menu.

(b) On the first item, press the „account-console" link in the column „Clients"

(c) On the first item, press the three vertical dots and press „Sign out".

(d) You are now signed out of the account console, but Chrome is not notified.

3. Navigate to the profile page on the client application by clicking the „My Profile"
button at the top of the page.

4. (Optional) Set the port for the Keycloak server.

5. In the configuration form, choose „Widget mode"

6. Press „Sign in"

7. You are presented with a prompt to sign in to the identity provider because the
browser expected a signed-in user. Press continue.

8. Sign in as a user in the account console in the pop-up window

9. Open the browser console of this pop-up window (by default it is by pressing F12 and
clicking „Console")

10. Type in IdentityProvider.close() and hit enter.

11. Continue in the widget flow.

56

