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1 Introduction 
This chapter introduces the background information and motivations for this dissertation 
and the A - W E A R project. It also contains the definition of objectives and research 
questions, as well as the outline of the thesis. 

1.1 Motivation 

This dissertation is one of the 15 doctoral theses within the four years long H2020 
Marie Sklodowska-Curie Innovative Training Network (ITN)/European Joint Doctorate 
(EJD) called A network for dynamic WEarable Applications with pRivacy constraints 
(A-WEAR) . The project connects five universities: Tampere University (TAU), Finland; 
Brno University of Technology (BUT), Czech Republic; Universita Mediterranea di 
Reggio Calabria (URC), Italy; University "Politehnica" of Bucharest (UPB), Romania; 
and Universitat Jaume I de Castellon (UJI), Spain, to provide post-graduate education, 
supervision, and training for the 15 early stage researchers. A l l topics of the project are 
closely related to wearable applications, be it regarding privacy, security, localization, 
communication, or health applications. 

The central question of this thesis is privacy in indoor positioning and localization. The 
problem of indoor positioning has grown rapidly over the last couple of years. The radio 
signal characteristics and the ways radio signal propagates throughout the environment 
is one of the main reasons wireless networks are popular in the indoor positioning and 
indoor navigation community [1]. 

Because of the nature of wireless communications, the data transfers can be exploited 
by a third party. That makes it easy for adversaries to capture the packets. As such this 
thesis explores the possibilities of passive capture of management frames of the W i - F i 
protocol to find possibilities for user tracking without the knowledge of the users. 

Furthermore, this thesis dives into the very important field of algorithm optimizations. 
Since memory is limited in mobile and Internet of Things (IoT) devices, the Machine 
Learning (ML) optimizations in this thesis focus on memory. Also, specific Radio 
Map (RM) improvements through interpolations are explored. 

1.1.1 Wearable Technologies 

Wearable technology has become increasingly popular over the last several years, and the 
market for wearable technology is growing rapidly. As the name suggests, wearable devices 
can be worn by humans. There are three main categories of how close the wearables are 
to the human body [2]: near-body (for example smartphones), on-body (smart watches, 
smart rings, fitness trackers, earbuds, etc.), and in-body (implants). 

Apart from the classification based on placement, wearable functions can be split 
into several sections: health monitoring (measuring heart rate, electrocardiograms, blood 
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pressure, oxygen saturation levels, etc.), fitness tracking (counting steps, traveled distance 
and in case of outdoor activities location information or burned calories), and lifestyle 
tracking (sleep, stress, water, and calories income). 

The data captured by all of the sensors and the transfer between devices are protected 
by encryption. However, radio signals are still a place of weakness. This is mainly due to 
the employment of wireless technologies, as these can be used for breaching the location 
privacy of users [3]. 

1.1.2 Technologies for Indoor Positioning Systems 

There are many wireless technologies with the possibility to be employed in Indoor 
Positioning System (IPS) [4]. Two of the more common technologies, mainly due to their 
widespread adoption in smartphones, are Bluetooth [5] and Wi-F i [6]. Less common are 
technologies like Ultra-Wideband (UWB) [7], which due to its higher cost [8], is yet to 
gain widespread adoption. Other technologies used in indoor positioning are ZigBee [9], 
visible light [10], millimetre wave radar [11] and others using computer vision [12] or 
dead reckoning [13]. Computer vision and dead reckoning are two technologies capable of 
working without infrastructure changes, as neither requires any beacons. However, both 
rely on the environment itself. Computer vision is used to analyze the environment using 
the images captured by the phone camera [14] and dead reckoning [15] using incremental 
location estimation from a known Reference Point (RP). Each technology possesses its 
own advantages and disadvantages [16]. 

1.1.3 Privacy in Indoor Positioning Systems 

The ubiquity of wireless interfaces in most user devices, like Wi -F i and Bluetooth, raises 
concerns about potential privacy breaches through these common networks. The issue is 
particularly pronounced with W i - F i management frames, which lack encryption. These 
concerns include: 

• Non-anonymized Media Access Control (MAC) addresses in probe request frames 
can serve as unique identifiers for tracking devices. 

• The Preferred Network List (PNL) can be used for fingerprinting and potentially 
revealing user locations. 

• Some probe request fields may directly identify the device owner, such as the device 
name in the Wi-Fi Protected Setup (WPS) field. 

This privacy issue is just the tip of the iceberg, as user presence detection via W i -
F i management frames is relatively straightforward. However, achieving precise user 
localization requires the collaboration of at least three Access Points (APs), a more 
complex endeavor compared to Global Navigation Satellite Systems (GNSS) and IPS, 
which necessitate tailored solutions for diverse indoor layouts and environments. 
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1.2 Objectives 

In this section, based on the found research gaps found the Research Objectives (ROx) 
are defined: 

• ROl . Analyze the possibilities of passive presence detection and positioning in 
indoor environments. 
The W i - F i communication protocol is the most widespread Wireless Local Area 
Network (WLAN) technology. People use it pretty much daily to connect to 
the internet at home, at work, or in public spaces, in part to save mobile data 
usage in the package provided by the cellular network carrier. Another factor is 
the use of W i - F i by our smartphones, not only for communication but also for 
coarse localization. This combined with the management frames opens the door 
to a possible breach of user privacy. The questions then are: Do our devices leak 
data and if so, how? Are there ways adversaries could exploit this leak to track us 
without our knowledge? 

• R02. Balance the achieved accuracy and necessary compute requirements of IPS 
and ML algorithms. 
Even though the computational capabilities of User Equipments (UEs) grows every 
year, the complexity of algorithms increases too. However, it should not need to do 
the same. This would result in a reduction in the processing time. By optimizing 
the algorithms we can reduce the processing time and subsequently have more time 
available either for other tasks or for saving energy by entering a low-power mode 
during idle. This is especially a good thing in embedded and wearable applications, 
in which battery life is an important factor. The question is: What are the ways to 
preserve the accuracy of machine learning algorithms, while reducing the hardware 
requirements? 
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2 Reproducible Research 
This chapter contains the created software used in several publications as well as the 
description of the collected datasets. 

2.1 ESP32 Probe Request Sniffer 

In several of the publications used in this thesis, the packet sniffer based on an ESP32 
Microcontroller Unit (MCU) is used for dataset collection. To simplify, the ESP32 
firmware captures W i - F i management frames. Following the capture, using a filter it 
selects only probe requests and saves them in a standardized binary packet capture file 
compatible with several network traffic applications. 

Probe requests do not contain a field with transmission time, and because of that, 
the ESP32 first connects to a Wi-F i network to download current time from the Network 
Time Protocol (NTP) servers. After synchronizing the internal clock with the outside 
world, the ESP32 initializes the connection to the SD card and mounts the file system. 

While the sniffing task runs, all received packets are checked for their type. If the 
packet is a probe request, the packet is saved in a file on the SD card. A l l other received 
packets are discarded. 

2.2 Datasets 

Using the previously mentioned ESP32 MCUs a couple of datasets of probe requests 
were collected in 2 different environments. In the university office the collection was done 
twice, during one week in 2021 and another during one month in 2023. Third dataset 
was collected in different environment, during an international conference IPIN. These 
datasets, due to the nature of probe requests, had to be anonymized, which was done 
by application of the SHA512 algorithm on all fields containing data about the user. 
Some of these fields were the Service Set Identifier (SSID) from the preferred network 
list, WPS fields that can contain the device model, name, and many others. The output 
of the SHA512 is 64 bytes long, however, only small sections of the hashing output were 
used. There are 2 reasons for that: 

• M A C address field of the transmitter, has a fixed length of 6 bytes, to preserve 
compatibility with network analysis tools, the M A C address length was preserved, 

• reducing the memory requirements, in case every anonymized field had a length 
of 64 bytes, the analysis of longer time intervals would be more intensive on the 
memory requirements of the system. 

The M A C address requires special treatment during the anonymization process. To 
keep the possibilities for analysis intact, the first 3 bytes of the original M A C address 
were left unchanged because those are the most important for analysis. 
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2.2.1 Probe Request Dataset - IPIN 
The probe request dataset collected at the 11th International Conference on Indoor 
Positioning and Indoor Navigation (IPIN 2021) contains 390810 captured probe requests. 
The monitoring of the W i - F i started 38 minutes before the conference program began 
with a tutorial session, on Monday 29 t h November, 2021 at 08:22. The final probe request 
was collected on Thursday 2 n d December, 2021 at 13:02, just a moment after the closing 
ceremony concluded. It was not possible to keep the sniffer working past the official end 
of the conference due to the preparation of the conference space for the following event. 

The captured probe requests, in some cases, contained the user information. Some of 
the user information was real M A C addresses of their U E , SSIDs from the P N L the U E 
transmits in search of APs it connected in the past. In some cases, the U E transmitted 
even the name of the device and the user, which happened in the transmission of probe 
request with WPS field. After the capture ended, the anonymity of the data was ensured 
by anonymizing all fields of the probe request that can contain user-related information 
with the SHA512 algorithm. 

The in-person conference event took place during the COVID-19 pandemic and 
was quite isolated. In the conference space, there was minimal presence of people not 
participating in the event. The only people in the proximity of the sniffer were the 
attendees of the conference, conference organizers, and hotel staff. 

2.2.2 Probe Request Dataset - UJI 2021 

This dataset was collected during one week starting on Thursday 9 t h December, 2021 and 
ending on Wednesday 15 t h December, 2021 in the G E O T E C office at UJI, Spain. This 
dataset was collected in a similar way to the probe request dataset captured at the IPIN 
2021 conference using the ESP32-based probe request sniffer described in Section 2.1. 
The dataset contains in total 340360 probe requests. 

Just like the probe request dataset collected at IPIN 2021, this dataset contained 
user information and it stays to say that the analysis was only approached from the 
implementation of W i - F i protocol, specifically to explore potential privacy issues in 
current implementations. The dataset was then anonymized in the same way as the 
dataset from IPIN 2021 by using SHA512 hashing algorithm over sensitive fields. Even 
though the originally collected data contains both real and randomized M A C addresses, 
it is not possible to match M A C addresses to specific individuals because the analysis 
was done over an anonymized version of the dataset, and additionally, data regarding the 
actual presence in the office or the building were not collected. 

2.2.3 Probe Request Dataset - UJI Probes 2023 

Same as the previous dataset UJI 2021, this dataset was also collected in the G E O T E C 
office at UJI, Spain. The probe requests were collected during the month of March, to 
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capture apart from regular work weeks also the local holiday Magdalena 2023, during 
which the university was mostly closed. Magdalena 2023 started on Saturday 11 t h March, 
2023 and ended a week later on Sunday 19 t h March, 2023. 

During the entire collection time, probe requests were being sent at all times, be it 
during the day, or night, workday or weekends. The explanation for the probe requests 
captured at night can be all-in-one computers using Wi-F i instead of a wired connection, 
phones, or IoT devices used for experiments in the office etc. The second noticeable 
thing is a peak in the transmitted probe requests happening every day around 05:00. 
This is due to the scheduled reboot of a W i - F i access point present in the office and 
devices searching for a network to connect to after being disconnected from it. Another 
noticeable thing is a short time period at night of the Sunday 26 t h March, 2023 with no 
captured probe requests. That is due to the switch to the Summer Time when the time 
changed from 02:00 to 03:00. 

The dataset offers various potential use cases, including W i - F i signal stability evalu­
ation by tracking Received Signal Strength Indicator (RSSI) values over time, presence 
detection and room occupancy estimation based on network traffic patterns and RSSI 
information, and the exploration of user privacy issues due to anonymized but potentially 
identifying data. Additionally, the dataset allows for the study of randomized M A C ad­
dress recurrences and vulnerabilities in the probe request mechanism. However, capturing 
ground truth room occupancy in the G E O T E C office was challenging, so occupancy is 
categorized into levels. 

2.2.4 RM Interpolation Dataset 

This dataset was created for the work focused on balancing the accuracy, compute require­
ments, and time required for the data collection of RMs for fingerprinting approaches to 
indoor positioning. The dataset represents the radio environment map created in the 
office at UJI, Spain. 

For the collection of this dataset, 5 ESP32 MCUs with sniffer firmware described 
above were used, and placed around the office. The first 4 were placed in each corner 
and the last 1 in the center of the room at approximately equal distance to the sniffers 
placed in the corners of the office. RSSI by nature fluctuates, and using more sniffers 
helps reduce the influence of the fluctuations in RSSI by having more samples. 
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3 Exploiting Wi-Fi Management Frames for 
Presence Detection 

This chapter focuses on the detection of human presence in using passive monitoring of 
nearby Wi-Fi network traffic. 

In Section 3.2,presence detection in a university office over one week is explored. 
Section 3.3 is a case study conducted at international conference IPIN 2021. And it 

focuses on the occupancy analysis of the conference space. 
The main focus of Section 3.4 is room occupancy from Wi-Fi management frames 

collected by the ESP32 M C U . 

3.1 Motivation 

Indoor positioning can also be just detecting a presence of people in the Area of Interest 
(Aol) or in the proximity of a Point of Interest (Pol). There are many reasons why 
presence detection is useful. Be it for power-saving purposes (smart lighting, ventilation, 
heating, or air conditioning control), safety (knowing someone is in the building during 
emergency situations), advertising, and other purposes. 

Since most of the approaches require a new infrastructure, in the following sections, 
the focus is on presence detection employing W i - F i technology and passively sniffing 
management packets from the radio environment. Since W i - F i infrastructure is usually 
already in place, it is beneficial to use it to reduce the cost of presence detection systems. 

3.2 Temporal Pattern Analysis Aided Tracking 

Our devices are communicating with the surrounding world using standardized protocols. 
For instance, a device in a I E E E 802.11 network is uniquely identified by the M A C 
address, which is used in all the messages involving the device. The device probe request 
is a type of wireless frame used to gather information about W i - F i access points in the 
proximity of a device. These probe requests can be a major weak point of a W i - F i 
protocol since they allow for non-cooperative user tracking if the device does not use 
enough privacy measures such as M A C address randomization. 

Tracking using W i - F i protocols can vary as they can be used to determine the past 
whereabouts of users, current presence, or both. The past locations of devices can be 
determined if the devices are transmitting the P N L (list of the networks the device 
was connected to in the past), which can be matched to the location using access point 
databases [17]. The current presence tracking can be done using a fingerprinting approach. 
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Fig. 3.1: Floor plan and location of sniffer in the office space of G E O T E C department at 
UJI, Spain. 

3.2.1 Analysis 
The used dataset was described in Section 2.2.2. The collection of probe requests was 
done at the G E O T E C office for 6 days of December 2021. The office is in the corner of 
the 5 t h floor and during peak times is occupied by about 15 researchers. The office space 
is visualized in Fig. 3.1. During that time, the sniffer collected 340 360 probe requests. 

In the past, the tracking of mobile devices using only probe requests was not very 
difficult as there were several factors that made the identification of a single device fairly 
straightforward. These include non-randomized M A C addresses, consecutive Sequence 
Numbers, common time differences between 2 probe requests, or] Information Element. 

MAC addresses: Even though M A C addresses cannot be used effectively to locate 
most modern devices, they can still be used to identify a device during a single scan. 

Sequence Numbers: The incremental nature of sequence numbers allow for another 
opportunity to easily identify packets coming from a single device. 

Information Elements: There can be various data, starting with supported transfer 
speeds, and information about the vendor of the wireless chip inside of the device, and 
even a device name. A l l of this can be used for fingerprinting. 

Preferred Network Lists: Knowing all probe requests coming from a single device 
for compilation of Preferred Network List. By using sets with each SSID represented 
only once, it is possible to use set similarity: p = ^(A^set^if)'1 ^° m a t c h same devices 
together despite using different M A C address. 

Device Identification: During the identification process there is a check if the M A C 
addresses of 2 separate instances are the same. If the M A C addresses are randomized 
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Fig. 3.2: Density of captured Probe Requests over time in the office space of the G E O T E C 
department (amount of probe requests grouped in 15-minute clusters). 

or different from each other, the presence of the WPS field is checked. In case of its 
inclusion, the Universally Unique IDentifier-Enrollee (UUID-E) field can be used in place 
of M A C address. In case the WPS field is not included and M A C addresses are not 
matching, similarity using the information elements and PNLs is used. 

Temporal Pattern Analysis: One of the more difficult parameters to mask for a single 
device sending multiple probe requests is the time difference between 2 Wi-Fi scans. This 
can be achieved by considering scan instance appearances of one device and clustering 
them together based on time. Then, the overlay similarity between clusters was compared. 

3.2.2 Results 

Throughout the week, the sniffer captured 340 360 probe requests. The distribution of 
probe requests, is shown in Fig. 3.2. From the distribution is clearly visible that some 
devices in the office are running without interruptions. 

From the 340 360 probe requests collected at the office, identified in total 125 983 scan 
instances. As a follow up 1023 devices were identified, as is represented in Fig. 3.3a. 

For devices that do not randomize their M A C addresses, the tracking is very effective. 
The reason is that the unique identifier is the M A C address, which never changed. As 
presented in Fig. 3.3a, 212 devices did not use M A C randomization, and the example of 
presence in time for 8 such devices is shown in Fig. 3.4a. 

The identification of devices randomizing M A C addresses is more complicated. The 
results can be seen on 8 devices using randomized M A C address in Fig. 3.4b. Even with 
the more complicated identification, the analysis of user presence is still possible. 

The instance matching is not 100 % accurate and, it can misidentify a single device 
as several devices. The number of devices with locally assigned M A C address before and 
after temporal pattern matching can be seen in Fig. 3.3b. The probe request transmission 
patterns were quite closely matching each other, as can be seen in Fig. 3.5. 
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3.3 Presence Analysis with Wi-Fi Probe Requests 

The attendance at the international conference IPIN 2021 provided an idea for a case 
study. As the conference focuses on indoor positioning and indoor navigation, the case 
study focused on presence detection during the conference. 

3.3.1 Analysis 

The conference took place in Lloret de Mar, Spain in Evenia Olympic Congress Centre 
from 29 November to 2 December 2021. The only people present around the hotel 
lobby and near the session rooms from the beginning to the end of the conference were 
attendants of the conference, conference organizers, hotel employees, and cleaning staff. 

The entire conference space was around the lobby, with hotel rooms and hotel 
restaurants being far enough to not pose interference and capture probe requests from 
unwanted sources 

3.3.2 Results 

The results are split into several categories. At first, the presence of users in the proximity 
of the sniffer is evaluated. This follows by tracking the presence of individual users 
based on the probe request frames. For this, the fingerprinting of information elements 
introduced in Section 3.2 is used. 

Presence Detection 

From Fig. 3.6, it is visible that during every session, the presence of users was increased. 
Quite a lot of people also left the range of the sniffer to go into the hotel restaurants for 
lunch. From the figure, it is also visible which keynote or session group (IPIN 2021 had 4 
parallel session tracks) was more interesting to the participants of the conference. 

The Tuesday social event (Networking in the Kitchens) took place mostly out of the 
range of the probe sniffer in one of the hotel's restaurants. After the event, some of the 
participants stayed for further socializing, which can be seen on the small local peak right 
after the event ended. 

One of the noticeable trends is also the drop in the amount of captured probe requests 
during coffee breaks. This indicates people leaving the area either to get some fresh air 
outside of the hotel lobby, use the restroom, or go to their hotel rooms. 

Analysis of User Presence with Global MAC Address 

Since it is possible to identify probe requests using their globally unique identifier, their 
identification is very simple. At the IPIN 2021 conference, 28.62 % of identified scan 
instances used their globally unique M A C address. There were identified 229 devices 
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Fig. 3.6: Density of captured Probe Requests correlated with the program of the IPIN 
2021 conference (amount of probe requests grouped in 15-minute clusters). 

(a) Repeated occurrences of devices identified (b) Recurrent identification of the same devices 
by the usage of globally unique MAC address despite using locally assigned MAC address. 

Fig. 3.7: Recurrent identification of same devices at the IPIN 2021 conference. 

without M A C address randomization. This data can be seen in Fig. 3.8a. The temporal 
presence of 10 devices using their real M A C address in the conference space is in Fig. 3.7a. 

Analysis of User Presence with Local MAC Address 

Out of the captured probe requests, 68.08% (266 051) were using locally assigned M A C 
addresses. There were 7823 individual scan instances using DA:1A:19 prefix. After 
matching these instances together there were identified 523 devices using the DA:1A:19 
M A C address prefix. These data are presented in Fig. 3.8a with the comparison to the 
number of devices with a fully randomized M A C address and with a globally unique one. 

After identifying individual scan instances, 3544 M A C addresses appeared less than 
10 times. On the other hand, 296 devices with fully randomized M A C addresses showed 
up more than 10 x , which made them easily identifiable despite, as can be seen from 10 
example devices in Fig. 3.7b. 
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and devices without recurrences at the IPIN 2021 conference. 

Single Occurrence of Devices in Time Domain 

From Fig. 3.8a, it is visible that the number of identified devices is still really high for 
just 3 full days in a conference space. The reason for this can be a good implementation 
of M A C address randomization, the transmission of reduced information elements in the 
probe requests, and omitting the transfer of SSIDs from the saved P N L . Representation 
of unmatched devices is shown in Fig. 3.8b with 10 examples. 

3.4 Room Occupancy Detection Using Wi-Fi Probes 

The work exploring room occupancy detection was presented [18] at the international 
conference M A R E W 2023. 

3.4.1 Analysis 

The data were collected during five working days in three defined-sized rooms and 
scenarios: office, laboratory, and meeting room. At first, the signal strength distribution 
in all three locations was recorded to get the RMs throughout the rooms. Therefore, it 
was possible to accurately remove non-interesting devices from the analyzed data. 

Room occupancy is analyzed within a given time interval, the length of which can be 
set according to the intended application. Each probe request is tested against its RSSI 
value and the device's M A C address is obtained from the probe request. The occurrence 
of each unique M A C address is accumulated within the time interval. After the selected 
interval, the frequency of M A C addresses is assessed. The targeted estimation of room 
occupancy is equal to the number of M A C addresses more frequent than the threshold. 
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Tab. 3.1: Experimental results of occurrence estimation. 

Room 
Captured 

H 
RSSI threshold 

[dBm] 
Considered 

H 
M A C s 

H 
R M S E 

H 
Office 143 871 -56 4761 149 0.208 
Lab 265 797 -63 29 827 4126 0.797 
Meeting 281661 -66 12 262 3765 3.389 

3.4.2 Results 
To support the algorithm's functionality for estimating room occupancy, three datasets of 
probe requests were created, collected during five days between October 3 r d and 7 t h , 2022 
at the Department of Radio Electronics at the Brno University of Technology, Czechia. 

Within the entire measurement period, a total of 143 871, 265 797, and 281 661 probe 
requests were recorded in the office, laboratory, and lecture room, respectively. 

The testing was carried out during normal university operations, such as laboratory 
exercises, lectures, and meetings, and was attended by more than 100 people. Due to the 
randomization of M A C addresses a total of 8040 unique addresses were captured during 
the recording of probe requests. 

To assess the error rate of the proposed algorithm, the actual occupancy of the rooms 
was recorded. The differences between the results of the proposed detection algorithm 
were compared to the actual occupancy using Root Mean Squared Error (RMSE). The 
summarized data, the selected parameters, and the resulting estimation error are shown 
in Table 3.1. 

The results in the minimal, small, and medium scenarios, obtained by the proposed 
method (Estimated) and by real observations (Measured), are shown in Fig. 3.9. It can 
be seen that the number of mobile devices or persons in the office was most often equal 
to one. The resulting low R M S E error means a high degree of agreement between the 
proposed algorithm and reality. For small- and medium-scale scenarios, where larger 
rooms and numbers of people are considered, R M S E is 0.797 for the laboratory and 3.389 
for the lecture & meeting room. However, the difference is not large and confirms the 
suitability of the used method. 

3.5 Summary 

The presence detection and room occupancy analysis are summarized in the following 
paragraphs: 
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Fig. 3.9: Estimated and measured occupancy in minimal-scale office, small-scale labora­
tory, and medium-scale lecture & meeting room scenarios. 

• At first, the presence detection and tracking of humans in the office was presented. 
This was achieved by sniffing Wi-F i management packets from the radio environment, 
which was done in a completely passive way, that prevented any nearby device from 
detecting the sniffer. The collected frames were then used for temporal analysis and 
tracking by employing fingerprinting of data available in the unencrypted packets. 

• Similar to the presence detection in the office, the case study evaluating the presence 
of conference participants near the session rooms was conducted. The conference 
IPIN 2021 was chosen as the place to conduct this study. From the gathered data, 
it was possible to again prove that non-cooperative tracking using Wi-F i is possible 
and improvement of privacy-related measures in the near future is necessary. 

• Finally, the room occupancy estimation was done using the same management 
frames of Wi-F i . The ability to estimate the occupancy of rooms is going to be an 
important function of smart buildings, to reduce the energy requirements for air 
conditioning, lighting, and air circulation. The use of existing infrastructure is also 
a good step in the integration into smart building systems. 
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4 Balancing Accuracy and Complexity 
This chapter focuses on the optimizations in machine learning approaches to reduce 
computational complexity while preserving or increasing the accuracy of machine learning 
computing at the edge and in positioning algorithms. 

Section 4-2 describes a possibility to reduce the memory requirements of Convolutional 
Neural Networks. 

In Section 4-3, the possibilities of using interpolation techniques to find a balance 
between the size of Radio Map, the time required to create Radio Maps, and the computa­
tional complexity of the final Indoor Positioning System are presented. 

4.1 Motivation 

At first, the look into the reduction of memory requirements is explored. For this, neural 
networks are taken into account, as models can have hundreds to thousands of M B . 

Secondly, the balance between accuracy and processing performance, while enhancing 
the original data is explored. The data pre-processing can improve results in many ways. 

4.2 Reducing Memory Requirements by Lowering Data 
Precision 

The high computing requirements that come with some machine learning algorithms, as 
well as the need for large amounts of Random Access Memory (RAM) had been the main 
reason to explore the ways to balance the requirements and accuracy. 

4.2.1 Analysis 

A couple of popular Convolutional Neural Networks (CNNs) for image classification with 
very different architectures were selected for testing the influence of Half-Precision weights 
on their accuracy: AlexNet [19], GoogLeNet [20], Inception V3 [21], ShumeNet V2 [22], 
and MobileNet V2 [23]. 

The tested networks were modified to use a quantized 8-bit integer. The networks have 
not been retrained as only post-training quantization was done, which compared to fully 
quantization-aware training might produce worse results. Post-training quantization was 
used because, unlike with the use of quantization-aware training, the use of post-training 
quantization, as the name suggests, is applied to the already trained network. 

Testing itself was done in two parts. First of all, the memory footprint of the neural 
network was compared before and after. And second, the accuracy was tested on the 
classification of 1000 classes present in the ImageNet dataset [24]. 
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Tab. 4.1: Comparison of Single-Precision, Half-Precision, and Quantized Integer Influence 
on the Size of Networks Weights. 

Single-Precision (32-bit) Half-Precision (16-bit) Quantized Integer (8-bit) 
Size [MB] Size [MB] Size [MB] 

AlexNet 244.4 122.2 68.5 
GoogLeNet 52.2 26.2 13.1 
Inception V3 109.0 54.6 24.0 
ShuffleNet V2 9.3 4.7 2.4 
MobileNet V2 14.3 7.2 3.6 

Tab. 4.2: Comparison of Single-Precision, Half-Precision, and Quantized Integer Data 
Type Influence on Top-1 and Top-5 Error. 

Single-Precision (32-bit) Half-Precision (16-bit) Quantized Integer (8-bit) 
Top-1 Error Top-5 Error Top-1 Error Top-5 Error Top-1 Error Top-5 Error 

[%] [%] [%] [%] [%] [%] 

AlexNet 43.963 21.008 43.967 21.019 43.965 21.004 
GoogLeNet 30.159 10.405 30.184 10.392 30.171 10.444 
Inception V3 22.439 6.312 22.418 6.300 30.551 11.456 
ShuffleNet V2 30.721 11.696 30.754 11.698 31.917 12.741 
MobileNet V2 28.351 9.644 28.364 9.642 68.890 46.584 

4.2.2 Results 
From the results of data type conversion in Table 4.1, it can be seen that reducing the 
precision of the network's weights had reduced the size to half and quarter, by using half 
precision and quantized 8-bit integer respectively. 

The accuracy did not suffer using Half-Precision at all. The difference in the accuracy 
of the networks using Half-Precision weights did not get over 0.04% (20 images). A little 
worse results were achieved while using a Quantized Integer. Some networks were not 
affected, while some suffered a big loss in accuracy. The results are in Table 4.2. 

The performance is not directly comparable due to the support of different data type 
operations in Central Processing units (CPUs) and Graphical Processing Units (GPUs). 
The average frame rate achievable on the NVIDIA Jetson Nano using PyTorch for each 
network on both the C P U and G P U is presented in Table 4.3. 

AlexNet: AlexNet is an old architecture with the largest weight file and lowest accuracy 
of the tested networks. While using Half-Precision weights, the accuracy dropped, but 
not very much, only by 0.004% to 0.011 %. Even with weights in quantized 8-bit integer 
data type, the network performed pretty much the same. 

The network managed to get great real-time performance with almost 190 processed 
frames per second using weights in Single-Precision format. While using Half-Precision, 
the memory bandwidth was halved and the performance increased to 221 FPS. 

GoogLeNet: Just like AlexNet, the difference was minimal with just 12 more images 
classified incorrectly for the Top-1 error and only 6 more in the top 5. The same goes 
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Tab. 4.3: Comparison of Single-Precision, Half-Precision, and Quantized Integer Influence 
on the Averaj: $e Frames per Second on NVIDIA Jet son Nano. 

G P U C P U 
Single Half Single Quantized 

Precision Precision Precision Integer 
(32-bit) (16-bit) (32-bit) (8-bit) 

[images / sec] [images / sec] [images / sec] [images / sec] 

AlexNet 189.7 221.5 0.9 1.7 
GoogLeNet 24.1 26.4 0.5 2.2 
Inception V3 14.9 16.7 0.3 1.4 
ShuffleNet V2 26.4 26.7 2.0 6.5 
MobileNet V2 33.2 34.1 2.6 9.5 

for weights in quantized 8-bit integer, the accuracy of GoogLeNet did not suffer and the 
difference was lower than 20 incorrect classifications. 

GoogLeNet gained on average about 2.3 frames per second while using weights and 
input data in 16-bit floating point format. That is an increase in performance of 10% as 
seen with AlexNet. 

Inception V3: The most interesting result was delivered by the network Inception V3, 
which provided better results in Top-1 error by 0.021 % and in Top-5 error by 0.012 % 
while using Half-Precision weights. Quite surprisingly, due to the better accuracy while 
using Half-Precision weights, Inception V3 suffered in terms of accuracy when using 
fixed-point arithmetic. The difference being about 8% (3913 images) in Top-1 and 5% 
(2481 images) in Top-5 error. 

Just like the networks AlexNet and GoogLeNet, the performance of inference on the 
G P U while using Half-Precision weights increased about 10%, which makes a difference 
of 1.5 frames per second, which is achieved due to the decrease in memory bandwidth. 

ShuffleNet V2: Keeping with the trend, using Half-Precision weights had minimal 
effect. The quantized 8-bit integer weights have a small impact on the accuracy of the 
ShuffleNet V2, as both the Top-1 and Top-5 error increased by 1.2 %. 

Even though it is small network, the achieved frame rate on C P U with fixed point 
weights still can not compete with inference on the G P U , but achieved the best perfor­
mance to accuracy ratio on the C P U with an average of 6.5 FPS. 

MobileNet V2: is a very small and accurate network. The accuracy stays almost 
the same while using Half-Precision weights. However it is the most sensitive network 
to weights using 8-bit fixed point format. The accuracy suffered the most with correct 
classification of less than 35 % of all validation images. 

The inference performance did not increase almost at all. That is due to the network 
being quite small and the memory bandwidth is still very small compared to bigger 
networks. However, it proved to be the most efficient for inference on the C P U . The 
conversion of weights into fixed point did not prove to provide good results in terms of 
accuracy. At almost 10 FPS, it is still the fastest result while not using G P U acceleration. 
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4.3 Interpolation of Radio Maps for Indoor Positioning 

In the office, the ESP32 with Probe Request sender firmware emitted 50 probe requests 
at each RP , which were all collected by the 5 ESP32 M C U boards S1-S5 used for data 
collection. 

4.3.1 Analysis 
In the R M processing, several algorithms were used to achieve an approximation of data 
samples at hard-to-reach RPs and to acquire a higher density of RPs with approximated 
data in these locations. For the sake of simplicity, the visualizations in the following 
sections are only for the mean of all values of ESP32 sniffer SI. The algorithms that were 
used for data processing were linear interpolation and Gaussian Process Regression (GPR). 

Linear Interpolation: At first, all measurements in a 1 m grid were considered for an 
approximation of missing values, for which, linear interpolation was used. The R M with 
the Measured Data (MD) by the sniffer SI is in Fig. 4.1a while R M with approximated 
data using is in Fig. 4.1b. In Fig. 4.1a and 4.1b, the centers of the cells are aligned in 
l m grid, while in Fig. 4.1c, the grid is 0.5 m. 

Gaussian Process Regression: Using Gaussian Process Regression [25], a model 
representing the radio space is created. To use GPR, the selection of covariance function 
is required. From Table 4.4, it is visible that the differences between positioning accuracy 
achievable by RMs with different covariance functions are negligible. The covariance 
function Squared Exponential (SE) with fixed length scale was chosen, as it provided the 
lowest 95 t h percentile in most variations of R M enhancements. 

The usage of IPS has issues in situations employing incomplete data, with lower 
accuracy around locations with missing data points. Unlike using just linear interpolation, 
G P R approximates data with a machine learning model, which means that in short 
distances from the edge of the measured R M it is possible to extrapolate the data by 
passing the model coordinates that are outside of the room boundaries. The extrapolation 
can be seen using the top view in Fig. 4.1c. 

(a) R M with measured only (b) R M with interpolated (c) GPR approximation of 
data. data. R M . 

Fig. 4.1: Visualization of RSSI R M captured by SI (ESP32 placement) compared with 
R M with interpolation of missing values in unreachable RPs. 
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Tab. 4.4: Comparison of difference in 95 percentile of positioning accuracy employ­
ing RMs created using different covariance functions. In bold is highlighted the best 
performing covariance function for each R M . 

S amples 

R P R M Grid SE SE Fixed Matern KQ SE+Matern SE+RQ Matern+RQ 
R M H [m] [m] [m] [m] [m] [m] [m] [m] 

Measured R M 50 1.0 4.73 4.73 4.73 4.73 4.73 4.73 4.73 

R M with LID 50 1.0 4.68 4.68 4.68 4.68 4.68 4.68 4.68 

R M by G P R trained 50 1.0 4.81 4.72 4.85 4.85 4.85 4.79 4.79 
on M D 50 0.5 4.86 4.98 5.08 5.26 5.08 5.24 5.26 

R M by G P R trained 50 1.0 4.73 4.71 4.66 4.70 4.66 4.72 4.70 
on LID 50 0.5 4.89 4.85 5.05 5.10 5.05 5.11 5.12 

R M by G P R trained 50 1.0 4.91 4.92 4.94 5.02 4.94 5.02 5.05 
on Selection of LID 50 0.5 5.24 5.20 5.28 5.21 5.28 5.36 5.47 

R M by G P R trained 1 1.0 5.01 4.87 5.13 5.05 4.99 4.99 4.99 
on M D 1 0.5 5.34 5.27 5.33 5.38 5.62 5.33 5.62 

R M by G P R trained 1 1.0 4.95 4.95 4.93 4.95 4.92 4.91 4.91 
on LID 1 0.5 5.34 5.31 5.35 5.30 5.30 5.43 5.37 

R M by G P R trained 1 1.0 5.23 5.23 5.36 5.18 6.05 5.18 5.15 
on Selection of LID 1 0.5 5.69 5.69 5.54 5.52 8.49 5.51 5.26 
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(a) Comparison of R M processing on the mean (b) Comparison of R M processing on the CDF 
positioning accuracy of IPS depending on k of of positioning error, highlighting median and 
fcNN algorithm. 95 t h percentile. 

Fig. 4.2: Mean positioning accuracy and C D F for selected k. 

4.3.2 Results 
The testing of the influence of R M interpolation was done in 3 ways. From the perspective 
of accuracy, processing speed, balance between the time necessary for gathering data, 
and finally processing time and accuracy. 

Selected values of k for each R M are in Table 4.5. The validity of the selection can be 
checked by looking at Fig. 4.2a. From Fig. 4.2a, it is visible that the values selected by 
the equation match with the k with which each R M achieved the best mean accuracy. 
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Tab. 4.5: Overview of accuracy and normalized performance achieved with final IPS 
based on fcNN. 

Final IPS Input R M 
Samples 

R P 
R M 
Grid 

Selected 
k 

Reference 
Samples 

M A E 
Median 
Error 

75 t h 

percentile 
95 t h 

percentile 
R M S E 

Normalized 
Time 

H [m] H H [m] [m] [m] [m] [m] H 
Measured R M 50 1.0 90 6390 2.32 2.12 2.92 4.68 2.62 1.00 

R M with LID 50 1.0 90 7940 2.30 2.10 2.93 4.68 2.60 1.25 

R M by G P R trained 50 1.0 90 8800 2.37 2.17 3.07 4.74 2.68 1.38 
on M D 50 0.5 250 40 800 2.39 2.16 3.12 4.94 2.73 6.52 

R M by G P R trained 50 1.0 90 8800 2.30 2.11 2.95 4.72 2.61 1.39 
on LID 50 0.5 250 40 800 2.34 2.13 3.00 4.82 2.66 6.39 

R M by G P R trained 50 1.0 90 8800 2.37 2.16 3.02 4.95 2.72 1.39 
on Selection of LID 50 0.5 250 40 800 2.38 2.13 3.08 5.11 2.78 6.35 

R M by G P R trained 1 1.0 13 176 2.32 2.05 2.93 4.90 2.66 0.03 
on M D 1 0.5 35 816 2.38 2.09 3.08 5.24 2.79 0.13 

R M by G P R trained 1 1.0 13 176 2.29 2.01 2.89 5.01 2.65 0.03 
on LID 1 0.5 35 816 2.39 2.07 3.10 5.26 2.81 0.13 

R M by G P R trained 1 1.0 13 176 2.37 2.10 3.03 5.28 2.77 0.03 
on Selection of LID 1 0.5 35 816 2.46 2.04 3.26 5.58 2.96 0.13 

Influence of Processed RMs on Positioning Accuracy 

The best accuracy was achieved by G P R generated RMs with 1 sample per RP , trained 
on M D and Linearly Interpolated Data (LID). However, the accuracy started dropping 
with the value of k being higher than 16. That is due to the nature of k-Nearest 
Neighbors (fcNN) with low number of features. The most consistent results were gained 
by using LID. As expected, the lowest accuracy was achieved by using samples collected 
at every 2 n d RP . On the other hand, the difference is only about 10 cm worse than using 
all of the M D . To visually show the distribution of the error, Fig. 4.2b presents the 
Cumulative Distribution Function (CDF) for each of the RMs. 

Compute Requirements Based on RM Complexity 

To evaluate the compute performance depending on the R M used for /cNN based IPS, 
the evaluation run times were normalized to the baseline performance of R M created out 
of only M D . The normalized performance results are in Table 4.5. 

The results, depend on the number of samples in a given R M . This means the RMs 
with RPs spread out in a 0.5 m grid, instead of 1 m grid, contains approximately 500 % 
more samples. The performance in these cases is much slower. Following the same 
pattern, the RMs with just 1 sample per R P achieves the best run time performance, 
thanks to the small size of such models, the time required for computation resulted in 
a fraction of the time required for any R M with 50 samples per RP . 
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Tab. 4.6: Approximation of time required for R M collection in the office acquired using 
cross-multiplication. 

R M type 
Grid 
[m] 

RPs 

H 
Approximated Time 

[hh:mm] 

2.0 41 00:38 
Accesible RP 1.0 142 02:13 

0.5 497 07:45 

2.0 47 00:44 
All RP 1.0 173 02:42 

0.5 656 10:14 

Reductions in RM Collection Time 

The baseline M D with 142 R P took 2 hours and 13 minutes to collect, For a relatively 
small space like the used office, this is a very time-consuming task. Using this collection 
time, the time required to collect data in a 0.5 m grid, or in 2 m grid can be estimated. 
The comparison of the time required to create baseline R M , and approximations through 
cross-multiplication is in Table 4.6. 

4.4 Summary 

The work done in the optimizations of machine learning algorithms and interpolations of 
RMs is summarized by the following paragraphs: 

• The first look into the optimizations of M L was done by employing the reduction 
of data types used for the storage of neural network models. The used approach 
does not require retraining and by using a Half-Precision floating point data type 
the difference in accuracy is negligible. The use of fixed point data types proved to 
be more difficult, and for better results, it would need retraining to adapt weights 
with the data type constraints in mind. 

• Second look into optimizations, was more specifically targeted at indoor positioning 
using fingerprinting of RSSI to create RMs. As a side effect using one approach to 
interpolation resulted in a negligible drop in accuracy, while the time required for 
predictions dropped to mere percents of the location predictions using the originally 
collected data. This approach drastically reduced both memory and computational 
requirements. 
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5 Conclusions 
In this Chapter, the conclusions are drawn and the research questions asked in Chapter 1. 

RQ1. Do our devices leak data and if so, how? Are there ways adversaries could exploit 
this leak to track us without our knowledge? 
During the first scenario based in the office, the probe requests of the Wi-Fi protocol 
were used to evaluate the privacy-related measures implemented in Wi-Fi . Temporal 
pattern matching was also introduced as a way to find devices hiding behind M A C 
address randomization by exploiting the appearances over time. 
At a 2021 conference, probe requests were used to study non-cooperative tracking 
using W i - F i . Despite M A C address randomization, devices could still be tracked 
using probe information, revealing the inadequacy of randomization for privacy and 
the need for better measures. 
By analyzing probe requests, experiments accurately estimated room occupancy, 
offering potential for energy-efficient smart buildings and increased safety in crises. 
In summary W i - F i networks need more than just M A C address randomization. 
And even though M A C randomization helps, it is far from being enough and it can 
give users a false sense of security. 

RQ2. What are the ways to preserve the accuracy of machine learning algorithms, 
while reducing the hardware requirements? 
The reduction of computational requirements by using lower precision data types 
for neural network weights was also explored. Shifting from 32-bit to 16-bit floating 
points doesn't need retraining and reduces storage size by half without affecting 
accuracy. Further reductions to 8-bit fixed point data types may vary in accuracy, 
requiring additional testing. 
Apart from the memory requirements for M L algorithms, data augmentation specific 
to the indoor positioning field was also evaluated. Specifically the use of G P R for 
interpolation of RMs for fingerprinting approaches to indoor positioning. In this 
work, the most important results were achieved by creating a R M with a single 
sample per R P . In this case, the complexity of the dataset dropped drastically 
from 6390 samples to just 176. This means the single sample was created by a 
combination of the information from 50 samples belonging to the original R M . 
The computation speed dropped to just 3 % of the original R M , while the drop in 
accuracy was negligible in just a few cm. This provides a massive improvement in 
both memory requirements to store the R M , as well as in the speed of prediction of 
locations using this R M . 
To summarize, 2 possible approaches to optimizations were introduced and proven 
to preserve the accuracy levels, while requiring much less storage space. The 
computational performance can also be increased, however, in some cases, it might 
need hardware with support for specific operations. 
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7.2 Abstract 

The field of Location-based Services (LBS) has experienced significant growth over the 
past decade, driven by increasing interest in fitness tracking, robotics, and eHealth. This 
dissertation focuses on evaluating privacy measures in Indoor Positioning Systems (IPS), 
particularly in the context of ubiquitous W i - F i networks. It addresses non-cooperative 
user tracking through the exploitation of unencrypted Wi -F i management frames, which 
contain enough information for device fingerprinting despite M A C address randomization. 
The research also explores an algorithm to estimate room occupancy based on passive 
Wi-F i frame sniffing and Received Signal Strength Indicator (RSSI) measurements. Such 
room occupancy detection has implications for energy regulations in smart buildings. 
Furthermore, the thesis investigates methods to reduce computational requirements 
of machine learning and positioning algorithms through optimizing neural networks 
and employing interpolation techniques for IPS based on RSSI fingerprinting. The 
work contributes datasets, analysis scripts, and firmware to improve reproducibility and 
supports advancements in the LBS field. 
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