
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF INTELLIGENT SYSTEMS 
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ 

HTTP APPLICATION ANOMALY DETECTION 
DETEKCE ANOMÁLIÍ HTTP APLIKACÍ 

BACHELOR'S THESIS 
BAKALÁŘSKÁ PRÁCE 

AUTHOR VLASTIMIL RÁDSETOULAL 
AUTOR PRÁCE 

SUPERVISOR Mgr. Ing. PAVEL OČENÁŠEK, Ph.D. 
VEDOUCÍ PRÁCE 

BRNO 2021 



Vysoké učení technické v Brně 
Fakulta informačních technologií 

Ústav informačních systémů (UIFS) Akademický rok 2020/2021 

Zadání bakalářské práce ||||||||||||||||||||||||| 
23896 

Student: Rádsetoulal Vlastimil 
Program: Informační technologie 
Název: Detekce anomálií HTTP aplikací 

HTTP Application Anomaly Detection 
Kategorie: Web 
Zadání: 

1. Seznamte se s principy analýzy anomálií v prostředí systémů počítačových sítí. 
2. Analyzujte požadavky na systém umožňující analýzu HTTP provozu a modelování 

standardního a detekci nestandardního chování aplikací (např. u přechodů mezi stránkami 
apod.) 

3. Navrhněte systém pro detekci anomálií dle předchozího bodu a dle instrukcí vedoucího 
práce. 

4. Navržený systém implementujte. 
5. Implementovaný systém ověřte vhodně zvolených na reálných datech. 
6. Diskutujte získané výsledky a možnosti dalšího rozšíření. 

Literatura: 
• Kurose, J. F. Computer networking: A top-down approach. Pearson, Essex, 2017, ISBN 

978-1-292-15359-9. 
• Stallings, W. Network security essentials: Applications and standards. Hoboken, 2016, ISBN 

978-0-13-452733-8. 
• Bishop, M. Computer security: Art & Science. Addison-Wesley, Boston, 2003, ISBN 

0-201-44099-7. 
• Buczak, A., Guven, E.. A Survey of Data Mining and Machine Learning Methods for Cyber 

Security Intrusion Detection. IEEE Communications surveys and tutorials. IEEE, 2016,18(2), 
s. 1153-1176. 

• Kruegel, Ch., Vigna, G. Anomaly Detection of Web-based Attacks. In: Proceedings of the 
ACM Conference on Computer and Communications Security. ACM, Washington, DC, USA. 
2003. 

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/ 
Vedoucí práce: Očenášek Pavel, Mgr. Ing., Ph.D. 
Vedoucí ústavu: Kolář Dušan, doc. Dr. Ing. 
Datum zadání: 1. listopadu 2020 
Datum odevzdání: 12. května 2021 
Datum schválení: 27. října 2020 

Zadání bakalářské práce/23896/2020/xradse00 Strana 1 z 1 

https://www.fit.vut.cz/study/theses/


Abstract 
The goal of this work is to introduce anomaly detection principles and review its possibilities, 
as one of the intrusion detection methods in H T T P traffic. This work contains theoretical 
background crucial for performing an anomaly detection on H T T P traffic, and for utilising 
neural networks in achieving this goal. The work proposes tailored design of an anomaly 
detection model for concrete web server implementation, describes its implementation and 
evaluates the results. The result of this work is successful initial experiment, of modeling 
normal behavior of H T T P traffic and creation of the mechanism, capable of detection of 
anomalies within future traffic. 

Abstrakt 
Cieľom tejto práce je predstaviť princípy a odhaliť možnosti detekcie anomálií v H T T P 
prevádzke, ako jednej z metód, pre detekciu pokusov o prienik do webových systémov. 
Táto práca obsahuje teoretický základ, kritický pre detekciu anomálií v H T T P prevádzke 
a pre využitie neurónových sietí, k jej implementácii. Práca predstavuje dizajn modelu pre 
detekciu anomálií, ušitý na mieru pre konkrétny webový server v tejto práci, opisuje jeho 
implementáciu a hodnotí výsledky. Výsledok tejto práce je úspešný prvotný experiment, 
ktorý spočíva v modelovaní bežnej, neškodnej H T T P prevádzky a vytvorení mechanizmu, 
ktorý je schopný detegovať anomálie v budúcej prevádzke. 

Keywords 
anomaly, detection, autoencoders, H T T P , neural, networks 

Kľúčové slová 
anomália, detekcia, auto-enkóder, H T T P , neurónové, siete 

Reference 
RÄDSETOULAL, Vlastimil. HTTP Application Anomaly Detection. Brno, 2021. Bache­
lor's thesis. Brno University of Technology, Faculty of Information Technology. Supervisor 
Mgr. Ing. Pavel Ocenäsek, Ph.D. 



Rozšírený abstrakt 
Cieľom tejto práce je predstaviť princípy a odhaliť možnosti detekcie anomálií v H T T P pre­
vádzke, ako jednej z metód, pre detekciu pokusov o prienik do webových systémov. Táto 
práca obsahuje teoretický základ, kritický pre detekciu anomálií v H T T P prevádzke a pre 
využitie neurónových sietí, k jej implementácii. Na to je potrebné porozumieť základným 
princípom fungovania H T T P protokolu. Práca predstavuje základné súčasti tohoto pro­
tokolu, akými napríklad sú H T T P požiadavky a odpovede, alebo jednotlivé hlavičkové polia 
H T T P požiadaviek. Ďalšia časť kapitoly o H T T P vysvetľuje, kde sa protokol nachádza, z 
pohľadu modelovania sietí pomocou sieťových modelov. Základné bezpečnostné riziká a im­
plementačně zraniteľnosti, sú vysvetlené na konci tejto kapitoly, z toho niektoré, vybrané, 
sú vysvetlené podrobnejšie. Ako možnosť využitia neurónových sietí, pre účely detekcie 
anomálií, je v práci predstavená neurónová sieť, v podobe auto-enkódera. Implementačná 
časť je naprogramovaná v jazyku Python, ako široko používaným programovacím jazykom, 
pre vedecké účely. Pre účely modelovania neurónových sietí a ich následného spustenia, 
je využitý nástroj TensorFlow, ktorý je predstavený v kapitole o detekcii anomálií. Práca 
predstavuje dizajn riešenia pre detekciu anomálií, ušitý na mieru, pre konkrétny webový 
server, ktorého H T T P prevádzka bola nasimulovaná spoločnosťou G R E Y C O R T E X s.r.o., 
počas penetračného testovania implementácie tohoto servera. Táto prevádzka je nutne 
rozdelená do dvoch častí, na neškodnú prevádzku a na prevádzku, ktorá obsahuje H T T P 
požiadavky, prichádzajúce serveru počas útokov na neho. K implementácií je použitý už 
vyššie spomenutý auto-enkóder, ktorý sa natrénuje pomocou spracovaných častí požiada-
vok neškodnej prevádzky, v podobe U R L Detekcia anomálií potom spočíva v tom, že tento 
model by mal byť schopný s určitou presnosťou skopírovať svoj vstup, na svoj výstup. Keďže 
bol tento model natrénovaný s pomocou dát z neškodnej prevádzky, dáta zo škodlivej pre­
vádzky nebude vedieť zrekonštruovať a vyprodukuje rekonštrukčnú chybu, vyššiu ako je 
stanovený limit, pre určenie anomálie. Táto chyba sa potom porovná s hraničnou hod­
notou, ktorá sa stanoví pomocou súčtu priemeru vypočítaného z rekonštrukčných chýb 
normálnej prevádzky a experimentálne získanej fixnej hodnoty. Táto hodnota býva zvyča­
jne t r i směrodatné odchylky distribúcie dát. Práca opisuje implementáciu navrhnutého 
modelu a hodnotí výsledky a výstupy, dosiahnuté experimentami. Výsledok tejto práce 
je úspešný, prvotný experiment, ktorý spočíva v modelovaní bežnej, neškodnej H T T P pre­
vádzky a vytvorení mechanizmu, ktorý je schopný detekovat anomálie v budúcej prevádzke. 
Na záver práce sú zhodnotené výsledky práce a navrhnuté možné implementačně zlepšenia, 
vrátane nápadov pre budúce návrhy, oveľa komplexnejších systémov pre detekciu anomálií, 
ktoré by mohli byť schopné, dynamicky vyhodnocovať H T T P požiadavky, alebo presnejšie 
ich dávky, v reálnej prevádzke. 



H T T P Appl ica t ion A n o m a l y Detection 

Declaration 
Hereby I declare that this bachelor's thesis was prepared as an original author's work un­
der the supervision of Mgr.Ing.Pavel Očenášek, Ph .D. The supplementary information was 
provided by Ing.Peter Chmelař, Ph.D and Ing.Marina Volkova, Ph.D from G R E Y C O R -
T E X s.r.o. A l l the relevant information sources, which were used during preparation of this 
thesis, are properly cited and included in the list of references. 

Vlastimil Rádsetoulal 
May 12, 2021 

Acknowledgements 
Hereby I would like to express my sincere appreciation for the help of my supervisors 
Mgr.Ing.Pavel Očenášek, Ph.D. , for the initial consultations and peaceful work, and Ing.Peter 
Chmelař, Ph .D. for his always optimistic attitude during online consultations and all the 
information and help provided. I would like to express the same level of appreciation for 
the help and information from Ing.Marina Volkova, Ph .D. 



Contents 

1 Introduction 3 

2 Hypertext Transfer Protocol 4 
2.1 H T T P and its Versions 4 
2.2 H T T P on OSI 5 

2.2.1 Layered Network Models 5 
2.2.2 ISO OSI Model 5 
2.2.3 Where is H T T P 7 

2.3 H T T P Messages Overview 8 
2.3.1 Request Methods 8 
2.3.2 Request Header Fields 9 
2.3.3 Response Status Codes 10 
2.3.4 H T T P Request URI 11 

2.4 Attacks on H T T P 11 
2.4.1 Injection 11 
2.4.2 Broken Authentication and its Automated Attacks 12 
2.4.3 X M L External Entities (XXE) 12 

3 Anomaly Detection 14 
3.1 Critical Questions in Anomaly Detection 15 
3.2 Anomaly Detection Outcomes 16 
3.3 Anomaly Detection Approaches 16 
3.4 Autoencoders 17 
3.5 Tensor Flow 19 

3.5.1 TensorFlow Keras Layers 19 

4 Design and Data 21 
4.1 Data Source and Preparation 21 
4.2 Data Preprocessing 22 

4.2.1 The Text Vectorization Layer 23 
4.2.2 The Embedding Layer 24 

4.3 The Autoencoder Architecture 24 

5 Implementation and Results 27 
5.1 Implementation Tools 27 
5.2 Implemented Functions 27 
5.3 The Autoencoder 29 
5.4 The Script for Anomaly Detection 30 

1 



5.4.1 Further Improvements 31 

5.5 The Results 32 

6 Conclusion 35 

Bibliography 36 

2 



Chapter 1 

Introduction 

The importance of internet security implementations is raising year by year, as the internet 
and the world-wide web became an indisputable parts of our everyday lives. Malicious 
actors from all over the world, are constantly attempting to take an advantage of different 
vulnerabilities within web application implementations to steal sensitive data, interrupt 
services, generate an income and more. 

In pursuit of securing the networks of organisations and their web systems, there are 
multiple layers of the protections implemented. From firewalls and secure configurations, 
to user access control, to malware protection or patch management. One of the networking 
elements that needs to be protected from various types of attacks is the one, that the end 
users come in contact with the most. It is the application layer, more specifically web 
applications on H T T P . As this applications come in contact with the world, connected to 
the internet, their security robustness is critical. One of the methods to prevent adversaries 
from achieving their goals, is intrusion detection. In this work we will try to detect malicious 
incoming H T T P messages. For this purpose we will be looking at potentially malicious, 
abnormal H T T P requests and we will talk about them as anomalies. A n anomaly stands for 
deviation from norm. In order to define such norm, we will be modeling normal behavior 
of H T T P traffic. We will be exploring the possibilities of neural networks, concretely 
autoencoders, in reaching our goal. We will try to model norm of H T T P web server traffic, 
provided by G R E Y C O R T E X s.r.o., from which has this assignment landed. After successful 
modeling of the norm, we can perform anomaly detection, that should detect abnormal 
H T T P requests, in comparison to this norm. 

In this journey we will need to introduce basic components of H T T P , the version used 
in mentioned traffic, where does H T T P stand in terms of networking models and some of 
the critical vulnerabilities and risks in chapter 2. Then to understand anomaly detection 
problematic, to understand neural networks in form of autoencoders and to introduce the 
powerful tool TensorFlow, was chapter 3 created. The chapters 4 and 5 describe the design, 
data preprocessing needed, implementation parts and results of our concrete experiment. 

3 



Chapter 2 

Hypertext Transfer Protocol 

In this chapter we will discuss Hypertext Transfer protocol's brief version history and its 
version evolution. We will then go more in depth examining its messages and also explaining 
its position on OSI model. At the end we will have a look at some known attack possibilities. 

2.1 H T T P and its Versions 

According to [5] The Hypertext Transfer Protocol is an application-level protocol that pro­
vides lightness and speed necessary for distributed, collaborative, hypermedia information 
systems. It is a generic, stateless, object-oriented protocol suitable for many tasks, through 
extension of its request methods. A feature of H T T P is the typing of data representation, 
which allows systems to be built independently of the data being transferred. H T T P has 
been in use by the World-Wide Web global information initiative since 1990. H T T P is a 
request/response protocol in which H T T P client sends requests to the server listening for 
T C P [20] connections, usually on ports 80 and 443, depending on whether secure version 
of protocol is used or not. However ports may vary depending on server implementation. 

The first version of H T T P denoted as H T T P / 0 . 9 is very simple where requests consist 
of one line and was used for transfer of raw data across the internet. This version has not 
been standardized and initially had no version number. 

In terms of standardization the first version to be officially defined in R F C document is 
H T T P / 1 . 0 . It is defined and described in RFC1945. In this protocol messages are allowed 
to be in MIME-l ike format and contain meta-information about transferred data and other 
modifiers in requests and responses [13]. However first documented version of protocol 
is lacking consideration of some important technical aspects such as caching, proxies or 
persistent connections. Counting all these reasons and some more there was a need for 
protocol version change, which resulted in defining H T T P / 1 . 1 in RFC2616. This R F C has 
then been obsoleted by series of R F C documents RFC7230-RFC7235. 

Despite the fact, that H T T P / 2 provided as standard in [3] is the latest version of 
H T T P and H T T P / 3 is in development, for now as an internet draft, we will explain general 
information about H T T P from the series of R F C documents about H T T P / 1 . 1 . The reason 
for this is also the fact, that provided H T T P traffic of the web server in this work is in this 
protocol version. 

4 



2.2 H T T P on O S I 

In computer networks it comes to great importance harmony between hardware and software 
elements. For easier understanding of complicated network architectures, the networks are 
described divided into parts. This leads to creation of layered models where these parts are 
layers interconnected rather functionally than physically [1]. As one of the reasons for using 
layered models to describe computer networks is to simplify understanding of the network 
model, it is crucial to know on which layer do we operate when working with networking 
elements. We chose to describe ISO OSI model, due to its higher granularity than in case 
of T C P / I P , leading to greater understanding of individual steps taken in modeling network 
services. This section will briefly lead us in knowing where H T T P is and for that the 
information from [1] is going to serve us. 

2.2.1 Layered N e t w o r k M o d e l s 

There are several reasons to use the description of computer networks in form of layered 
models summarized and presented in [1]: 

• Simplification of understanding the network model. 

• The network layering based on functions eases implementation, as the functions of 
each layer are consistent and distinct. Then programming software implementations 
and designing hardware based on its functionality within the layer is easier. 

• The troubleshooting of the network is able to be separated into troubleshooting of 
individual layers and thus a potential error can be isolated and corrected within its 
layer without affecting other network functions. 

• The development and implementation of the functions in each layer can be focused on 
its own duties and the protocols specifically designed for each layer are more efficient, 
meanwhile the lower layers of the model are maintaining the transparency towards 
higher layers. 

Two main standard layered models are ISO OSI and T C P / I P pictured in 2.1 

2.2.2 ISO OSI M o d e l 

The ISO OSI model consists of seven layers shown in the left part of 2.1. Each layer of 
ISO OSI model handles data in its specific unit called Protocol Data Unit from now on 
referenced as P D U . Some layers add layer-specific information in form of a header, a trailer, 
or both to the data. The header is situated at the beginning of the P D U and the trailer 
information at the end. The information within the header and trailer is used for controlling 
the communication between two entities on the layer [1]. 

Network devices such as routers, switches, network interface cards and more usually 
operate in the bottom three layers and the hosts in the whole seven layers. Let's take a 
look at each layers brief explanation, but not going too much in depth, as it would be out 
of the scope of this work [1]. 

Physical Layer handles data as raw bits thus the P D U for the physical layer is a bit. 
The purpose of this layer is to transparently transmit bits from the data-link layer of the 

5 



Application Layer 

Presentation Layer Application Layer 

Session Layer 

Transport Layer Transport Layer 

Network Layer Internetwork Layer 

Data Link Layer 
Network Access Layer 

Physical Layer 
OSI Model T C P IP Model 

Figure 2.1: OSI and T C P / I P layered models: left OSI model, right T C P / I P model. 
Adopted from [1]. 

sender to the data-link layer of the receiver. This transmission not only includes data, but 
also additional control information. Physical layer protocols used then vary depending on 
the type of physical medium and the signal transmitted. The signal can be represented and 
sent as an electrical voltage in cables, light signals in fiber links, or even through the air in 
form of electromagnetic signal [1]. 

Data-Link Layer provides us with P D U in form of a frame. It servers the network with 
multiple functions such as controlling the inter-connections of data-circuits within physical 
layer, identification and parameter exchange, error in transmission detection, relaying and 
more [1]. 

Network Layer has a P D U unit known as a packet. This layers is responsible for 
routing the data from one network and controlling the subnet, relaying. It provides network 
connections between transport layer entities by utilising the data-link connections available. 
It handles segmentation and blocking of the packets in case of different data-link standards 
and packet sizes. It not only detects errors using notifications from the data-link layer and 
its own detection mechanisms, but can in some cases provide recovery from them. It assures 
maintaining the sequential order of the packets and controls the flow to prevent flooding 
its destination with excess data. Network layer is capable of many more tasks, but this is 
only a brief explanation and is sufficient for our imagination of the layer's work [1]. 

Transport Layer uses a segment as P D U and provides two different types of ser­
vices depending on whether connection needs to be established or not. These divide into 
connection-oriented communication and connectionless. The two most common transport 
protocols used in accomplishing these goals are Transmission Control Protocol (TCP) [20] 

G 



and User Datagram Protocol (UDP) [19]. In connection-oriented communication, where the 
protocol T C P is used, this layer provides additional end-to-end error detection, establish­
ment and release of transport connections, segmentation of the data into segments at the 
sender and reconstruction at the recipient. It is also capable of monitoring Quality of Ser­
vice parameters and P D U delimiting, in order to maintain the continuity of communication. 
Important part of its functionality is also sequence control, for ensuring warranty of the 
data arrival in unchanged sequence from the sequence initially sent. The transport layer 
also helps the session layer to differentiate which data belongs to what session [1]. 

Session Layer unlike other previously mentioned layers does not have its own P D U 
representation. It handles the data in the form that it is provided. The purpose of the 
session layer is to support organization of the communication of presentation entities, when 
multiple simultaneous communication sessions take place. It is responsible for starting the 
sessions between communicating entities, token management, which serves to identify which 
entity owns the token for data transmission. Session layer as well provides mapping session 
connections to transport connections [1]. 

Presentation Layer serves for the data form negotiation with another communicating 
entity. After successful negotiation it can provide multiple different services to application 
layer such as encryption, compression and translation. The application then may choose 
which services it wishes to use [1]. 

Application Layer defines the services and functions provided at user end. The pro­
tocols used in application layer vary depending on the type of user data to be transferred. 
The layer defines different acceptable Quality of Service parameters for each service pro­
vided. It also decides what security mechanisms should be used, such ctS ctCC6SS control or 
authentication and in connection-oriented services the application layer is responsible for 
synchronization of these services [1]. 

2.2.3 W h e r e is H T T P 

In one sentence H T T P is an application layer protocol. If we take a look at the definition 
in [11] stating that H T T P is a stateless application-level request/response protocol with 
extensible semantics and self descriptive message pay loads and review its message semantics, 
we wil l come to knowing that H T T P does not need take an advantage of any stored context 
on server. Although H T T P does provide mechanisms for state management in [2] in form of 
cookies, its concept of session is different from that in OSI model. In terms of presentation 

layer, some of its functions may be included within H T T P request in form of request header 
fields, such as content negotiation. Then data encryption is used by H T T P ' s secure version 
H T T P over T L S described in [22]. 

Thus H T T P somehow „touches" all top three layers of OSI model, but it's functions 
cannot be strictly assigned by one of them, except for application layer. For simplicity 
it is much more suitable to consider T C P / I P model pictured in the right part of 2.1, 
where H T T P would simply belong to application layer. On both layered models H T T P 
servers use transport layer to listen to the incoming connection's over Transmission Control 
Protocol(TCP) [20]. 

7 



Layer HTTP: 
POST /firmware.cgi?LD_DEBUG=help HTTP/1. l \ r \ n 
Expert Info (Chat/Sequence): POST /firmware.cgi?LD_DEBUG=help HTTP/1.l\r\n 
POST /firmware.cgi?LD_DEBUG=help HTTP/1.l\r\n 
Severity l e v e l : Chat 
Group: Sequence 
Request Method: POST 
Request URI: /firmware.cgi?LD DEBUG=help 
Request URI Path: /firmware.egi 
Request URI Query: LD_DEBUG=help 
Request URI Query Parameter: LD_DEBUG=help 
Request Version: HTTP/1.1 
Host: 147.229.147.163\r\n 
User-Agent: Mozilla/4.0 fcompatible; HSIE 6.9; Windows NT 5.1}\r\n 
Content-Type: application/x-www-f•rm-urlencoded\r\n 
Content-Length: G\r\n 
Content length: © 
F u l l request URI: http://147.229.147.168/firmware.cgi?LD_DEBUG=help 
HTTP request 1/1 
\r\n 

Figure 2.2: Example of H T T P request. 

2.3 H T T P Messages Overv iew 

Hypertext Transfer Protocol is based on client-server architecture and as we already know 
message of the protocol is either a request or response. A server listens on a connection 
waiting for a request, to be able to parse received message. Then its task is to interpret 
the message semantics and respond to the request related to desired source. A Client on 
the other hand creates request messages and examines received responses from server. We 
will be working with H T T P requests in our Anomaly Detection so in this section we will 
take a look at request messages and possible responses from server. The information in this 
section is retrieved from [12]. 

When we retrieve H T T P request from packet capture file we can see it contains multiple 
fields and its tokens alongside with request message and optionally content data in payload. 
The figure 2.2 shows us an example of request message and its header fields. 

2.3.1 Request M e t h o d s 

The request method is the indicator of the client's intentions and primary source of the 
semantics of request. It also defines the expected response by client from server. The 
standardized methods in H T T P are not specific for the resource and should have the same 
semantics applied to any resource upon definition. Then it is up to each resource to deter­
mine whether the proclaimed semantics are implemented or allowed [12]. 

The following are standardized methods commonly used in H T T P , defined by [12]: 

• G E T : method requests to transfer a current representation of the target resource. 

• H E A D : method requests to transfer only the status line and header section of the 
resource. 

8 

http://147.229.147.168/firmware.cgi?LD_DEBUG=help


• POST: used to perform processing that is specific for the resource on the request 
pay load. 

• P U T : method requests to create or replace the state of target resource representations 
with the request payload. 

• D E L E T E : method prompts to remove all current associations between the target 
resource and its current functionality. 

• C O N N E C T : requires from server to establish a tunnel identified by the target resource. 

• OPTIONS: this method serves for the description of communication options for the 
target resource. 

• T R A C E : method requests for a remote, application-level loop-back of the request 
message and must not contain payload data. 

It is expected from all general-purpose servers to support methods G E T and H E A D , 
but other methods are optional, depending on implementation [12]. 

2.3.2 Request Header Fields 

Request header fields purpose is to provide more information about the request context, 
suggest preferred formats for the expected response, provide authentication credentials, 
modify the request processing or even make the request conditional based on the resource 
state [12]. Request header fields divide into these groups: 

• Controls 

• Conditionals 

• Content Negotiation 

• Authentication Credentials 

• Request Context 

Controls shown in figure 2.3 are request header fields that are responsible for directing 
specific handling of the request. For example Expect header field can inform server, that 
client wishes to send large message body in this request with token ,,100-continue". Then 
client waits for the indication, represented by response code 100, if it is worth sending 
message body in advance, before actually sending it. 

Conditionals request header fields allow client usage of precondition on the state of 
target source, before execution of the action related to requested source, which has to be 
decided by this precondition. The evaluation portion of such condition depends on the 
request method semantics and conditional [10]. 

Content negotiation header fields sent by user agent help in proactive negotiation about 
the response content. For example Accept field is used to determine the media types that 
are acceptable by user agent in the response. Or Accept-Charset field used to help to 
identify different char set capabilities of user agent [10]. 

9 



+ + + 
I Header F i e l d Name | Defined i n . . . | 
Cache-Control +  

I Section 5 2 of [RFC7234] 
Expect I Section 5 1 .1 
Host I Section 5 4 of [RFC7230] 
Max-Forwards I Section 5 1 2 
Pragma I Section 5 4 of [RFC7234] 
Range I Section 3 1 of [RFC7233] 
TE I Section 4 3 of [RFC7230] 

+ 

Figure 2.3: Controls request header fields and their definitions in R F C documents. Picture 
adopted from [12] 

Authentication credentials type of header fields contain two header fields responsible 
for deliverance of authentication credentials, which are alongside authentication further 
explained and defined in [9]. Two header fields present in this group are Authorization and 
Proxy-Authorization. 

Request context header fields provide some additional information about user agent in 
field User-Agent. The User-Agent field helps servers to identify range of interoperability 
problems and avoid user agent limitations. There is also field with name From used for 
storing contact information, concretely e-mail address of person controlling the requesting 
user agent [12]. 

2.3.3 Response Status Codes 

In our anomaly detection we will not really take into consideration responses from the server 
as we are going to detect anomalous requests from clients and the modeled system will not 
need to include server responses. However, there are ways to use server responses, pairing 
them with according client requests for anomaly detection. For tnhe completion we can list 
and describe the main groups from [12]: 

• lxx : responses beginning with number 1 are of Informational character e.g., the 
request was received or continuing process. 

• 2xx: this group of responses are indication of success and may tell us, that the request 
was received, understood and accepted. 

• 3xx: indicates redirection, meaning further action in order to complete the request 
are needed. 

• 4xx: client error response codes that server sends when the request either contains 
bad syntax or cannot be fulfilled. For example requested resource is not present. 

• 5xx: server error response codes signalling the server failure to fulfill an apparently 
valid request. 

10 



2.3.4 H T T P Request U R I 

There are many different ways for adversaries to exploit H T T P protocol. H T T P request 
fields are easy to modify for the needs of an attacker. In our anomaly detection we will 
focus strictly on H T T P request URI. 

URI stands for Uniform Resource Identifier which is divided into subsets Uniform Re­
source Locator and Uniform Resource Name. In H T T P URI identifies the resource for which 
the request should be applied. URIs used in H T T P are represented in either absolute or 
relative form [4]. 

2.4 A t t a c k s on H T T P 

In today's world and historically the awareness of security threats across computer networks 
is on slow rise. On the other hand attackers are faster and willing to exploit any vulnera­
bilities created in quick development, especially in web applications as they are widely used 
and often operate with sensitive data. Addressing this problems a nonprofit foundation 
The Open Web Application Security Project(OWASP) created standard awareness docu­
ment for developers of web applications and purposes of web application security, about the 
most critical security risks [14]. We will review this list of top ten critical security risks to 
web applications and recognize which ones of them can we consider for anomaly detection 
algorithms. 

The following is full list of top ten critical security risks provided by [14]: 

• Injection 

• Broken Authentication 

• Sensitive Data Exposure 

. X M L External Entities (XXE) 

• Broken Access Control 

• Security Misconfiguration 

• Cross-Site Scripting XSS 

• Insecure Deserialization 

• Using Components with Known Vulnerabilities 

• Insufficient Logging and Monitoring 

2.4.1 Injection 

Different types of injections such as SQL, NoSQL, OS , or L D A P injection occur, when 
part of a command or query contain malicious, untrusted data sent to an interpreter. This 
data can trick the interpreter into accessing, editing or removing data without legitimate 
authorization or even in executing commands [14]. 

11 



There are multiple reasons why application could be vulnerable for such attacks. If 
data supplied by user is not validated, filtered or sanitized before interpreting or dynamic 
queries or non-parameterized calls are used directly in the interpreter without context-
aware escaping. Even when stored procedures are parameterized, they can still introduce 
SQL injection if P L / S Q L or T-SQL processing extensions concatenate queries and data, 
or executes malicious data with EXECUTE IMMEDIATE or execQ. The best prevention 
proposed by O W A S P is simply code review followed by thorough testing of all parameters, 
headers, U R L , cookies and different data type inputs processed [14]. 

In addition to usage of safe APIs, avoiding the use of the interpreter entirely or at least 
providing parameterized interface, usage of SQL controls within queries, escaping special 
characters with specific escape syntax given by interpreter for any residual dynamic queries 
and more, anomaly detection could provide great first contact protection against incoming 
hostile data. By detecting anomalous portions of queries, cookies or other injection vectors 
in H T T P traffic even an otherwise vulnerable web-application attacks could be avoided [14]. 

2.4.2 B r o k e n Authent i ca t ion and its A u t o m a t e d At tacks 

In order to prevent authentication-related attacks, securely implemented confirmation of 
user identities, authentication, and session management are essential. In case of incorrect 
implementation of functions responsible for authentication and session management within 
web applications, several security incidents might take place. From credential theft, sensi­
tive information leaks to compromising the whole system. For example if application does 
not implement automated threat or credential stuffing protections, attackers are free to 
use millions of valid username and password combinations for automated injection in or­
der to gain access to accounts. It is also dangerous if system permits usage of insufficiently 
strong or well-known passwords, such as „12345" or combination of password and username 
„admin/admin". Some other weaknesses could be unencrypted or weakly hashed passwords, 
exposure of Session IDs in the U R L , improper rotation of Session IDs after successful login 
and their invalidation [14]. 

There are multiple ways anomaly detection algorithms might be useful in detection of 
such attacks. In case of credential stuffing and other brute force or automated attacks 
anomaly detection algorithms would need to be able to recognize unusually large number 
of authentication attempts and evaluate the traffic as anomalous. It would be important 
that the anomaly detection mechanism would work not only with single H T T P requests, 
but with batches of them so it would find if the requests sent to the server had any logical 
connection [14]. 

2.4.3 X M L E x t e r n a l Ent i t ies ( X X E ) 

Some applications use or allow usage of the X M L format for data transmission between the 
client and the server. The principle of this vulnerability lies in the fact that many older 
or poorly configured X M L processors evaluate references to external entities within X M L 
documents. These external entities then can serve attackers in disclosing internal files using 
the file URI handler, internal port scanning, denial of service attacks or even remote code 

12 



execution. If applications accept X M L directly from untrusted sources and allow input of 
untrusted data into its X M L documents, they are vulnerable to attackers interfering with 
their internal processing of X M L data [14]. 

A n example of such external entity can be Uniform Resource Identifier, that is de­
referenced and evaluated in the processing of an X M L document. [16]. There is also pos­
sibility that when H T T P server usually expects to receive the messages in default forms, 
such as Content-Type: application/x-www-form-urlencoded it can also accept other content 
types as well as X M L . Then if adversaries use X M L formatted requests, they can try to 
exploit X X E vulnerabilities [14]. 

In the case of uploads, hypothetical anomaly detection algorithm could be able to rec­
ognize, that usually web application, that it is working with, is not used to receive data in 
X M L format and mark this attempt as anomalous. Then some security analyst would be 
able to decide whether some hidden intentions were persuaded [14]. 

13 



Chapter 3 

Anomaly Detection 

The main focus of this work is to detect anomalies in H T T P traffic. There are many different 
approaches and use cases for anomaly detection, but let's first take a look at the definition of 
anomaly and its detection possibilities. This chapter mainly follows information published 
in [18]. 

In one sentence, anomalies are substantial variations from the norm. Anomalies are also 
called outliers, as these samples or even whole datasets „lie" in noticeable distance from 
data, that is considered normal.A Good example to picture anomaly is results of an IQ test. 

The usual expected value of one's IQ test results is around 100, with a standard deviation 
of 15. If someone scores in such test one standard deviation higher or lower, this is not 
considered an anomaly, despite this result varies from the norm. The result that is around 
three times standard deviation from the mean, in this case it would be for example 145, 
but also 65, is to be considered anomalous. This example is simple and only uses single 
quantitative attribute (IQ score) with an unimodal distribution, from well-known statistics. 
Most of the problems solved by anomaly detection algorithms are multidimensional, and 
may involve nominal or categorical variables [18]. 

In statistics categorical variable places an individual into one of several groups or cat­
egories on the basis of some qualitative property [8]. Categorical variables might also be 
used in our H T T P traffic anomaly detection. For example taking into consideration H T T P 
method in combination with content-length and request URI could identify some anomalous 
requests that don't usually occur in previously defined normal traffic. Another possibility 
would be using User-agent field to help to identify unusual usage of obsolete browsers, with 
several vulnerabilities that adversaries may take an advantage of. The problem with this 
approach is, that we would need very large dataset of H T T P requests and still legitimate 
browsers accessing the server, that are not common or new, would be marked as an anomaly. 
We will discuss this problem in implementation section of this work. 

Anomaly detection principle is based on models and predictions achieved from past 
data. The statistics used to describe behaviour or characterize a system in the past will 
continue to characterize behaviour or system in the future [18]. 

In H T T P traffic we can simulate normal traffic in closed environment using web appli­
cation or system how it was intended. If the simulation is extensive and varied enough we 
can expect to see similar traffic in the future. In some real cases, data that changes over 

14 



time, for example increasing heights or lifespan among humans, can be characterized by 
long-term trends, or by cyclic behavior. Changes in structure of web application or system 
need to be taken into consideration and recreating or adjusting the previous model could 
become necessary. 

3.1 C r i t i c a l Questions i n A n o m a l y Detec t ion 

It is important to ask questions presented in [18] modified for needs of this thesis and answer 
them, before deciding what approach to take in anomaly detection. These questions are 
relevant to the formulation of anomaly detection algorithms: 

• How is the norm characterized ? 

• What to do in case of multiple substantially different cases considered as normal ? 

• What is substantial variation in our particular problem ? 

• How do we address multi-attribute data ? 

• How do we solve changes occurring over time ? 

The norm is in our case characterized as H T T P traffic on the server, which is not affected 
by any misuse or attack. The traffic consists of H T T P requests, achieved by simulation 
of casual user's behavior in the system. It is important to simulate the traffic in closed 
environment, as if we used real traffic when server is connected to the internet, there is no 
affirmation that some otherwise anomalous samples or even blocks of samples are getting 
into our modeled normal behavior. It is also important to note, that there are attacks which 
do not look anomalous at first glance. For this type of attacks, anomaly detection is not 
suitable and should be used in the combination with other intrusion detection techniques. 

The structure of H T T P web applications or systems typically does not allow substan­
tially different cases of usage. There might be instances of some less used parts of the 
system, that could cause minor variation in normal traffic model, however these would not 
be significant enough and with well suited simulation might not vary at all. 

The substantial variation as we mentioned before is usually three times standard devi­
ation from the mean of the distribution. But when it comes to H T T P requests how do we 
decide the distribution of requests ? First of all we need to identify in which attributes do 
requests vary and then create enumeration of the observations of each attribute in order 
to create their distribution. We could also take combinations of attributes and enumerate 
these, where the most common combination of attributes would situate in the distribution 
around the mean and some unseen combinations of attributes could mean an anomaly. 
In our case we will use an autoencoder to determine reconstruction error of normal and 
anomalous data, where we will calculate the mean of normal data reconstruction errors and 
compare attack data reconstruction error with threshold, determined by adding multiples 
of standard deviation of the distribution of normal data reconstruction error's. We will 
discuss more about determining this threshold in the implementation chapter 5. 

Addressing multi-attribute data problem is cut off due to the fact that we will at first 
only use H T T P request URIs for modeling normal system behavior, therefor only one 

15 



attribute is present. In case we would like to use multiple fields from H T T P request, we 
could still create sequences of multiple attributes, or combine multiple models which would 
process attributes on their own. Similar approach is used in [6] which we will examine later. 

The biggest concern is raised when it comes to addressing changes that happen over 
time. It would be great if system, that model will be created for would never change, but 
in information technologies world, implementations change fast. This creates need for easy 
to update model representing what we consider as normal behavior. In practice it means, 
as we will use machine learning, retraining the model. 

3.2 A n o m a l y Detec t ion Outcomes 

When system norm is defined and anomaly detection algorithm applied, there are three 
possible outcomes, that should be taken into consideration [18]: 

• Correct detection 

• False Positives 

• False Negatives 

Correct detection is a desired outcome, where detected abnormality in data is in fact 
anomalous and is not part of the expected process. In real-life systems it is impossible to 
achieve anomaly detection where only the correct detections occur. This leaves room for 
false positives and false negatives. False positive outcome in anomaly detection happens 
to look anomalous, but is accepted by our perception of the intentional behavior of the 
system. On the other side of unwanted outcomes are false negatives. In this case anomaly 
detection doesn't catch an anomaly that occurred in the system, due to abnormality being 
insufficiently significant [18]. 

To address false positives and false negatives we can aim to only estimate the possibility 
of sample being anomalous rather than simply answering whether it is abnormal or not. 

3.3 A n o m a l y Detec t ion Approaches 

In this section we will take a look at anomaly detection approaches in computer networking 
systems and cyber-security as it is important to review all the possibilities and character­
istics, that have been researched, before designing own solution. 

According to [18] The main approaches of anomaly detection can be divided into three 
primary groups: 

• Distance-based 

• Density-based 

• Rank-based 

16 



Distance-based group of approaches suppose that points that are farther from others are 
considered more anomalous. This Approach addresses fuzziness of anomalies, and take into 
account that some anomalies might be more or less anomalous as others. In density-based 
group, points are to be more anomalous when they lie in relatively low density regions. 
Rank-based approaches state, that the nearest neighbours of the most anomalous points 
have different nearest neighbours, than these anomalous points [18]. 

The nature of the data for this approaches may vary in terms of supervision. Three 
cases of this data are following [18]: 

• Supervised: training data possess classification labels and the comparisons and dis­
tances are with respect to labeled training data. 

• Unsupervised: there are no labels known, therefor comparisons and distances are 
applied to entire data set. 

• Semi-supervised: in this case there are provided some labels for example samples of 
new malware or malicious http request containing SQL injection and a semi-supervised 
learning algorithm may find similarities in other unlabeled cases and determine their 
membership in the same category. 

In our anomaly detection attempt the data for learning the norm of H T T P traffic 
on server are of unsupervised character. The data are retrieved from penetration testing 
session of G R E Y C O R T E X s.r.o. which was divided into simulating normal behavior of 
clients using web-system and attacking part. There are no provided labels, however for 
the training data we will only use the normal behavior part. Even though in unsupervised 
anomaly detection algorithm one of the characteristics that should be met is dynamically 
defined normal behaviors, in our work we should first experiment with the possibilities 
of implementing anomaly detection algorithm for given purpose and only then move to 
automatising the learning process. 

For H T T P traffic detection it is meaningful to use distance-based anomaly detection 
approach. It is in place to ask a question how to determine whether one observed H T T P 
request is farther from another. There are multiple attributes, that could be taken into 
consideration in answering this question. How to decide the metrics for comparison of 
H T T P requests ? These questions are some of the critical for implementation of our anomaly 
detection algorithm. 

3.4 Autoencoders 

During the research of possibilities of anomaly detection in H T T P traffic one option stood 
out with its elegance and prospect of utilising deep learning techniques. It is apparently 
usage of autoencoders. Let's take a look at what autoencoders are, what different types of 
them are known and how can we use them in anomaly detection. The information we will 
use in this section is from [15]. 

A n autoencoder is a neural network trained to attempt to produce output from its 
input. The word attempt is important because rather than autoencoder's output being 

17 



Figure 3.1: The general architecture of autoencoders. Encoding an input x with encoder 
f to internal representation or code h, decoding it with decoder g and mapping it to the 
output r. Adopted from [15] 

identical copy of the same autoencoder's input, it can vary depending on reconstruction 
error. It wouldn't be especially useful to just copy inputs to outputs, therefor autoencoders 
are usually designed and trained to be unable to learn to copy perfectly. The models are 
accounting this fact forced to prioritize which aspects are important for the characteristic 
input and thus often learn the most remarkable and characterizing properties of the data 
[15]. 

Autoencoder has an internal hidden layer h that describes a code used to represent initial 
input. We can imagine this as some kind of compression algorithm. This neural network 
consists of two parts encoder and decoder. Encoder is the part already mentioned, which 
creates an internal representation of the input and decoder then produces reconstruction of 
the input providing it at the output of whole network [15]. This architecture can be seen 
in figure 3.1. 

The main reason to construct autoencoders is apparently not copying inputs to outputs, 
but as we have previously mentioned, it may help in obtaining useful features from the data. 
One way to obtain such features is to constrain the dimension of internal representation of 
the input, making it smaller than an initial dimension of the input. Such an autoencoder is 
then called under-complete and this type of an autoencoder is forced to capture the most 
relevant features of the training data. The Learning process of this type of autoencoder is 
then described as minimizing a loss function, where loss function is penalizing dissimilarities 
of the output of the decoder portion from input of the autoencoder. Loss function can for 
example be mean squared error. However if these autoencoders are given too much capacity, 
they struggle to obtain or learn any useful information from the input data. On the other 
hand if dimension of input data is equal to dimension of the hidden code, the autoencoder 
can learn to copy the input to output without learning anything useful about the input 
data. The same problem persists in over complete autoencoders, where the hidden code 
has dimension greater than input [15]. 

18 



3.5 TensorF low 

In our work we will be using TensorFlow interface for implementing and running machine 
learning algorithms. It is important to introduce some of its features and terminology, as we 
will be using it in the design of our model and its data preprocessing in chapter 4, and the 
implementation chapter 5. Some of the terminology and theory applies to machine learning 
in general, but something is exclusive for TensorFlow. The majority of the information in 
this section comes from [21] and from TensorFlow online guides and blogs. 

TensorFlow is a scalable and multi-platform programming interface, developed by the 
researchers and engineers of the Google Brain team, used for the implementation and run­
ning of the machine learning algorithms, including convenience wrappers for deep learning 
[21]. The Tensor in its name stands for multi-dimensional array, which has an uniform 
type, called dtype, where all tensors are immutable, meaning that you cannot update the 
contents of a tensor, only create a new one [25]. 

TensorFlow utilises high-level application interface (API) called Keras, which we will 
be using in achieving our goals in implementation. The initial release of Keras was as 
a standalone A P I , that could leverage Theano as a back-end, and later the support for 
TensorFlow was added. Theano is Python library used for defining, optimizing, and efficient 
evaluation of mathematical expressions involving multi-dimensional arrays [17]. 

Model in machine learning is a function with learnable parameters. It maps an input 
to an output. The training of the model on data, can then obtain the optimal parameters. 
In TensorFlow, one of the ways for creating a machine learning model, is by using the 
Layers A P I . The most common type of model is the Sequential model. It is a linear stack 
of layers, where each layer has exactly one input and output tensor. It is not appropriate 
when we need model with multiple outputs and inputs, or any of the layers within the 
model does [26]. 

3.5.1 TensorFlow Keras Layers 

There are many different layers for use in TensorFlow models. In our anomaly detection 
solution and autoencoder neural network we will use four different layers. The Text Vec-
torization Layer, the Embedding Layer, the Flatten Layer for the text preprocessing and 
the Dense Layer for the construction of an autoencoder. 

The Text Vectorization Layer provides basic options for managing text data in a 
Keras model. It is used to transform a batch of strings, where one sample of the data 
represents one string, into either list of token indices, or a dense representation. In list of 
token indices, each word of the string has its unique integer value assigned and in dense 
representation each sample is one dimensional tensor of float values representing data about 
the tokens. This layer provides ability to use its method adapt() on a dataset, analyzing 
the dataset, determining the frequency of individual string values and creating vocabulary 
from them. The vocabulary can have either limited or unlimited size. When the limit of the 
vocabulary is present, the layer will use the most frequent terms to create the vocabulary. 
This layer also contains method for text standardization which by default is lowering the 
case and stripping the punctuation. This layer is also capable of creating n-grams, which 
are slices of the string of the length n characters. In some modes, such as binary, count 

19 



and tf-idf, the layer by default pads the output to maximal number of tokens[27]. The Text 
Vectorization Layer of TensorFlow's Keras A P I is a little bit different from what we define 
as our text vectorization layer in chapter 4, but it is a significant part of it. 

The Embedding Layer provides embedding functionality within Keras A P I . The word 
indices created by text vectorization layer, can be converted into input features in different 
ways. One of them is applying one-hot encoding to the token indices, converting them 
into vectors consisting of ones and zeros. If we are working with larger vocabulary, that 
contains many words, this vector will be of the size of this vocabulary, resulting in very 
sparse features. This is highly inefficient as all the features would be zeros, except for the 
one representing the word. The embedding is on the other hand much more effective, as we 
can map each word to a vector of fixed size. The size of the embedding vectors can be much 
smaller than the number of unique words within the vocabulary, to be able to represent 
them as input features. Since the embedding layer in a neural network is trainable, it can 
manage to extract salient features from these words and sequences [21]. 

The Dense Layer is a building block for our autoencoder architecture described in 
chapter 4. The TensorFlow guide [24] describes the dense layer as regular densely-connected 
neural network layer. A dense connection of layers means, that each neuron in a layer 
receives an input from all previous neurons. The dense layer applies activation function to 
the input and provides it to the output. The scheme of such activation function is following: 

activation(dot(input, kernel) + bias) 

where input is an input provided to a layer, kernel is a weights matrix created by the 
layer, bias represents a bias vector created by the layer and a dot() function calculates a 
dot product between the input and the weights [24]. 

20 



Chapter 4 

Design and Data 

In this chapter we will introduce the data used for modeling the norm of H T T P traffic of 
targeted web server and the attack data used for testing anomaly detection outcomes. We 
will review the data retrieval and its following preprocessing needed in order to use it in the 
neural network. For this purpose we need to describe additional preprocessing layers for 
text vectorization and embedding and then we can introduce overall design of autoencoder 
neural network used for anomaly detection. 

4.1 D a t a Source and P r e p a r a t i o n 

The data we use in our anomaly detection attempt comes from penetration testing session 
of G R E Y C O R T E X s.r.o. provided by Petr Chmelař. The goal of this session was to create 
data suitable for optimization and testing of methods used for H T T P traffic analysis with 
emphasis on repeatability and possibility of automatized generation of normal as well as 
malicious H T T P traffic. Among the main goals was to obtain information about normal 
traffic, detection of security risks and vulnerabilities introduced and explained in [14] and 
chapter 2. For this purpose the team prepared safe environment including web server with 
representative applications, disconnected from the internet and automatisation and testing 
frameworks. The server(Apache) contained installed applications of content management 
system WordPress, e-learning system Moodle, Prestashop e-shop and intentionally vulner­
able application WebGoat. 

In the first part of the session divided into repeatable experiments focused on generating 
unharmful H T T P traffic by using various browsers including Firefox, Chrome, Internet 
Explorer and Safari. There was around twenty scenarios committed on all applications 
with seventy-eight executions. For example in case of WordPress creation of page, adding 
or removing items in the e-shop, purchasing or canceling the order before payment, etc. In 
the second part of the penetration test, separated by time gap, were tested vulnerabilities of 
web applications using open and free to use tools for penetration testing and vulnerability 
detection such as OpenVAS, Nessus, Metasploit, Hail Mary, Hydra, SQLmap, BurpSuite 
and more. 

Besides the side scripts gathered using Selenium framework allowing for further gen­
eration of more data, the team obtained packet capture files of the network traffic during 
testing. This packet capture files are source of the data used for modeling the normal 

21 



behaviour of H T T P traffic in our neural network. These were then parsed into Comma 
Separated Values(CSV) format using network protocol analyzer TShark. Using this tool 
we separated the H T T P layer of the packet. Initially the intentions were to use multiple 
H T T P request header fields, but after consultation with Petr Chmelař, we decided to only 
use H T T P request U R I field in the beginning of such project. We agreed, that in case of 
successful modeling of H T T P traffic norm and anomaly detection based on created model 
using request URIs, we can design and implement more complex anomaly detection al­
gorithm with other request header fields in the future, detecting other different types of 
anomalies in H T T P traffic. The packet capture files were fortunately divided into parts 
where normal traffic was separated from the one with attacks, so we could easily parse these 
files one by one with TShark into separated C S V files with following command line: 

tshark -r l.pcapng -Y 'http.request.method == POST or http.request. 
method == GET' -T fields -e frame.time -e http.request.uri -E 
header=y > normal.csv 

Where -r option specifies a capture file from which to read. - Y is a display filter which 
selects packets matching following filter. In our case we choose to use H T T P requests whose 
request methods are either P O S T or G E T . - T option is used to set the format of the output 
of decoded packet data, in form of fields, followed by options -e specifying the values to 
choose, that would create columns of these values [7]. 

Now as we know the steps needed for preparation of our data for their usage in our 
anomaly detection, we can move to describing the design of the data preprocessing. 

4.2 D a t a Preprocess ing 

The nature of our data is in text form. Wi th previously mentioned preparation, we obtained 
data set in comma separated values format, consisting of strings representing chosen request 
header fields. Then each header field has its own place and in case of construction of a data 
set will represent one column. In order for neural network model in form of an autoencoder 
to be able to work with the data provided, the data cannot be in form of a string. First of 
all we need to be able to represent words within the strings as numbers and then create a 
vector out of them, that can be passed into the model input. 

The processing of samples, which in our case are H T T P request URIs 1 , contains the 
following steps: 

• Standardization of samples. 

• Splitting samples into substrings (words). 

• Tokenization of substrings, which also includes indexing of the tokens in form of 
associating unique int values with tokens. 

• Transformation of tokenized samples using this index into dense float vector. 

1 W e do not use full request URIs including protocol specification and host as this information does not 
change throughout the whole data. Our request URIs are al l from the same server. 

22 

http://http.request.method
http://http.request
http://http.request.uri


These steps are then processed within additional preprocessing layers that add to the 
core autoencoder neural network. The main two layers are The Text Vectorization Layer and 
The Embedding Layer. Our preprocessing design also includes the layer used for flattening 
the output of the embedding layer, but since it only serves as dimension reduction, we will 
describe it alongside with the embedding layer. 

4.2.1 The Text Vector izat ion Layer 

The text vectorization layer of TensorFlow is responsible for standardization of samples with 
standardization method and tokenization of substrings. In our design we can differentiate 
between the text vectorization layer of our architecture and the text vectorization layer 
implemented in TensorFlow. The layer from TensorFlow needs to be provided with samples 
divided into words to be able to tokenize them. First we need to decide how to split H T T P 
request URI string into such words. Then the layer will be able to create vocabulary from 
this words. However the text vectorization layer of our architecture, is defined as all the 
steps of the preprocessing, before training TensorFlow's text vectorization layer and the 
final vectorization using this layer. 

In natural language text preprocessing the substrings that would samples be split into 
would represent words of the sentences, which would represent the samples. We do not 
process natural language and instead of sentences we posses H T T P request URIs. They 
have parts separated with numerous special characters, in order for interpreters being able 
to distinguish these parts. We can also use this parts as our substrings and define separator 
as one of the listed special characters: 

" \ , / , +, =, ?, ft, '/., . and ," 

However we cannot split with: 

II _ I I I I II 

as these characters are included within some of the names in our data set, therefor these 
would be split incorrectly. 

Following URI sample: 

/moodle/mod/quiz/processattempt.php?cmid=30796 

will then transform into sequence of words, separated by white space character: 

moodle mod quiz processattempt php cmid 30796 

The standardization method of natural language text input usually includes lower-casing 
and punctuation stripping. We do not have reasons to do otherwise, therefor standardiza­
tion part of our Text Vectorization Layer transforms samples into lower case and strips the 
punctuation. 

Large data sets usually need to have vocabulary size specified as there would be too 
many words. Then the most common words are chosen and according to their count within 
given data set, assigned a token. In our case we are not operating with very large data set 

23 



and can use all words, that we managed to get from splitting URI samples. This would 
leave us with vocabulary of size 8252 words. 

After passing our input data into the layer, in form of sequences of the words, we will 
get sequences of integer indices. Now these sequences are of variable length. However, we 
need to have sequences of the same length for our neural network. The last step of this 
part of the preprocessing of the data, would be to use padding to compensate for shorter 
sequences with zeros, attaching them to the end of each incomplete sequence, to the length 
of the longest sequence within the data set. 

4.2.2 The E m b e d d i n g Layer 

The Embedding layer of our model is responsible for transformation of tokenized samples 
using positive integers (indices) assigned to them, into dense vectors of fixed size. 

Some of the parameters when designing such a layer are input dimension, output dimen­
sion and whether or not are masking and padding used for the input data of the layer. By 
crafting the text vectorization layer we also received its vocabulary as the part of it. The 
length of resulting vocabulary will then represent the input dimension of our embedding 
layer. 

The next task is deciding the size of the output dimension, which would represent 
number of floats within each vector, representing the word in the sequence of the sample. 
This value is usually empirically decided and adjusted for the purposes of the designed 
model and according to its results. However [23] proposes „general rule of thumb" about 
the number of embedding dimensions. They state, that the embedding vector dimension 
should be the fourth root of the number of categories. The number of categories is in our 
case the number of words in our vocabulary. So when we calculate the following formula: 

\/V = ^8252 2* 9.5310 » 10 

where V is the length of our vocabulary, we will get approximate dimension size for our 
embedding layer. We can then experiment during the implementation by either increasing 
or decreasing this number and see, what works best for this concrete problem. 

The output of the embedding layer would then lead to the input of the flattening layer, 
which reduces the dimension of the data from shape (samples, words, vectors) to (samples, 
words*vectors). 

4.3 T h e A u t o e n c o d e r A r c h i t e c t u r e 

After the data is retrieved from C S V file, preprocessed with The Text Vectorization Layer 
and The Embedding Layer it can be used for training the autoencoder. It is important to 
say, we need to train the autoencoder only with the normal, unharmful H T T P traffic data, 
as the principle of our anomaly detection is evaluation of the reconstruction error produced 
by the autoencoder. The hypothesis is, that in attempting to reconstruct the attack data 

24 



with its internal representation of the normal data, the reconstruction error will be higher 
by at least set threshold, than the reconstruction error of the normal data reconstruction. 

The autoencoder neural network, shown in the figure 1.1, is divided into two Sequential 
models, an encoder and a decoder. The encoder is responsible for dimension reduction of 
the data provided to its input. By doing this, it can learn some useful properties of the 
data. It consists of four Dense layers, where one of them is an input layer and remaining 
three are hidden layers. Each one of these layers cuts the previous dimensions of the input 
into half. The output of the last hidden layer of the encoder, is connected to the input of 
the decoder. 

The decoder is responsible for attempting the data reconstruction. It as well as the 
encoder consists of four layers. The autoencoder parts can be used separately, but in the 
mode of autoencoder, the input layer of the decoder is hidden. This input layer is then 
followed by two additional hidden layers, where the dimension of their inputs increase two 
times over each layer. The last, output layer of the decoder, has the same number of output 
neurons as the number of features provided on the input of the autoencoder. Every layer of 
the autoencoder uses activation function relu, except for the output layer, that uses linear 
activation function. 

25 



Input 

Encoder -

i - 1 

Input Dense Layer Hidden Dense Layer 

activation = "relu" activation = te lu" 

input: [?, 1530) input: (?, 123) 

output: [?,1024) output: [?, 256) 

1 

Hidden Dense Layer Hidden Dense Layer 

activation = telu"' activation = 'relu" 

input: [?, 1024) input: C?, 256) 

output: [?, 512) output: (?, 512) 

Hidden Dense Layer Hidden Dense Layer 

activation = "relii" activation = "relu" 

input: [?,512) input: £?, 512) 

output: [?,256) output: (?, 1024) 

1 

Hidden Dense Layer Output Dense Layer 

activation = telu"' activation = 'linear" 

input: [?. 256) input: (?, 1024) 

output: [?, 123) output: (?, 1530) 

1 

>- Decoder 

Output 

Figure 4.1: The Autoencoder Neural Network's architecture. Each list in the graph rep­
resents one layer of the autoencoder. The additional information provided in each layer is 
activation function and input and output shapes. Left: encoder part, right:decoder part 
of the model. 

26 



Chapter 5 

Implementation and Results 

This chapter contains information about implementation details and the results of anomaly 
detection algorithm. We will introduce some of the remaining tools, used to accomplish the 
implementation goals, that have not yet been mentioned. We will also discuss some of the 
workarounds needed in the implementation and possible improvements for the future. 

5.1 Implementat ion Tools 

The implementation is realised in programming language Python as it is one of the most 
popular programming languages for data science. Even though the performance of in­
terpreted languages, which Python is, for difficult computation tasks is lower than the 
performance of lower-level programming, its extension libraries such as NumPy, built on 
lower layer Fortran and C implementations, are enabling fast, vectorized operations on 
multidimensional arrays. The version of Python used in our implementation is Python 
3.8. 

The data extraction from packet capture files provided by G R E Y C O R T E X s.r.o. is 
achieved by using TShark, network protocol analyzer. This tool is listed here for the 
completion of tools used, but it was not used in the implementation part. It was used in 
order to prepare suitable data set for the model and its use is described in chapter 4. 

The data extraction from C S V file, its representation in form of dataframes and op­
erations on this data is provided by open source Python Data analysis Library, Pandas. 
For the data manipulation, in form of high-level mathematical functions, is used Python 
library NumPy. The version number of NumPy used during the implementation is 1.19.4. 
Machine learning library Sklearn provides our implementation with function for splitting 
the training and the test data. For graphical outputs is used Python plotting library Mat-
plotlib. 

5.2 Implemented Funct ions 

Our anomaly detection is implemented in Python script anomaly'detection.py, which consists 
of multiple functions needed for the realisation of the data preprocessing, autoencoder 
training and evaluation of the test and attack data. These functions are following: 

27 



• get_data(filename, encoding) 

• df_to_dataset(dataframe, shuffle, batch_size) 

• vectorize_text(dataset) 

• prediction(model, normal_data, attack_data, test_data) 

• fit_model(model, epochs, batch_size, data) 

• plot_loss(history) 

The get_data() function requires one positional argument filename, specifying the location 
of the data in C S V format. It reads this file and parses it into dataframe using pandas func­
tion read_csv() .It has one more optional argument which, specifies the encoding of the data 
to be used (default encoding is UTF-7). The dataframe has three initial columns, as they 
are present in the dataset. The columns are H T T P request method, H T T P content-length 
and H T T P request U R L We agreed to use only H T T P request URI in our implementa­
tion as usage of the other two, would create more complex implementation requirements. 
Therefor, this function drops this columns and also removes rows of the dataframe, that 
contain None values. Part of the preprocessing from the Text Vectorization layer, that we 
have defined in chapter 4, already happens in this function. This function also iterates over 
the H T T P URI strings within dataframe and splits them into sequences of words separated 
by white space character. The function returns retrieved and processed dataframe. 

Another function in the list is the df _to_dataset () function. It is the function used to 
transform pandas dataframe into TensorFlow dataset. This transformation is needed for the 
data used for creation of vocabulary, as it is the easiest way, how to provide the sequences of 
split words, into adapt () method of TensorFlow's TextVectorization. The function requires 
one positional argument, dataframe, which specifies the dataframe to be transformed. The 
function also provides ability to shuffle data within the dataset. To enable shuffling, the 
optional boolean argument shuffle needs to be set to True. The function also provides 
combining consecutive elements into batches and pre-fetching of the elements, which helps 
to improve latency as later elements of the dataset are prepared at the time of processing 
of the current element. The last optional argument specifies the batch size. Throughout 
other parts of the implementation, except from the adapting of the text vectorization layer, 
the implementation uses pandas dataframes. However, this function might come in use, in 
case of further implementation iterations. 

The vectorize_text () function is responsible for initialization of the text vectorization 
layer. It either uses adapt () method of TextVectorization or directly passes the vocabulary 
into initialization of the text vectorization layer. The location of vocabulary to be used, 
is specified by the optional argument vocabulary. It is also capable of saving the newly 
created vocabulary, when the optional boolean argument save is set to True. The saved 
vocabulary is in C S V format and at this point for read-only purposes. In order for this 
saved vocabulary to be used, slight adjustments to the functions are required. The function 
returns initialized text vectorization layer, ready to be used. 

The function essential for the anomaly detection is predictionO . It is used for the 
evaluation of the attempts to reconstruct the attack data and the test data by the au-
toencoder. It requires four positional arguments. The first argument, model, specifies the 

28 



autoencoder used for the prediction. The remaining three arguments are for the normal, 
attack and test data, in this order. First of all the function uses the autoencoder to predict 
the normal data. For this the method predict () of the autoencoder is called with the input 
set to the normal data. This method returns reconstructions predicted by the model, which 
should be very similar to the input data. Then the function for calculation of the mean 
squared error, mse(), between the input normal data and the predicted reconstructions of 
the normal data is called. This function is included within Keras losses functions. This 
will leave us with the list of mean squared error values. The majority of this values, should 
be relatively low, as the autoencoder model, provided to the function, was trained on the 
normal data. The function then proceeds to calculation of the fixed threshold, which is the 
value, used to decide if the reconstruction errors of the upcoming test data, are high enough 
to be considered anomalous. In other words, if the reconstruction error between the input 
test data sample, is higher by this threshold than the reconstruction error of the predicted 
test data sample, this sample is considered anomalous. This value is calculated by adding 
the mean of the reconstruction errors of the normal data to one standard deviation of the 
reconstruction errors of the normal data. The final calculation is comparing the reconstruc­
tion errors of the samples of the test data and the attack data with the threshold. The 
function does not have return value, but it prints the percentage of the anomalies within 
the test data and the attack data on the standard output. It also plots the graphs of the 
distribution of the reconstruction errors of the attack and the normal data. 

The f it_model() function is used to define callback function, in form of an early stop, 
that finishes the training of the model in case of unchanging validation loss, with patience 
of ten epochs. The next step within the function is to call f i t ( ) method on the model, 
which is part of Keras Model and is responsible for training the model on the input data. 
Our function requires four positional arguments. The arguments are model, epochs, batch 
and data. The model argument is expected to be compiled form of Keras model, as in this 
function it wil l be fit with the data and trained. The second argument specifies number of 
epochs of the training cycle. The third argument is used to define batch size of the data, 
in order for more optimal data handling. The last argument expects input data, that the 
model will be trained on. The function returns a history object, which is an attribute to 
record the training loss values and metrics values at each successful epoch. It also contains 
validation loss values and validation metrics values as we opt to monitor it. 

The last function plot_loss() is used to plot the losses values during the training. It 
requires one positional argument history, which is returned by the f i t () method of the 
model. It pictures the evolution of train loss and validation loss values, over the epochs, in 
single graph. This function does not have return value. 

5.3 T h e A u t o e n c o d e r 

The implementation of the autoencoder, shown in listing 5.1, within our script is in form 
of python Class called AutoEncoder. Its base class is TensorFlow's Model. AutoEncoder 
consists of two attributes, in form of keras sequential models, the encoder and the decoder. 
It also defines method ca l l (self , x ) , which is responsible for autoencoder's logic. It 
receives input data x and encodes them using its encoder. Following is the decoding of 
internally encoded data and finally the function returns data as decoded. The output shapes 

29 



of the layers within the autoencoder can be seen as the first argument in Dense (). The 
second argument is the activation function for each layer. 

class AutoEncoder(Model): 
def ini t (self): 

super(AutoEncoder, self ) . ini t () 
self.encoder = tf.keras.Sequential([ 

tf.keras.layers.Dense(1024, activation="relu"), 
tf.keras.layers.Dense(512, activation="relu"), 
tf.keras.layers.Dense(256, activation="relu"), 
tf.keras.layers.Dense(128, activation="relu")]) 

self.decoder = tf.keras.Sequential([ 
tf.keras.layers.Dense(256, activation="relu"), 
tf.keras.layers.Dense(512, activation="relu"), 
tf.keras.layers.Dense(1024, activation="relu"), 
tf.keras.layers.Dense(1580, activation="linear") 
]) 

def cal l (self , x): 
encoded = self.encoder(x) 
decoded = self.decoder(encoded) 
return decoded 

Listing 5.1: Implementation of the autoencoder class. 

5.4 T h e Scr ipt for A n o m a l y Detec t ion 

So far we have explained the implementation of the functions within the script, the autoen­
coder class and now, we have to take a look at its core. The algorithm part of our anomaly 
detection, is situated in main function of the anomalydetection.py and it uses functions 
explained in section 5.2, for its tasks. In this section we will explain behavior of this main 
function, which includes retrieving the data, preprocessing it, training the model with the 
normal part of the data and evaluating the predictions. 

The first thing that the script does is, that it uses get_dat() function in order to 
retrieve H T T P traffic, that has been previously merged into one C S V file called data.csv. 
The initial part of the preprocessing already happens in this function. It prepares the 
sequences, that are in form of H T T P URI strings, by splitting them into words. This is 
closely explained in the chapter 4. This data is then split into two pandas dataframes, to 
separate the normal traffic from malicious. It was achieved by manually searching for the 
time gap within the packet capture files, as it is how G R E Y C O R T E X s.r.o. team, that 
performed the penetration tests on the web server, decided to separate normal traffic and 
attacks on the server. 

The portion of the data within the dataframe, that represents normal H T T P traffic is 
then split into training and test data, where the test is fifteen percents from total amount 
of normal data. Some of the functions within the script require to know maximal length 

30 



of the sequence, consisting of words within each sample, therefor the longest sequence was 
identified and maxlen variable set to 158. 

The script then proceeds to converting the training portion of normal data into dataset, 
using function df_to_dataset (), as it is needed for use by the text vectorization layer of 
TensorFlow. The next step is to adapt new text vectorization layer, which will be used for 
this model, either by using vocabulary locally stored, or by using adapt () method of the 
TextVectorization. A l l of this does function vectorize_text () which is called with our 
newly formed dataset. It returns layer which the script uses for text vectorization of each 
parts of the data separately. 

After the text vectorization layer is successfuly created and trained with normal data, 
resulting in creation of vocabulary, the length of its vocabulary can be used to initialize the 
embedding layer of TensorFlow. 

Following step of the script is, that on all the data parts, which are normal training 
data, normal test data and attack data, script applies preprocessing layers. First the 
text vectorization layer is used, followed by padding the sequences to maxlen, then the 
embedding layer is applied and finally, the Flatten () reduces the shape of the output from 
the embedding layer by one dimension. 

In the next part an instance of AutoEncoder is created. This is then compiled into 
model, using adam optimizer and mse as a loss function. The model is then trained on 
normal train data, with recommended number of epochs to be two hundred 1 . Straight 
after the training of the model is finished, plot_loss() function plots validation loss and 
train loss progress during the training. 

Up until this point, the script has preprocessed the input data, split it into different 
parts and created the model, that is trained to be able to encode and reconstruct the data, 
that is similar to our normal H T T P traffic sample. The last task of the script is to call 
the function, responsible for prediction, prediction(). This function proceeds to try three 
different encoding-decoding attempts on all of our three parts of the data. First the normal 
data reconstruction, from which can be calculated the threshold to detect the anomalies, as 
mentioned in section 5.2. The function and the script then prints the result of the anomaly 
detection to standard output in form of two lines, with percentage of detected anomalies 
within attack and test data. It also plots some kind of distribution, in form of histogram, 
of the reconstruction errors of normal and attack data. 

5.4.1 Further Improvements 

The implementation of the anomaly detection will be in future most likely split from the 
modeling of normal behavior. However, this implementation was only an initial experiment, 
to determine if such anomaly detection can be successful. The script for anomaly detection 
can be significantly improved for features such as automatic retrieval of the traffic and its 

1 T h e number of epochs is relatively high due to the fact, that we want to achieve high level of recon­
struction of normal data and teach the model its most salient features. During the trial-error part of the 
implementation, experiments with lowering the number of epochs resulted in lower capability of the model 
to detect the anomalies. 

31 



evaluation. It could also be able to mark single samples of anomalies within live traffic. 
The modeling part then could be re-trained on larger portions of the data, and for exam­
ple trained for an anomaly detection within whole web system implementation scenarios, 
that use different kind of applications. Also the current state of the script requires for 
every experiment conducted, the model to be retrained. This is not an issue if you are 
experimenting with the shape of the model and new data, as it would be required anyway. 

5.5 T h e Resul ts 

The results of our anomaly detection experiment, that consisted of modeling the normal 
H T T P traffic of given web server, should reflect the capability of our detection mechanism, 
to differentiate between an anomalous and expected H T T P traffic. For this purpose we 
have split our training and test data, to be able to compare the prediction of percentage of 
anomalies, within test and attack data. 

The portion of the test data is retrieved by a split function, which shuffles the samples 
within normal data, therefor we will at each iteration of re-training of the model, get slightly 
different approximations of the percentage of anomalies. This is also caused by the fact, 
that each time while using this function, we are training the model with different portions of 
the normal data, therefor the expected noise within test data, affects the resulting anomaly 
approximation differently. However, this helps us to verify, that the implementation of our 
autoencoder, gets its job done, in different layouts of the training data. 

Let's take a look at different outputs of our anomaly detection, starting with the simple 
text output. When we try to run our script multiple times, with same parameters includ­
ing number of epochs, the proportion between test and normal data, and the proportion 
between validation and training data, described in previous parts of this chapter, we will 
get fairly similar outputs, shown in listing 5.2. We achieved these results with setting the 
number of epochs to three hundred, splitting the normal and test data by fifteen percent 
and validation and training data by ten percent. The number of up to five percent of ap­
proximated anomalies within the test data, in each of these outputs, is caused by the fact, 
that we have truly small data set for modeling the normal network, therefor some scenarios 
of the application usage or some noise could propagate into this approximation of the per­
centage of anomalies. On the other hand, the percentage of anomalies within attack data is 
significantly higher. It is not near one hundred percent, because it is almost impossible to 
provide the server with only attack requests. It also characterizes the intensity of the pen­
etration test and the sensitivity of our anomaly detection, to abnormally looking requests. 
After consultation of these results with Petr Chmelař, we agreed, that this approximated 
percentage of anomalies within the attack part of the data set, could represent the amount 
of malicious H T T P requests. 

The following are graphical outputs in figures 5.1 and 5.2, that will help us to demon­
strate the distribution of reconstruction errors within normal data and attack data recon­
struction attempts. For this experiment, we have adjusted the percentage of the test data, 
split from the normal data, to five percent, to be able to use larger portion of the normal 
data for the training. The number of the epochs remained the same. 

32 



1. Percentage of anomalies in attack data 61. 72 
Percentage of anomalies in test data: 3 .11 

2. Percentage of anomalies in attack data 69. 94 
Percentage of anomalies in test data: 5 .20 

3. Percentage of anomalies in attack data 70. 61 
Percentage of anomalies in test data: 4 .28 

Listing 5.2: Listing of three different outputs, from separate model trainings. 

Normal Data Reconstructions 

o J — ' 1 — ™ — i 1 1 1 1 1 1 

0.00 0.25 0.50 0.75 LOO L25 L50 L75 
Reconstruction error Ifi—4 

Figure 5.1: The distribution of the reconstruction errors of the autoencoder, for normal 
data samples. Note that reconstruction errors have metrics prefix le-4. 

The plots of the figures need to have limited number of examples to 1250, for better 
visibility of higher reconstruction errors. As we can see in figure 5.1 the majority of the 
reconstruction errors lie within the range of 0 to 2.5e-5. This is caused by the fact, that our 
autoencoder is trained on this data, therefor its reconstruction does not generate high error 
values. On the other hand the attack data reconstruction errors, shown in the figure 5.1, 
are more widely spread. The majority of reconstruction errors of the attack data samples 
is in range of 0 to 4e-4. This is the result of high frequency of the anomalies within the 
data set and the autoencoder not being able to reconstruct such abnormal data. 

The last picture, that can be seen in figure 5.3, shows the progress of the loss of the 
training loss and the validation loss functions during the training of the model. This 
information can indicate, whether or not we are under-fitting or over-fitting the model. 

33 



Attack Data Reconstructions 

Reconstruction error le -3 

Figure 5.2: The distribution of the reconstruction errors of the autoencoder, for attack data 
samples. Note that reconstruction errors have metrics prefix le-3. 

Tain loss 
Validation loss 

25 50 75 100 125 150 175 200 
Epoch 

Figure 5.3: The graph of the training loss and validation loss functions progress, during the 
training of the model. 

34 



Chapter 6 

Conclusion 

Throughout this work we have reviewed the possibilities of an anomaly detection as one of 
the methods for intrusion detection in web systems. We have introduced autoencoder neural 
networks and explained, how they could be used for anomaly detection. What is more, we 
have managed to successfuly implement initial experiment, which consisted of modeling the 
normal behavior of H T T P traffic and been able to use it for anomaly detection of upcoming 
H T T P traffic. 

However, there are many improvement possibilities that have yet to be done. First of 
all the implementation result in form of script, needs to be adjusted if it is to be used in 
real world. This would mean slight adjustments, where this script would be able to either 
routinely or dynamically retrieve H T T P traffic in order to attempt the reconstruction of its 
messages and detecting the malicious ones as anomalies. The modeling of normal behavior 
of H T T P traffic, should be separated from anomaly detection. The script would only be 
using already trained model for anomaly detection. 

The model can be also used as a building block for more complex solution, including 
other different information from H T T P traffic. One of the limitation of our solution was 
relatively small data set. If we are be able to obtain larger data sets, we will have op­
portunity to build even more precise anomaly detection models, than what we have now. 
Hypothetically, we can try to create anomaly detection solution, based on autoencoder neu­
ral networks, that is independent on the web server implementation. On the other hand, 
we can try to create pre-trained models for concrete implementation scenarios, that would 
be deployed within particular web server implementations, with its specific applications. 

35 



Bibliography 

[1] A L A N I , M . M . Guide to OSI and TCP/IP Models. 1st ed. Springer International 
Publishing, 2014. ISBN 978-3-319-05151-2. 

[2] B A R T H , A . HTTP State Management Mechanism [Internet Requests for Comments]. 
R F C 6265. R F C Editor, A p r i l 2011. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 6 2 6 5 . t x t . 
Available at: http://www.rfc-editor.org/rfc/rfc6265.txt. 

[3] B E L S H E , M . , P E O N , R. and T H O M S O N , M . Hypertext Transfer Protocol Version 2 
(HTTP/2) [Internet Requests for Comments]. R F C 7540. R F C Editor, May 2015. 
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 5 4 0 . t x t . Available at: 
http ://www.rf c-editor.org/rfc/rfc7540.txt. 

[4] B E R N E R S L E E , T., F I E L D I N G , R. T. and M A S I N T E R , L . Uniform Resource Identifier 
(URI): Generic Syntax [Internet Requests for Comments]. STD 66. R F C Editor, 
January 2005. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 3 9 8 6 . t x t . Available at: 
http ://www.rf c-editor.org/rfc/rfc3986.txt. 

[5] B E R N E R S L E E , T., F I E L D I N G , R. T. and N I E L S E N , H . F . Hypertext Transfer Protocol 
- HTTP/1.0 [Internet Requests for Comments]. R F C 1945. R F C Editor, May 1996. 
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c l 9 4 5 . t x t . Available at: 
http ://www.rf c-editor.org/rfc/rfcl945.txt . 

[6] C , K . and G . , V . Anomaly Detection of Web-based Attacks [online]. Reliable 
Software Group, 2003 [cit. 2021-3-10]. Available at: 
https: //sites.cs.ucsb.edu/~vigna/publications/2003_kruegel_vigna_ccs03.pdf. 

[7] C O M B S , G . Tshark - Dump and analyze network traffic [online]. 2019 [cit. 2021-05-09]. 
Available at: https: //www.wireshark.org/docs/man-pages/1shark.html. 

[8] D A R E N S. S T A R N E S , D . Y . and M O O R E , D . S. The Practice of Statistics. 5th ed. W . 
H . Freeman and Company, 2014. ISBN 978-1-4641-0873-0. 

[9] F I E L D I N G , R. and R E S C H K E , J . Hypertext Transfer Protocol (HTTP/1.1): 
Authentication [Internet Requests for Comments]. R F C 7235. R F C Editor, June 
2014. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 2 3 5 . t x t . Available at: 
http ://www.rf c-editor.org/rfc/rfc7235.txt. 

[10] F I E L D I N G , R. and R E S C H K E , J . Hypertext Transfer Protocol (HTTP/1.1): 
Conditional Requests [Internet Requests for Comments]. R F C 7232. R F C Editor, 
June 2014. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 2 3 2 . t x t . Available at: 
http ://www.rf c-editor.org/rfc/rfc7232.txt. 

36 

http://www.rfc-editor.org/rfc/rfc6265.txt
http://www.rfc-editor.org/rfc/rfc6265.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rf
http://c-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rf
http://c-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfcl945.txt
http://www.rf
http://c-editor.org/rfc/rfcl945.txt
http://cs.ucsb.edu/~vigna/publications/2003_kruegel_vigna_ccs03.pdf
http://www.wireshark.org/docs/man-pages/1shark.html
http://www.rfc-editor.org/rfc/rfc7235.txt
http://www.rf
http://c-editor.org/rfc/rfc7235.txt
http://www.rfc-editor.org/rfc/rfc7232.txt
http://www.rf
http://c-editor.org/rfc/rfc7232.txt


[11] F I E L D I N G , R. and R E S C H K E , J . Hypertext Transfer Protocol (HTTP/1.1): Message 
Syntax and Routing [Internet Requests for Comments]. R F C 7230. R F C Editor, June 
2014. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 2 3 0 . t x t . Available at: 
h t t p ://www.rf c - e d i t o r . o r g / r f c / r f c 7 2 3 0 . t x t . 

[12] F I E L D I N G , R. and R E S C H K E , J . Hypertext Transfer Protocol (HTTP/1.1): Semantics 
and Content [Internet Requests for Comments]. R F C 7231. R F C Editor, June 2014. 
h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 2 3 1 . t x t . Available at: 
h t t p ://www.rf c - e d i t o r . o r g / r f c / r f c 7 2 3 1 . t x t . 

[13] F I E L D I N G , R. T., G E T T Y S , J. , M O G U L , J . C , N I E L S E N , H . F., M A S I N T E R , L . et al. 
Hypertext Transfer Protocol - HTTP/1.1 [Internet Requests for Comments]. R F C 
2616. R F C Editor, June 1999. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 6 1 6 . t x t . 
Available at: h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 6 1 6 . t x t . 

[14] F O U N D A T I O N , O. OWASP Top 10 - 2017. Publication. O W A S P Foundation, 2017. 
Available at: 
https://owasp.org/www-pdf-archive/0WASP_Top_10-2017_7.28en7.29.pdf.pdf. 

[15] G O O D F E L L O W , I., B E N G I O , Y . and C O U R V I L L E , A . Deep Learning (Adaptive 
Computation and Machine Learning series). 1st ed. M I T Press, 2016. 
h t t p : / / w w w . d e e p l e a r n i n g b o o k . o r g . ISBN 978-0262035613. 

[16] G U P T A , C , S I N G H , R. K . and M O H A P A T R A , A . K . A survey and classification of 
X M L based attacks on web applications. Lnformation Security Journal: A Global 
Perspective, [online]. 29th ed. 2020, no. 4, [cit. 2021-5-8]. Available at: 
https://doi-org.ezproxy.l ib.vutbr.cz/10.1080/19393555.2020.1740839. 

[17] L I S A , L . Theano 1.0.5 - Project Description [online]. 2020 [cit. 2021-05-09]. Available 
at: h t t p s : / / p y p i . o r g / p r o j ect/Theano/. 

[18] M E H R O T R A K I S H A N G , H . H . and S U B R A H M A N I A N , V . Anomaly Detection 
Principles and Algorithms. 1st ed. Springer International Publishing, 2017. ISBN 
978-3-319-67524-4. 

[19] P O S T E L , J . User Datagram Protocol [Internet Requests for Comments]. STD 6. R F C 
Editor, August 1980. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 6 8 . t x t . Available at: 
h t t p ://www.rf c - e d i t o r . o r g / r f c / r f c 7 6 8 . t x t . 

[20] P O S T E L , J . Transmission Control Protocol [Internet Requests for Comments]. STD 
7. R F C Editor, September 1981. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 9 3 . t x t . 
Available at: h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 7 9 3 . t x t . 

[21] R A S C H K A , S. and M I R J A L I L I , V . Python machine learning : machine learning 
and deep learning with Python, scikit-learn, and TensorFlow. 2nd ed. Packt 
Publishing Ltd . , 2017. ISBN 978-1-78712-593-3. 

[22] R E S C O R L A , E . HTTP Over TLS [Internet Requests for Comments]. R F C 2818. R F C 
Editor, May 2000. h t t p : / / w w w . r f c - e d i t o r . o r g / r f c / r f c 2 8 1 8 . t x t . Available at: 
h t t p ://www.rf c - e d i t o r . o r g / r f c / r f c 2 8 1 8 . t x t . 

37 

http://www.rfc-editor.org/rfc/rfc7230.txt
http://www.rf
http://c-editor.org/rfc/rfc7230.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rf
http://c-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
https://owasp.org/www-pdf-archive/0WASP_Top_10-2017_7.28en7.29.pdf.pdf
http://www.deeplearningbook.org
https://doi-org.ezproxy.lib.vutbr.cz/10.1080/19393555.2020.1740839
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rf
http://c-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rf
http://c-editor.org/rfc/rfc2818.txt


[23] T E N S O R F L O W , T . Introducing TensorFlow Feature Columns [online]. 2017 [cit. 
2021-05-09]. Available at: https://developers.googleblog.com/2017/ll/introducing-
tensorflow-feature-columns.html. 

[24] T E N S O R F L O W , T . Dense Layer [online]. 2021 [cit. 2021-05-09]. Available at: 
https: //www. tensorf low.org/api_docs/python/tf /keras/layers/Dense?hl=f r. 

[25] T E N S O R F L O W , T . Introduction to Tensors [online]. 2021 [cit. 2021-05-09]. Available 
at: https : //www.tensorf low.org/guide/tensor. 

[26] T E N S O R F L O W , T . Models and layers [online]. 2021 [cit. 2021-05-09]. Available at: 
https: //www.tensorf low.org/j s/guide/models_and_layers. 

[27] T E N S O R F L O W , T . Text Vectorization [online]. 2021 [cit. 2021-05-09]. Available at: 
https: //www.tensorf low.org/api_docs/python/tf/keras/layers/experimental/ 
preprocessing/TextVectorization. 

38 

https://developers.googleblog.com/2017/ll/introducing-
http://low.org/api_docs/python/tf
http://www.tensorf
http://low.org/guide/tensor
http://www.tensorf
http://low.org/
http://www.tensorf
http://low.org/api_docs/python/tf

