

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

CHARAKTERIZACE KÓDU PRO AUTOMATICKÉ
GENEROVÁNÍ UŽIVATELSKÉHO ROZHRANÍ
CODE CHARACTERIZATION FOR AUTOMATED USER INTERFACE CREATION

DOKTORSKÁ PRÁCE
DOCTORAL THESIS

AUTOR PRÁCE ING. JAROSLAV KADLEC
AUTHOR

VEDOUCÍ PRÁCE DOC. DR. ING. PAVEL ZEMČÍK
SUPERVISOR

BRNO 2010

Declaration

I declare that this dissertation thesis is my original work and that I have written it under

supervision of Doc.Dr.Ing. Pavel Zemčík. All sources and literature that I have used during

elaboration of the thesis are correctly cited with complete reference to the corresponding

sources.

Acknowledgments

This work has been supported by research grant User Interface with Hierarchical Structures

from FRVŠ MŠMT, Augmented Multi-party Interaction from EU-HLT. I would like to thank to

Doc.Dr.Ing. Pavel Zemčík for his lead, and my family and colleagues from VR Group a.s. for

their support.

Abstract

This work presents novel approach to automation of user interface creation. A taxonomy

based on data characterization was adopted and new taxonomy for code characterization is

proposed. Taxonomy points most important aspects of data and code so that it can be used in

a process of automated user interface creation. The taxonomy is platform independent and can

be stored as a metadata in the application file or in a separate external file. A process of

automated user interface creation based on the taxonomy is proposed and individual parts of

the process are described in more detail. Presented taxonomy and process of user interface

generation are demonstrated on examples.

Key Words

user interface, taxonomy, data characterization, code characterization, automation, automated

user interface creation, evaluation, layout design

Contents

1 Introduction .. 6

2 User interface architectures .. 8

2.1 User Interface Design .. 9

2.2 Human Perception ... 11

2.3 Human Actions .. 15

2.4 Human Interface Devices .. 17

2.5 Design Factors ... 27

2.6 Requirements for User Interface .. 31

3 User interface development ... 34

3.1 User Interface Creation Tools .. 34

3.2 Choosing “interaction elements” ... 43

3.3 Evaluation .. 46

4 User interface design automation ... 49

4.1 Separating user interface ... 49

4.2 Task models ... 51

4.3 User interface management systems .. 55

5 Annotation and description ... 59

5.1 User interface description .. 59

5.2 Data characterization ... 60

5.3 Code characterization .. 61

6 Characterization ... 63

6.1 Data characterization ... 63

6.2 Code characterization .. 74

7 Generating user interface from characterized code .. 88

7.1 User context analysis ... 89

7.2 Parsing code characteristics ... 91

7.3 User interface creation process .. 94

7.4 Constraints ... 108

7.5 Target group of applications .. 109

8 Conclusions ... 111

9 Bibliography ... 112

10 Appendix – Simple Media Player Example ... 123

11 Appendix – A Regulator Example .. 130

12 Appendix – A Radio Example ... 136

6

1 Introduction

During last few decades, humankind discovered lots of fascinating objects and developed

millions of inventions – so much that it is much more that humankind was able to invent

during its past evolution. New things created from these inventions and ideas are filling

human lives and are getting more and more complex and complicated, and sometimes it gets

so complex and complicated that it is almost impossible to learn how all these great and

fascinating things work. One of the most fascinating objects that become common in

everyday lives are – computers. Computers were, at first, huge machines covering several

floors of building, used by scientist to help them compute very complex and difficult tasks. As

the time passed, computers got faster, smaller and finally they are on desks in offices, in cell

phones, TVs, watches and, in fact, they are in almost every manmade device that is powered

by batteries or electricity.

Computers are very sophisticated devices that can be used for various tasks. However

sophisticated devices require also sophisticated control, which is not trivial. For this reason,

parts of computer, such as display, mouse or keyboard, have been designed to ease the

communication between user and his computer. Because communication between computer

and user is two-way, called interaction, part of the computer that is designed for such

interaction is called user interface. This means it is not only hardware itself, but also a part of

software – windows and buttons, texts on the display, etc. thanks to which the user is able to

specify his requests for the task and computer can help him finish it. Without proper user

interface, user would not be able of any interaction with computer and thus unable to finish

any requested task.

That is why a main goal of this work was to find aspects that can affect design of user

interface on computer devices. Because of large number of devices with varying user

interface designs, this work focuses on aspects ranging from device‟s physical parameters to

human context and preferences. This thesis explores needs for automated user interface

design, why it can be useful and what are main advantages and disadvantages of such design.

The results of this thesis have implications for future development of automated user interface

design.

Chapter 2 – User interface architectures – describes history of user interfaces, basics of human

7

perception and how it can be used in human-computer interaction. Chapter 3 – User interface

development – describes often used user interface creation tools and describes some

principles of user interface design – choosing and using basic user interface elements and

evaluation methods of user interface usability. Chapter 4 – User interface design automation –

discusses automation of user interface creation by defining requirements needed to

automatically create user interface and approaches used to generate them. Chapter 5 –

Annotation and description – describes approaches based on user interface or data description

and suggests novel approach featuring data and code description. Chapter 6 – Characterization

- describes new approach based on the data and code characterization. All main parts of the

proposed taxonomy are discussed here. Chapter 7 – Generating a user interface from

characterized code – describes process that is using the proposed taxonomy to automatically

generate user interface and presents examples of how each part of the process. Chapter 8 –

Conclusion – points out most important aspects of the work and suggests possible future

research.

8

2 User interface architectures

Evolution of technologies in computer systems in last decade has shown that device without

properly designed and understandable user interface is rejected by the user community.

Despite of the fact that device can implement hundreds of features that competitors are unable

to implement to theirs devices. An example can be the Apple iPod Shuffle [1] – portable

digital audio player with embedded memory card and limited functions – this player has

become one of the most successfully sold portable digital audio players. Although there are

digital audio players with much more functions and larger memory – simple design and ease

of use of iPod Shuffle has become a major reason why people use this device and not the

other [2][3]. iPod Shuffle has very simple user interface with only few buttons on its body that

care about basic functions such as playing, stopping and selecting previous or next digital

audio file. Even without any display that could show colorful information we can speak about

user interface. It can be said that user interface is a part of device that is used for human to

read status of the device and control its functions, and part of device that is used by the device

to report its status and offer its functions to user [4]. An example of simple user interface can

be a hammer (see Figure 2.1). Hammer is a device that does not contain any electrical part but

consists of two main parts – a wooden helve which is used to control the iron head that is on

the end of the helve.

Figure 2.1: Hammer [5]

The user interface of a hammer is very simple and most users can use it quite effectively to

9

deliver the blows to the intended target. From this example it is clear that, although it might

not seem so, world is full of various devices that have certain user interface thanks which it is

possible to control its behavior. Following chapters summarize current state or the art in the

user interfaces relevant for this work.

2.1 User Interface Design

A hammer is one of the simplest devices used by humans. It can be said that a hammer is very

successful product because it is being used by people all over the world. It is also possible to

say that its user interface has been designed so well that people like it and it also might be one

of the reasons why it‟s still being used. It is also possible to ask a question: “What is good

user interface?” There are millions of devices used among the people and the definition of

good user interface is still unknown. Generally, good user interface is such that time

necessary to learn how to use the device is short and that using the device is somehow

comfortable [6]. However it is quite difficult to design good user interface because people

have different requests on device controls. For instance, when thinking about a hammer –

there should be hammer with big helve for the people with big hands, small for the people

with small hands that everybody is able to hold the hammer tight in his hand. When a person

with a small hand will work with a hammer with a huge helve, it will most probably say that

the hammer is not really good as it does not fit well in his hand. This means that user interface

is not good at all for the person. On the contrary, a person with a large hand having hammer

with a huge helve will be satisfied with the hammer and in this case the user interface will be

good for the person. It is obvious that there is no phrase like: “This user interface is greater

than 70, so it is good”. There is no simple value that would distinguish between good and bad

user interface. This can be said about diesel motors – the greater is power of the motor, the

better the motor is – but not about the user interfaces.

User interface design is very difficult task and not always leads to successful design. User

interface designers are using rules [6][7] that help them in decisions how a user interface

should work. On the other hand, situation can be complicated by artists, who create unique

and visually stunning interfaces which are sometimes hardly usable. That is why designers of

user interface split design into several steps that are cycled as long as users, testing the

interface, are satisfied [6][7][8]. For instance, user interface of a hypothetic device will differ

for people with various knowledge of its application. Professionals with deep knowledge of

its application will require possibility to set each parameter separately (to have complete

10

control over behavior of the device), however common user requests easy handling and any

complicated settings of device before its use will result in device‟s uselessness. It is obvious

that if user interface design is difficult for a human designer, it will be almost impossible for

artificial intelligence to create high quality user interface without knowledge of user context

and his requirements.

User interfaces, designed for computer applications, are usually built in integrated

environments with tools and built-in functions that help designers to simplify task of user

interface design [9]. Designer can create forms and place interface elements such as buttons

and textboxes and assign them various actions (e.g. on button click save document). Design of

user interface for computer application is even more difficult than user interface design of a

real world device. It is because computer application is somewhat virtual, abstract, and

sometimes much more complicated than a real world device‟s interface. Creation of user

interfaces for computer applications is also complicated by fact, that development of

application algorithms take some time and that is why not all requirements on user input are

known at design time. Such complications lead in iterative user interface design, sometimes

leading in major user interface redesign [6][7][8]. This is the situation where automated user

interface design should simplify task of development application algorithms. Artificial

intelligence user interface designer could create simple, yet usable, user interface that could

help develop and test algorithms during development stage and later, in the final stage, a high

quality interface could be created based on experiences with user interface created by artificial

intelligence. This all could simplify task of frequent user interface changes every time an

algorithm changes and thus speed up application development. That is why it is important to

support automated user interface designer by additional information that would help with user

interface design and create usable interface based on user‟s preferences.

Automatically created user interfaces could be also used to simplify development of cross-

platform applications [10][11]. Application would only contain necessary algorithms to

provide some functionality, thus reducing size of application, and artificial intelligence user

interface designer would create user interface that suits best to computer or virtually any other

device where application would be ran on. Devices such as PDA‟s, mobile phones, and tablets

have different user input capabilities and that is why it is impossible to create single user

interface that would fit all of these various devices. It would change its layout for devices with

small resolution display, change sizes of control elements to fit touch-screens that are

11

controlled by human fingers, etc. To understand possibilities of control of user interface, it is

very important to understand human perception, its limitations and benefits.

2.2 Human Perception

Children at basic school are usually taught that there are five senses – vision, hearing, taste,

smell, and touch. Based on definition of sense it is generally agreed, that there are at least

seven senses (hearing and balance, vision, touch and pain, and smell and taste) [12]. Other

definitions of sense imply from nine to twenty senses [13] which are not containing senses

observed in other organisms. Senses are only way how human can get information about his

environment and also get information from various devices. Some of the senses are used very

often (balance, vision, hearing, and touch) and some less frequently (pain, smell, and taste).

Computers of these days most usually use for human-computer interaction displays to visually

show information – employ human vision [7], sounds to alert important events – employ

human hearing [7], and keyboard and positioning devices such as mouse or pen for data input

– employ human touch [7]. There are also known other input output possibilities such as

MindDrive [14] using brain waves, speech recognition [15] using speech, or Braille displays

using touch [16]. All these devices are not widely used because their use is most usually

limited for certain applications. Understanding to each of basic sensors of human body is

important for future user interface design – sensors have different capabilities and features,

which require different interaction models.

2.2.1 Vision

Vision is one of the most important human senses [17]. Most information acquired from

surrounding area for most healthy people is thanks to vision. Organ of vision is eye. Simplest

eyes are able to detect light or dark areas, while complex eyes can distinguish shapes, and

colors. Human, as well as most of other animals, has two eyes which field of view overlap to

allow better depth perception. Structure of human eye is described on Figure 2.2: Human eye.

Function of the eye is to transform light into neural signals that can be processed by brain.

Image (light) passes through cornea and pupil onto lens. Pupil is adjusted using iris to

maintain constant level of light entering the eye. Too much light entering in could damage the

eye, too little light causes bad vision. Lens and cornea is used to focus image onto retina

which contains rods, cone cells and associated neurons to transform image into neural signals

which are processed by brain. The fovea, placed directly behind lens, consists of mostly

densely placed cone cells allowing highly detailed central vision. Its requirement for high

12

light intensity does cause problems when looking at dim objects because the light from these

objects does not have enough intensity to stimulate cone cells. Rods, on the other hand, do not

require high light intensities and allow vision in the dark. Rods and cone cells allow vision in

both light and dark places.

Figure 2.2: Human eye [18]

Human eye is great source of information for the brain. Retinal bandwidth is over 10 millions

of bits per second [19]. It is almost 70% of all information that comes from the eyes to the

brain. All information is then processed in the brain. The brain does heavy processing on

acquired data and tends to find solution in known issues he detects. This tendency sometimes

lead in various misinterpretations thanks to which human can think he sees something

different that there really is. As an example, The Hermann Grid illusion [20] can be used,

where all intersections appear to be grey although they are white.

Most of the user interfaces display information that can be visualized because human can get

most of the information at a time using vision. This, however, requires that eye has focus on

information it wants to collect which means it cannot focus on other things. This situation can

be dangerous in various situations (e.g. driving a car) but in most cases (work in office) it is

13

fine. For this reason, vision is number one for computer-human interaction.

2.2.2 Hearing

Another important human sense is hearing. Organ for hearing is ear. Ear is capable of hearing

sounds of various frequencies – from 20 Hz to 22 kHz, and detect small differences in sound

intensity (loudness) and sound frequency (pitch) [21]. Human has two ears placed on opposite

side of the head, allowing location of sound direction and distance. Structure of human ear is

described on Figure 2.3. The outer part of ear – pinna – collects surrounding sound, which is

amplified in auditory canal. Amplified sound pressure is transferred to inner ear using

tympanic membrane, malleus, incus and stapes, which presses onto fluid filled ducts of the

cochlea. The fluid inside moves hair cells (mechanoreceptors) that emit sound information to

brain. One part of inner ear is also dedicated for sensing balance and position [21].

Figure 2.3: Human ear [22]

Although hearing is in common life second most used information source (people exchange

information when talking), it is used in computer-human interaction rarely [7]. Main problem

of hearing is that its input is serial and when compared to vision, equivalent information taken

using hearing would take much longer than using vision. Hearing is most usually used to

report alerts or requested information in specific applications where user has strong visual

14

attention, or is blind, and cannot get requested information visually [7][23].

2.2.3 Touch

Touch is the sense of pressure perception. This sense is most important for human-computer

interaction [24]. Although it might not seem so, blind or deaf people can interact with their

surrounding environment and have no problem holding any object. People that lose pressure

perception (e.g. by an accident) cannot determine if they touched an object, or hold an object,

or how heavy an object is [24]. All these actions must be visually controlled and request

extreme caution, because of danger of crushing or dropping held objects.

Touch is important for human input and it can be used to detect computer-human interaction.

Interaction performing high-fidelity sensations to feel the grain, texture, or material against

human skin or nervous system is called tactile feedback [25]. Interaction applying force to

parts of human body or entire body is called force feedback [26]. Interaction performing low-

fidelity vibrations or shakes is called rumble feedback [27].

Human-computer interaction is, in most cases, limited to data input using keyboard, mouse, or

other pointing device. People with limited touch sense cannot control computers easily and

effectively [24] and in certain situations may require special user interfaces (e.g. based on

voice commands), which make the control less problematic. On the other hand, feedback

stimulating touch senses can help in many applications requiring knowledge of objects mass

or material and increase the immersion in entertainment applications. Also, besides hearing,

touch is another way of communication with devices for blind people.

2.2.4 Other senses

Other senses such as pain, smell and taste are important in everyday life, but computer

interaction does not use these senses much [28]. Using taste is rather problematic – user

interface would be limited for individual person because of hygienic reasons, and also amount

of information that taste receptors can carry is not wide enough to be widely used. Pain brings

unpleasant feelings for most of people and that is also reason why it is not used for computer-

human interaction. Smell is sometimes used in entertainment industry to increase immersion

in 3D cinemas [29]. Balance is, as well as smell, used in entertainment industry where balance

sensing can increase immersion in 3D cinemas or simulations (aircraft flight, roller coaster

movie etc.) [30].

15

2.2.5 Memory

Although memory is not a sense, it plays its role in the perception. Every signal from

receptors is processed by brain and stored in memory. Processing is affected by memory

contents. Brain, when processing signals, is using stored information (also called experience)

to obtain best results. For this purposes, there are various types of memory. Sensor memory

[31] contains information that is present on sensors. Short-term memory [31] contains

temporal data. It is very quick and its capacity is limited. Information that is important is after

some period of time moved to long-term memory. Long-term memory [31] has large capacity

and can store information for very long time. Accessing long-term memory is not as quick as

in case of short-term memory.

Information is stored in memory in packages that are called chunks [31]. Chunk can contain

single letter, whole word, sentence or image – this all is based on experiences of individual

human. When designing user interface it is important not to overload user with information,

because short-term memory can contain only limited number of chunks [32]. Information

should be divided to logical groups which can user easily locate and remember.

2.3 Human Actions

To create user interfaces, it is important to understand possibilities of information output – an

input for user interface of a computer. Actions can be divided into several groups – motion,

speech, and mind.

2.3.1 Motion

Motion is one of the typical actions that a human can do. Human can move various parts of

his body. These moves can be detected and translated to language that is understandable by

computer. Motion detection can be done mechanically or by software [33]. Mechanical

detection requests user to directly interact with certain part of human interface device.

Software detection is using computer vision [33] to recognize movement and its parameters.

Mechanical detection is more accurate but limits free movement, while software detection has

no movement restrictions and higher error rate of wrong motion detection. One of typical

motion detector is computer keyboard [4] which is translating finger moves to appropriate

letters so that it is possible to write text on a computer. Another motion detector is computer

mouse [4]. Mouse tracks hand movement in two directions and computer can use movement

16

detection for navigation and other purposes. Similar is gaze movement [34] tracking that is

used especially for movement-limited people that cannot use hands for pointing. Instead, eye-

gaze movement is tracked and used for pointing [34]. Another movement application is

gesture recognition [35]. Hand or body gestures are recognized and its meaning is interpreted.

Such application can be useful in situations, when human cannot control computer directly

but can interpret gestures or human body motion and translate it into commands.

2.3.2 Speech and Sound

Speech is another way of communication with computer. User can give speech commands to

computer, which recognizes command and executes it [36]. Speech recognition [37] is

difficult because speech differs not only by spoken language but even among people speaking

same language. Speech recognition is complicated by surrounding noise and can cause a

possible security risk because speech commands can be ordered from any source of audio

signal. That is why speech commands are used only in several applications that include

applications for blind people.

2.3.3 “Mind Control”

Under the “mind-control” is hidden detection of electrical and chemical changes in human

body. This approach is not very common. Devices that detect only changes of electricity on

skin [14] are not sophisticated enough to supply information for complex computer

interaction and are most usually used for entertainment purposes only where are its

capabilities sufficient. Devices combining multiple bio-signals [38] have better results but are

still considered for entertainment level. Devices that are directly connected to neural system

using brain-computer interface are complicated, and still in the phase of development, but

allow control of complex object such as robotic arm, lights, TV [39].

It is important to understand that actions can be combined to produce very effective

communication. User input can consist of keyboard input for text data and mouse input for

two-dimensional data. Other devices can be used to increase communication performance.

However various devices differ with its functionality and cost, which is most usually

important for massive expansion. Devices detecting gaze movement, body posture and gesture

recognition are expensive and that is one of the reasons why it is used only on specialized

workplaces.

17

2.4 Human Interface Devices

Human Interface Devices (HID) are used for data exchange between human and device,

typically computer [4]. Interface devices can be divided to two groups – input and output

devices [4]. Input devices are used for entering data to device [4] while output devices are

used to present data from device [4]. Important feature of both groups of devices is that both

input and output data are in a format that is understandable by user (human) easily.

2.4.1 Input Devices

One of the simplest and widely used electrical input devices was a telegraph pad designed for

generating pulses that represented Morse code. User was pressing a key that generated pulses

which, based on the combination of press length, represented appropriate code. Input devices

for computers work in a similar manner – user is operating input device, which is

transforming his actions into electrical signals that are interpreted by a computer. How is

signal interpreted depends on what input device is used. There are several groups of distinct

input devices that are currently used with computers. Following paragraphs describe groups of

input devices that are relevant for this work.

Pointing Devices

Requirements on pointing devices were caused by growing popularity of graphical user

interfaces which required new, more effective ways, of interaction. Pointing device is a

hardware allowing user to input spatial data to a computer [7]. Movement of the device is

usually reflected on a computer display by movements of a pointer (typically cursor) and

other visual changes. Most of the actions in current user environments (which are in most

cases graphical) are controlled by pointer because it is more effective than most other

common input devices. For example moving and clicking by pointing device is much faster

than writing command for opening desired document, selecting object, copying or moving

objects etc. Selection of objects of interest is one of the most often performed actions and is

much simpler with pointing device than using textual or voice commands.

Well known and widely used pointing device is mouse [7][40] (see Figure 2.4). User is

moving hand-held mouse across the surface and thus specifies position of the cursor on the

screen. Mouse movement is detected using small ball [40] (called ball mouse), or optic sensor

with high resolution [40], placed in the bottom part of the mouse. Mouse can be also equipped

with several buttons [40] which can be pressed and thus call various actions. Typically, there

18

are two buttons for primary and secondary actions and roller for faster document browsing.

Pointing using mouse is very effective and easy but requires certain skill.

Figure 2.4: Logitech Performance Mouse MX [41]

Novice users move mouse slowly and their accuracy when pointing is small (but increases

very fast when mouse is used regularly). Because mouse is used with almost every desktop

computer, most of the users are familiar with the mouse and that is why mouse has become a

standard pointing device. However mouse requires quite great amount of flat surface to move

on. If there is a little space, user might be unable to point at all objects of his interest. If

surface is not flat, moving mouse is difficult and sensor detects false moves, which results in

cursor hopping.

Besides mouse there are several interesting pointing devices that are not that widely used –

trackball [7], eye-tracker [34], data glove [7], and pen [7]. Trackball consists of ball which

direction of rotation is transformed to a pointer movement. Eye-trackers detect eye gaze

movement which is transformed to pointer position. Data glove transforms hand gestures and

movement to pointer movement. Pen is a device that is used to direct pointing on computer

display or special desk (called tablet). Pen detects position on tablet or screen which is then

reflected to cursor. Trackballs or pens are specifically designed for portable devices and that

is why they require only small space for its operation. Eye-trackers and data gloves are quite

19

expensive pieces of hardware and are used in special cases such as virtual or augmented

reality applications, applications for handicapped or disabled people etc.

Keyboard Devices

Computer keyboard is a device modeled after typewriter keyboard [42]. Computer keyboard,

as well as typewriter keyboard, is designed for input of text and to control operation of

computer. First electromechanical keyboards were used to input data onto tapes (for feeding

the computer data) [43]. Design of most commonly used keyboards is QWERTY (it has been

extended and contains several new keys to support multimedia and other functions) despite of

its low efficiency [44]. Efficiency of alphanumeric writing on QWERTY keyboard is about

70 words per minute [45](also called wpm), and when compared to 34 wpm for handwriting

[46] or 250-300 wpm for speaking [47], computer keyboard is most effective device with

direct input (speech requires further recognition). Besides traditional key layout of QWERTY

keyboard there are other key layouts that are designed with means of higher writing

efficiency. Dvorak keyboard [44] has different key layout to increase writing efficiency (word

record of Barbara Blackburn from 2005 is 212 wpm [48]). Maltron keyboards [49] have

completely different, ergonomic design (curved surface to reduce finger traveling) to reduce

wrist pain and other injuries, invented in 1970s [49].

Figure 2.5: Microsoft Natural Ergonomic Keyboard 7000 with ergonomic 3D design [50]

Although using keyboards is very easy (most users can type using one, two, or more fingers),

fast typing with all ten fingers is very difficult. Learning how to type takes some time, during

20

which user learns layout of the keyboard. This time is followed by several months of

increasing typing speed and reducing number of mistakes. It is obvious that users using

keyboard occasionally cannot use keyboard effectively and thus their data input frequency is

very slow [51]. Because data input from keyboard is the simplest when compared to other

devices (minimal hardware requirements, key press easily interpretable), and most users can

easily recognize keyboards purpose, it is still considered to be number one input device.

Keyboard requires lots of space because keys must have minimal size and spacing to fit

human fingers. This is the reason why keyboards with reduced size and number of keys were

invented for small or portable devices. One of the most frequently used layouts is matrix of

four rows and three columns, where each key represents three letters. When user wants to

write certain letter, he must find appropriate key and press the key exactly as many times, as

is position of selected letter on the key. Writing on such keyboard using this technique (called

multi-tap [51]) is not very effective [51] and for this purpose were proposed various

predictive technologies such as T9 (by Tegic Communication) [51] or iTap (by Motorola)

[51] which speeds up writing of common words but reduces writing speed in case of special

words or abbreviations.

Gaming Devices

Gaming devices are specific devices that have been developed to improve immersion from

game or simulation. An example of gaming device can be joystick [4], which was originally

designed to control aircraft‟s ailerons and elevators (see Figure 2.6).

Figure 2.6: Thrustmaster Hotas Cougar [52]

21

Because joystick allows precise control in several axes, it is not used only in airplanes and

flight simulators but also in other applications where precise control is required (e.g.

elevators, cranes). Gaming devices have been, however, developed for entertainment purposes

and its design follows requirements of gamers. Gaming devices have reasonable amount of

buttons that cover important actions and axis controls to enable movement or view. Gaming

devices can be used to control various devices which handling can be reduced to fit gaming

device such as gamepad [4]. Car can be controlled by steering wheel and several buttons to

start engines and switch gear etc. Gaming devices are not widely used for common tasks but

their functionality can be used to control general devices.

Video Input Devices

Video input captures image from digital camera, web camera (see Figure 2.7), and scanner

and other, video capturing enabled, devices.

Figure 2.7: Logitech Webcam C300 web camera [53]

Video input can be used to capture and transmit video in network conferences [4] so that

everybody can see each other, to capture or scan images or documents for their further

editing, to recognize captured video and its contents. Recognizing captured content however

requires image processing (requiring high performance hardware) and this is also reason why

video input devices play role only in specific applications. These applications cover virtual

conferences, where person image is transferred to every participant so that participants can

see and hear each other, identification to recognize certain person [54] or object in the scene,

gesture recognition [4][54] and others. Gesture recognition can be used in entertainment (in

22

games where player controls game using special moves) [55], sport (detect wrong movements

decreasing performance) [56] and industry. Although video input devices play small role in

user interface in these days, we can expect their increasing role in the future [57].

Audio Input Devices

Audio input devices, such as microphone (see. Figure 2.8), capture surrounding sounds.

Captured audio usually contains noises and background sounds. To eliminate unwanted noise

or background sounds, microphones with various directionality patters were developed [58].

Figure 2.8: Audio-Technica AT8015a shotgun microphone [59]

Audio input devices are most usually used (in the context of user interfaces) for speech

capturing but it can be used to capture any audio signal. Captured speech is filtered and

recognized by specialized software or hardware, which is transforming speech commands to a

computer commands [60]. Speech recognition requires lots of computational power and that is

why it is not suitable for every device, which does not have enough power for speech

recognition. Speech recognition can be implemented from simple keyword spotting [60] to

continuous speech recognition [60] depending on devices capabilities and user interface

requirements. Speech recognition is useful in situations where user cannot use his hands to

control other input devices (keyboard, mouse etc.) or is handicapped or disabled.

2.4.2 Output Devices

An output device is a piece of hardware that is used to present information to the user. There

are several ways how output devices present information. In these days, it is usuallz

information visualization, which is for most of the people the most effective way. Another

way of presenting information is audio that represent information by various sounds. All

presentation ways have its cons and pros and require from user different attention. Following

23

paragraphs describe groups of output devices that are relevant for this work.

Printers

Printers are one of the oldest output devices. First computers reported their status and

computed results in printed form on paper or punched cards [61]. First printers were capable

of printing text only. Latest printers can print text, graphics, or photographs with high image

and color quality. However printing is relatively slow process in the means of information

exchange when compared to other output devices in next paragraphs, and requires empty

medium (usually paper) onto which are output data printed.

Figure 2.9: Canon PIXMA iX5000 printer [62]

Controlling computer with help of printed information is not very comfortable and efficient

because user has to read current computer status that has been printed by printer, input

commands and wait for the printer to print new status and results. It is clear that such

interaction is not very fast and also it is not very comfortable. That is why other output

techniques have been invented and printers are used for printing documents and other data,

which is not used for human-computer interaction directly.

Monitors and Projectors

Visual display of text or graphics data is the most common form of output [7]. Visual output

is usually performed using computer monitor [63](also called display) or projector. First

monitors had no graphical capabilities and supported visualization of typed information (e.g.

MDA – Monochrome Display Adapter, see Figure 2.10) [63][64].

24

Figure 2.10: IBM PC 5150 with keyboard and green monochrome monitor [65]

Later monitors supported besides text mode also graphical modes and were capable of

drawing text and images on various resolutions [63]. Thanks to displays, it was possible to

show multiple lines of text with status information, help, and other information. Reading text

from monitor allows faster data searching (when compared to searching on pages of printed

medium), reducing amount of space for data storage (need to store printed medium). Later,

more advanced monitors were developed using high resolutions and color depths [63] (see

Figure 2.11).

Figure 2.11: Monitor Samsung XL2370 [66]

Monitors, when compared to printers, allow immediate information visualization of multiple

kinds of data on limited screen area. Printer can print changing information, but comparison

of changing information is problematic because it is on multiple pages of paper. Monitor can

change its image immediately and thus create animation. Thanks to animation and other

25

visualization techniques information can be faster identified and user can perform required

action to finish his tasks. Because human vision can accept huge amount of information [19]

(when compared to other senses), display is very good device for information output.

Figure 2.12: Devices with various screen sizes - cell phone Sony Ericsson C702 [67], netbook Asus EEE PC

T91 [68], smart phone Sony Ericsson Xperia X10 [69] (from left to right respectively)

Contemporary devices use displays of various sizes (see Figure 2.12) to inform user about its

state. Cell phones show battery status, contact list and much more information, which would

not be possible to show without display. However, reading status from display requires user‟s

attention. This can be problem in situation, when user must watch something else (driving).

That is why using displays is not always possible. In such cases, different information output

devices must be used.

Speaker & Headphone systems

Speakers [70] (see Figure 2.13, headphone systems contain small speakers) are used to

transform audio data to waves that can be detected by human ears.

Figure 2.13: Logitech Speaker System Z520 [71]

26

Computer can use speakers to play various sounds from speech to asterisks [7]. Sounds can be

used to inform user about certain events (reminders, alarms), or to notify about computer state

[7]. Using speakers is great in situations where user needs to be notified about certain events

but cannot watch regularly other output device (printer, monitor). Audio output is also good

for blind people who cannot watch computer monitor and sound is one of few input/output

possibilities. However, this type of data output is not suitable for loud environments because

sound from speakers could be nullified by environment sounds.

Other output devices

Other output devices are using touch as a medium [7]. Devices using tactile feedback [25],

force feedback [26], or rumble feedback [27] are generally used in entertainment or in

specialized simulation applications where tactile, force, or rumble feedback has sense. For

example in flight simulation, pilot needs the feedback from flight stick and other control

devices. Another kind of devices using touch is Braille displays [16] which are transforming

text into set of dots that can be read by people knowing Braille alphabet (see Figure 2.14).

Many of other devices are in experimental stage, or used in special applications, for example

for people with certain disabilities.

Figure 2.14: PAC Mate Portable Braille Display [72]

2.4.3 Input-Output Devices

In addition to devices, that are designed for input or output only, there is a kind of devices that

are capable both input and output. It means that some parts of such device are designed for

information input and other parts are designed for output. There are not many devices

combining these features. It is common to extend functionality of input device to reflect

certain event, such as incoming email by light indication. However, these output capabilities

are too limited for advanced interaction. A typical example of advanced hybrid input-output

device is touch-screen [4]. Touch-screen consists of touch sensitive layer, which can detect

pressure changes, and screen layer, which displays visual information [4]. Such combination

of input-output capabilities is excellent for devices which can benefit direct pointing on the

27

screen imagery (planning route in the car etc.). Such devices can also emulate almost any kind

of visual interface because screen can contain almost any image that can represent certain user

interface device. A typical example can be virtual keyboard. Screen can display image of

keyboard and user, aware of touch-screen capabilities, can directly type on screen as he would

type on a real keyboard. Touch-screen has also several cons - it can be easily scratched and

thus become unusable. Another example of virtual keyboard can be laser projected keyboard

[73] (see Figure 2.15). Output capability allows projection of any type of keyboard while

detecting key presses.

Figure 2.15: Virtual Laser Keyboard [73]

Other example is gaming devices stimulating touch sense using tactile, force or rumble

feedback. Generally can be said that it is possible to have device with various input and output

combinations.

2.5 Design Factors

Creation of user interface of any device or application always requires certain decisions about

what should the user interface be like. This chapter presents factors that should be considered

when creating user interface. This step is very important as it is defining restrictions and

requirements on user interface.

2.5.1 Factor I – Functions

One of the factors, considered when any application or device is being designed, is its

functions [6]. Functions of application or device always specify what will the application or

device do and how it will be done. The more functions it will have, the more complex user

interface will have to be designed because it will contain more user controls with more

complex options. The amount of functions can have influence on target group of users and

price. It‟s more likely that more functions will mean longer development time and thus

28

increased price. Also, number of functions and their complexity can attract or distract

customers (more in chapter 2.5.4). That is why number of functions and its complexity should

be chosen wisely.

2.5.2 Factor II – Price

Price is a key factor for every manufacturer and for every user. All parts of every device and

time spent by designer to create user interface consumes money. Materials of manufactured

device, its functions, complexity of user interface, target group of users – everything is

reflected in the final price. Expensive devices with high quality user interface will most

probably buy only rich users, professionals, or hobbyists which will use all the features of the

device. Common users will most probably look for devices with low price because they do

not want to spend lots of money for device with tons of features they will hardly ever use.

2.5.3 Factor III – Design & Look

Design and look of user interface is one of the key features of the most devices and

applications [6]. Although functionality and ease of use is important for most professionals,

common users also care about look and feel of their devices and its user interfaces [74][75].

Many people use devices that fit their lifestyle – it can be cell phone, MP3 player or other

device which should have their favorite colors, favorite shapes, or play favorite sounds. It is

clear that many of the common users notice new device and its user interface if the design is

appealing enough to fit their style and that is why such devices are often called stylish. Design

and look are the next aspect after function and price that can tell whether user buys new

device or not.

Some companies tend to spend on user interface design lots of resources to attract more

customers, sometimes even at the cost of worse user interface quality. Artists and designers

create impressive designs of cars, cell phones etc, but most of these designers usually does not

have enough knowledge about functions and requirements on final product and sometimes

happens that it is impossible to produce such product because it is too small to fit all required

parts etc. That is why it is important to precisely specify requirements on user interface or

device and then let designers create impressive designs that can attract potential customers (or

users).

29

2.5.4 Factor IV –Group of Target Users

Complexity and ease of use of user interface are opposite features [76] and it is almost

impossible to have complex, while easy to use, user interface [76]. That is why it is important

to consider requests of target users and their skills. This factor was often overlooked but

current devices, or applications, are becoming more and more tweaked for certain group of

users, some of them support multiple user interface layouts to satisfy wide group of users with

varying skills and requirements.

An application that can work with images can be an example. Basic functions cover opening,

saving, closing and some image editing. Now it is important to define target group of users to

which is this application designed for. Common users would appreciate tools that would allow

easy and fast editing of basic image properties such as brightness, contrast, gamma, hue,

saturation and some effects to reduce noise and red eyes effect. Skilled users need these

functions too but also might require precise parameter settings and advanced filters which

might be much more difficult to use but would provide better image processing with higher

quality. While skilled users are able to use such advanced tools, common users would most

probably try the tools but because of its complexity they switch to other application that will

be more understandable. Adobe Photoshop [77] is a typical example of image editing

application that is aimed to professionals. It has lots of advanced filters and tools that allow

image editing and filtering. Opposite the Adobe Photoshop, there are applications such as HP

Photosmart Essentials [78], which allow easy image printing and saving with only few

options. All of these applications are excellent – but only when used by appropriate group of

users. Most professionals would never use Photosmart Essentials because it does not have

advanced tools for image editing and would not be able to do all the tasks they need. Common

users would never use Photoshop because such simple function as image printing requires

more than selecting image and pressing “Print” button (and it is similar with other functions).

That is the reason why certain users tend to select devices, or applications, with certain level

of user interface complexity which reflect their skill in the area of application‟s functionality

or cover actions that can quickly finish their goals. User interfaces designed for general public

must be easy to use with commonly requested features. On the other hand most professionals

prefer complex user interfaces with high degree of customizability so that their work will be

of a high quality. However there is also category of user interfaces that are easy to use with

30

complex features, targeted to amateurs who request more than simple user interface and basic

functionality. These user interfaces are successful too although group of such user base is not

as wide as general public. And that is why user interfaces offering various degrees of

functionality are needed to fulfill demands of all users.

2.5.5 Factor V – Context

Another important factor that significantly affect user interface and whole human – computer

interaction is situation, in which will be user interface used [4][79]. It is obvious that situation

can affect the size of the used device and thus size of whole user interface. Device that is

primarily designed to be portable device should have limited size and light weight. Such

device cannot use full size input – output parts (such as display, or keyboard), but must have

size-limited parts that would fit size of the device. On the contrary, devices that are designed

for home use can be of greater sizes because devices for home usage can take more space than

portable devices and in some cases it is also their benefit (home theatre systems).

Situation is also element that can select input-output channels [79]. In most situations, visual

information output is the most effective one because human vision can process lots of

information in very short time. This, however, cannot be used in every situation. For example,

visual information is not suitable in situations, where user must take visual attention on

something important (such as driver has to watch the road). In this case, when driver has to

watch some kind of visual interface installed in his car, he has to watch important details that

are visualized on the device and thus stop watching the road. This could lead in an accident

and could be dangerous. Driver could crash into car in front of him because he did not notice

that car in front of him is slowing down. In such cases, it is more convenient to use other

output channels such as audio. Computer voice can inform driver about all important events

such as navigation, speed limits, distance from car in front of him and many others.

Information input to a device in a car is also problematic. Driver cannot input data using

keyboard because he has his hands on steering-wheel and releasing his hands from steering-

wheel could cause an accident too. That is why another input method should be selected, such

as touch-screen with several options on which driver could simply point by one of his fingers

and execute selected action or voice commands.

From example above it is clear that situation, in which will be interface primarily used, is

crucial for proper user interface design. This aspect can affect what input and output channels

31

will be used and how significant each channel will be and how large user interface can be for

easy handling and operation.

2.6 Requirements for User Interface

The full set of requirements for user interface should include all the technical requirements for

the system as well as the specific requirements that will ensure the user interface is easy to

use. Requirements are usually gathered from users by using various techniques such as

interviewing and observation. However many problems can arise when analyzing the

requirements. Potential problems cover small number of potential users, communication with

users with different levels of understanding of analyzed problem, or dislike of certain users to

support new system etc.

Identified requirements for user interface can be expressed in following terms [80]:

 learnability – the time and effort required to reach a specified level of use

performance, also described as ease of learning,

 throughput – the tasks accomplished by experienced users, the speed of task execution

and the errors made, also described as ease of use,

 flexibility – the extent to which the system can accommodate changes to the tasks and

environments beyond those first specified,

 attitude – the positive attitude engendered in users by the application.

These requirements were later transformed into five dimensions, referred to as five Es [81]:

effective, efficient, engaging, error tolerant and easy to learn.

2.6.1 Effective

Effectiveness is the completeness and accuracy with which users achieve specified goals [81].

It can be determined by checking if user‟s goals were done successfully and if his work is

done correctly. Effectiveness can be sometimes confused with efficiency, but they are not the

same. Efficiency identifies how quickly goal can be completed, while effectiveness identifies

how well is the goal done. Although it might seem that efficiency should be the first and

primary requirement, it is not always truth. For example, in interfaces of banking systems

(such as ATMs), effective use of the system – cash the correct amount of money, selecting the

right account, making a transfer correctly – are more important than gains in speed. This

assumes that the user interface designer has not created an annoying or too complex interface

32

in the name of effectiveness.

2.6.2 Efficient

Efficiency can be described as the speed (with accuracy) in which users can complete the

goals for which they use the product [81]. ISO 9241[82] defines efficiency as “resources

expended in relation to the accuracy and completeness with which users achieve goals” [82].

Efficiency metrics include the number of clicks or keystrokes required or the total „time on

task‟.

2.6.3 Engaging

An interface is engaging if it is pleasant and satisfying to use [81]. The most obvious element

of this characteristic is visual interfaces and their design – specifically the style of the visual

presentation, graphics images, animations, colors, use of sounds and other multimedia

elements – it is all part of user‟s immediate reaction. But there are also more subtle aspects of

the user interface that can affect how engaging it is. For example the text size, font, and

readability of the text can change a user‟s opinion to the interface, data and information

grouping can change user‟s opinion as well. Very important is the style of the interaction –

user can prefer, for example, textual menu system from abstract icon representation.

2.6.4 Error Tolerant

The goal of every application is to prevent errors from human-computer interaction. But

developers are only humans, and that is why applications are not perfect so errors may occur.

By error tolerant application is understood program, designed to prevent errors caused by

human-computer interaction, and to help user recover from any error that occurs [81].

2.6.5 Easy to Learn

One of the biggest objections to "usability" comes from people who fear that an easy to learn

application will be used to accomplish simple tasks, but which is not powerful enough for

long, sustained use [81]. A user interface that is easy to learn allows users to build on their

previous knowledge. This can include built-in instruction for difficult or advanced tasks,

tutorials, or knowledge bases which are critical to effective use.

The five Es can be used in a number of ways to produce a successful user interface. It is

important to keep in mind that requirements gathering for user interface is iterative and should

33

involve users. Typically, during requirements gathering some information is collected, which

is analyzed, negotiated to users, and then another round of requirements gathering takes place.

This cycle continues until all users are satisfied with requirements and project schedule starts

application development.

34

3 User interface development

User interface development is an iterative process and it is always long distance run. When all

necessary information and requests on required application (or device) are collected from

potential users, user interface designers start their work with communication with users,

defining most frequently used features and user interface requests. The collected information

is analyzed and initial version of user interface is negotiated to users, who supply designers

with their feedback on user interface satisfaction and remarks. Cycle with information

collecting and negotiation repeats as long as users are satisfied with presented user interface,

which might take long time. Sometimes it can happen that users may have very different

requests on user interface which is leading in several kinds of user interfaces designed for

each distinctive type of application usage. A typical example of such problem is well seen in

applications that are designed for common users but still want to enable full control for

advanced users. Such applications allow switching of user interface from basic or easy mode

to advanced or expert mode, which offers much more sophisticated controls that require

certain level of knowledge of advanced features. On the other hand, easy, or basic, mode

offers limited functionality that most usually work with pre-set values of advanced features

hidden in basic user interface mode.

3.1 User Interface Creation Tools

Each user interface consists of user interface components that have certain functionality. Early

operating systems however did not have libraries with standardized user interface elements

that could be used by software companies to create applications with high external

consistency. This problem caused that each company, producing software, had their own set

of user interface components, which were used in their software and thus software products

from each distinctive software companies had high consistency but applications from other

companies had completely different look and feel. This state was very problematic mainly for

common users who had to take courses for almost every application they were supposed to

use.

Fortunately, companies producing operating systems and user interface developers were

aware of this problem and started to supply user interface elements libraries that could be used

by general community of programmers to produce applications with similar look and feel with

same user interface elements that users know well. With well known user interface elements,

35

users could be able to expect functionality of known user interface elements and thus start to

use most applications intuitively. Since first user interface elements libraries were created,

many ways of using interface elements libraries were proposed – first tools for user interface

design were created. Following paragraphs discuss libraries and approaches, that are relevant

to this work.

3.1.1 API – Application Programming Interface

First APIs, created before an object oriented approaches became widely used, were libraries

of functions – called often as functional APIs [4]. Functions in these APIs were covering

commands for creation of basic user interface elements such as windows, buttons, labels or

textboxes, changing their general appearance like caption of the form or text of the button,

and controlling their general behavior. Getting status and user input information from user

interface elements is done in a message handler. Message handler is a function associated to

user interface element and is called every time user element changes its inner state. A typical

example of inner state change is when user clicks a button. Button‟s inner state changes from

“released” to “pressed”, appropriate event is raised and message handler function is called

with parameters which can be further processed. Every user interface element that is created

using functional APIs must have its message handler function. Without it, programmer is

unable to catch important events and status changes of the element and the element becomes

only visual part of the user interface. It is obvious that creating message handlers for almost

every object in the user interface is ineffective and also the code is not well readable. Message

handlers often contain huge switch statements with enumeration of processed events and their

handling. Some message handlers can spread wide to several screens of source code.

Functions used for creation of user interface elements or for user interface element state

change usually contain several parameters which are distinguishing type of user interface

element, its attributes and flags and many other features. Many of the features are unique for

each user interface element and programmer must know all the flags and enumerations to be

able to implement user interface control properly. Learning all the flags and enumerations is

difficult and most programmers prefer using documentation, learning only the most important

and most frequently used constants. Thanks to such constant and functional complexity,

functional APIs are difficult to learn, their using leads in low productivity (when compared to

modern tools for user interface design), requires good knowledge of programming and library

functions, every change in user interface requires significant changes in code. These cons led

36

later in an object oriented design of user interface APIs. Typical example of functional kind of

APIs is Windows API [83] (also known as Win API).

Object oriented user interface APIs are libraries, created with respect to object oriented

design, containing classes that represent each user interface element. Creation of an instance

of a class creates user interface element whose features and behavior can be changed using

properties, methods and events supported and implemented by instance of the user interface

element. Object oriented design of user interface can benefit from object oriented API and

directly inherit from objects that are available in the library of the API. Thanks to inheritance,

user interface code can be well structured and can be created much faster because most of the

code, required for user interface element creation and control, is already implemented in the

base classes of the API. Programmer or user interface designer can focus on their task more

than on user interface specific code, thus increase productivity and reduce time needed for

user interface prototyping. However object oriented APIs can suffer from high level

abstraction. User interface elements contained in the library contain many features and

functions, but thanks to inheritance and information hiding, programmer or user interface

designer sometimes could not be allowed to change specific features and behavior of desired

object which can be sometimes unacceptable. That is why object oriented APIs are sometimes

built over functional APIs and allow code mixing of object oriented API with functional API

to enable both high level and low level abstraction so that programmers have full control over

the features of the user interface and can choose whether to use high level approach or the low

level one. Common practice is to use high level approach and in specific cases call few low

level functions to alter the state of some objects at appropriate time. Typical example of high

level object oriented API for user interface creation is Windows Forms [84] (also known as

WinForms), available in .NET Framework [85] library. Objects in Windows Forms contain

property of handle, which can be used in Windows API to control certain specific features of

object that are in Windows Forms hidden by default.

Direct use of APIs for user interface programming involves writing source code in a source

code editor. This requires lots of time and is prone to errors (e.g. typing mistake).

3.1.2 Visual Programming

Visual programming [4] is completely different from standard programming using APIs.

Programmer or user interface designer, who spend hours in integrated development

37

environment (IDE) [86], does not code user interface in a source code editor (as it was typical

in the case of direct use of API), but drags components of user interface in a special part of

IDE designed for graphical user interface construction. Most modern IDEs are equipped with

various tools to simplify application development and graphical user interface construction

tool is one of them.

Figure 3.1 Microsoft Visual Studio 2005 IDE

Most of the graphical user interface construction tools consist of several windows that speed

up and simplify design. Most important window is usually design window showing design

and layout of user interface elements. Thanks to design window, user interface designer can

see final look of created user interface component, change layout and properties of added user

interface elements and modify the behavior of the user interface component. User interface

elements are added to design window from a list of available user interface elements, also

called toolbox. Toolbox contains user interface elements that can be used in the user interface

design. All elements contained in the toolbox are usually divided into several logical

categories (containers for panels and group boxes, menus for menu items etc.) to speed up

user interface element lookup. Placing of new user interface elements from the toolbox is, in

38

the mind of visual programming, dragging selected user interface element to design window

and dropping on its place. This approach is very fast and simple user interface components,

dialogs, or windows can be designed in a short time.

Third common window in a graphical user interface construction tools is usually so called

properties window. Properties window is used to alter default behavior and properties of user

interface elements added to designer window. Properties of selected user interface element,

such as color, background, fonts and others, are displayed in properties window and can be

easily modified. Events and behavior of selected user interface element can be modified too

by specifying some event or behavior handler. These handlers can be implemented in code

editor by designing person or by another programmer depending on coding skills of the

designing person.

Although visual programming is much faster than direct programming using functional API

calls, there are still several drawbacks. The first problem is choosing the right API. Most of

the graphical user interface (GUI) construction tools are designed to work with certain user

interface API. For example, Microsoft Visual Studio 2005 [87] supports Windows Forms [84]

and Microsoft Foundation Classes (also known as MFC) [88]. Other IDE support other APIs,

some of them more than one and there is also community of programmers that are trying to

create IDE which would support virtually any user interface API. Another thing is that visual

programming is, based on added elements in the designer window, generating application

code that is later modified by programmers who are implementing events and behaviors of the

created user interface elements. Application code that is modified by developers can be

difficult to interpret by designer window and additional modifications or additions of user

interface elements can lead into several problems, when code generator is unable to add or

modify content of design window or visually reconstruct user interface from the source code.

Reason can be mistake in application code caused by developer or application code

complexity.

3.1.3 Scripting Languages

Scripting languages are programming languages that are stored in textual, readable, form and

are interpreted during execution [89]. Main benefit of scripting languages is that it can be

modified by any user at any time so that anyone has full control over the application and can

extend its functionality or correct possible errors. However programming in scripting

39

languages require good knowledge of the script keywords and libraries because most of the

scripting languages do not come with source code editor, but rather use simple text editing

software for the purpose of programming. That is why beginners often use manuals because

text editors do not highlight possible typing errors. Typical example of scripting language is

TCL/TK [90], Perl [91], PHP [92] and other.

TCL/TK is scripting language that has graphical user interface toolkit (called TK) allowing

creation of user interface with automated layout techniques. Using TK, it is possible to create

instances of various user interface elements and define only parent container of the created

user interface element (for example, see Figure 3.2). TK interprets during execution script

commands and creates windows and dialogues from the script automatically and selects exact

positions and sizes of user interface elements. Although TCL/TK is powerful scripting

language that could be used in the process of automated user interface generation, TK

contains only few basic user interface elements.

Figure 3.2 TCL/TK script showing listbox with numbers

package require Tk

set w .states

catch {destroy $w}

toplevel $w

wm title $w "Listbox Demonstration"

wm iconname $w "listbox"

positionWindow $w

label $w.msg -font $font -wraplength 4i -justify left -text "A listbox

containing items."

pack $w.msg -side top

frame $w.frame -borderwidth .5c

pack $w.frame -side top -expand yes -fill y

scrollbar $w.frame.scroll -command "$w.frame.list yview"

listbox $w.frame.list -yscroll "$w.frame.scroll set" -setgrid 1 -height

12

pack $w.frame.scroll -side right -fill y

pack $w.frame.list -side left -expand 1 -fill both

$w.frame.list insert 0 "One" "Two" "Three" "Four" "Five

40

3.1.4 Markup Languages

A markup languages [93] used for description and rendering of graphical user interface are

called user interface markup languages [4]. Main goal of these languages is to simplify and

reduce work needed to develop and design user interface. These languages allow description

of user interface in declarative form (most usually in a text form) and abstract it. Instead of

specifying location and look of the user interface elements they rather define what elements

will be used on what data and how they should behave. Thanks to abstraction, same user

interface can be used on various platforms with various capabilities. User interfaces, defined

with user interface markup languages, can be used by platforms with graphical output to show

graphical user interface, platforms with audio output to report information in audible form,

platforms with audio input to receive input commands using speech etc.

Huge amount of different capabilities is the main problem of languages that tend to be as

much general and universal as possible. Although this universality and versatility is not bad in

the sense of platform portability, however it is also problematic for most of universal user

interface markup languages. That is also the reason why there are domain-specific markup

languages attempting to describe user interface for certain, or limited amount of, domains.

These languages do most usually their jobs better but they are less flexible.

To enable platform portability, it is also important to have compiler that would allow

connection between interface and non-interface code. Situation gets even more complicated

when porting on various operating systems, where a need for special compilers that are aware

of capabilities of the target platform exists. Compiler must select appropriate user interface

elements, select optimal input (keyboard, speech) and output (audible, graphics) method,

generate user interface, connect generated user interface with application system code and

make all this working together. For this purpose, two major types of frameworks were

developed – compilers and interpreters. Compilers to native code compile system and

interface code to one single package that is directly usable on target platform which is native

for the package. This concept does not require any additional libraries or frameworks on the

side of target platform. However there is need for specialized compilers that support each

distinctive target platform. Also single package is not portable besides its target platform to

another platform and there is need for many various packages for various target platforms.

41

Interpreters compile system and interface code to one single package that is not in the native

code but in some kind of intermediate code. Package is target independent and can be ran on

virtually any platform that has installed interpret for the intermediate code. This intermediate

code is interpreted on the target platform and creates user interface based on platform

capabilities so that it is suitable for the platform.

It is obvious that both concepts have their cons and pros. While there is need for multiple

distinctive compilers for various platforms, interpreters require multiple framework

implementations for each distinctive platform.

UIML – User Interface Markup Language

The pioneer in user interface markup languages is certainly UIML [94][95]. UIML is an XML

[96] language that is used to define the actual interface elements. It defines location, design of

controls, user interface structure, events, data and styles to allow user interface displaying on

various platforms.

Figure 3.3 UIML code example

Because this language is well extensible it allows description of user interface technologies

<UIML>

<HEAD>

 <AUTHOR>Jaroslav Kadlec</AUTHOR>

 <VERSION>1.0</VERSION>

</HEAD>

<APP CLASS="App" NAME="DialogApp">

 <GROUP CLASS="Dialog" NAME="PrintFinishedDialog">

 <ELEM CLASS="DialogMessage" NAME="PrintFinishedMsg"/>

 <ELEM CLASS="DialogButton" NAME="OKButton"/>

 </GROUP>

</APP>

<DEFINE NAME="OKButton">

 <PROPERTIES>

 <ACTION VALUE="DialogApp.EXISTS=false" TRIGGER="Selected"/>

 </PROPERTIES>

</DEFINE>

</UIML>

42

not yet invented and that is why it is using structures, events and data that imply particular

interface technologies. Because of its general user interface description, there are few

compilers capable of producing user interfaces. That is also the reason it does not attract much

attention.

XUL – XML User Interface Language

This user interface markup language is developed by the Mozilla project [97]. XUL is built

over existing standards such as CSS [4][98], JavaScript [99] and DOM [100]. Because XUL

has no formal specification, its only implementation is only in NGLayout (also known as

Gecko layout engine) [101]. The main benefit of XUL is that it provides simple and portable

set of user interface elements, which reduces software development effort in a way similar to

fourth-generation programming languages. While XUL is used mainly for Mozilla based

applications, it can be also used in remote and locally ran applications. However because

XUL is supported in NGLayout only, it is available to users of browsers, which are based on

Mozilla. Because NGLayout is designed for graphical output, XUL is designed for platform

with graphical output support.

Figure 3.4 XUL document example

XAML – Extensible Application Markup Language

This markup language is developed by Microsoft and is extensively used in .NET Framework

3.0 [85], particularly in Windows Presentation Foundation (WPF) [102] and is XML-based.

Because XAML contains also program logic and styles, it is often called application markup

language. XAML defines user interface elements, data bindings, events and their handling,

and other features. Every XAML element maps directly to instance of user control in .NET

Framework and every attribute maps to its property. From this is obvious that XAML is

designed for platforms that support graphical output (as well as XUL) and is mainly supported

on desktop computers and pocket PCs based on Windows platform.

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>

<window id="findfile-window" title="Find Files" orient="horizontal"

 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

 <button id="find-button" label="Find"/>

 <button id="cancel-button" label="Cancel"/>

</window>

43

Figure 3.5 XAML code example

There are also other markup languages, such as GTK+[103], OpenLaszlo[104], which are

mainly used for graphical user interface creation or web content definition. The three

presented here are most common and typical representatives. UIML is one of the few

targeting general user interfaces, XUL targets mainly web applications and XAML can handle

web, 2D and 3D applications. When comparing available user interface markup languages,

UIML is the only general markup language general enough to be used to describe virtually

any user interface for any platform. The reason why this user interface markup language has

only limited amount of attention is because of the complexity when creating user interface.

Although the description itself enables general user interface description, its design for wide

number of platforms with varying capabilities is very difficult. That is also reason why user

interface languages such as XAML or XUL are much more successful – they always render

graphical user interface and have limited predefined number of user interface elements and

well defined platform capabilities.

3.2 Choosing “interaction elements”

With the right tool for user interface creation, it is important select right interaction elements.

Most important user interface elements, based on their information role, are text, color, image,

animation and sound [6]. Although it might not seem so, other elements such as buttons, list

boxes, and menus are command and control user interface elements and their proper usage is

based on the requirements on user interface rather than means of information communication.

Above mentioned user interface elements or properties are basic, and usually easy and cheap

to change but applying them in a consistent manner can make big difference to the usability of

whole user interface [6].

<DockPanel Grid.Column="0" Grid.ColumnSpan="2" Grid.Row="0">

 <Canvas DockPanel.Dock="Left" Width="230" Height="100">

 <Image Source="helloworld.png" />

 </Canvas>

 <Label VerticalAlignment="Center" FontFamily="Trebuchet MS"

 FontWeight="Bold" FontSize="18" Foreground="#0066cc">

 Label Hello World

 </Label>

</DockPanel>

44

3.2.1 Text

Text is the dominant element of almost every application. It plays main role in web sites,

education and training software, word processors, file managers etc. It is a flexible means of

communication. That is also the reason why it is important to keep text legible [6]. Legibility

is a product of blend of several factors, such as font, size, spacing, color and others. This is a

complex area and it is very difficult to develop guidelines that apply in all circumstances. It is

always important to take into account needs of the users, because they might have poor

eyesight.

3.2.2 Color

Color might be used for variety of reasons – to draw attention, to show status, to make

information clearer, to make information more attractive. That is why it is important to think

of what will color mean to the target group of users. Red color might mean warning or danger

for most of the people, but in china, it is a joyful color [6]. Color saturation and brightness are

important aspects that will affect ability to read text or notice and recognize information. A

good practice is the usage of colors with sufficient contrast between the background and

foreground. Also choosing too bright colors might tire user‟s eyes when used on large areas

intensively. Making user interface allowing user to change colors is always preferred, because

every person perceive colors differently [6].

3.2.3 Image

Images can be used in several ways: to motivate, to attract attention, to amuse, to

communicate information (especially spatial), and to support interaction. Because there are

several types of images, that represent different types of information, it is important to

consider using right image [6]:

 choosing appropriate type of image (picture, diagram, graph, chart) according the

information that need to be conveyed

 design the image so that it meets the requirements of the task as closely as possible –

unnecessary images or graphs might distract user

 combining text with images is more effective than using image without description

Using right images improves usability and readability of user interface but it must be used

wisely. When using images, resolution of the display and storage capability should be

considered, because images are usually large files.

45

3.2.4 Animation

When incorporating animation clips or video clips into user interface, it is important to

provide high quality animation/video without any glitches, flickering or other defects. Users

are used to seeing high quality animation and visualization from TV and other sources and

low quality animation is generally distracting, because users expect some level of quality and

using user interface that do not meet the standard will not motivate users to use it [6].

Animation can be used to illustrate movement or provide dynamic feedback. A typical

example is copying or moving files animation that illustrates files flying from one folder to

another. This feedback is confirming that something is happening and system is working.

Animation can also be used to attract attention. A typical example is advertisement banners on

web pages. However animation attraction attention could be after longer period of time

visually irritating.

3.2.5 Sound

In most of the current user interfaces, sound is still considered to be secondary user interface

element and in most user interfaces it does not play big role as most user interfaces focus on

visual appearance. However sound is very important and useful output when user cannot

easily see or notice visual output or prompt. These situations cover visually impaired users

and applications, where user‟s eyes and attention are required on something else (process

control, sport etc.).

Sounds can be subdivided into several categories – ambient sounds and sound effects, music,

and speech [6]. Sound effects are usually used to simulate ambient sounds that confirm device

functionality (clicking of onscreen keyboard), attract user‟s attention or confirm success of

some operation. Music as a means of communication is not very common and is mainly used

in games or specialized applications for evocative purposes. Speech is very powerful in the

means of communication because it can tell message with additional information such as tone

and accent. Speech is especially advantageous in case of applications for visual impaired

people. Using sound, however, have several drawbacks. Using prerecorded audio clips

requires storage and generating speech requires lots of processor power.

46

3.3 Evaluation

Complete user interface with all features implemented and tested to be working is usually

enough to be released to public. This, however, does not guarantee that user interface will be

effective and easy to learn for wide area of users all over the world. Only limited number of

applications is usually evaluated for performance and effectivity. It is most usually goal of

user interface of each particular application because there is many applications designed for

same tasks doing them in a different way – it is hard to say which of the ways is more

effective or productive. Also, it is important to consider habits of user and his preferences

when choosing application for his needs.

3.3.1 Aspects

Evaluating user interface has several methodological aspects that need to be considered before

own evaluation is started [105]: user selection and training, task selection and presentation, so

called Wizard-Of-Oz simulation (also known as Oz Paradigm) [105][106].

User selection and training

Evaluating any user interface requires test participants who represent the intended group of

target users [105]. It is very important factor because it depends on how it matches desired

user knowledge about the domain of the application. Therefore, test participants should have

knowledge similar to that had by the users in the target domain. Some evaluations prefer to

train their own evaluation participants that will be employed in the evaluation in the tested

domain. There is probability that such participants, employed in the evaluation, will be less

motivated than existing users. On the other hand, employing trained users provides a measure

of control over the common understanding of the domain. User training might vary from

minimal introduction to extensive training including instructions on common tasks and

mistakes. Because the quality of training significantly affects user performance, the kind and

amount of training should represent training and knowledge that users are expected to have.

Task selection and presentation

The goal of evaluation of user interface is gathering experience of using application, its

features, and user interface elements as they are used during assigned tasks. These tasks

should represent type of work users are expected to do with the user interface. Tasks must be

presented in a way that will not affect the evaluation. Range of tasks, selected for the

evaluation, should cover all the available functions of the user interface. It is also possible to

47

let the users generate own tasks. Main advantage of this approach is that users are free to

express needs or problems that are beyond the capabilities of the user interface and can lead to

major user interface improvements. This however leads to loose of control over evaluation

because users might not cover whole range of functions offered by the user interface.

Tasks can be presented to users in two distinct forms. First form can guide user step by step to

complete the task. This, however, can result in absolutely correct user interface usage which is

not desirable. Second form presents only bulleted list of required goals that need to be done to

complete the task and it is user‟s choice how to do them. This form of task presentation gives

the evaluator most control over the task complexity when compared to free will of

participants while performing the task.

Wizard-Of-Oz simulation

Wizard-Of-Oz (WoZ) simulations simulate system using a human to interpret participant‟s

commands and actions [106]. In a typical system, participant generates a command by

keyboard or mouse, that appears also on the computer of an operator (the Wizard) hidden in

another location. The Wizard interprets the commands and does actions that result on the

computer of the participant as a result of his action. It is obvious that results and responds of

the Wizard will not be as consistent as computer would. This fact should be taken into

account when reviewing results of evaluation. However, WoZ simulations are great for quick

evaluation of potential designs and requirements because the Wizard simulates behavior and

actions as the final system would.

3.3.2 Methods

Evaluation of user interface is difficult task because it is important to define what to evaluate.

It is always good to answer questions on what is the purpose of the evaluation, what

information should be collected or who will be the target group of users. Knowing answers on

these questions simplifies choose of right evaluation method and produces best results. In fact,

the goal of evaluation is not to say user interface is good, or bad, or it is that good. In general,

the purpose of the evaluation methods is to help in the identifications of the problems and

solutions. Then difference between “how good” to “identify problems and solutions” makes a

big difference in choice of methods. Following text describes some of the most commonly

used methods for evaluation: verbal reports, questionaries, data collection, walkthroughs, and

reviews [105].

48

Verbal reports

Verbal reports can be used at any time of user interface design cycle. Verbal reports are

summaries of users‟ cognitive experiences of the user interface usage.

Questionaries

Questionaries can be used at any time of user interface design cycle. Contain subjective

responses of users on certain user interface aspects and can generate very interesting results.

Data

Data collection is used since user interface model is complete. It measures specific data from

real or simulated system. It is meant for specific test of alternatives or user interface coverage.

Data measuring is best for performance evaluation and for competitive evaluations.

Walkthroughs

Walkthroughs are usually done in early stage of user interface design between user and design

team. Thanks to feedback of users, it is possible to make important user interface design

decisions. Walkthroughs can be repeated several times for various user interface features.

Reviews

Reviews by experts from user interface designers are important to solve general usability

problems and in decisions on general acceptability of user interface architecture

Besides empirical methods, there are also automated methods that can be used to evaluate

user interface. These methods work on collecting metrics such as distance from user interface

elements or number of clicks etc. A task is specified in form of commands that a user has to

perform. Each command is algorithmically performed and during the command execution,

metrics are collected (travelled distance, clicks, time). Collected metrics measure

effectiveness of the user interface. However these methods cannot measure efficiency or other

qualitative

Evaluation, however, does not end by obtaining results. Next step is to redesign the user

interface to meet whole feature set such that users are able to achieve their goals and are

satisfied with whole system.

49

4 User interface design automation

Many tools and approaches were developed to support user interface design because

applications are getting more and more complex and thus requirements on the user interfaces

were getting more and more complex too. To allow creation of more complex user interfaces,

a more complex tool had to be created that would allow creation of demanded capabilities.

Creation of more and more complex application and increasingly complex user interfaces

however brings several drawbacks. Complex user interfaces are hard to build even with

today‟s user interface creation tools. Application architecture must be well designed to enable

proper implementation of all application features. Architectural structure has impact on user

interface design because designer must be aware of requirements of each application package.

Packages can have various objects requiring specific data inputs, and can be stored in various

collections that can or cannot be browsed by users. Opposite of proper user interface design is

requirement on application testing. Early implemented packages with significant impact on

application behavior and functions must be tested because other application packages might

be dependent on these packages. Testing packages with incomplete user interface is

sometimes very difficult and user interface designers are forced to create simple test modules

that can be run to test desired behavior. This iteration cycle is usually part of every application

development process. After all, when first implementation of user interface is complete and

evaluated, packages are modified based on evaluation data and requests on user interface

design are taken into account when new architecture of user interface is being designed. Such

process of creation of user interface is very difficult and that is why there is a kind of user

interface tools that are trying to simplify the development phase of application, including user

interface design, by applying additional coding, modeling, and application behavior

describing to provide automated user interface creation.

The goal of this chapter is to describe some principles used in these days to support automated

user interface creation. Methods mentioned in this work are not complete enumeration of

available methods. Instead, only those most important and successful methods will be

described that cover general principle of automated user interface creation or which have

direct impact on the concept of this work.

4.1 Separating user interface

Before discussion over separation user interface from application code, it is important to

50

understand how current applications are built and what their structure is like. Most of the

applications in the past that were not implemented with object oriented approach in mind

contain most of the user interface code completely mixed inside of other functions that

somehow affect user interface appearance or behavior. Although this is not good solution, it is

important to remember that user interface APIs, in that days, were not common and most

companies created their own user interface libraries of various quality. Also user interfaces

based on textual output such as in MS-DOS applications were, when compared to these days‟

user interfaces, very simple. Graphics of these user interfaces were composed of various

symbols with colored background and text mode allowed display up to 80 symbols on each of

25 lines. There is no doubt that without object oriented design, functions drawing information

on the screen were mixed through the application code. Major drawback of poorly designed

applications required lots of work every time user interface needed to be modified. It is

because application code was calling on various places stand-alone methods for setting

background color, text color, text printing etc. We can speak about mixing user interface code

into application (non-interface) code.

With applications based on object oriented design, where most of the user interface elements

were available as single objects, situation changed. Application code become cleaner from

user interface code and contained only few user interface code calls. Developers, trying to

maintain their application code as much independent from user interface code, loaded more

work on the user interface designers, who were forced to mix their user interface code with

application code. This approach became very popular. Application code contains objects that

perform certain functionality and user interface code creates its instances and modifies their

parameters and behavior. Situation is extreme opposite of first applications, where application

code was mixed with user interface code. It is clear that user interface and application code

cannot exist without each other. User interface requires application code to perform user

requested tasks and application code needs user interface to present results and status of

application objects.

From this point of view, separation of user interface from application code is almost

impossible. Separating two things that are tightly connected seems to be very difficult. User

interface is built on requirements of application objects and their outputs, requests on features

from users and experience of user interface designers. User interface code is compiled with

knowledge of application code and is extensively using it. However, during last few years

51

were developed markup languages such as above mentioned XUL or XAML that allow some

kind of user interface code separation.

General approach of user interface code and application code separation is in creation of

packages or libraries that contain algorithms and objects, performing various tasks and actions

– a digital media library for example. Such library can contain various methods for loading

and saving of digital media files such as images, vector graphics and others, methods

performing image data filtering and modifications such as brightness and contrast changes,

automatic brightness and contrast balancing, color corrections and others. Having such library

however does not necessarily means it is an image editing software. It is important to create

user interface that is capable of calling digital media library methods and work with the

results returned from the methods. In order to be able using all library functions, user interface

is created importing library interface. The created user interface contains user interface

elements such as menus, buttons etc. that are calling library methods or setting library objects

properties to support required functionality and allow user to achieve expected goals. It is

obvious that application code is completely independent from user interface and it is possible

to create different user interface with same or similar functionality that might have completely

different look and feel. XAML, for instance, creates human readable XML files with user

interface definition. This user interface can be run as a standalone application as long as it is

not referencing any particular objects or methods from imported assembly. This allows

creation of different XAML user interfaces working over same assemblies thus featuring

same functionality and behavior. It is even possible to modify XAML files and extend the

functionality of user interface at any time.

User interfaces, as it is clear from the text above, are usually tightly connected to application

code because it is its functionality and features it is presenting to users. A complete separation

of user interface code from application code is not possible unless there is a framework that

would allow communication between application code and user interface.

4.2 Task models

An abstract way of specifying the user interface is through the usage of a task model [107]:

modeling a user interface on the basis of itemizing the steps of interaction a user has to

perform. This approach has an advantage that, when user interface is built for every platform

or device where it is executed, the task models are taken into account for each of them. User

52

interface is created with respect to device‟s or platform‟s capabilities. Another advantage of

using task models comes during software development process, because task models are not

just collections of user interface elements with no semantic meaning but provide additional

information regarding the interaction process. Basic form of task models can be defined in the

early stage of software development process and help with validation of the software during

its development phase and also in the end whether the software meets all the requirements

regarding user interaction with the software. Because traditional creation of user interfaces

without looking at pre and post conditions of the application is error prone to previous steps

taken during software development process, the task models can become the glue between

application code and actual user interface [108].

4.2.1 Creating task models

Before creation of task models, user requirements analysis must be done and the task designer

must understand all the tasks that were deducted from the analysis. After this, some aspects of

task models must be defined by the task designer:

 hierarchical structure of the interactive system consisting of tasks and subtasks

 link between user and system for each subtask

 additional properties such as importance or complexity must be set

Creation of task models is most usually done in textual or graphic form. A typical

representative of textual form is LOTOS [109], a representative of graphic form is

ConcurTaskTrees [110]. The advantage of graphical representation of the formal methods for

modeling human-computer interaction is its simplicity. The syntax and semantics are usually

easy to learn and do not require knowledge, or experience, with formal languages such as

above mentioned LOTOS. Graphic notation of task model allows easy hierarchic task

specification. The nodes of the tree represent tasks. If task can be divided into subtasks, these

are represented as children of the node. Such tasks, consisting of subtasks, are usually abstract

tasks, which only hold other tasks in logical group. Leaf nodes then represent user tasks –

completely performed by the user, for example deciding what to do next, interaction tasks –

tasks that require user interaction with the system, for example data input to fill the form, and

application tasks – performed entirely by the system without user interaction, for example

processing information from inputted data and presenting results to the user.

53

Figure 4.1 Interaction process of user and system

Dividing tasks to distinct categories have practical reasons (Figure 4.1). Interaction usually

works as follows: a user decides to use a system. Therefore and interaction with the system is

needed. User inputs required data and system starts the processing of the data. When

processing is completed, the results are shown to the user. Now the user has to interpret the

results and decide what to do next. After user decides what to do, starts the interaction and

inputs the data. Inputted data are processed and results are shown to the user. User must

interpret the data and decide what to do next. This process keeps going on until user decides

to perform a task that shuts down system. This process is analogous to above mentioned task

categories.

4.2.2 Generation of user interface

After the task model is created, it is possible to run application on target system and let the

interpreter to generate the user interface. Following example of the user interface generation

process is taken from Dygimes framework [111].

Interaction

ProcessingThinking
Show results to

user

User made
decision

Start processing
input data

54

Figure 4.2 User interface generation process in Dygimes framework

First step (1) in the generation of user interface from task models is loading task model and so

called abstract user interface description. Both input files are XML-based and abstract user

interface description is optional, containing general document appearance (groups of data

etc.). In the step (2), input data are loaded and a tree hierarchical structure is created that

represents the task model. Then (3) a set of enabled tasks defining which tasks can be

performed at the same time is computed. From enabled task sets and task model tree a set of

initial tasks is created (4). Initial task set contains tasks that can be presented to user when

application starts. Afterwards, a dialog model is extracted from the enabled task sets (5). The

dialog model is represented by finite state machine. The construction of the dialog model has

to be preceded by the creation of enabled task sets, because it is required during creation of

finite state machine. This is the reason why distinctive phases of the user interface creation

are separately in this order. From dialog model is created abstract presentation (6).

Presentation contains abstract user interface elements that are not connected so the transitions

between various parts of the presentation must be created (7). From this point appropriate user

interface can be created (8). After this a feedback window is presented (9), where user

interface designer can adjust various properties of user interface and let the user interface

55

recomputed. After the user interface designer commits the user interface, it is used as the

application interface.

4.3 User interface management systems

Concept of user interface management systems (UIMS) and first thoughts and

implementations of UIMS lead back to 1970-1980s when user interfaces were getting much

greater role thanks to PC boom. First interfaces consisted of command line systems, which

had to lead user through set of questions to get all required parameters that were needed to

successfully perform requested task. Remembering all the parameters of huge amount of

commands was very difficult so UIMS came to help create dialogues. To allow creation of

additional commands and extending the user interface to support new commands, user

interface had to be separated from commands, so that new, more complex, commands could

be created from simpler ones – UIMS were created to separate application from the user

interface. However saying that that the UIMS and the application are separate is not to say

that they can operate independently of one another; information must be communicated from

the UIMS to the application and ideally from the application to the UIMS. Such

communication of information, where separation is required, demands a clearly specified

description of the protocol of information transmission: interface between the user interface

and the application. The nature of this user interface-application interface has the major

influence on the types of interactive systems that can be built.

There are three UIMS control architectures in existence [112]: internal, external, and mixed.

With internal control UIMSs, control always resides in the application. The UIMS is viewed

as a subroutine package to be called at the appropriate places in the application to perform the

necessary communication with the user. In external control, the situation is reversed. The

application is viewed as a set of subroutines, and the task of the UIMS is to interact with the

user and invoke the appropriate application subroutines at appropriate times. A mixed control

UIMS allows control to reside in both the application and the UIMS. As in external control

cases, the application can be viewed as a set of subroutines to be called by the UIMS at the

appropriate time. However in the mixed case, the application can take control of the dialogue

and request or present data from or to the user through the UIMS. With mixed control, the

UIMS and application can be co-routines or independent processes.

56

4.3.1 Models

Forms and Controls

The most commonly used model of user interface management system is using forms and

controls. In fact, there does not seem to be a name for the model so calling it forms and

controls is just for the purpose of this work. This model uses generic user interface controls

placed on the form and thus form defines the arrangement of the controls on the screen and

behavior of the controls and their interaction. It is obvious that the form is specific to its target

application and in most cases it is usually built by user interface designer. A tool called data

binding is often used to keep information on the form synchronized with application data.

Data synchronization is very important task, because data on the form must reflect current

data in the application. Data binding is able to propagate any data change on the side of form

or underlying application to application or form respectively. Data binding handles

functionality of client-server architecture and thus enable very good application-user interface

separation. Data binding is not the only way of communication of form and the application. A

system of events and their handling is often used to communicate various status and task

information. The decision, whether to use data binding or event is usually during application

development process. Most common scenario of using data binding is for simple data types

while using events cover structures, more complex data, and commands.

Model View Controller

Model-View-Controller (MVC) [113] is a design pattern often used by applications that need

the ability to maintain multiple views of the same data. MVC pattern is based on clean

separation of objects and their communication and can be called as separated presentation.

The separation is done into three classes [114]: model, view, and controller. The model

manages the behavior and data of the application domain, responds to requests for

information about its state (usually from the view), and responds to instructions to change

state (usually from the controller). The view manages the display of information. The

controller interprets the mouse and keyboard inputs from the user, informing the model and/or

the view to change as appropriate.

57

Figure 4.3 MVC class structure

It is important to note that both the view and the controller depend on the model. However,

the model depends on neither the view nor the controller. This is one of the key benefits of the

separation. This type of separation allows the model to be built and tested independent of the

visual presentation. The separation between view and controller is secondary in many rich-

client applications, and, in fact, many user interface frameworks implement the roles as one

object.

Two basic variants of MVC exist, passive and active. The passive model is employed when

one controller operates the model exclusively. The controller modifies the model and informs

the view that the model has changed and should be refreshed. The active model is used when

model can change its state without controller‟s involvement. It can happen when other sources

are changing the data. Because informing the view from the model would break separation of

the three classes, an observer object is usually used to alert objects about state changes

without introducing any dependency on them. When a model changes, it iterates through all

registered observers and notifies them about the change.

Model View Presenter

Above mentioned forms and controls model provides an easy to understand concept and

makes a good separation between reusable user interface elements and application code. MVC

has strong separation of application code and its user interface. Model-View-Presenter (MVP)

can be seen as a step forward taking the best from the two above mentioned models [115].

View is treated as structure of user interface elements that corresponds to the controls of the

Forms and Controls model. It does not contain any behavior that describes how user interface

elements react to user interaction. The active reaction to user actions lives in a separate

presenter object. The fundamental handlers for the user actions still exist in the user interface

Model

ControllerView

58

elements, but these handlers merely pass control to the presenter. The presenter then decides

how to react to the event. As the presenter updates the model, the view is updated through the

same observer synchronization approach that MVC uses.

Figure 4.4 MPV (Passive View)

Figure 4.5 MPV (Supervising Controller)

View updates can be handled in several ways. The MVP variants, Passive View and

Supervising Controller, specify different approaches to implementing view updates. In

Passive View, the presenter updates the view to reflect changes in the model. The interaction

with the model is handled exclusively by the presenter; the view is not aware of changes in

the model. In Supervising Controller, the view interacts directly with the model to perform

simple data-binding that can be defined declaratively, without presenter intervention. The

presenter updates the model and manipulates the state of the view only in cases where

complex UI logic that cannot be specified declaratively is required.

View Presenter

Model

View Presenter

Model

59

5 Annotation and description

There are several approaches that were developed to separate user interface from application

code. With a separated application code and having the separation concepts in mind it can be

said that it is possible to automate creation of user interface, because with separated

application code, independent user interface can be created to communicate with application

code. It is also clear that creation of the user interface is something complicated and cannot be

done easily. Information contained directly in application code is not sufficient to create fully

functional user interface automatically. Of course, it depends on application complexness.

Simple application that would control light switching could be generally simple and thus user

interface could consist of few checkboxes to switch on or off the lights. To provide additional

information, for the automating of user interface creation process, it is important to describe

the data and the functionality of the application.

5.1 User interface description

Creating user interface from its abstract description is one of the first thoughts that most of the

developers have in mind when speaking about automating user interface generation. Although

generating user interface from user interface description is not fully automated, there are still

some advantages as mentioned in chapters above. Such systems, generating user interface

from user interface description, can benefit on various platforms with different capabilities,

because in such environments, user interface can be made to fit capabilities of the executing

platform. Descriptions can be stored in various forms such as in XML-based description

XAML, XIML [116], or AUI [117], or in a custom text [118] or binary form (ProcSee [119]),

and parsed during execution. The description can also be stored directly in the application like

in SUPPLE [10][120]. Main benefits of textual or xml form are in possibility to change user

interface to the needs of each particular user. Such modifications would be more occasional

and most probably done by enthusiasts. The main disadvantage of such solution is in need to

describe user interface in another language – from this point of view, creation of user

interface is semiautomatic. In the case of ProcSee, creation of user interface is done by user

interface designer, who creates user interface based on requirements and available libraries, so

it is not automatic at all. Supple provides some remarkable features to create user interface

from functional description. However, functional description leads into mixing application

code with instances of descriptive objects, referencing application objects and their properties.

Such solution requires well designed description objects to be able to describe basic and

60

complex structures and in the form of maintainability creation of larger projects is difficult.

5.2 Data characterization

Before automatic creation of user interface, it is necessary to understand which of the

properties of the information to be visualized are related to user interface design and how they

are related. That is why a process called data characterization was proposed [121][122]. With

this knowledge it is possible to choose appropriate user interface elements and construct user

interface based on user preferences (e.g. blind user would prefer voice commands from mouse

input).

First data characterizations were used mostly to guide the automatic design of visual

presentations [123]. Data characterization method was used to describe quantitative data such

as tables and graphs. Later, Roth and Mattis [121] extended data characterization set to

describe more complex data types. They also analyzed data properties based on a user‟s

seeking goals. These data characterization approaches have been often used for 2D

presentation systems with static data environment. This means the data characterization

approaches did not take into account data properties related to dynamic displays with

changing values or multidimensional environment. This approach, however, was not lucky

because, considering current applications, there i data that is not static and may change or

varies in time. To allow multimedia presentations in dynamic environment, a taxonomy

describing qualitative properties of the data has been proposed. The taxonomy introduced a

vocabulary for characterizing multimedia information dividing data into categories such as

shape, location, and structure [124]. The data categories were during last few years tailored to

contain all relevant information allowing characterize any heterogeneous data [122].

Because there was need to characterize mainly database data, besides the database each

application, working with the database has to provide a data characterization, which is, as

mentioned above, description of the semantic and structural properties of its information that

are relevant to presentation design. A nice example of how data characterization can work is

in MedAide [125], which can automatically generate multimedia summaries of patient data,

obtaining coordinated text, speech and graphics.

61

Figure 5.1 MedAide displays patient medical records [125]

The project focuses on automated user interface presentation and from this point of view it

provides all expected functionality. This, however, is not sufficient in today‟s user interfaces,

where more interactive environment is required. Although data characterization is required for

proper user interface creation, it does not provide sufficient information to create rich user

interfaces with complex user input.

5.3 Code characterization

Characterization of code seems to be a complement of data characterization. Characterized

data together with characterized code enable fully automated user interface generation with

minimal mixing of application code. Unfortunately, there does not seem to be any research in

the code characterization and most researchers focus themselves on data characterization or

other user interface description methods or approaches. The reason might be in bad support

from the side of available programming languages or existing frameworks that do not enable

searching libraries, packages, or assemblies for existing objects and their properties or

attributes. Since Java [126] and .NET Framework support reflection, performing code

characterization becomes possible. Thanks to the reflection, it is possible to search through

packages or assemblies, create instances of publicly visible objects, know their methods with

parameters, properties, etc.

62

Using semantic information from code characterization can reveal many features of user

interface. Stand-alone data characterization describes data and their relation but is unable to

describe functions and actions that can be done over the data. In fact, it is possible to define

set of actions and functions that can be done with the data. This, however, is not lucky

because that would mean there is a kind of huge library that offers many methods for loading

of different kind of data, saving different kind of data, showing images, playing sound effects

and music, movie clips and works with other data types. This could also be contra-productive

because some professionals are using special applications with specific algorithms that can do

similar tasks but with different quality and speed.

Combining data and code characterization is obviously very important to achieve automated

creation of rich user interfaces. Semantic meaning of data and description of operations over

the data and adjacent objects is a key to support required functionality of modern applications.

That is why this work is focused on creation of data and code characterization taxonomy.

Together with other already existing and newly proposed concepts it is proposing new way of

application description for automated user interface creation.

The presented data characterization taxonomy is based on [123], where was presented first

approach for data characterization. Later, the work was extended in [121] and [127]. In [124]

was introduced rough partitioning of the data into several categories. This partitioning was

modified and extended in [122] and this work adopts this taxonomy with several

modifications.

63

6 Characterization

This chapter describes proposed taxonomy for data and code characterization. Taxonomy is

described in an abstract form, because specific implementation for various languages or

frameworks may vary. The presented examples are presented in abstract form or in C#

because it is well readable even for people that do not have any experiences with

programming. Support of attributes in C# also provides nice form of approach for

characterization.

6.1 Data characterization

Before any specification of data characterization taxonomy, it is important to define how data

is represented. Every piece of information is represented by object. Every numerical value,

structure or set is an object. Every object has its data characterization as is described below.

This approach is advantageous because representing information and its specification as

objects can be easily integrated using object-oriented design.

Figure 6.1 Data characterization categories

The data is described using several basic categories [122] – type, domain, attributes, relations,

role, and sense. Data type is used to identify atomicity of information, whether it is divisible

into smaller parts. Domain categorizes information in a semantic way, for example, whether it

is abstract or real. Attributes describe objects properties such as shape, color, size etc.

Relations describe connections among the data, which is important in database systems. Role

characterizes data based on user information-seeking goals and sense is used to describe data

for user visualization preference optimization.

6.1.1 Type

Data type is used to define basic representation of the data in the sense of its complexity.

Main subdivision of data types is to atomic and composite.

 Atomic – Atomic objects are the most basic data units. In user interface, atomic object

Data

Type Domain Attribute Relation Role Sense

64

is a single object. It cannot be further subdivided. In a real-time strategy game, a group

of vehicles can be displayed and also used by a player as a single entity that does not

consist of other subcomponents. On the other hand, a car race game can define car to

be complex structure with subcomponents such as engine, transmission, wheels etc.

 Composite – Composite object consists of atomic and composite objects. For example,

a previously mentioned group of vehicles can be composite object consisting of

atomic or composite vehicles. However, simple definition of composite object is not

sufficient. Group of vehicles can be just a group with no other relations but it can also

be unit with its relations and hierarchy. For this reason, a further specification of

composite objects is needed. A basic category types to solve the issue are set and

structure.

o Set - A set is a composite object, in which each component is considered only

in relation to the set without taking into account relationships between other

items of the set. Set composite objects are often displayed as lists or tables.

Having items in lists or tables usually requires a kind of sorting. That is why

the taxonomy should define an ordering technique to enable appropriate

information retrieval.

o Structure – A structure is a composite object, in which relations are important

and must be taken into account. Thus, there are two types of relationships

within a structure: relationships between the structure and its items (as in a

set), and relationships among the items in the structure. A typical example of

such relations can be in family tree. Each of the items in the structure is family

member (relation item – structure), some of the members are children and have

parents (relation item – item), and some of the members might be mother and

father (relation item – item). It is now clear that presenting such family tree

structure is not simple task and data and their relations inside structure must be

taken into account.

Knowledge of the different characteristics of composite objects can facilitate the construction

of interface elements to present them. Usually, the preferred representation for the structural

relations among objects has structural properties based on those of the data. For example, a set

might be presented using a table or list, but typically not a flow chart.

65

Figure 6.2 Data type

6.1.2 Domain

Data domain distinguishes among physical, abstract or other objects and is important for

proper visualization technique choosing. Data domain has three top level categories which can

be further subdivided.

 Entity – An entity is an object that exists independently and has unique identity. An

entity can correspond to physical object in a real world (e.g. vehicle) or might be

depicted as a physical object (e.g. fairy tale object).

 Concept – A concept is an abstract idea that either exists independently or must be

attached to other objects. Unlike entity, concept is not physical object. For example,

“weight” is concept that can exist independently, but when it is connected to physical

object, it is describing how heavy the object is. Concept can be weight, age, speed,

temperature and other.

 Measurement – A measurement is numeric or non-numeric value with or without its

unit of measure. Measurement cannot exist alone but must be connected to a concept,

such as above mentioned weight. For example, it is possible to specify object‟s weight

as 100kg, but also as heavy. Using measurements is designed specifically for

databases. Measurement represents certain value in the database while concept

describes its meaning.

Figure 6.3 Data domain

Type

Atomic

Composite

Structure

Set

Domain

Entity

Concept

Measurement

66

6.1.3 Attribute

Goal of the attributes is to generalize aspects of presentation style requirements and abstract

them to any information. Assigning attributes to data helps in choosing right presentation

style as it can define some important properties. For example displaying a list of towns where

each of the towns has name and location. It is possible to relate the list to image of a map so

that towns will be displayed on the map. Towns on the map can be represented by small dot or

city icon. Also, dimensions of the map can be scaled so that its dimensions do not correspond

to locations of the towns. Attributes help in such cases to specify some extra information for

better information presentation. Attributes can be common for all data types, but there are also

attributes that are related to composite types only, specifically to sets.

Common

 Location affects the decision as where to display the object. It can be either spatial or

temporal. Spatial location is represented by absolute or relative coordinates in 2D in

3D or by absolute or relative qualitative locations such as in front of or on the left.

Temporal location can be represented similarly as absolute or relative with qualitative

or quantitative values.

 Material is used to describe visual and non-visual properties of the objects such as

attributes for lighting, shading and other.

 Form is related to object‟s shape and can be shaped, shapeless or none. Shaped objects

have solid physical shapes such as vehicles. Shapeless objects might have a shape

under some circumstances but it is so transitive that it is hard to describe its precise

shape (e.g. water). All conceptual objects use none as their form, because they do not

have predetermined visualization or symbol.

 Transience describes whether information varies in time. Static objects remain

constant while dynamic objects change over time. When visualizing such dynamic

objects, an animation can be used to display information change.

 Importance identifies information that is more important than other. In the real world,

some information is really more important than other and usually is well marked.

Information with higher importance can be visually marked or grouped if there are

multiple important objects.

Composite

 Scalability differentiates two types of data – coordinates and amounts. Coordinates

67

specify points in some domain (e.g. start time, end time of some task) while amounts

specify measurement to describe particular attribute of some object (e.g. length of task

in hours). This distinction is important because representation of coordinates is always

different from amounts.

 Continuity is used to describe quantitative data, whether they are continuous or

discrete [127]. For example, set of coordinates can be continuous (GPS position) or

discrete (start time, end time). On the other hand, set of amounts can be also

continuous (measured temperatures during day) or discrete (days in week).

 Ordering can be characterized as quantitative, ordinal, or nominal:

o In quantitative sets, elements are ordered numerically (e.g., the set of euro

amounts ranging from €0.01 to €100.00. Knowing that a set is quantitative tells

a system that the elements can be displayed effectively by a graphical

technique with a quantitatively varying visual dimension, such as position

along an axis, angles in a pie chart, the areas of circles, or the brightness of

gray-scale levels.

o In ordinal sets, element ordering is important to the semantics of the set, as in

ratings: {poor, fair, good, excellent}. In contrast to quantitative sets,

presentation of ordinal sets requires techniques which can enumerate explicitly

every element (because it is not possible to interpolate intermediate values).

o In nominal sets, elements are not ordered (for example the set of brands).

These can be expressed effectively using symbols, which don‟t vary

quantitatively. In contrast to quantitative sets, nominal sets may be

misperceived as ordered when using quantitative techniques for their

presentation.

68

Figure 6.4 Attributes

6.1.4 Relation

Relations are used to capture various types of relationships among objects. Basic scope of

data relations mentioned in [121] was extended at [122] to include semantic relations among

data. For example, if it‟s required to visualize set of cities or towns and its number of

inhabitants, it is important to know functional dependency relation between towns and the

numerical values of their inhabitants, as well as attributive relation between the inhabitants

and the towns. Four basic relations are: functional dependency, constituency, attributive

relation and enumeration.

 Functional dependency is used to capture one-to-one mapping relationship from one

set to another. For example, every town has number of inhabitants. This type of

relation is used by certain visualization techniques (e.g. a line graph) [121][123].

 Constituency corresponds to the has-part relation and can be further partitioned into

physical constituency and conceptual constituency. Physical constituency either

indicates the physical components of a physical object (e.g., a network node has

several ports among its physical constituents) or refers to conceptual component that

can be treated like physical ones (e.g., virtual links). Conceptual constituency, on the

Attribute

Common

Location

Transcience

Form

Importance

Material

Composite

Scalability

Continuity

Ordering

Quantitative

Ordinal

Nominal

69

other hand, implies that concept is conveyed by a set of sub-concepts (e.g., town is

conveyed by age, inhabitants, and other sub concepts).

 In an attributive relation, some objects describe certain aspects (attributes) of other

objects. For example, in a computer network, a virtual path segment is a virtual

connection specified within a physical network link, and has attributes such as

capacity and utilization. Furthermore, these relations can be effectively encoded by the

corresponding image‟s visual attributes, such as its shape, size, or color.

 Enumerative relation shows class inclusion (e.g. instance relations, kind or type

relations – hatchback is a vehicle) or class membership (e.g. Renault Clio is instance

of hatchback). Ideally, to convey information comprehensively, a generic concept

representing classification is shown first (e.g. button Hatchbacks), and then all the

instances of specific subclasses of the concept are enumerated in detail.

Figure 6.5 Relations

All the relations discussed above usually do not exist independently from each other. More

often, one or more types of relations coexist in one piece of information. If there is request to

display several relations together, it is necessary to take into account the interconnections

between those relations in order to integrate all related information in one presentation.

Understanding complex relations enables to perceive both explicit and implicit connections

among data, and guides us to select the best possible graphical techniques to convey the

information.

Relation Attributes

Attributes of relation are described by dimensionality [127], coverage, cardinality, and

uniqueness [121].

Relation

Functional
Dependency

Constituency

Attribute

Enumeration

70

 Dimensionality describes decomposability of information into simpler components.

Some information, for example database record, can be decomposed as a vector of

simple components, others, such as image, have a complex internal structure which is

not decomposable. Thus dimensionality can be:

o Simple – Atomic items of information, such as an indication of presence of

unread mail.

o Single – The value of some measurement, such as the amount of gasoline left.

o Double – Pairs of information, such as coordinates, or domain range pairs.

o Multiple – More complex information structures of higher dimension, such as

home address.

o Complex – Information with internal structure that is not decomposable, such

as images.

 Coverage conveys whether every element of a set can be mapped to at least one

element of another set. This is important because some visualization techniques have

no way to express the absence of data without adding a special marks or leaving a

blank space, which can be misperceived, for example as low value.

 Cardinality expresses the number of elements of a set, to which a relation can map

from an element of another set. In other words, it expresses the number of values that

can occur for an attribute of an object. For example the has-part relation maps from

one element to a variable number of others. Cardinality should not be confused with

the concept of arity [128], which refers to the number of different domains in a

relation.

 Uniqueness refers to whether a relation maps to a unique value or values for each

element of a set. For example has-part relation can map uniquely to set of unique parts

(i.e. parts have only one parent).

Figure 6.6 Relation Attributes

Relation
Attributes

Dimensionality

Coverage

Cardinality

Uniqueness

71

6.1.5 Role

Data role specifies particular information seeking tasks. It can be given by a user during

interaction, or could be expressed by domain experts during knowledge acquisition. Affecting

presentation design by user‟s information seeking goals is discussed in [129], while [121] also

analyze data properties based on the user‟s information seeking goals. In [122] is adopted the

taxonomy of goals proposed in [124], which is a superset of functions listed in [121]. These

tasks include:

 categorization (categorizing information)

 clustering (grouping information)

 identification (revealing information identity)

 distinguishing (revealing the difference among information)

 comparison (comparing one type of information to another)

 association (associating one type of information to another)

 ranking (comparing all information in a particular order)

 correlation (correlating one type of information to another)

 distribution (partitioning information)

For example, towns in a set of towns can be distinguished by their name.

Figure 6.7 Role

Role

Categorization

Clustering

Identification

Distinguishing

Comparison

Association

Ranking

Correlation

Distribution

72

6.1.6 Sense

Data sense was proposed to support construction of effective visual presentation because

user‟s, or application‟s, visual preference should also be taken into account [122]. For

example, one way to distinguish the elements of a small set of objects is to use a different

color for each. However, such a presentation would not be effective for a color-blind user.

Presentation preferences might also be dependent on a specific application domain because

users in that domain have been trained to use a particular presentation style.

The word “sense” can be used to refer to one of a set of meanings for a word or phrase, as in a

dictionary. For example, the word “person” can mean a “human being” in one sense, and

“human body” in another. This meaning of sense was adopted to coin the term “data sense”,

which signifies a preferred way to present the data visually.

Like data role, data sense can be specified by an end user to indicate his individual preference,

or captured in the process of knowledge acquisition. Alternatively, data sense might be

inferred, base on other data characteristics. Data sense can be extended to include a wide

variety of low-level visual preferences. In [122] is data sense limited only to five high-level

presentation styles described below:

 Label – A textual label is used to display information. A label can be enriched by

adding graphics, such as underscoring or button shape to convey additional

information.

 List – In contrast to the label sense, the list sense states that a composite object should

be displayed in a tabular form in which all its components are listed textually as table

entries. A typical list representation is the results of the exam (every student has

rating). Furthermore, in the list sense, all components of composite objects are either

listed as an attribute-value pair (e.g. additional sub-task rating) or as a textual string

(e.g. rating comments).

 Plot – Both plot sense and list sense indicate that there is a composite object and that

all its components need to be represented. The major difference between plot sense

and list sense is in the primitives used in the representation. In the list sense,

information is represented textually, while graphical primitives such as markers and

lines are employed to encode different kinds of information in plot sense. Quantitative

information can usually be effectively expressed in plot sense.

73

 Symbol – Representing a piece of information in symbol sense involves the use of a

concrete shape object to symbolize the information. For example, a thermometer icon

with its scale can be used to symbolize the temperature concept. Both physical and

conceptual objects can be represented in symbol sense. For example, a town can be

symbolized by town photo or abstract symbol representing the town.

 Portrait – Compared to symbol sense, visual representations require much more detail

and precision when the information needs to be displayed as a realistic. Such precise

and detailed visual representation is necessary for people to carry out certain tasks,

such as the design of a product‟s physical appearance.

Figure 6.8 Sense

6.1.7 Example

This example demonstrates how a piece of information can be characterized for automated

user interface generation process using aforementioned taxonomy. An object “town” contains

information about its geographical location, name, number of inhabitants, and heraldry sign.

The information about town is a composite set (data type) entity (data domain) specified to be

represented symbolically (data sense) using heraldry sign. It has a location (data attribute)

specified in terms of geographical location. The town‟s ordering attribute is quantitative,

which specifies alphabetical order among other towns. The town has conceptual constituency

relation with its location, name, number of inhabitants, and heraldry sign. Number of

inhabitants is atomic concept, represented as label, with clustering role to allow searching all

towns with same number of inhabitants, quantitative ordering. The town name is atomic

concept, represented as label, with high importance attribute, quantitative ordering attribute to

allow alphabetical ordering, and identification data role to identify the town using the name.

The heraldry sign is atomic concept, represented as portrait, with identification data role to

identify the town using the sign.

Sense

Label

List

Plot

Symbol

Portrait

74

Set of towns will be visualized on a picture because of its location attribute, represented by

heraldry sign picture and name label. Towns can be listed using name and sorted by number

of inhabitants or name.

It is obvious that data characterization concept is required for proper user interface generation

because it can add useful semantic information about the data and its relations. This

information is even more important in case of database records, where relation and structuring

in tables is not as well defined as in object oriented programming languages. In object

oriented programming languages classes, structures, unions, and other objects contains some

information that already conveys some information inherently.

6.2 Code characterization

Code characterization is designed to describe code of the application. Because it is not

possible to detect what methods or functions will play any role in the final user interface, it is

important to describe all involved methods and functions and their parameters so that user

interface generator can take all the data and operations into consideration when generating

user interface. Taxonomy in this chapter is divided into several categories. Each category

contains set of annotation tags that are designed to describe particular aspects of methods or

functions in the application code.

Figure 6.9 Code characterization categories

Before any specification of code characterization taxonomy, it is important to define how

methods and functions are represented. Every piece of information is object that has its

properties and methods. Methods can perform operations with the object - depending on their

functionality. Because objects can be further divided into smaller components – sub-objects –

which are accessible as properties, it is possible to create complex hierarchy of specialized

methods that work with object and are grouped into logical groups. All of the public methods,

that are visible outside of the objects, can be characterized using this taxonomy.

Code

Method Parameter Sense Category Event

75

6.2.1 Method attributes

Attributes express various information about methods that are implemented by the objects.

Although it might seem that information according to each of the methods are very different,

they have quite lots of common attributes that need to be defined for proper creation of user

interface. If some object implements a method that should participate in user interface, basic

attribute “Name” should be defined.

 Name attribute contains name of the method that should be presented to user in user

interface. In fact, name attribute is identifying attribute which means that every public

method of the object, characterized with the name attribute, is processed and contained

within the user interface. Name is not required for methods that already have its

category, because it already has name attribute. Name attribute can also be specified in

multiple languages so that user can choose which of the languages he prefers.

 Description attribute contains information, describing functionality of the command.

As well as name attribute, it is represented by string. Description can be used in cases

where user requires more information about the function of the command. Description

should not be confused with name, because name is also used as tool-tips because it

represents the name of the command. Description on the other hand can be used when

generating help contents for the application because it can contain more information

about required parameters etc. Description is optional attribute and does not have to be

specified in order of proper user interface generation process.

 Importance identifies commands that are more important than others. Objects, that are

used more often than others should be easily accessible to enable effective usage. In

graphical user interfaces important commands are placed in menus or toolbars such

way, that it is quickly accessible and has simple shortcuts. Definition of important

commands is usually problematic because it depends on many factors – what functions

will be used by most of the users etc. It is also possible to alter the importance of

commands during runtime so that importance of commands can change based on

user‟s application usage, leading in tailoring user interface to fit most often used

commands by particular user. A typical example of commands with high importance

can be a line tool in vector image editing software because lines are one of the most

often drawn vector primitives.

 Representation defines a symbol that represents certain commands. Representation is

especially important for commands that have high importance. Representation can be

76

defined as icon or image. For commands that belong to a category, representation is

most usually defined in category definition file. In this case, another definition of

representation overrides default representation.

 Dependency – Every method in the code has some dependencies that must be satisfied

before the code is executed. This is most usually checked by developer programming

user interface. In automatic generation of user interface, the user interface has to know

when command is enabled or disabled. So dependency expresses conditions which

have to be satisfied to allow execution of selected command. Dependency is very

important because without proper dependence checking, user can have access to

unavailable commands. An example can be playing of media file although there is no

media file open. By default, if dependency attribute is not defined, the command is

always available to the user and user can execute the command at any time.

Dependency attributes can be defined multiple times to reflect various rules. Based on

the implementation of dependency attribute, rule can be defined as regular expression

or it can be a method name, which can return flag signaling whether all conditions of

rule were met. Dependency attribute is one of the key attributes that controls

availability of commands in user interface. For example, an application has menu item

called “play” to play multimedia file. However menu item must be disabled as long as

there is not multimedia file loaded. The first rule can check if there is already loaded

multimedia file.

 A modal operation is operation that requires the user to interact with it before he can

return to operating the parent object who executed the operation, thus preventing the

workflow on the object or whole application. In visual user interfaces, modal

operations are represented by modal windows and are often called heavy windows or

modal dialogs because the window is often used to display a dialog box. Because it is

not possible to recognize which method of particular object should or should not be

modal, it is important to mark the method as modal. For example, application with

open command requires as parameter information about file. In case the performing

method is characterized as modal, application presents user a dialog with file browsing

capability. User cannot switch to other application content as long as file is selected

and confirmed. The open method receives file information parameter and performs file

opening. In case that performing method is not characterized as modal, application

presents user a dialog with file browsing capability. User can switch to application

content and select open command repeatedly, showing multiple dialogs with file

77

browsing capability. Modal operations are important to keep application workflow.

Frequent uses of modal operations include:

o drawing attention to vital pieces of information

o blocking the application flow until information required to continue is entered,

as for example a password in a login process

o collecting application configuration options in a centralized dialog – in such

cases, typically the changes are applied upon closing the dialog, and access to

the application is disabled while the edits are being made

o warning that the effects of the current action are not reversible

 Dialog – To support blocking behavior for warnings and questions before operation

can be performed, it is necessary to present dialog with question or information to the

user who can decide whether the operation should or should not be performed. Some

examples of such behavior were described in previous paragraph. However because it

is important to present dialog to the user before the operation is executed, additional

information must be specified to enable such behavior. For this reason a dialog

attribute was defined. Dialog attribute informs user interface generation process that it

should display a dialog before the method is executed. Dialog contains information

about type of reply (yes or no, ok or cancel) and indication at what reply should be

method executed. For example a method called “close” performing closing the

application defines dialog attribute with question whether user wants to close the

application and indication that it should be executed when user replies yes. When user

tries to close the application, user interface presents modal dialog with the question

and in case user replies yes, method is executed and application is closed. In the later

case, when user replies no, method is not executed.

78

Figure 6.10 Method Attributes

6.2.2 Parameter Attributes

Almost every implemented method has some parameters. Parameters init method and method

most usually works with available parameters or internal variables. That is why its

characterization is very important. Following parameters are basic parameters that are

important for proper calling of selected method. An example can be drawing into an image. A

method that can draw a line has three main parameters: color, starting point and ending point.

User interface based on parameter characterization knows that the form, which is displaying

the image, has a color palette to which is related color in draw line method. User interface will

not require user to specify this parameter manually and take the value from the color palette.

Because points are data characterized and related to image, user interface knows that the

location should be taken from the displayed image and when user selects draw line command,

user interface expects user to select two points in the area. After both points are selected,

command is executed. Following parameters are important for proper parameter

characterization.

 Name - Describes name of the parameter and is similar to name in method attribute.

Name is not always required but is very important in user interfaces that are not based

on visual interfaces (e.g. for blind people). As well as name of the method, name can

be used for creating dialogues of what information command requires from the user.

Name can also be used when generating help or documentation,

 Description attribute describes what kind of value is required for the parameter. As

well as name attribute, it is represented as a string. Description can be used to define

Method

Name

Description

Importance

Representation

Dependency

Dialog

Modal

79

parameter value more precisely by showing tips and describing value that is required.

Description should not be confused with name, because name can be used as a label or

other parameter descriptor in user interface. Description, on the other hand, can be

used when generating help contents for the application because it can contain more

information about parameter and its relations. Description is optional attribute and

does not have to be specified in order of proper user interface generation process.

 Relation is important for the parameters because it describes relation between

parameter and another object in environment. When relation is specified, user

interface automatically takes result of relation as input for the parameter. An example

is color from color palette. Drawing methods require color which is taken from color

palette automatically. If there is no relation specified, user interface creates new color

selection dialog just for the purpose of getting required information.

 Default value – Some parameters, most usually quantitative, require certain value.

Although user can change the value, sometimes it is more convenient to show user

some kind of default value that can be used for the command too. An example is

number of passes of some computational task. Although user can specify much greater

value, algorithm can have good results in five passes. Default value can tell user what

values are optimal. In case a relation attribute is specified, default value might or

might not be used, depending on the type of data and relation.

 Maximum and Minimum Value – It is possible to define maximum and minimum

value as a boundary around default value. In such cases, user interface control checks

if the value, specified by user is in valid boundaries.

Figure 6.11 Parameter Attributes

Parameter

Name

Description

Relation

Default Value

Maximum Value

Minimum Value

80

6.2.3 Sense

Sense helps to distinguish how are methods executed. By default, user selects command, user

interface asks for parameters and method is executed with all specified parameters. Such

default sense is called command. When tool sense is specified, user interface runs method

again and again as long as the command in context is selected. Typical example is selecting

some tool – e.g. a draw line tool – from a toolbox. As long as user keeps up with specifying

points in the image and as long as the tool is selected, user interface calls draw line command

repeatedly and user draws lines. Command and tool sense cover most of the types of method

executions and that is why various types of user interfaces can be generated.

For some objects there also exists default action that can be executed whenever user selects

object and launches default action. In graphical user interfaces this is most usually done by

double-clicking. For blind users, there is usually voice command run or open. In this case, it is

possible to specify which command is default and should be used in such cases.

Figure 6.12 Sense

6.2.4 Category

Command category defines set of operations or commands that can be executed on the object.

A typical example of command category can be set of methods that allow playing, stopping,

pausing of recorded data (might be audio or video playback, or any other data that object can

replay or record). Set of such commands have usually default symbolic representation and

users got used to the concept from a real world or other applications. That is what command

categories are designed for – keep the concept of control from real world to be consistent.

Command categories can be easily defined in XML format and extend existing set of

categories. Categories can be represented in user interface using concept of smart-templates

[130] which contain information about default symbolic representation and also default

graphical design. Main benefit of smart-templates is its platform independence and ability to

Sense

Command

Tool

Default

81

adapt to devices capabilities and properties. Because object can be of various categories,

multiple categories can be defined for a single object. Following categories are basic for most

applications and should always be implemented.

Collection

One of the most often used components in user interfaces are collections or lists because they

can contain multiple items and using lists is natural for every user. Every human is used to

sort any information or objects and store them together based on their purpose. For example,

photo album contains photos that were shot at the same event; shops have goods of similar

type in their shelves so that customers can quickly find goods of the same type but different

brand etc. All these items can be effectively presented in a list user control. Most of the lists,

or collections, contain markers that can be used to highlight selected item, or multiple selected

items, to allow user to control the content of the list, modify it, add or remove items etc. Data

characterization process allowed creation of list user control but with very limited

functionality. Because there is no additional information about what can be done with the

items in the list, it was impossible to define proper operations over the data in the list itself.

For example, in a playlist of a multimedia player there are multiple items in the list,

representing media files with properties such as author, track name, album name etc. In the

list user interface control with data characterization only, adding new item would mean

creation of structure or database record with new item, asking user for author, track name,

album name etc. Playlist is, however, built on media files, showing their properties rather than

list of properties without any relation to the real file. Characterizing method for adding item to

the list, taking as a parameter media file can solve the problem and allows creation of

dependent operation that can be performed in certain conditions with wide range of options.

Characterized add method is also one of the default list methods and can be presented in a

consistent manner nearby the list.

Figure 6.13 Collection Methods

Collection

Add

Remove

Clear

SetSelected

GetSelected

82

Basic operations over the list or collection are addition and removal, and cover most of the

operations done by the user on the list of items, because user usually needs to fill the data and

remove them when needed. Clear operation can be specified when there is need to remove all

the items with single operation, replacing need to select all items in the list and remove them

manually. Last operations on the list or collection are bound to selection. Without knowledge

of selected items in the list, it would be just presentation with no other functionality.

Propagating information about selected items can enrich functionality. For example,

multimedia player can start playing selected media file when user executes play command.

Collection category can also be implemented on objects that are not data characterized as

composite sets. If an object that is not characterized as composite set implements collection

category, user interface can place commands in consistent way nearby user control,

representing characterized data.

Storage

Goal of almost every application is to create new content, or save, and open already created

content. With data characterization so far, it was not possible to create application that would

have behavior that could enable opening and saving various content. User interfaces based on

data characterization presented existing data and did not allow opening new kinds of data,

because of need to have existing data ready for presentation. For example, in an image editing

software, user wants to open existing image for editing. In case of data characterization,

application would have a concept button, representing already populated set of all images.

User would have to click the button and select the image from the list. Selected image would

be shown because it is atomic entity data with portrait sense. In case of code characterization,

user can execute open command that takes as a parameter file – an open file dialog is

presented to allow choosing any file, even from dynamically mounted storages.

Storage methods are usually represented by common symbols (e.g. save by diskette icon, new

by empty document icon) and are by default characterized with high importance. By default,

storage category commands are present in the main menu and toolbar to be quickly accessible.

83

Figure 6.14 Storage Methods

Navigation

Navigation category is related to collections but can be defined separately from collection on

any object that needs to support navigation functionality. Navigation describes operations that

allow change of some actual, current, or selected object in the means of moving to next,

previous, first or last one. Navigation should be done sequentially so that moving to next and

back always follows same order. When composite set object has code characterized

navigation methods, user interface contains controls bound to the presented collection,

because methods of the object should work over the data contained within the collection. In

case of atomic object, user interface creates controls independently and functionality is

dependent on implementation of the navigation methods. For example, multimedia player has

a playlist with multiple media files. Multimedia player also has buttons next and previous for

playing next and previous media file from the list but the implementing methods are not

implemented in the playlist object but in the player object. Executing next or previous

command performs change in the selection of the playlist. Playlist throws new event selection

changed that is handled by the player object which, in case of playing other media file, starts

playing newly selected media file. Similar example can be implementation of next and

previous in an internet browser, which allows returning to previously visited pages etc.

Storage

New

Open

Save

SaveAs

Close

84

Figure 6.15 Navigation Methods

Player

This specific category is defined for the purpose of applications that need to perform

operations that can be described as playing of records. For example, a multimedia player is

application designed for playing of multimedia files. It contains play, stop, and pause buttons

to perform control of playing selected media file. Another example can be application that is

performing saving network communication during simulation (e.g. for the purpose of

replaying and reviewing simulation). It contains play, stop, and pause buttons to perform

playback of the simulation during review and evaluation of the simulated exercise.

Player category can have methods for start (play), stop and pause of playback. Special method

is joint play and pause when executing play command when media player is playing, it leads

to pausing the playback. All player methods are usually represented by standard symbols but

their representation can be altered by custom symbols to represent design that fits the

functionality of the application.

Figure 6.16 Player Methods

Clipboard

Clipboard is widely used technique for data copying and moving and should be kept

consistent in all platforms. Clipboard category defines methods that can be used for this

Navigation

Next

Previous

First

Last

Player

Play

Stop

Pause

PlayPause

85

purpose. For the copy and cut operations, it is important to define dependency of the method,

at which conditions it is possible to copy or cut operation perform. The reason for this

behavior is that it is not possible to define when application can copy or cut selected data.

Rather, every time object changes its state or properties, dependency is reevaluated and copy

and cut operations are enabled or disabled based on the dependency result. Similar behavior is

for paste operation. It is hard to define what kind of data application can process and thus

every time clipboard content has changed, dependency is reevaluated and paste operation is

enabled or disabled based on the dependency result. This way, it is possible to control

behavior of clipboard operations without knowledge of data, that application, or objects of the

application can process.

Figure 6.17 Clipboard Methods

With data characterization only, clipboard operations were possible on the presented data

only. For example, remember the playlist example with multiple columns, representing

author, name etc. Copy operation would copy entry from the collection and paste the entry

with the data copied from the playlist without any relation to media files. In case that other

application stores path to media file into clipboard, collection in data characterized

presentation is unable to handle paste of such data because it is not compatible with entry

structure in the collection. On the other hand, thanks to characterized code, paste operation is

possible because dependency evaluation confirms ability to process such kind of data, loads

header of the media file based on the path in the clipboard and adds new entry to the playlist.

It is now clearer how code characterization helps with clipboard operations.

Drag-and-Drop

Drag-and-drop or DnD is the action of (or support for the action of) picking a virtual object

and dragging it to a different location or onto another virtual object. In general, it can be used

to invoke many kinds of actions, or create various types of associations between two abstract

objects. As a feature, support for drag-and-drop is not found in all software, though it is

Clipboard

Copy

Cut

Paste

86

sometimes a fast and easy-to-learn technique for users to perform tasks. In case of data

characterization, DnD was possible but with limited functionality for objects. In a clipboard

example a problem with copy and paste operation was described. Similar problem occurs

when dragging object of different type onto composite set. Drop operation cannot be handled

because the data type is different and user interface cannot add new item to the collection.

Code characterization defines methods handling drag and drop operations so that user

interface can check whether object can handle this type of object.

Figure 6.18 Draggable and Droppable Methods

Object with method DoDrag that belongs to draggable category informs that object can be

dragged. When an object can be dragged, user interface allows user to pick the object and

start dragging. Execution of DoDrag method leads to filling information about object and his

type for the droppable target. Droppable target is recognized by implementing code

characterized methods DragEnter and DragDrop of droppable category with logic for

checking whether dragged object can be dropped, and acquiring dropped object. When

dragged object is over droppable, DragEnter is called to inform droppable that there is a

dragged object with certain information. Droppable evaluates format of the dragged data and

informs what kind of operation can be done with the dragged data. After finishing the drop by

the user, DragDrop is called and droppable gets the dragged data (just in the case that it can

handle dragged data as specified in DragEnter). This way, there is no need to define explicitly

what kind of objects can be dropped and all checking remains on the side of the object and its

implementation.

6.2.5 Events

Events represent a mechanism that informs user interface or application code that there have

been some changes in the data from the user or from the application code. Although various

approaches exist for implementing such behavior using callbacks [130], TAPS [131] or ORB

[132], event mechanism is very simple and works well for duplex communication. Besides

Draggable DoDrag

Droppable

DragEnter

DragDrop

87

events, modern programming languages support property descriptors [133] which can be used

to detect property changes. However, property changes are detected only when property is

assigned to and not in case that property has been changed inside of the object. Main benefit

of event descriptors is that there is no need for the object to register any event. Property

descriptors can be registered in intermediate framework during initialization. On the other

hand, registering event on the object guarantees that user interface will be informed about all

changes of the object internal data.

Base event, that should be implemented for every object, is “changed”. Such event should be

thrown always when data of certain object have been changed. In case of data that is changing

infrequently, it is important to be notified about the change so that user interface can redraw

its content. For data, that have data characterization with high dynamic transience [122], user

interface can check its state very often and optimize the performance. Event mechanism can

be used for static data or data with low dynamic transience.

Because user interface set the data that are changed in user interface immediately to the

object‟s properties, it is not necessary to inform object about changes in public data. However,

for languages that do not support concept of properties (e.g. C++) it is necessary to implement

set method that should be characterized by “userChanged”. This event contains also definition

for what data is event designed so that user interface can react correctly when user changes

any data.

6.2.6 Entry point

Running application from characterized code with no entry point is little tricky. Without entry

point, there is no information about what object should be created as the first instance that

would be understood as root object for the user interface, from which user interface

generation and user control process starts. That is why the entry point attribute is defined – to

tell the generator that this is the root object for the application. This, of course, means that

there has to be only one object with such attribute because in case of multiple objects

behavior could be unpredictable. In case there is no object with entry point attribute, user

interface generator would be unable to start the application because there would be no object

to start from. This is one of the limits of current approach – however in current applications, it

is usually not possible to launch different applications from single executable file and so the

restriction with just one entry point is not critical.

88

7 Generating user interface from characterized code

A code characterized using presented taxonomy in the previous chapter can be processed by a

framework that is capable of the characterization analysis associated with the code and

generate the user interface on the fly. This chapter is presenting all the processes required to

create the user interface in an abstract form because concrete implementations can vary

among various platforms and languages. For example, in case of .NET Framework, it is

possible to define custom attributes that can be used as data and code characterization tool to

characterize necessary information. This information can be included in the final assembly

which contains not only the code but also metadata, including type information and its

attributes. Because .NET Framework supports reflection, it is possible to retrieve the type

information from the assembly using the reflection at any time with standard means of the

language. On the other hand, C++ does not allow creation of such output. That is why a

preprocessor would be required that would have to extract characterization information from

the source files and generate besides the output dynamic library another file with necessary

characterization information. Because there is no standard way how to load characterization

from the custom file generated by preprocessor, a code characterization factory have to be

created to support such functionality. Such information file can be saved in a standard human-

readable form (e.g. XML) or in a binary form. Because storing attributes as metadata in an

assembly is very different from possible custom output using custom preprocessor, this work

will not discuss particular implementation but will present information in an abstract or

formal way.

Because generating user interface is very complex task, it is divided into several steps. First

by, it is important to analyze user context. This information is used later in the process of

identification of suitable user interface elements. With knowledge of contexts, code

characteristics is loaded and stored in a structure representing abstract information about data

and operations. Objects are then grouped using context information into containers that define

what pieces of information should be kept together. Abstract information about data and

operations is then transformed into particular user interface controls in a way that it meets all

constraints. A final layout of controls is designed and user interface is ready for use. Because

it is possible to create various user interfaces based on device capabilities, produced user

interface can be designed for voice, pointer, touch or other controls as human computer

interaction or user interface industry proposes novel approaches or techniques to work with

89

devices. Following paragraphs describe each of the user interface generation steps in more

detail.

7.1 User context analysis

First step in automated user interface generation process is user context analysis. User context

is any information that can be used to characterize the situation of an entity [134]. An entity is

a person, place, or object that is considered relevant to the interaction between a user and an

application, including the user and applications themselves. Because user context can change

in time, a static (e.g. used for desktop computing) and a dynamic (e.g. mobile computing) user

context exists. This means that user context can change in time as user changes his attention

or focus to other tasks. In such cases, user context analysis should be done regularly and user

interface should be modified to suit the context of the user. For example, user is working with

device equipped with touch screen. During the operation of the device user enters a car and

starts driving. Because user is visually occupied by driving, device has to change modality to

voice commands and audio output because user cannot check the display anymore. Thus it

can be said that changing user context can lead to change in modality.

User context can be divided into two main parts, device context and human context. Division

is possible because both device and user can be handled separately and also both device and

user are in same space (user is using the device directly, not remotely). Thanks to same space,

device can be used to gather information about the context of the user.

7.1.1 Device context

Device context represents hardware and software capabilities of the device.

Hardware

Because there is huge variety among devices that can be used by users, it is important to

analyze hardware features and limits of the device. Based on the capabilities and features of

the device, a proper user interface can be created. The most important hardware properties of

the devices are:

 Computational power (processor, architecture)

 Display (display size, resolution, color depth)

 Memory (RAM, storage)

 Input / Output (keyboard, microphone, speaker, touch)

90

Computational power affects modality used to communicate with the user. Some user

interfaces (e.g. based on video input) can require more computational power while other (e.g.

touch input) require less computation power. Display parameters affect visual user interfaces

– their sizes and layout because user interface should fit the display. Memory affects user

interfaces that are memory intensive (e.g. video input / output, audio input / output). Input /

Output type affects modality, used for interaction with the user.

Software

By software, operating system and its installed libraries and applications that are capable of

various functionalities that can be important for presenting the user interface, is usually

meant. Ideally, software that is capable to present the user interface to user should be

operating system independent. However the situation in the real world is a bit complicated – it

is not easy to produce the software that is capable to run on all available platforms.

Fortunately, there are some runtime environments supporting large variety of platforms, such

as Java or .NET Framework.

Although framework for automatic generation of user interface is also software, it is not the

default part of the device. However, the framework contains data that are somehow connected

to the device – abstract (AIOs) and concrete (CIOs) interface objects which can be considered

as a part of the software. More information about AIOs and CIOs is in the next chapters.

7.1.2 Human context

In the contrary to the device context, the human context cannot be expressed exactly because

computers, so far, are not able to understand the meaning of user actions. However it is

possible to estimate what is the user willing to do. In this process of estimation, a three parts

play key role: personal capabilities, environment, and modality.

Personal Capabilities

This part covers user‟s personal abilities and disabilities, such as visual impairment, user‟s

working with the application and other personal settings. Because it is not possible to track

user‟s personality, it is possible to create a set of predefined templates and apply them when

needed.

Environment

Environment surrounding user plays important role when designing user interface. It is

91

because it can be very variable and unpredictable. Environment features can limit or support

user in performing some actions, including operation of a device. For example, in noisy

environment, it is more convenient to present user interface visually then using audio output,

because sound could be hardly heard in noisy environment. This way environment affects

modality.

Modality

This part expresses what modality is user willing to use when communicating and operating

the device. Most often used modalities are visual and audible.

7.2 Parsing code characteristics

After the context analysis is done, code characteristic is being loaded. At first, all data

characterized types are loaded and for each of them a description is created. Description

consists of a characterized data tree and a characterized code tree. Structure with all data

characterized types is called characterization tree. An example of a characterized data and

code is in Figure 7.1.

7.2.1 Data

Characterized data tree is built from public properties of the object which are characterized

composite data or entities. Because composite data can consist of sub-structures, data are not

stored in a list but in a tree that contains structural information about the object. In ideal case,

when there is one entry point object and all other objects are its sub-structures, entry point

object is also the root of the whole tree. This, however, is not common because most usually,

thanks to inheritance, some sub-structures are abstract classes or interfaces. In such case it is

not possible to load characteristics of all objects, because some of them might be defined in

other libraries. Libraries, that are directly referenced, can be processed and loaded during

startup, however dynamically loaded libraries are unknown during startup and thus it can

Figure 7.1 Example of the characterized source code from the simple media player.

[CodeCharacterization.FirstObjectSelected]

[DataCharacterization.DataType(DataTypes.Atomic)]

[DataCharacterization.DataDomain(DataDomains.Entity)]

[DataCharacterization.DataForm(DataShapes.Shaped)]

[CodeCharacterization.CodeName("Media Player")]

public class MediaPlayer

{

 …

}

92

happen that an instance of a new inherited type is created and additional code characteristics

must be loaded and interface creation process have to be performed incrementally to support

new functionality and properties of the new object.

7.2.2 Code

The characterized code tree is built from public methods of the object. Description of every

method consists of its attributes that describe command name and its behavior. Because some

methods can have parameters, these are stored in a parameter tree. Every parameter is a node

with attached attributes, describing parameter. Parameter can reference node from data tree,

because it can be data characterized object for which specific data characterization have been

specified.

7.2.3 Algorithm

Algorithm presented in Figure 7.2 demonstrates steps needed to load the characteristics. A

high level description is used to present the algorithm.

 Figure 7.2 Algorithm for parsing characteristics

foreach(DataType in CharacteristicsFile)

{

 if (DataType has no characteristics) Continue;

 Create instance of data type characteristics.

 if (DataType is inherited) Get Characteristics of base data type

Parse Characteristics of DataType

 foreach(Variable in DataType) {

 if (Variable has no characteristics) Continue;

if (Variable is from CharacteristicsFile) {

 Get Data Type Characteristics of Variable From the Tree

 }

 Parse Specific Characteristics of Variable

 Insert characteristics to instance.Data

}

foreach(Method in DataType) {

 if (Method has no Name attribute) Continue;

 Create instance of Method characteristics.

Parse Specific Characteristics of Method

 foreach(Parameter of Method) {

 Create instance of parameter characteristics

 if (Parameter is from CharacteristicsFile) {

 Get Characteristics of Parameter From Tree

}

Parse Specific Characteristics of Parameter

Insert characteristics to Method.Params;

}

Insert characteristics to instance.Code

}

Insert data type characteristics to Tree

}

93

Data and code that has been characterized must be loaded to provide information for the next

steps in the automated user interface generation process. Each data type from an assembly or

other source characteristics file is processed. If the data type has no characteristics, it is not

taking part in the user interface and will be skipped. A structure holding loaded characteristics

of the data type is created and all characteristics – data and code – are stored within. All the

characteristics nodes of the data type are parsed and their values are stored in the structure.

The process of loading characteristics is repeated recursively for any internal variable and its

data type. These loaded characteristics are stored into the structure as sub-nodes, creating tree

with the original data as the root and characterized variables as sub-nodes.

After the internal variables of the data type are parsed, characterized methods are processed.

Because characterized method will be visible in the user interface, it has to define

characterization tag Name, which will be used to represent the command in the user interface.

Methods not having this tag defined are skipped and will not be used in the process of

automated user interface generation. For any characterized method, a structure containing its

characteristics is created and filled with the parsed characterization values. Depending on the

type of method – with or without parameters, existing parameters are parsed for the

characterization tags and stored in the method‟s structure. Complete structure with method

characteristics and its parameters is stored in the parent data type structure. This ensures all

the characterized data types and its methods are stored in a tree structure, defining basic

structure of the user interface in the means of grouping objects in the user interface.

Figure 7.3 Simplified characteristics tree of a media player

Figure 7.3 depicts simplified tree of a media player application, where only few attributes and

only small number of data and code is displayed. Actually, all objects contain multiple

94

characterization attributes and many of them have complex data and code sub-trees. Although

this is not complete example, it is sufficient for demonstration of loaded characterization in

aforementioned paragraphs. MediaPlayer object is characterized as entry point, thus it is

defined as a root of the tree, and contains all own data and code characterization attributes. In

the figure, only two attributes are displayed to make the example well readable. The object of

media player contains properties and methods that are characterized and should be used in the

final user interface. In the data tree of the MediaPlayer, there are multiple data types, but for

the demonstration purposes only two are displayed. The “CurrentPosition” data type is a

concept representing position in the played media file. It does not have additional data or code

sub-trees because it is native atomic value type. The “Playlist” is a list with entries,

representing items that can be played by the media player. Playlist have data and code sub-

trees containing definition internal variables and methods performing various actions. In the

code tree of the MediaPlayer, there are multiple methods, but for the demonstration purposes

only two are displayed. The “PlayPause” method is from the player category and indicates

that it is used to play, or pause, playback of selected media file in the playlist. It has no

parameters so no data sub-tree is present. The “Stop” method is from the player category too

and indicates that it is used to stop the playback. It has no parameters so no data sub-tree is

present.

7.3 User interface creation process

The characterization tree with loaded information about the characterized code and data

contains structured information about application, its data and functions. This structured

information can be used to automatically generate user interface. The process of automatic

generation of the user interface has several steps. First, object of the tree must be abstracted so

that they can describe possible user interface elements. Abstraction must be general enough to

be platform independent but allow application of constraints, which will be used later to

choose proper concrete user interface element. Abstracted object then must be grouped

together in to logical units, which will be presented to user together in a single block (e.g. in a

window or dialog in case of desktop user interface). Grouped abstract objects are concretized

using constraints to concrete user interface elements. User interface elements are then placed

to a proper part of user interface based on used modality. In case it is not possible to place the

objects in a single block, another iteration of concretizing has to be performed to find optimal

solution. After completing the layout, evaluation should follow to get metrics about quality of

generated user interface. Whole process will be described in a more detail in the next sub-

95

sections.

7.3.1 Abstraction of objects

As soon as characterization tree is loaded, it is necessary to abstract characterized data types

and code to objects that can be manipulated and presented in the user interface. To represent

these objects, a concept of concrete interaction object (CIO) [135] is defined as any part of

user interface that users can perceive (e.g. text, image, animation, sound) and manipulate (e.g.

button, text box, check box). It could be an object from a library or provided by some toolkit.

Available user controls from across platforms, various libraries, and toolkits, seem to be

different, but when looking closer, they are similar. Figure 7.4 depicts different forms of

CIOs: top line contains checkboxes with a different look but the same feel (Java Swing,

Windows Forms, and Motif respectively), second line contains checkboxes with the same

look and different feel (Microsoft Windows, Motif, and Garnet respectively).

Figure 7.4 Variations of concrete interaction objects as shown in [135]

Abstract Interface Objects

While different CIOs may exhibit different look and feel, they have same behavior. And that

is the reason why a concept of abstract interaction object (AIO) was introduced [135] and is

defined as an abstraction of a set of CIOs with respect to a set of common properties [136].

AIOs contain general attributes (such as height, width etc.), events (such as checked etc.), and

primitive functions (such as Enable, Check etc.). By definition, AIOs do not have any

particular representations.

Linking AIOs with CIOs

Before data and code can be abstracted to AIOs, a library of AIOs has to be defined.

Definition of individual AIOs cannot be done automatically. Every AIO should be given

96

understandable name and depending on its purpose a set of suitable user controls (CIOs) that

are capable of providing required functionality must be linked to the AIO. Thus AIO should

contain subset of attributes from well known predefined set (such as height, width etc.) that

should be mapped to each CIO and a subset of well known predefined methods that can

provide required functionality. Again, each method should be linked to a method of particular

CIO. Linking AIO with CIOs is important because user interface generation process must

know how to use attributes and methods of AIO to be able to control final CIO. Thus

assignment to property or executing method of AIO is mapped to assignment to concrete

property or execution of method of instantiated CIO.

Mapping data and code to AIOs

Each characterized data and code in the characterization tree must be mapped to AIO which

represent information about future user interface control that will be used for interaction with

user. Choosing appropriate AIO for each method or data type is based on a set of rules. If

there is no rule that could be applied to data type or method, then it is not possible to find AIO

and create resulting user interface. That is why a set of rules must be complex and stable. By

stability is meant that when applying rules to find ideal AIO, there must be just one AIO that

fits the rules.

For example, a string data type can have data characterization as atomic data type, entity

domain and static transience. Set of rules that leads to AIO named “text label” could be:

Figure 7.5 Set of rules to select AIO named "text label"

This means that AIO “text label” will be used in case of all properties which are strings and

are characterized as atomic (do not have internal structure) and are static (content is not

changing) . In the case when transience could be dynamic, it would be possible to choose AIO

with functionality that is similar to text box, where value can be changed. Thanks to rule sets

it is possible to map various AIOs. For example characterized atomic data which are concepts

named “timeline” can be mapped to AIO called timeline, which can be represented by track

bar, or progress bar, or other special user control allowing changing of value in horizontal

direction. Similarly, characterized methods are mapped to AIOs which can be represented in

1. data type is string

2. data characterization type is atomic

3. data characterization attribute transience is static

97

resulting user interface by buttons, menu items or other CIOs.

Algorithm

The algorithm in the high level description in Figure 7.5 presents a way of converting

characterization tree to AIOs.

Figure 7.6 Algorithm for conversion of characterization tree to AIOs

First, definitions of available AIOs are loaded from the repository. Method CreateAIOs is

called for the root data characteristics in the characterization tree. The parameters of the

method are, besides the data characteristics, user preferences and the context, used in the

process of conversion to AIOs. For each AIO, defined in the AIO database, is computed a

score representing suitability of the AIO for the given characteristics. After all AIOs were

evaluated, AIO with highest score is selected and initialized based on the data or code

Load AIO Database from repository

CreateAIOs(dataChar, userPrefs, context)

{

foreach(aio in AIO database) {

 Score = EvaluateRules(aio, dataChar, userPrefs, context);

StoreScore(aio, score);

}

PickAIOwithHighestScore();

PerformAIOSpecificSetup(dataChar, userPrefs, context);

foreach(dch in dataChar.Data) {

 CreateAIOs(dch, userPrefs, context);

}

foreach(cch in dataChar.Code) {

 if(cch has defined category AND

 smart template for the category exists) {

 Get smart template AIO for the category

Link cch with smart template AIO

} else {

 foreach(aio in AIO database) {

 Score = EvaluateRules(aio, dataChar, userPrefs,

 context);

StoreScore(aio, score);

}

Pick AIO from AIO database with highest Score;

 }

 if (cch.Params > 0) {

 Create Dialog AIO

 foreach(parameter in the cch.Params) {

CreateAIOs(parameter, userPrefs, context);

Add created AIOs into Dialog

}

 Link Dialog with cch

}

}

98

characteristics, user preferences and context.

Each characterization tree node consists of the data and code sub-trees representing internal

data and commands and must be converted to AIOs too. If the internal data and commands are

not converted, the user interface would not be complete. First, all nodes of the data sub-tree

are converted, and then all nodes of the code sub-tree. In case of the data sub-tree, the method

CreateAIOs is called recursively to assure all data characteristics are converted to AIOs in a

straight way. For the code sub-tree, conversion is a bit more complex. Because some methods

can be part of some category (for example methods for collection, player etc.), code

characteristics should be tested if it belongs to some category. If it does and a smart template

AIO for the category exists, smart template AIO is updated with the new code characteristics

to reflect new method implementing individual command of the smart template AIO. In other

cases (code characteristics does, or does not, define a category, or smart template AIO does

not exist), scores for all AIOs in the AIO database are evaluated and the one with highest

score is selected. This mechanism of computing score takes into consideration rules applying

to code categories and allows picking of smart template AIO which is the best for the

categorized code.

Figure 7.7 Example of conversion of the characterization tree of the simple media player to the AIOs.

Now, all the data and its methods are converted to AIOs except parameters of the methods.

Parameters of the methods can refer to certain data or request user input and must be

converted to AIOs too. That is why a container AIO (a container for user interface elements

required for the parameter input) is created and filled with AIOs of characterized parameters.

Container, containing the method parameters, will be extended by AIO allowing committing

or cancelling set values to allow command execution when all parameters are set properly.

99

7.3.2 Object grouping

Because many modern programming languages are using object oriented programming, their

paradigms can be used as a benefit for grouping objects that should be together because they

form particular control and interaction logic. That is because one of the most important

paradigms of object oriented programming is solving tasks with respect to reality [137]. With

these paradigms in mind, programmers should design classes and objects containing

information that should be reasonable for the classes and objects. Thus properties of each

object should be grouped together to form a dialog with all necessary information about the

object.

However, presentation abilities of various output devices are always limited in some way. For

example, devices with display providing graphical output can show only limited amount of

information at a time. Limit is affected by display size, its resolution, depth of color, font size

etc. That is why objects should be grouped together into containers that can be abstracted for

the user so that it is possible to control resulting user interface without problems. To reduce

amount of information presented at the same time, internal structure of object can be used as a

benefit, because programmer already abstracted information that should remain together by

creation of substructures or internal properties of object. It can be said that almost every

substructure can be abstracted as container containing properties of the substructure. In cases

when objects have many properties that cannot be effectively presented thanks to limits of

presentation device, these should be regrouped into smaller containers which can be presented

independently. For example, in case of small display with small resolution, it is possible to

group AIOs into several containers inside the tab control.

Grouping of objects must consider, besides the capabilities of the device, the importance

attributes. Objects and commands with high importance should be always easily accessible

and that is why it is important to place such objects into containers that will be easily

accessible too. In case of commands with high importance, it is possible to place the

commands in the main menu to enable easy accessibility. In the means of characterization

tree, command is duplicated and moved to another container, for example abstracted as a

“tool bar” AIO. This duplication means that command over the object can be performed from

various user interface places. Because command duplicates all the information, including

dependency attributes, availability of the command is same in all containing parts of the user

100

interface.

7.3.3 Abstract objects concretization

Because AIOs do not represent concrete user interface element, conversion to CIOs must be

performed.

Selecting modality

Modality defines a way of communication between the user and the device. Before any AIO

can be concretized to CIO, a modality must be chosen so that appropriate CIO can be selected

that suits the chosen modality. Information about capabilities is analyzed to induce which

modalities are available. For example, for a device that has touch display, speaker and

microphone, but no keyboard, several modalities are available:

 visual output – display can present information to user

 sound output – speaker can play sound so information can be converted to speech

 touch input – display is touch sensitive, user inputs by hand

 voice input – microphone can record voice that can be recognized as commands

Next, information about user preference is used. In case user did not specify his preference,

selection of modality will be further influenced by surrounding environment. In the other

case, modality will be chosen depending on selected preferences. A problem might occur

when user selects modality that device is not able to perform. For example, user requires

sound output and voice input but device does not have built-in microphone. Although device

can present information by sound, it is not able to process audio commands from the user.

Creation of user interface that would satisfy preferences is not possible and user interface

cannot be created. It is, however, possible to create user interface that would accept touch

input – this could mean that user interface would not be suitable for blind or visually impaired

user who could set the preferences for this reason.

Context of environment is taken into account when user has not specified any preferences.

Based on parameters of environment, appropriate modality is chosen from available ones. For

example, user is in environment with high levels of noise. In this case, sound output and voice

input will be ignored because in environment with high amount of noise it is hard to hear

sound output properly and also voice recognition is difficult. Visual output and input by touch

or keyboard is preferred because environment does not affect these modalities. Another

example of environment context is user performing some activity that occupies user‟s sight –

101

e.g. driving a car. Because user that has occupied sight cannot control a device with visual

output, other modality must be selected to allow comfortable communication with the device,

such as sound output. For input modality, controlling keyboard, mouse or touch area of the

device is not possible because user has occupied also his hands during driving – voice

commands are the best solution. From the examples above it is obvious that selecting

appropriate modality requires a lot of information to be taken into consideration. However,

basic principle remains the same – best modality is the one that will cause user less

restrictions and compromises in his actions when using the device in current context.

A problem might occur when there are no CIOs defined that would be suitable for selected

modality. That is why a selection of modality must consider availability of suitable user

interface controls when deciding which modality is best in current context. For example, a

device allows multiple modalities, including audio output and input, touch control, visual

output, and user has preference for audio output and voice input – but because there is

available just one library with desktop user controls, then only visual output is available.

Filtering CIOs

Based on the selection of the proper modality, it is possible to filter out all unsuitable CIOs.

This is possible because each AIO is linked to multiple CIOs from different platforms and

libraries. After filtration is finished, each AIO should have at least one corresponding CIO

because if there is no CIO, it would not be possible to choose proper user control to present in

user interface and thus it would not be possible to create resulting user interface.

Filtering of CIOs is driven by set of rules that describe what kind of user interface control is

suitable for selected modality and what is not. For example, for visual output, CIOs with

graphical representation should be preferred over those CIOs with textual representation. In

case of 3D visual output, all user interface controls that are not represented by 3D models (but

2D graphics) should be omitted. After filtration, only CIOs that satisfy all rules defining

suitability of CIO for selected modality are present.

Selecting CIOs

In case there is just one CIO left, selection of CIO is straightforward and new instance of CIO

is created. In case there are multiple CIOs suitable for representation of the object, a set of

rules should be used to choose the best one. A set of rules is dependent on selected modality

102

and usage of the AIO. For example, a property of enumerated data type is atomic concept,

enumerated type has three values. Suitable CIOs are represented by a combo box or a set of

radio buttons. Both CIOs are suitable for selection of value of the property but each of the

CIOs have different look and feel, combo box requires less space, set of radio buttons allow

more comfortable selection. A score, rating suitability of each of both CIOs, is required to

decide which of the CIOs is more suitable. A score is computed depending on rules associated

to each of CIOs. Rules can consider requirements on display size and resolution, whether it is

related to other data, whether it can express relation to other data (selection of other value

leads into change of data in the user interface) etc.

From the Figure 7.8, a set of radio buttons will be selected in case that resolution and display

size are big enough – because it is well-arranged, does not express relation (enumeration does

not express relation), expresses enumeration, and is suitable for small number of items.

Combo box would be better choice in case of small display and resolution because its size is

constant for any number of items.

 CIO “combo box” CIO “set of radio buttons”

tabular false true

constant size true false

expresses relation true false

expresses enumeration true true

large number of items true false

requires precision false false

Figure 7.8 Example of rules for score computation

Designing layout

After each AIO was concretized to CIOs, it is possible to design layout of the resulting user

interface. Although it might seem that designing layout is placing of user controls in a form or

other desktop container, it has more general sense. By designing of layout of user interface is

meant positioning of user interface elements in the previously specified containers. This is not

generally placing user interface elements in a window. Because user interface can be created

for various modalities, it can be positioning in 2D or 3D space, or in time. Thus designing

layout must consider different rules when placing user interface elements in various spaces.

Because the goal of this work was focused on data and code characterization, following

103

subsection does not describe automated layout techniques, it rather refers to sources

describing these techniques.

In case of 2D visual user interface, user interface elements must be placed optimally and

follow some general rules, for example place user interface objects in a way that user does not

need to move the mouse much in order to get some work done. Many automated layout

methods have been presented in [138][139]. In case of 3D visual user interface, placing of

user interface elements is more complicated than in 2D. Various occlusions might occur and

control of user interface in 3D is more complicated because objects can move in various

directions and can have complex shapes. Some automated layout methods have been

presented in [140][141]. In case of audible modality using sound output and voice input, it is

important to remember that user has to keep in mind what is he doing and must remember lots

of information about the action he is performing. This means that user interface should

present requests sequentially, always report what user is doing etc. For example, in case of

blind user willing to send new email – by default, in visual user interface, user clicks “write

new email” button and fills in address, subject, and text. In case of blind user, user interface

has to tell that he is using email client. User replies for new email command and user interface

sequentially asks for address, subject, and text and waits for user to confirm sending. Methods

for modeling of user interface based on audible modality are presented in [142].

Algorithm

Following algorithm in the high level description presented in Figure 7.9 expresses possible

way of AIOs conversion to CIOs. The presented algorithm is generally enumeration of all

possible ways of a choosing and inserting of user interface elements. This approach hides well

distinguishable steps of object grouping and layout designing. However, the goals of this

work do not cover precise algorithms for the user interface generation process but rather

provide proof of the concept for which is this approach sufficient.

The goal of the algorithm is to choose solution with the smallest effort needed for the

interaction. Method ConvertToCIOs takes as a parameters characterization tree node,

respective AIO to be converted to CIO, context of the user and the device capabilities.

Information about the user context and device capabilities is used for selection of the right

CIOs and also to compute the cost function which returns cost of the interaction. The cost

function generally computes value (based on the selected modality, devices capabilities, and

104

so far converted AIOs) that reflects effort required for the interaction of user with the user

interface. For example, in case of visual user interface, total cost can reflect total distance of

cursor travelled among various user interface elements and number of clicks that needed to be

performed in order to control the user interface elements. After evaluation of the current cost,

value is compared with the best cost so far and continues if current cost is better than the best

cost. For other cases there is no reason to continue as final user interface would have higher

cost. If all AIOs have been converted to CIOs and the current cost is better than the best cost

so far, solution is stored and algorithm continues with other possible enumerations to test

remaining possibilities.

Figure 7.9 Algorithm for AIO to CIO transformation

GetCIOs returns all possible CIOs that are defined for the transformed AIO. For each of these

CIOs, sub-AIOs of the currently transformed AIO are converted to CIOs. Thus, all variants of

the user interface are evaluated and the best cost is found. The algorithm selects high

importance AIOs first and places them in the top bottom order. Although this solution is not

ConvertToCIOs(ChTree, AIO, Context, Device)

{

if (CurrentCost(ChTree, Context, Device) >= BestCost) return;

if (AllCIOsApplied()) {

BestCost = Cost;

BestCIOs = ChTree.CIOs;

return;

}

 CIOs = GetCIOs(AIO, Context, Device);

 foreach(CIO in CIOs) {

 if(ApplyCIO(CIO, AIO, Device)) {

 subAIOs = GetSubAIOs(AIO);

 SortByImportance(subAIOs);

 foreach(subAIO in subAIOs) {

 ConvertToCIOs(ChTree, subAIO, Context, Device);

}

}

UndoLastCIO();

}

}

AIOsToCIOs()

{

 foreach(SubTree in CharacterizationTree) {

 while(true) {

 ConvertToCIOs(SubTree, SubTree.AIO, Context, Device)

 if (ConversionComplete(SubTree)) break;

 RegroupLowestImportanceContainer(SubTree);

}

}

}

105

ideal, the goal of this work is to proof the concept of the data and code characterization and

for this purpose sorting of important AIOs is sufficient.

AIOsToCIOs is starting method performing conversion of the whole characterization tree. It is

converting every sub-tree of the characterization tree. At first, the sub-tree is converted to

CIOs. This, however, might fail because of constraints of the device – for example screen

dimensions do not allow placement of other user interface elements. For this reason, a

regrouping of the AIOs is implemented and lowest importance AIOs are grouped together into

container (for example, parameters with low importance will be grouped in a new dialog so

that user can show them after pressing a button). The regrouping continues until conversion to

CIOs is successful. Figure 7.10 demonstrates tree of CIOs converted from the AIOs of the

simple media player.

Figure 7.10 An example of CIOs converted from AIOs for the .NET Framework platform.

7.3.4 Instantiation of the user interface

Process of instantiation of the user interface creates fully functional user interface from the

characterization tree and CIOs. All the CIOs are from the same framework or library that will

be used for the user interface. In this moment is also known modality for the interaction

because selected CIOs support interaction using the modality. Instances of the user interface

elements (based on CIOs) should have the same hierarchical structure as AIOs. The structure

is result of object oriented programming and regrouping of the objects during the process of

the user interface generation.

Instantiation of the user interface performs two distinctive tasks. The goal of the first task is to

create instances of the user interface elements, setup their properties and manage their

106

hierarchy. Result of the first task is user interface that has the right structure but no

functionality. For example, visual user interface would have its correct shape and layout but

pressing buttons would perform no actions. The goal of the second task is to ensure all user

interface elements will have the right behavior performed by proper method calls, value

updates etc. After both tasks are complete, the user interface can be used for the purpose the

application was created for.

Ensuring the right behavior of the user interface elements is not simple. Lots of additional

code must be dynamically generated that will handle changes of the data or user interface

elements states. A code performing communication with user for commands with multiple

parameters must be generated, including various test of new value validity. A code

performing tests over command availability must be generated to allow execute only those

commands which have all conditions met. Modern programming frameworks such as .NET

Framework or Java allow dynamic code creation and compilation during runtime. Older

programming languages or frameworks that do not support dynamic code creation and

compilation have to define many templates that can be used in various scenarios.

Algorithm

Following algorithm in the high level description presented in Figure 7.11 performs

instantiation of the CIOs obtained from the output of the previous algorithm performing

conversion from AIOs to CIOs in Figure 7.9.

First, instance of the user interface element from the CIO is created as a sub-object of the

parent object of the user interface. Then, parameters of the CIO are set to the instance of the

newly created user interface element. For the CIOs that represent data, events and handlers

are registered for dependencies, object, and instance changes. For transient CIOs (change in

time frequently), regular update of the user interface element is scheduled. For the CIOs that

represent code, events and handlers are registered for dependencies. Because code can have

characterized dialog attribute, handler is generated that can show question or asterisk to the

user before the code will be executed. In case of the code CIO that is linked to container of

other CIOs, handler showing dialog is generated based on the type of the container and type

of the characterized code it represents. For a common code, a handler is generated that

executes the code.

107

Figure 7.11 Algorithm for instantiation

Figure 7.12 demonstrates final user interface of the simple media player, obtained by using

instantiation algorithm described above.

Figure 7.12 Example of final user interface obtained from instantiation of the CIOs from the simple media

player example.

Instantiate(CIO, parent)

{

 instance = parent->CreateInstance(CIO);

 instance->SetParameters(CIO);

 if (Characteristics(CIO) is CODE) {

 RegisterDependences(instance);

 if (Characteristics(CIO) has Dialog attrib) {

 GenerateQuestionCode(CIO);

}

 if (CIO is linked to Dialog CIO) {

 dlg = Instantiate(Dialog CIO, null);

 RegisterCallingRoutine(instance, dlg);

} else {

 RegisterCallingRoutine(instance);

}

} else {

 if (Characteristics(CIO) has relation) {

 obj = GetRelatedObject(CIO);

 GenerateUpdateRelatedObject(instance, obj);

}

RegisterDependences(instance);

 RegisterInstanceChanged(instance);

 RegisterObjectChanged(instance);

 if (CIO is transient) RegisterReqularUpdate(instance);

 }

foreach(subCIO in CIO children) {

 Instantiate(subCIO, CIO);

 }

}

108

7.3.5 Summary

To automatically create user interface from characterized data and code, it is important to

consider many aspects. A proper data and code characterization, building characterized tree,

selection of abstract interface objects, instantiating concrete interface objects, and setting their

layout is required. Process presented here is simple but enables automated creation of simple

user interfaces. Every single step in creation of automated user interface would require more

investigation as the task is very complex.

7.4 Constraints

The technique presented here for automated user interface generation from characterized code

has several drawbacks. One of the most important drawbacks is unavailability of redesigning

of user interface based on its evaluation. During common process of creation of user interface,

a user interface designer or expert creates user interface and let the interface evaluate.

Evaluation can be performed by users or design experts and must be well prepared.

Evaluation techniques and process is well described in [6]. After the evaluation process, user

interface designer considers effectivity, usability and other aspects of created user interface

and modifies user interface so that it reflects acquired results. Then another round of

evaluations follows. This is not possible with proposed user interface generation process,

because proposed process of generation of user interface does not take into account usage of

the generated user interface. Usage of the user interface could provide metrics that could be

possible to analyze and with a help of the analysis, user interface generator could modify

layout in a way which would be more effective and usable than previous one. More research

in this functionality and its implementation is required to increase quality of resulting user

interface.

A limitation of the presented process in user interface creation is a problem with creation of

the general user interface in 3D space such as interface in a virtual or augmented reality. It is

not possible to create general description that would be able to render any object in 3D space

because representation of the data may be different among various 3D engines or libraries.

For example, information about the vertices and their properties are stored differently in

Direct3D and OpenGL. Direct3D is using structure with vectors describing location, color,

normal, and texture coordinates, while OpenGL is using array lists where each of array lists

contain different data – location, or color, or normal etc. This means it is not possible to create

109

platform and library independent solution for rendering 3D user interfaces. It is, of course,

possible to use one of the libraries and use it for rendering of user interface. This, however,

means that all the data will be always rendered in the same way because developer would not

have a chance to modify rendering of the objects to produce more visually attractive rendition

of the data. As long as developer cannot supply own rendering engine, it is not possible to

create rich 3D applications, which are built on the own effects and details supported by the

engine. That is why creation of user interfaces in 3D space is limited. Although it is possible

do create user interface in 3D space, visual appearance will not be appealing.

7.5 Target group of applications

The proposed here code characterization and user interface generation process is not targeted

to general application context. Code and data characterization proposed here is not capable of

expressing enough information about data and code characteristics about all applications to an

artificial intelligence user interface generator. Even with very high quality user interface

generation process, it will be very hard to create application of such extents as, for example,

word processor. The reason is that text processor requires many custom user controls and

behaviors that cannot be generally expressed by code or data characteristics.

The aim of the code and data characterization is to support applications that can be run on

various devices with various platforms. Characterization taxonomy allows fast application

development and even testing. Developers can characterize data and code during the

development and run the application. Because it already contains characterized code and data,

user interface can be created to reflect data and operations with the data that has been

characterized and application can be tested even in early development stage. On the contrary,

using task models for automated user interface generation of user interface of developed

application is not usually possible and also analysis of the tasks takes more time than simple

data characterization.

Thanks to code characterization, it is easy to extend functionality of the application. Adding

or removing methods of objects leads during runtime to automated generation of new user

interface that contains all available features that has been characterized. Other approaches

such as task modeling do not enable such behavior because adding new functionality breaks

task model tree which must be redesigned to reflect new functionality. The same problem

arises with adding new parameters to functions or methods of characterized objects. While

110

thanks to code characterization there is no additional cost than characterizing new parameter

and launching application, task models have to redesign task model tree to be able to generate

user interface that reflects modified method parameters.

111

8 Conclusions

The goal of this work was to define approach for automated user interface generation that

would be simple to use and allow automated creation of user interface for various platforms.

This goal was fulfilled.

A taxonomy and processes proposed and described in this work allow new way of application

development. While developers were forced to redesign user interface every time a major

change in the application has been done, using code characterization together with automated

user interface generation process can shorten development time and allow developers to test

new methods and functions as the application is being developed even in early stage of

development. The proposed taxonomy and its usage lead to benefits in the user interface

design. The key benefits of the proposed characterization taxonomy are:

 no expert skills required,

 application code independence on user interface,

 simple application extensibility,

 good maintainability and readability of the application code,

 more effective and faster algorithm development,

 independence on user interface generation process,

 platform independency.

The taxonomy is ideal for creation of user interfaces on multiple platforms. Automated user

interface generation process can generate optimal user interface for any device. To proof the

concept of the characterization taxonomy, a process of automated user interface generation

was presented and demonstrated on examples.

At the moment, the weakest point of the automated user interface generation is generation of

layout of user interface elements. An experienced graphics designer is able to produce layouts

that are aesthetically superior and more effective than current automatically generated user

interfaces. Future work in the problematic of characterization taxonomy should be focused on

automated layout techniques to enable higher quality user interfaces, and creation of complex

applications to tweak the data and code characterization taxonomy to cover any information

required by the automated user interface generation process. Future work should also consider

implementation of the user interface generation process for other modalities to take the

advantage of the presented approach.

112

9 Bibliography

[1] Apple iPod Shuffle, Apple Inc., 2007, web pages, Available from

http://www.apple.com/ipodshuffle/

[2] Brooks, A, “It‟s Only Rock and Roll”, Apple News - World of Apple Events, 2009

http://news.worldofapple.com/category/world-of-apple-events/

[3] Delahunty, J, “Apple profit makes huge rise due to iPod success”, afterdawn.com, 2005,

http://www.afterdawn.com/news/archive/6296.cfm

[4] Bainbridge, W. S., “Berkshire Encyclopedia of Human-Computer Interaction”, Berkshire

Publishing Group, 2004, ISBN: 0974309125, 1000 pages

[5] Thyssen, M, “Hammer”, Wikimedia Commons, 2009,

http://commons.wikimedia.org/wiki/User:Malene

[6] Stone, D., Jarrett, C., Woodroffe, M., Minocha, S., “User Interface Design and

Evaluation”, Morgan Kaufmann, 2005, ISBN: 0120884364, 704 pages

[7] Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T., “Human-Computer

Interaction: Concepts And Design”, Addison Wesley, 1994, ISBN: 978-0201627695,

pages: 816

[8] Wickens, Ch.D., Lee, J.D., Liu, Y, Gordon-Becker, S.E., “Introduction to Human Factors

Engineering (2nd Edition)”, Prentice Hall, 2003, ISBN: 978-0131837362, pages: 608

[9] Chen, Z., Marx, D., “Experiences with Eclipse IDE in programming courses”, In Journal

of Computing Sciences in Colleges, Volume 21, ACM Portal, 2005, ISSN:1937-4771,

pages: 104 – 112

[10] Gajos, K., Weld, D. S., “SUPPLE: Automatically Generating User Interfaces”, in

Proceedings of IUI'04, Funchal, Portugal, 2004

[11] Nichols, J., Myers, B.A., Litwack, K., “Improving Automatic User Interface Generation

with Smart Templates”, In Intelligent User Interfaces, Funchal, Portugal, 2004, pages:

286-288

[12] Roberts, D., “Signals and Perception: The Fundamentals of Human Senses”, Palgrave

Macmillan, 2002, ISBN: 0333993640, 320 pages

[13] Human sensory reception, Encyclopædia Britannica Online, 2009

http://www.britannica.com/EBchecked/topic/534831/human-sensory-reception

[14] MindDrive, The Other 90% Technologies Inc., 2007, web pages, Available from

http://www.other90.com/

[15] Holmes, J. N., Holmes, W. J., “Speech Synthesis and Recognition”, Taylor & Francis,

113

2002, ISBN: 0748408576, 320 pages

[16] Jacko, J.A., Sears, A., “The human-computer interaction handbook: fundamentals,

evolving technologies and emerging applications”, CRC, 2002, ISBN: 978-0805844689,

pages: 1312

[17] Sight, New World Encyclopedia, 2009, web pages

http://www.newworldencyclopedia.org/entry/Sight

[18] Schematic diagram of the human eye, Wikimedia Commons, 2009

http://commons.wikimedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg

[19] Koch, K., McLean, J., Segev, R., Freed, M.A., Berry, M.J., Balasubramanian, V.,

Sterling, P., “How much the eye tells the brain”, Curr Biol, 2006, pages: 1428-1434

[20] The Hermann Grid, BrainConnection, 2007, web pages, Available from

http://www.brainconnection.com/teasers/?main=illusion/hermann

[21] Human ear, Encyclopædia Britannica Online, 2009, web pages

http://www.britannica.com/EBchecked/topic/175622/ear

[22] Human ear, Wikimedia Commons, 2009, web pages

http://commons.wikimedia.org/wiki/File:HumanEar.jpg

[23] Brewster, S. A., "Using non-speech sounds to provide navigation cues", ACM

Transactions on Computer-Human Interaction, vol. 5, 1998, ISSN: 1073-0516, pages:

224-259

[24] Robles-De-La-Torre, G., "The Importance of the Sense of Touch in Virtual and Real

Environments", IEEE MultiMedia, Volume 3, IEEE Computer Society Press, 2006,

ISSN: 1070-986X, pages: 24-30

[25] Tactile Feedback, VWN Virtual Dictionary, 2009, web pages

http://www.virtualworldlets.net/Resources/Dictionary.php?Term=Tactile%20Feedback

[26] Force Feedback, VWN Virtual Dictionary, 2009, web pages

http://www.virtualworldlets.net/Resources/Dictionary.php?Term=Force%20Feedback

[27] Rumble Feedback, VWN Virtual Dictionary, 2009, web pages

http://www.virtualworldlets.net/Resources/Dictionary.php?Term=Rumble%20Feedback

[28] Wasinger, R., “Multimodal Interaction with Mobile Devices: Fusing a Broad Spectrum

of Modality Combinations (Dissertations in Artificial Intelligence: Infix)”, IOS Press,

2007, ISBN: 978-1586037123, pages: 246

[29] Smellovision, 2009, web pages

http://www.nowinsmellovision.com/

[30] CFBF 4D motion cinema, CFBF Amusement Equipment Co., Ltd. 2005, web pages

114

http://www.cfbf.cn/main/4D_Motion_Cinema.htm

[31] Memory, Wikipedia, The Free Encyclopedia, 2009, web pages

http://en.wikipedia.org/wiki/Memory

[32] Cowan, N., “The magical number 4 in short-term memory: A reconsideration of mental

storage capacity”, Behavioral and Brain Sciences, Vol. 24, Cambridge University Press,

2000, pages: 87-114

[33] Moeslund, T. B., Granum, E., “A Survey of Computer Vision-Based Human Motion

Capture”, Computer Vision and Image Understanding, Volume 81, Issue 3, Elsevier

Science Inc., 2001, ISSN: 1077-3142, pages: 231 – 268

[34] Fejtová, M., Fejt, J., Štěpánková, O., “Eye as an Actuator”, Lecture Notes in Computer

Science, Volume 4061/2006, Springer Berlin / Heidelberg, 2006, ISBN: 978-3-540-

36020-9, pages: 954-961

[35] Baudel, T., Beaudouin-Lafon, M., “Charade: remote control of objects using free-hand

gestures”, Communications of the ACM, Volume 36 , Issue 7, ACM, 1993, ISSN: 0001-

0782, pages: 28 – 35

[36] Allen, J. F., Byron, D. K., Dzikovska, M., Ferguson, G., Galescu, L., Stent, A., “Toward

Conversational Human-Computer Interaction”, AI Magazine, Volume 22 , Issue 4,

American Association for Artificial Intelligence, 2001, ISSN: 0738-4602, pages: 27 – 37

[37] Nakagawa, S., “A Survey on Automatic Speech Recognition”, IEICE TRANSACTIONS

on Information and Systems, Vol.E85-D No.3, IEICE, 2002, ISSN: 0916-8532, pages:

465 – 486

[38] Neural Impulse Actuator, OCZ Technology, 2009, web pages

http://www.ocztechnology.com/products/ocz_peripherals/nia-neural_impulse_actuator

[39] Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H.,

Branner, A., Chen, D., Penn, R. D., Donoghue, J. P., “Neuronal ensemble control of

prosthetic devices by a human with tetraplegia”, Nature, 2006, web pages, Available

from http://www.nature.com/nature/journal/v442/n7099/abs/nature04970.html

[40] Mouse (computing), Wikipedia, The Free Encyclopedia, 2009, web pages

http://en.wikipedia.org/wiki/Mouse_(computing)

[41] Logitech Performance Mouse MX, Logitech, 2009, web pages

http://www.logitech.com/index.cfm/mice_pointers/mice/devices/5845&cl=us,en

[42] Keyboard (computing), Wikipedia, The Free Encyclopedia, 2009, web pages

http://en.wikipedia.org/wiki/Keyboard_(computing)

[43] Bellis, M., “History of the Computer Keyboard”, Inventors Guide, About.com, 2009,

115

web pages http://inventors.about.com/od/computerperipherals/a/computer_keyboa.htm

[44] Cassingham, R., “The Dvorak Keyboard”, This is True Inc., 2007, web pages, Available

from http://www.dvorak-keyboard.com/

[45] Liebowitz, S., Margolis, S. E., "The Fable of the Keys", Journal of Law and Economics,

Vol. 30, No. 1, University of Chicago Press, 1990, pages: 1 – 25, available from

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1069950

[46] Brown, C.M., “Human-computer interface design guidelines”, Ablex Pub. Corp., 1988,

ISBN: 9780893913328, pages: 236

[47] Bailey, R.W., Bailey, L.M., “Reading speeds using RSVP”, UI Design Newsletter –

February, 1999, Human Factors International, 1999, web pages

http://www.humanfactors.com/library/feb99.asp

[48] McWhirter, N., “The Guinness Book of World Records”, 23rd US edition, Sterling

Publishing, New York, 1985, ISBN: 978-0806902647, pages: 480

[49] Maltron Keyboards, PCD Maltron Ltd., 2007, web pages, Available from

http://www.maltron.com/

[50] Hardware Image Gallery: Microsoft Keyboard Products, Microsoft, 2009, web pages

http://www.microsoft.com/Presspass/gallery/hardware-keyboard.mspx

[51] Curran, K., Woods, D., Riordan, B. O., “Investigating text input methods for mobile

phones”, Telematics and Informatics, Volume 23 , Issue 1, Pergamon Press, Inc., 2006,

ISSN: 0736-5853, pages: 1 – 21

[52] Hotas Cougar, Thrustmaster, 2009, web pages

http://www.thrustmaster.com/product.aspx?ProductID=11

[53] Webcam C300, Logitech, 2009, web pages

http://www.logitech.com/index.cfm/webcam_communications/webcams/devices/

5863&cl=roeu,en

[54] Daugman, J., „Face and Gesture Recognition: Overview“, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Volume 19, Issue 7, IEEE, 1997, ISSN: 0162-8828,

pages: 675-676

[55] Park, J.Y., Yi, J.H., “Gesture Recognition Based Interactive Boxing Game”, International

Journal of Information Technology, Vol.12, No. 7, Singapore Computer Society, 2006,

ISSN: 0218-7957, pages: 36 – 44

[56] Tong, X., Duan, L., Xu, Ch., Tian, Q., Lu, H., “Local Motion Analysis and Its

Application in Video based Swimming Style Recognition”, Proceedings of the 18th

International Conference on Pattern Recognition - Volume 02, IEEE Computer Society,

116

2006, ISSN: 1051-4651, ISBN: 0-7695-2521-0, pages: 1258 – 1261

[57] MacIntyre, B., Feiner, S., “Future Multimedia User Interfaces”, Multimedia Systems,

Volume 4, Number 5, Springer Berlin / Heidelberg, 1996, ISSN: 0942-4962, pages: 250

– 268

[58] Microphone, Wikipedia, The Free Encyclopedia, 2009, web pages

http://en.wikipedia.org/wiki/Microphone

[59] PJ, “Audio-Technica AT8015a shotgun microphone”, Wikimedia Commons, 2009,

http://commons.wikimedia.org/wiki/File:Shotgun_microphone.jpg

[60] Rabiner, L., Juang, B.H., “Fundamentals of Speech Recognition”, Prentice Hall PTR,

1993, ISBN: 978-0130151575, pages: 496

[61] History of computing hardware, Wikipeida, The Free Encyclopedia, 2009, web pages

http://en.wikipedia.org/wiki/History_of_computing_hardware

[62] Canon PIXMA iX5000 Inkjet Printer, Canon, 2009, web pages http://www.canon-

europe.com/For_Home/Product_Finder/Printers/Inkjet/PIXMA_iX5000/index.asp

[63] Computer monitor, Wikipedia, The Free Encyclopedia, 2009, web pages

http://en.wikipedia.org/wiki/Computer_monitor

[64] Monochrome Display Adapeter, Wikipedia, The Free Encyclopedia, 2009, web pages

http://en.wikipedia.org/wiki/Monochrome_Display_Adapter

[65] IBM PC 5150, Wikimedia Commons, 2009, web pages

http://commons.wikimedia.org/wiki/File:IBM_PC_5150.jpg

[66] Samsung XL2370, Samsung, 2009, web pages http://www.samsung.com/cz/consumer/

monitors-peripherals-printers/monitor/lcd/LS23EFPKFV/EN/

index.idx?pagetype=prd_detail

[67] Sony Ericsson C702, Sony Ericsson, 2009, web pages

http://www.sonyericsson.com/cws/products/mobilephones/overview/c702?cc=cz&lc=cs

[68] Eee PC T91, ASUSTeK Computer Inc., 2009, web pages

http://eeepc.asus.com/global/productt91.html?n=0

[69] Sony Ercissson Xperia X10, Sony Ericsson, 2009, web pages

http://www.sonyericsson.com/cws/products/mobilephones/overview/xperiax10?cc=cz&l

c=cs#a

[70] Loudspeaker, Wikipedia, The Free Encyclopedia, 2009, web pages

http://en.wikipedia.org/wiki/Loudspeaker

[71] Logitech Sound System Z520, Logitech, 2009, web pages

http://www.logitech.com/index.cfm/speakers_audio/home_pc_speakers/devices/5859&cl

117

=roeu,en

[72] PAC Mate Portable Braille Display, Freedom Scientific, 2009, web pages

http://www.freedomscientific.com/products/fs/pacmate-braille-product-page.asp

[73] I-Tech Virtual Laser Keyboard, Power Positioning Ltd, 2009, web pages

http://www.virtual-laser-keyboard.com/

[74] Olsen, H., “Supporting customers' decision-making process”, GUUUI, ISSUE 06 - Q3

2003, web pages: http://www.guuui.com/issues/02_03.php

[75] Eckard, R., “Survey: Family Cars - The Controversy of Style vs. Functionality”, Kelley

Blue Book, 2009, web pages: http://mediaroom.kbb.com/index.php?s=43&item=18

[76] Norman, D., “Complexity versus difficulty: where should the intelligence be?”,

Proceedings of the 7th international conference on Intelligent user interfaces, ACM New

York, USA, 2002, ISBN: 1-58113-459-2, pages: 4 – 4

[77] Adobe Photoshop, Adobe Systems Incorporated, 2007, web pages, Available from

http://www.adobe.com/products/photoshop/

[78] HP Photosmart Essential 2.0, Hewlett-Packard Development Company, L.P., 2007, web

pages, Available from http://www.hp.com/united-states/consumer/digital_photography/

free/software/index.html

[79] Yoon, H, Kim, E, Lee, M, “A User context awareness Model for mobile environment

processing”, 5th ACIS International Conference on Software Engineering Research,

Management & Applications, 2007, ISBN: 0-7695-2867-8, pages: 293 – 296

[80] Bennett, J., “Managing to Meet Usability Requirements: Establishing and Meeting

Software Development Goals”, Visual Display Terminals, Englewood Cliffs, Prentice-

Hall, 1984, pages: 161-184

[81] Quesenbery, W., “What Does Usability Mean: Looking Beyond „Ease of Use”, in

Proceedings of the 48th Annual Conference Society for Technical Communication,

Chicago, 2001

[82] International Standard ISO 9241-11, “Ergonomic requirements for office work with

visual display terminals (VDTs) – Part 11: Guidance on usability”, ISO 9241-

11:1998(E), web pages: http://www.eihms.surrey.ac.uk/robens/erg/methods%20module/

ISO_9241-11.pdf

[83] Windows API, Microsoft Corporation, 2007, web pages, Available from

http://msdn2.microsoft.com/en-US/library/aa383750.aspx

[84] Windows Forms, Microsoft Corporation, 2007, web pages, Available from

http://msdn2.microsoft.com/en-us/netframework/aa497342.aspx

118

[85] .NET Framework, Microsoft Corporation, 2007, web pages, Available from

http://msdn2.microsoft.com/en-us/netframework/default.aspx

[86] Integrated development environment, Wikipedia, The Free Encyclopedia, 2009, web

pages: http://en.wikipedia.org/wiki/Integrated_development_environment

[87] Visual Studio Developer Center, Microsoft Corporation, 2007, web pages, Available

from http://msdn2.microsoft.com/en-us/vstudio/default.aspx

[88] MFC Reference, Microsoft Corporation, 2007, web pages, Available from

 http://msdn2.microsoft.com/en-us/library/d06h2x6e(vs.71).aspx

[89] Scripting language, Wikipedia, The Free Encyclopedia, 2009, web pages:

http://en.wikipedia.org/wiki/Scripting_language

[90] TCL Developer Xchange, 2009, web pages: http://www.tcl.tk/

[91] The Perl Programming Language, 2009, web pages: http://www.perl.org/

[92] PHP: Hypertext preprocessor, The PHP Group, 2009, web pages: http://php.net/

[93] Coombs, J. H., Renear, A. H. Renear, DeRose, S. J., “Markup systems and the future of

scholarly text processing”, Communications of the ACM 30, 1987, pages: 933-947

[94] Home of the User Interface Markup Language, Organization for the Advancement of

Structured Information Standards, 2002, web pages, Available from

http://www.uiml.org/

[95] Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E., „UIML:

An Appliance-Independent XML User Interface Language”, in Proceedings of the Eighth

International World Wide Web Conference, 1999, web pages, Available from

http://www8.org/w8-papers/5b-hypertext-media/uiml/uiml.html

[96] Extensible Markup Language (XML), World Wide Web Consortium, 2008, web pages,

Available from http://www.w3.org/XML/

[97] Mozilla Project, Mozilla Corporation, 2008, web pages, Available from

http://www.mozilla.org/

[98] Cascading Style Sheets, World Wide Web Consortium, 2008, web pages, Available from

http://www.w3.org/Style/CSS/

[99] Kent, P., Kent, J., “Official Netscape Javascript 1.2”, Ventana Communications Group,

1997, ISBN: 1566046750, 520 pages

[100] Document Object Model, World Wide Web Consortium, 2008, web pages, Available

from http://www.w3.org/DOM/

[101] Mozilla Layout Engine, Mozilla Corporation, 2008, web pages, Available from

http://www.mozilla.org/newlayout/

119

[102] Windows Presentation Foundation, Microsoft Corporation, 2008, web pages,

Available from http://msdn.microsoft.com/en-us/netframework/aa663326.aspx

[103] The GTK+ Project, The GTK+ Team, 2008, web pages, Available from

http://www.gtk.org/

[104] OpenLaszlo, OpenLaszlo Systems, Inc., web pages, Available from

http://www.openlaszlo.org/

[105] Helander, M. G., Landauer, T. K., Prabhu, P. V., “Handbook of Human-Computer

Interaction”, North Holland, 1997, ISBN: 978-0444818621, pages: 1602

[106] Molin, L., “Wizard-of-Oz prototyping for co-operative interaction design of graphical

user interfaces”, in Proceedings of the Third Nordic Conference on Human-Computer

interaction, Tampere, Finland, 2004, pages: 425-428

[107] Clerckx, T., “Integrating Task Models in Automatic User Interface Generation”,

Master Thesis, 2003, web pages, Available from

http://research.edm.luc.ac.be/tclerckx/clerckxconinx-integratingtaskmodels.pdf

[108] Baron, M., Girard, P., “SUIDT, A task model based GUI-Builder”, in Proceedings of

the TAMODIA : Task, 2002, pages: 64–71

[109] ISO, Information Processing Systems, Open Systems Interconnection, “Lotos - A

Formal Description Technique Based on the Temporal Ordering of Observational

Behavior”, 1989, ISO 8807:1989

[110] Paterno, F., Mancini, C., Meniconi, S., “ConcurTaskTrees: A Diagrammatic Notation

for Specifying Task Models”, in Proceedings of the IFIP TC13 International Conference

on Human-Computer Interaction, Sydney, 1997, pages: 362-369

[111] Bodart, F., Hennebert, A.M., Leheureux, J.M., Provot, I., Vanderdonckt, J., “A Model-

Based Approach to Presentation: A Continuum from Task Analysis to Prototype”, in

Proceedings of the First International Eurographics Workshop - Design, Specification,

and Verification of Interactive Systems, 1994, pages: 25–39

[112] Dlodlo, N., Bamford, C., “Separating Application Functionality from the User

Interface in a Distributed Environment”, In: Proceedings of the 22nd EUROMICRO

Conference, 1996, Prague, Czech Republic, pages: 248 – 256

[113] Fowler, M., “Patterns of Enterprise Application Architecture”, Addison-Wesley

Professional, 2002, ISBN: 0321127420, 560 pages

[114] Burbeck, S., "Application Programming in Smalltalk-80: How to use Model-View-

Controller (MVC), Smalltalk Archive, University of Illinois in Urbana-Champaign

(UIUC), 1997, web pages, Available from: http://st-www.cs.uiuc.edu/users/smarch/st-

120

docs/mvc.html

[115] Potel, M., “MVP: Model-View-Presenter, The Taligent Programming Model for C++

and Java”, Taligent, Inc., 1996, Available:

http://www.wildcrest.com/Potel/Portfolio/mvp.pdf

[116] Puerta, A., Eisenstein, J., “XIML: A Common Representation for Interaction Data”, in

Proceedings of IUI2002, ACM Press, 2002, pages 214–215

[117] Schneider, K. A., Cordy, J. R., “AUI: A Programming Language for Developing

Plastic Interactive Software”, in Proceedings of HICSS–35„, 2002, pages 281 – 291

[118] Jelinek, J., Slavik, P., “GUI Generation from Annotated Source Code”, in Proceedings

of Tamodia‟04, Prague, Czech Republic, 2004

[119] Randem, H. O., Jokstad, H., Linden, T., Kvilesjo, H., Rekvin, S., Hornæs, A.,

“ProcSee - The Picasso Successor”, Enlarged Halden Programme Group Meeting,

Lillehammer, Norway, 2005

[120] Gajos, K., Weld, D. S., Wobbrock, J. O., “Decision-Theoretic User Interface

Generation”, in Proceedings of AAAI'08, Chicago, IL, USA, 2008

[121] Roth, S. F., Mattis, J., “Data characterization for intelligent graphics presentation”, in

Proceedings of the 1990 Conference on Human Factors in Computing Systems, , New

Or-leans, LA, 1990, pages 193–200

[122] Zhou, M. X., Feiner, S. K., “Data Characterization For Automatically Visualizing

Heterogeneous Information”, in Proceedings of INFOVIS ‟96 (1996 IEEE Symposium

on Information Visualization), San Francisco, CA, 1996, pages 13-20

[123] Mackinlay, J., “Automating the design of graphical presentations of relational

information”, ACM Transactions on Graphics, 1986, pages 110 – 141

[124] Wehrend, R., Lewis, C., “A problem-oriented classification of visualization

techniques”, in Proceedings of the First IEEE Conference on Visualization: Visualization

90. IEEE, Los Alamitos, CA, 1990, pages 139–143

[125] Feiner, S., “Improvise – knowledge based visual presentation system”, Computer

Graphics & User Interfaces Lab, Columbia University, web pages, Available at:

http://www1.cs.columbia.edu/~zhou/project/project.html

[126] Java ™, Sun Microsystems, Inc., 2009, web pages

http://www.java.com/

[127] Arens, Y., Hovy, E., Vossers, M., “The knowledge underlying multimedia

presentations”, Intelligent multimedia interfaces, American Association for

Artificial Intelligence, USA, 1993, pages 280 – 306

121

[128] Ullman, J. D., “Principles of Database and Knowledge-Base Systems”, Computer

Science Press, New York, 1990, ISBN: 071678162X, pages: 511

[129] Castner, S., “A task-analytic approach to the automated design of graphic

presentations”, ACM Transactions on Graphics (TOG), Volume 10, 1991, pages 111 –

151

[130] Pope, G. E., Krasner, S. T., “A cookbook for using the Model-View-Controller user-

interface paradigm in Smalltalk-80”, Jour of Object-oriented programming 1 (3), 1988,

pages: 26-49

[131] Berlege, T., “Using TAPS to separate the user interface from the application code”,

ACM SIGGRAPH UIST‟92, 19925, pages: 191-198

[132] Nihe, K., Seki, K., Nakamura, H., Yagishita, R., Shimojima, T., “Distributed object

system framework ORB”, NEC Research and Development, 1994, pages 292-297

[133] PropertyDescriptor, MSDN, Microsoft Corporation, 2009, web pages, Available from:

http://msdn.microsoft.com/en-us/library/

system.componentmodel.propertydescriptor.aspx

[134] Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., Steggles, P., “Towards

a Better Understanding of Context and Context-Awareness”, In Proceedings of the 1st

international symposium on Handheld and Ubiquitous Computing, Germany, 1999,

ISBN: 3540665501, pages: 304 – 307

[135] Vanderdonckt, J. M., Chieu, Ch. K., Bouillon, L., Trevisan, D., “Model-based Design,

Generation, and Evaluation of Virtual User Interfaces”, In Proceedings of the ninth

international conference on 3D Web technology, Monterey, California, 2004, ISBN:

1581138458, pages: 51 – 60

[136] Vanderdonckt, J. M., Bodart, F., “Encapsulating knowledge for intelligent automatic

interaction objects selection”, In Proceedings of the INTERACT '93 and CHI '93

conference on Human factors in computing systems, Amsterdam, The Netherlands, 1993,

ISBN: 0897915755, pages: 424 – 429

[137] Armstrong, D. J., “The quarks of object-oriented development”, Communications of

the ACM, Volume 49 , Issue 2, New York, NY, USA, 2006, ISSN: 00010782, pages 123

– 128

[138] Lok, S., Feiner, S., “A survey of automated layout techniques for information

presentations”, In Proceedings of SmartGraphics Symposium '01, 2001, pages: 61-68

[139] Lok, S., Feiner, S., Ngai, G., “Evaluation of visual balance for automated layout”, In

Proceedings of the 9th international conference on Intelligent user interface, Funchal,

122

Madeira, Portugal, 2004, ISBN 1581138156, pages: 101 – 108

[140] Lee, W. L., Green, M., “A layout framework for 3D user interfaces”, In Proceedings

of the ACM symposium on Virtual reality software and technology, Monterey, CA,

USA, 2005, ISBN: 1595930981, pages: 96 – 105

[141] Lee, W. L., Green, M., “Automatic layout for 3D user interfaces construction”, In

Proceedings of the 2006 ACM international conference on Virtual reality continuum and

its applications, Hong Kong, China, 2006, ISBN: 1595933247, pages: 113 – 120

[142] Alonso, F., Fuertes, J. L., González, Á. L., Martínez, L., “User-Interface Modelling for

Blind Users”, Springer Berlin / Heidelberg, 2008, ISBN: 9783540705390, pages: 789-

796

123

10 Appendix – Simple Media Player Example

This example demonstrates the proposed taxonomy on simple media player example running

on desktop environment. Media player example (see Figure 10.1) consists of the MediaPlayer

class, a Playlist object and a PlaylistEntry.

Figure 10.1 Simple Media Player classes

124

[DataCharacterization.DataType(DataCharacterization.DataTypes.Structure)]

[DataCharacterization.DataDomain(DataCharacterization.DataDomains.Entity)]

[DataCharacterization.DataTransience(DataCharacterization.DataTransienceType.Static)]

public class PlaylistEntry

{

 [DataCharacterization.DataType(DataCharacterization.DataTypes.Atomic)]

 [DataCharacterization.DataDomain(DataCharacterization.DataDomains.Concept)]

 [CodeCharacterization.CodeName("File name")]

 public string Filename;

 [CodeCharacterization.CodeName("Play")]

 [CodeCharacterization.CodeDescription("Starts playing of this media file.")]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command,

Default=true)]

 public void Play(){ … }

}

Figure 10.2 Characterized source code of the simple MediaPlayer class

[CodeCharacterization.FirstObjectSelected]

[DataCharacterization.DataType(DataCharacterization.DataTypes.Atomic)]

[DataCharacterization.DataDomain(DataCharacterization.DataDomains.Entity)]

[DataCharacterization.DataForm(DataCharacterization.DataShapes.Shaped)]

[CodeCharacterization.CodeName("Media Player")]

public class MediaPlayer

{

 [CodeCharacterization.CodeName("Playlist")]

 public Playlist PlayList;

 [CodeCharacterization.OnChanged]

 public event EventHandler Changed { … }

 [CodeCharacterization.CodeCategory("Player", "PlayPause")]

 [CodeCharacterization.CodeImportance(0)]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command)]

 [CodeCharacterization.CodeDependence("IsMediafileOpened")]

 public void PlayPause() { … }

 [CodeCharacterization.CodeCategory("Player", "Stop")]

 [CodeCharacterization.CodeImportance(0)]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command)]

 [CodeCharacterization.CodeDependence("IsMediafileOpened")]

 public void Stop() { … }

 [CodeCharacterization.CodeCategory("Navigation", "Next")]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command)]

 [CodeCharacterization.CodeImportance(0)]

 [CodeCharacterization.CodeDependence("ExistsNextInPlaylist")]

 public void Next() { … }

 [CodeCharacterization.CodeCategory("Navigation", "Previous")]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command)]

 [CodeCharacterization.CodeImportance(0)]

 [CodeCharacterization.CodeDependence("ExistsPreviousInPlaylist")]

 public void Previous() { … }

 [DataCharacterization.DataType(DataCharacterization.DataTypes.Atomic)]

 [DataCharacterization.DataDomain(DataCharacterization.DataDomains.Measurement,

SpecificName="TimeLine")]

 [DataCharacterization.DataContinuity(DataCharacterization.ContinuityTypes.Continuous)]

 [DataCharacterization.DataTransience(DataCharacterization.DataTransienceType.Dynamic)]

 [DataCharacterization.DataImportance(0)]

 [CodeCharacterization.CodeName("Time Line")]

 [CodeCharacterization.CodeDependence("IsMediafileOpened")]

 [CodeCharacterization.ParameterRange(0,0)]

 public ulong CurrentPosition { … }

}

Figure 10.3 Characterized source code of the PlaylistEntry

125

Figure 10.4 Characterized source code of the Playlist class

After the loading of the source code files, information about the characterized classes was

loaded into the characterization tree (see Figure 10.5). Notice that only the methods that have

been characterized were loaded and are contained in the characterization tree. This means that

not every data or method of the classes will play any role in the user interface. In the

characterization tree in Figure 10.5, only few characterization attributes are displayed.

[DataCharacterization.DataType(DataCharacterization.DataTypes.Atomic)]

[DataCharacterization.DataDomain(DataCharacterization.DataDomains.Entity)]

[DataCharacterization.DataForm(DataCharacterization.DataShapes.Shaped)]

[DataCharacterization.DataContinuity(DataCharacterization.ContinuityTypes.Discreete)]

[DataCharacterization.DataOrdering(DataCharacterization.DataOrderingTypes.Quantitative)]

[DataCharacterization.DataRole(DataCharacterization.DataRoleTypes.Identification)]

[DataCharacterization.DataSense(DataCharacterization.DataSenseTypes.List)]

[DataCharacterization.DataImportance(0)]

public class Playlist : IList<PlaylistEntry>

{

 [CodeCharacterization.OnChanged]

 public event EventHandler Changed { … }

 [CodeCharacterization.CodeName("Add media file")]

 [CodeCharacterization.CodeDescription("Adds media file to the playlist")]

 [CodeCharacterization.CodeCategory("Collection","Add")]

 [CodeCharacterization.CodeImportance(1)]

 public void AddMediaFile(

 [CodeCharacterization.ParameterName("Media File")]

 FileInfo file)

 { … }

 [CodeCharacterization.CodeName("Add media file")]

 [CodeCharacterization.CodeDescription("Adds media files … to the playlist")]

 [CodeCharacterization.CodeCategory("Collection", "Add")]

 [CodeCharacterization.CodeImportance(1)]

 public void AddDirectoryContents(

 [CodeCharacterization.ParameterName("Directory with media files.")]

 DirectoryInfo directory)

 { … }

 [CodeCharacterization.CodeName("Remove")]

 [CodeCharacterization.CodeDescription("Removes selected item in playlist.")]

 [CodeCharacterization.CodeCategory("Collection", "Remove")]

 public void RemoveAt(int index) { … }

 [CodeCharacterization.CodeCategory("Collection", "Remove All")]

 [CodeCharacterization.CodeDependence("IsNotEmpty")]

 public void Clear() { … }

}

126

Figure 10.5 Simple Media Player characterization tree

127

Figure 10.6 Simple Media Player AIOs

128

Conversion of the characterization tree to AIOs is demonstrated in the Figure 10.6. The main

media player object is represented by a container, the playlist as a collection, and the current

position as a time measurement (both are sub-objects of the media player class). The methods

were linked together into three main AIOs thanks to smart template concept – smart templates

group together commands with the same category. The “media player smart template”

contains commands “play” and “stop”, “the navigation smart template” contains commands

“next” and “previous”, and the “list smart template” contains commands “add”, “remove”,

and “clear”. The playlist entry was placed separately during collection initialization because it

is used for the internal representation of the collection items and is not explicit part of the

media player interface.

Figure 10.7 Simple Media Player CIOs

Figure 10.7 demonstrates the result of the AIOs conversion to CIOs. Main class of the media

player is represented by a Form (window), containing instances of a ListView for the playlist,

a track bar for the current position and the smart templates for the categorized commands.

Figure 10.8 shows graphical representation of each CIO from the CIO tree. Instantiating all

CIOs from the CIO tree in Figure 10.7 creates final user interface that can be seen in Figure

10.9. All CIOs were placed in top-bottom and left-right order which represents highest to

lowest importance. The playlist fills major part of the window because track bar and smart

templates are of fixed sizes. Playlist is the first because it has higher importance than other

data or methods. Collection controls span from left to right because .NET Collection Controls

Smart Template is composed as a toolbar. The Navigation and Player Controls Smart

Templates were placed besides each other because they have same importance. Horizontal

Track Bar is placed last and spans from left to right filling rest of the free space on the form.

129

Figure 10.8 A graphical representation of the CIOs of the Simple Media Player Example

Figure 10.9 Simple Media Player user interface

130

11 Appendix – A Regulator Example

This example demonstrates the proposed taxonomy on simple regulator example running on

desktop environment. The Regulator example (see Figure 11.1) consists of the Regulator

class, a RegulatorGains class, and a Setpoint class.

Figure 11.1 The Regulator example classes.

[DataType(DataTypes.Structure)]

[DataDomain(DataDomains.Entity)]

[DataForm(DataShapes.Shaped)]

[DataTransience(DataTransienceType.Static)]

public class RegulatorGains

{

 [DataType(DataTypes.Atomic)]

 [DataDomain(DataDomains.Concept)]

 [DataForm(DataShapes.None)]

 [DataImportance(0)]

 [DataScalability(DataScalabilityTypes.Amounts)]

 [DataSense(DataSenseTypes.Label)]

 [DataTransience(DataTransienceType.Dynamic)]

 public double Proportional { … }

 [DataType(DataTypes.Atomic)]

 [DataDomain(DataDomains.Concept)]

 [DataForm(DataShapes.None)]

 [DataImportance(0)]

 [DataScalability(DataScalabilityTypes.Amounts)]

 [DataSense(DataSenseTypes.Label)]

 [DataTransience(DataTransienceType.Dynamic)]

 public double Integral { … }

 [DataType(DataTypes.Atomic)]

 [DataDomain(DataDomains.Concept)]

 [DataForm(DataShapes.None)]

 [DataImportance(0)]

 [DataScalability(DataScalabilityTypes.Amounts)]

 [DataSense(DataSenseTypes.Label)]

 [DataTransience(DataTransienceType.Dynamic)]

 public double Derivative { … }

 [CodeCharacterization.OnChanged]

 public event EventHandler Changed;

}

131

Figure 11.2 Characterized source code of the RegulatorGains class

Figure 11.3 Characterized source code of the Regulator class

Figure 11.4 Characterized source code of the Setpoint class

[DataCharacterization.DataType(DataCharacterization.DataTypes.Structure)]

[DataCharacterization.DataDomain(DataCharacterization.DataDomains.Entity)]

[DataCharacterization.DataForm(DataCharacterization.DataShapes.Shaped)]

[DataCharacterization.DataTransience(DataTransienceType.Static)]

public class Setpoint

{

 [DataType(DataTypes.Atomic)]

 [DataDomain(DataDomains.Measurement, SpecificName="Temperature")]

 [DataForm(DataShapes.None)]

 [DataImportance(0)]

 [DataRole(DataRoleTypes.Comparison)]

 [DataScalability(DataScalabilityTypes.Amounts)]

 [DataSense(DataSenseTypes.Symbol)]

 [DataTransience(DataTransienceType.Dynamic)]

 public float Current { … }

 [DataType(DataTypes.Atomic)]

 [DataDomain(DataDomains.Measurement, SpecificName = "Temperature")]

 [DataForm(DataShapes.None)]

 [DataImportance(0)]

 [DataRole(DataRoleTypes.Comparison)]

 [DataScalability(DataScalabilityTypes.Amounts)]

 [DataSense(DataSenseTypes.Symbol)]

 [DataTransience(DataTransienceType.Dynamic)]

 [DataRelationAttributive("this", "Current", Type = AttributiveRelationTypes.Minimum)]

 public float Minimum { … }

 [DataType(DataTypes.Atomic)]

 [DataDomain(DataDomains.Measurement, SpecificName = "Temperature")]

 [DataForm(DataShapes.None)]

 [DataImportance(0)]

 [DataRole(DataRoleTypes.Comparison)]

 [DataScalability(DataScalabilityTypes.Amounts)]

 [DataSense(DataSenseTypes.Symbol)]

 [DataTransience(DataTransienceType.Dynamic)]

 [DataRelationAttributive("this", "Current", Type = AttributiveRelationTypes.Maximum)]

 public float Maximum { … }

 [CodeCharacterization.OnChanged]

 public event EventHandler Changed;

}

[CodeCharacterization.FirstObjectSelected]

[DataCharacterization.DataType(DataCharacterization.DataTypes.Structure)]

[DataCharacterization.DataDomain(DataCharacterization.DataDomains.Entity)]

[DataCharacterization.DataForm(DataCharacterization.DataShapes.Shaped)]

[CodeCharacterization.CodeName("Regulator")]

public class Regulator : IDisposable

{

 [DataType(DataTypes.Atomic)]

 [DataDomain(DataDomains.Measurement, SpecificName="Temperature")]

 [DataImportance(3)]

 [DataSense(DataSenseTypes.Symbol)]

 [DataTransience(DataTransienceType.Dynamic)]

 [CodeCharacterization.CodeName("Output")]

 [CodeCharacterization.ParameterDefaultValue("10")]

 public double OutputValue { … }

 [CodeCharacterization.CodeName("Setpoint")]

 public Setpoint Setpoint { … }

 [CodeCharacterization.CodeName("Gains")]

 public RegulatorGains Gains { … }

 [CodeCharacterization.OnChanged]

 public event EventHandler Changed;

}

132

After the loading of the source code files, information about the characterized classes are

loaded into the characterization tree (see Figure 11.5). Notice that only the methods and data

that have been characterized were loaded and are contained in the characterization tree. This

means that not every data or method of the classes will play any role in the user interface. In a

characterization tree in the Figure 11.5, only few characterization attributes are displayed.

Conversion of the characterization tree to AIOs is demonstrated in the Figure 11.6. The main

regulator object is represented by a container because it has the FirstObjectSelected attribute

and is entity, structure. The Gains is also represented as a container because it is also entity,

structure. All the properties of the Gains (Derivative, Integral, and Proportional) are

represented by a TextInputAIO because it is characterized as atomic concept with unspecified

shape, and has label sense. The OutputValue property is represented by a TemperatureAIO

because it is characterized as atomic temperature measurement with symbol sense. The

Setpoint property is represented by a container because it is, as well as Gains, entity, structure.

All the properties of the Setpoint (Current, Maximum, and Minimum) are represented by

TemperatureAIO because it is characterized as atomic temperature measurement with symbol

sense. The Maximum and Minimum contain attributive relation to the Current describing

attributes of the Current property.

133

Figure 11.5 The Regulator characterization tree

134

Figure 11.6 The Regulator example AIOs

Figure 11.7 demonstrates the result of the AIOs conversion to CIOs. The Regulator class is

represented by a Form (window) because it is the topmost object in the hierarchy. The Gains

container is converted to a GroupBox to reflect its internal structure. The Derivative, Integral

and Proportional TextInputAIOs were converted to TextBox because all properties implement

getters and setters and the TextBox allow required data input. Data type validity is performed

when converting string to the data type of the properties. The OutputValue is converted to

Vertical Track Bar because it is the only CIO associated to the AIO. The idea used to build

the CIO comes from a thermometer common layout – vertical. The Setpoint container is

converted to a GroupBox to reflect its internal structure. The Current, Minimum, and

Maximum TemperatureAIOs are converted to the Vertical Track Bar as well as OutputValue.

The Current property represents desired temperature, the Maximum and Minimum properties

allow dynamic change of the Current limits.

Figure 11.7 The Regulator example CIOs

Figure 11.8Figure 10.8 shows graphical representation of each CIO from the CIO tree.

135

Figure 11.8 A graphical representation of the CIOs of the Regulator example

Instantiating all CIOs from the CIO tree in Figure 11.7 creates final user interface that can be

seen in Figure 11.9. All CIOs were placed in top-bottom and left-right order which represents

highest to lowest importance. The Gains, OutputValue, and Setpoint are of the same

importance and thus are placed side by side. Properties of the Gains (the Proportional,

Integral, and Derivative) have decreasing importance and thus are placed in top-bottom order.

The Current, Maximum and Minimum properties have the same importance and thus are side-

by-side.

Figure 11.9 The Regulator example user interface

136

12 Appendix – A Radio Example

This example demonstrates the proposed taxonomy on simple radio example running on

desktop environment. The Radio example (see Figure 12.1) consists of the Radio class, a

Tuner class, a PresetsCollection and its PresetInfo class.

Figure 12.1 The Radio example classes

After the loading of the source code files, information about the characterized classes are

loaded into the characterization tree (see Figure 10.5). Notice that only the methods that have

been characterized were loaded and are contained in the characterization tree. This means that

not every data or method of the classes will play any role in the user interface. In a

characterization tree in the Figure 12.5, only few characterization attributes are displayed.

Conversion of the characterization tree to AIOs is demonstrated in the Figure 12.6. The main

radio object is represented as a container because it has the FirstObjectSelected attribute and

is entity, structure. The CurrentPreset is represented as a container because it is also entity,

structure. The Number and Name properties of the CurrentPreset are represented by a

TextLabel because both are atomic concepts with label sense, and implementing public getter

method only. The Volume property is represented by Volume because it is atomic

measurement of sound intensity. The SavePreset method is represented by abstract Command.

The NextPreset and PreviousPreset methods are grouped into NavigationControls smart

template because both are commands with the Navigation category.

137

[DataCharacterization.DataType(DataCharacterization.DataTypes.Structure)]

[DataCharacterization.DataDomain(DataCharacterization.DataDomains.Entity)]

[DataCharacterization.DataTransience(DataCharacterization.DataTransienceType.Static)]

public class PresetInfo

{

 [DataCharacterization.DataType(DataCharacterization.DataTypes.Atomic)]

 [DataCharacterization.DataDomain(DataCharacterization.DataDomains.Concept)]

 [DataCharacterization.DataSense(DataCharacterization.DataSenseTypes.Label)]

 [DataCharacterization.DataImportance(3)]

 [CodeCharacterization.CodeName("Number")]

 public uint Number { … }

 [DataCharacterization.DataType(DataCharacterization.DataTypes.Atomic)]

 [DataCharacterization.DataDomain(DataCharacterization.DataDomains.Concept)]

 [DataCharacterization.DataSense(DataCharacterization.DataSenseTypes.Label)]

 [CodeCharacterization.CodeName("Name")]

 [DataCharacterization.DataImportance(4)]

 public string Name { … }

}

Figure 12.2 Characterized source code of the Tuner class

[DataCharacterization.DataType(DataCharacterization.DataTypes.Structure)]

[DataCharacterization.DataDomain(DataCharacterization.DataDomains.Entity)]

[DataCharacterization.DataForm(DataCharacterization.DataShapes.Shaped)]

[CodeCharacterization.CodeName("Tuning")]

public class Tuner

{

 [DataCharacterization.DataType(DataCharacterization.DataTypes.Atomic)]

 [DataCharacterization.DataDomain(DataCharacterization.DataDomains.Concept)]

 [DataCharacterization.DataForm(Luigi.Characterization.Data.DataShapes.Shaped)]

 [DataCharacterization.DataSense(DataCharacterization.DataSenseTypes.List)]

 [DataCharacterization.DataRole(Luigi.Characterization.Data.DataRoleTypes.Association)]

 [DataCharacterization.DataTransience(DataCharacterization.DataTransienceType.Static)]

 [CodeCharacterization.CodeName("Mode")]

 [DataCharacterization.DataImportance(10)]

 public FrequencyBands Mode { … }

 [DataCharacterization.DataType(DataCharacterization.DataTypes.Atomic)]

 [DataCharacterization.DataDomain(DataCharacterization.DataDomains.Measurement)]

 [DataCharacterization.DataForm(DataCharacterization.DataShapes.None)]

 [DataCharacterization.DataImportance(0)]

 [DataCharacterization.DataScalability(DataCharacterization.DataScalabilityTypes.Amounts)]

 [DataCharacterization.DataSense(DataCharacterization.DataSenseTypes.Symbol)]

 [DataCharacterization.DataTransience(DataCharacterization.DataTransienceType.Dynamic)]

 [CodeCharacterization.CodeName("Frequency")]

 [CodeCharacterization.ParameterRange(88, 108)]

 [CodeCharacterization.ParameterDefaultValue("88")]

 public float Frequency { … }

 [CodeCharacterization.OnChanged]

 public event EventHandler Changed;

 [CodeCharacterization.CodeCategory("Tuner", "Increase")]

 [CodeCharacterization.CodeImportance(0)]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command)]

 public void ManuallyIncreaseFrequency() { … }

 [CodeCharacterization.CodeCategory("Tuner", "Decrease")]

 [CodeCharacterization.CodeImportance(0)]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command)]

 public void ManuallyDecreaseFrequency() { … }

 [CodeCharacterization.CodeCategory("Tuner", "SearchNext")]

 [CodeCharacterization.CodeImportance(0)]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command)]

 public void SearchNext() { … }

 [CodeCharacterization.CodeCategory("Tuner", "SearchPrevious")]

 [CodeCharacterization.CodeImportance(0)]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command)]

 public void SearchPrevious() { … }

}

Figure 12.3 Characterized source code of the PresetInfo class

138

[CodeCharacterization.FirstObjectSelected]

[DataCharacterization.DataType(DataCharacterization.DataTypes.Structure)]

[DataCharacterization.DataDomain(DataCharacterization.DataDomains.Entity)]

[DataCharacterization.DataForm(DataCharacterization.DataShapes.Shaped)]

[CodeCharacterization.CodeName("Radio")]

public class Radio

{

 [DataCharacterization.DataType(DataCharacterization.DataTypes.Atomic)]

 [DataCharacterization.DataDomain(DataCharacterization.DataDomains.Measurement)]

 [DataCharacterization.DataForm(DataCharacterization.DataShapes.None)]

 [DataCharacterization.DataImportance(3)]

 [DataCharacterization.DataScalability(DataCharacterization.DataScalabilityTypes.Amounts)]

 [DataCharacterization.DataSense(DataCharacterization.DataSenseTypes.Symbol)]

 [DataCharacterization.DataTransience(DataCharacterization.DataTransienceType.Static)]

 [CodeCharacterization.CodeName("Volume")]

 [CodeCharacterization.ParameterRange(0, 1)]

 [CodeCharacterization.ParameterDefaultValue("0.5")]

 public float Volume { … }

 [DataCharacterization.DataType(DataCharacterization.DataTypes.Structure)]

 [DataCharacterization.DataDomain(DataCharacterization.DataDomains.Entity)]

 [DataCharacterization.DataForm(DataCharacterization.DataShapes.Shaped)]

 [DataCharacterization.DataImportance(0)]

 [DataCharacterization.DataSense(DataCharacterization.DataSenseTypes.Label)]

 [DataCharacterization.DataTransience(DataCharacterization.DataTransienceType.Static)]

 [DataCharacterization.DataRole(Luigi.Characterization.Data.DataRoleTypes.Identification)]

 [CodeCharacterization.CodeName("Preset")]

 public PresetInfo CurrentPreset { … }

 [CodeCharacterization.CodeName("Tuning")]

 [CodeCharacterization.CodeImportance(2)]

 public Tuner Tuner { … }

 [CodeCharacterization.OnChanged]

 public event EventHandler Changed;

 [CodeCharacterization.CodeCategory("Navigation", "Next")]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command)]

 [CodeCharacterization.CodeImportance(1)]

 public void NextPreset() { … }

 [CodeCharacterization.CodeCategory("Navigation", "Previous")]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command)]

 [CodeCharacterization.CodeImportance(1)]

 public void PreviousPreset() { … }

 [CodeCharacterization.CodeName("Save Preset")]

 [CodeCharacterization.CodeSense(CodeCharacterization.CodeSenseTypes.Command)]

 [CodeCharacterization.CodeImportance(1)]

 [CodeCharacterization.Dialog("Saving will replace current preset. Continue?",

CodeCharacterization.DialogQuestion.YesNo)]

 public void SavePreset() { … }

}

 Figure 12.4 Characterized source code of the Radio class

139

Figure 12.5 The Radio example characterization tree

140

The Tuner property is represented by a container because it is entity structure. Its property

Frequency is represented by a TextLabel because it is atomic measurement with a label sense.

The Mode enumeration is represented by Enumeration because it is atomic concept enum with

list sense. All characterized methods (ManuallyDecreaseFrequency,

ManuallyIncreaseFrequency, SearchNext, SearchPrevious) are all of Tuner category and are

represented by Tuner smart template.

Figure 12.6 A Radio example AIOs

Figure 12.7 demonstrates the result of the AIOs conversion to CIOs. The Radio class is

represented by a Form (window) because it is the topmost object in the hierarchy. The Volume

is converted to Horizontal Track Bar because it is the only associated CIO for the AIO. Other

implementation would suit the volume abstraction better. The CurrentPreset container is

converted to GroupBox to reflect its internal structure. Both TextLabels (Name and

Frequency) are converted to labels because both implement getter methods only. The

SavePreset method is converted to standard button because it is simple command with no

parameters and no dependencies. The NavigationControls smart template is converted to a

control associated with the AIO, implementing functionality of the navigation tasks.

Figure 12.7 The Radio example CIOs

141

The Tuner is converted into group box because it can represent its internal structure. Its

Frequency property and Mode property are converted to label because it implement getter

method only and to combo box because it is enumeration, respectively. The Tuner smart

template is converted to a control associated with the AIO, implementing functionality of the

tuning tasks.

Figure 12.8 A graphical representation of the CIOs of the Radio example

Figure 12.8Figure 10.8 shows graphical representation of each CIO from the CIO tree.

Instantiating all CIOs from the CIO tree in Figure 12.7 creates final user interface that can be

seen in Figure 12.9. All CIOs were placed in top-bottom and left-right order which represents

highest to lowest importance. The “Current Preset” group box is the first because it has the

highest importance. Below is the Navigation smart template consisting of two navigation

buttons performing preset switching. The Save Preset button is second on the row because it

has lower importance than the navigation methods. Below is “Tuning” group box with

frequency label (has the highest importance in the group box), the Tuning smart template, and

the Mode combo box with the lowest importance in the group box. Last item in the Radio

example is the Volume track bar with the lowest importance in whole example.

142

Figure 12.9 The Radio example user interface

