
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS
AND MULTIMEDIA
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

RECOGNITION OF AUDIO EVENTS USING DEEP
NEURAL NETWORKS
ROZPOZNÁVÁNÍ ZVUKOVÝCH UDÁLOSTÍ POMOCÍ HLUBOKÝCH NEURONOVÝCH SÍTÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ALBERT UCHYTIL
AUTOR PRÁCE

SUPERVISOR Ing. PETR SCHWARZ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2016

Abstract
A lot of information is carried in sound. The amount of audio data is increasing with a
growing technical level of the society. With more data, the task of processing it gets harder
for human beings. This thesis is about recognition of audio events using neural networks.
We focused on classification of phonemes and their categories. We used the Multilayer
perceptron model as a classifier. We examined the relation between the accuracy of the
model and its properties. Our goal was to estimate the network setup to obtain the best
results. The accuracy is influenced by input features. We examine the relation between a
type of the features and the success rate. The differences between input feature types are
reduced by using the context. The bigger context we use the better results we get. Problem
is, when contexts overlap, overlapping leads to a higher error rate. We have used a neural
network with three hidden layers.

Abstrakt
Zvuk je nositelem velkého množství informací. S rostoucí technickou úrovní společnosti se
zvyšuje množství zvukových dat. Čím více dat máme, tím hůře se člověku zpracovávají.
Tato práce se zabývá problematikou rozpoznávání zvukových událostí pomocí
neuronových sítí. Konkrétně klasifikaci fonémů a jejich kategorií. Jako klasifikátor se
používá model vícevrstevného perceptronu. Práce zkoumá závislost přesnosti tohoto
klasifikačního modelu na nastavených vlastnostech a hledá optimální nastavení pro
maximální přesnost. Přesnost je ovlivněna také vstupními daty. Práce zkoumá vztah mezi
typem vstupních dat a úspěšností klasifikačního programu, a porovnává vlastnosti
vybraných typů vstupních dat. Použití kontextu u vstupních dat redukuje rozdíly námi
vybranými typy vstupních prvků. Čím větší kontext použijeme, tím větší přesnosti
docílíme. Problém nastává v situaci, kdy začne kontext zasahovat do jiných tříd. Pro naše
experimenty jsme používali neuronovou síť se třemi skrytými vrstvami.

Keywords
Sound recognition, Audio classification, Neural Networks, Phoneme classification

Klíčová slova
Rozpoznávání zvuku, Klasifikace audia, Neuronové sítě, Klasifikace fonémů

Reference
UCHYTIL, Albert. Recognition of Audio Events Using Deep Neural Networks. Brno,
2016. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Schwarz Petr.

Recognition of Audio Events Using Deep Neural
Networks

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Mr. Ing. Petr Schwarz, Ph.D. The supplementary information was
provided by Mr. Mgr. Lucas Ondel. All the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

. .
Albert Uchytil
May 18, 2016

Acknowledgements
I would like to thank my advisor Mgr. Lucas Ondel for the guiding me on my way to
create this thesis. Without him this thesis would not exist. You have helped me a lot to
understand how do Neural Networks work. Without this help, studying the theory for this
thesis would be much tougher.

I would like to thank my supervisor Ing. Petr Schwarz PhD. for helping me to make
this thesis real. Thank you for proving help every time I was in need.

I would like to thank my family for the support and constant encouragement I got over
the years.

c○ Albert Uchytil, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3

2 Theory 4
2.1 Probability theory . 4

2.1.1 Introduction . 4
2.1.2 Important rules . 4
2.1.3 Bayes’ theorem . 5

2.2 Logistic regression . 5
2.2.1 Introduction to logistic regression . 5
2.2.2 Linear discriminant function . 6
2.2.3 Multiclass logistic regression . 6
2.2.4 Training the Logistic regression . 8

2.3 Neural Networks . 10
2.3.1 Artificial Neuron . 10
2.3.2 Multilayer Perceptron . 10
2.3.3 Other architectural types of the networks 11

3 Method 13
3.1 Objectives . 13
3.2 Construction of the classifier . 13
3.3 Setup . 13

4 Analysis 15
4.1 Tools . 15

4.1.1 Theano Framework . 15
4.1.2 TensorFlow . 15
4.1.3 Keras . 16
4.1.4 Torch . 16
4.1.5 Framework selection . 16

4.2 TIMIT Database . 17
4.3 Features . 18

4.3.1 Mel Frequency Cepstral Coefficient (MFCC) 18
4.3.2 Filter Bank (FBANK) . 19
4.3.3 Double delta features . 20

1

5 Discussion 23
5.1 Preparing the experiments . 23

5.1.1 Architecture of the classifier . 23
5.2 Experimenting with the parameters . 24
5.3 Testing the variance of the model . 25
5.4 Classifying phoneme categories . 25
5.5 Utilities . 25

6 Conclusion 34

Bibliography 36

Appendices 38
List of Appendices . 39

A Content of the CD 40

B Poster 41

2

Chapter 1

Introduction

In recent years, there has been an exponential growth of produced data. [14] This growth
affects audio data as well. It becomes harder for humans to process this data. According to
staff from the Sound Effects Library, it would take 60 years for a librarian to tag a collection
of 2 million sounds. [10] That is quite a lot of time. The librarian might not fulfill his
potential, because he spent all of his time tagging sound. In this period of time, great
things can get invented. That is why we do not want to waste time of the librarian.

The task of the librarian consists of two major parts, classifying the sound and writing
down what sound it is. If we examine these two actions closer. We come to an assumption
that, when the librarian classifies the sound (he knows what sound it is), writing it down is
a rather trivial task. Our goal is to design a classifier to help the librarian live a better life.

Our motivation is also economical. Paying a person for 60 years to annotate sound is
pretty expensive. Telling a computer to do it is much cheaper and faster.

At first we need to choose which mathematical model to use. Neural Networks are
getting more and more interest since 90’s.[12] They are used to recognize patterns, this
recognition can be used for classification. When we classify a sound sample, we can write
down an annotation.

We decided to help the librarian by creating a phoneme classifier. To design this system
we needed to take some steps. At first we needed to understand the theoretical background
of how Neural Networks work. Then, we had to analyze the data and how to use it. After
that, we applied our knowledge to design the classifier. With the classifier built, we were
able to run a number of experiments. We were able to tune our classifier according to the
obtained results. All of these steps are presented in the upcoming chapters.

3

Chapter 2

Theory

In this chapter, we present important theory that is needed to accomplish this thesis.

2.1 Probability theory
The theory of probability is important for machine learning. Some classifiers can give us a
probability of an instance of data being in a class.

2.1.1 Introduction

Lets suppose we have two events A and B, we will use them to explain two probability
terms. First one is joint probability. It is written as 𝑝(𝐴,𝐵), and it means ”the probability
of 𝐴 and 𝐵“. This term gives us the probability of two events occurring together. It is the
probability of an intersection between two or more events happening at the same time. On
the other hand, the conditional probability stands for ”the probability of 𝐴 given 𝐵“, and
is written as 𝑝(𝐴|𝐵). It is a probability of event A occurring, given that event B occured.

These two probability types are used in some important rules of probability theory.

2.1.2 Important rules

There are two probability rules which are essential. The sum rule 2.1 and the product rule
2.2.

sum rule 𝑝(𝑋) =
∑︁
𝑌

𝑝(𝑋,𝑌) (2.1)

product rule 𝑝(𝑋,𝑌) = 𝑝(𝑌 |𝑋)𝑝(𝑋) (2.2)

The product rule 2.2 means that the probability of two events occurring at the same
time is equal to the probability of an event occurring times the probability of 𝑌 given 𝑋.
These two simple rules provide the basis for all of the theory of probability used in machine
learning.

One useful property of the joint probability is a symmetry:

𝑝(𝑋)𝑝(𝑌) = 𝑝(𝑌)𝑝(𝑋) (2.3)

This equation can be written as:

𝑝(𝑋,𝑌) = 𝑝(𝑌,𝑋) (2.4)

4

2.1.3 Bayes’ theorem

Bayes’ theorem 2.6 plays a very important role in the theory of probability. It gives us the
probability of an event, based on conditions that might be related to the event.

Let’s suppose that we want to know some individual probability of a person being
bald. If being bald is related to age or gender, than the probability can be expressed more
precisely using the theorem. To derive the theorem, let’s we start with the product rule 2.2.
Using its symmetry property, we get

𝑝(𝑌 |𝑋)𝑝(𝑋) = 𝑝(𝑋|𝑌)𝑝(𝑌) (2.5)

After that we can divide the whole equation by 𝑝(𝑋) to obtain the Bayes’ theorem

𝑝(𝑌 |𝑋) =
𝑝(𝑋|𝑌)𝑝(𝑌)

𝑝(𝑋)
(2.6)

Bayes’ theorem can help a lot to understand the Logistic regression 2.2.
Let’s apply the sum rule 2.1 and the symmetry to express 𝑝(𝑋)

𝑝(𝑋) =
∑︁
𝑌

𝑝(𝑋|𝑌)𝑝(𝑌) (2.7)

Now we are able to substitute 2.7 to 2.6 and derive the final form of the Bayes’ theorem

𝑝(𝑌 |𝑋) =
𝑝(𝑋|𝑌)𝑝(𝑌)∑︀
𝑌 𝑝(𝑋|𝑌)𝑝(𝑌)

(2.8)

This form of the theorem is used in the Logistic regression.

2.2 Logistic regression
Logistic regression (LR) is composed of two major parts. The first one is the regression
part and a linear discriminant function.

2.2.1 Introduction to logistic regression

To make the understanding of the Logistic regression model easier, let’s start with a 2 class
classification problem a person attending a university. We have two classes, ”attending a
university“ (𝐶1) and ”not attending a university“ (𝐶2). We don’t actually know a lot about
the person. We might know whether his or her parents went to university, probably his or
her gender and age. These variables affect the probability whether the event is assigned to
class 𝐶1 or 𝐶2. We call them features.

Using the Bayes’ theorem 2.8, we can express the posterior probability of class 𝐶1 as

𝑝(𝐶1|𝑥) =
𝑝(𝑥|𝐶1)𝑝(𝐶1)

𝑝(𝑥|𝐶1) + 𝑝(𝑥|𝐶2)𝑝(𝐶2)
(2.9)

We can further factorize the expression to obtain

𝑝(𝐶1|𝑥) =
1

1 + 𝑝(𝑥|𝐶2)𝑝(𝐶2)
𝑝(𝑥|𝐶1)𝑝(𝐶1)

(2.10)

5

Lets define a relation
𝑒𝑥𝑝(−𝑎) =

𝑝(𝑥|𝐶2)𝑝(𝐶2)

𝑝(𝑥|𝐶1)𝑝(𝐶1)
(2.11)

To get to the value of 𝑎, we take the logarithm of both sides of the equation and multiply
it by −1.

𝑎 = − ln
𝑝(𝑥|𝐶2)𝑝(𝐶2)

𝑝(𝑥|𝐶1)𝑝(𝐶1)
(2.12)

Then we apply the logarithmic rule − ln𝑥 = ln𝑥−1.

𝑎 = ln
𝑝(𝑥|𝐶1)𝑝(𝐶1)

𝑝(𝑥|𝐶2)𝑝(𝐶2)
(2.13)

In the next step, we can apply the substitution from equation 2.11 to 2.10, and get the
logistic sigmoid function defined by

𝜎(𝑎) =
1

1 + 𝑒𝑥𝑝(−𝑎)
(2.14)

This function maps the real axis, the infinite values, into the interval from 0 to 1. The
shape of the function looks like letter ’S’, that is why it is called Sigmoid. This can be seen
in Figure 2.2.

The inverse of the Logistic sigmoid function is given by

𝑎 = 𝑙𝑛(
𝜎

1− 𝜎
) (2.15)

and is known as the Logit function. It represents the log of the ratio of probabilities
ln[𝑝(𝐶1|𝑥)/𝑝(𝐶2|𝑥)] for the two classes, also known as the log odds. [3, p. 197]

2.2.2 Linear discriminant function

Linear discriminant function is an important part of Logistic regression. Thanks to this
function, we able to decide to which class the member belongs. For 2 class problems, we
can define it as

𝑦(𝑥) = w𝑇𝑥+ 𝑏 (2.16)

where 𝑥 is an input vector, w is a weight vector and the 𝑏 is a bias. The negative bias −𝑏
can be called threshold. In our case, the goal of the linear discriminant function is to create
a line which separates two classes. As we can see in Figure 2.1. The result of 2.16 tells us
to which class the input vector 𝑥 belongs. If 𝑦(𝑥) ≥ 0 then 𝑥 belongs to 𝐶1 otherwise it is
𝐶2. According to the value of the result we are able to see how far from the separating line
the point is. This means that we are able to tell a probability of a point belonging to the
other class. The point 𝐴 in the Figure 2.1 has definitely a higher chance of belonging to
the class 𝐶1 than the point 𝐵. The decision boundary is defined by 𝑦(𝑥) = 0. The vector
w determines the orientation of the decision surface.

2.2.3 Multiclass logistic regression

Multiclass logistic regression is able to separate multiple classes, not just two. However to
achieve that we need to generalize the Bayes’ theorem and the linear discriminant function
for two classes, shown in the equation 2.9. We can use the Bayes’ theorem from equation

6

Figure 2.1: Linear discriminant function separating two classes.
Source: http://mlpy.sourceforge.net/docs/3.1/lin_class.html

2.8. For a number of classes K greater than 2, the posterior probability of a class 𝐶𝑘 can
be written as

𝑝(𝐶𝑘|𝑥) =
𝑝(𝑥|𝐶𝑘)𝑝(𝐶𝑘)∑︀
𝑗 𝑝(𝑥|𝐶𝑗)𝑝(𝐶𝑗)

(2.17)

and further adjusted in a similar way as in 2.14.

𝑝(𝐶𝑘|𝑥) =
𝑒𝑥𝑝(𝑎𝑘)∑︀
𝑗 𝑒𝑥𝑝(𝑎𝑗)

= 𝜎(𝑎)𝑗 (2.18)

This function is generalized Logistic sigmoid and is called Softmax.
To be able to classify the number of K classes, for K > 2, we need to adapt the

linear discriminant function 2.16. We can do that by creating a single K-class discriminant
consisted of K linear functions in a form

𝑦𝑘(𝑥) = w𝑇
𝑘 𝑥+ 𝑏𝑘0 (2.19)

Assigning a point 𝑥 to class 𝐶𝑘 if 𝑦𝑘(𝑥) > 𝑦𝑗(𝑥) for all 𝑘 ̸= 𝑗, the decision boundary
between class 𝐶𝑘 and class 𝐶𝑗 is given by 𝑦𝑘(𝑥) = 𝑦𝑗(𝑥) and hence corresponds to a (D−1)-
dimensional hyperplane defined by

(w𝑘 − w𝑗)
𝑇𝑥+ (𝑏𝑘0 − 𝑏𝑗0) (2.20)

This has the same form as the decision boundary for the two-class case. [3, p.186]

7

http://mlpy.sourceforge.net/docs/3.1/lin_class.html

Figure 2.2: Result of Logistic regression
Source: https://www.mssqltips.com/sqlservertip/3471/introduction-to-the-sql-server-

analysis-services-logistic-regression-data-mining-algorithm/

2.2.4 Training the Logistic regression

We need to train Logistic regression in order to be able to classify the data. We need a
labeled dataset, defined as (𝑥, 𝑡), where 𝑥 is the vector of features and 𝑡 is a vector of labels.
A label is an information which assigns a data piece to a class. For previously mentioned 2
class problem with 𝑁 data pieces, the label vector can be defined as 𝑡 ∈ 0, 1 for 𝑛 = 1, ..., 𝑁

LR has two kinds of parameters - weights and biases. These parameters are described
in the Section 2.2.2.

We are searching for these parameters by maximizing some error function in the
maximum likelihood manner. For the provided dataset a likelihood function can be
written like this

𝑝(t|w) =
𝑁∏︁

𝑛=1

𝑦𝑡𝑛𝑛 {1− 𝑦𝑛}1−𝑡𝑛 (2.21)

Often the log of 𝑝(𝑡|𝑤) is used and it is called log likelihood. This function is used because
it is easier to optimize a sum than a product. Taking the negative of the log likelihood gives

8

https://www.mssqltips.com/sqlservertip/3471/introduction-to-the-sql-server-analysis-services-logistic-regression-data-mining-algorithm/
https://www.mssqltips.com/sqlservertip/3471/introduction-to-the-sql-server-analysis-services-logistic-regression-data-mining-algorithm/

Figure 2.3: SGD steps.
Source: http://iamtrask.github.io/2015/07/27/python-network-part2/

us the error function called cross entropy error function

𝐸(w) = − ln 𝑝(𝑡|w) = −
𝑁∑︁

𝑛=1

(𝑦𝑛 ln 𝑦𝑛 + (1− 𝑡𝑛) ln(1− 𝑦𝑛) (2.22)

where 𝑦𝑛 = 𝜎(𝑎𝑛) and 𝑎𝑛 = w𝑇𝑥𝑛.
Our goal is to find the minimum of the error function. The minimal value of the

error function is the maximum of the log-likelihood, to get the best parameters we use the
stochastic gradient descent algorithm. Stochastic gradient descent (SGD) is a numerical
method for finding a local minimum. Imagine 1000 values that are plotted by a function
f. If we want to find a minimum from these values, there is no problem to check all
of the values iteratively and select the smallest one. The difficulty arises when we add
additional dimensions. If the input function is two dimensional than we need to go through
1000 * 1000 values already. The complexity grows exponentially with bigger magnitude.
More dimensions equal more values to check for possible minimum.

SGD solves this problem in an elegant way. When we derive a function in a certain
point we also get a gradient value. This value tells us whether the function is increasing
(the value is positive) or decreasing (the value is negative). Zero means that we found the
minimum. SGD is trying to find the minimum by ”moving“ through the function by some
steps. The movement direction is chosen by derivative value and converges towards the
minimum. This can be seen in Figure 2.3.

However, SGD is not perfect. It always finds a local minimum, not a global one. On
the other hand, the functions are often very complex, that means that finding a global
minimum is almost impossible. Other difficulty comes in hand with the step size, which
might be too big and SGD might skip the desired minimum. This problem can be solved
by dynamically changing the step size. The closer we get to the minimum, the smaller step
size we use.

It is good to know that maximum likelihood training procedure can also suffer from
over-fitting. This problem is visually explained in Figure 2.4. Instead of fitting a line
between the points, it goes directly through all of them.

Multiclass LR is similar to 2 class problem, with the nonlinear function like Softmax
2.18, which was explained earlier.

9

http://iamtrask.github.io/2015/07/27/python-network-part2/

Figure 2.4: The green line shows how over-fitting (over-learning) looks like.
Source: https://commons.wikimedia.org/wiki/File:Overfitting.svg

2.3 Neural Networks
Neural Networks (NNs) are mathematical models that are inspired by the human brain.
They are composed of many small computational units called neurons. These units are
connected. According to the type of the connections we differentiate between various types
of NNs. Some NN types are described in the subsequent parts of this thesis.

2.3.1 Artificial Neuron

Artificial neurons are the building blocks of neural networks. Each neuron is a single
computational unit with 𝑛 inputs. The neuron is capable to represent a state. Each state
is described by a vector 𝑤 = (𝑤0, 𝑤1, ..., 𝑤𝑝) ∈ IR𝑝 of 𝑝 real numbers, known as weights
or parameters. The number 𝑝 depends on the number of inputs 𝑛. Based on the output
function, the neuron can be a linear threshold unit or sigmoid unit.[2] Visual representation
of this neuron is shown in Figure 2.5.

2.3.2 Multilayer Perceptron

Multilayer perceptrons (MLPs) are the most popular type of neural networks in use today.
They belong to a general class of structures called feed-forward neural networks. This type
of neural network is capable of approximating functions. [15].

10

https://commons.wikimedia.org/wiki/File:Overfitting.svg

Figure 2.5: Image of an artificial neuron.
Source: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

MLP consists of three layers: the input layer, the hidden layers and the output layer
(Figure 2.6). The input layer transforms the input data. The hidden layer does some linear
transformations of the inputs. The output layer transforms the data to some kind of a
scale. We can use the Logistic regression model as an output layer. In that case, we can
view the MLP as an extended LR.

MLP can be viewed as a Logistic regression classifier, which projects the input data to a
linearly separable space using learnt non-linear transformation. For this operation, a single
hidden layer is sufficient.[8]

MLP is trained using Back-Propagation (BP) algorithm. This algorithm belongs to a
category of supervised learning methods. BP is used to train the weights of networks by
gradient descent in an objective function, such as the total classification error evaluated on
a given training set of input patterns and corresponding labels.[16]

By providing a probabilistic interpretation of the network outputs, we can get a
general view on the network training.[3] That means that the network outputs a vector of
probabilities for each of the classes. This approach gives us an opportunity to check other
possible results. For example our goal is to classify 3 classes (A, B, C). Instead of saying
that the result is class A, the MLP output looks like (0.65, 0.25, 0.10). This means, that
the result is for 65 % A, for 25 % B and for 10 % C. With this kind of result, we are able
work further. We can pass the output of MLP to input of another network.

2.3.3 Other architectural types of the networks

Neural Networks may differ in the type of the connections, their numbers or the numbers
of units in the layers.

Apart from feed-forward Networks like MLP, different architectures exist. An
introduction of two other architecture types follows.

Recurrent neural network can have many different forms. They are often based on a
MLP model with, at least one, added feed-back connection. These connections create a
loop. The activations can round in these loops. This creates a sort of memory inside the

11

https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

Figure 2.6: Visualization of Multilayer Perceptron model
Source: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

RNN. This memory enables the network to do temporal processing and to learn sequences.
[4]

Modular feed-forward networks (MFNs) are systems with multiple independent neural
networks. This architecture is inspired by the human brain. It is more efficient to split a
problem into smaller ones. Let’s suppose we want to classify waste. One part of the system
can classify shapes independently on the color classifier. MFNs help to reduce complexity
of problems and improve the network performance. [17]

12

https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

Chapter 3

Method

In this chapter, we describe how the provided theory is used to design a classifier that is able
to describe sound. Our goal is to build a system that can classify phonemes or phoneme
categories.

3.1 Objectives
We would like to design a classifier using an existing deep neural network learning
framework. We want to be able to tune the properties of the classifier using command line
tools. We also want to run a number of experiments on a data set to determine the best
configuration of the phoneme classification.

3.2 Construction of the classifier
We need to select the best mathematical model on which our classifier will be based. We
decided to use MLP, described in the section 2.3.2. The model has three hidden layers,
because three hidden layers should be sufficient for this task. However, we would like to
select the best number of units within these layers based on the results of experiments. We
would also like to test whether the classifier can be more efficient using some larger audio
context. The context is given by multiple consecutive feature vectors representing about
10 ms of audio each.

The weights in the classifier are initialized randomly. During the training we also check
the stability of the model, by looking at the variability of results.

3.3 Setup
At first we need to prepare the inputs for the network. That means that we need to split
the data into three data sets, one for training, one for validation and one for testing. The
training set is used to build the model, the validation set checks how well did we train the
model, and the testing sets is used to test the model on real data. We also have to create a
computer program that demonstrates the selected model. For this part, there are actually
two options.

1. Write everything from scratch.

2. Use an existing deep learning framework.

13

The second option was selected, as we know that instead of a lot of hours spent debugging,
we are able to use a reliable software that has already been tested and run more experiments.

14

Chapter 4

Analysis

In this chapter we present our findings. We went through some available tools for machine
learning to select the best one which was used for implementation of the audio event
classifier. The audio database was analyzed and prepared for experiments.

4.1 Tools
An important part of problem solving is to choose the right tools for the job. In our
case, we were supposed to classify phonemes and phoneme groups using Neural Networks.
One possibility was to implement it ourselves. However, this way takes a lot of time and
may not compete with existing libraries. That is why we decided to go with a machine
learning framework. Using a framework, the work can be simplified a lot, because a lot
of functionality is already inside the framework. Currently there are multiple popular
frameworks. We needed to compare their positives and negatives in order to chose one which
would suit our needs in a best way. We present the considered frameworks in upcoming
subsections.

4.1.1 Theano Framework

Theano[18] is a Python library that allows to define, optimize, and evaluate mathematical
expressions involving multi-dimensional arrays efficiently. It is used for compilation of the
mathematical expressions. Theano itself is not written in Python but uses Python bindings.
This approach gives Theano a huge performance improvement. The models are compiled
to machine code instead of being interpreted. Theano compiles the code to run on CPUs
as well as GPUs. The framework stands on top of the SciPy stack.

Even though it is not a deep learning framework, it is widely used in the machine
learning community. A lot of tools have been built on top of Theano. The official website
of the project is http://deeplearning.net/software/theano/.

4.1.2 TensorFlow

TensorFlow[1] is one of the newest computational libraries. It is an open source software
library for numerical computation using data flow graphs. It was released by Google. This
framework is not complete and is relying on community support. One of the main positives
is that it contains pre-trained models. The models can be trained using both CPUs and
GPUs. TensorFlow Python API is interpreted in comparison to the Theano Framework

15

http://deeplearning.net/software/theano/

which is compiled into native code. On the other hand, TensorFlow has also C++ API
which profides significant performance improvements. The official website of the project is
https://www.tensorflow.org/.

4.1.3 Keras

Keras [6] is a minimalistic framework which is built upon different frameworks. By default,
it runs upon Theano Framework 4.1.1. However, there is a possibility to change the backend
framework to TensorFlow 4.1.2. Its simplicity is similar to Torch 4.1.4. Keras stands on
four principles:

1. modularity

2. minimalism

3. easy extensibility

4. work with python

Each model is made of modules that can be easily plugged to each other. Each module
should be kept short and easily understandable. It is easy to write new modules in Keras.
All of these properties, combined with the simplicity of Python, create an easy-to-use
framework for experimenting with neural networks.

However, it provides a certain level of abstraction, which means that we can’t ”get our
hands dirty“ directly with the models and directly experiment with them. The official
website of the project is http://keras.io/.

4.1.4 Torch

Torch [7] is not written in Python, like the other frameworks, but in Lua. This framework
is mainly focused on training the models using GPUs. Torch has a large ecosystem of
community-driven packages for machine learning. Torch is used in Facebook[5]. Goggle
DeepMind has recently moved to TensorFlow [11]. The official website of the project is
http://torch.ch/.

4.1.5 Framework selection

We have decided to go with Theano Framework as it is highly supported in the academic
environment. It is the oldest one mentioned, meaning that it has a lot of online resources
available. A huge advantage is that it is a Python framework. Python is known for rapid
development, it makes the preparation of the experiments faster, making it easier to make
modifications of the code.

The problem with Torch was that it is written in Lua and we were not familiar with
this programming language.

If we compare Theano to Keras, the benefit of Theano is that we are able to work with
the models on a lower level. This means that we are able to do low level optimizations.
Theano gives us freedom to experiment with the neural networks.

16

https://www.tensorflow.org/
http://keras.io/
http://torch.ch/

affricates fricatives nasals semivowels stops vowels
Phoneme categories

0

5

10

15

20
N

u
m

b
e
r

o
f

cl
a
ss

e
s

Figure 4.1: Class distribution within the phoneme categories.

4.2 TIMIT Database
We have been provided with a database called The DARPA TIMIT Acoustic-Phonetic
Continuous Speech Corpus (TIMIT) [9]. TIMIT was designed to provide speech data for
the acquisition of acoustic-phonetic knowledge and for the development and evaluation of
automatic speech recognition systems. This database was published in October 1990. It
contains a total number of 6300 sentences, 10 sentences spoken by each of 630 speakers.

The dataset is split to two section, the training data and the testing data. However for
our needs we need to split these two lists into three. We decided to have a training set of
size 4000, a validation set with 1300 sentences and a testing set with 1000 sentences.

Each entry in the TIMIT datasets contains an audio file and three label files. These
files contain a table with three columns. The last column specifies a class label and the two
first columns show when the event occurs. The first one stands for the event start and the
second one is the end of the event. Their units are in samples. The audio is sampled at a
frequency of 16kHz. This means that for one second of audio there are 16 000 samples.

There are 57 classes in total. According to the recommendation from my supervisor,
we have decided not to include the silence and non-speech events. This step reduced the
number of classes to 52. These classes are organized into 6 categories (Tables 4.1 and 4.2).
The number of classes within the groups is not equally distributed (Figure 4.1). On the
other hand, the distribution of classes in general is quite even (Figure 4.2).

17

aa aw ow ch
ax

-h n
x th k jh ix sh n l

en
g

u
w u
x

d
x iy d ae zh h
h p z

en b ah u
h q r v er m ax em
g w el n
g

ax
r ih h
v s

d
h oy ao eh
y ey
f

ay
t

Phonemes

0

1000

2000

3000

4000

5000

6000

7000

8000
N

u
m

b
e
r

o
f

sa
m

p
le

s
Distribution of phoneme classes in datasets

Training set
Validation set
Testing set

Figure 4.2: Class distribution within the data.

4.3 Features
To be able to classify data, we need to convert the data to a representation which is suitable
for NNs. It is also necessary to filter out unwanted parts of the audio, like noise. The process
of data conversion is called feature extraction. In our case, we are dealing with audio data.
Sound is sampled at a particular rate. There is one feature vector per 10 ms, so the result
of the extraction is an array of feature vectors.

We have been provided with four different types of extracted features from TIMIT
database. The types we got were Mel Frequency Cepstral Coefficient (MFCC), Filter bank
(FBANK) features and both of them having the double delta modification. All of them
we extracted using Hidden Markov Model Toolkit (HTK). These features have different
properties, their difference can be seen in a Figure 4.3. In the upcoming text, we would
like to compare them.

4.3.1 Mel Frequency Cepstral Coefficient (MFCC)

The main point to understand about speech is that the sounds generated by a human are
filtered by the shape of the vocal tract including tongue, teeth etc. This shape determines
what sound comes out. Determining the shape accurately should give us an accurate
representation of the phoneme. The job of MFCC is to accurately represent the power
spectrum which was produced by the vocal tract.[13]

18

0 2 4 6 8

0

2

4

6

8

10

12

(a) MFCC

0 2 4 6 8
0

5

10

15

20

25

(b) FBANK

0 2 4 6 8
0

5

10

15

20

25

30

35

(c) MFCC with double delta

02468
0

10

20

30

40

50

60

70

80

(d) FBANK with double delta

Figure 4.3: Several types of features for phoneme ’en’

MFCCs are often used for speech recognition. We extract the features using these steps:

1. We frame the signal into short frames.

2. For each frame calculate the periodogram estimate of the power spectrum.

3. Apply the mel filterbank to the power spectra, sum the energy in each filter.

4. Take the logarithm of all filterbank energies.

5. Take the discrete cosine transform (DCT) of the log filterbank energies.

6. Keep DCT coefficients 2-13, discard the rest.

4.3.2 Filter Bank (FBANK)

FBANK features are extracted from a signal. The difference from MFCC 4.3.1 is that we
don’t take the logarithm of the filter bank energies, instead we take these energies directly.

19

4.3.3 Double delta features

Also known as differential and acceleration coefficients. The MFCC feature vector
describes only the power spectral envelope of a single frame. However, the speech also has
some information carried in the dynamics. Over time, they are in the trajectories of the
MFCC coefficients. If we calculate the MFCC trajectories and append them to the
original feature vector, we get better ASR performance. [13] Better performance was
verified by our experiments.

20

Table 4.1: Table of Phonemes part 1

Group Phoneme class Example word Phonetic transcription

Stops b bee BCL B iy
d day DCL D ey
g gay GCL G ey
p pea PCL P iy
t tea TCL T iy
k key KCL K iy
dx muddy m ah DX iy
q bat bcl b ae Q

Affricates jh joke DCL JH ow kcl k
ch choke TCL CH ow kcl k

Fricatives s sea S iy
sh she SH iy
z zone Z ow n
zh azure ae ZH er
f fin F ih n
th thin TH ih n
v van V ae n
dh then DH e n

Nasals m mom M aa M
n noon N uw N
ng sing s ih NG
em bottom b aa tcl t EM
en button b ah q EN
eng washington w aa sh ENG tcl t ax n
nx winner w ih NX axr

Semivowels and Glides l lay L ey
r ray R ey
w way W ey
y yacht Y aa tcl t
hh hay HH ey
hv ahead ax HV eh dcl d
el bottle bcl b aa tcl t EL

21

Table 4.2: Table of Phonemes part 2

Group Phoneme class Example word Phonetic transcription

Vowels iy beet bcl b IY tcl t
ih bit bcl b IH tcl t
eh bet bcl b EH tcl t
ey bait bcl b EY tcl t
ae bat bcl b AE tcl t
aa bott bcl b AA tcl t
aw bout bcl b AW tcl t
ay bite bcl b AY tcl t
ah but bcl b AH tcl t
ao bought bcl b AO tcl t
oy boy bcl b OY
ow boat bcl b OW tcl t
uh book bcl b UH kcl t
uw boot bcl b UW tcl t
ux toot bcl b UX tcl t
er bird bcl b ER dcl t
ax about AX bcl b aw tcl t
ix debit dcl d eh bcl b IX tcl t
axr butter bcl b ah dx AXR
ax-h suspect s AX-H s pcl p eh kcl k tcl t

22

Chapter 5

Discussion

In this chapter, we present the results that were obtained during the experimentation with
the neural networks. We experimented with three variables, the number of hidden units,
the context size and the learning rate. We ran the experiments multiple times to check how
stable the models are.

5.1 Preparing the experiments
To be able to run the experiments, we need to prepare the data and design the classifier.

5.1.1 Architecture of the classifier

The classifier is built in a modular way using Python3 with the Theano Framework. At
first, the system needs to have the training data prepared. The system accepts three text
files which contain a list of pairs. These pairs are made of two values. The first value
represents a path to phoneme transcription and the second one is a path to a feature file.
After the lists are parsed, the labels and the feature files are loaded into memory. Then
we need to filter the features and match them with labels. The timing of label units is in
samples 4.2, that is why we need to convert it into milliseconds.

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥 =
1000 · 𝑆𝑎𝑚𝑝𝑙𝑒

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
(5.1)

Each of the phonemes has its own length. We should select the one in the middle to get the
most representative feature. The central feature vector can be selected using this equation:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑛𝑑𝑒𝑥 =
𝐸𝑛𝑑𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥− 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝐼𝑛𝑑𝑒𝑥

2
(5.2)

where StartingIndex is the beginning of the phoneme and the EndingIndex is the end. We
can also include the context of the feature sample. This may improve the accuracy of the
model. The size of the context can be defined using a command line parameter. Some
improvements from the context are discussed in the next section.

The prepared data is passed into function that builds the MLP model. The MLP model
has a variable amount of units within the hidden layer and the learning rate. According to
the settings, the program trains the model.

The training dataset is used to train the network, the validation set is used to prevent
the model from over-fitting to the dataset and the test set is there to evaluate the accuracy
of our classifier.

23

The program outputs some info about the setup and the error rate for the experiment.
The format of the output is ’<property>:<tab><value>’. An example of the program
output looks like:

$ python main.py --hidden 2048 --rate 0.1 train.txt valid.txt test.txt

learning rate: 0.100000
batch size: 200
hidden units: 2048
context size: 10
classifying: phonemes
===================================
before training: 98.276316 %

normalized mutual information: 0.425323549414
normalized mutual information: 0.45555220168
normalized mutual information: 0.46656820087
normalized mutual information: 0.491831599369
iteration number: 2000
best validation: 30.864322 %
test performance: 28.601974 %

5.2 Experimenting with the parameters
The goal was to compare performance of the model with varying input features and various
argument combinations. At first, we have experimented with different number of units
within the hidden layers. The results can be seen in Figures 5.1 and 5.2. For basic feature
categories, the more units we add the better result we get. However, after 512 units per
hidden layer the improvement is not that significant. On the other hand, the double delta
features had an error rate drop at 256, then it slightly increased, and then it started
decreasing again. The results indicate that we are able to build a sufficient classifier using
less units per layer.

We have decided to experiment with the context. The context size defines the number
of feature frames that are taken from each side starting from the middle one. All of these
samples are taken and merged into a single vector which is fed to the model. In our case
the difference between the MFCC and FBANK was not that big, MFCCs performed a bit
better. We can see that in all of the cases (Figures 5.3 and 5.4), the bigger context the
better. At a certain size, the context starts to worsen the results. This started happening
because the context overlaps the surrounding phonemes, and we no longer feed the neural
network with features that are strictly separated.

There is a significant difference between the normal features and the double delta
features. We can see that feeding the double delta features to the neural network without
context gives us better results. However, this advantage can be simply overtaken by
adding more context.

The last part of these experiments was to evaluate the effect of learning rate (Figures
5.5 and 5.6). The best learning rate for our data set is 0.1 according to our results. Bigger
learning rate means smaller precision in gradient descent. With smaller precision, it is

24

harder to find the right minimum. However, a learning rate that is too small causes the
model training to take a lot of time, and stuck in local minimum with higher error rate in
the end.

5.3 Testing the variance of the model
Our model is initialized using random values. We need to check whether the setup of the
system influences the results. If yes, than we need to check how much. This information
gives us a deeper insight into our model and to its trainings. To check the stability, we
ran the same experiment 100 times with the same arguments. The results can be seen in
the Figure 5.7. We can see that our results are pretty stable. Even when we initialize the
model weights at random, we see that the results differ by less than 0.5%. This means that
initialization does not have a significant impact on the accuracy of the classifier.

5.4 Classifying phoneme categories
We ran experiments to classify the phoneme categories. In this case, the classifier had
significantly better accuracy. A lot of phonemes within a category are similar. Because
of that the classifier in the previous had a difficulty separating these phonemes. However,
in this experiment the number of classes decreased to 6 and the similar phonemes were
merged into categories. We ran the experiment on four provided feature sets. The double
delta feature results had the context-less boost we know from the previuos experiment.
FBANK features had a better performance than MFCC. The results are shown in Figure
5.8. We can see the same difference between double delta and normal features. With decent
context, the difference between the feature types disappeared.

5.5 Utilities
During the development and testing of our classifier a lot of tasks were quite repetitive. We
have run the experiments on multiple separated machines, so we had to deal with moving
the dataset around.

However, the most repetitive task was plotting of the results. We did a lot of calculations
and plotting the results was a tedious task. That is why we have decided to create a utility
for automatizing of output files parsing. It plots the specified properties and is really handy
for examination of the results. This utility allowed us to generate a lot of different plots in
a short period of time.

25

1664256 512 1024 2048 4096
of units per hidden layer

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(a) FBANK

1664256 512 1024 2048 4096
of units per hidden layer

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(b) FBANK double delta

Figure 5.1: Relation between error rate and the number of units per hidden layer with
FBANK features, context size of 10 and the learning rate 0.1.

26

1664256 512 1024 2048 4096
of units per hidden layer

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(a) MFCC

1664256 512 1024 2048 4096
of units per hidden layer

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(b) MFCC double delta

Figure 5.2: Relation between error rate and the number of units per hidden layer with
MFCC features, context size of 10 and the learning rate 0.1.

27

0 1 2 3 5 10 15 20
Context size

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(a) FBANK

0 1 2 3 5 10 15 20
Context size

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(b) FBANK double delta

Figure 5.3: Relation between error rate and the context size of the NN with FBANK
features, with 2048 units per hidden layer with learning rate 0.1.

28

0 1 2 3 5 10 15 20
Context size

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(a) MFCC

0 1 2 3 5 10 15 20
Context size

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(b) MFCC double delta

Figure 5.4: Relation between error rate and the context size of the NN with MFCC features,
with 2048 units per hidden layer with learning rate 0.1.

29

10-3 10-2 10-1 100

Learning rate

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(a) FBANK

10-3 10-2 10-1 100

Learning rate

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(b) FBANK double delta

Figure 5.5: Relation between error rate and the learning rate with FBANK features, context
size of 10 and the number of units within the hidden layer 2048.

30

10-3 10-2 10-1 100

Learning rate

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(a) MFCC

10-3 10-2 10-1 100

Learning rate

0

20

40

60

80

100

E
rr

o
r

ra
te

 [
%

]

(b) MFCC double delta

Figure 5.6: Relation between error rate and the learning rate with MFCC features, context
size of 10 and the number of units within the hidden layer 2048.

31

0 20 40 60 80 100
Experiment

32.0

32.5

33.0

33.5

34.0

34.5

35.0

35.5

36.0

E
rr

o
r

ra
te

 [
%

]

Figure 5.7: Plot showing the stability of the results when running the experiment 100 times
with the same network configuration. The configuration in this case was FBANK features,
context size of 10, learning rate 0.1, and the number of hidden units within the layer was
2048.

32

0 1 2 3 5 10 15 20
Context size

0

10

20

30

40

50

E
rr

o
r

ra
te

 [
%

]

(a) FBANK

0 1 2 3 5 10 15 20
Context size

0

10

20

30

40

50

E
rr

o
r

ra
te

 [
%

]

(b) FBANK double delta

Figure 5.8: Relation between error rate and the context size of the NN with FBANK
features, with 1024 units per hidden layer with learning rate 0.1 for phoneme category
classification.

33

Chapter 6

Conclusion

We designed an audio event classifier, which was based on the MLP model and had 3
hidden layers. Our implementation of this model has a possibility to tune the properties
of the neural network using command line tools. We experimented with variables that
influence the performance of our classifier. This process included changing the number of
units within the hidden layers, different context sizes and a different learning rates. All
of these experiments were run for different feature types. We used MFCC and FBANK
features, also with their double delta variants.

We compared the results we got and found out that context size has a significant role in
the audio recognition. In general, the bigger the context, the better the accuracy. However,
when the context was too big, it overlapped to different classes and the accuracy worsened.

Double delta features had a better performance with smaller context, compared to the
regular features. The experiments show that if we increase the audio context size, the
accuracy of all classifiers across the examined feature types improve. For our database with
context size of 10, there is no difference in error rate between the feature types. This means
that the initial advantage of double delta features can be lowered by increasing the size of
the context.

Neural networks with 512 units per hidden layer did not differ significantly in their
accuracy. This means that we can build a classifier which is trained faster and its
performance is similar to one with more units in the hidden layers.

We also classified phoneme categories, and have seen a significant drop in error rate.
The reason is that there are only 6 phoneme categories compared to 52 phonemes.

In our application, audio annotation is done by feeding the test data set to MLP. The
accuracy of the annotation is evaluated using an error rate.

In our future work, we suggest combining the output of the phoneme category classifier
with the phoneme classifier, and examining whether this improves the results.

Some of the phoneme classes share a similar power spectrum, which presents difficulties
for the classifier when separating them. This suggests an opportunity to examine the impact
that merging the similar phoneme classes into one could have on the performance.

34

35

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] Martin Anthony. Discrete Mathematics of Neural Networks, chapter 1. Artificial
Neural Networks, pages 1–8. SIAM, 2001.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[4] John A. Bullinaria. Recurrent neural networks.
http://www.cs.bham.ac.uk/~jxb/INC/l12.pdf, 2015. Accessed: 2016-05-14.

[5] Soumith Chintala. I am one of the maintainers. from information first-hand, torch is
used by:. https://news.ycombinator.com/item?id=7929216, 2014. Accessed:
2016-05-08.

[6] François Chollet. Keras. https://github.com/fchollet/keras, 2015.

[7] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like
environment for machine learning. https://github.com/torch/torch7.

[8] Theano community. Multilayer perceptron.
http://deeplearning.net/tutorial/mlp.html, 2010. Accessed: 2016-05-03.

[9] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L.
Dahlgren. DARPA TIMIT acoustic phonetic continuous speech corpus CDROM,
1993.

[10] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference and prediction. Springer, 2 edition, 2009.

[11] Koray Kavukcuoglu. Deepmind moves to tensorflow. http:
//googleresearch.blogspot.cz/2016/04/deepmind-moves-to-tensorflow.html,
apr 2016. Accessed: 2016-05-14.

36

http://www.cs.bham.ac.uk/~jxb/INC/l12.pdf
https://news.ycombinator.com/item?id=7929216
https://github.com/fchollet/keras
https://github.com/torch/torch7
http://deeplearning.net/tutorial/mlp.html
http://googleresearch.blogspot.cz/2016/04/deepmind-moves-to-tensorflow.html
http://googleresearch.blogspot.cz/2016/04/deepmind-moves-to-tensorflow.html

[12] Geoff rey Hinton Li Deng and Brian Kingsbury. New types of deep neural network
learning for speech recogniti on and related applicat ions: An overview.
http://research.microsoft.com/pubs/189004/ICASSP-2013-
DengHintonKingsbury-revised.pdf, 2013.

[13] James Lyons. Mel frequency cepstral coefficient (mfcc) tutorial.
http://www.practicalcryptography.com/miscellaneous/machine-learning/
guide-mel-frequency-cepstral-coefficients-mfccs/, 2013. Accessed:
2016-05-13.

[14] Andrew McAfee and Erik Brynjolfsson. Big data: the management revolution.
http://www.rosebt.com/uploads/8/1/8/1/8181762/big_data_the_management_
revolution.pdf, oct 2012.

[15] Franco Scarselli and Ah Chung Tsoi. Universal approximation using feedforward
neural networks: A survey of some existing methods, and some new results. Neural
Networks, 11(1):15–37, 1998.

[16] J. Schmidhuber. Deep Learning. Scholarpedia, 10(11):32832, 2015. revision 152272.

[17] Pejman Tahmasebi and Ardeshir Hezarkhani. Application of a modular feedforward
neural network for grade estimation. Natural Resources Research, 20(1), mar 2011.

[18] Theano Development Team. Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

37

http://research.microsoft.com/pubs/189004/ICASSP-2013-DengHintonKingsbury-revised.pdf
http://research.microsoft.com/pubs/189004/ICASSP-2013-DengHintonKingsbury-revised.pdf
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://www.rosebt.com/uploads/8/1/8/1/8181762/big_data_the_management_revolution.pdf
http://www.rosebt.com/uploads/8/1/8/1/8181762/big_data_the_management_revolution.pdf

Appendices

38

List of Appendices

A Content of the CD 40

B Poster 41

39

Appendix A

Content of the CD

∙ BP.pdf - Bachelor’s thesis text

∙ Poster.pdf - Poster presenting our work

∙ /code/ - project directory of the practical part of the thesis

∙ /code/src/ - directory that contains the source files of bachelor’s thesis

∙ /code/README.md - README of the project

40

Appendix B

Poster

41

	Introduction
	Theory
	Probability theory
	Introduction
	Important rules
	Bayes' theorem

	Logistic regression
	Introduction to logistic regression
	Linear discriminant function
	Multiclass logistic regression
	Training the Logistic regression

	Neural Networks
	Artificial Neuron
	Multilayer Perceptron
	Other architectural types of the networks

	Method
	Objectives
	Construction of the classifier
	Setup

	Analysis
	Tools
	Theano Framework
	TensorFlow
	Keras
	Torch
	Framework selection

	TIMIT Database
	Features
	Mel Frequency Cepstral Coefficient (MFCC)
	Filter Bank (FBANK)
	Double delta features

	Discussion
	Preparing the experiments
	Architecture of the classifier

	Experimenting with the parameters
	Testing the variance of the model
	Classifying phoneme categories
	Utilities

	Conclusion
	Bibliography
	Appendices
	List of Appendices

	Content of the CD
	Poster

