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Abstract 
A lot of information is carried i n sound. The amount of audio data is increasing wi th a 
growing technical level of the society. W i t h more data, the task of processing it gets harder 
for human beings. This thesis is about recognition of audio events using neural networks. 
We focused on classification of phonemes and their categories. We used the Multilayer 
perceptron model as a classifier. We examined the relation between the accuracy of the 
model and its properties. Our goal was to estimate the network setup to obtain the best 
results. The accuracy is influenced by input features. We examine the relat ion between a 
type of the features and the success rate. The differences between input feature types are 
reduced by using the context. The bigger context we use the better results we get. P rob lem 
is, when contexts overlap, overlapping leads to a higher error rate. We have used a neural 
network wi th three hidden layers. 

Abstrakt 
Zvuk je nositelem velkého m n o ž s t v í informací . S ros touc í technickou ú rovn í spo lečnos t i se 
zvyšuje m n o ž s t v í zvukových dat. Č í m více dat m á m e , t í m h ů ř e se č lověku zpracovávaj í . 
Tato p r á c e se zabývá problematikou rozpoznáván í zvukových udá los t í p o m o c í 
neu ronových sí t í . K o n k r é t n ě klasifikaci fonémů a jejich ka tegor i í . Jako klasif ikátor se 
použ ívá model vícevrstevného perceptronu. P r á c e z k o u m á závislost p ře snos t i tohoto 
klasif ikačního modelu na n a s t a v e n ý c h vlastnostech a h l edá o p t i m á l n í n a s t a v e n í pro 
m a x i m á l n í p ř e snos t . P ř e s n o s t je ov l ivněna t a k é v s t u p n í m i daty. P r á c e z k o u m á vztah mezi 
typem v s t u p n í c h dat a ú s p ě š n o s t í klasif ikačního programu, a p o r o v n á v á vlastnosti 
v y b r a n ý c h t y p ů v s t u p n í c h dat. P o u ž i t í kontextu u v s t u p n í c h dat redukuje rozdí ly n á m i 
v y b r a n ý m i typy v s t u p n í c h p r v k ů . Č í m větš í kontext použ i jeme, t í m větš í p ře snos t i 
docí l íme. P r o b l é m n a s t á v á v situaci, kdy začne kontext zasahovat do j iných t ř í d . P r o naše 
experimenty jsme používal i neuronovou síť se t ř e m i s k r y t ý m i vrstvami. 
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Chapter 1 

Introduction 

In recent years, there has been an exponential growth of produced data. [1 1] This growth 
affects audio data as well . It becomes harder for humans to process this data. According to 
staff from the Sound Effects Library, it would take 60 years for a librarian to tag a collection 
of 2 million sounds. [10] Tha t is quite a lot of t ime. The l ibrar ian might not fulfill his 
potential, because he spent a l l of his t ime tagging sound. In this per iod of t ime, great 
things can get invented. Tha t is why we do not want to waste t ime of the l ibrar ian. 

The task of the l ibrar ian consists of two major parts, classifying the sound and wri t ing 
down what sound it is. If we examine these two actions closer. We come to an assumption 
that, when the l ibrar ian classifies the sound (he knows what sound it is), wr i t ing it down is 
a rather t r iv i a l task. Our goal is to design a classifier to help the l ibrar ian live a better life. 

Our motivat ion is also economical. Pay ing a person for 60 years to annotate sound is 
pretty expensive. Tel l ing a computer to do it is much cheaper and faster. 

A t first we need to choose which mathematical model to use. Neura l Networks are 
getting more and more interest since 90's.[12] They are used to recognize patterns, this 
recognition can be used for classification. W h e n we classify a sound sample, we can write 
down an annotation. 

We decided to help the l ibrar ian by creating a phoneme classifier. To design this system 
we needed to take some steps. A t first we needed to understand the theoretical background 
of how Neura l Networks work. Then , we had to analyze the data and how to use i t . After 
that, we applied our knowledge to design the classifier. W i t h the classifier buil t , we were 
able to run a number of experiments. We were able to tune our classifier according to the 
obtained results. A l l of these steps are presented i n the upcoming chapters. 
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Chapter 2 

Theory 

In this chapter, we present important theory that is needed to accomplish this thesis. 

2.1 Probabili ty theory 

The theory of probabil i ty is important for machine learning. Some classifiers can give us a 
probabil i ty of an instance of data being in a class. 

2.1.1 I n t r o d u c t i o n 

Lets suppose we have two events A and B, we w i l l use them to explain two probabi l i ty 
terms. F i rs t one is joint probability. It is wri t ten as p(A, B), and it means „ the probabi l i ty 
of A and Bu. Th i s term gives us the probabi l i ty of two events occurring together. It is the 
probabil i ty of an intersection between two or more events happening at the same time. O n 
the other hand, the conditional probability stands for „ the probabil i ty of A given B", and 
is wr i t ten as p{A\B). It is a probabil i ty of event A occurring, given that event B occured. 

These two probabil i ty types are used i n some important rules of probabil i ty theory. 

2.1.2 I m p o r t a n t rules 

There are two probabi l i ty rules which are essential. The sum rule 2.1 and the product rule 

The product rule 2.2 means that the probabil i ty of two events occurring at the same 
time is equal to the probabil i ty of an event occurring times the probabi l i ty of Y given X. 
These two simple rules provide the basis for a l l of the theory of probabil i ty used in machine 
learning. 

One useful property of the joint probabi l i ty is a symmetry: 

2.2. 
(2.1) 

Y 

product rule p(X,Y) = p{Y\X)p{X) (2.2) 

p(X)p(Y) = p{Y)p{X) (2.3) 

This equation can be wri t ten as: 

p(X,Y)=p(Y,X) (2.4) 
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2.1.3 Bayes ' t h e o r e m 

Bayes' theorem 2.6 plays a very important role i n the theory of probabili ty. It gives us the 
probabil i ty of an event, based on conditions that might be related to the event. 

Let 's suppose that we want to know some ind iv idua l probabi l i ty of a person being 
bald. If being bald is related to age or gender, than the probabil i ty can be expressed more 
precisely using the theorem. To derive the theorem, let's we start w i th the product rule 2.2. 
Us ing its symmetry property, we get 

p(Y\X)p(X) = p(X\Y)p(Y) (2.5) 

After that we can divide the whole equation by p(X) to obtain the Bayes' theorem 

v<rm-&$P (2.6) 
Bayes' theorem can help a lot to understand the Logist ic regression 2.2. 

Let 's apply the sum rule 2.1 and the symmetry to express p(X) 

p(X) = Y/P(X\Y)p(Y) (2.7) 
Y 

Now we are able to substitute 2.7 to 2.6 and derive the final form of the Bayes' theorem 

p(X\Y)p(Y) 

~ Y.YP{X\Y)p{Y) ( 2 - 8 ) 

This form of the theorem is used i n the Logist ic regression. 

2.2 Logistic regression 

Logistic regression ( L R ) is composed of two major parts. The first one is the regression 
part and a linear discriminant function. 

2.2.1 I n t r o d u c t i o n to logistic regression 

To make the understanding of the Logistic regression model easier, let's start w i th a 2 class 
classification problem a person attending a university. We have two classes, „ a t t e n d i n g a 
university" ( C i ) and „not attending a university" (C2). We don't actually know a lot about 
the person. We might know whether his or her parents went to university, probably his or 
her gender and age. These variables affect the probabil i ty whether the event is assigned to 
class C\ or Ci. We cal l them features. 

Using the Bayes' theorem 2.8, we can express the posterior probabil i ty of class C\ as 

We can further factorize the expression to obtain 

P(Ci\x) = - . L . , (2.10) 
1 + 

p(x\C2)p(C2) 
p(*|Ci)p(Ci) 
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Lets define a relation 

exp(-a) - P i ^ m ( 2 n ) 

To get to the value of a, we take the logar i thm of both sides of the equation and mul t ip ly 
it by - 1 . 

p(x\Ci)p(Ci) 

Then we apply the logari thmic rule — In a; = In a ; - 1 . 

a-lnp(x\C2)P(C2) ( 2 - 1 3 ) 

In the next step, we can apply the subst i tut ion from equation 2.11 to 2.10, and get the 
logistic sigmoid function defined by 

a(a) = - —. r (2.14) 
v ' l + exp(-a) v ' 

This function maps the real axis, the infinite values, into the interval from 0 to 1. The 
shape of the function looks like letter 'S ' , that is why it is called Sigmoid. Th is can be seen 
in Figure 2.2. 

The inverse of the Logistic sigmoid function is given by 

a = ln{——) (2.15) 
1 — a 

and is known as the Logit function. It represents the log of the ratio of probabilit ies 
ln\p(Ci\x)/p(C2\x)] for the two classes, also known as the log odds. [3, p. 197] 

2.2.2 L i n e a r d i s cr iminant funct ion 

Linear discriminant function is an important part of Logistic regression. Thanks to this 
function, we able to decide to which class the member belongs. For 2 class problems, we 
can define it as 

y(x) = wTx + b (2.16) 

where x is an input vector, w is a weight vector and the 6 is a bias. The negative bias —b 
can be called threshold. In our case, the goal of the linear discriminant function is to create 
a line which separates two classes. A s we can see in Figure 2.1. The result of 2.16 tells us 
to which class the input vector x belongs. If y{x) > 0 then x belongs to C\ otherwise it is 
C2. Accord ing to the value of the result we are able to see how far from the separating line 
the point is. This means that we are able to te l l a probabil i ty of a point belonging to the 
other class. The point A i n the Figure 2.1 has definitely a higher chance of belonging to 
the class C\ than the point B. The decision boundary is defined by y(x) = 0. The vector 
w determines the orientation of the decision surface. 

2.2.3 M u l t i c l a s s logistic regression 

Mult ic lass logistic regression is able to separate mult iple classes, not just two. However to 
achieve that we need to generalize the Bayes' theorem and the linear discriminant function 
for two classes, shown in the equation 2.9. We can use the Bayes' theorem from equation 

6 



2.8. For a number of classes K greater than 2, the posterior probabil i ty of a class C& can 
be wri t ten as 

and further adjusted in a s imilar way as i n 2.14. 

p(Ck\x) = e X p ( Q f c ) =a(a)s (2.18) 
^exp{aj) 

This function is generalized Logistic sigmoid and is called Softmax. 
To be able to classify the number of K classes, for K > 2, we need to adapt the 

linear discriminant function 2.16. We can do that by creating a single K-class discriminant 
consisted of K linear functions i n a form 

yk(x) = w ^ x + bko (2-19) 

Assigning a point x to class i f Uk(x) > Vj(x) f ° r a n k / j, the decision boundary 
between class Ck and class Cj is given by yk(x) = yj(x) and hence corresponds to a (D—1)-
dimensional hyperplane defined by 

( w f c - W j ) T x + ( 6 f c o - & j o ) (2-20) 

This has the same form as the decision boundary for the two-class case. [3, p. 186] 
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Logistic Regression Example 

X 

Figure 2.2: Result of Logist ic regression 
Source: https : //www.mssqltips. com/sqlservertip/3471/introduction-to-the-sql-server-
a n a l y s i s - services-logistic-regression-data-mining-algorithm/ 

2.2.4 T r a i n i n g the Logis t i c regression 

We need to t ra in Logistic regression i n order to be able to classify the data. We need a 
labeled dataset, defined as (x, t), where x is the vector of features and t is a vector of labels. 
A label is an information which assigns a data piece to a class. For previously mentioned 2 
class problem wi th N data pieces, the label vector can be defined as t G 0,1 for n = 1 , N 

L R has two kinds of parameters - weights and biases. These parameters are described 
in the Section 2.2.2. 

We are searching for these parameters by maximiz ing some error function i n the 
max imum l ikel ihood manner. For the provided dataset a l ikel ihood function can be 
wri t ten like this 

N 

P(t|w) = n ^ l - U n } 1 " * " (2-21) 
n=l 

Often the log of p(t\w) is used and it is called log likelihood. Th is function is used because 
it is easier to optimize a sum than a product. Taking the negative of the log likelihood gives 
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Figure 2.3: S G D steps. 
Source: http://iamtrask.github.io/2015/07/27/python-network-part2/ 

us the error function called cross entropy error function 

N 
E(w) = - l np ( t |w) = - (Vn l n y „ + (1 - tn) l n ( l - yn) (2.22) 

n=l 

where yn = a(an) and an = uFxn. 
Our goal is to find the m i n i m u m of the error function. The min ima l value of the 

error function is the m a x i m u m of the log-likelihood, to get the best parameters we use the 
stochastic gradient descent a lgori thm. Stochastic gradient descent ( S G D ) is a numerical 
method for finding a local min imum. Imagine 1000 values that are plotted by a function 
/ . If we want to find a m i n i m u m from these values, there is no problem to check a l l 
of the values iteratively and select the smallest one. The difficulty arises when we add 
addi t ional dimensions. If the input function is two dimensional than we need to go through 
1000 * 1000 values already. The complexity grows exponentially w i th bigger magnitude. 
More dimensions equal more values to check for possible min imum. 

S G D solves this problem i n an elegant way. W h e n we derive a function in a certain 
point we also get a gradient value. This value tells us whether the function is increasing 
(the value is positive) or decreasing (the value is negative). Zero means that we found the 
min imum. S G D is t ry ing to find the m i n i m u m by „moving" through the function by some 
steps. The movement direction is chosen by derivative value and converges towards the 
min imum. This can be seen i n Figure 2.3. 

However, S G D is not perfect. It always finds a local min imum, not a global one. O n 
the other hand, the functions are often very complex, that means that finding a global 
m in imum is almost impossible. Other difficulty comes i n hand wi th the step size, which 
might be too big and S G D might skip the desired min imum. This problem can be solved 
by dynamical ly changing the step size. The closer we get to the min imum, the smaller step 
size we use. 

It is good to know that m a x i m u m l ikel ihood t ra ining procedure can also suffer from 
over-fitting. Th is problem is visually explained in Figure 2.4. Instead of fitt ing a line 
between the points, it goes direct ly through a l l of them. 

Mult ic lass L R is similar to 2 class problem, w i th the nonlinear function like Softmax 
2.18, which was explained earlier. 
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Figure 2.4: The green line shows how over-fitting (over-learning) looks like. 
Source: https://commons.wikimedia.org/wiki/File:Overfitting.svg 

2.3 Neural Networks 

Neural Networks (NNs) are mathematical models that are inspired by the human brain. 
They are composed of many smal l computat ional units called neurons. These units are 
connected. Accord ing to the type of the connections we differentiate between various types 
of N N s . Some N N types are described i n the subsequent parts of this thesis. 

2.3.1 A r t i f i c i a l N e u r o n 

Art i f i c i a l neurons are the bui ld ing blocks of neural networks. Each neuron is a single 
computat ional unit w i t h n inputs. The neuron is capable to represent a state. E a c h state 
is described by a vector w = (tt>o,u>i, ...,tt>p) G IR P of p real numbers, known as weights 
or parameters. The number p depends on the number of inputs n. Based on the output 
function, the neuron can be a linear threshold unit or sigmoid unit.[2] V i s u a l representation 
of this neuron is shown i n Figure 2.5. 

2.3.2 M u l t i l a y e r P e r c e p t r o n 

Mult i l ayer perceptrons ( M L P s ) are the most popular type of neural networks i n use today. 
They belong to a general class of structures called feed-forward neural networks. This type 
of neural network is capable of approximating functions. [15]. 

10 
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weights 

Figure 2.5: Image of an art if icial neuron. 
Source: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version 

M L P consists of three layers: the input layer, the hidden layers and the output layer 
(Figure 2.6). The input layer transforms the input data. The hidden layer does some linear 
transformations of the inputs. The output layer transforms the data to some k ind of a 
scale. We can use the Logistic regression model as an output layer. In that case, we can 
view the M L P as an extended L R . 

M L P can be viewed as a Logist ic regression classifier, which projects the input data to a 
linearly separable space using learnt non-linear transformation. For this operation, a single 
hidden layer is sufficient. [8] 

M L P is trained using Back-Propagation ( B P ) algori thm. This a lgori thm belongs to a 
category of supervised learning methods. BP is used to train the weights of networks by 
gradient descent in an objective function, such as the total classification error evaluated on 
a given training set of input patterns and corresponding labels. [16] 

B y providing a probabil ist ic interpretation of the network outputs, we can get a 
general view on the network t ra in ings ] Tha t means that the network outputs a vector of 
probabilities for each of the classes. Th is approach gives us an opportuni ty to check other 
possible results. For example our goal is to classify 3 classes (A , B , C ) . Instead of saying 
that the result is class A , the M L P output looks like (0.65,0.25,0.10). This means, that 
the result is for 65 % A , for 25 % B and for 10 % C . W i t h this k ind of result, we are able 
work further. We can pass the output of M L P to input of another network. 

2.3.3 O t h e r a r c h i t e c t u r a l types of the networks 

Neural Networks may differ i n the type of the connections, their numbers or the numbers 
of units in the layers. 

Apar t from feed-forward Networks like M L P , different architectures exist. A n 
introduct ion of two other architecture types follows. 

Recurrent neural network can have many different forms. They are often based on a 
M L P model wi th , at least one, added feed-back connection. These connections create a 
loop. The activations can round in these loops. This creates a sort of memory inside the 
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H i d d e n 

Figure 2.6: Visua l iza t ion of Mul t i l ayer Perceptron model 
Source: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version 

R N N . This memory enables the network to do temporal processing and to learn sequences. 

[4] 
Modular feed-forward networks ( M F N s ) are systems wi th mult iple independent neural 

networks. Th is architecture is inspired by the human brain. It is more efficient to split a 
problem into smaller ones. Let ' s suppose we want to classify waste. One part of the system 
can classify shapes independently on the color classifier. M F N s help to reduce complexity 
of problems and improve the network performance. [17] 
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Chapter 3 

Method 

In this chapter, we describe how the provided theory is used to design a classifier that is able 
to describe sound. Our goal is to bu i ld a system that can classify phonemes or phoneme 
categories. 

3.1 Objectives 

We would like to design a classifier using an existing deep neural network learning 
framework. We want to be able to tune the properties of the classifier using command line 
tools. We also want to run a number of experiments on a data set to determine the best 
configuration of the phoneme classification. 

3.2 Construction of the classifier 

We need to select the best mathematical model on which our classifier w i l l be based. We 
decided to use M L P , described i n the section 2.3.2. The model has three hidden layers, 
because three hidden layers should be sufficient for this task. However, we would like to 
select the best number of units wi th in these layers based on the results of experiments. We 
would also like to test whether the classifier can be more efficient using some larger audio 
context. The context is given by mult iple consecutive feature vectors representing about 
10 ms of audio each. 

The weights i n the classifier are ini t ia l ized randomly. D u r i n g the t ra ining we also check 
the stabil i ty of the model, by looking at the variabi l i ty of results. 

3.3 Setup 

A t first we need to prepare the inputs for the network. Tha t means that we need to split 
the data into three data sets, one for t raining, one for val idat ion and one for testing. The 
t ra ining set is used to bu i ld the model , the validat ion set checks how well d id we t ra in the 
model, and the testing sets is used to test the model on real data. We also have to create a 
computer program that demonstrates the selected model . For this part, there are actually 
two options. 

1. Wri te everything from scratch. 

2. Use an existing deep learning framework. 
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The second option was selected, as we know that instead of a lot of hours spent debugging, 
we are able to use a reliable software that has already been tested and run more experiments. 
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Chapter 4 

Analysis 

In this chapter we present our findings. We went through some available tools for machine 
learning to select the best one which was used for implementat ion of the audio event 
classifier. The audio database was analyzed and prepared for experiments. 

4.1 Tools 

A n important part of problem solving is to choose the right tools for the job. In our 
case, we were supposed to classify phonemes and phoneme groups using Neura l Networks. 
One possibil i ty was to implement it ourselves. However, this way takes a lot of t ime and 
may not compete wi th existing libraries. Tha t is why we decided to go wi th a machine 
learning framework. Us ing a framework, the work can be simplified a lot, because a lot 
of functionality is already inside the framework. Current ly there are mult iple popular 
frameworks. We needed to compare their positives and negatives i n order to chose one which 
would suit our needs i n a best way. We present the considered frameworks i n upcoming 
subsections. 

4.1.1 T h e a n o F r a m e w o r k 

Theano[18] is a P y t h o n l ibrary that allows to define, optimize, and evaluate mathematical 
expressions involving mult i -dimensional arrays efficiently It is used for compilat ion of the 
mathematical expressions. Theano itself is not wri t ten in P y t h o n but uses P y t h o n bindings. 
This approach gives Theano a huge performance improvement. The models are compiled 
to machine code instead of being interpreted. Theano compiles the code to run on C P U s 
as well as G P U s . The framework stands on top of the SciPy stack. 

Even though it is not a deep learning framework, it is widely used in the machine 
learning community. A lot of tools have been buil t on top of Theano. The official website 
of the project is h t t p : / / d e e p l e a r n i n g . n e t / s o f t w a r e / t h e a n o / . 

4.1.2 Tensor F l o w 

TensorFlowfl] is one of the newest computat ional libraries. It is an open source software 
l ibrary for numerical computat ion using data flow graphs. It was released by Google. This 
framework is not complete and is relying on community support. One of the main positives 
is that it contains pre-trained models. The models can be trained using both C P U s and 
G P U s . TensorFlow P y t h o n A P I is interpreted in comparison to the Theano Framework 
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which is compiled into native code. O n the other hand, TensorFlow has also C++ A P I 
which profides significant performance improvements. The official website of the project is 
https://www.tensorflow.org/. 

4.1.3 K e r a s 

Keras [ ] is a minimal is t ic framework which is buil t upon different frameworks. B y default, 
it runs upon Theano Framework 4.1.1. However, there is a possibil i ty to change the backend 
framework to TensorFlow 4.1.2. Its s implic i ty is s imilar to Torch 4.1.4. Keras stands on 
four principles: 

1. modular i ty 

2. min imal i sm 

3. easy extensibili ty 

4. work wi th python 

Each model is made of modules that can be easily plugged to each other. Each module 
should be kept short and easily understandable. It is easy to write new modules in Keras. 
A l l of these properties, combined w i t h the s implic i ty of Py thon , create an easy-to-use 
framework for experimenting wi th neural networks. 

However, it provides a certain level of abstraction, which means that we can't „get our 
hands dir ty" directly wi th the models and directly experiment w i th them. The official 
website of the project is http: //keras. io/. 

4.1.4 T o r c h 

Torch [ ] is not wri t ten i n Py thon , like the other frameworks, but i n L u a . This framework 
is main ly focused on t ra ining the models using G P U s . Torch has a large ecosystem of 
community-driven packages for machine learning. Torch is used i n Facebookf ]. Goggle 
D e e p M i n d has recently moved to TensorFlow [11]. The official website of the project is 
http://torch.ch/. 

4.1.5 F r a m e w o r k selection 

We have decided to go wi th Theano Framework as it is highly supported i n the academic 
environment. It is the oldest one mentioned, meaning that it has a lot of online resources 
available. A huge advantage is that it is a P y t h o n framework. P y t h o n is known for rapid 
development, it makes the preparation of the experiments faster, making it easier to make 
modifications of the code. 

The problem wi th Torch was that it is wri t ten in L u a and we were not familiar w i th 
this programming language. 

If we compare Theano to Keras , the benefit of Theano is that we are able to work wi th 
the models on a lower level. T h i s means that we are able to do low level optimizations. 
Theano gives us freedom to experiment w i th the neural networks. 
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affricates fricatives nasals semivowels stops vowels 
Phoneme categories 

Figure 4.1: Class dis t r ibut ion wi th in the phoneme categories. 

4.2 T I M I T Database 

We have been provided wi th a database called The DARPA TIMIT Acoustic-Phonetic 
Continuous Speech Corpus (TIMIT) [9]. T I M I T was designed to provide speech data for 
the acquisit ion of acoustic-phonetic knowledge and for the development and evaluation of 
automatic speech recognition systems. This database was published in October 1990. It 
contains a to ta l number of 6300 sentences, 10 sentences spoken by each of 630 speakers. 

The dataset is split to two section, the t ra ining data and the testing data. However for 
our needs we need to split these two lists into three. We decided to have a t ra ining set of 
size 4000, a val idat ion set w i th 1300 sentences and a testing set w i t h 1000 sentences. 

Each entry i n the T I M I T datasets contains an audio file and three label files. These 
files contain a table w i t h three columns. The last column specifies a class label and the two 
first columns show when the event occurs. The first one stands for the event start and the 
second one is the end of the event. The i r units are i n samples. The audio is sampled at a 
frequency of 16kHz. This means that for one second of audio there are 16 000 samples. 

There are 57 classes i n total . Accord ing to the recommendation from my supervisor, 
we have decided not to include the silence and non-speech events. This step reduced the 
number of classes to 52. These classes are organized into 6 categories (Tables 4.1 and 4.2). 
The number of classes wi th in the groups is not equally distr ibuted (Figure 4.1). O n the 
other hand, the dis t r ibut ion of classes i n general is quite even (Figure 4.2). 
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Figure 4.2: Class dis t r ibut ion wi th in the data. 

4.3 Features 

To be able to classify data, we need to convert the data to a representation which is suitable 
for N N s . It is also necessary to filter out unwanted parts of the audio, like noise. The process 
of data conversion is called feature extraction. In our case, we are dealing wi th audio data. 
Sound is sampled at a part icular rate. There is one feature vector per 10 ms, so the result 
of the extraction is an array of feature vectors. 

We have been provided wi th four different types of extracted features from T I M I T 
database. The types we got were Mel Frequency Cepstral Coefficient ( M F C C ) , Filter bank 
( F B A N K ) features and both of them having the double delta modification. A l l of them 
we extracted using Hidden Markov Model Toolkit ( H T K ) . These features have different 
properties, their difference can be seen i n a Figure 4.3. In the upcoming text, we would 
like to compare them. 

4.3.1 M e l F r e q u e n c y C e p s t r a l Coeff icient ( M F C C ) 

The main point to understand about speech is that the sounds generated by a human are 
filtered by the shape of the vocal tract including tongue, teeth etc. This shape determines 
what sound comes out. Determining the shape accurately should give us an accurate 
representation of the phoneme. The job of M F C C is to accurately represent the power 
spectrum which was produced by the vocal tract.[13] 
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(a) M F C C (b) F B A N K 

(c) M F C C with double delta (d) F B A N K with double delta 

Figure 4.3: Several types of features for phoneme 'en' 

M F C C s are often used for speech recognition. We extract the features using these steps: 

1. We frame the signal into short frames. 

2. For each frame calculate the periodogram estimate of the power spectrum. 

3. A p p l y the mel filterbank to the power spectra, sum the energy in each filter. 

4. Take the logar i thm of a l l filterbank energies. 

5. Take the discrete cosine transform ( D C T ) of the log filterbank energies. 

6. Keep D C T coefficients 2-13, discard the rest. 

4.3.2 F i l t e r B a n k ( F B A N K ) 

F B A N K features are extracted from a signal. The difference from M F C C 4.3.1 is that we 
don't take the logar i thm of the filter bank energies, instead we take these energies directly. 
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4.3.3 D o u b l e de l ta features 

Also known as differential and acceleration coefficients. The M F C C feature vector 
describes only the power spectral envelope of a single frame. However, the speech also has 
some information carried in the dynamics. Over time, they are i n the trajectories of the 
M F C C coefficients. If we calculate the M F C C trajectories and append them to the 
original feature vector, we get better A S R performance. [13] Better performance was 
verified by our experiments. 
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Table 4.1: Table of Phonemes part 1 

Group Phoneme class Example word Phonetic transcript ion 

Stops b bee B C L B iy 
d day D C L D ey 

g gay G C L G ey 

P pea P C L P iy 
t tea T C L T iy 
k key K C L K iy 
dx muddy m ah D X iy 

q bat bc l b ae Q 

Affricates j h joke D C L J H ow kc l k 
ch choke T C L C H ow kc l k 

Fricatives s sea S iy 
sh she S H i y 
z zone Z ow n 
zh azure ae Z H er 
f fin F ih n 
t h th in T H ih n 
V van V ae n 
dh then D H e n 

Nasals m mom M aa M 
n noon N uw N 
ng sing s i h N G 
em bot tom b aa t c l t E M 
en but ton b ah q E N 
eng Washington w aa sh E N G tc l t ax n 
nx winner w ih N X axr 

Semivowels and Glides 1 lay L ey 
r ray R e y 
w way W ey 

y yacht Y aa tc l t 
hh hay H H ey 
hv ahead ax H V eh del d 
el bottle bc l b aa t c l t E L 
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Table 4.2: Table of Phonemes part 2 

Group Phoneme class Example word Phonet ic transcript ion 

Vowels iy beet bc l b I Y t c l t 
ih bit bc l b I H t c l t 
eh bet bc l b E H t c l t 

ey bait bc l b E Y t c l t 
ae bat bc l b A E t c l t 
ctcl bott bc l b A A t c l t 
aw bout bc l b A W t c l t 
ay bite bc l b A Y tc l t 
ah but bc l b A H t c l t 
ao bought bc l b A O t c l t 

oy boy bc l b O Y 
ow boat bc l b O W tc l t 
uh book bcl b U H kc l t 
uw boot bc l b U W tc l t 
ux toot bc l b U X t c l t 
er bird bc l b E R del t 
ax about A X bc l b aw t c l t 
ix debit del d eh bei b I X t c l t 
axr butter bc l b ah dx A X R 
ax-h suspect s A X - H s pel p eh kc l k t c l t 
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Chapter 5 

Discussion 

In this chapter, we present the results that were obtained during the experimentation wi th 
the neural networks. We experimented wi th three variables, the number of hidden units, 
the context size and the learning rate. We ran the experiments mult iple times to check how 
stable the models are. 

5.1 Preparing the experiments 

To be able to run the experiments, we need to prepare the data and design the classifier. 

5.1.1 A r c h i t e c t u r e of the classifier 

The classifier is buil t i n a modular way using Py thon3 wi th the Theano Framework. A t 
first, the system needs to have the t ra ining data prepared. The system accepts three text 
files which contain a list of pairs. These pairs are made of two values. The first value 
represents a path to phoneme transcript ion and the second one is a path to a feature file. 
After the lists are parsed, the labels and the feature files are loaded into memory. Then 
we need to filter the features and match them wi th labels. The t iming of label units is in 
samples 4.2, that is why we need to convert it into milliseconds. 

^ , 1000 • Sample 
b eaturelndex = — : — (5-1) 

Sampling Frequency 

Each of the phonemes has its own length. We should select the one i n the middle to get the 
most representative feature. The central feature vector can be selected using this equation: 

_, T , Ending Index — Starting Index , . 
r eaturelndex = (5-2) 

where Startinglndex is the beginning of the phoneme and the Endinglndex is the end. We 
can also include the context of the feature sample. This may improve the accuracy of the 
model. The size of the context can be defined using a command line parameter. Some 
improvements from the context are discussed i n the next section. 

The prepared data is passed into function that builds the M L P model . The M L P model 
has a variable amount of units wi th in the hidden layer and the learning rate. Accord ing to 
the settings, the program trains the model. 

The t ra ining dataset is used to t ra in the network, the val idat ion set is used to prevent 
the model from over-fitting to the dataset and the test set is there to evaluate the accuracy 
of our classifier. 
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The program outputs some info about the setup and the error rate for the experiment. 
The format of the output is '<property>:<tab><value>' . A n example of the program 
output looks like: 

$ python main.py —hidden 2048 — r a t e 0.1 train . t x t valid.txt test.txt 

learning rate: 
batch size: 
hidden units: 
context size: 
c l a s s i f y i n g : 

0.100000 
200 
2048 
10 
phonemes 

before training: 98.276316 % 

normalized mutual information: 0.425323549414 
normalized mutual information: 0.45555220168 
normalized mutual information: 
normalized mutual information: 
i t e r a t i o n number: 2000 
best validation: 30.864322 % 
test performance: 28.601974 °/„ 

0.46656820087 
0.491831599369 

5.2 Experimenting with the parameters 

The goal was to compare performance of the model w i th varying input features and various 
argument combinations. A t first, we have experimented w i t h different number of units 
wi th in the hidden layers. The results can be seen i n Figures 5.1 and 5.2. For basic feature 
categories, the more units we add the better result we get. However, after 512 units per 
hidden layer the improvement is not that significant. O n the other hand, the double delta 
features had an error rate drop at 256, then it slightly increased, and then it started 
decreasing again. The results indicate that we are able to bu i ld a sufficient classifier using 
less units per layer. 

We have decided to experiment w i th the context. The context size defines the number 
of feature frames that are taken from each side start ing from the middle one. A l l of these 
samples are taken and merged into a single vector which is fed to the model . In our case 
the difference between the M F C C and F B A N K was not that big, M F C C s performed a bit 
better. We can see that in a l l of the cases (Figures 5.3 and 5.4), the bigger context the 
better. A t a certain size, the context starts to worsen the results. Th is started happening 
because the context overlaps the surrounding phonemes, and we no longer feed the neural 
network wi th features that are str ict ly separated. 

There is a significant difference between the normal features and the double delta 
features. We can see that feeding the double delta features to the neural network without 
context gives us better results. However, this advantage can be s imply overtaken by 
adding more context. 

The last part of these experiments was to evaluate the effect of learning rate (Figures 
5.5 and 5.6). The best learning rate for our data set is 0.1 according to our results. Bigger 
learning rate means smaller precision i n gradient descent. W i t h smaller precision, it is 
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harder to find the right min imum. However, a learning rate that is too smal l causes the 
model t ra ining to take a lot of time, and stuck i n local m i n i m u m wi th higher error rate in 
the end. 

5.3 Testing the variance of the model 

Our model is ini t ia l ized using random values. We need to check whether the setup of the 
system influences the results. If yes, than we need to check how much. This information 
gives us a deeper insight into our model and to its trainings. To check the stability, we 
ran the same experiment 100 times wi th the same arguments. The results can be seen in 
the Figure 5.7. We can see that our results are pretty stable. E v e n when we init ial ize the 
model weights at random, we see that the results differ by less than 0.5%. This means that 
ini t ia l izat ion does not have a significant impact on the accuracy of the classifier. 

5.4 Classifying phoneme categories 

We ran experiments to classify the phoneme categories. In this case, the classifier had 
significantly better accuracy. A lot of phonemes wi th in a category are similar. Because 
of that the classifier i n the previous had a difficulty separating these phonemes. However, 
in this experiment the number of classes decreased to 6 and the similar phonemes were 
merged into categories. We ran the experiment on four provided feature sets. The double 
delta feature results had the context-less boost we know from the previuos experiment. 
F B A N K features had a better performance than M F C C . The results are shown in Figure 
5.8. We can see the same difference between double delta and normal features. W i t h decent 
context, the difference between the feature types disappeared. 

5.5 Utilit ies 

Dur ing the development and testing of our classifier a lot of tasks were quite repetitive. We 
have run the experiments on mult iple separated machines, so we had to deal w i th moving 
the dataset around. 

However, the most repetitive task was plot t ing of the results. We d id a lot of calculations 
and plot t ing the results was a tedious task. Tha t is why we have decided to create a u t i l i ty 
for automatizing of output files parsing. It plots the specified properties and is really handy 
for examination of the results. This u t i l i ty allowed us to generate a lot of different plots in 
a short period of time. 
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Figure 5.1: Rela t ion between error rate and the number of units per hidden layer w i th 
F B A N K features, context size of 10 and the learning rate 0.1. 
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Figure 5.2: Rela t ion between error rate and the number of units per hidden layer w i th 
M F C C features, context size of 10 and the learning rate 0.1. 
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Figure 5.3: Rela t ion between error rate and the context size of the N N wi th F B A N K 
features, w i t h 2048 units per hidden layer w i th learning rate 0.1. 
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Figure 5.4: Rela t ion between error rate and the context size of the N N wi th M F C C features, 
w i th 2048 units per hidden layer w i th learning rate 0.1. 
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Figure 5.5: Rela t ion between error rate and the learning rate wi th F B A N K features, context 
size of 10 and the number of units wi th in the hidden layer 2048. 
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Figure 5.6: Rela t ion between error rate and the learning rate wi th M F C C features, context 
size of 10 and the number of units wi th in the hidden layer 2048. 
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Figure 5.7: P lo t showing the stabil i ty of the results when running the experiment 100 times 
wi th the same network configuration. The configuration in this case was F B A N K features, 
context size of 10, learning rate 0.1, and the number of hidden units wi th in the layer was 
2048. 
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Figure 5.8: Rela t ion between error rate and the context size of the N N wi th F B A N K 
features, w i t h 1024 units per hidden layer w i t h learning rate 0.1 for phoneme category 
classification. 
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Chapter 6 

Conclusion 

We designed an audio event classifier, which was based on the M L P model and had 3 
hidden layers. O u r implementat ion of this model has a possibil i ty to tune the properties 
of the neural network using command line tools. We experimented w i t h variables that 
influence the performance of our classifier. Th is process included changing the number of 
units wi th in the hidden layers, different context sizes and a different learning rates. A l l 
of these experiments were run for different feature types. We used M F C C and F B A N K 
features, also wi th their double delta variants. 

We compared the results we got and found out that context size has a significant role in 
the audio recognition. In general, the bigger the context, the better the accuracy. However, 
when the context was too big, it overlapped to different classes and the accuracy worsened. 

Double delta features had a better performance w i t h smaller context, compared to the 
regular features. The experiments show that i f we increase the audio context size, the 
accuracy of a l l classifiers across the examined feature types improve. For our database wi th 
context size of 10, there is no difference i n error rate between the feature types. Th is means 
that the in i t i a l advantage of double delta features can be lowered by increasing the size of 
the context. 

Neura l networks wi th 512 units per hidden layer d id not differ significantly i n their 
accuracy. This means that we can bui ld a classifier which is trained faster and its 
performance is similar to one wi th more units i n the hidden layers. 

We also classified phoneme categories, and have seen a significant drop i n error rate. 
The reason is that there are only 6 phoneme categories compared to 52 phonemes. 

In our applicat ion, audio annotation is done by feeding the test data set to M L P . The 
accuracy of the annotat ion is evaluated using an error rate. 

In our future work, we suggest combining the output of the phoneme category classifier 
w i th the phoneme classifier, and examining whether this improves the results. 

Some of the phoneme classes share a similar power spectrum, which presents difficulties 
for the classifier when separating them. This suggests an opportuni ty to examine the impact 
that merging the similar phoneme classes into one could have on the performance. 
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Appendix A 

Content of the C D 

• B P . p d f - Bachelor's thesis text 

• Poster.pdf - Poster presenting our work 

• / code / - project directory of the pract ical part of the thesis 

• / code / s rc / - directory that contains the source files of bachelor's thesis 

• / c o d e / R E A D M E . m d - R E A D M E of the project 
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