
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS
AND MULTIMEDIA
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

RECOGNITION OF AUDIO EVENTS USING DEEP
NEURAL NETWORKS
ROZPOZNÁVÁNÍ ZVUKOVÝCH UDÁLOSTÍ POMOCÍ HLUBOKÝCH NEURONOVÝCH SÍTÍ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ALBERT UCHYTIL
AUTOR PRÁCE

SUPERVISOR Ing. PETR SCHWARZ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2016

Bachelor Project Specification/18850/2015/xuchyt03

Brno University of Technology - Faculty of Information Technology

Department of Computer Graphics and Multimedia Academic year 2015/2016

Bachelor Project Specification
For: Uchyti l A lbert
Branch of study: Information Technology
Title: Recognit ion of Audio Events Using Deep Neural Networks
Category: Speech and Natural Language Processing

Instructions for project work:
1. Study deep neural networks, their variants and their use for speech and audio

processing.
2. Get acquainted with available tools for DNNs.
3. Select appropriate data and generate suitable labels.
4. Implement a method for audio event recognition using one of available tools.
5. Compare the results of several approaches and discuss the results.
6. Create a poster and/or video presenting your work.

Basic references:
• according to supervisor's recommendation.

Requirements for the first semester:
Items 1 to 3, partially item 4

Detailed formal specifications can be found at http://www.fit.vutbr.cz/info/szz/

The Bachelor Thesis must define its purpose, describe a current state of the art, introduce the theoretical
and technical background relevant to the problems solved, and specify what parts have been used from earlier
projects or have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version
of the complete program documentation, program source files, and a functional hardware prototype sample if
desired. The information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R,
etc.) in formats common at the FIT. In order to allow regular handling, the medium will be securely attached to
the printed report.

Supervisor: Schwarz Petr , I ng . , Ph .D . , DCGM FIT BUT
Beginning of work: November 1, 2015
Date of delivery: May 18, 2016

VYSOKÉ UČENÍ TECHNICKÉ V BRNE
Fakulta informačních technológií

Ústav počítačové grafiky a multimédií
61rw8mo, Božetěchova 2

Jan Černocký
Associate Professor and Head of Department

http://www.fit.vutbr.cz/info/szz/

Abstract
A lot of information is carried i n sound. The amount of audio data is increasing wi th a
growing technical level of the society. W i t h more data, the task of processing it gets harder
for human beings. This thesis is about recognition of audio events using neural networks.
We focused on classification of phonemes and their categories. We used the Multilayer
perceptron model as a classifier. We examined the relation between the accuracy of the
model and its properties. Our goal was to estimate the network setup to obtain the best
results. The accuracy is influenced by input features. We examine the relat ion between a
type of the features and the success rate. The differences between input feature types are
reduced by using the context. The bigger context we use the better results we get. P rob lem
is, when contexts overlap, overlapping leads to a higher error rate. We have used a neural
network wi th three hidden layers.

Abstrakt
Zvuk je nositelem velkého m n o ž s t v í informací . S ros touc í technickou ú rovn í spo lečnos t i se
zvyšuje m n o ž s t v í zvukových dat. Č í m více dat m á m e , t í m h ů ř e se č lověku zpracovávaj í .
Tato p r á c e se zabývá problematikou rozpoznáván í zvukových udá los t í p o m o c í
neu ronových sí t í . K o n k r é t n ě klasifikaci fonémů a jejich ka tegor i í . Jako klasif ikátor se
použ ívá model vícevrstevného perceptronu. P r á c e z k o u m á závislost p ře snos t i tohoto
klasif ikačního modelu na n a s t a v e n ý c h vlastnostech a h l edá o p t i m á l n í n a s t a v e n í pro
m a x i m á l n í p ř e snos t . P ř e s n o s t je ov l ivněna t a k é v s t u p n í m i daty. P r á c e z k o u m á vztah mezi
typem v s t u p n í c h dat a ú s p ě š n o s t í klasif ikačního programu, a p o r o v n á v á vlastnosti
v y b r a n ý c h t y p ů v s t u p n í c h dat. P o u ž i t í kontextu u v s t u p n í c h dat redukuje rozdí ly n á m i
v y b r a n ý m i typy v s t u p n í c h p r v k ů . Č í m větš í kontext použ i jeme, t í m větš í p ře snos t i
docí l íme. P r o b l é m n a s t á v á v situaci, kdy začne kontext zasahovat do j iných t ř í d . P r o naše
experimenty jsme používal i neuronovou síť se t ř e m i s k r y t ý m i vrstvami.

Keywords
Sound recognition, A u d i o classification, Neura l Networks, Phoneme classification

Klíčová slova
R o z p o z n á v á n í zvuku, Klasifikace audia, Neuronové sí tě , Klasifikace fonémů

Reference
U C H Y T I L , A lbe r t . Recognition of Audio Events Using Deep Neural Networks. Brno ,
2016. Bachelor's thesis. Brno Univers i ty of Technology, Facul ty of Information
Technology. Supervisor Schwarz Petr.

Recognition of A u d i o Events Using Deep Neura l
Networks

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of M r . Ing. Pe t r Schwarz, P h . D . The supplementary information was
provided by M r . M g r . Lucas Ondel . A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

Alber t Uchy t i l
M a y 18, 2016

Acknowledgements
I would like to thank my advisor M g r . Lucas Onde l for the guiding me on my way to
create this thesis. Wi thou t h i m this thesis would not exist. Y o u have helped me a lot to
understand how do Neura l Networks work. Wi thou t this help, s tudying the theory for this
thesis would be much tougher.

I would like to thank my supervisor Ing. Petr Schwarz P h D . for helping me to make
this thesis real. Thank you for proving help every t ime I was i n need.

I would like to thank my family for the support and constant encouragement I got over
the years.

© Albe r t Uchy t i l , 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author's explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3

2 Theory 4
2.1 Probabi l i ty theory 4

2.1.1 Introduction 4
2.1.2 Important rules 4
2.1.3 Bayes' theorem 5

2.2 Logist ic regression 5
2.2.1 Introduct ion to logistic regression 5
2.2.2 Linear discriminant function 6
2.2.3 Mult ic lass logistic regression 6
2.2.4 Tra in ing the Logist ic regression 8

2.3 Neura l Networks 10
2.3.1 Ar t i f i c ia l Neuron 10
2.3.2 Mul t i l ayer Perceptron 10
2.3.3 Other architectural types of the networks 11

3 M e t h o d 13
3.1 Objectives 13
3.2 Construct ion of the classifier 13
3.3 Setup 13

4 Analysis 15
4.1 Tools 15

4.1.1 Theano Framework 15
4.1.2 TensorFlow 15
4.1.3 Keras 16
4.1.4 Torch 16
4.1.5 Framework selection 16

4.2 T I M I T Database 17
4.3 Features 18

4.3.1 M e l Frequency Cepstral Coefficient (M F C C) 18
4.3.2 F i l t e r Bank (F B A N K) 19
4.3.3 Double delta features 20

I

5 Discussion 23
5.1 Prepar ing the experiments 23

5.1.1 Archi tecture of the classifier 23
5.2 Exper iment ing w i t h the parameters 24
5.3 Testing the variance of the model 25
5.4 Classifying phoneme categories 25

5.5 Uti l i t ies 25

6 Conclusion 34

Bibl iography 36

Appendices 38

Lis t of Appendices 39

A Content of the C D 40

B Poster 4 1

2

Chapter 1

Introduction

In recent years, there has been an exponential growth of produced data. [1 1] This growth
affects audio data as well . It becomes harder for humans to process this data. According to
staff from the Sound Effects Library, it would take 60 years for a librarian to tag a collection
of 2 million sounds. [10] Tha t is quite a lot of t ime. The l ibrar ian might not fulfill his
potential, because he spent a l l of his t ime tagging sound. In this per iod of t ime, great
things can get invented. Tha t is why we do not want to waste t ime of the l ibrar ian.

The task of the l ibrar ian consists of two major parts, classifying the sound and wri t ing
down what sound it is. If we examine these two actions closer. We come to an assumption
that, when the l ibrar ian classifies the sound (he knows what sound it is), wr i t ing it down is
a rather t r iv i a l task. Our goal is to design a classifier to help the l ibrar ian live a better life.

Our motivat ion is also economical. Pay ing a person for 60 years to annotate sound is
pretty expensive. Tel l ing a computer to do it is much cheaper and faster.

A t first we need to choose which mathematical model to use. Neura l Networks are
getting more and more interest since 90's.[12] They are used to recognize patterns, this
recognition can be used for classification. W h e n we classify a sound sample, we can write
down an annotation.

We decided to help the l ibrar ian by creating a phoneme classifier. To design this system
we needed to take some steps. A t first we needed to understand the theoretical background
of how Neura l Networks work. Then , we had to analyze the data and how to use i t . After
that, we applied our knowledge to design the classifier. W i t h the classifier buil t , we were
able to run a number of experiments. We were able to tune our classifier according to the
obtained results. A l l of these steps are presented i n the upcoming chapters.

3

Chapter 2

Theory

In this chapter, we present important theory that is needed to accomplish this thesis.

2.1 Probabili ty theory

The theory of probabil i ty is important for machine learning. Some classifiers can give us a
probabil i ty of an instance of data being in a class.

2.1.1 I n t r o d u c t i o n

Lets suppose we have two events A and B, we w i l l use them to explain two probabi l i ty
terms. F i rs t one is joint probability. It is wri t ten as p(A, B), and it means „ the probabi l i ty
of A and Bu. Th i s term gives us the probabi l i ty of two events occurring together. It is the
probabil i ty of an intersection between two or more events happening at the same time. O n
the other hand, the conditional probability stands for „ the probabil i ty of A given B", and
is wr i t ten as p{A\B). It is a probabil i ty of event A occurring, given that event B occured.

These two probabil i ty types are used i n some important rules of probabil i ty theory.

2.1.2 I m p o r t a n t rules

There are two probabi l i ty rules which are essential. The sum rule 2.1 and the product rule

The product rule 2.2 means that the probabil i ty of two events occurring at the same
time is equal to the probabil i ty of an event occurring times the probabi l i ty of Y given X.
These two simple rules provide the basis for a l l of the theory of probabil i ty used in machine
learning.

One useful property of the joint probabi l i ty is a symmetry:

2.2.
(2.1)

Y

product rule p(X,Y) = p{Y\X)p{X) (2.2)

p(X)p(Y) = p{Y)p{X) (2.3)

This equation can be wri t ten as:

p(X,Y)=p(Y,X) (2.4)

4

2.1.3 Bayes ' t h e o r e m

Bayes' theorem 2.6 plays a very important role i n the theory of probabili ty. It gives us the
probabil i ty of an event, based on conditions that might be related to the event.

Let 's suppose that we want to know some ind iv idua l probabi l i ty of a person being
bald. If being bald is related to age or gender, than the probabil i ty can be expressed more
precisely using the theorem. To derive the theorem, let's we start w i th the product rule 2.2.
Us ing its symmetry property, we get

p(Y\X)p(X) = p(X\Y)p(Y) (2.5)

After that we can divide the whole equation by p(X) to obtain the Bayes' theorem

v<rm-&$P (2.6)
Bayes' theorem can help a lot to understand the Logist ic regression 2.2.

Let 's apply the sum rule 2.1 and the symmetry to express p(X)

p(X) = Y/P(X\Y)p(Y) (2.7)
Y

Now we are able to substitute 2.7 to 2.6 and derive the final form of the Bayes' theorem

p(X\Y)p(Y)

~ Y.YP{X\Y)p{Y) (2 - 8)

This form of the theorem is used i n the Logist ic regression.

2.2 Logistic regression

Logistic regression (L R) is composed of two major parts. The first one is the regression
part and a linear discriminant function.

2.2.1 I n t r o d u c t i o n to logistic regression

To make the understanding of the Logistic regression model easier, let's start w i th a 2 class
classification problem a person attending a university. We have two classes, „ a t t e n d i n g a
university" (C i) and „not attending a university" (C2). We don't actually know a lot about
the person. We might know whether his or her parents went to university, probably his or
her gender and age. These variables affect the probabil i ty whether the event is assigned to
class C\ or Ci. We cal l them features.

Using the Bayes' theorem 2.8, we can express the posterior probabil i ty of class C\ as

We can further factorize the expression to obtain

P(Ci\x) = - . L . , (2.10)
1 +

p(x\C2)p(C2)
p(*|Ci)p(Ci)

5

Lets define a relation

exp(-a) - P i ^ m (2 n)

To get to the value of a, we take the logar i thm of both sides of the equation and mul t ip ly
it by - 1 .

p(x\Ci)p(Ci)

Then we apply the logari thmic rule — In a; = In a ; - 1 .

a-lnp(x\C2)P(C2) (2 - 1 3)

In the next step, we can apply the subst i tut ion from equation 2.11 to 2.10, and get the
logistic sigmoid function defined by

a(a) = - —. r (2.14)
v ' l + exp(-a) v '

This function maps the real axis, the infinite values, into the interval from 0 to 1. The
shape of the function looks like letter 'S ' , that is why it is called Sigmoid. Th is can be seen
in Figure 2.2.

The inverse of the Logistic sigmoid function is given by

a = ln{——) (2.15)
1 — a

and is known as the Logit function. It represents the log of the ratio of probabilit ies
ln\p(Ci\x)/p(C2\x)] for the two classes, also known as the log odds. [3, p. 197]

2.2.2 L i n e a r d i s cr iminant funct ion

Linear discriminant function is an important part of Logistic regression. Thanks to this
function, we able to decide to which class the member belongs. For 2 class problems, we
can define it as

y(x) = wTx + b (2.16)

where x is an input vector, w is a weight vector and the 6 is a bias. The negative bias —b
can be called threshold. In our case, the goal of the linear discriminant function is to create
a line which separates two classes. A s we can see in Figure 2.1. The result of 2.16 tells us
to which class the input vector x belongs. If y{x) > 0 then x belongs to C\ otherwise it is
C2. Accord ing to the value of the result we are able to see how far from the separating line
the point is. This means that we are able to te l l a probabil i ty of a point belonging to the
other class. The point A i n the Figure 2.1 has definitely a higher chance of belonging to
the class C\ than the point B. The decision boundary is defined by y(x) = 0. The vector
w determines the orientation of the decision surface.

2.2.3 M u l t i c l a s s logistic regression

Mult ic lass logistic regression is able to separate mult iple classes, not just two. However to
achieve that we need to generalize the Bayes' theorem and the linear discriminant function
for two classes, shown in the equation 2.9. We can use the Bayes' theorem from equation

6

2.8. For a number of classes K greater than 2, the posterior probabil i ty of a class C& can
be wri t ten as

and further adjusted in a s imilar way as i n 2.14.

p(Ck\x) = e X p (Q f c) =a(a)s (2.18)
^exp{aj)

This function is generalized Logistic sigmoid and is called Softmax.
To be able to classify the number of K classes, for K > 2, we need to adapt the

linear discriminant function 2.16. We can do that by creating a single K-class discriminant
consisted of K linear functions i n a form

yk(x) = w ^ x + bko (2-19)

Assigning a point x to class i f Uk(x) > Vj(x) f ° r a n k / j, the decision boundary
between class Ck and class Cj is given by yk(x) = yj(x) and hence corresponds to a (D—1)-
dimensional hyperplane defined by

(w f c - W j) T x + (6 f c o - & j o) (2-20)

This has the same form as the decision boundary for the two-class case. [3, p. 186]

7

Logistic Regression Example

X

Figure 2.2: Result of Logist ic regression
Source: https : //www.mssqltips. com/sqlservertip/3471/introduction-to-the-sql-server-
a n a l y s i s - services-logistic-regression-data-mining-algorithm/

2.2.4 T r a i n i n g the Logis t i c regression

We need to t ra in Logistic regression i n order to be able to classify the data. We need a
labeled dataset, defined as (x, t), where x is the vector of features and t is a vector of labels.
A label is an information which assigns a data piece to a class. For previously mentioned 2
class problem wi th N data pieces, the label vector can be defined as t G 0,1 for n = 1 , N

L R has two kinds of parameters - weights and biases. These parameters are described
in the Section 2.2.2.

We are searching for these parameters by maximiz ing some error function i n the
max imum l ikel ihood manner. For the provided dataset a l ikel ihood function can be
wri t ten like this

N

P(t|w) = n ^ l - U n } 1 " * " (2-21)
n=l

Often the log of p(t\w) is used and it is called log likelihood. Th is function is used because
it is easier to optimize a sum than a product. Taking the negative of the log likelihood gives

8

http://www.mssqltips

Figure 2.3: S G D steps.
Source: http://iamtrask.github.io/2015/07/27/python-network-part2/

us the error function called cross entropy error function

N
E(w) = - l np (t |w) = - (Vn l n y „ + (1 - tn) l n (l - yn) (2.22)

n=l

where yn = a(an) and an = uFxn.
Our goal is to find the m i n i m u m of the error function. The min ima l value of the

error function is the m a x i m u m of the log-likelihood, to get the best parameters we use the
stochastic gradient descent a lgori thm. Stochastic gradient descent (S G D) is a numerical
method for finding a local min imum. Imagine 1000 values that are plotted by a function
/ . If we want to find a m i n i m u m from these values, there is no problem to check a l l
of the values iteratively and select the smallest one. The difficulty arises when we add
addi t ional dimensions. If the input function is two dimensional than we need to go through
1000 * 1000 values already. The complexity grows exponentially w i th bigger magnitude.
More dimensions equal more values to check for possible min imum.

S G D solves this problem i n an elegant way. W h e n we derive a function in a certain
point we also get a gradient value. This value tells us whether the function is increasing
(the value is positive) or decreasing (the value is negative). Zero means that we found the
min imum. S G D is t ry ing to find the m i n i m u m by „moving" through the function by some
steps. The movement direction is chosen by derivative value and converges towards the
min imum. This can be seen i n Figure 2.3.

However, S G D is not perfect. It always finds a local min imum, not a global one. O n
the other hand, the functions are often very complex, that means that finding a global
m in imum is almost impossible. Other difficulty comes i n hand wi th the step size, which
might be too big and S G D might skip the desired min imum. This problem can be solved
by dynamical ly changing the step size. The closer we get to the min imum, the smaller step
size we use.

It is good to know that m a x i m u m l ikel ihood t ra ining procedure can also suffer from
over-fitting. Th is problem is visually explained in Figure 2.4. Instead of fitt ing a line
between the points, it goes direct ly through a l l of them.

Mult ic lass L R is similar to 2 class problem, w i th the nonlinear function like Softmax
2.18, which was explained earlier.

9

http://iamtrask.github.io/2015/07/27/python-network-part2/

Figure 2.4: The green line shows how over-fitting (over-learning) looks like.
Source: https://commons.wikimedia.org/wiki/File:Overfitting.svg

2.3 Neural Networks

Neural Networks (NNs) are mathematical models that are inspired by the human brain.
They are composed of many smal l computat ional units called neurons. These units are
connected. Accord ing to the type of the connections we differentiate between various types
of N N s . Some N N types are described i n the subsequent parts of this thesis.

2.3.1 A r t i f i c i a l N e u r o n

Art i f i c i a l neurons are the bui ld ing blocks of neural networks. Each neuron is a single
computat ional unit w i t h n inputs. The neuron is capable to represent a state. E a c h state
is described by a vector w = (tt>o,u>i, ...,tt>p) G IR P of p real numbers, known as weights
or parameters. The number p depends on the number of inputs n. Based on the output
function, the neuron can be a linear threshold unit or sigmoid unit.[2] V i s u a l representation
of this neuron is shown i n Figure 2.5.

2.3.2 M u l t i l a y e r P e r c e p t r o n

Mult i l ayer perceptrons (M L P s) are the most popular type of neural networks i n use today.
They belong to a general class of structures called feed-forward neural networks. This type
of neural network is capable of approximating functions. [15].

10

https://commons.wikimedia.org/wiki/File:Overfitting.svg

weights

Figure 2.5: Image of an art if icial neuron.
Source: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

M L P consists of three layers: the input layer, the hidden layers and the output layer
(Figure 2.6). The input layer transforms the input data. The hidden layer does some linear
transformations of the inputs. The output layer transforms the data to some k ind of a
scale. We can use the Logistic regression model as an output layer. In that case, we can
view the M L P as an extended L R .

M L P can be viewed as a Logist ic regression classifier, which projects the input data to a
linearly separable space using learnt non-linear transformation. For this operation, a single
hidden layer is sufficient. [8]

M L P is trained using Back-Propagation (B P) algori thm. This a lgori thm belongs to a
category of supervised learning methods. BP is used to train the weights of networks by
gradient descent in an objective function, such as the total classification error evaluated on
a given training set of input patterns and corresponding labels. [16]

B y providing a probabil ist ic interpretation of the network outputs, we can get a
general view on the network t ra in ings] Tha t means that the network outputs a vector of
probabilities for each of the classes. Th is approach gives us an opportuni ty to check other
possible results. For example our goal is to classify 3 classes (A , B , C) . Instead of saying
that the result is class A , the M L P output looks like (0.65,0.25,0.10). This means, that
the result is for 65 % A , for 25 % B and for 10 % C . W i t h this k ind of result, we are able
work further. We can pass the output of M L P to input of another network.

2.3.3 O t h e r a r c h i t e c t u r a l types of the networks

Neural Networks may differ i n the type of the connections, their numbers or the numbers
of units in the layers.

Apar t from feed-forward Networks like M L P , different architectures exist. A n
introduct ion of two other architecture types follows.

Recurrent neural network can have many different forms. They are often based on a
M L P model wi th , at least one, added feed-back connection. These connections create a
loop. The activations can round in these loops. This creates a sort of memory inside the

11

https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

H i d d e n

Figure 2.6: Visua l iza t ion of Mul t i l ayer Perceptron model
Source: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

R N N . This memory enables the network to do temporal processing and to learn sequences.

[4]
Modular feed-forward networks (M F N s) are systems wi th mult iple independent neural

networks. Th is architecture is inspired by the human brain. It is more efficient to split a
problem into smaller ones. Let ' s suppose we want to classify waste. One part of the system
can classify shapes independently on the color classifier. M F N s help to reduce complexity
of problems and improve the network performance. [17]

12

https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

Chapter 3

Method

In this chapter, we describe how the provided theory is used to design a classifier that is able
to describe sound. Our goal is to bu i ld a system that can classify phonemes or phoneme
categories.

3.1 Objectives

We would like to design a classifier using an existing deep neural network learning
framework. We want to be able to tune the properties of the classifier using command line
tools. We also want to run a number of experiments on a data set to determine the best
configuration of the phoneme classification.

3.2 Construction of the classifier

We need to select the best mathematical model on which our classifier w i l l be based. We
decided to use M L P , described i n the section 2.3.2. The model has three hidden layers,
because three hidden layers should be sufficient for this task. However, we would like to
select the best number of units wi th in these layers based on the results of experiments. We
would also like to test whether the classifier can be more efficient using some larger audio
context. The context is given by mult iple consecutive feature vectors representing about
10 ms of audio each.

The weights i n the classifier are ini t ia l ized randomly. D u r i n g the t ra ining we also check
the stabil i ty of the model, by looking at the variabi l i ty of results.

3.3 Setup

A t first we need to prepare the inputs for the network. Tha t means that we need to split
the data into three data sets, one for t raining, one for val idat ion and one for testing. The
t ra ining set is used to bu i ld the model , the validat ion set checks how well d id we t ra in the
model, and the testing sets is used to test the model on real data. We also have to create a
computer program that demonstrates the selected model . For this part, there are actually
two options.

1. Wri te everything from scratch.

2. Use an existing deep learning framework.

13

The second option was selected, as we know that instead of a lot of hours spent debugging,
we are able to use a reliable software that has already been tested and run more experiments.

14

Chapter 4

Analysis

In this chapter we present our findings. We went through some available tools for machine
learning to select the best one which was used for implementat ion of the audio event
classifier. The audio database was analyzed and prepared for experiments.

4.1 Tools

A n important part of problem solving is to choose the right tools for the job. In our
case, we were supposed to classify phonemes and phoneme groups using Neura l Networks.
One possibil i ty was to implement it ourselves. However, this way takes a lot of t ime and
may not compete wi th existing libraries. Tha t is why we decided to go wi th a machine
learning framework. Us ing a framework, the work can be simplified a lot, because a lot
of functionality is already inside the framework. Current ly there are mult iple popular
frameworks. We needed to compare their positives and negatives i n order to chose one which
would suit our needs i n a best way. We present the considered frameworks i n upcoming
subsections.

4.1.1 T h e a n o F r a m e w o r k

Theano[18] is a P y t h o n l ibrary that allows to define, optimize, and evaluate mathematical
expressions involving mult i -dimensional arrays efficiently It is used for compilat ion of the
mathematical expressions. Theano itself is not wri t ten in P y t h o n but uses P y t h o n bindings.
This approach gives Theano a huge performance improvement. The models are compiled
to machine code instead of being interpreted. Theano compiles the code to run on C P U s
as well as G P U s . The framework stands on top of the SciPy stack.

Even though it is not a deep learning framework, it is widely used in the machine
learning community. A lot of tools have been buil t on top of Theano. The official website
of the project is h t t p : / / d e e p l e a r n i n g . n e t / s o f t w a r e / t h e a n o / .

4.1.2 Tensor F l o w

TensorFlowfl] is one of the newest computat ional libraries. It is an open source software
l ibrary for numerical computat ion using data flow graphs. It was released by Google. This
framework is not complete and is relying on community support. One of the main positives
is that it contains pre-trained models. The models can be trained using both C P U s and
G P U s . TensorFlow P y t h o n A P I is interpreted in comparison to the Theano Framework

15

http://deeplearning.net/software/theano/

which is compiled into native code. O n the other hand, TensorFlow has also C++ A P I
which profides significant performance improvements. The official website of the project is
https://www.tensorflow.org/.

4.1.3 K e r a s

Keras [] is a minimal is t ic framework which is buil t upon different frameworks. B y default,
it runs upon Theano Framework 4.1.1. However, there is a possibil i ty to change the backend
framework to TensorFlow 4.1.2. Its s implic i ty is s imilar to Torch 4.1.4. Keras stands on
four principles:

1. modular i ty

2. min imal i sm

3. easy extensibili ty

4. work wi th python

Each model is made of modules that can be easily plugged to each other. Each module
should be kept short and easily understandable. It is easy to write new modules in Keras.
A l l of these properties, combined w i t h the s implic i ty of Py thon , create an easy-to-use
framework for experimenting wi th neural networks.

However, it provides a certain level of abstraction, which means that we can't „get our
hands dir ty" directly wi th the models and directly experiment w i th them. The official
website of the project is http: //keras. io/.

4.1.4 T o r c h

Torch [] is not wri t ten i n Py thon , like the other frameworks, but i n L u a . This framework
is main ly focused on t ra ining the models using G P U s . Torch has a large ecosystem of
community-driven packages for machine learning. Torch is used i n Facebookf]. Goggle
D e e p M i n d has recently moved to TensorFlow [11]. The official website of the project is
http://torch.ch/.

4.1.5 F r a m e w o r k selection

We have decided to go wi th Theano Framework as it is highly supported i n the academic
environment. It is the oldest one mentioned, meaning that it has a lot of online resources
available. A huge advantage is that it is a P y t h o n framework. P y t h o n is known for rapid
development, it makes the preparation of the experiments faster, making it easier to make
modifications of the code.

The problem wi th Torch was that it is wri t ten in L u a and we were not familiar w i th
this programming language.

If we compare Theano to Keras , the benefit of Theano is that we are able to work wi th
the models on a lower level. T h i s means that we are able to do low level optimizations.
Theano gives us freedom to experiment w i th the neural networks.

16

https://www.tensorflow.org/
http://torch.ch/

20

affricates fricatives nasals semivowels stops vowels
Phoneme categories

Figure 4.1: Class dis t r ibut ion wi th in the phoneme categories.

4.2 T I M I T Database

We have been provided wi th a database called The DARPA TIMIT Acoustic-Phonetic
Continuous Speech Corpus (TIMIT) [9]. T I M I T was designed to provide speech data for
the acquisit ion of acoustic-phonetic knowledge and for the development and evaluation of
automatic speech recognition systems. This database was published in October 1990. It
contains a to ta l number of 6300 sentences, 10 sentences spoken by each of 630 speakers.

The dataset is split to two section, the t ra ining data and the testing data. However for
our needs we need to split these two lists into three. We decided to have a t ra ining set of
size 4000, a val idat ion set w i th 1300 sentences and a testing set w i t h 1000 sentences.

Each entry i n the T I M I T datasets contains an audio file and three label files. These
files contain a table w i t h three columns. The last column specifies a class label and the two
first columns show when the event occurs. The first one stands for the event start and the
second one is the end of the event. The i r units are i n samples. The audio is sampled at a
frequency of 16kHz. This means that for one second of audio there are 16 000 samples.

There are 57 classes i n total . Accord ing to the recommendation from my supervisor,
we have decided not to include the silence and non-speech events. This step reduced the
number of classes to 52. These classes are organized into 6 categories (Tables 4.1 and 4.2).
The number of classes wi th in the groups is not equally distr ibuted (Figure 4.1). O n the
other hand, the dis t r ibut ion of classes i n general is quite even (Figure 4.2).

17

8000

7000

Distribution of phoneme classes in datasets

Training set
Validation set
Testing set

Phonemes

Figure 4.2: Class dis t r ibut ion wi th in the data.

4.3 Features

To be able to classify data, we need to convert the data to a representation which is suitable
for N N s . It is also necessary to filter out unwanted parts of the audio, like noise. The process
of data conversion is called feature extraction. In our case, we are dealing wi th audio data.
Sound is sampled at a part icular rate. There is one feature vector per 10 ms, so the result
of the extraction is an array of feature vectors.

We have been provided wi th four different types of extracted features from T I M I T
database. The types we got were Mel Frequency Cepstral Coefficient (M F C C) , Filter bank
(F B A N K) features and both of them having the double delta modification. A l l of them
we extracted using Hidden Markov Model Toolkit (H T K) . These features have different
properties, their difference can be seen i n a Figure 4.3. In the upcoming text, we would
like to compare them.

4.3.1 M e l F r e q u e n c y C e p s t r a l Coeff icient (M F C C)

The main point to understand about speech is that the sounds generated by a human are
filtered by the shape of the vocal tract including tongue, teeth etc. This shape determines
what sound comes out. Determining the shape accurately should give us an accurate
representation of the phoneme. The job of M F C C is to accurately represent the power
spectrum which was produced by the vocal tract.[13]

18

(a) M F C C (b) F B A N K

(c) M F C C with double delta (d) F B A N K with double delta

Figure 4.3: Several types of features for phoneme 'en'

M F C C s are often used for speech recognition. We extract the features using these steps:

1. We frame the signal into short frames.

2. For each frame calculate the periodogram estimate of the power spectrum.

3. A p p l y the mel filterbank to the power spectra, sum the energy in each filter.

4. Take the logar i thm of a l l filterbank energies.

5. Take the discrete cosine transform (D C T) of the log filterbank energies.

6. Keep D C T coefficients 2-13, discard the rest.

4.3.2 F i l t e r B a n k (F B A N K)

F B A N K features are extracted from a signal. The difference from M F C C 4.3.1 is that we
don't take the logar i thm of the filter bank energies, instead we take these energies directly.

19

4.3.3 D o u b l e de l ta features

Also known as differential and acceleration coefficients. The M F C C feature vector
describes only the power spectral envelope of a single frame. However, the speech also has
some information carried in the dynamics. Over time, they are i n the trajectories of the
M F C C coefficients. If we calculate the M F C C trajectories and append them to the
original feature vector, we get better A S R performance. [13] Better performance was
verified by our experiments.

20

Table 4.1: Table of Phonemes part 1

Group Phoneme class Example word Phonetic transcript ion

Stops b bee B C L B iy
d day D C L D ey

g gay G C L G ey

P pea P C L P iy
t tea T C L T iy
k key K C L K iy
dx muddy m ah D X iy

q bat bc l b ae Q

Affricates j h joke D C L J H ow kc l k
ch choke T C L C H ow kc l k

Fricatives s sea S iy
sh she S H i y
z zone Z ow n
zh azure ae Z H er
f fin F ih n
t h th in T H ih n
V van V ae n
dh then D H e n

Nasals m mom M aa M
n noon N uw N
ng sing s i h N G
em bot tom b aa t c l t E M
en but ton b ah q E N
eng Washington w aa sh E N G tc l t ax n
nx winner w ih N X axr

Semivowels and Glides 1 lay L ey
r ray R e y
w way W ey

y yacht Y aa tc l t
hh hay H H ey
hv ahead ax H V eh del d
el bottle bc l b aa t c l t E L

21

Table 4.2: Table of Phonemes part 2

Group Phoneme class Example word Phonet ic transcript ion

Vowels iy beet bc l b I Y t c l t
ih bit bc l b I H t c l t
eh bet bc l b E H t c l t

ey bait bc l b E Y t c l t
ae bat bc l b A E t c l t
ctcl bott bc l b A A t c l t
aw bout bc l b A W t c l t
ay bite bc l b A Y tc l t
ah but bc l b A H t c l t
ao bought bc l b A O t c l t

oy boy bc l b O Y
ow boat bc l b O W tc l t
uh book bcl b U H kc l t
uw boot bc l b U W tc l t
ux toot bc l b U X t c l t
er bird bc l b E R del t
ax about A X bc l b aw t c l t
ix debit del d eh bei b I X t c l t
axr butter bc l b ah dx A X R
ax-h suspect s A X - H s pel p eh kc l k t c l t

22

Chapter 5

Discussion

In this chapter, we present the results that were obtained during the experimentation wi th
the neural networks. We experimented wi th three variables, the number of hidden units,
the context size and the learning rate. We ran the experiments mult iple times to check how
stable the models are.

5.1 Preparing the experiments

To be able to run the experiments, we need to prepare the data and design the classifier.

5.1.1 A r c h i t e c t u r e of the classifier

The classifier is buil t i n a modular way using Py thon3 wi th the Theano Framework. A t
first, the system needs to have the t ra ining data prepared. The system accepts three text
files which contain a list of pairs. These pairs are made of two values. The first value
represents a path to phoneme transcript ion and the second one is a path to a feature file.
After the lists are parsed, the labels and the feature files are loaded into memory. Then
we need to filter the features and match them wi th labels. The t iming of label units is in
samples 4.2, that is why we need to convert it into milliseconds.

^ , 1000 • Sample
b eaturelndex = — : — (5-1)

Sampling Frequency

Each of the phonemes has its own length. We should select the one i n the middle to get the
most representative feature. The central feature vector can be selected using this equation:

_, T , Ending Index — Starting Index , .
r eaturelndex = (5-2)

where Startinglndex is the beginning of the phoneme and the Endinglndex is the end. We
can also include the context of the feature sample. This may improve the accuracy of the
model. The size of the context can be defined using a command line parameter. Some
improvements from the context are discussed i n the next section.

The prepared data is passed into function that builds the M L P model . The M L P model
has a variable amount of units wi th in the hidden layer and the learning rate. Accord ing to
the settings, the program trains the model.

The t ra ining dataset is used to t ra in the network, the val idat ion set is used to prevent
the model from over-fitting to the dataset and the test set is there to evaluate the accuracy
of our classifier.

23

The program outputs some info about the setup and the error rate for the experiment.
The format of the output is '<property>:<tab><value>' . A n example of the program
output looks like:

$ python main.py —hidden 2048 — r a t e 0.1 train . t x t valid.txt test.txt

learning rate:
batch size:
hidden units:
context size:
c l a s s i f y i n g :

0.100000
200
2048
10
phonemes

before training: 98.276316 %

normalized mutual information: 0.425323549414
normalized mutual information: 0.45555220168
normalized mutual information:
normalized mutual information:
i t e r a t i o n number: 2000
best validation: 30.864322 %
test performance: 28.601974 °/„

0.46656820087
0.491831599369

5.2 Experimenting with the parameters

The goal was to compare performance of the model w i th varying input features and various
argument combinations. A t first, we have experimented w i t h different number of units
wi th in the hidden layers. The results can be seen i n Figures 5.1 and 5.2. For basic feature
categories, the more units we add the better result we get. However, after 512 units per
hidden layer the improvement is not that significant. O n the other hand, the double delta
features had an error rate drop at 256, then it slightly increased, and then it started
decreasing again. The results indicate that we are able to bu i ld a sufficient classifier using
less units per layer.

We have decided to experiment w i th the context. The context size defines the number
of feature frames that are taken from each side start ing from the middle one. A l l of these
samples are taken and merged into a single vector which is fed to the model . In our case
the difference between the M F C C and F B A N K was not that big, M F C C s performed a bit
better. We can see that in a l l of the cases (Figures 5.3 and 5.4), the bigger context the
better. A t a certain size, the context starts to worsen the results. Th is started happening
because the context overlaps the surrounding phonemes, and we no longer feed the neural
network wi th features that are str ict ly separated.

There is a significant difference between the normal features and the double delta
features. We can see that feeding the double delta features to the neural network without
context gives us better results. However, this advantage can be s imply overtaken by
adding more context.

The last part of these experiments was to evaluate the effect of learning rate (Figures
5.5 and 5.6). The best learning rate for our data set is 0.1 according to our results. Bigger
learning rate means smaller precision i n gradient descent. W i t h smaller precision, it is

24

harder to find the right min imum. However, a learning rate that is too smal l causes the
model t ra ining to take a lot of time, and stuck i n local m i n i m u m wi th higher error rate in
the end.

5.3 Testing the variance of the model

Our model is ini t ia l ized using random values. We need to check whether the setup of the
system influences the results. If yes, than we need to check how much. This information
gives us a deeper insight into our model and to its trainings. To check the stability, we
ran the same experiment 100 times wi th the same arguments. The results can be seen in
the Figure 5.7. We can see that our results are pretty stable. E v e n when we init ial ize the
model weights at random, we see that the results differ by less than 0.5%. This means that
ini t ia l izat ion does not have a significant impact on the accuracy of the classifier.

5.4 Classifying phoneme categories

We ran experiments to classify the phoneme categories. In this case, the classifier had
significantly better accuracy. A lot of phonemes wi th in a category are similar. Because
of that the classifier i n the previous had a difficulty separating these phonemes. However,
in this experiment the number of classes decreased to 6 and the similar phonemes were
merged into categories. We ran the experiment on four provided feature sets. The double
delta feature results had the context-less boost we know from the previuos experiment.
F B A N K features had a better performance than M F C C . The results are shown in Figure
5.8. We can see the same difference between double delta and normal features. W i t h decent
context, the difference between the feature types disappeared.

5.5 Utilit ies

Dur ing the development and testing of our classifier a lot of tasks were quite repetitive. We
have run the experiments on mult iple separated machines, so we had to deal w i th moving
the dataset around.

However, the most repetitive task was plot t ing of the results. We d id a lot of calculations
and plot t ing the results was a tedious task. Tha t is why we have decided to create a u t i l i ty
for automatizing of output files parsing. It plots the specified properties and is really handy
for examination of the results. This u t i l i ty allowed us to generate a lot of different plots in
a short period of time.

25

100 n-

80

60 !-•

40

20

0
1®1256 512 1024 2048

of units per hidden layer

(a) F B A N K

4096

100 rr

80

60

40

20

0 1®1256 512 1024 2048 4096
of units per hidden layer

(b) F B A N K double delta

Figure 5.1: Rela t ion between error rate and the number of units per hidden layer w i th
F B A N K features, context size of 10 and the learning rate 0.1.

26

100

80 r

i 1 60

20 -

Q I L I 1 1 1 1 1

1B4256 512 1024 2048 4096
of units per hidden layer

(a) M F C C

100 m < ' 1 ! 1

80

? 60
01

4 - *

0 Li i 1 i 1

MW256 512 1024 2048 4096
of units per hidden layer

(b) M F C C double delta

Figure 5.2: Rela t ion between error rate and the number of units per hidden layer w i th
M F C C features, context size of 10 and the learning rate 0.1.

27

100

80 -

20 -

0 1 1 1 1 1 1 1 1

0 1 2 3 5 10 15 20
Context size

(a) F B A N K

1001 1 1 1 1 ! 1 1

80 j ! : \ i

0 1
(0

60

40

20

0 1 2 3 10
Context size

15 20

(b) F B A N K double delta

Figure 5.3: Rela t ion between error rate and the context size of the N N wi th F B A N K
features, w i t h 2048 units per hidden layer w i th learning rate 0.1.

2n

100

0 1

ra

10
Context size

100

(a) M F C C

80

0 1

ra

60

40

20

0 1 2 3 10
Context size

15 20

(b) M F C C double delta

Figure 5.4: Rela t ion between error rate and the context size of the N N wi th M F C C features,
w i th 2048 units per hidden layer w i th learning rate 0.1.

29

100

80 -

31 60 -
CU

20 -

0 | , ,—,— , ,—,— , ,—,— I
10'3 10"2 10"1 10°

Learning rate
(a) F B A N K

1001 . .— . .— . .— i

80 -

31 60 -

20 - i •

0 I . . — . — ' . . — . — i 1 .—.— I
10'3 10"2 10"1 10°

Learning rate

(b) F B A N K double delta

Figure 5.5: Rela t ion between error rate and the learning rate wi th F B A N K features, context
size of 10 and the number of units wi th in the hidden layer 2048.

30

100

80

i 1 60 -

20 -

lO"3 10 2 10"1 10°
Learning rate

(a) M F C C

100 | , .— i . .— i • •— i

80 -

5 60 -

20 - i •

0 I i •—.— i 1 1—,— 1 1 — i — I
10"3 10"2 10"1 10°

Learning rate

(b) M F C C double delta

Figure 5.6: Rela t ion between error rate and the learning rate wi th M F C C features, context
size of 10 and the number of units wi th in the hidden layer 2048.

31

36.0 p

35.5 -

35.0 -

^ 34.5 -

33.0 - :

32.5 - -

32.0 I i i i i

0 20 40 60 80 100
Experiment

Figure 5.7: P lo t showing the stabil i ty of the results when running the experiment 100 times
wi th the same network configuration. The configuration in this case was F B A N K features,
context size of 10, learning rate 0.1, and the number of hidden units wi th in the layer was
2048.

32

30

20

10

0 1 2 3 10
Context size

15 20

(b) F B A N K double delta

Figure 5.8: Rela t ion between error rate and the context size of the N N wi th F B A N K
features, w i t h 1024 units per hidden layer w i t h learning rate 0.1 for phoneme category
classification.

33

Chapter 6

Conclusion

We designed an audio event classifier, which was based on the M L P model and had 3
hidden layers. O u r implementat ion of this model has a possibil i ty to tune the properties
of the neural network using command line tools. We experimented w i t h variables that
influence the performance of our classifier. Th is process included changing the number of
units wi th in the hidden layers, different context sizes and a different learning rates. A l l
of these experiments were run for different feature types. We used M F C C and F B A N K
features, also wi th their double delta variants.

We compared the results we got and found out that context size has a significant role in
the audio recognition. In general, the bigger the context, the better the accuracy. However,
when the context was too big, it overlapped to different classes and the accuracy worsened.

Double delta features had a better performance w i t h smaller context, compared to the
regular features. The experiments show that i f we increase the audio context size, the
accuracy of a l l classifiers across the examined feature types improve. For our database wi th
context size of 10, there is no difference i n error rate between the feature types. Th is means
that the in i t i a l advantage of double delta features can be lowered by increasing the size of
the context.

Neura l networks wi th 512 units per hidden layer d id not differ significantly i n their
accuracy. This means that we can bui ld a classifier which is trained faster and its
performance is similar to one wi th more units i n the hidden layers.

We also classified phoneme categories, and have seen a significant drop i n error rate.
The reason is that there are only 6 phoneme categories compared to 52 phonemes.

In our applicat ion, audio annotation is done by feeding the test data set to M L P . The
accuracy of the annotat ion is evaluated using an error rate.

In our future work, we suggest combining the output of the phoneme category classifier
w i th the phoneme classifier, and examining whether this improves the results.

Some of the phoneme classes share a similar power spectrum, which presents difficulties
for the classifier when separating them. This suggests an opportuni ty to examine the impact
that merging the similar phoneme classes into one could have on the performance.

34

35

Bibliography

[1] M a r t i n A b a d i , Ash i sh Agarwal , P a u l Barham, Eugene Brevdo, Zhifeng Chen, Cra ig
Ci t ro , Greg S. Corrado, A n d y Davis , Jeffrey Dean, Ma t th i eu Dev in , Sanjay
Ghemawat, Ian Goodfellow, A n d r e w Harp , Geoffrey Irving, Michae l Isard, Yangqing
J ia , Rafa l Jozefowicz, Lukasz Kaiser , Manjuna th K u d l u r , Josh Levenberg, D a n
Mane, Rajat Monga , Sherry Moore, Derek Murray, Chr is Olah , M i k e Schuster,
Jonathon Shlens, Benoit Steiner, I lya Sutskever, K u n a l Talwar, P a u l Tucker, Vincent
Vanhoucke, V i j a y Vasudevan, Fernanda Viegas, O r i o l Vinyals , Pete Warden, M a r t i n
Wattenberg, M a r t i n Wicke , Y u a n Y u , and Xiaoq iang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] M a r t i n Anthony. Discrete Mathematics of Neural Networks, chapter 1. Ar t i f i c i a l
Neura l Networks, pages 1-8. S I A M , 2001.

[3] Chris topher M . Bishop. Pattern Recognition and Machine Learning (Lnformation
Science and Statistics). Springer-Verlag New York , Inc., Secaucus, N J , U S A , 2006.

[4] John A . Bul l ina r i a . Recurrent neural networks.
h t t p : / / w w w . c s . b h a m . a c . u k / ~ j x b / I N C / 1 1 2 . p d f , 2015. Accessed: 2016-05-14.

[5] Soumi th Chin ta la . I a m one of the maintainers. from information first-hand, torch is
used by:. h t t p s : / / n e w s . y c o m b i n a t o r . c o m / i t e m ? i d = 7 9 2 9 2 1 6 , 2014. Accessed:
2016-05-08.

[6] Frangois Chol le t . Keras . h t t p s : / / g i t h u b . c o m / f c h o l l e t / k e r a s , 2015.

[7] R o n a n Collobert , K o r a y Kavukcuoglu , and Clement Farabet. Torch7: A matlab-like
environment for machine learning, h t t p s : / / g i t h u b . c o m / t o r c h / t o r c h 7 .

[8] Theano community. Mul t i l ayer perceptron.
h t t p : / / d e e p l e a r n i n g . n e t / t u t o r i a l / m l p . h t m l , 2010. Accessed: 2016-05-03.

[9] J . S. Garofolo, L . F . Lamel , W . M . Fisher, J . G . Fiscus, D . S. Pal let t , and N . L .
Dahlgren. D A R P A T I M I T acoustic phonetic continuous speech corpus C D R O M ,
1993.

[10] Trevor Hastie, Robert Tibshi ran i , and Jerome Fr iedman. The elements of statistical
learning: data mining, inference and prediction. Springer, 2 edition, 2009.

[11] K o r a y Kavukcuoglu . Deepmind moves to tensorflow. h t t p :
/ / g o o g l e r e s e a r c h . b l o g s p o t . c z / 2 0 1 6 / 0 4 / d e e p m i n d - m o v e s - t o - t e n s o r f l o w . h t m l ,
apr 2016. Accessed: 2016-05-14.

36

http://tensorflow.org
http://www.cs.bham.ac.uk/~jxb/INC/112.pdf
https://news.ycombinator.com/item?id=7929216
https://github.com/fchollet/keras
https://github.com/torch/torch7
http://deeplearning.net/tutorial/mlp.html

[12] Geoff rey Hin ton L i Deng and B r i a n Kingsbury . New types of deep neural network
learning for speech recogniti on and related applicat ions: A n overview,
h t t p : / / r e s e a r c h . m i c r o s o f t . c o m / p u b s / 1 8 9 0 0 4 / I C A S S P - 2 0 1 3 -
D e n g H i n t o n K i n g s b u r y - r e v i s e d . p d f , 2013.

[13] James Lyons. M e l frequency cepstral coefficient (mfcc) tutorial .
h t t p : / / w w w . p r a c t i c a l c r y p t o g r a p h y . c o m / m i s c e l l a n e o u s / m a c h i n e - l e a r n i n g /
g u i d e - m e l - f r e q u e n c y - c e p s t r a l - c o e f f i c i e n t s - m f c c s / , 2013. Accessed:
2016-05-13.

[14] A n d r e w McAfee and E r i k Brynjolfsson. B i g data: the management revolution.
h t t p : / /www . r o s e b t . c o m / u p l o a d s / 8 / 1 / 8 / l / 8 1 8 1 7 6 2 / b i g _ d a t a _ t h e _ m a n a g e m e n t _
r e v o l u t i o n . p d f , oct 2012.

[15] Franco Scarselli and A h Chung Tsoi. Universal approximat ion using feedforward
neural networks: A survey of some existing methods, and some new results. Neural
Networks, l l (l) : 1 5 - 3 7 , 1998.

[16] J . Schmidhuber. Deep Learning. Scholarpedia, 10(11):32832, 2015. revision 152272.

[17] Pejman Tahmasebi and Ardeshi r Hezarkhani . App l i ca t ion of a modular feedforward
neural network for grade estimation. Natural Resources Research, 20(1), mar 2011.

[18] Theano Development Team. Theano: A P y t h o n framework for fast computat ion of
mathematical expressions. arXiv e-prints, abs/1605.02688, M a y 2016.

37

http://research.microsoft.com/pubs/189004/ICASSP-2013-
http://www.practicalcryptography.com/miscellaneous/machine-learning/
http://www.rosebt.com/uploads/8/1/8/l/8181762/big_data_the_management_

Appendices

38

List of Appendices

A Content of the C D

B Poster

Appendix A

Content of the C D

• B P . p d f - Bachelor's thesis text

• Poster.pdf - Poster presenting our work

• / code / - project directory of the pract ical part of the thesis

• / code / s rc / - directory that contains the source files of bachelor's thesis

• / c o d e / R E A D M E . m d - R E A D M E of the project

40

Appendix B

Poster

41

