
BACHELOR THESIS

Mobile and Web Application International Student Guide

2020 Dominika Gajdová
Supervisor: Mgr. Jiří Zacpal,
Ph.D.

Study field: Applied Computer Sci-
ence, full-time form

Bibliografické údaje

Autor: Dominika Gajdová

Název práce: Mobilní a webová aplikace International Student Guide

Typ práce: bakalářská práce

Pracoviště: Katedra informatiky, Přírodovědecká fakulta, Univerzita
Palackého v Olomouci

Rok obhajoby: 2020

Studijní obor: Aplikovaná informatika, prezenční forma

Vedoucí práce: Mgr. Jiří Zacpal, Ph.D.

Počet stran: 42

Přílohy: 1 CD/DVD

Jazyk práce: anglický

Bibliographic info

Author: Dominika Gajdová

Title: Mobile and Web Application International Student Guide

Thesis type: bachelor thesis

Department: Department of Computer Science, Faculty of Science,
Palacký University Olomouc

Year of defense: 2020

Study field: Applied Computer Science, full-time form

Supervisor: Mgr. Jiří Zacpal, Ph.D.

Page count: 42

Supplements: 1 CD/DVD

Thesis language: English

Anotace

Tato práce se zabývá tvorbou mobilní a webové aplikace Student Guide. Jejím ob-
sahem je především technická specifikace a uživatelská dokumentace. Cílem práce
bylo zmodernizovat přístup k informacím zahraničním studentům univerzity a
zároveň tak poskytnout efektivnější způsob pro aktualizaci. Mezi hlavní funkce
mobilní aplikace patří prohlížení článků, kontaktů, map a dalších důležitých in-
formací. Webová aplikace je určena pro tvorbu a aktualizaci samotných dat.

Synopsis

This thesis concerns with the creation of a Student Guide mobile and web appli-
cation. It mainly consists of a technical specification and user documentation.
The aim of this thesis was to modernize access to information for the foreign
university students and also provide a more effective way of keeping information
up to date. The main features of the mobile application include reading articles,
contacts, map and other important information. The web application serves the
purpose of creating and updating the data itself.

Klíčová slova: Android; mobilní aplikace; ASP.NET Core; webová aplikace;
REST API; SQL; průvodce pro zahraniční studenty, webový editor dat, Student
Guide

Keywords: Android: Mobile Application; ASP.NET Core; Web Application;
REST API; SQL; Guide for International Students, Web Data Editor, Student
Guide

I would like to thank Mgr. Jiří Zacpal Ph.D for making this project possible,
my family for continual support and my beloved one for being by my side and
helping me see things from a different perspective.

I hereby declare that I have completed this thesis including its appendices on my
own and used solely the sources cited in the text and included in the bibliography
list.

date of thesis submission author’s signature

Contents
1 Introduction 1

2 Existing Solutions 2
2.1 Example of an Existing Application 2

3 Solution Specification 4
3.1 Mobile Application . 4

3.1.1 Platform . 4
3.1.2 Java . 4
3.1.3 Android SDK and IDE . 4
3.1.4 Android Jetpack . 4
3.1.5 Retrofit . 8
3.1.6 Proguard . 8

3.2 Web Application . 9
3.2.1 C# and ASP.NET Core 9
3.2.2 MVC vs Razor Pages . 9
3.2.3 ASP.NET Core API & REST 10
3.2.4 Entity Framework . 11
3.2.5 ASP.NET Core Identity 11

4 Programmer’s Documentation 13
4.1 Database . 13

4.1.1 Shared Entities . 13
4.1.2 Web Server . 13

4.2 API . 14
4.2.1 Data API . 15
4.2.2 Changes API . 16

4.3 Mobile application . 17
4.3.1 Use Case Diagram . 17
4.3.2 Activities . 18
4.3.3 Fragments . 18
4.3.4 ViewModels . 22
4.3.5 Adapters . 22

4.3.5.1 RecyclerView Adapters 22
4.3.5.2 ViewPager Adapters 23

4.3.6 Database Service . 23
4.3.7 Interfaces . 23
4.3.8 Synchronization Classes 24
4.3.9 Helpers and Other Classes 24

4.4 Web Application . 26
4.4.1 Use Case Diagram . 26
4.4.2 Razor Pages and Controllers 26
4.4.3 API Controllers . 28

iv

4.4.4 Models . 29
4.4.5 Services . 29
4.4.6 Entity Framework . 30
4.4.7 Identity Framework . 30
4.4.8 Javascript . 30

5 User Documentation 31
5.1 Mobile Application . 31

5.1.1 First Run . 31
5.1.2 Navigation . 31
5.1.3 Search . 31
5.1.4 Permissions . 32
5.1.5 Updating Data . 32

5.2 Web Application . 33
5.2.1 Login & Registration . 33
5.2.2 Logout . 33
5.2.3 Forgotten Password . 33
5.2.4 Managing Account . 33
5.2.5 Managing Data . 33
5.2.6 Article Editor . 35
5.2.7 Admin . 36

Conclusions 37

Conclusions 38

A Contents of attached CD/DVD 39

References 41

v

List of Figures
1 University of Adelaide student app 2
2 MVVM architecture . 5
3 Razor page view and controller 10
4 Shared tables - relation model . 13
5 Sync related tables — relation model 14
6 Mobile Application UCD . 18
7 Fragment lifecycle methods . 19
8 Navigation graph of fragments . 19
9 Web application user UCD . 26
10 Web application admin UCD . 27
11 Mobile application home screen 32
12 Mobile application search . 32
13 Homepage . 34
14 Content page . 34
15 Editor . 35

List of Tables
1 Database layers . 23

vi

1 Introduction
The Student Guide project started from the initiative of Dana Gronychová who
works at the student department of the Faculty of Science where she mainly
works with foreign students. She addressed Mgr. Jiří Zacpal, Ph.D., who is the
supervisor of this bachelor thesis, with the need of an application which would
give students the ability to get answers to their questions in an easy and modern
way.

The goal of the mobile application is mainly to modernize information access
for international students. It is going to be used as a replacement for the printed
version of the guide which nowadays is not that popular (which is understandable;
students prefer to use their phones to access information rather than carry a
printed version with them). It also simplifies the way of information sharing —
no updated versions need to be printed which is very important nowadays when
things change every day.

With the way the mobile application should work, there also grew the need
of a data editor for the employees of student departments. And that is what
the second half of this thesis focuses on: an online data-editing system available
anywhere with an internet connection with access to only authorized employees.

1

2 Existing Solutions
There are many existing applications of this kind, but they differ greatly among
each other. All the apps that I have come across were made by universities
abroad. Not many of them were specifically created for foreign students though;
they are mostly meant to serve as a student guide for all university students.
Some focus on showing off the campus buildings (maps of the buildings as well
as directions), other come closer to what this project is meant to be: a universi-
ty/travel guide full of important information starting from getting a visa to local
tips for clubs and places to visit.

2.1 Example of an Existing Application

Figure 1: University of Adelaide student app

The Australian StudyAdelaide app is the closest example of what the In-
ternational Student guide is supposed to be like. Apart from important study
information it also contains features such as a map or news section. Both of
these features are implemented in UPlikace — the university’s app for Palacky
students.

Maps and the possibility of custom news from faculties were also added to the
Student Guide Application because UPlikace is only available for students that

2

are already officially a part of the university. Student Guide is also intended to
be used as a pre-university source of information for students that are thinking
about applying.

The Adelaide guide is divided into well organized categories and then each
category contains subcategories and each subcategory has another list of articles.
I have decided to take a similar approach to designing Student Guide. The
difference is that all the articles for a given subcategory are displayed in one
page with links on top for easier navigation so the user has a choice: he can
either navigate to the specific information he wants to obtain, or he can scroll
through the page and read all the articles one by one.

Another thing featured in the Student Guide application is a search bar which
is practically necessary for an application of this kind.

3

3 Solution Specification

3.1 Mobile Application
3.1.1 Platform

The targeted mobile operating system is Android which is, in spite of Apple’s
growing popularity, the most commonly used phone operating system in the
world.

3.1.2 Java

Java still remains at the top of programming languages list when it comes to
programmer’s choice. Heavily used in the enterprise area, Java also happens to be
the language of choice for Android development.“Write once, run anywhere”1 — a
well known slogan nicely describes the purpose of Java. Rather than compiling to
machine code directly it compiles into Java Bytecode, a specific set of instructions
that is not dependent on computer architecture. Any computer running the Java
Virtual Machine can then compile and run the program.

3.1.3 Android SDK and IDE

Android SDK (Android software development kit) is an Android toolbox library
provided by Google and created for development. It contains all the components
necessary for android development such as libraries or an emulator.

The most compatible Android IDE and the IDE that I used is Android studio
created by JetBrains and Google. It uses custom Gradle build tool system that
is used to build android packages (apk files) which contain the generated byte
code as well as resources (images, UI, xml files etc). It also manages project
dependencies and takes care of their newest versions.[1]

3.1.4 Android Jetpack

Android Jetpack is a collection of Android software components which make
creating an Android application easier and more effective. The Student Guide’s
architecture is based on the Jetpack Architecture components, and the Android
recommended MVVM: Model-View-ViewModel architecture was used in its cre-
ation.

The base of the architecture is represented by SQLite database abstracted by
Room persistence library. Room creates a layer of abstraction from the database
by allowing the user to access data without writing boilerplate code. It also
serves as a single source of truth, meaning it is the application’s main source of
data.

Creating a table is as simple as annotating a model class with Room anno-
tations.[2]

1A 1995 slogan created by Sun Microsystems

4

Source: https://codelabs.developers.google.com/
codelabs/android-room-with-a-view/index.html?
index=..%2F..index#14

Figure 2: MVVM architecture

When it comes to defining relationships between entities, there are two pos-
sible ways, each one having a slightly different purpose.

First one is described in the code example above, using the @ForeignKey
annotation. When defining a new entity, one can specify a foreign key rela-
tionship between two entities. In the example above, each Article belongs to a
Subcategory and contains the SubcategoryId which acts as the foreign key to a
Subcategory id.[3]

Another way to create a relationship between two entities is using the @Rela-
tion annotation. The relationship is defined using a new class that unites the two
entities between which you want to define a relationship. The difference from
using the @ForeignKey annotation is that an @Embedded (nested) attribute and
the @Relation attribute, which is a list of all the tuples containing the embed-
ded’s attribute primary key as a foreign key, have to be specified. This provides
access to an element and a list of all related elements (subcategory and all the
articles which belong to it) which is very useful in some cases.[4]

5

https://codelabs.developers.google.com/codelabs/android-room-with-a-view/index.html?index=..%2F..index#14
https://codelabs.developers.google.com/codelabs/android-room-with-a-view/index.html?index=..%2F..index#14
https://codelabs.developers.google.com/codelabs/android-room-with-a-view/index.html?index=..%2F..index#14

1 @Entity(tableName = "Article",
2 foreignKeys = @ForeignKey(entity = Subcategory.class,
3 parentColumns = "Id", childColumns = "SubcategoryId")
4 public class Article {
5

6 @PrimaryKey
7 @ColumnInfo(name = "Id")
8 private int id;
9

10 @ColumnInfo(name = "Title")
11 private String title;
12

13 @ColumnInfo(name = "Content")
14 private String content;
15

16 @ColumnInfo(name = "SubcategoryId")
17 private int subcategoryId;
18

19 // getters, setters and constructors
20 }

Source code 1: @Entity Model

1 public class SubcategoryAndArticle {
2 @Embedded
3 private Subcategory subcategory;
4 @Relation(
5 parentColumn = "Id",
6 entityColumn = "SubcategoryId"
7)
8 private List<Article> articles;
9 }

Source code 2: @Relation relationship

Next component used in the bottom layer is a DAO (Data Access Ob-
ject) interface that defines the operations that abstract access to the application
database.[5]

Room transforms the custom query into a parametrized SQL query in order
to avoid potential SQL injection attack.

Query results are returned as LiveData objects. LiveData is an observable
data holder class that is lifecycle aware; it is usually paired with LifecycleOwner
(class that holds the application’s lifecycle) and its observer will be notified
about modifications of the wrapped data only if the paired Lifecycle owner is
active. With every database change (when Insert, Update or Delete operations
are executed), Room database will notify all active observers and corresponding
views will be updated.[6]

6

1 @Dao
2 public interface ArticleDao {
3

4 @Insert(onConflict = OnConflictStrategy.REPLACE)
5 void insertArticle(Article... articles);
6

7 @Update
8 void updateArticle(Article... articles);
9

10 @Query("DELETE FROM Article WHERE Id=:id")
11 void deleteArticle(long id);
12

13 @Query("SELECT * FROM Article")
14 LiveData<List<Article>> getAllArticles();
15

16 @Query("SELECT * FROM Article WHERE SubcategoryId=:subId")
17 LiveData<List<Article>> getAllArticlesForSubcategory(int subId);
18 }

Source code 3: @Dao

1 //observes on LiveData
2 articleViewModel.getAllArticles().observe(getViewLifecycleOwner(),
3 //updates view
4 articles -> recyclerAdapter.setArticles(articles));

Source code 4: Observing LiveData

Next layer is the Repository class which is just another level of abstraction for
mixing different sources of data, such as database or fetching data from an API.
It contains methods for accessing data from the DAO, as well as methods for
asynchronous execution of insert, update and delete operations because Room
does not allow main thread queries and it is understandable; all time-consuming
operations should be executed in a background thread without blocking the UI
thread. LiveData return values asynchronously by default.

ViewModel is the last part of the architecture and the final layer of abstrac-
tion. Its only responsibility is to manage data for the UI. ViewModel objects are
scoped to the Lifecycle passed to the ViewModelProvider.[7] ViewModel is also
used as a data sharing object where more fragments or activities can communi-
cate. For example, login fragment might share its ViewModel with registration
fragment where registration passes new data into ViewModel and login then uses
the data to log the user in.

Apart from architecture components, the application also uses the new Nav-
igation UI component, which makes it easier and faster to switch between frag-
ments. The application consists of only one MainActivity that holds the toolbar,
the navigation and the hosting fragment. All other views are fragments that live

7

inside of the activity and that replace and get replaced by other fragments. The
navigation component abstracts the developer from creating fragment transac-
tions. Instead, a navigation graph can be created — an XML file which consists
of fragments and actions defined between them. Using the SaveArgs plugin, cor-
responding classes are generated to pass and receive arguments through Bundles.

3.1.5 Retrofit

Retrofit is an easy to use type-safe HTTP client for making REST API calls. [8]
First, a service interface which defines the REST calls the developer will make
to a specific URL must be created. Then, both synchronous and asynchronous
calls can be made and a JSON response received through a callback (in case of
asynchronous calls) or through directly executing an API call. The JacksonJson
converter is used in the application, but there are many other JSON converters
supported.

1 public interface SyncDatabaseService {
2

3 @GET("API/Changes/{key}")
4 Call<List<Change>> getChanges(@Path("key") String APIKey);
5

6 @DELETE("API/Changes/{key}")
7 Call<Void> deleteChanges(@Path("key") String APIKey);
8

9 @GET("API/Subcategories/{key}")
10 Call<List<Subcategory>> getSubcategories(@Path("key") String

APIKey);
11

12 }

Source code 5: Retrofit service API calls

3.1.6 Proguard

Size of the final application and its APK file is also very important, considering
the Student Guide android application targets phones from API level 19 (An-
droid 4.4 KitKat). This choice of API level ensures around 94% phone coverage.
Users nowadays have many heavy applications installed on their smartphones
(Facebook, Instagram, etc· · ·) so the plan was to make the Student Guide as
lightweight as possible.

Proguard is a tool that helps programmers minify, obfuscate and optimize
their code. There are two settings one can use:

• minifyEnabled = if true will obfuscate and minify all code that is not
annotated with @Keep annotation

8

• shrinkResources = will remove all unused methods, classes, fields and at-
tributes as well as unused resources in app and its dependencies

[9]
The application structure contains ProguardRules.pro file where the devel-

oper can set rules which will exclude chosen classes and libraries from being
minified and obfuscated.

3.2 Web Application
3.2.1 C# and ASP.NET Core

C# is another popular programming language created by Microsoft in 2000 as a
Java competitor. C# is an elegant and type-safe object-oriented language that
enables developers to build a variety of secure and robust applications that run
on the .NET Framework. .NET framework mainly consists of four things: the
language itself, Visual Studio, Virtual Machine (CLR) and libraries (FCL).[10]

ASP.NET Core is a cross-platform, high-performance, open-source framework
for building modern, cloud-based, Internet-connected applications. ASP.NET
Core is a redesign of ASP.NET 4.x, with architectural changes that result in a
leaner, more modular framework.[11] The Student Guide Web Editor is based
on the 2.2 version.

ASP.NET Core is a rather complex web framework. There are many features
that must be learnt before one is able to create anything, which makes it quite
challenging for new developers. On the other hand, there are many features
that are built in which save developers a lot of time; such as generating CRUD
razor pages for a model or the Identity system which takes care of the login
functionality.

3.2.2 MVC vs Razor Pages

ASP.NET Core has two architecture options: classic MVC or nowadays popu-
lar Razor Pages. MVC stands for Model View Controller and the architecture
structures the logic of the application into three independent parts:

• Model — data abstractions (database tables)

• View — presents data to the user (HTML pages)

• Controller — reacts to events from the user and enables communication
between Model and View

Razor Pages are very similar to the MVC view component. It has the same
functionality and it also uses the Razor Syntax. The main difference is the file
organization; each page in the application is self-contained with its own view and
code organized together which makes it less complex than the MVC and closer

9

Figure 3: Razor page view and controller

to an MVVM architecture. Each .cshtml file has to be annotated with @Page
and has to be located in the Pages folder.

Razor is a syntax developed specifically for C# language. It enables writing
C# code along with HTML code in an interactive way. There are many razor
pages templates available to be generated which makes it easier and time-saving
for the developer. There are other technologies that can be used along with
ASP.NET Core development. Because the C# code itself represents the server
backend, technologies such as Javascript (vanilla or React, Angular), JQuery2,
Bootstrap3 can be used for the frontend part of the application.

3.2.3 ASP.NET Core API & REST

API stands for application programming interface which is used for communica-
tion and data sharing between applications. In case of the Student Guide, there
was a requirement to share data between the server database and the mobile
application. ASP.NET core Web API lets you create a REST API (Representa-
tional State Transfer).

REST is a design pattern for creating and managing APIs. It takes into
account two key parts:

• Client — the person who uses the API, for example a developer who needs
to get data access will use the API endpoints to get the data they need

• Resource — any object that the API exposes information about, in case of
the Student Guide, it can be subcategories, articles etc.

REST is based on using HTTP protocol and its GET, PUT, POST and
DELETE methods. When we need to get certain object data, an HTTP request
is made to a specific endpoint4 and we receive a response in the form of either a
JSON or XML.

2Javascript library which simplifies events, CSS animations, Ajax call etc.
3CSS library that contains predefined styles for the most commonly used web page elements
4Endpoint is a location in the server from which APIs can access the resources they need.

10

3.2.4 Entity Framework

Entity Framework is an open-source framework for mapping objects to a rela-
tional database. Its main purpose is to create a level of abstraction for working
with the database. Instead of writing plain SQL commands, the developer can
work with table data as objects and create queries with LINQ5. The DTOs (Data
transfer objects) represent each database entity.

In order to use Entity Framework, all that is needed is creating a class that
inherits from DbContext (in my case IdentityDbContext) and defines DbSet ob-
jects which represent each database table. Then, a new migration via the Nuget
console has to be added and the database and all tables have to be updated, so
that relationships between them are formed.

1 public class ApplicationDbContext : IdentityDbContext {
2 public ApplicationDbContext(DbContextOptions<

ApplicationDbContext> options) : base(options) { }
3

4 public DbSet<st_guide_2.Models.Article> Article { get; set; }
5

6 public DbSet<st_guide_2.Models.Contact> Contact { get; set; }
7

8 public DbSet<st_guide_2.Models.FacArticle> FacArticle { get;
set; }

9 }

Source code 6: Entity Framework DbContext class

Because ASP.NET Core uses dependency injection principles6, the database
instance will be saved in a dependency injection container therefore one does
not create a new instance of the database each time but request the instance
from the dependency injection service, and it will be injected to the desired class
through its constructor.

3.2.5 ASP.NET Core Identity

Identity is a framework which provides login functionality to the application out
of the box. Users can then create an account and have the information securely
stored in Identity. It composes of database tables which handle the data storing
and the Identity Razor pages, such as the login or register page.

Another useful feature is the roles system. Each user can have a role assigned
to them for a better control of who can have access to what. For example, the

5Query language used to conveniently process data from arrays, enumerables, relational
databases and more.

6Software design principle that states that objects that depend on other objects should
not have the responsibility of managing the dependency and instead they should only have
the dependency passed through a constructor which ensures the class is independent of its
dependencies.

11

Admin can access everything but other users have a role assigned to them based
on which faculty they are from, so they only get to see and edit articles from
their faculty. Adding [Authorize] annotation to a class ensures that a person who
is not logged in will not have access to the page and instead will be redirected
to log in. Adding [Authorize(Roles= ’Admin’)] will ensure only Admin will get
access to the particular page.

Different login providers can be used with Identity, such as Facebook login
or Google login etc.

12

4 Programmer’s Documentation

4.1 Database
4.1.1 Shared Entities

These are the main data entities that are shared between the server and the
mobile application. They consist of four synchronizable entities (Subcategory,
FacArticle, Article, Contact) and two complementary tables (Faculty, Category).

Figure 4: Shared tables - relation model

On the server side, all editable entities have an extra column called RowVer-
sion. It is of a TimeStamp type and serves as a unique row number used during
optimistic concurrency — if there are two users editing the same entity and one
of them saves the changes, the other one is editing an outdated entity and should
be notified.

4.1.2 Web Server

Division of the database into three logically separate parts:

1. Idenity tables — tables generated by the Identity framework. The main
tables used in the project are:

• AspNetUsers — stores secured user login information

13

• AspNetRoles — stores individual roles, each user can have a role as-
signed

2. Entity framework tables — shared tables

3. Image — represents an image uploaded to the server by user

4. Synchronization tables — tables related to sync functionality with the mo-
bile application:

• Change — keeps track of changes for each mobile application user
• APIUser — keeps track of users using the mobile application
• Token — keeps track of API users

Figure 5: Sync related tables — relation model

4.2 API
The API is logically divided into two parts: Data API and Changes API. Data
API provides elementary data such as articles, subcategories etc. Changes API is
used to register an individual user and track changes specifically for them (sync
functionality).

I differentiate between two key types:

14

• API Token — ID of an application having access to the API, is assigned to
the user after being registered in the Tokens page of the server, can access
data and call AddUser.

• API Key — generated when calling AddUser in order to track changes for
a specific user, changes will be saved in the server for API User under the
API Key, can access data and all other Changes requests.

In order to be able to use the API, one needs to have Admin register their
application into the system. Then, an API Token will be generated, which will
allow access to Data API as well as Changes API.

4.2.1 Data API

All API calls require an API Key as an argument. It can either be an API Key
acquired by sending an AddUser API request from the Changes API or an API
Token created in the Tokens section.

Request GetCategories
URL API/Categories/{key}
Return value List<Category>

Request GetFaculties
URL API/Faculties/{key}
Return value List<Faculty>

Request GetSubcategories
URL API/Subcategories/{key}
Return value List<Subcategory>

Request GetArticles - HTML
URL API/Articles/{key}
Return value List<Article>

Articles contain HTML content which preserves the form and style of elements
created by user.

Request GetArticles - plain text
URL API/Articles/Text/{key}
Return value List<Article>

Articles contain plain text without any HTML elements. All form, images
and style are removed.

15

Request GetFacArticles (Faculty Articles) - HTML
URL API/FacArticles/{key}
Return value List<FacArticle>

Request GetFacArticles (Faculty Articles) - plain text
URL API/FacArticles/Text/{key}
Return value List<FacArticle>

FacArticles contain HTML content which preserves the form and style of
elements created by user.

Articles contain plain text without any HTML elements. All form, images
and style are removed.

Request GetContacts - HTML
URL API/Contacts/{key}
Return value List<Contact>

Contacts contain HTML content which preserves the form and style of ele-
ments created by user. Email uses mailto attribute and number uses tel attribute
to make them clickable and interactive.

Request GetContacts - plain text
URL API/Contacts/Text/{key}
Return value List<Contact>

Contacts contain plain text without any HTML elements. All form and style
are removed. Email and number attributes are not interactive nor clickable.

4.2.2 Changes API

The Changes API provides the basic sync functionality to keep the user up to date
with the server database. Use AddUser to register a user in the system. Changes
will be tracked for every registered user under their user API Key. AddUser and
GetChanges are two core request functions, other functions are either optional
(they are there if needed it is not necessary to use them) or recommended (good
practice).

Request AddUser
URL API/Changes/AddUser/{key}
Return value string (API Key)
Use required

AddUser request checks whether provided Token is registered. If it is, it
returns a new API key which will serve as the user identification — every appli-
cation user registered in the Tokens section will have a unique API Key assigned
and changes will be tracked for the user under this API Key.

16

Request GetChanges
URL API/Changes/{apiKey}
Return value List<Change>
Use required

Request CheckKeyExists
URL API/Changes/Check/{apiKey}
Return value boolean
Use recommended

Checks whether API Key is saved in the database. It is recommended to check
if the key still exists in the server before making GetChanges request because
the server deletes API Keys after long inactivity (year+).

Request RemoveUser
URL API/Changes/RemoveUser/{key}
Return value void
Use optional

Will delete API Key user from the server as well as his pending changes.

4.3 Mobile application
4.3.1 Use Case Diagram

17

Figure 6: Mobile Application UCD

4.3.2 Activities

In the application there are two Activities:

1. SplashActivity — shows the splash screen with Student Guide logo and
redirects to the MainActivity.

2. MainActivity — holds the toolbar (with search), the fragment container
and the bottom navigation. The synchronization functionality also happens
in the MainActivity because the swipe to refresh feature should work no
matter which fragment is currently displayed on screen (except for map
fragments as explained: OverViewSwipeLayout.

4.3.3 Fragments

The main building stones of the application are fragments. Every visible screen
is a fragment living inside the MainActivity.

Fragments have their own lifecycle that is somewhat independent of, but still
affected by, the lifecycle of the hosting Activity. For example, when an Activity
pauses, all of its associated Fragments are paused. [12]

Navigation UI component takes care of fragment transactions and the actions
between fragments are defined in the mobile_navigation.xml.

In Source code 7, there is an example of how each fragment is defined.

18

Source: https://docs.microsoft.com/en-us/xamarin/
android/platform/fragments/creating-a-fragment

Figure 7: Fragment lifecycle methods

Figure 8: Navigation graph of fragments

19

https://docs.microsoft.com/en-us/xamarin/android/platform/fragments/creating-a-fragment
https://docs.microsoft.com/en-us/xamarin/android/platform/fragments/creating-a-fragment

1 <fragment
2 android:id="@+id/subcategories"
3 android:label="{title}"
4 android:name="ui.subcategories.SubcategoriesFragment"
5 tools:layout="@layout/fragment_subcategories">
6 <action
7 android:id="@+id/navToArticles"
8 app:destination="@id/articles" />
9 <argument
10 android:name="catId"
11 app:argType="integer"
12 android:defaultValue="0"/>
13 <argument
14 android:name="title"
15 app:argType="string"
16 android:defaultValue="default"/>
17 </fragment>

Source code 7: Navigation Graph XML

In the action attribute, it is specified which fragment should the action nav-
igate to. Arguments can be specified with the argument attribute.

Fragments used in the application are the following:

Home

• HomeFragment — the first fragment loaded and also the fragment that
remains as the base fragment when all other fragments are popped from
the back stack. It contains tiles with categories that link to corresponding
subcategories.

Subcategories

• SubcategoryFragment — displays a list of subcategories with keywords
(article titles) in a RecyclerView (using SubcategoriesAdapter) based on
chosen category.

Search

• SearchFragment — contains a RecyclerView (using SearchAdapter) and
displaying a list of all subcategories with keywords (article titles). It uses
SubcategoryViewModel to obtain data for the UI.

Articles

20

• ArticleFragment — displays articles in RecyclerView (using ArticleAdapter)
based on previously chosen subcategory. At the top of the fragment an im-
age is loaded with Glide7 based on which category the article belongs to.
The links are a part of another RecyclerView (using ArticleLinksAdapter).
In order to create links to the title of each article, the articles have to
be already drawn on the screen (so they have coordinates to scroll to).
The ArticleFragment implements ArticlesBindingListener which the Arti-
cleAdapter uses to call back when the articles are finished rendering so the
ArticleFragment can start binding the article links.

Contacts

• ContactFragment — contains a ViewPager with ContactsPagerAdapter.

• EmergencyTelFragment — contains a RecyclerView (using ContactsAdapter).
Contacts with ClassId = 1 (Emergency contacts) are displayed in the list.

• UniTelFragment — contains a RecyclerView (using ContactsAdapter). Con-
tacts with ClassId = 2 (University contacts) are displayed in the list.

• ContactDetailFragment — displays contact details.

Map

Map fragments use the Google Maps API. The Maps API key can be found
in the AndroidManifest.xml.

• FacultyMapFragment — displays a map with markers specific for the cho-
sen faculty.

• CategoryMapFragment — displays a map with three categories (Menzas
’n dorms, Food ’n drink, Todo tips). Markers change depending on the
selected category.

Apart from Google Maps interfaces, both fragments implement Permission-
Service which ensures correct behavior when using the MapProvider class.

Faculties

• FacultiesFragment — contains tiles with links to each faculty fragment.

Faculty

• FacultyFragment — contains a ViewPager with FacultyPagerAdapter.

• InfoFragment — displays faculty’s study department information and ar-
ticles in a RecyclerView.

7Fast and efficient image loading library for loading images, either from the web or from
the mobile storage.

21

Credits

• CreditsFragment — displays icons credits and author.

More

• MoreFragment — displays links to other university applications and Cred-
itsFragment.

4.3.4 ViewModels

ViewModel classes contain methods to query entities as well as insert, update
and delete operations. Queries return LiveData objects which are then observed
in the corresponding fragments to obtain data for the UI.

• HomeViewModel

• SubcategoryViewModel

• ArticleViewModel

• ContactViewModel

• FacultiesViewModel

• FacArticleViewModel

4.3.5 Adapters

Adapter acts as the mediator between UI components and data sources. Its main
function is to fill data in the UI component. For example, the RecyclerView
adapter holds the list of items to be displayed in the UI list and takes care of
binding each item to its corresponding view (views are held in the ViewHolder
class) in the list.

4.3.5.1 RecyclerView Adapters

• ArticleAdapter — binds articles to views in the RecyclerView in Article-
Fragment.

• ArticleLinksAdapter — binds keywords with article links to views in the
RecyclerView in ArticleFragment.

• ContactsAdapter — binds contacts to views in the RecyclerView in Emer-
gencyTelFragment and UniTelFragment.

• SearchAdapter — binds all subcategories to views in the RecyclerView in
SearchFragment.

• SubcategoriesAdapter — binds subcategories to views in the RecyclerView
in SubcategoriesFragment.

22

4.3.5.2 ViewPager Adapters

ViewPager adapters provide pages (fragments) for the ViewPager widget.

• ContactsPagerAdapter — provides EmergencyTelFragment and UniTel-
Fragment for the ViewPager in ContactsFragment.

• FacultyPagerAdapter — provides InfoFragment and FacultyMapFragment
for the ViewPager in FacultyFragment.

4.3.6 Database Service

Database service consists of Room database POJOS (models), Dao interfaces
defining database operations and repositories for abstraction purposes as ex-
plained in Solution Specification.

AppDatabase class builds the Room database and returns its instance.
Database migrations can be defined and applied there.

Table 1: Database layers
Model Dao Repository
Article ArticleDao ArticleRepository
Category CategoryDao CategoryRepository
Contact ContactDao ContactRepository
FacArticle FacArticleDao FacArticleRepository
Faculty FacultyDao FacultyRepository
Subcategory SubcategoryDao SubcategoryRepisotory

There is also a SubcategoryAndArticle model with one-to-many relationship
defined with @Relation — used for fetching subcategories and its articles.

4.3.7 Interfaces

• ArticlesBindingListener — used when an adapter has finished binding data
to views.

• MapService — class implementing this interface provides google service,
GPS and permission checking functionality to a map.

• PermissionService — fragment implementing this interface ensures location
permission can be checked.

• SeedDatabaseListener — used for communication between MainActivity
and other classes which may need to invoke database (re)seeding. Contains
an onSeedingFinished callback to notify the main thread that seeding has
been completed.

23

4.3.8 Synchronization Classes

• SyncDatabaseService — retrofit API calls interface.

• APIProvider — singleton containing Retrofit instance with the server URL.

• DatabaseSeeder — class used to seed the database asynchronously. It gets
a new API key and seeds the database with new data. If the downloading
process does not finish properly (user closes the application or internet be-
comes unavailable), the mobile application deletes its current API key from
the server (to prevent data corruption), obtains another one and repeats
the seeding process.

• Change — POJO representing an update from the server database to the
mobile application.

• ChangeSubmitter — executes changes over database.

• SyncProvider — class used to update mobile application’s database with
changes from the server. First, it checks if the saved API key is saved on
the server (the server deletes API keys which have not been used for year),
then it fetches available changes and executes them over the database.

4.3.9 Helpers and Other Classes

Map related:

• MapMarkers — class that holds data for map markers.

• MapProvider — class providing correct map functionality - CheckAll func-
tion checks whether GoogleService is available, whether permission to lo-
cation is granted, whether GPS is turned on (so the user’s location can be
displayed on the map.) It implements the MapService interface.

• MapMarkersDrawProvider — class containing methods for drawing mark-
ers on a map.

• TitledLatLang — marker specification data class.

Global:

• GlideModule — required for Glide usage.

• GlideImageGetter — HTML image getter for getting images from the URL
provided. Used when displaying article images.

• ModulePreferences — persistent key-value storage used for storing the API
key and other flags.

• HtmlStripper — helper class for removing html tags from a string.

24

• KeywordsMaker — helper class for creating keywords out of articles.

• OverviewSwipeRefreshLayout — class extending the SwifeRefreshLayout
and overriding its onInterceptTouchEvent function. It resolves touch in-
terception problems with maps and other scroll layouts.

• TopScroller — helper class for adding scroll top functionality to a button
in a scroll layout.

25

4.4 Web Application
4.4.1 Use Case Diagram

Figure 9: Web application user UCD

4.4.2 Razor Pages and Controllers

The building blocks of the ASP.NET Core framework are Razor Pages and their
corresponding controllers. Pages contain the HTML code as well as Javascript
and use the Razor Syntax. Controllers deal with the backend and provide correct
data for the UI as well as process form data coming from users.

APIDoc

• ChangesAPI — provides documentation about ChangesAPI. Only Admin
access.
URL: /ChangesAPI

• DataAPI — provides documentation about DataAPI. Only Admin access.
URL: /DataAPI

26

Figure 10: Web application admin UCD

Articles, Subcategories, Faculty Articles, Contacts

Each of these synchronizable entities has an Index page and Create, Edit,
Detail, Delete pages. Index page displays a list of all entities which the user has
access to. There is also search and paging functionality.

All CEDD pages’ URL is in the form of: /entity/operation?id=id_number
for example /Articles/Delete?id=10.

Create, Edit and Delete pages all use the ChangesTrackerService to track
changes made to the entities so the mobile application users can stay in sync
with the changes made on the server. All the Index pages include a checkbox-
ajax script — when user changes the visibility of the entity, an Ajax call is made
to post back and track the visibility change.

Articles and Faculty Articles both contain _PartialEditor for editing articles.

Faculty Articles

Faculty Articles are user restricted, meaning a user registered under the fac-
ulty of science can only read, edit, delete and create faculty articles for the faculty
under which they are registered. Admin has access to all faculty articles.

ContactsPath

27

• Index — contains a link to university contacts and a link to emergency
contacts. It is used as a crossroads for the user to pick which category of
contacts they want to see.
URL: /ContactsPath

Users

• Index — displays a list of all registered users. Only available to Admin.
URL: /Users

• Delete — gives Admin the ability to delete any user from the system.
URL: /Users/Delete?id=user_id

Tokens

• Index — displays a list of all registered tokens. Only available to Admin.
URL: /Tokens

• Delete — gives Admin the ability to delete a registered token from the
system.
URL: /Users/Delete?id=token_id

• Create — gives Admin the ability to register a new token.
URL: /Users/Create

Images

• Index — retrieves an image by its name. Does not contain any view.

• Add — contains image upload/delete image functionality used in editor.
Does not contain any view.

Editor

• _PartialEditor — partial view representing the article editor. It consists
of the input area and action buttons (bold, italics, list etc.). It depends
on the Javascript file editor.js which provides all editor functionality. The
editor uses a Trix Editor library which does not use contenteditable and
execCommand APIs (deprecated).

4.4.3 API Controllers

ASP.NET Core API controllers provide endpoints to API users’ data requests.
They all inherit the ControllerBase class and define which data is going to be sent
(in case of HTTP GET) and how it is going to be presented. All API endpoints
are described in the API documentation section of this document.

• ArticleController — defines endpoints for articles data.

28

• CategoriesController — defines endpoints for categories data.

• ContactsController — defines endpoints for contacts data.

• FacArticlesController — defines endpoints for faculty articles data.

• FacultiesController — defines endpoints for faculties data.

• SubcategoriesController — defines endpoints for subcategories data.

• ChangesController — defines endpoints for synchronization functionality.

4.4.4 Models

Model classes correspond with database entities described in the web server
database chapter of this document.

4.4.5 Services

All services are registered in the Startup.cs and use an interface abstraction.
Services can then be injected through a constructor and used accordingly.

• HtmlStripper — removes html tags from text.

• KeyGenerator — generates a random key of chosen length.

• EmailService

– EmailConfiguration — DTO representing the applications’ email con-
figuration.

– Message — DTO representing the message sent to the use.r
– EmailSender — class providing email sending functionality using MimeKit

and MailKit Nuget packages.

• UnusedImagesRemoverService — background service which deletes unused
images from the server once a week. Unused images which are not con-
firmed for more than a week will be deleted by a background service. This
situation can happen when user uploads images through the editor but
leaves the page unsaved.

• InactiveUsersCleanerService — background service which deletes inactive
APIUser instances as well as their changes from the database after a period
of fixed time (356 days). Because there is no way to find out whether a
user deleted the mobile application from his mobile phone, the server will
check inactive users who have not opened the mobile application for more
than a year. Assuming most students come to Olomouc for one or two
semesters, after a year of inactivity it is most likely the user has deleted
the application and therefore his data can be deleted from the server. If

29

the user opens the application after more than a year of time and his data
are no longer on the server, he will receive a new API key and content will
be redownloaded.

• ImageManagerService — manages unused (unconfirmed) articles. Each
uploaded image is registered under the article it belongs to. When the user
saves changes of the article, the images in the article itself are compared
with the images from the database. Differences are resolved and used
images confirmed.

• ChangeTrackerService — registers changes for API users.

4.4.6 Entity Framework

Entity Framework uses the ApplicationDbContext class which inherits from the
IdentityDbContext. All database models are registered here.

4.4.7 Identity Framework

Identity framework generates all account related pages. Individual pages can be
scaffolded and changed to the programmer’s likings. Identity files can be found
in the Areas folder.

4.4.8 Javascript

Javascript files provide interactive frontend functionality.

• editor — provides editor functionality. It uses the Trix Editor library
developed by Basecamp.

• unsaved-changes — warns the user before leaving page with editing content.

• checkbox-ajax — contains an Ajax call which is executed when user changes
visibility of an entity by checking the checkbox in the Index page.

30

5 User Documentation
The following two sections serve as a user manual. It is divided into two parts
— user documentation of the mobile application and a user documentation of
the web application. The web application is described to a bigger extent seeing
as the mobile application is fairly simple to use.

5.1 Mobile Application
The Student Guide mobile application can be installed on devices running on
Android 4.4 and higher. Google services need to be installed and work correctly
in order for the Student Guide application to work properly.

5.1.1 First Run

Users can download the mobile application from the Play Store. When the
application is on its first run, the internet is needed in order to download data
from the web server. If there is no internet available or the user interrupts
the downloading process, it will not let the user proceed further until data is
downloaded correctly.

5.1.2 Navigation

The application contains a bottom navigation for better support of gestures. The
bottom navigation consists of five options: Contacts, Faculties, Home, Map and
More. Each option will take the user to the corresponding screen.

Contacts screen displays emergency and university contacts.
Faculties give the user the option to look at specific information about his

faculty. Each faculty shows contact information and faculty news. When the user
swipes right, there is a map containing markers of faculty buildings. Markers are
clickable and show more information when clicked.

Home screen shows the main categories which lead to articles.
Map screen displays a map with three marker options above: Menzas ’n

dorms, Food ’n drink, To do tips. More information can be obtained by clicking
on the marker as well.

More screen contains links to other university related applications such as
MobilKredit or UPlikace.

5.1.3 Search

Search functionality is located in the toolbar at the top of the screen as shown in
Figure 9. It enables the user to search subcategories and articles. It only scans
titles, not content. After clicking on the search icon, a list of all subcategories
and all article titles will appear. Once the user starts typing, the closest matches
will be showed. Once the user submits the word they want to search for by

31

pressing confirm button on the keyboard, only results with full matches will be
showed.

5.1.4 Permissions

If the user uses Android 6+, when opening maps for the first time, the user will
be prompted with granting location permission. This is used for displaying the
user’s current location on the map. The choice remains with the user as deciding
not to grant the permission will not make the map unusable — it will simply not
display the user’s location.

Figure 11: Mobile application
home screen

Figure 12: Mobile application
search

5.1.5 Updating Data

New data updates are downloaded every time user opens the application (assum-
ing the user has internet access). If the user wants to invoke an update, they
can do so by swiping down — a refresh icon will be shown indicating that the
update has started. There will be a pop up message at the bottom of the screen,
informing the user about the success/failure of data update.

32

5.2 Web Application
The Student Guide web application was mainly developed for and is recom-
mended to be used in Chrome web browser, although other web browsers should
work fine as well. Javascript is required for correct application behaviour so it is
necessary that it is enabled in the browser.

5.2.1 Login & Registration

The user needs to be registered in the system before access is permitted. The
registration can be realized either by Admin or by another user.

Every user is registered under their faculty and therefore has certain restric-
tions to the data management.

5.2.2 Logout

To log out, the user needs to click the logout icon in the top right corner of the
screen. After that, the user will be redirected to the login page.

5.2.3 Forgotten Password

On the login page, there is an option to restore forgotten password. The user
will be redirected to a page where they will fill in their email. The email has to
be the email under which they are registred. The user will receive an email with
a link to a page dedicated to password change.

5.2.4 Managing Account

Once logged in, the user can see their username in the top right corner of the
screen. By clicking on the username, the user can access their user profile and
proceed to various management options. This can also be accessed directly from
the homepage.

The account management options include changing user email, changing the
password and deleting the account. The username cannot be changed once reg-
istered.

5.2.5 Managing Data

On the homepage, there are four main links for accessing the data — Contacts,
Subcategories, Articles, Faculty Articles. After clicking on each of those links, the
user will be presented with the available content. As each user is registered only
under one faculty, alterations to other faculties’ Faculty Articles are forbidden.
When navigating to Contacts, the user will be given a choice to manage either
Emergency Contacts or University Contacts.

Each content page includes the option of searching through the data based
on their title. In Subcategories and Articles, there is the option to filter content
by the category (or subcategory) they belong to.

33

Figure 13: Homepage

Apart from searching, there are four other actions for working with the pre-
sented content — Create, Edit, Detail, Delete. Each content has a visibility
option which states whether the particular content will be visible in the mobile
application.

Figure 14: Content page

Managing data is very straightforward. Creating and editing is simple — just
filling out individual fields. When user enters improper data by passing in values
that do not match the required format, they will be informed and asked to fill
proper values.

The user will also be notified when they are trying to edit/delete content
which has already been edited/deleted, meaning they are not editing the most

34

recent version because someone else had done changes while they were editing.
When leaving page without saving, the user will be prompted to confirm they

are sure to leave the page without saving changes.

5.2.6 Article Editor

When working with articles, there is an editor dedicated to creating formatted
content.

Figure 15: Editor

All actions in the editor require for the editor field to be focused, meaning
the cursor should be inside.

Features described from left to right:

• Bold — will make the selection bold or will turn on/off bold mode.

• Italic — will make the selection italic or will turn on/off italic mode.

• List — will turn on/off list mode.

• Link — will create a link out of a selection. The user will be prompted
with a field to fill in the website URL.

• Email — will create an email out of a selection.

• Phone Number — will create a phone number out of a selection.

• Image — will insert an image into the editor. Supported image formats
are JPG, JPEG, PNG and GIF. Maximum image size is 10 MB. There are
three ways of adding an image:

35

1. Drag&Drop — image will be inserted by dragging the image straight
from system folder and dropping it into the editor.

2. URL — image will be inserted after entering a URL and pressing
INSERT.

3. Upload — image will be added by uploading the image from a folder
and pressing UPLOAD Images cannot be used with undo and redo.
Redo operation will not upload the image again.

• Undo — will undo changes.

• Redo — will redo changes.

• Delete All — will delete all editor content.

• Remove Formatting — will remove all formatting from a selection.

5.2.7 Admin

Admin has unlimited access to all content and its modifications. Apart from
being able to see and edit all content, there are a few things that only Admin
can do:

• Manage Users — Admin can see all registered users and delete them if
necessary.

• Manage API Tokens — register new users who will request access to website
content, e.g. new application will be created and will require Student Guide
data.

• Manage API Documentation — add/edit information about API function-
ality.

36

Conclusions
Cílem této práce bylo vytvořit Android aplikaci určenou pro zahraniční studenty
Univerzity Palackého a také vyvinout online webový editor, který by umožnil
zaměstnancům zahraničních oddělení vytvářet a aktualizovat obsah pro mobilní
aplikaci. První verze aplikace byla vytvořena v zimním semestru 2019 a byla
dostupná na Google Play do doby (včetně) obhajoby této práce. Jednalo se o
statickou verzi, jejíž brzké nahrání bylo vyžadováno paní Gronychovou. Nová
verze aplikace bude k dispozici po obhajobě této práce.

Při práci na tomto projektu jsem nasbírala mnoho cenných zkušeností, je-
likož jsem neměla předtím žádnou zkušenost s programováním větších projektů,
programováním pro Android a ani s programováním webových aplikací. Tento
projekt mi rozšířil mou paletu praktických dovedností v oboru a jsem velmi
vděčná za to, že jsem si mohla vyzkoušet různé technologie a návrh projektu od
píky.

Dana Gronychová byla s vývojem a spoluprací velmi spokojená a sama si
mobilní i webovou aplikaci vyzkoušela. K projektu se vyjádřila následovně:

„O této aplikaci jsem se bavila s kolegy, zmínila ji na ZO RUP a pan
proděkan o ní rovněž mluvil na zasedání zahraničních proděkanů. O
aplikaci jsme informovali naše budoucí zahraniční studenty a zahraničním
studentům, kteří budou přijati ke studiu, bude link ke stažení této
aplikace zaslán.”

37

Conclusions
The aim of this work was to create an Android mobile application intended for
foreign students of Palacky University as well as an online web editor which
would allow the employees of the foreign study departments create and update
content for the mobile application. The first version of the mobile application
was created in winter semester 2019 and was available on the Google Play Store
up until (including) the defence of this thesis. It was a static version of the final
mobile application which was required to be published to Google Play by the
start of the mentioned semester by Dana Gronychová. The new version will be
available after this thesis will have been defended.

This work has given me plenty of experience, which is quite valuable for me
seeing as I had no previous programming experience when it comes to bigger
projects nor did I have any experience working with Android development or
web application development. This project has broadened my practical skills
palette, and I am very thankful I got to use various technologies and try to
design a project from scratch.

Dana Gronychová was very pleased with our cooperation, and she has tested
both the mobile application and the web application herself. Here’s what she
said about the project:

“I discussed this application with my colleagues, presented this [mo-
bile] application to the ZO RUP and the faculty’s vice dean consulted
the application with the rest of the university’s vice deans of foreign
affairs at a meeting. We have informed our future university foreign
students about the existence of this application and the ones who will
be accepted to the university will receive the link for the download
in an email.”

38

A Contents of attached CD/DVD
bin/

web-editor
Complete folder structure of the Student Guide Web Applica-
tion (in ZIP archive) for copying to a web server. This folder also
contains all necessary runtime libraries and other files needed for trou-
ble free operation on web server.

android
Apk file for installation of the Student Guide Mobile Applica-
tion on a suitable Android device.

doc/
Thesis text in PDF format, created with the use of obligatory style KI PřF
UP in Olomouc intended for use in the creation of the final thesis, including
all its appendices and all necessary files needed for trouble free generation
of the PDF document (in ZIP archive), i.e. source text, inserted images
etc.

src/

web-editor
Complete source codes of the Student Guide Web Application
with all necessary (eventually taken over) source codes, libraries and
other files needed for trouble free creation of the folder structure in-
tended to be copied on a web server.

android
Complete source codes of the Student Guide Mobile Applica-
tion with all necessary (eventually borrowed) source codes, libraries
and other files needed for trouble free creation of the final Android
apk file intended for application installation.

readme.txt
Instructions for the web application deployment to a web server, including
all requirements for its trouble-free operation and the web address hosting
the web application intended for the purpose of testing when making a
thesis report and for the purpose of the defence of the thesis.

CD/DVD also contains:

data/
Sample and testing data used in the thesis and for the purpose of testing
when making a thesis report and for the purpose of the defence of the
thesis.

39

install/
Installation files of applications, runtime libraries and other files needed for
the Student Guide Web Application to run, which are not a standard
part of the operating system devoted to operation of the web application.

All materials attached on CD/DVD that have been borrowed are either not
subject to copyright or their further distribution is allowed by the author. All
(cited) materials, for which this statement is not true, therefore they are not
included on the CD/DVD, have their source attached in the bibliography, the
text itself or in the file readme.txt

40

References
[1] Google. Meeting Android Studio. 2020. Online; accessed 2020-03-05, last updated

2020-02-14. Available also from WWW: 〈https://developer.android.
com/studio/intro/〉.

[2] Google. Defining data using Room entities. 2019. Online; accessed 2020-03-05,
last update 2019-12-27. Available also from WWW: 〈https://developer.
android.com/training/data-storage/room/defining-data〉.

[3] Google. Foreign Key. 2019. Online; accessed 2020-03-05, last update 2019-12-
27. Available also from WWW: 〈https://developer.android.com/
reference/android/arch/persistence/room/ForeignKey〉.

[4] Google. Define relationships between objects. 2020. Online; accessed 2020-03-05,
last update 2020-01-13. Available also from WWW: 〈https://developer.
android.com/training/data-storage/room/relationships〉.

[5] Google. Accessing data using Room DAOs. 2019. Online; accessed 2020-03-05,
last update 2019-12-27. Available also from WWW: 〈https://developer.
android.com/training/data-storage/room/accessing-data〉.

[6] Google. LiveData Overview. 2020. Online; accessed 2020-03-05, last update 2020-
01-22. Available also from WWW: 〈https://developer.android.com/
topic/libraries/architecture/livedata〉.

[7] Google. ViewModel Overview. 2020. Online; accessed 2020-03-05, last update
2020-01-22. Available also from WWW: 〈https://developer.android.
com/topic/libraries/architecture/viewmodel〉.

[8] Inc., Square. Retrofit: A type-safe HTTP client for Android and Java. Online;
accessed 2020-03-05. Available also fromWWW: 〈https://square.github.
io/retrofit/l〉.

[9] Google. Shrink, obfuscate, and optimize your app. 2020. Online; accessed 2020-
03-05, last update 2020-02-14. Available also from WWW: 〈https://develo
per.android.com/studio/build/shrink-code〉.

[10] Microsoft. Introduction to the C# language and the .NET Framework. 2015.
Online; accessed 2020-03-05, last update 2015-07-20. Available also from WWW:
〈https://docs.microsoft.com/en-us/dotnet/csharp/getting-
started/introduction-to-the-csharp-language-and-the-net-
framework〉.

[11] Microsoft. Introduction to ASP.NET Core. 2019. Online; accessed 2020-03-05,
last update 2019-11-12. Available also from WWW: 〈https://docs.micros
oft.com/en-us/aspnet/core/?view=aspnetcore-2.2〉.

[12] Microsoft. Creating A Fragment. 2018. Online; accessed 2020-03-05, last update
2018-02-07. Available also from WWW: 〈https://docs.microsoft.co
m/en-us/xamarin/android/platform/fragments/creating-a-
fragment〉.

41

https://developer.android.com/studio/intro/
https://developer.android.com/studio/intro/
https://developer.android.com/training/data-storage/room/defining-data
https://developer.android.com/training/data-storage/room/defining-data
https://developer.android.com/reference/android/arch/persistence/room/ForeignKey
https://developer.android.com/reference/android/arch/persistence/room/ForeignKey
https://developer.android.com/training/data-storage/room/relationships
https://developer.android.com/training/data-storage/room/relationships
https://developer.android.com/training/data-storage/room/accessing-data
https://developer.android.com/training/data-storage/room/accessing-data
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/viewmodel
https://square.github.io/retrofit/l
https://square.github.io/retrofit/l
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/xamarin/android/platform/fragments/creating-a-fragment
https://docs.microsoft.com/en-us/xamarin/android/platform/fragments/creating-a-fragment
https://docs.microsoft.com/en-us/xamarin/android/platform/fragments/creating-a-fragment

[13] Allen, Grant. Android 4 : Průvodce programováním mobilních aplikací. First.
Brno: Computer Press, 2013. dclvi, 656 pp. ISBN 978-80-251-3782-6.

[14] Lacko, Ľuboslav. Vývoj aplikací pro Android. First. Brno: Computer Press, 2015.
cdlxxii, 472 pp. ISBN 9788025143476.

42

	Mobile and Web Application International Student Guide
	Title page
	Synopsis
	Contents
	1 Introduction
	2 Existing Solutions
	2.1 Example of an Existing Application

	3 Solution Specification
	3.1 Mobile Application
	3.1.1 Platform
	3.1.2 Java
	3.1.3 Android SDK and IDE
	3.1.4 Android Jetpack
	3.1.5 Retrofit
	3.1.6 Proguard

	3.2 Web Application
	3.2.1 C# and ASP.NET Core
	3.2.2 MVC vs Razor Pages
	3.2.3 ASP.NET Core API & REST
	3.2.4 Entity Framework
	3.2.5 ASP.NET Core Identity

	4 Programmer's Documentation
	4.1 Database
	4.1.1 Shared Entities
	4.1.2 Web Server

	4.2 API
	4.2.1 Data API
	4.2.2 Changes API

	4.3 Mobile application
	4.3.1 Use Case Diagram
	4.3.2 Activities
	4.3.3 Fragments
	4.3.4 ViewModels
	4.3.5 Adapters
	4.3.5.1 RecyclerView Adapters
	4.3.5.2 ViewPager Adapters

	4.3.6 Database Service
	4.3.7 Interfaces
	4.3.8 Synchronization Classes
	4.3.9 Helpers and Other Classes

	4.4 Web Application
	4.4.1 Use Case Diagram
	4.4.2 Razor Pages and Controllers
	4.4.3 API Controllers
	4.4.4 Models
	4.4.5 Services
	4.4.6 Entity Framework
	4.4.7 Identity Framework
	4.4.8 Javascript

	5 User Documentation
	5.1 Mobile Application
	5.1.1 First Run
	5.1.2 Navigation
	5.1.3 Search
	5.1.4 Permissions
	5.1.5 Updating Data

	5.2 Web Application
	5.2.1 Login & Registration
	5.2.2 Logout
	5.2.3 Forgotten Password
	5.2.4 Managing Account
	5.2.5 Managing Data
	5.2.6 Article Editor
	5.2.7 Admin

	Conclusions
	Conclusions
	A Contents of attached CD/DVD
	References

