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A B S T R A C T 
Standard procedures of dysphonia diagnosis by a clinical speech therapist have their 
downsides, mainly because the process is very subjective. Recently, an automatic objec
tive analysis of a speaker's condition gained in popularity. Researchers successfully based 
their methods on various machine learning algorithms and handcrafted features. These 
methods, unfortunately, are not directly scalable to other voice disorders and the process 
of feature engineering is laborious and thus financially and talent expensive. Based on 
the previous successes, a deep learning approach might help to ease the problems with 
scalability and generalization, but an obstacle is a limited amount of training data. This 
is a common denominator in almost all systems for automated medical data analysis. 
The main aim of this work is to research new approaches to deep-learning-based pre
dictive modeling using limited audio data sets, focusing especially on voice pathology 
assessment. This work is the first to experiment with deep learning in this field and on so 
far the largest combined database of dysphonic voices, which was created in this work. 
It provides a thorough examination of publicly available data sources and identifies their 
limitations. It describes the design of novel time-frequency representations based on 
Gabor transform and it presents a new class of loss functions, that yield target represen
tations beneficial for learning. In numerical experiments, it demonstrates improvements 
in the performance of convolutional neural networks trained on limited audio data sets 
using the augmented target loss function and the newly proposed time-frequency repre
sentations, namely Gabor and Mel scattering. 
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A B S T R A K T 
Standardní postupy diagnózy dysfonie klinickým logopedem mají své nevýhody, především 
tu, že je tento proces velmi subjektivní. Nicméně v poslední době získala popularitu auto
matická objektivní analýza stavu mluvčího. Vědci úspěšně založili své metody na různých 
algoritmech strojového učení a ručně vytvořených příznacích. Tyto metody nejsou bohu
žel přímo škálovatelné na jiné poruchy hlasu, samotný proces tvorby příznaků je pracný a 
také náročný z hlediska financí a talentu. Na základě předchozích úspěchů může přístup 
založený na hlubokém učení pomoci překlenout některé problémy se škálovatelností a ge
neralizací, nicméně překážkou je omezené množství trénovacích dat. Jedná se o společný 
jmenovatel téměř ve všech systémech pro automatizovanou analýzu medicínských dat. 
Hlavním cílem této práce je výzkum nových přístupů prediktivního modelování založe
ného na hlubokém učení využívající omezené sady zvukových dat, se zaměřením zejména 
na hodnocení patologických hlasů. Tato práce je první, která experimentuje s hlubokým 
učením v této oblasti, a to na dosud největší kombinované databázi dysfonických hlasů, 
která byla v rámci této práce vytvořena. Předkládá důkladný průzkum veřejně dostup
ných zdrojů dat a identifikuje jejich limitace. Popisuje návrh nových časově-frekvenčních 
reprezentací založených na Gaborově transformaci a představuje novou třídu chybových 
funkcí, které přinášejí reprezentace výstupů prospěšné pro učení. V numerických expe
rimentech demonstruje zlepšení výkonu konvolučních neuronových sítí trénovaných na 
omezených zvukových datových sadách pomocí tzv. "augmented target loss function" a 
navržených časově-frekvenčních reprezentací "Gabor" a "Mel scattering". 
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1 Introduction 

"The potential benefits are huge; everything that civilisation 
has to offer is a product of human intelligence; we cannot 
predict what we might achieve when this intelligence is mag
nified by the tools that AI may provide, but the eradication 
of war, disease, and poverty would be high on anyone's list. 
Success in creating AI would be the biggest event in human 
history. Unfortunately, it might also be the last, unless we 
learn how to avoid the risks." 

Stephen Hawking, Stuart Russell, Max Tegmark & Frank Wilczek, 2014 

As a society, we should not try to stand in the way of technological advances. 
I believe, there is no way of stopping what we have already been once able to imagine. 
However, we also should not completely surrender to anything that just becomes 
convenient. Instead, we should use the new technology with caution, without locking 
ourselves and other species on the planet unwarily out of other options. While 
keeping such an open, but a watchful mindset, we should focus on finding ways to 
take advantage of our innovations to ease the suffering where we see possible. 

During my doctoral studies, I have tried to focus my research work in that 
manner - to embrace new ideas and further their development towards a wholesome 
application. It culminates in this thesis in the form of a cumulative dissertation, 
which comprises a certain portion of the published works produced by my coauthors 
and me. It gives a brief introduction to each of the relevant topics and describes 
the genesis of the presented ideas. Furthermore, it provides a story line contextually 
linking and summarizing the individual papers. Finally, the work as a whole is 
discussed and concluded. 

From a methodological point of view, the central idea of this scientific endeavor 
is an exploration of the learning capabilities of deep neural networks trained with 
audio data, particularly in sequence classification. From the application perspective, 
we explore and address the domain-specific challenges which emerge in the analysis 
of pathological voices. 

This document is structured into three main parts, namely the Preamble, Pub
lications, and Appendix. Those lines describing my ideas and points of view are 
written in the singular form of the first person, the rest, summarizing the joint 
effort of my coauthors and me, is written in the plural form of the first person. 
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In the following sections, I am introducing the relevant topics in a non-technical, 
colloquial way. The main aim is to provide a potential reader without sufficient back
ground, an idea, where these topics originate. A more experienced reader with an 
understanding of deep learning, audio signal processing, and medical data analysis, 
whom this thesis assumes, may consider skipping the Introduction and continuing 
directly to Summary of the Publications. If this is not the case, I recommend further 
reading, at the end of each section. 

1.1 Deep Learning 

Artificial intelligence (AI) is a field of study in computer science (CS). Its definition 
is unfortunately not clear or straightforward, as it took Stuart Russell and Peter 
Norvig exactly 31 full pages in their book Artificial Intelligence: A Modern Ap
proach (2016) [44], to introduce, define and summarize the concept along with its 
philosophical, mathematical and other cultural foundations. Colloquially, it refers 
to the ability of a machine to solve a task by imitating intelligent human behav
ior. It is often confused with artificial general intelligence (AGI), which inspired 
a multitude of science fiction authors because of the fascinating idea of a computer 
that would be equally intelligent to humans in every aspect. The term "Artificial 
intelligence" was coined by John McCarthy in 1955 [8], just about a year after the 
sad death of Alan Turing, the father of CS [4]. 

"It would be useful if computers could learn from experience 
and thus automatically improve the efficiency of their own 
programs during execution." 

Donald Michie, 1968 

Machine learning (ML), a subfield of AI, is also a term which refers to a par
ticular set of algorithms, that enable the computers to learn from historical data 
i.e. experience, without being explicitly programmed. This is a paraphrased quote 
often attributed to Arthur Samuel, who is also considered having coined the term 
"Machine learning" back in 1959 [46]. According to Russell and Norvig, M L is a ca
pability of a computer to adapt to new circumstances and to detect and extrapolate 
patterns [44]. A M L algorithm builds a mathematical model based on the set of 
training data, which provides an approximation of an unknown optimal solution of 
the task as measured by a performance metric. 

11 



"We think that deep learning will have many more successes 
in the near future because it requires very little engineering 
by hand, so it can easily take advantage of increases in the 
amount of available computation and data." 

Yann LeCun, Yoshua Bengio & Geoffrey Hinton, 2015 

Deep learning (DL) is a subfield of M L concerned with artificial neural networks 
(ANN). ANNs are computation systems of interconnected artificial neurons, which 
very loosely model the biological neurons. ANNs have been developed since 1943. 
when McCulloch and Pitts, inspired by the study of the human brain modeled an 
electrical circuit of a simple neural network [35], and since Rosenblatt described 
a mathematical model of Perceptron in 1958 [43]. Nowadays, ANNs are usually 
described as directed graphs of nodes connected with edges and organized into layers. 

The term "Deep learning" was introduced by Rina Dechter in 1986 [47]. The 
word "deep" refers to a subset of ANNs with a number of hidden layers (number 
of layers excluding input and output layer) bigger than one. Depending on how 
the nodes are linked, i.e. the topology, the deep neural network (DNN) is either 
feedforward or recurrent. Edges represent weights, which parameterize the model 
and are adjusted during the training of the network. 

DNNs were not popular at first but became widely used with the increased avail
ability of data and computing power. In the past years, they dramatically improved 
the state of the art in areas such as speech recognition, visual object recognition, 
robotics, bioinformatics, online advertising, search engines, and medical applica
tions [30, 31], to name a few. In this work, we are mainly concerned with architec
tures composed of one or more of the following components: standard fully connected 
feedforward layers, convolutional layers as introduced in deep convolutional neural 
networks (CNN) and recurrent long short-term memory layers (LSTM) [29, 25, 45]. 

For further reading, please refer to the following books, which go into a great 
detail in each topic: Artificial Intelligence: A Modern Approach (Russell & Norvig, 
2016) [44], Pattern recognition and machine learning (Bishop, 2011) [5], Introduction 
to Machine Learning (Alpaydin, 2014) [2], Deep Learning (Goodfellow, Bengio & 
Courville, 2016) [17]. For a quicker overview of DL, refer to the works of LeCun, 
Bengio & Hinton (2015) [30], Schmidhuber (2016) [47], Liu et al. (2017) [32] and 
Pouyanfar et al. (2018) [41]. 
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1.2 Digital Audio Signal Processing 

To process sound information with neural networks, it is necessary to transform 
the continuous acoustic physical phenomenon into its discrete, digital, computer-
understandable representation, i.e. audio data. The field concerned with recording 
real-world signals like voice, music, etc., their further conversion and processing is 
called digital signal processing (DSP). In this work, we will be mainly interested in 
decisions of sampling rate and time-frequency representations of the sound, as well 
as psychoacoustics and we will study their impact on learning. 

For a comprehensive introduction into these topics, please refer to the following 
books: Discrete-Time Signal Processing (Oppenheim & Schafer, 2014) [39], Digital 
Audio Signal Processing (Zolzer, 2008) [48], Understanding Digital Signal Processing 
(Lyons, 2004) [33], Foundations of Time-Frequency Analysis (Grochenig, 2001) [18]. 
For a more concise merger introducing DL from the perspective of audio signal 
processing, refer to the paper by Purwins et al. (2019) [42]. 

1.3 Automatic Analysis of Medical Audio Data 

According to an extensive survey in medical image analysis by Litjens et al. (2017) [31], 
medical images have been automatically analyzed as soon as it was possible to cap
ture and load them into a computer. In the case of audio, researchers were first 
interested in using extralinguistic information to identify speakers, their age or gen
der. For speech emotion recognition, they have used paralinguistic information, and 
in the case of accent, dialect or speech recognition, the linguistic dimension has been 
studied. Just in the past years, the analysis of the speaker's condition gained in pop
ularity, as Gomez-Garcia, Moro-Velazquez & Godino-Llorente (2019) [16] explain in 
another great survey on automatic voice condition analysis (AVCA) systems. A V C A 
aims for an objective and automatic quantification of the degree to which a patient 
is impaired by a voice disorder. One of the main advantages of such analysis based 
on audio data is its relatively low cost, non-invasive nature and a possibility for 
continuous monitoring and in-cloud processing [36]. 

The fact that sparked my interest in this research direction was a link between 
hypokinetic dysarthria (HD) and Parkinson's disease (PD). HD is a motor speech 
disorder manifested in articulation, phonation, prosody, respiration, and faciokinesis, 
that occurs in up to 90 % of P D patients and is also considered one of the early 
markers of PD. For more information about HD and other disorders in PD, please 
refer to a thorough survey paper by Brabenec et al. (2017) [6]. Unfortunately, 
nowadays, it is still not possible to cure PD, but an early diagnosis can significantly 
improve patient's quality of life thanks to already available medication. 
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The standard procedure of HD diagnosis is carried out by a clinical speech ther
apist. Speech and voice of a patient are usually assessed using specific scales and 
questionnaires such as Frenchay dysarthria assessment [12] or 3F test [27]. This 
procedure still has its downsides though, mainly because the evaluations are very 
subjective. The human ear, even of a trained clinician, is not sensitive enough to cap
ture slight changes in the patient's voice or speech, it is, therefore, hard to compare 
successive assessments for progression tracking, even from the same clinician [36]. 

Researchers thus started to work on automatic objective methods of HD analysis 
and proposed a variety of parameterization methods, to extract conventional or non-
conventional features from the audio recordings of the patients' speech and voice. 
These were further utilized in predictive modeling using a variety of machine learning 
techniques [6] to infer an automatic evaluation of the patient's data. Successes of 
these methods are undeniable and encouraging, with strong advantages for clinicians 
who can use these methods as a supportive tool for their decisions. The main pros 
are objectivity and relatively good interpretability [11], which is important in this 
setting. Unfortunately, the approach is not directly scalable to voice disorders other 
than HD. The process of feature engineering is laborious and requires researchers 
with expertise in signal processing and machine learning as well as deep knowledge of 
the particular disorder and its underlying pathophysiological mechanisms. A model 
trained for one disorder will highly unlikely produce satisfactory predictions on data 
of another disorder. Even for the same disorder, the model's performance can differ 
greatly depending on the data acquisition conditions or labeling framework. For 
a more comprehensive list of factors affecting A V C A systems, refer to the work of 
Gomez-Garcia et al. (2019) [16]. 

A DL approach might help to alleviate the problems with scalability and gen
eralization, but and obstacle, as will be pointed out later, is a limited amount of 
available data, which is insufficient for today's DL models to fulfill their promises. 
The lack of data is a common denominator of almost all systems for automated 
medical data analysis. 

"Deep Learning is getting really good on Big Data [•••}• But 
Small Data is important too. [... J Hope more researchers 
work on Small Data - ML needs more innovations there." 

Andrew Ng, 2018 

Please, refer to the following articles for further information: A Guide to Deep 
Learning in Healthcare (Esteva et al. 2019) [13] provides a short, but compre
hensive introduction to this topic, A Survey on Deep Learning in Medical Image 
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Analysis (Litjens et al. 2017) [31] provides an extensive survey regarding images, 
which is very relevant to this topic due to image-like properties of time-frequency 
representations of audio signals. 

1.4 Objectives 

From the perspective of the superordinate analysis of this dissertation, here I ret
rospectively delineate the main objective of this work, which is to research new 
approaches to D L based predictive modeling using limited audio data 
sets, with a special focus on voice pathology assessment. This main aim 
along with its sub aims will be later discussed in section Concluding Discussion. 
More specifically this dissertation aims to: 

Aim 1: Explore the specifics of medical audio data analysis with DL 
This constitutes conducting first experiments directly with the raw wave
form in a search for an end to end system of voice pathology detection, 
which would map raw waveforms to the corresponding targets. Such ex
periments should also show the specific nature of the data and how to 
handle them with DL while determining the caveats. 

Aim 2: Identify prospective D N N architectures w.r.t. A V C A systems 
We plan to test popular D N N building blocks used in C V and in time-series 
analysis, namely C N N and L S T M , expecting automatic feature extraction. 

Aim 3: Review available data sources and their limitations 
More specifically to review their previous uses, identify which speech tasks 
they comprise, what is the distribution of healthy vs. dysphonic samples, 
what is the distribution of pathology types recorded and to propose an 
approach of combining the databases. 

Aim 4: Clarify which input and target representations are useful 
Specifically, to train models using raw waveforms and standard time-frequency 
representations, and compare the performances with handcrafted speech 
features. Moreover to identify, which other input modalities, such as gen
der, age, a grade of dysphonia, etc. affect the modeling capabilities and to 
suggest possibilities of redefining the task by changing the targets. 

Aim 5: Propose countermeasures to high data demand 
More precisely, to research and propose novel input and target data repre
sentations, which would benefit training on limited data sets. 
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2 Summary of the Publications 
The main body of this work consists of five selected publications done during my 
doctoral studies. This section gives a short overview of their order, how the articles 
are contextually linked and how each of the preceding work and other events, like 
research visits, influenced the research direction and topic of the whole thesis. This 
timeline is presented in Table 2.1. The Publications are presented in versions of 
accepted or submitted manuscripts, their templates are unified, but contents are 
unchanged, apart from the numbering of tables, figures, equations and theorems, 
which may not fully reflect the official version. 

Before I started to work on these articles, I did some prior work, where I was 
exploring the idea of DL and its application to time-series and audio data. In 
a paper entitled Speech Emotion Recognition with Deep Learning (Harar, Burget & 
Duta, 2017) [22], we have successfully used a C N N for automatic speech feature 
extraction and classification into one of three classes, i.e. emotional states - angry, 
neutral, sad. 

After I was exposed to work and ideas of Mekyska and Galaz at the Brain 
Diseases Analysis Laboratory, I started to work on the utilization of DL in A V C A 
systems to avoid the "manual" feature engineering. Shortly after, I made a research 
visit to the University of Las Palmas de Gran Canaria, where Assoc. Prof. Jesus B. 
Alonso-Hernandez generously provided his experience and further guidance. 

Based on this cross-fertilization of ideas, a preliminary study entitled Voice Pa
thology Detection using Deep Learning [20] was published and presented at Interna
tional Conference and Workshop on Bioinspired Intelligence (IWOBI) in July 2017. 
To the best of our knowledge, this was the first work in the world that studied the 
use of DL to solve this type of a problem. The objective of this study was to clarify, 
whether the use of D N N based on a combination of C N N and L S T M , applied to 
raw input audio signal, would prove itself worthy of further exploration for voice 
pathology detection. This work was chosen to be extended for a special issue in the 
journal Neural Computing and Applications (IF 4-664, Q2 in AI) and was once again 
presented at Systematic Approaches to Deep Learning Methods for Audio workshop 
in Vienna in September 2017. 

The extended version with title Towards Robust Voice Pathology Detection [24] 
contains an extensive survey of previously published works, presents experiments 
conducted on four databases, namely Arabic Voice Pathology Database (AVPD) [37, 
38], Massachusetts Eye and Ear Infirmary Voice Disorders Database (MEEI) [34], 
Principe de Asturias Database (PDA) [15] and SVD. Furthermore, it compares per
formances of M L and DL models trained using raw audio signal, spectral and cep-
stral time-frequency representations, and conventional handcrafted features. Also 
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Table 2.1: Timeline 

? Prior work 
First published experiments with CNNs for audio sequence classification applied 
to speech emotion recognition. 

" 9 University of Las Palmas de Gran Canaria (IDeTIC) 
Acquired new data, exchanged ideas, and received guidance in the research of 
pathological voices from the machine learning perspective from Assoc. Prof. 
Jesus B. Alonso-Hernandez. 

" 0 Voice Pathology Detection Using Deep Learning 

" (H Towards Robust Voice Pathology Detection 
In-depth analysis of the state of the art and available data sets. Identified the 
main issues and conducted cross-database experiments. 

" 9 University of Vienna (NuHAG) 
Collaboration and supervision from Dr. Monika Dorfler in applied math and 
harmonic analysis. Strong focus on the fundamentals of neural networks and 
audio time-frequency representations. 

" (H On Orthogonal Projections for Dimension Reduction . . . 
Numerical experiments with augmented target loss function emphasizing 
important characteristics by beneficial representations of the target space. 

" Hi Gabor Frames and Deep Scattering Networks in Audio . . . 

" 0 Improving Machine Hearing on Limited Data Sets 
Proposed and developed a software library for Gabor scattering and Mel 
scattering. Addressed the issue of insufficient amounts of data. 

" Future work 
Combining the findings and applying them to voice pathology data. 

Legend: El - Journal article, D - Conference paper, 9 - Research visit 
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includes experiments with DenseNet [26] D N N architecture. It points out the limi
tations of the available data, the definition of the task and approach and suggests 
future work to alleviate the summarized problems. 

In 2018, I have been awarded a grant for the mobility of researchers and thanks 
to the previously mentioned workshop in Vienna, I was given the opportunity to 
continue my research as a part of Numerical Harmonic Analysis Group (NuHAG) at 
the Faculty of Mathematics of the University of Vienna. This research visit under 
the supervision of Dr. Monika Dorfler radically changed my view on the problems 
at hand. I was invited to collaborate on multiple interesting fundamental research 
topics, for which I have conducted numerical experiments in music information re
trieval setting, helped to design and implemented proposed algorithms, and created 
software libraries. In all the following articles, we have taken advantage of CNNs 
which were originally proposed for computer vision (CV), in predictive modeling 
with audio data. The reason is that standard FFT-based signal processing methods 
allowed exploiting advances in C V in the audio analysis by converting the raw audio 
waveforms into image-like representations (e.g. spectrograms). 

A collaboration with the Department of Ophthalmology of the Medical Univer
sity of Vienna led to an article accepted in the Journal of Mathematical Imaging 
and Vision (IF 1.603, Ql in CV) titled On Orthogonal Projections for Dimen
sion Reduction and Applications in Augmented Target Loss Functions for Learn
ing Problems [7]. In this article, we studied the use of orthogonal projections on 
high-dimensional input and target data in learning frameworks and we introduced 
a general framework of augmented target loss functions (AT). These loss functions 
integrate additional information via transformations and projections of the target 
data. In two supervised learning problems, clinical image segmentation and music 
information classification, the application of our proposed AT increased the accu
racy. 

From the perspective of time-frequency analysis, in the paper Gabor Frames and 
Deep Scattering Networks in Audio Processing [3], we introduced Gabor scattering, 
a feature extractor based on Gabor frames and Mallat's scattering transform. Based 
on the provided theory, we have implemented the Gabor-scattering software library 
for Python programming language [19]. Furthermore, with numerical experiments, 
we showed, that the invariances encoded by the Gabor scattering transform lead to 
higher performance in comparison with just using Gabor transform, especially when 
few training samples are available. 

As a next natural step, we included a human perceptual scale, which led to an 
extension of the Gabor scattering to a Mel scattering representation. The afore
mentioned software library was extended to cover both Gabor and Mel scattering. 
In the paper Improving Machine Hearing on Limited Data Sets [21] we investigated 
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how input and target representations interplay with the amount of training data in 
a music information retrieval setting. We compared the standard mel-spectrogram 
inputs with a newly proposed Mel scattering. Furthermore, we investigated the im
pact of additional target data representations by using the A T which incorporates 
unused available information. We observed that all proposed methods outperformed 
the standard mel-spectrogram representation when using a limited data set. 
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3 Concluding Discussion 
To conclude this dissertation as a whole, the following section sums up the con
clusions of the publications and is structured in such a way it tries to address the 
objectives in order of appearance in the section Objectives. 

In the frame of Aim 1 and Aim 2, we have hoped for an end to end system 
of voice pathology detection, which would map raw waveforms to the corresponding 
targets. The objective of the paper Voice Pathology Detection Using Deep Learning 
was to carry out a preliminary study which would clarify whether the use of the D N N 
model, especially combination of convolutional and L S T M layers would prove itself 
worthy of further exploration in case of voice pathology detection problem using 
only raw recordings of sustained vowel / a / . The examined method achieved 71.36 % 
accuracy on validation data and 68.08% accuracy on testing data. It is important 
to note, that we did not restrict the classification to a subset of pathologies and we 
used all 71 present in the database. 

We conclude that the main advantage of the DL approach with C N N is the 
automatic feature extraction, as opposed to the previously proposed methods. It 
saves a great amount of time and expertise in the area of the problem being solved. 
We found out, that the main disadvantage is the amount of data needed to train 
the model. The SVD database used in this experiment is extensive in numbers of 
persons recorded, but there are not enough samples of healthy persons in compari
son with the number of samples of pathological patients. Also, the distribution of 
individual pathologies is extremely unequal making the voice pathology detection 
a hard problem. 

In search of a robust voice pathology detection system using acoustic (voice) 
signals, researchers face a variety of problems. One of the major problems in this 
field of science, as we pointed out before, is the limited amount of data. Nevertheless, 
one large database from one source would not solve all the issues. A problem is also 
a limited number of distinct publicly available databases, using which the model 
could capture the variance of the data acquired in different recording conditions and 
environments. Following the Aim 3, the article Towards Robust Voice Pathology 
Detection explores publicly available data sources of dysphonic voices, discusses the 
means of combining them into one bigger database and uncovers their limitations 
concerning building an automatic assessment system. 

The paper concludes, these commonly used databases (AVPD, MEEI , PDA, 
SVD) are very hard to combine because of various distinctions such as a) the data
bases are labeled in different languages, b) the databases do not comprise the same 
set of speech tasks, c) there is a variety of voice pathologies unequally distributed 
across the databases, etc. For these reasons, up to now, researchers have used only 
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a subset of the databases for their experiments providing results related to that 
carefully selected subset of data. However, this approach limits the possibilities 
of creating a robust voice pathology detector. We have conducted experiments on 
recordings of sustained phonation of the vowel / a / produced at a normal pitch from 
the combination of these 4 different databases, trying to eliminate mentioned limita
tions. To the best of our knowledge, this is the first work that uses such a "large" set 
of data to build mathematical models for computerized, objective voice pathology 
detection. 

To make a broader comparison, we researched 3 distinct classifiers within super
vised learning and anomaly detection paradigms. Following the Aim 4, we have 
explored the usage of raw waveforms, spectrograms, M F C C , conventional dysphonic 
features and their combinations as input data. We observed that XGBoost classifier 
achieved the best results amongst DenseNet and Isolation Forest classifiers. In the 
article, we also investigated and described stratification and group weighting, to 
equalize the uneven distribution of gender-age groups, which is important to take 
into account, because of the different voice and speech properties of patients with 
different ages and gender. 

Even though combining the available databases, we have obtained a relatively 
large amount of data samples, it still seems not to be enough to train a successful 
DL model on raw waveforms, and from the observed performances, we conclude that 
in voice pathology detection scenarios, with this (from A V C A perspective large, but 
from the DL perspective small) amount of training data, it is better to use inputs 
with reduced dimensionality in contrary to raw waveform inputs, and/or make use 
of transfer learning, data augmentation or other means to alleviate the problem 
with the lack of data. On the other hand, reviewing the performances achieved 
in scenarios with only M F C C as input data, we conclude that representations, as 
reduced in dimensionality as M F C C alone, are not reliable enough for robust voice 
pathology detection, which was also concluded by A l i et al. in [1]. 

We anticipate, that making the combination of the databases more controlled 
and coherent to reduce the noise in the database and simplifying the complexity of 
the target space would boost the performance of the system. Thus we think that 
recordings of the databases commonly used for automatic voice pathology detection 
should be consulted with clinicians as a whole, to evaluate the severity of vocal 
manifestation of the present pathologies based on perceptual evaluation as opposed 
to plain names of present pathologies. There are standard metrics, which are used 
to evaluate the quality of voice that can be used for this purpose [9, 10, 14, 28]. The 
addition of such information to the databases could provide researchers with a unique 
possibility to build models capable of classification and prediction, emphasizing 
the severity of the exact vocal-manifestation (increased acoustic tremor, roughness, 
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breathiness, etc.) of these pathologies. 
At the end of the article, we anticipated that deep learning will play its role in 

robust voice pathology detection on the assumption that more data will be available, 
or at least reasonable combination of available databases will be made and limita
tions of these databases will be partially diminished by data augmentation and other 
countermeasures. Besides, we presume that the use of deep learning methods for 
novelty detection such as deep autoencoder [40] for modeling the normophonic voice 
could be an interesting idea for future investigation with a prospect to identify even 
disordered voices that are sparsely distributed across databases. 

The first two publications were focused mainly on the specifics of predictive mod
eling using DL in voice pathology detection. They were concerned with identifying 
the prospective D N N architectures and dove deep into the analysis of available data 
sources. The following three publications all look at the problem of insufficient data, 
which was repeatedly mentioned in the first two publications, from a different per
spective. As defined in the Aim 5, their objective is to propose methods of input 
and target space transformation in such a way, the D N N can learn with fewer data. 

In the article On Orthogonal Projections for Dimension Reduction and Appli
cations in Augmented Target Loss Functions for Learning Problems, we introduced 
a general framework of AT. These loss functions integrate additional information 
via transformations and projections of the target data. In two supervised learn
ing problems, clinical image segmentation and music information classification, the 
application of our proposed AT increased the accuracy. 

Next, in the article Gabor Frames and Deep Scattering Networks in Audio Pro
cessing, we introduced Gabor scattering (GS), a scattering transform based on Gabor 
frames and we investigated its properties. Thereby, we have been able to mathe
matically express the invariances introduced by GS within the first two layers. We 
have experimentally shown that explicit encoding of invariances by using an ade
quate feature extractor is beneficial when a restricted amount of data is available. 
It was shown that in the case of a limited data set the application of a GS repre
sentation improves the performance in classification tasks in comparison to using 
Gabor transform (GT). This property can be utilized in restricted settings, e.g. in 
embedded systems with limited resources or in medical applications, where sufficient 
data sets are often too expensive or impossible to gather, while the highest possible 
performance is crucial. 

The common choice of a time-frequency representation of audio signals in pre
dictive modeling is mel-spectrogram; hence, as a natural step, we introduced Mel 
scattering (MS) in Improving Machine Hearing on Limited Data Sets, a new feature 
extractor which combines the properties of GS with mel-filter averaging. We also 
investigated the impact of additional information about the target space through 
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AT on the performance of the trained C N N . 
From the newly proposed methods, A T is the least expensive in terms of training 

time, but on the other hand, yields the smallest improvement in this experimental 
setup. Nevertheless, it has another advantage: it steers the training towards learning 
the penalized characteristics. We can conclude that A T provides a more precise 
measure of the distance between outputs and targets. That's why it can help in 
scenarios where the training set is not large enough to allow the learning of all 
characteristics but can be penalized by AT. We suggest using/experimenting with 
the proposed methods for other data sets if there is not a sufficient amount of data 
available or/and there exist reasonable transformations in the target space relevant 
to the task being solved. A l l proposed methods might be found useful also in 
scenarios with limited resources for training. 

Beyond State of the Art This section concluding four long years of work is not 
short either, thus this paragraph briefly lists the achievements compactly: 

• the first-ever use of deep learning in the field of voice pathology detection 
• identification of limitations of deep learning w.r.t. this field 
• identification of limitations of existing voice pathology databases 
• experiments on the largest combined database of dysphonic voices 
• design of new time-frequency representations based on Gabor transform 
• improvement in the performance of convolutional neural networks on limited 

audio data sets using proposed novel time-frequency representations, namely 
Gabor scattering and Mel scattering, and a new class of loss functions, that 
yield beneficial target representations 

Concurrent and Future Work The timeline in Table 2.1 constitutes only the 
main thread of my doctoral work, even though more work has been done during 
this period. Most notable are two collaborations: one with the Department of The 
Communication Disorders of the Comenius University in Bratislava. It is concerned 
with consulting available voice pathology databases combined into one, with clinical 
speech therapists, to evaluate the severity of vocal manifestation of the present 
pathologies based on perceptual evaluation according to G R B A S scale [9]. And 
the other, with the Austrian Research Institute for Artificial Intelligence (OFAI), 
experimenting with novel preprocessing steps for learning algorithms. During this 
collaboration, an experimental software library Redistributor [23] was developed. 
The results of these collaborations, unfortunately, did not make it into this work 
and are going to be worked upon and finalized in the future. 
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Abstract 

This paper describes a preliminary investigation of Voice Pathology Detection using 
Deep Neural Networks (DNN). We used voice recordings of sustained vowel / a / 
produced at normal pitch from German corpus Saarbruecken Voice Database (SVD). 
This corpus contains voice recordings and electroglottograph signals of more than 
2 000 speakers. The idea behind this experiment is the use of convolutional layers in 
combination with recurrent Long-Short-Term-Memory (LSTM) layers on raw audio 
signal. Each recording was split into 64 ms Hamming windowed segments with 
30 ms overlap. Our trained model achieved 71.36 % accuracy with 65.04 % sensitivity 
and 77.67% specificity on 206 validation files and 68.08% accuracy with 66.75% 
sensitivity and 77.89 % specificity on 874 testing files. This is a promising result 
in favor of this approach because it is comparable to similar previously published 
experiment that used different methodology. Further investigation is needed to 
achieve the state-of-the-art results. 
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1.1 Introduction 

According to [14] the automatic detection of vocal fold pathologies is a task of as
signing normophonic or dysphonic labels to a given phonation produced by a specific 
speaker. This objective is an interest to the researchers of speech or voice commu
nity, as well as the respective medical community. This is due to its non-invasive na
ture, free from subjective biasness, and relatively low cost. So far, many researchers 
aimed to detect voice pathology by analyzing the voice with the emphasis to develop 
features that can effectively distinguish between normal and pathological voices [16]. 

On the contrary, in this paper we investigate a way to skip the phase of developing 
the features. Instead, we aim to create an end-to-end deep neural network model 
capable of voice pathology assessment using raw audio signal. To achieve this goal, 
we used voice recordings from Saarbruecken Voice Database (SVD) [21] that contains 
the samples of healthy persons and patients with one up to 71 different pathologies. 

Nowadays, thanks to huge increases in computational power and data amounts, 
the Deep Learning (DL) models delivered the state-of-the-art results in many do
mains including Speech processing. Using this approach to tackle the voice patho
logy detection problem we are allowed to use complex multi-layer model architec
tures. We expect the convolutional layers [12] to learn to detect various patterns 
that could help us to differentiate between healthy and pathological voice. Long-
Short-Term-Mermoy layers [25] should then transform the time distributed abstract 
feature vectors outputted from convolution stacks into understandable representa
tion for fully connected dense layers, which should do the final classification. 

The rest of this paper is organized as follows. Section 1.2 introduces the related 
works in this area of expertise. In Section 1.3, data and methodology of the exper
iment are be discussed. The results are presented in Section 1.4. Conclusions are 
drawn in Section 1.5. 

1.2 Related Work 

There is already a great number of related works in this area of expertise [16, 1, 13, 
18, 19, 2, 10, 6, 3, 15, 8]. 

Detailed information about papers published on SVD can be found in Table 1.1. 
In summary, the authors that used SVD extracted various features from the voice 
recordings prior to pathology detection. The features were usually extracted from 
time, frequency and cepstral domains and contained mel-frequency cepstral coeffi
cients (MFCC) , energy, entropy, short-term cepstral parameters, harmonics-to-noise 
ratio, normalized noise energy, glottal-to-noise excitation ratio, multidimensional 
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Table 1.1: Overview of related works 

Article Feature set Employed classifier Accuracy Notes 

[8] 28 parameters extracted from time, frequency K M , RF 100.00% Used combination of vowels /a / , / i / , / u / 
and cepstral domain Females and Males separately 

[15] energy, entropy, contrast, homogeneity G M M 99.98% Used combination of voice and EGG signals 
[3] MDVP parameters SVM 99.68 % Used subset containing 4 of 71 pathologies 
[6] MFCC G M M 99.00 % Used combination of vowels /a/ , / i / , / u / 
[10] MPEG-7 low-level audio and IDP SVM, E L M , G M M 95.00 % Used mix of MEEI and SVD data 
[16] IDP SVM 93.20 % Used subset containing 3 of 71 pathologies 
[2] Maximum peak and lag SVM 90.98 % Used subset containing 4 of 71 pathologies 
[19] MFCC first and second derivatives ANN 87.82 % Used subset containing 4 of 71 pathologies 
[18] short-term cepstral parameters SVM 86.44% Used subset containing 4 of 71 pathologies 
[13] MFCC, harmonics-to-noise ratio, normalized G M M 79.40 % Used combination of vowels /a/ , / i / , / u / 

noise energy, glottal-to-noise excitation ratio 
[1] Peak value and lag for every frequency band G M M , SVM 72.00% Used 200 samples of vowel / a / at high pitch 



voice program parameters (MDVP) , etc. After the feature extraction, multiple clas
sifiers have been used. Most authors relied on Support Vector Machines (SVM) and 
Gaussian Mixture Models (GMM) but K-means clustering (KM), Random forests 
(RF), Extreme Learning Machines (ELM) and Artificial Neural Networks (ANN) 
were also utilized in several papers. To our best knowledge, this is the first paper 
that presents the voice pathology detection using D N N . 

The results vary greatly between the published papers mainly due to differences 
between sets of data that were used for the experiment. Martinez et al. in [13] 
reported 72% accuracy using 200 recordings of sustained vowel / a / at high pitch, 
which is the most similar experiment to ours. A l l other authors used combination 
of vowels / a / , / i / and / u / . Souissi et al. in [18, 19] reported the highest accuracy of 
87.82 % using a subset containing 4 types of pathologies from the total number of 71 
as well as Al-nasheri et al. in [2, 3] who pushed the accuracy of 99.68 %. The reason 
to use a subset containing only some of the pathologies was to conduct an experiment 
on data that were also present in other available databases, namely Massachusetts 
Eye and Ear Infirmary Database (MEEI) and Arabic Voice Pathology Database 
(AVPD). Muhammad et al. in [16] used subset containing 3 types of pathology and 
reported 93.20% accuracy and then in [15] he used combination of voice recordings 
as well as electroglottograph (EGG) signals to boost the accuracy to 99.98 %. The 
highest possible accuracy of 100 % was achieved by Hemmerling et al. in [8] who 
approached the detection problem separately for female and male speakers. However, 
since the accuracy is so high the reported results are questionable. 

1.3 Methodology 
1.3.1 Data 

We used Saarbruecken Voice Database, which is a collection of voice recordings and 
E G G signals from more than 2 000 persons. It contains recordings of 687 healthy 
persons (428 females and 259 males) and 1356 patients (727 females and 629 males) 
with one or more of the 71 different pathologies. One recording session contains the 
recordings of the following components: 

• Vowels / i / , / a / , / u / produced at normal, high and low pitch 
• Vowels / i / , / a / , / u / with rising-falling pitch 
• Sentence "Guten Morgen, wie geht es Ihnen?" ("Good morning, how are you?") 
A l l samples of the sustained vowels are between 1 and 3 seconds long, sampled 

at 50 kHz with 16-bit resolution [21]. In contrary to M E E I database, all audio 
samples (healthy and pathological) in SVD were recorded in the same environment. 
This preliminary experiment was conducted using samples of sustained vowel / a / 
produced at normal pitch. Each file was split into multiple 64 ms long segments 
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(Hamming windowed) with 30 ms overlap. One file was therefore represented to the 
input of the neural network as a matrix containing total number of n (segments) • 
3 200 features (0.064s • 50 000Hz = 3 200 features). 

We divided all data into T R A I N (70%), V A L I D A T I O N (15%) and TESTING 
(15%) sets and we assured that the number of healthy and pathological samples in 
training and validation sets are equal. The rest was appended to the testing set. In 
total, there were 960 samples (480 healthy, 480 pathological) in the training set, 206 
samples (103 healthy, 103 pathological) in validation set and the rest 874 samples 
(104 healthy and 770 pathological) were used as testing samples. 

1.3.2 DNN Architecture 

While constructing the network, it is always good to have a clear "story" in mind 
that would reason the task of every layer or stack of layers in the proposed ar
chitecture. The "story" behind our architecture is simple. We used 2 stacks of 
convolutional layers to transform the input vectors into a set of more abstract re
peating patterns that seem important for the network cost to decrease. Between 
each stack of convolutions, there is a pooling layer [9] that reduces the dimension
ality of the vector. Since each file is a sequence of multiple time-steps (segments), 
all convolutions and pooling layers were wrapped in TimeDistributed layer (built in 
layer in Keras framework [5] for keeping the time axis unchanged). Afterwards we 
reshaped the resulting matrices from the last pooling layer so it could be connected 
to the recurrent L S T M layer. Before the experiment, we legitimized the presence 
of L S T M to ourselves as a context learning element that remembers the changes in 
time. As the last component of our network, there is a stack of 3 fully connected 
layers ended with Softmax layer with 2 neurons (one neuron for class = healthy and 
the other neuron for class = pathological) for the final classification. 

For the first two convolutional layers we used 16 kernels of size 160 succeeded 
with max pooling layer of size 4. The second stack of another two convolutional 
layers used 13 kernels of size 320 again succeeded with the same max pooling as 
before. Then we connected the flattened output from the last layer to the L S T M 
layer with 25 units. To prevent overfitting we set the dropout probability [20] on 
L S T M layer to 0.1 for input gates and 0.5 for the recurrent connections. From this 
point on the D N N used only fully connected layers. The first two of size 32 and the 
last one with 2 output neurons and Softmax activation [4]. 

Rectified linear unit (Relu) as activation function [17] was used for all convolu
tional and dense layers except the Softmax output layer. L S T M used Hyperbolic 
tangent (Tanh) activation function. A l l layers were initialized using Glorot uniform 
initialization [7]. This whole D N N had overall 428 772 trainable parameters and its 
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INPUTLAYER 
input: [n, 1, 3200] 

INPUTLAYER 
output: [n, 1, 3200] 

CONVOLUTION 
16 kernels [160], Relu 

input: [n, 1, 3200] CONVOLUTION 
16 kernels [160], Relu output: [n, 16, 3200] 

CONVOLUTION 
16 kernels [160], Relu 

input: [n, 16, 3200] CONVOLUTION 
16 kernels [160], Relu output: [n, 16, 3200] 

MAX POOLING 
pool size = 4 

input: [n, 16, 3200] MAX POOLING 
pool size = 4 output: [n, 16, 800] 

CONVOLUTION 
13 kernels [320], Relu 

input: [n, 16, 800] CONVOLUTION 
13 kernels [320], Relu output: [n, 13, 800] 

CONVOLUTION 
13 kernels [320], Relu 

input: [n, 13, 800] CONVOLUTION 
13 kernels [320], Relu output: [n, 13, 800] 

MAX POOLING 
pool size = 4 

input: [n, 13, 800] MAX POOLING 
pool size = 4 output: [n, 13, 200] 

RESHAPE 
input: [n, 13, 200] 

RESHAPE 
output: [n, 2600] 

LSTM 
25 units, Tank 

input: [n, 2600] LSTM 
25 units, Tank output: [25] 

DENSE 
32 neurons, Relu 

input: [25] DENSE 
32 neurons, Relu output: [32] 

DENSE 
32 neurons, Relu 

input: [32] DENSE 
32 neurons, Relu output: [32] 

DENSE 
2 neurons, Softmax 

input: [32] DENSE 
2 neurons, Softmax output: [2] 

Fig. 1.1: Detailed D N N architecture. 
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whole architecture is depicted in Fig. 1.1. 
D N N models consist of manifold of hyper-parameters. Sensitivity of each model 

on particular hyper-parameter is different due to a distinctive nature of the system 
that is modeled. Our strategy of its selection and fine tuning with aim of finding 
the best performing model was based on community standards, intuition and grid 
search for which we have utilized our open-source library K E X 1 . 

1.3.3 Experimental Setup 

For gradient-based optimization of Cross-entropy loss function used during training 
of our proposed model we utilized Adam algorithm [11] with initial learning rate of 
6 • 10~5. The learning rate was not fixed and was decreased by factor 0.5 each time 
there was no improvement in validation accuracy for 8 consecutive training epochs 
(iterations). The minimum learning rate was set to 1 • 10~7. 

The data were presented to the D N N one file at a time (batch size = 1) in 
a matrix of size n (the number of segments) • 3 200 features for 34 epochs. We chose 
to use batch size equal to 1 because the length of each file is different, therefore each 
of the matrices had different number of segments. If we wanted to make the batches 
bigger, we would have to either put together files of the exact same length or cut 
the files to the same length. 

To eliminate unnecessary training we set the patience equal to 20. That means 
the experiment was terminated if no progress on validation loss had been made 
for more than 15 epochs of training. The best results were recorded after the 25 t h 

epoch. In order to train the D N N on G P U (Nvidia GeForce G T X 690) and build 
the models quickly, we utilized the capabilities of Keras framework. The whole 25 
epochs long training took 101 minutes to finish. A l l hyper-parameters were tuned 
based on validation results. 

1.4 Results 

In order to perform a pathology detection using voice signal, we built a deep neu
ral network model consisting of convolutional, pooling, L S T M and fully connected 
layers. We trained, validated and tested it using recordings of sustained vowel / a / 
produced at normal pitch from Saarbruecken Voice Database containing 71 types 
of pathologies. The signal was split into 64 ms long Hamming windowed segments 
with 30 ms overlap and was presented to the neural network as a sequence of vectors 
in time. The training and validation sets contained exactly the same number of 
healthy and pathological samples as can be seen in Tab. 1.2. 

X K E X avaliable from http://splab.cz/en/download/software/kex-library 

37 

http://splab.cz/en/download/software/kex-library


Table 1.2: V A L I D A T I O N confusion matrix 

true: pathological true: healthy no. of segments 
pred: pathological 67 36 103 
pred: healthy 23 80 103 

Table 1.3: V A L I D A T I O N classification report 

class precision fl-score recall 
pathological 0.74 0.69 0.65 
healthy 0.69 0.73 0.78 
overall accuracy: 71.36% 

Table 1.4: T E S T I N G confusion matrix 

true: pathological true: healthy no. of segments 
pred: pathological 514 256 770 
pred: healthy 23 81 104 

Table 1.5: T E S T I N G classification report 

class precision fl-score recall 
pathological 0.96 0.79 0.67 
healthy 0.24 0.37 0.78 
overall accuracy: 68.08 % 
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Out of 206 validation samples, the proposed trained model predicted 59 samples 
to belong to a wrong class as opposed to 147 correct predictions resulting in 71.36 % 
validation accuracy with 65.04 % sensitivity (recall of class pathological) and 77.67% 
specificity (recall of class healthy). The precision, recall and fl-score of validation 
samples is shown in Tab. 1.3. 

Tab. 1.4. shows the D N N predicted 279 testing samples to belong to a wrong 
class as opposed to 595 correct predictions resulting in 68.08% testing accuracy 
with 66.75 % sensitivity and 77.89 % specificity. The precision, recall and fl-score of 
validation samples is shown in Tab. 1.5. 

1.5 Conclusions 

The objective of this paper was to carry out a preliminary study which would clarify 
whether the use of Deep Neural Network model, especially combination of convolu-
tional and L S T M layers would prove itself worthy of further exploration in case of 
Voice Pathology Detection problem using only sustained vowel. Using just record
ings of vowel / a / produced at normal pitch, the examined method achieved 71.36% 
accuracy on validation data and 68.08 % accuracy on testing data. Since this result 
is comparable to that published in [1] we assume that further investigation is in 
place and could lead to much better results. 

The main advantage of this approach is that one does not need to build the 
feature vector as opposed to the previously proposed methods, thus it saves great 
amount of time and expertise in the area of the problem being solved. On the other 
hand, the main disadvantage is the amount of data needed to train the model which 
is also a limitation of this experiment. The SVD database is extensive in numbers 
of persons recorded, but there is not enough samples of healthy persons in compar
ison with the number of samples of pathological patients. Also the distribution of 
individual pathologies is extremely unequal making the Voice Pathology Detection 
a hard problem, because some of the samples with certain type of pathology that 
occurs just once in the whole dataset can end up in testing set. Hence the network 
could not be trained to recognize it resulting in worse accuracy. 

Our future work will build on current experiment, but we will limit the number 
of pathologies only to those having the most samples as in [16, 2, 18, 19] and we 
will train separate models for males and females as in [8]. We will investigate 
whether training with combination of vowels / a / , / i / and / u / help to improve the 
accuracy as in [13, 6, 8]. Also we will incorporate the data from other publicly 
available datasets and introduce permutation test to validate if the model learned 
to recognize meaningful features or just overfits on noise or remembers the samples. 
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Abstract 

Automatic objective non-invasive detection of pathological voice based on comput
erized analysis of acoustic signals can play an important role in early diagnosis, 
progression tracking and even effective treatment of pathological voices. In search 
towards such a robust voice pathology detection system we investigated 3 distinct 
classifiers within supervised learning and anomaly detection paradigms. We con
ducted a set of experiments using a variety of input data such as raw waveforms, 
spectrograms, mel-frequency cepstral coefficients (MFCC) and conventional acoustic 
(dysphonic) features (AF). In comparison with previously published works, this arti
cle is the first to utilize combination of 4 different databases comprising normophonic 
and pathological recordings of sustained phonation of the vowel / a / unrestricted to 
a subset of vocal pathologies. Furthermore, to our best knowledge, this article is the 
first to explore gradient boosted trees and deep learning for this application. The 
following best classification performances measured by F l score on dedicated test 
set were achieved: XGBoost (0.733) using A F and M F C C , DenseNet (0.621) using 
M F C C , and Isolation Forest (0.610) using A F . Even though these results are of ex
ploratory character, conducted experiments do show promising potential of gradient 
boosting and deep learning methods to robustly detect voice pathologies. 
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11.1 Introduction 

Voice pathology can be caused by the presence of tissue infection, systemic changes, 
mechanical stress, surface irritation, tissue changes, neurological and muscular changes, 
and other factors [60]. Due to vocal pathology, the mobility, functionality and shape 
of the vocal folds are affected resulting into irregular vibrations and increased acous
tic noise. Such a voice sounds strained, harsh, weak, and breathy [59, 28], which 
significantly contributes to the overall poor voice quality [10, 40]. 

Up to this day, vocal pathology detection has been approached by subjective 
and objective evaluations [38]. The first category (subjective evaluation) consists 
of so called in-hospital auditory-perceptual and visual examination of the vocal 
folds [47, 55]. For the visual examination laryngostroboscopy is commonly used [62]. 
For the auditory-perceptual examination several clinical rating scales to diagnose 
and rate severity of vocal pathologies have been developed [15, 19, 33, 15, 16]. 
Methods for subjective evaluation are, however, subject to inter-rater variability [9, 
21]. Furthermore, they require patients' presence at the clinic, which can be a serious 
problem especially in more severe stages of a disease. This type of evaluation is also 
time costly, and it requires careful evaluation and scoring by clinicians. 

The second category (objective evaluation) is based on the automatic non-invasive 
computerized analysis of acoustic signals to quantify and identify the underlying vo
cal pathology that may not even be audible to a human being [40]. This type of 
evaluation is therefore inherently free from the subjective bias. Moreover, voice can 
be nowadays easily recorded using a variety of smart devices, and processed remotely 
using cloud technologies. From these reasons, works such as [17, 27, 45, 2] focused 
on using signal processing techniques (to quantify vocal-manifestations of the pa
thology under focus) and machine learning algorithms (to automate the process of 
voice pathology detection) to build a system capable of accurate discrimination of 
healthy and pathological voices. In Table II.1, we summarize recent (2015-now) 
related works focused on the objective voice pathology detection. 

For the purpose of the objective voice pathology evaluation, several databases 
have been frequently used by the researchers. Massachusetts Eye and Ear Infirmary 
Database (MEEI) [18, 40], Saarbruecken Voice Database (SVD) [63, 45, 2], and 
Arabic Voice Pathology Database (AVPD) [42, 45] are among the most commonly 
used ones. More specifically, most researchers have analyzed sustained phonation of 
the vowel / a / , e.g. [1, 44, 7, 14] due to its presence in most databases (language-
independent speech task [60]). Some researchers also analyzed a combination of 
the vowels, e.g. [37, 17, 27], etc. From the voice pathologies point of view, most 
researchers restricted the dataset to a limited set of pathologies [7, 44, 14, 26, 52, 
45, 5, 3, 4, 2]. 
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Table II. 1: Overview of related works focused on voice pathology detection. 

First author Year Ref. Database Input vowels Classifier Accuracy [%] 

Hemmerling 2016 [27] SVD /a, i , u/ K M , RF 100.00 
Muhammad 2017 [44] SVD /a/ G M M 99.98 
Al-nasheri 2017 [2] MEEI, SVD, AVPD /a/ SVM 99.81 (MEEI), 91.17 (AVPD), 90.98 (SVD) 
Al-nasheri 2017 [3] MEEI, SVD, AVPD /a/ SVM 99.79 (AVPD), 99.69 (MEEI), 92.79 (SVD) 
Al-nasheri 2017 [4] MEEI, SVD, AVPD /a/ SVM 99.68 (SVD), 88.21 (MEEI), 72.53 (AVPD) 
Eskidere 2015 [17] SVD /a, i , u/ G M M 99.00 
Amami 2017 [7] MEEI /a/ SVM 98.00 
Sabir 2017 [52] SVD /a/ ANN 97.90 
Hossain 2016 [29] MEEI, SVD /a, i , o/ SVM, E L M , G M M 95.00 
Ali 2017 [5] MEEI, SVD, AVPD /a/ G M M 94.60 (MEEI), 83.65 (AVPD), 80.20 (SVD) 
Muhammad 2017 [45] MEEI, SVD, AVPD /a/ SVM 99.40 (MEEI), 93.20 (SVD), 91.50 (AVPD) 
Dahmani 2017 [14] SVD /a/ NB 90.00 
Souissi 2016 [57] SVD /a/ ANN 87.82 
Hemmerling 2017 [26] SVD /a/ ANN 87.50 
Souissi 2015 [56] SVD /a / SVM 86.44 

Table notation: Ref.-reference, MEEI - Massachusetts Eye and Ear Infirmary Database [18, 40], SVD - Saarbruecken Voice Database [63, 45, 2], A V P D -
Arabic Voice Pathology Database [42, 45], KM-K-means [24], RF-Random Forests [11], GMM-Gaussian Mixture Models [51], SVM-Support Vector 
Machines [25], NB-Naive Bayes [46], ELM-Extreme Learning Machine [31], and ANN - Artificial Neural Networks [54]. 



(a) A V P D (b) M E E I 

Dysphonie 

(c) P D A (d) S V D 

Fig. II. 1: Visualization of inequality of samples per vocal pathology in the datasets 
used in this work (only 5 most common pathologies in each database are present in 
the legend), and healthy samples. Databases: a) A V P D [42, 45], b) M E E I [18, 40], 
P D A [20, 8, 40], and SVD [63, 45, 2]. 

Next, conventional and clinically interpretable [10] acoustic features were usu
ally computed prior to pathology detection [44, 14, 52]. The acoustic features such 
as multidimensional voice program parameters (MDVP) [4], mel-frequency cepstral 
coefficients (MFCC) [53], glottal-to-noise excitation ratio (GNE) [43], etc. were 
usually extracted. For more information about methods for pathological speech pa-
rametrization, see [40]. After the feature extraction, multiple conventional classifiers 
have been used to detect the presence of voice pathology. Most authors relied on the 
following algorithms: Support Vector Machines (SVM), Gaussian Mixture Models 
(GMM), Random Forests (RF), and Artificial Neural Networks (ANN) [26, 5, 7, 14], 
etc. 

As can be seen, the results vary greatly between the published papers mainly due 
to differences in selected voice pathology samples, acoustic features, and classifiers 
that were used for the experiment. However, we can conclude that: 

1. most works analyzed a single speech task, mainly the sustained phonation of 
the vowel / a / (language independent speech task) 

2. most works analyzed datasets that were restricted to a subset of vocal patho
logies from 1 to 3 databases (MEEI, SVD, AVPD) 

3. most works extracted conventional dysphonic features to quantify major vocal-
manifestations of specific vocal pathologies 

4. most works employed conventional supervised learning algorithms such as the 
following: S V M , G M M , RF , A N N , and others 
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To propose results comparable with the previously published works, we analyze 
voice recordings of sustained phonation of the vowel / a / as well. However, unlike 
the previous works, we analyze a larger dataset composed of 4 different databases, 
namely: M E E I [18, 40], SVD [63, 45, 2], A V P D [42, 45] (these databases are com
monly used by the community), and Principe de Asturias Database (PDA) [20, 8, 40]. 
Furthermore, to propose models capable of robust voice pathology detection, we do 
not restrict the dataset to only a subset of common vocal pathologies. With this 
approach, our dataset does contain a large number of pathologies with only few 
recordings. To see the sparsity of distribution and inequality of the number of pa
thologies in the databases, see Figures II.la (AVPD), II.lb (MEEI), II.lc (PDA), 
and II.Id (SVD). 

By using 4 different databases, we aim to increase the size of our dataset to 
enable exploring possibilities of using supervised deep learning techniques that de
livered state-of-the-art results in many domains including speech processing. To our 
best knowledge, despite our previous work [22], there are no other papers using deep 
learning algorithms for voice pathology detection. Next, we also employ the con
ventional voice pathology detection approach based on acoustic feature extraction 
procedure. However, unlike previous works, we use gradient boosting techniques 
for classification. To tackle the problem of sparse distribution of a variety of vocal 
pathologies with only few recordings across the databases, we also investigate usage 
of anomaly detection procedure. 

The rest of this paper is organized as follows. Section II.2 introduces databases 
utilized in this article. In Section II.3, the methodology of the experiment is dis
cussed. The results are presented in Section II.4. Conclusions are drawn in Section 
II.5. 

11.2 Databases 

As mentioned previously, we chose the following speech task: sustained phonation 
of the vowel / a / as a basis for our experiments. During this particular speech 
task a speaker is asked to sustain phonation of a vowel, attempting to maintain 
steady frequency and amplitude at a comfortable level [60]. The advantage of this 
speech task in comparison with other common speech tasks such as reading tasks, or 
a running speech is that it is free of articulatory and other linguistic confounds [60]. 
This independence makes this task an ideal choice to construct a large dataset that 
is necessary for supervised deep learning algorithms. In fact, sustained / a / vowel 
phonation is the only speech task that is present in all databases used in this work. 
The contents of the databases relevant to this work can be seen in Table II.2. 
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11.2.1 A V P D database 

Arabic Voice Pathology Database (AVPD) [42, 45] was developed at the Commu
nication and Swallowing Disorders Unit of King Abdul Aziz University Hospital, 
Riyadh, Saudi Arabia. The database contains recordings (366 samples: 188 healthy, 
178 pathological) of sustained phonation of the vowels /a, e, o/, counting from 0-10, 
standardized Arabic passage, and reading three words. A l l recordings are sampled 
at fs = 48 000 Hz with a bit depth of 16 bits. The database comprises five organic 
voice disorders: vocal fold cysts, nodules, paralysis, polyps, and sulcus. Multiple 
recordings of the same vowel were taken to help model the intra-speaker variability. 

11.2.2 MEEI database 

Massachusetts Eye and Ear Infirmary Database (MEEI) [18, 40] is one of the most 
popular and most widely-used database (used for many years as a benchmark in 
the field of pathological speech analysis). It contains more than 1400 recordings 
of sustained phonation of the vowel / a / (recorded from 657 pathological speakers 
with different types of pathologies and 53 healthy speakers). This database has 
several disadvantages such as the fact that recordings of the normophonic voice 
were recorded in different conditions (e.g. different environment, recordings are 
sampled at: fs = 50 000 Hz, fs = 25 000 Hz, and fs = 10 000 Hz) when compared to 
pathological recordings. The database is also gender-unbalanced, etc. 

11.2.3 PDA database 

Principe de Asturias Database (PDA) [20, 8, 40] contains recordings of 200 patholog
ical speakers with different types of organic pathologies (e.g. nodules, polyps, oede-
mas, and carcinomas, etc.) and 239 healthy speakers. For each speaker, sustained 
phonation of the vowel / a / is recorded. A l l recordings are sampled at fs = 25 000 Hz. 
This database contains more speakers than a balanced version of M E E I database 
that according to [48] comprise only 173 recordings of pathological speakers. 

11.2.4 SVD database 

Saarbruecken Voice Database (SVD) [63, 45, 2] is a collection of voice recordings 
and electroglottography (EGG) signals from more than 2 000 speakers. It contains 
recordings of 687 healthy persons (428 females and 259 males) and 1356 patients (727 
females and 629 males) with one or more of the 71 different pathologies. One session 
contains the recordings of the following components: a) vowels / i , a, u / produced 
at normal, high and low pitch; vowels / i , a, u / with rising-falling pitch; and c) 
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Table II.2: Contents of the databases used in this work. 

A V P D M E E I P D A SVD 

H samples 188 53 239 687 
P samples 178 657 200 1356 
vowels /a, e, o/ / a / / a / /a, i , u / 
running speech yes yes no yes 
E G G no no no yes 
G R B A S yes no no no 

Table notation: PDA-Pr inc ipe de Asturias Database (PDA) [20, 8, 40], M E E I -
Massachusetts Eye and Ear Infirmary Database [18, 40], S V D - Saarbruecken Voice 
Database [63, 45, 2], A V P D - A r a b i c Voice Pathology Database [42, 45], H-healthy, 
P - pathological, and G R B A S - G r a d e , Roughness, Breathiness, Asthenia, Strain 
scale [15]. 

sentence "Guten Morgen, wie geht es Ihnen?" ("Good morning, how are you?"). 
A l l samples of the sustained vowels are between 1 to 3 seconds long, sampled at 
fs = 50 000 Hz with 16-bit resolution [63]. In contrary to M E E I database, all audio 
samples (healthy and pathological) in SVD were recorded in the same environment. 

11.3 Methodology 

11.3.1 Data processing 

We used 720 recordings from A V P D , 709 recordings from M E E I , 422 from P D A and 
2 040 from SVD. We only excluded samples that were shorter than 0.750 s in length 
(removed 319 recordings). We also excluded all recordings of speakers bellow the 
age of 19 and also above the age of 60 (it is known that the most significant changes 
of voice happen during adulthood until the voice matures at around age of 20 and 
remains relatively stable until around age of 60) [58]. After these restrictions, the 
final number of samples equaled to 2 707. 

Using SOX library (version 14.4.2), we re-sampled each recording to fs = 16 000 Hz. 
Then we trimmed each sample to exactly 0.750 s in duration. If a recording was be
low 0.950 s in duration, we extracted only one sample from the middle of it. For 
longer recordings we trimmed each end by 0.100 s and extracted as many 0.750 s long 
chunks as possible without overlap with stride of 0.375 s. Using this approach, the 
total number of 8 042 chunks was obtained. Further details regarding the number 
of chunks used can be found in Table II.3. 
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Table II.3: Number of chunks used in the experiments. 

Database H (M) P (M) H ( F ) P ( F ) Total 

A V P D 625 509 872 804 2810 
M E E I 126 114 185 168 593 
P D A 1158 331 5 605 2099 
SVD 400 645 624 871 2540 

Total 2309 1599 1686 2448 8042 

Table notation: PDA-Pr inc ipe de Asturias Database (PDA) [20, 8, 40], M E E I -
Massachusetts Eye and Ear Infirmary Database [18, 40], S V D - Saarbruecken Voice 
Database [63, 45, 2], A V P D - A r a b i c Voice Pathology Database [42, 45], H-healthy, 
P - pathological, M-males, and F - females. 

11.3.2 Feature extraction 

At first, we considered raw audio samples as an input data for the voice pathology 
detection model. Each file (the 0.750 s chunk) was therefore inserted to the input of 
the neural network as a vector of 12 000 features (computed as: 0.750 s • 16 000 Hz 
= 12 000 features). Additionally, we normalized each sample using min-max scaling 
to a range (0,1). 

Next, we extracted a set of conventional commonly-used acoustic (dysphonic) 
features [10, 40] using Neurological Disorder Analysis Tool (NDAT) [41, 40] written 
in M A T L A B and developed at the Brno University of Technology. Specifically, we 
computed the following acoustic features: pitch, jitter, shimmer, harmonic-to-noise 
ratio, detrended fluctuation analysis parameters, glottis quotients (open, closed), 
glottal-to-noise excitation ratio, Teager-Kaiser energy operator, modulation energy, 
and normalized noise energy. We further applied the following statistical properties: 
mean, standard deviation, coefficient of variation, quartiles (1 s t , 2 n d , 3 r d ), interquar
tile range, kurtosis, and skewness. 

Moreover, we computed spectrograms using Matplotlib (version 2.1.2) library 
for Python. The computation setup: mode (power spectral density), no windowing, 
no overlap, and N F F T (512samples). Following A l i et al. [6], we used data up to 
1 500 Hz (1150 features). Furthermore, we normalized the values of this matrix with 
min-max scaling to a range between 0 and 1 as well. 

At last, we computed most commonly used perceptual [41] acoustic feature: 
M F C C using Python Speech Features library. The computation setup: length of 
a window function (0.025s), step size (0.010 s), number of filters in the filter-bank 
(26), number of coefficients (13), and N F F T (512samples). With this approach, 
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we obtained a matrix consisting of 962 features (13 coefficients x 74time steps). 
We also computed the mean and standard deviation of the 13 coefficients along the 
time axis, which resulted into additional 26 features per sample. Next, we scaled 
the M F C C feature matrix by min-max algorithm (means and standard deviations 
were computed before scaling). The statistical features were scaled separately to 
have 0 mean and unit variance before classification. 

11.3.3 Experiments 

As mentioned previously, there is a wide range of pathologies present in the da
tabases used in this work. For more information, see Figures II.la (AVPD), II.lb 
(MEEI), II.lc (PDA), and II.Id (SVD). Each database was labelled in different 
language and with different experts by different criteria. Therefore, it is almost 
impossible to combine these databases to obtain one consistent database of multiple 
pathologies with reasonable number of samples. Only feasible way of combining the 
samples seems to be the exhaustive manual pairing by an expert clinician, which 
is also rather difficult since lots of recordings are labelled with multiple patholo
gies. In order to conduct inter-database experiments, authors therefore usually pick 
a smaller sub-sample of 2 to 5 pathology types that are relatively easier to pair. 

Next, most of these pathologies are very sparsely distributed across the data
bases. Searching for an ideal subset of acoustic features that would yield a good 
classification performance for each voice pathology is therefore almost impossible. 
Furthermore, it is not well-known if these pathologies present in the databases have 
similar vocal-manifestations. 

In contrast to the previous works, we aim to investigate possibilities of robust 
voice pathology detection using a set of 4 almost unrestricted databases comprising 
a large number of pathologies. From these reasons, we decided to conduct several 
experiments: a) supervised learning (assuming the pathologies have similar man
ifestations and therefore the number of samples per pathology type is irrelevant), 
b) anomaly detection (assuming the pathologies do not have similar manifestations 
and therefore the number of samples per pathology type cannot be neglected). 

Regarding the supervised learning approach, we used the state-of-the-art gra
dient boosting algorithm: XGBoost [12] (version 0.6) for its current successes in 
many Kaggle competitions, fast training and model interpretability. Additionally, 
we explored possibilities of deep learning approach for its ability to robustly model 
complex relationships when optimized using enough data. However, the equation 
for computing the sufficient size of training dataset has not been formally described 
yet. Generally established rule of thumb in machine learning community is to have 
more training samples than trainable parameters. For this reason, we used the 

51 



DenseNet [30] architecture, which succeeded in overcoming the problem of hav
ing too many trainable parameters by densely connecting the convolutional layers. 
We adjusted Thibault de Boissiere's Keras implementation of the DenseNet (Keras 
framework [13], version 2.1.2), to process ID signals treating raw audio as ID vector. 
Spectrograms were processed as a matrix using the frequency bins not as y dimen
sion, but rather as a stack of channels in the same way the 3 R G B channels are 
stacked in an image [64]. The M F C C were processed the same way as spectro
grams. Since we are not able to say with 100% certainty that healthy examples are 
not polluted by deviant samples, we decided to use anomaly detection in favor of 
novelty detection in which case it is important to model the non-deviant samples. 
In this case, we chose Isolation Forest [35, 36] classifier implemented in scikit-learn 
library [49] (version 0.19.1). 

For the above mentioned experiments, we decided to analyze the performance 
of the voice pathology detection models using multiple types of input data: a) raw 
audio samples to follow our previous work [23] and further explore possibilities of 
robust voice pathology detection without manually-selected features (DenseNet), 
b) conventional acoustic (dysphonic) features to follow the previously published 
works and quantify most common vocal pathologies (XGBoost, Isolation Forest), 
c) spectrograms to achieve a reasonable trade-off between dimensionality of the 
data and amount of information (DenseNet), and d) M F C C to follow the previous 
works focusing on voice and speech modelling, and voice pathology detection (all 
models). 

11.3.4 Training and validation 

To train and validate the models, we split the data to training, validation and 
testing sets. On top of that, we generated 10-fold validation indices using training 
and validation sets, so we can use exactly the same sets of data for each experiment. 
The test set was left for final evaluation of the models. Next, we stratified the testing 
and validation sets by medical state (healthy-H, pathological - P ) , gender, age, and 
gender-age group. Since the longer recordings were split into multiple chunks, we 
had to prevent the samples with chunks in the test or validation sets from leaking 
into the training set. Such chunks were carefully removed from the set. A l l other 
chunks were used in the training set. 

At this point there is an unequal distribution of samples within the training 
set. We reacted to this fact by computing sample weights that can be used during 
training as a compensation measure for under-represented groups. The final sample 
weight is a product of 3 partial weights. Each of the partial weights quantifies 
the ratio between subgroups within the selected group (e.g. the ratio between the 
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number of normophonic and pathological samples). For this purpose, we introduced 
a class weight a, gender weight fa and gender-age group weight 7 resulting in final 
sample weight u that is computed as u = a • (3 • 7. Weight for a particular sample 
that belongs to subgroup oti within group a, fa within group fa and 7$ within group 
7 can be computed as follows: 

na. TIR- n~. > , 
WajJiji — 7 r • r • r l i J - -U 

max.{na) max^ng) max(n 7) 
where n represents the total number of samples: nai is the number of samples in 
a particular class; is the number of samples in a particular gender; and n 7 i is 
the number of samples in a particular gender-age group. 

We used 30 to 100 iterations of randomized cross-validation search for hyper-
parameter optimization for both XGBoost and Isolation Forest classifiers. The 
number of iterations did depend on the fitting time. More specifically, in the case 
of XGBoost, we were searching over the following hyper-parameters: number of es
timators (3,300), learning rate (0.006,1), gamma (10,60), maximum depth (0,9), 
minimum child weight (1,3), sub-sample ratio (0.3,1) and colsample bytree (sub-
sample ratio of columns when constructing each tree) (0.1,1). Regarding Isolation 
Forest we were searching over the following hyper-parameters: number of estima
tors (6,200), maximum samples (8,64), contamination (0.40,0.76) and maximum 
features (0.05,1). As a performance measure, we used F l micro score as a criteria of 
choosing the best hyper-parameters in the cross-validation setup. After the search 
for hyper-parameter, we re-fitted the models with the best hyper-parameters on the 
entire training set, and consequently evaluated on the testing set. The final results 
are presented in the form of confusion matrix (CM), and classification report (CR) 
tables. The formulas II.2, II.3 and II.4 describe the way of computing the precision, 
recall and F l score (weighted average of the precision and recall) metrics presented 
in C R tables. 

tp 
precision = —, (H-2) 

tp + fp 
where tp denotes the number of correct predictions (observed class), and fp de
termines the number of incorrect predictions (observed class). The precision is a 
ratio between the number of correct predictions of the observed class and the total 
number of predictions of the observed class. 

recall = ——, (H-3) 
tp + fn y ' 

where tp denotes the number of correct predictions (observed class), and fn de
termines the number of incorrect predictions (opposing class). The recall is a ratio 
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between the number of correct predictions of the observed class and the total number 
of samples in the observed class. 

precision • recall , . 
t 1 = 2 • — 77 (-T4) 

precision + recall 

11.4 Results 

XGBoost [12] trained (10-fold validation) with all features (consisting of 96 conven
tional dysphonic features and 26 M F C C coefficients) yielded an average F l score of 
0.922 (±0.004) on the training set, and 0.829 (±0.028) on the validation set. The 
final F l score on the dedicated testing set was 0.733. Performance details (classifi
cation matrix and classification report) can be found in Table II.4, and Table II.5. 
Based upon the performance on the development set (training and validation sets) 
the 50 iterations of randomized cross-validated search selected the following hyper-
parameters: number of estimators (294), learning rate (0.3), gamma (10), max. 
depth (3), sub-sample (0.5), minimum child weight (1), colsample bytree (1). De
tails regarding the classification performance in relation to input data can be found 
in Table II.6. 

Regarding deep learning approach, we used the adjusted DenseNet [30] architec
ture with the binary cross-entropy loss optimized using Adam optimizer [32]. The 
initial learning rate was set to 0.01 with decay of le — 04 on each epoch. Hyper-
parameter optimization was done using training and validation sets, and the final 
parameters of the DenseNet network were set as follows: depth (4), number of dense 
blocks (2), growth rate (5), number of filters (10), drop-out rate (0.3), 12 weight de
cay (le — 04). The input shape of this network was (13 x 47) with one neuron 
in the last layer with sigmoid activation function, and the total of 1629 trainable 
parameters. For this particular setup with M F C C as the input data, the system 
yielded F l score of 0.595 on the training set, and 0.648 on the validation set. After 
the hyper-parameter optimization, we retrained the network on all data from the 
training and validation sets (the development set), and the system yielded the final 
F l score on the dedicated testing set of 0.621. Performance details (classification 
matrix and classification report) can be found in Table II.7 and Table II.8. 

DenseNet trained with spectrograms had input shape (46 x 25) and total of 301 
trainable parameters. Even though this setup was considerably less complex, and 
regularized with drop-out (0.3) and 12 weight decay (le — 04), the network tended 
to over-fit after enough training epochs, which we prevented using early stopping 
that monitored changes in the validation accuracy. This system yielded F l score of 
0.635 and 0.531 on the training and validation sets, respectively. The performance 
on the testing set was 0.562 ( F l score 0.514 for class H and 0.609 for class P). After 
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Table II.4: Testing C M for XGBoost 

true H true P total predicted 

predicted H 82 26 108 
predicted P 38 94 132 

total true 120 120 accuracy: 0.733 

Table II.5: Testing C R for XGBoost 

precision recall fl-score no. samples 

class H 0.759 0.683 0.719 120 
class P 0.712 0.783 0.746 120 

avg. / total 0.736 0.733 0.733 240 

Table II.6: XGBoost performance related to input data 

Input data F l C V train F l C V valid F l test 

A L L 0.922 (±0.004) 0.829 (±0.028) 0.733 
A F stats 0.886 (±0.004) 0.791 (±0.034) 0.686 
A F 0.892 (±0.006) 0.798 (±0.025) 0.658 
A F base 0.745 (±0.009) 0.689 (±0.036) 0.646 
M F C C 0.680 (±0.010) 0.769 (±0.037) 0.623 

Table notation and description of acoustic features used to build XGBoost model: 
M F C C - 2 6 Mel Frequency Spectral Coefficients (13 means & 13 standard devia
tions), A F base-12 common acoustic (dysphonic) features, A F stats.-84 acoustic 
features' statistics, A F - A F base & A F stats, A L L - A F & M F C C . 
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Table II.7: Testing C M for DenseNet (MFCC) 

true H true P total predicted 

predicted H 73 44 117 
predicted P 47 76 123 

total true 120 120 accuracy: 0.621 

Table II.8: Testing C R for DenseNet (MFCC) 

precision recall fl-score no. samples 

class H 0.624 0.608 0.616 120 
class P 0.618 0.633 0.626 120 

avg. / total 0.621 0.621 0.621 240 

Table II.9: Testing C M for Isolation Forest 

true H true P total predicted 

predicted H 58 30 88 
predicted P 62 90 152 

total true 120 120 accuracy: 0.617 

Table 11.10: Testing C R for Isolation Forest 

precision recall fl-score no. samples 

class H 0.659 0.483 0.558 120 
class P 0.592 0.750 0.662 120 

avg. / total 0.626 0.617 0.610 240 
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refitting on the whole development set, the final F l score got worse on the dedicated 
testing set to 0.460 due to difficulties with classification of healthy voices ( F l score 
0.239 for class H and 0.680 for class P). With raw input data, the network failed to 
learn any meaningful features (the size of out training dataset is still too small to 
provide deep learning algorithm to overcome more conventional approaches). 

Hyper-parameter optimization for Isolation Forest trained (10-fold validation) 
with 96 speech parameters was done the same way as for XGBoost. The best pa
rameters selected upon performance on the development set were as follows: number 
of estimators (200), contamination (0.4), maximum features (0.3), maximum sam
ples was set to "auto". The system yielded F l score of 0.576 (± 0.005) on the training 
set and 0.578 (± 0.023) on the validation set. The final F l score on the dedicated 
testing set was 0.610. The performance details (classification matrix and classifi
cation report) can be found in Table II.9 and Table II. 10. This system showed to 
be sensitive to the number of input features and the performance raised when we 
selected just a subset of them. 

11.5 Conclusions 

In search towards robust voice pathology detection system using acoustic (voice) sig
nals, researchers face a variety of problems. One of the major problems in this field 
of science is the limited number of available databases. Moreover, commonly used 
databases [18, 45, 42, 20] are very hard to combine because of various distinctions 
such as: a) the databases are labeled in different languages, b) the databases do not 
comprise same set of speech tasks, c) there is a variety of voice pathologies unequally 
distributed across the databases, etc. For these reasons, researchers have used only 
a subset of the databases for their experiments providing results related to those 
carefully selected subset of data. However, this approach limits the possibilities of 
creating a robust voice pathology detector. Therefore, in this work, we have con
ducted experiments on recordings of sustained phonation of the vowel / a / produced 
at normal pitch from 4 different databases trying to eliminate those limitation. To 
the best of our knowledge, this is the first work that uses such a large set of data to 
build mathematical models for computerized, objective voice pathology detection. 

We researched 3 distinct classifiers within supervised learning and anomaly de
tection paradigms. We have explored raw waveforms, spectrograms, M F C C and 
conventional dysphonic features as input data. A l l experiments were evaluated by 
the same criteria on the same dedicated testing set. We observed that XGBoost 
classifier achieved the best results amongst DenseNet and Isolation Forest classi
fiers. We also observed that not only XGBoost provided the best performance, it 
could also handle the feature selection (input: all features) by itself in contrary 
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to Isolation Forest classifier, which showed to be sensitive on the feature selection 
(input: manually selected subset of features). Overall advantage of using speech 
features and M F C C with XGBoost was the computation speed that allowed us to 
use exhaustive randomized cross-validated search to optimize the hyper-parameters, 
as well as the possibility to sort features by importance. This property is useful for 
clinical interpretability. Nevertheless, we consider these results exploratory due to 
the limitations of the databases. Reviewing the performances achieved in scenarios 
with M F C C as input data we conclude that M F C C alone are not reliable enough 
for robust voice pathology detection, which was also concluded by A l i et al. in [5]. 
Regarding the DenseNet, we conclude that in voice pathology detection scenarios 
with this little training data it is better to use inputs with reduced dimensional
ity in contrary to raw waveform inputs, or make use of transfer learning or data 
augmentation. 

In this article there are several limitations. Firstly, there are limitations inher
ited from the databases along with new limitations caused by their combination. 
For instance, some databases have extremely unequal distribution of healthy and 
pathological classes, most of the databases have alarming inequalities between the 
number of samples per pathology type (e.g. many pathologies are present less than 
3 times in the database), see Figures II.la (AVPD), II.lb (MEEI), II.lc (PDA), 
and II.Id (SVD). Most databases have no information about severity of the patho
logy, nor they have information about manifestation of the pathology in phonation, 
which means that some of the samples might sound as healthy even though they are 
labelled as pathological and vice versa. Not to mention that recordings are labelled 
with more than 1 type of pathology, and in different languages, which makes it 
especially hard to combine or exclude the samples. Since we used 4 available data
bases, we utilized only the speech task available in all of them: sustained phonation 
of the vowel / a / produced at normal pitch. Secondly, even though we have taken 
countermeasures to balance the classes with sample weights, we did not conduct our 
experiments separately on subsets of data for different genders. 

Up to this point, most papers focused on voice pathology detection used con
ventional dysphonic features to quantify the underlying voice pathology. In general, 
these features are conceptually simple, which on one hand is an advantage as these 
features are clinically interpretable (i.e. clinicians are able to associate the values of 
the features with known physiological phenomena inside human body) [41], but on 
the other hand these features are often unable to describe the exact voice pathology 
under focus in a more complex way, especially in advanced stages of the disease 
(high level of acoustic noise, irregularity of voice, etc.). In future studies, resear
chers may consider exploring usage of a more sophisticated set of acoustic features 
to complexly and robustly describe the voice and speech production deterioration. 
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For instance, such features have already been successfully applied in the field of 
non-invasive assessment of Parkinson's disease [34, 61, 39]. 

With the previously mentioned facts in mind, we think that recordings of the 
databases commonly used for automatic voice pathology detection should be con
sulted with clinicians to evaluate the severity of vocal manifestation of the present 
pathologies. There are standard metrics, which are used to evaluate the quality 
of voice that can be used for this purpose [15, 19, 33, 15, 16]. Addition of such 
information to the databases could provide researchers with a unique possibility to 
build models capable of classification and prediction emphasizing the severity of the 
exact vocal-manifestation (increased acoustic tremor, roughness, breathiness, etc.) 
of these pathologies. 

We also anticipate that deep learning will play its role in robust voice pathology 
detection on the assumption that more data will be available, or at least reasonable 
combination of available databases will be made and limitations of these databases 
will be partially diminished by data augmentation and other countermeasures. In 
addition, we presume that use of deep learning methods for novelty detection such as 
deep autoencoder [50] for modelling the normophonic voice could be an interesting 
idea for future investigation with prospect to identify even disordered voices that 
are sparsely distributed across databases. 

In summary, acoustic (voice) signals can nowadays be recorded using a variety 
of smart devices and processed remotely using modern cloud technologies. In com
parison with the conventional perceptual voice quality examination, computerized 
acoustic analysis of voice signals can provide clinicians with fast, supportive method
ology of objective voice pathology detection, assessment, and monitoring that can 
be used on everyday basis (see Health 4.0). However, to take advantage of such 
methodology, robust mathematical models capable of precise voice pathology detec
tion must be introduced. Our work proposes the next step towards this goal using 
various state-of-the-art machine learning algorithms applied to the largest dataset 
that have been used for the purpose of automatic voice pathology detection. 
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Abstract 

The use of orthogonal projections on high-dimensional input and target data in 
learning frameworks is studied. First, we investigate the relations between two 
standard objectives in dimension reduction, preservation of variance and of pairwise 
relative distances. Investigations of their asymptotic correlation as well as numeri
cal experiments show that a projection does usually not satisfy both objectives at 
once. In a standard classification problem we determine projections on the input 
data that balance the objectives and compare subsequent results. Next, we extend 
our application of orthogonal projections to deep learning tasks and introduce a gen
eral framework of augmented target loss functions. These loss functions integrate 
additional information via transformations and projections of the target data. In 
two supervised learning problems, clinical image segmentation and music informa
tion classification, the application of our proposed augmented target loss functions 
increase the accuracy. 

Acknowledgement 

This work was partially funded by the Vienna Science and Technology Fund (WWTF) 
through project VRG12-009, by W W T F AugUniWien/FA746A0249, by Interna
tional Mobility of Researchers (CZ.02.2.69/0.0/0.0/16 027/0008371), and by project 
LO1401. For the research, infrastructure of the SIX Center was used. 

67 



111.1 Introduction 

Linear dimension reduction is commonly used for preprocessing of high-dimensional 
data in complicated learning frameworks to compress and weight important data 
features. In contrast to nonlinear approaches, the use of orthogonal projections is 
computationally cheap, since it corresponds to a simple matrix multiplication. Con
ventional approaches apply specific projections that preserve essential information 
and complexity within a more compact representation. The projector is usually 
selected by optimizing distinct objectives, such as information preservation of the 
sample variance or of pairwise relative distances. Widely used orthogonal projections 
for dimension reduction are variants of the principal component analysis (PCA) that 
maximize the variance of the projected data, [39]. Preservation of relative pairwise 
distances asks for a near-isometric embedding, and random projections guarantee 
this embeddings with high probability, cf. [14, 6] and see also [1, 38, 5, 12, 32, 29]. 
The use of random projections is especially favorable for large, high-dimensional 
data ([50]), since the computational complexity is just 0(dkm), e.g. using the con
struction in [1], with d,k E N being the original and lower dimensions and m G N 
the number of samples. In contrast, P C A needs 0(d2m) + 0(d3) operations ([26]). 
Moreover, tasks that do not have all data available at once, e.g. data streaming, ask 
for dimension reduction methods that are independent of the data. 

In the present manuscript, we study orthogonal projections regarding the inter
play between 
01) preservation of variance, 
02) preservation of pairwise relative distances, 

aiming for a sufficient lower-dimensional data representation. We shall consider the 
Euclidean distance exclusively since it is most widely used in applications, especially 
for error estimation. On manifolds, the geodesic distance is locally equivalent to the 
Euclidean distance. The two objectives 01) and 02) are directly addressed by 
P C A (01) and random projections (02). We achieve the following goals: first we 
clarify mathematically and numerically that the two objectives are competing, i.e. 
P C A and random projections preserve different kinds of information. Depending on 
the objectives we discuss beneficial choices of orthogonal projections and numerically 
find a balancing projector for a given data set. Finally, we define a general framework 
of augmented target (AT) loss functions for deep neural networks, that integrate 
information about target characteristics via features and projections. We observe 
that our proposed methodology can increase the accuracy in two deep learning 
problems. 

In contrast to conventional approaches we study the joint behavior of the two 
objectives with respect to the entire set of orthogonal projectors. By analyzing 
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the correlation between the variance and pairwise relative distances of projected 
data, we observe that 01) and 02) are competing and usually cannot be reached at 
the same time. In numerical learning experiments we investigate heuristic choices 
of projections applied to input features, for subsequent classification with support 
vector machine and shallow neural networks. 

In view of learning frameworks, we utilize features and projections on target data. 
The class of augmented target loss functions incorporates suitable transformations 
and projections that provide beneficial representations of the target space. It is 
applied in two supervised deep learning problems dealing with real world data. 

The first experiment is a clinical image segmentation problem in optical coher
ence tomography (OCT) data of the human retina. Related principles of dimension 
reduction for other clinical classification problems in OCT have already been suc
cessfully applied in [9]. In the second experiment we aim to categorize musical 
instruments based on their spectrogram, see [18] for related results. Our utilized 
augmented target loss functions can increase the accuracy in both experiments. 

The outline is as follows. In Section III.2 we address the analysis of the com
peting objectives and Theorem III.2.5 yields the asymptotic correlation between 
variance and pairwise relative distances of projected data. Section III.3 prepares 
for the numerical investigations by recalling t-designs as considered in [10], enabling 
subsequent numerics. Heuristic investigations on projected input used in a straight
forward classification task, are presented in Section III.4. Our framework of aug
mented target loss functions as modified standard loss functions for deep learning, is 
introduced in Section III.5. Finally, in Sections III.6 and III.7 we present classifica
tion experiments on OCT images and musical instruments using aligned augmented 
target loss functions. 

111.2 Dimension reduction with orthogonal projections 

To reduce the dimension of a high-dimensional data set x = C M.d, we map 
x into a lower-dimensional affine linear subspace x + V, where x := -^iYT=\x% is 
the sample mean and V is a /c-dimensional linear subspace of M.d with k < d. This 
mapping is performed by an orthogonal projector p G Gk,d, where 

denotes the Grassmannian, so that the lower-dimensional data representation is 

with range(p) = V. A suitable choice of p within Qkd depends on further objectives, 
i.e. which kind of information preservation shall be favored for subsequent analysis 

Gk,d := {p e Rdxd :p2=p, pT = p, rank(p) = k} 

{x + p{xi - x)}™ 1 C x + V. 
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tasks. In the following, we consider two objectives associated to popular choices 
of orthogonal projectors for dimension reduction, in particular, random projectors 
from Qkjd and P C A . We will first observe that the two objectives are competing, 
especially in high dimensions, and then discuss consequences. 

111.2.1 Objective 01) 

The total sample variance1 tvar(x) of x = {XJ}™ x C M.d is the sum of the corrected 
variances along each dimension, 

j m 
tvax(x) := V I k - x\\2. (III.2) 

P C A aims to construct p G Qk,d, such that the total sample variance of (III. 1) is 
maximized among all projectors in Qk,d- For other equivalent optimality criteria, we 
refer to [51]. 

The total sample variance of px = {pxi}^l 1 C V coincides with the one of (III. 1) 
and satisfies 

tvar(px) < tvar(x) 

for all p G Qk,d- Thus, P C A achieves optimal variance preservation. The total 
variance (III.2) can also be expressed via pairwise absolute distances 

tvar(x) = ^ J2 \\Xi - x,\\2 . (111.3) 

Equally, it holds that 

tvar(px) = - r ^ — - \\p(xi) - p(x i ) | | 2 , (III.4) 
m\m i) i<:-

which reveals that P C A maximizes the sample mean of the projected pairwise ab
solute distances. 

111.2.2 Objective 02) 

In contrast to pairwise absolute distances, the Johnson-Lindenstrauss Lemma tar
gets the global property of preservation of pairwise relative distances: 

Lemma III.2.1 (Johnson-Lindenstrauss, cf. [14, 38]). For any 0 < e < 1, any 
k < d,m G N 7 with 

41og(m) 
e2/2 - e3/3 

< k. 

xWe use lower case letters for samples and upper case letters for random vectors/matrices. 
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and any set C M.d, there is a projector p G Qk,d such that 

(1 — e) \\xi — x \\p(xi) -P(xj)\\2 < (1 + e) \\xi - Xj (III.5) 

holds for all % < j. 

For small e > 0, the projector p in Lemma III.2.1 yields that all of the 
pairwise relative distances 

are close to 1, i.e. the projection p preserves all scaled pairwise relative distances 
well. A good choice of p in Lemma III.2.1 is based on random projectors P ~ A ^ , 
where A ^ denotes the unique orthogonally invariant probability measure on Qkd. 
The following Theorem is essentially proved by following the lines of the proof of 
Lemma III.2.1 in [14] after replacing the constant 4 with (2 + r)2 in the respective 
bound on k. 

Theorem III.2.2. For any 0 < e < 1, any k < d,m G N and any 0 < r with 

with probability at least 1 — ^ + —f+r-

111.2.3 Competing objectives 

A projector p satisfying the near-isometry property (III.5) implies 

(1 — e)4 tvar(x) < tvar(prc) < (1 + e) | tvar(x). 

so that the total variance of the projected data px may not be maximized for k < d. 
In particular, with high probability a random projector P ~ A ^ does not suit 
the objective of maximizing the total variance, and we even observe Etvar(Px) = 
§tvar(x) , see (A.2) in the appendix. P C A does not guarantee any local geometric 
property and distances between pairs of points can be arbitrarily distorted [1], see 
[41] for more robust P C A . The preservation of larger distances is favored since P C A 
maximizes (III.4) among all p G Gu,d and ||p(a;j) — < — holds for all 
i < j. Close but distinct points, could even be projected onto a single point, which 
violates the preservation of pairwise relative distances, see Figure III. 1. 

(III.6) 
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Fig. III. 1: A trivial example of P C A distorting smaller distances. Choosing the 
first principal component, P C A projects the two dimensional data points * onto the 
plane of the first eigendirection (- -). The Euclidian distances of the points lying 
on the diagonal are preserved, whereas the two points with smaller distances are 
projected onto a single point (the origin). 

To more quantitatively understand the relation between the two competing ob
jectives, we consider the sample mean and the uncorrected sample variance of the 
pairwise relative distances (III.6), 

M ( p , * ) : = - ^ j : l l l f ' - X f , (HI.8) 
m{m — 1) ~T* k \\Xi — Xj\\z 

Recall that good preservation of the relative pairwise distances in (III.6) asks for 
Ai(p, x) being close to 1 and the variance V(p,x) being small. In the following, we 
analyze tvar(px), Ai(p,x), and V(p,x) and their expectations for random P e Qk,d-

In Figure III.2 we see a simple numerical experiment, where we first create 
an independent, normally distributed fixed data set {xi}^ with xi G M.d for % = 
l,...,m and m = 100, d = 50. We then compute P C A , for k = 10,20,30,40, as 
well as n = 10000 random projections p distributed according to A/̂ so- In Figure 
III.2 (a) - (d) we can see that the more k differs from d, the more P C A and random 
projections differ concerning tvar(px) and A4(p,x). Those differences may lead 
diverse behavior in subsequent data analysis. Moreover, we compare M (p, x) and 
V(p,x) in Figure III.2 (e) - (h) for the different k. We can see that again when k 
is much smaller than d, random projections and P C A differ more concerning the 
variance of pairwise distances V(p,x). For k — 10 the variance for P C A is higher 
in comparison to random projections, see Figure III.2 (e), for k = 40 vice versa, 
see Figure III.2 (h). Note that the theoretical bounds stated in Theorem III.2.1 are 
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Fig. III.2: Competing properties: 10000 random projections p ~ A^^o versus P C A 
(*), plotted concerning tvar(px), Ai(p, x) and V(p, x). The normal distributed fixed 
data set x has total variance tvar(x) = 49.5. Random projections cluster around 
their expectation values (III.10), (III.11) and (III.12), marked by +. 
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much higher than the dimensions k used in the experiments, but the projections still 
preserve relative pairwise distances very well. In [7] similar observations were made 
on empiric experiments with image and text data. 

The amount of variance kept in the principal components comparing real world 
and random data has been experimentally studied, e.g. in [31] and [48]. Both studies 
determine that the difference occurs mainly in the first principal component. 

Remark III.2.3. In the numerical example we compare random projections and 
PCA directly, serving as the corresponding projections to the objectives 01) and 02). 
We observe that even for not so high dimensional (d — 50) data x and k <C d/2, 
PC A severely looses information in terms of total variance, i. e. more than 50% for 
k = 10, and more importantly, looses much more information on pairwise relative 
distances than random projections. If both types of information are of interest, 
pairwise relative distances and high total variance, one should therefore favor random 
projections over PCA for k <C d/2 to balance the two objectives 01) and 02) and vice 
versa. Note that with a large amount of data one might still want to favor random 
projectors since their construction is computationally much cheaper and independent 
from the data. On the other hand, if objective 02) is negligible, e.g. tasks with very 
noisy data, then PCA would be the favorable choice for all k. 

Information of data can be quantified and expressed in different ways. One 
crucial part in dimension reduction is the decision of what kind of information shall 
be kept, which depends on several parameters including the quality of the data and 
the analysis task. Variants of P C A , focusing on the preservation of variance, have 
been widely used in real world problems with big success, especially in denoising, 
when the preservation of all pairwise relative distances may be counterproductive, 
e.g. in dMRI imaging [53] and color filter array images [57]. Drawbacks are the 
necessity for all data being available from the start and the high computational costs. 
For very high dimensional and large data sets the computation of P C A is often not 
feasible. Besides the huge benefit of data independence and low computational cost 
when using random projections, the near-isometry property often allows to establish 
that the solution found in the low-dimensional space is a good approximation to the 
solution in the original space ([1], [37]). 

Algorithms in machine learning often need or benefit from sufficient estimates 
of pairwise distances, e.g. approximate nearest-neighbor problems, supervised clas
sification [29] and subspace clustering [28]. In [35] algorithmic applications of near-
isometry embeddings have been introduced. In [7] random projections have been 
successfully applied to noisy and noiseless text and image data. The experimental 
studies include the comparison of preservation of pairwise distances between random 
projections and P C A . The results coincide with our observations, that for k > d/2 
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P C A is able to preserve the pairwise distances sufficiently, whereas for k < d/2 
P C A distorts them. The smaller k the worse the distortion, whereas random pro
jections preserve similarities still well for very small k, while being computationally 
much cheaper than P C A . One should point out again that favoring preservation of 
pairwise distances relies on the accuracy of the original distances. 

P C A and random projections are orthogonal projections favoring two different 
aims. We want to study in the context of the whole set of orthogonal projections 
if the two objectives 01) and 02) could be reached at the same time. We will see 
that the objectives act competing and therefore we suggest a balancing projector for 
tasks that benefit from both objectives. 

111.2.4 Covariances and correlation between competing objec

tives 

For further mathematical analysis we first introduce a more general class of proba
bility measures on Qk,d that resemble A ^ sufficiently well: 

Definition III.2.4. A Borel probability measure A on Qk,d is called a cubature 
measure of strength t if 

[ f(p)d\k,d(p)= [ /b)dA(p), for all f e P o l t K 

where Poh(IRd2) denotes the set of multivariate polynomials of total degree t in d2 

variables. 

Existence of cubature measures is studied, for instance, in [16]. For random P. 
we now determine the expectation values for our 3 quantities of interest: tvar(Px), 
Ai(P,x), and V(P, x). If P ~ A and A is a cubature measure of strength at least 2, 
the identities (A.2) and (A.3) in the appendix and a short calculation yield 

Etvar(Px) = | tvar(x), (111.10) 

EM(P,x) = l, (III.ll) 

EV(P,x) = a M ( l - ^ r T F E ( p a , F a ) 2 ) ' ( I I L 1 2 ) 
i<j 

Kr 

where = • The e x P e c t e d sample variance in (III.12) satisfies 

2 
EV(P, x) < ak,d —> j , for d —> oo. 

This asymptotic bound relates to Theorem III.2.2 and alludes to a near-isometry 
property of the type (III.7) for k sufficiently large. 
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The following Theorem III.2.5 provides a lower bound for random P on the 
population correlation 

Corr(.M(P,x),tvar(Px)) = . v v v " (III.13) 
/Var(.M(P, x)) JVar(tvar(Pa;)) 

It holds for arbitrary dimensions d and subsequently specifies the asymptotic be
havior for d —>• oo: 

Theorem III.2.5. Let x = C M.
D

 be pairwise different and let P ~ A, itrat/i 
A feeing a cubature measure of strength at least 2. For d > m^m~1"> i the correlation 

(III.13) is bounded from below by 

* - • ,,. .-.„'• (IH.14) min^jllzj-ZjH m(m-l) max^j 
max^jllzi—Zj||2 2d min^j-||xj—Xj 2d 

N - ~ T j ii 

Let {XJ}™ x C M d 6e random points, whose entries are independent, identically dis

tributed with finite 4-th moments, that are uniformly bounded in d. Then (III. 14) 

converges towards 1 in probability for d —>• oo. 

The strong correlation for large dimensions d in the second part of Theorem 
III.2.5 suggests that increasing tvar(Px) may also lead to increasing M(P,x), see 
Figure III.3 for illustration. Thus, large projected total variance tvar(Px) and the 
preservation of scaled pairwise distances, i.e. Ai(P,x) being close to 1, are com
peting properties. As discussed in Section III.2.3, the choice of which kind of infor
mation is favorable to preserve, depends on the data and the task; e.g. denoising 
(01) and nearest neighbor classification (02). P C A and random projections are 
extreme in preserving either 01) or 02). We will heuristically study the behavior of 
orthogonal projections balancing both objectives in the next section and will state 
a numerical experiment where a balancing projector yields highest classification ac
curacy. 

Remark III.2.6. The second part of Theorem III.2.5 relates to the well-known 

fact that random vectors in high dimensions are almost orthogonal, [4], and stan

dard concentration of measure arguments may lead to more quantitative statements, 

cf. [541-

111.3 Preparations for numerical experiments 

For the numerical experiments we need finite sets of projectors that represent the 
overall space well, i.e. cover Qk,d properly. 
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Fig. III.3: For x = C M.d with independent, normal distributed entries, we 
independently sample 10000 random projectors p from \ 1 0 j d and plot A4(p, x) versus 
tvar(prc). The expectation values with respect to P ~ A are marked with +. The 
correlation is already 0.9916 for d = 50 and grows further when d increases, namely 
with values 0.9961, 0.9985, 0.9996 for d = 100, 200, 500. 
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111.3.1 Optimal covering sequences 

Let the covering radius of a set {pi}f=l C Qk,d be denoted by 

Q({Pi}?=i) •= sup min | | p - p j | | F 
(111.15) 

where || • ||p is the Frobenius norm. The smaller the covering radius, the better 
the set {pi}f=1 represents the entire space Gh,d- Le., there are smaller holes and 
the points {pi}f=1 are better distributed within Qk,d- Following Lemma III.2.1 we 
can connect finite sets of projections and their covering radius to the near-isometry 
property: 

Lemma III.3.1. Let {pi}f=1 C Qk,d and denote g := g({pi}f=1). For any 0 < e < 1, 
any m,k,d EN with 

and any {XJ}™ 1 C M.
D

, there is IQ G { 1 , . . . , n} such that 

(1 - S) \\Xi - xA\2 < I \\Plo{Xi) -Pi0(xj)\\2 <{1 + S) \\xi - Xj\\2,i < j, (111.16) 

where S = e + 2 Q ^ ^ +^Q2. 

Proof. Given an arbitrary projector p e Gh,d, there is an index l0 e { 1 , . . . , n} such 
that 

\\pi0x -px\\ < \\pi0 - p | | F | | x | | < g\\x\\, x e Rd. 

From here, standard computations imply Lemma III.3.1. We omit the details. • 

The accuracy of the near-isometry property in (III. 16) depends on the covering 
radius. Therefore, a set {pi}f=1 G Gu,d with a small covering radius g is more likely to 
contain a projector with better preservation of pairwise relative distances. According 

i 
to [11], it holds that g>n k(d~k), and we shall see next, how to achieve this lower 
bound. 

A set of projectors {pi}f=1 C Qk,d is called a t-design if the associated normalized 
atomic measure - J2i=i SPI is a cubature measure of strength t (see Definition III.2.4), 
see [46] for general existence results. Any sequence of tj-designs {p;}™=!1 C Gu,d with 
U —> oo satisfies 

1We use the symbols < and > to indicate that the corresponding inequalities hold up to a 
positive constant factor on the respective right-hand side. The notation x means that both relations 
< and > hold. 

(111.17) 
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and moreover, the bound rii > h 0 i d S ) c f [7g; nj Xo relate rii with Q{ via ti, 

a sequence of ^-designs {p;}™=!1 C Gu,d is called a low-cardinality design sequence if 
£j —>• oo and 

ni^t\{d~k\ i = l , 2 , . . . (111.18) 

For their existence and numerical constructions, we refer to [22] and [10, 11]. Ac
cording to [11], see also (III. 17) and (III. 18), any low-cardinality design sequence 
{pl}^ covers asymptotically optimal, i.e., 

k(d-k) 

Benefiting from the covering property, we will use low-cardinality design sequences 
as a representation of the overall space of orthogonal projectors Gk,d-

111.3.2 Linear least squares fit 

With the linear least squares fit we can directly gain information about the relation 
between Ai(p, x) and tvar(prc) for a given data set x = {xi}™=1 C M.d when p varies. 
Given the two samples 

(tvar(pix), . . . , tvar(p„x)}, {M(pi,x),...,M(pn,x)}, (III.19) 

the linear least squares fitting provides the best fitting straight line, 

tvar(p;a;) ~ s • M.{pux) + 7, I — 1,... ,n, 

where s and 7 are determined by the sample variances and the sample covariance. 
If {pz}"=i is a 2-design, then the sample (co)variances coincide with the respective 
population (co)variances for P ~ A^^, see Appendix A.3 for further details. It 
follows that 

Cov(A4(P, x), tvar(Px)) 
Var(A4(P,x)) 

with P ~ A M , (111.20) 

7 = § tvar(x) - 8 . (111.21) 

The quantities s and 7 can be directly computed, where tvar(x) is given by (III.2) 
and the covariances are stated in Corollary A . l . Note that (III.20) and (III.21) are 
now independent of the particular choice of {pi}f=1. 

The correlation between the two samples (III. 19) yields additional information 
about their relation. As before, if {pi}f=1 is a 2-design, then the sample correlation 
coincides with the population correlation (III. 13) for P ~ A ^ , cf. Appendix A.3. 
High correlation for a specific data set x suggests that random projections and P C A 
preserve competing properties, whose benefits need to be assessed for the specific 
subsequent task. 

79 



111.4 Numerical experiments in pattern recognition 

We investigate the impact on classification accuracy when applying specific orthog
onal projections to input data. The real world data chosen yields a straightforward 
classification task, serving as a toy example for comparing the accuracy of several 
projected input data in simple learning frameworks. Projectors are chosen from 
a t-design in view of tvar(prc) and Ai(p,x). For all computations made in this 
Section the 'Neural Network' and 'Statistics and Machine Learning' toolboxes in 
MatlabR2017a are used. 

We use the publicly available i r i s data set from the UCI Repository of Machine 
Learning Database suitable for supervised classification learning. It consists of 3 
classes with 50 instances each, where each class refers to a type of iris plant. The 
instances are described by 4 features resulting in the input samples C M 4 

and target samples {yi}}^{ C {0, l } 3 . For comparison we classify the diverse input 
data with support vector machine (SVM) and 3-layer neural networks (NN) with 5 
and 10 hidden units (HU). 

III.4.1 Choice of orthogonal projection 

In the experiment we use projections p 6 ^ 2 , 4 reducing the original dimension from 
d = 4 to k = 2. As a finite representation of the overall space, we use a t-design of 
strength 14 from a low-cardinality sequence (see Section III.3.1) consisting of 8475 
orthogonal projectors. Note that the dimension reduction in practice takes place by 
applying q G Vk,d with qTq = p G Qk,d, where 

V M := {q G Rkxd : qqT = 4 } 

denotes the Stiefel manifold. When taking norms, p and q are interchangeable, 
i.e., \\q(x)||2 = ||p(x)||2, for all x G M.d. Therefore we can use w.l.o.g. the theory 
developed for p. 

The projections are chosen in a deterministic manner viewing the previously de
scribed competing properties. In Figure III.4 the three quantities tvar(px), Ai(p,x) 
and V(p, x) are pairwise plotted for all projectors in {pi}f^. For comparison we 
choose the following projections p G {pi}f=i C £ 2 , 4 , see Figure III.4a for a visual
ization. 

p x closest to the expected values 1 and | tvar(x) (see (III.10) and (III.11)), 
Po preserving M.{p, x) ~ 1 and maximizing tvar(prc), 
pn preserving A4(p, x) ~ 1 and minimizing tvar(px), 
pQ tvar(prc) ~ tvar(p<>a:) and maximizing A4(p,x), 
p* minimal tvar(px), 
p* maximal tvar(px) (PCA). 
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Fig. III.4: Projections {p;}fi^ 5 C G2,4 from a t-design of strength 14 evaluated on 
the iris data set x C M 4 x 1 5 0 . 

111.4.2 Results 

In Figure 4.III.4b we see the linear least squares fitting line, computed directly 
and via the slope and intercept as stated in (III.20) and (III.21). The correlation 
coefficient (III.13) is 0.98, which suggests that preserving the two properties is highly 
competing and needs to be balanced. 

In Table III. 1 the classification results of the iris data are presented. We can see 
that in this comparison the projector p§, which corresponds to preserving A4(p, x) ~ 
1 and maximizing tvar(prc), yields the highest and most robust results. It even yields 
better results than working with the original input data. The projections that 
preserve M.{p,x) ~ 1 but do not take care of the magnitude of the total variance 
yield much worse results. On the other hand, the projections that just focus on high 
total variance still do not yield as high results as the projection p§ that balances 
both properties. 

Remark III.4.1. Given a data set x, the projector PQ is a good choice to balance both 
objectives 01) and 02). It can be computed by directly analyzing {tvar(pix), . . . , tvar(p. 
and {M(pi, x),... ,A4(pn, x)} of a finite covering {pi}f=1 ofQk,d- For higher dimen
sions an accurate representation ofQk,d, in order to heuristically select p^, requires 
large computational costs. The least squares regression line for a 2-design, as stated 
in III. 21, can be directly computed with low computational cost. This offers helpful 
information about the interplay between 01) and 02). 
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Input/Method N N (10 HU) N N (5 HU) S V M 
X (97.6, 1.25) (97.5, 2.29) (96.7, 0.15) 

Po x (98.4, 0.42) (98.3, 2.15) (97.3, 0.06) 
PxX (88, 1.73) (87.9, 1.92) (87.6, 0.63) 
PnX (87.3, 9.56) (86.9, 10.81) (87.7, 0.42) 

P o x (96.8, 2.74) (96.7, 1.77) (96, 0.17) 
p*x (PCA) (96.9, 1.36) (96.5, 4.07) (96, 0.37) 
P*x (62.1, 44.30) (58.9, 70.78) (56, 0.61) 

Table III. 1: Classification results of iris data, when using projected input data in 
support vector machine (SVM) and shallow neural networks (NN). Mean and Vari
ance ( x l O - 4 ) of 1000 independent N N runs, 100 independent runs with 10-fold 
cross-validation in S V M . 

111.5 Augmented target loss functions 

In the previous section projectors were applied to input features of shallow neural 
networks. In more complex architectures, such as deep neural networks, the adaption 
of weights can be viewed as optimization of input features, e.g. arising features can 
be used for transfer learning [56]. Whereas the input data is processed and optimized 
in each iteration, the target data stays usually unchanged during the whole learning 
process, serving as measure of accuracy. The representation of the target data is 
one key property for successful approximation with neural networks. Here, we will 
introduce a general class of loss functions, i.e. augmented target (AT) loss functions, 
that use projections and features to yield beneficial representations of the target 
space, emphasizing important characteristics. 

In optimization problems additional penalty terms are used for regularization or 
to enforce other beneficial constraints. In deep learning, weight decay (i.e. Tikhonov 
regularization) is a standard adaption of the loss function to that effect. Incorpo
rating additional underlying information via features of the output/target data has 
been studied in diverse settings tailored to particular imaging applications. Percep
tual loss functions have been used in [34] for image super-resolution, incorporating 
the comparison of high-level image features that arise from pretrained convolutional 
neural networks, i.e. the VGG-network [47]. Deep perceptual similarity metrics have 
been proposed in [19] for generating images, comparing image features instead of the 
original images. In [30] a similar approach was successfully used for style transfer 
and super-resolution, adding a network that defines loss functions. Anatomically 
constrained neural networks (ACNN) have been introduced in [42] and applied to 
cardiac image enhancement and segmentation. Their loss functions incorporate 

82 



structural information by using autoencoders to gain features about lower dimen
sional parametrization of the segmentation. Brain segmentation was studied in [24], 
where information about the desired structure has been added in the loss function 
via an adjacency matrix. It was used for fine-tuning the supervised learned network 
with unlabeled data, reducing the number of abnormalities in the segmentation. 

The information of certain target characteristics can be very powerful and even 
replace the need of annotations in some tasks. In [49] label-free learning is ap
proached by using just structural information of the desired output in the loss func
tion instead of annotated target values. 

In the following, we will define a general framework of loss functions that add in
formation of target characteristics via features and projections in supervised learning 
tasks. 

111.5.1 General framework 

Let the training data be input vectors {xi}™=1 C W with associated target values 
{yi}iLi C Rs. We consider training a neural network 

fe • Rr ->• Rs., 

where 9 G RN corresponds to the vector of all free parameters of a fixed architecture. 
In each optimization step for 9, the network's output {iji = fe{xi)}'^L1 C W is 
compared with the targets {yi}r£=l via an underlying loss function L. 

In contrast to ordinary learning problems with highly accurate target data, com
plicated learning tasks arising in many real world problems do not yield sufficient 
results when optimizing neural networks with standard loss functions L, such as the 
widely used mean least squares error 

i m 

w t M ™ ! , mr=i) ••= - E u - vi\\2 • (ni.22) 
m i=i 

The training data may include important information that is obvious for humans, 
but poorly represented within the original target data and therefore lacks considera
tion in the learning process. To overcome this issue, we propose to add information 
tailored to the particular learning problem represented by additional features of the 
outputs and targets. 

First, we select transformations 

Tj : Rs —»• R\ j = l,...,d, 

to enable error estimation in transformed output/target spaces. Note that the trans
formations Tj are not required to be linear. However, they should be piecewise 
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differentiable to enable subsequent optimization of the loss function with gradient 
methods. We shall allow for additional weighting of the transformations 7 \ , . . . , 
to facilitate the selection of features for a specific learning problem. The previous 
sections suggest that orthogonal projections can provide favorable feature combina
tions, which essentially turns into a weighting procedure. 

To enable suitable projections, we stack the d output/target features 

bdxt 

\Uyi)T) 

so that applying a projector p G Qk,d to each column of T(yi) yields p(T(yi)) G Rdxt. 
We now define the augmented target loss function with projections by 

LP({Vi}, {Hi}) := L({yt}, {&}) + a • L({p(T(yi))}, {p(T(yi))}), (111.23) 

where a > 0 and L, L correspond to conventional loss functions. Apparently, Lp 

depends on the choice of p G Gk,d- The projection p(T(yi)) weighs the previously 
chosen feature transformations T(yi). Standard choices of L and L are LMSE, in 
which case Lp becomes 

i m i m 

Lp({Vih m ) = - E U - ^ l l 2 + « • - E \ W i V i ) ) - P(m))\\l (HI.24) m -=1 m -=1 

Remark III.5.1. For k = d the projector p is the identity. In this case the trans
formations can map into different spaces, i.e. 

Tj-.W^R^, j = l,...,d, 

and we can now write the standard augmented target loss function by 

LAT({yt}, {yi}) = E " i • V{{Tj{Vi)h {Wi)}), ( m -25) 
i=i 

where 7\ corresponds to the identity function, L1,..., Ld are common loss functions 
and « i , . . . , ad > 0 are weighting parameters. 

It should be mentioned that a resembles a regularization parameter. The actual 
minimization of (III.22) among 9 is usually performed through Tikhonov type regu
larization in many standard deep neural network implementations. The formulation 
(III.23) adds one further variational step for beneficial output data representation. 

Remark III.5.2. Our proposed structure with target feature maps 7 \ , . . . , as in 
(III.25) relates to multi-task learning, which has been successfully used in deep neural 
networks [13]. It handles multiple learning problems with different outputs at the 
same time. In contrast to multi-task learning, we aim to solve a single problem but 
also penalize the error in transformed spaces enhancing certain target characteristics. 
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For the projected feature transformations in the augmented target loss function 
it is not possible to identify a balancing projection p heuristically (such as PQ in 
Section III.4), because the output y changes in each iteration when the loss function 
is called. In the following clinical numerical experiment we overcome this issue by 
using random projections and P C A in each optimization step and compare it to 
prior deterministic choices of projections. 

111.6 Application to clinical image data 

The first experiment is a clinical problem in retinal image analysis of the human eye, 
where the disruptions of the so-called photoreceptor layers need to be quantified in 
optical coherence tomography images (OCT). The photoreceptors have been iden
tified as the most important retinal biomarker for prediction of vision from OCT in 
various clinical publications, see e.g. [25]. As OCT technology advances, clinicians 
are not able to look at each slice of OCT themselves (in mean they get 250 slices per 
patient and have 3-5 minutes/patients including their clinical examination). There
fore, automated classification of e.g. photoreceptor status is necessary for clinical 
guidance. 

111.6.1 Data and objective 

In this application, OCT images of different retinal diseases (diabetic macular edema 
and retinal vein occlusion) were provided by the Vienna Reading Center recorded 
with the Spectralis O C T device (Heidelberg Engineering, Heidelberg, Germany). 
Each patient's OCT volume consists of 49 cross-sections/slices (496 x 512 pixels) 
recorded in an area of 6 x 6 mm in the center of the human retina, which is the 
part of the retina responsible for vision. Each of the slices was manually annotated 
by a trained grader of the reading center. This is a challenging and time-consuming 
procedure that is not feasible in clinical routine but only in a research setting. The 
binary pixelwise annotations serve as target values, enabling a supervised learning 
framework. 

The objective is to accurately detect the photoreceptor layers and their disrup
tions pixelwise in each OCT slice by training a deep convolutional neural network 
with a suitable loss function. The learning problem is complicated by potentially 
inaccurate target annotations, as studies have shown that inconsistencies between 
trained graders are common, cf. [52]. Moreover, the learning task is unbalanced in 
the sense that there are many more slices showing none or very little disruptions. 
We shall observe that optimization with respect to standard loss functions performs 
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(a) Healthy photoreceptor region (b) OCT slice plus manual annotation 

(c) Disrupted photoreceptor region (d) OCT slice plus manual annotation 

Fig. III.5: OCT provides cross-sectional visualization of the human retina. 

poorly in regards to detecting disruptions. The augmented target loss function 
proposed in the previous section can enhance the detection. 

111.6.2 Convolutional neural network learning 

We implemented our experiments using Python 3.6 with Pytorch 0.4.0. A deep con
volutional neural network fg is trained by applying the U-Net architecture reported 
in [45] with a softmax activation function and Tikhonov regularization. A set of 20 
OCT volumes (980 slices) from different patients with corresponding annotations 
are used for training, where 4 volumes were used for calibration (validation set). 
Another 2 independent test volumes were identified for evaluating the results, one 
without any disruptions in the photoreceptor layers, whereas the other one includes 
a high number of disruptions. 

Each OCT slice is represented by a vector Xi G W with r = 496 -512. The 
collection {x{\™=1 corresponds to all slices from the training volumes, i.e. m = 
20 • 49. Further matching the notation of the previous section, we have r = s and 
fg : W —>• W with binary target vectors yi G {0, l } r . We observe that disruptions 
are not identified reliably when using the least squared loss function (III.22). To 
overcome this issues, we use the proposed augmented target loss function with least 
squared losses as stated in (III.24). 

To enhance disruptions within the output/target space, we heuristically choose 
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d = 4 local features of the original representation. They are derived from Shearlet 
coefficients ([33]) Ti and convolution with a gradient filter (Prewitt) T 2 , a Gaussian 
highpass filter T 3 , and a Frangi Filter ([23]) T 4 , see Figure III.6. These feature 
transformations keep the same size, i.e. 1} : W —>• W for j = 1,..., d. 

We can derive different augmented target loss functions Lp by choosing different 
P e Qk,d for (III.23). In this experiment we use the following projections: 

• P = h; 
• {pi\\=\i all projections from a t-design of strength 2 C £2,4 (see [10]), 
• PPCA £ £2,4, projection determined by P C A for each mini-batch, 
• P\2A, random projection chosen according to A2,4 in each mini-batch. 

III.6.3 Results 

Since the detection problem is highly unbalanced we use precision/recall curves [15] 
for evaluating the overall performance of each loss function model. The area under 
the curve (AUC) was used as a numerical indicator of the success rate, [43]. The 
higher the A U C the better the classification. 

The results of the different loss functions on the independent test set are stated 
in Table III.2. Due to the imbalance within the data, the photoreceptor region 
is identified well, but disruptions are not identified reliably when using the least 
squared loss function (III.22). For a = 0.5 all proposed augmented target loss 
functions Lp immensely increase the success rate of the disruption quantification. 
The highest result was achieved by using the fixed projection pi2 from the t-design 
sequence {pi}}ti o n the output/target features. This corresponds to the results 
of the previous sections, stating that depending on the particular data there are 
projections in the overall space acting beneficially. Since this projection generally 
cannot be found beforehand, using random projections or P C A in each loss function 
evaluation step is easier possible in practice. Random projections yield the highest 
overall accuracy and also beat P C A concerning the detection of disruptions. 

The choice of random projections in Lp seems beneficial. Random projections 
can be computed very efficiently and randomization can generalize and robusten 
the information, cf. [37]. In the following we will view a second classification prob
lem based on spectrograms, where augmented target loss functions with random 
projections can improve the accuracy. 

111.7 Application to musical data 

Here, the learning task is a prototypical problem in Music Information Retrieval, 
namely multi-class classification of musical instruments. In analogy to the MNIST 
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(a) Shearlet coefficients 

(b) Prewitt 

(c) Gaussian highpass 

(d) Frangi filter 

1 ^» 

— ' 

Fig. III.6: Features on output and targets that enhance edges in different ways. It is 
not obvious which transformations are of most importance, weighting by projections 
can overcome this issue. 
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Table III.2: Comparison of A U C values for photoreceptors segmentation and dis
ruption detection. 

Loss function Photoreceptors Disruptions 

LMSE 0.9724 0.3954 

LP 

P = h 0.9766 0.6045 

P\2,4 0.9796 0.5690 

PPCA 0.9734 0.5196 

Pl2 0.9755 0.6490 

problem in image recognition, this classification problem is commonly used as a basis 
of comparison for innovative methods, since the ground truth is unambiguous and 
sufficient annotated data are available. The input to the neural network are spec
trograms of audio signals, which is the standard choice in audio machine learning. 
Spectrograms are calculated from the time signal using a short-time Fourier trans
form and taking the absolute value squared of the resulting spectra, thus yielding a 
vector for each time-step and a two-dimensional array, like an image, cf. [17]. 

Reproducible code and more detailed information of our computational experi
ments can be found in the online repository [27]. 

111.7.1 Data and objective 

The publicly available GoodSounds dataset [44] contains recordings of single notes 
and scales played by several single instruments. To gain equally balanced input 
classes we restrict the classification problem to 6 instruments: clarinet, flute, trum
pet, violin, alto saxophone and cello. Note that the recordings are monophonic, so 
that each recording yields one spectrogram that we aim to correctly assign to one 
of the 6 instruments. 

After removing the silence [3, 40], segments from the raw audio files are trans
formed into log mel spectrograms [20], so that we obtain images of time-frequency 
representations with size 100 x 100. One example spectrogram for each class of 
instruments is depicted in Figure III.7. 

111.7.2 Convolutional neural network learning 

We implemented a fully convolutional neural network fg : W —>• [0, l ] s , cf. [36], 
where r = 100 x 100 and s = 6, in Python 3.6 using Keras 2.2.4 framework [21] 
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(a) Clarinet (b) Flute 

(c) Trumpet (d) Violin 

Time [s] Time [s] 

(e) Alto Saxophone (f) Cello 

8192 

„ 4096 

2048 

CT 0) 1024 

512 

0.5 

81921 

40961 

20481 

C7 0) 10241 

512 

0.25 

Time [s] 

0.5 

Fig. IIL7: Log mel spectrograms of the 6 different instruments. Intensities range 
from zero (black) to 1 (yellow). 
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a (3 V training test data 

0 0 - 0.5541 0.5716 
0.01 0 he 0.5650 0.5683 
0.01 0 0.7722 0.7657 

0 0.05 - 0.9771 0.9729 
0.01 0.05 he 0.9849 0.9802 
0.01 0.05 7*̂ 6,16 0.9857 0.9833 

Table III.3: Classification results with different parameter choices. The standard 
inbuilt Tikhonov regularization (i^-norm of 9) is weighted by (3. For a > 0 the 
feature transformations {T j} ]^ are used in the loss function, either directly or 
weighted by a random projection p\616. The accuracy of the model is measured by 
the number of correctly classified samples divided by the number of all samples. 

and trained it on the Nvidia G T X 1080 T i G P U . The data is split into 140 722 
training, 36 000 validation and 36 000 independent test samples. We heuristically 
choose d = 16 output features arising directly from the particular output class. The 
transformations 7 \ , . . . , T 1 6 , with Tj : M 6 —>• M. for j = 1,..., 16, are then given by 
the inner product of the output/target and the feature vectors. Amongst others the 
features are chosen from the enhanced scheme of taxonomy [55] and from the table of 
frequencies, harmonics and under tones [59]. We use the proposed augmented target 
loss function Lp (III.23), where L\ corresponds to the categorical-cross-entropy loss 
[58] and L 2 to the mean squared error as in (III.24). We consider here two choices 
of p: the identity Iw and random projectors p ~ A 6 j i 6 in £?6,i6-

The deep learning model is sensitive to various hyper-parameters, including a 
and p, in addition to conventional parameters, such as the number of convolutional 
kernels, learning rate and the parameter (3 for Tikhonov regularization. To find the 
best choices in a fair trial we utilize a random hyper-parameter search approach, 
where we train 60 models and select the 3 best ones for a more precise search over 
different a in the augmented target loss function and (3 for Tikhonov regularization. 
This results in 212 models that are evaluated on the training and validation set. 
Finally, we select the best model based on the accuracy of the validation set and 
evaluate it on the independent test set. For comparison we also evaluate this model 
with no Tikhonov regularization, i.e. (3 = 0, see Table III.3. 
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III.7.3 Results 

Table III.3 shows that no regularization and no features provide the poorest re
sults. It seems that adding features with random projections have a regularizing 
effect and improve the results significantly. As expected, it is important to include 
Tikhonov regularization on 9. Further enhancement happens by adding features via 
the modified augmented target loss function with or without additional weighting 
from projections. A l l results are very stable and are generalizing very well from 
training to the independent test set, see [27] for further details. 

Appendix 

A Proof of Theorem 111.2.5 

A . l Proof of (III. 14) in Theorem 111.2.5 

For {yi}fti C M.d and p G Gk,d, we define 

M 

/ ( P , { l / i } " i ) : = i E s b ( w ) H 2 - (A- 1) 
i=l 

Given two sets, {ZJ}^1 C M.d, suppose that P G Gu,d is a random matrix, 
distributed according to a cubature measure of strength at least 2. The covariance 
is given by 

C o v ( / ( P , { y i } ^ ) , / ( P , { z i } ^ 1 ) ) = 

E[(/(P, M ) - E[ / (P , {yt})})(f(P, {Zl}) - E[f(P, {zi})] 

Using the identity, cf. [2], 

l l ^ l l l = I M | 2 , (A.2) 

directly yields 

C o v ( / ( P , { y j a ) , / ( P , { z i } ^ 1 ) ) = 
M i M i M 2 M 2 

E i l l^OII 2-AE ll*ll2)(± E f ll^)H 2-ifeE INI2)] 
Following [8, Theorem 2.4, Section 3.1] we use that 

E[ \\Pyf \\Pz\\2} = ^ (a i | |y|| 2 | |z | | 2 + a 2(y, z)2), y, z G < (A.3) 
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holds, where q = (d — l)d(d + 2), OL\ — (d + l)k2 — 2k and a2 = 2k(d — k). This 
leads to the explicit formula of the population covariance 

Coy(f(P,{Vi}Z\)J(P,{^i)) 
Mi M2 

with afc, 

MXM2 f-f f-J 
1 Z «=17 = 1 

2RF(rf-fc) 

E E O m )
2

 -
Qfc,d / 1 ^ I, ,|2 \ / 1 n ||2 ElNi 

(A.4) 

•>d fc(d-L)(d+2)-

For y := c R d \ {0} we set ft := A , for z = 1,..., M . The identity (A.4) 
enables us to compute the population correlation 

Cov( / (P ,y) , / (P ,y) ) 
Corr( / (P ,y) , / (P ,y)) 

V a r ( / ( P , y ) V V a r ( / ( P , y ) ) 
(A.5) 

by the explicit formulas 

Cov 

Cov 

Cov 

f(P,y)J(P,y) 
1 M 

Ofc,d / a \2 ° M 1 n IL2 M2 

M 

E (Vi,Vj)'A d Mi 
i=l 

f(P. ,/). f(P u) = \ ar[/(P. ,/)] = ^ E to>!&>2-^(iEltf 
t i t 

»,.7=1 
M 

TV/ 

d V M I=L 

f(P,y),f(P,y) = V a r [ / ( P 
M 2 

Since the variance is always nonnegative and > 0, the denumerator of 
Corr( / (P ,y) , / (P ,y)) in (A.5) satisfies 

Va r ( / (P ,y )WVar ( / (P ,y ) )< 
\ 

TV/ 

»,.7=1 

< M 2 

\ 

M 

E (̂>%>2 

»,.7=1 

^ M 

m i n , ( | | y , | l ) 4 £ ^ ' % ) 2 

< 
TV/ 

m m i ( | | y4 | ) 2 M 2 

The enumerator of Corr(/(P, y), f(P, y)) in (A.5) is estimated by 

C o v ( / ( P , y ) , / ( P , y ) ) > Q>kA 
M 

E (̂>%)2 - ^ r m a x ( l l 2 A m a x ^ ^ ^ M 2 ^ d 

For d > M , a short calculation yields Cov(f(P,y),f(P,y)) > 0, so that we obtain 

Cor r ( / (P ,y ) , / (P ,y ) )> 
n i m ^ l ^ H ) 2 m i ^ f l ^ H ) 2 maxi(||y4|) 2 

maxj(||yj| M2 
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The lower bound J2ij=i(yi,yj)2 > A "̂min̂ (112/*11)4 yields 

Corrf f(P v) f(P v)) > m k l ^ \ \ ) 2 _ M max t ( | |^ | | ) 2 

Since the correlation is scaling invariant the choice y = {xi — xj : 1 < % < j < m} 
with M = m(-™~1'> implies (III.14) in Theorem III.2.5. Incorporating the correct 
scaling yields the following corollary: 

Corollary A . l . For a given data set x = and for random P G Gu,d the 
(co)variances of tvar(Px) (III.4) and Ai(P,x) (III.8) are given by 

2 
OC 'i X j i 

Var(tvar(Px)) = ^ (^í E E (x* " x i > x ' " x ^) 2 ~ (]̂  E H x* " x i l | 2 ) 2 ) . 

t t i i a I n w ®k,d i Xi Xj Xl — Xr ,2 &k,d 

«<j Z<r 11 ' JII II « HI 

7 li m(m—1) j 2d(d—k) 

where M = - ^ i o n r f a M = fc(d_\)(ď|2) • 

A.2 Proof of the second part of Theorem 111.2.5 

For fixed parameters \i > 0, o 2 > 0, that do not depend on d, let F i G M d be a 
random vector, whose squared entries are independent, identically distributed with 
mean E Y ^ = \i and variance Var(Y 1

2

z) = a 2 , for / = l,...,d. We immediately 
observe 

2d\M2^.^^1 ~ J' \\xi -Xrť d M J 

For any c > 0, Chebychev's inequality yields 

o 2 . 

P l ^ i 2 
> or < 

1 
c 2 ' Vd 

Suppose that Y2,... ,YM are copies of Yi, not necessarily independent. Then the 
union bound 

P 

implies that 

IFII2

 r „ . , . A . M 
> co, for some i = 1 M ] < 

n n W l l F j ) 2 n W l l Y J I ) 2

 n Vdfi -ca< v ^ " ; < v ^ " ; < Vd/x + co 

holds with probability at least 1 — . Provided that v^/x 7̂  C < J a n d 0 < V^A* — C < J ; 
we deduce 

\fd~\i — co minj(||yj||)2 v^/x + co 
\/rf/x + co ~~ maXidlFH) 2 ~ v ^ / x - c o ' 
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We can choose c = ±yfd, since 0 < c < < That directly yields 

< min t ( | |y t | | ) 2 1 + ^ 
i + i - ^ ( | y , i r i - ^ 

holds with probability at least 1 — 5̂77=1 • 

It follows directly that ^ax^(||y||)2 c o n v e r g e s towards 1 in probability for d —> oo, 
The choice { Y i , ..., Y m } = — -Xj : 1 < i < j < m} implies the second part of 
Theorem III.2.5. 

A.3 Calculations for population covariances 

We notice that \\p(xi — Xj)\\2 = tmce(pxixj — pxjxj) is a polynomial of degree 1 in 
p. Hence, tvar(px) in (III.4) is also a polynomial of degree 1 in p. If {pL}f=1 is a 
1-design, then the sample mean of { t v a r ^ x ) , . . . , tvar(p„x)} satisfies 

1 1 1 

— ^tvar(p;x) = Etvar(Px), 
n i=i 

which is the population mean of tvar(Px), with P ~ A ^ . Similarly, the term 
\\p(xi — Xj) | | 4 is a polynomial of degree 2 in p, so that (Ai(p,x))2 in (III.8) is a 
polynomial of degree 2 in p. If {pi}f=1 is a 2-design, then we derive 

n , n s O / n ,2 
J2(M(phx))2-(j2M(phx)) = E(M(P,x))2-E(Y,M(P,x)) , 
1=1 S'=i i=i 

with P ~ Afc,d- In other words, the sample variance of {M.{pi, x),..., M.{pn, x)} 
coincides with the population variance Var(A4(P,xj). Analogously, we deduce 
that the sample covariance of (III.19) coincides with the population covariance 
Cov(A4(P,x),tvar(Px)) with P - A M . 
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This paper introduces Gabor scattering, a feature extractor based on Gabor frames 
and Mallat's scattering transform. By using a simple signal model for audio signals 
specific properties of Gabor scattering are studied. It is shown that for each layer, 
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using a decoupling technique which exploits the contractivity of general scattering 
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modulation. The theoretical results are illustrated by numerical examples and ex
periments. Numerical evidence is given by evaluation on a synthetic and a "real" 
data set, that the invariances encoded by the Gabor scattering transform lead to 
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IV.1 Introduction 

During the last two decades, enormous amounts of digitally encoded and stored 
audio have become available. For various purposes, the audio data, be it music or 
speech, need to be structured and understood. Recent machine learning techniques 
known as (deep) convolutional neural networks (CNN) have led to state of the art 
results for several tasks such as classification, segmentation or voice detection, cf. 
[21, 10]. CNNs were originally proposed for images [21], which may be directly fed 
into a network. Audio signals, on the other hand, commonly undergo some pre
processing in order to extract features which are then used as input to a trainable 
machine. Very often, these features consist of one or several two-dimensional arrays, 
such that the image processing situation is mimicked in a certain sense. However, 
the question about the impact of this very first processing step is important and 
it is not entirely clear whether a short-time Fourier transform (STFT), here based 
on Gabor frames, the most common representation system used in the analysis of 
audio signals, leads to optimal feature extraction. The convolutional layers of the 
CNNs can themselves be seen as feature extractors, often followed by a classification 
stage, either in the form of one or several dense network layers or classification tools 
such as support vector machine (SVM). Stéphane Mallat gave a first mathematical 
analysis of C N N as feature extractor, thereby introducing the so called scattering 
transform, based on wavelet transforms and modulus non-linearity in each layer [22]. 
The basic structure thus parallels the one of CNNs, since these networks are equally 
composed of multiple layers of local convolutions, followed by a non-linearity and, 
optionally, a pooling operator, cp. Section IV. 1.1. 
In the present contribution, we consider an approach inspired by Mallats scattering 
transform, but based on Gabor frames, respectively Gabor transform (GT). The 
resulting feature extractor is called Gabor scattering (GS). Our approach is a spe
cial case of the extension of Mallat's scattering transform proposed by Wiatowski 
and Bólcskei [28, 27], which introduces the possibility to use different semi-discrete 
frames, Lipschitz-continuous non-linearities and pooling operators in each layer. In 
[22, 3, 2], invariance and deformation stability properties of the scattering transform 
w.r.t. operators defined via some group action were studied. In the more general 
setting of [28, 27], vertical translation invariance, depending on the network depth, 
and deformation stability for band-limited functions have been proved. In this con
tribution, we study the same properties of the GS and a particular class of signals, 
which model simple musical tones (Section IV.2.2). 

Due to this concrete setting, we obtain quantitative invariance statements and defor
mation stability to specific, musically meaningful, signal deformations. Invariances 
are studied considering the first two layers, where the feature extractor extracts cer-
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tain signal features of the signal model (i.e. frequency and envelope information), 
cp. Section IV.3.1.1. By using a low-pass filter and pooling in each layer, temporal 
fine structure of the signal is averaged out. This results in invariance w.r.t. the en
velope in the first and frequency invariance in the second layer output. In order to 
compute deformation bounds for the GS feature extractor, we assume more specific 
restrictions than band-limitation and use the decoupling technique, first presented 
in [28] and [12]. Deformation stability is proven by only computing the robustness of 
the signal class w.r.t spectral shape and frequency modulation, see Section IV.3.1.2. 
The robustness result together with contractivity of the feature extractor, which is 
given by the networks architecture, yields deformation stability. 
To empirically demonstrate the benefits of GS time-frequency representation for 
classification, we have conducted a set of experiments. In a supervised learning 
setting, where the main aim is the multi-class classification of generated sounds, we 
have utilized a C N N as a classifier. In these numerical experiments, we compare 
the GS to a STFT-based representation. We demonstrate the benefits of GS in 
a quasi-ideal setting on a self implemented synthetic data set and we also inves
tigate, if it benefits the performance on a real data set, namely GoodSounds [26]. 
Moreover we focus on comparing these two time-frequency representations in terms 
of performance on limited sizes of training data, see Section IV.4. 

IV.1.1 Convolutional Neural Networks (CNNs) and Invariance 

CNNs are a specific class of neural network architectures which have shown ex
tremely convincing results on various machine learning tasks in the past decade. 
Most of the problems addressed by using CNNs are based on, often big amounts of, 
annotated data, in which case one speaks about supervised learning. When learning 
from data, the intrinsic task of the learning architecture is to gradually extract useful 
information and suppress redundancies, which always abound in natural data. More 
formally, the learning problem of interest may be invariant to various changes of the 
original data and the machine or network must learn these invariances in order to 
avoid over-fitting. Since, given a sufficiently rich architecture, a deep neural network 
can practically fit arbitrary data, cp. [30, 18], good generalization properties depend 
on the systematic incorporation of the intrinsic invariances of the data. General
ization properties hence suffer if the architecture is too rich given the amount of 
available data. This problem is often addressed by using data augmentation. Here, 
we raise the hypothesis that using prior representations which encode some poten
tially useful invariances will increase the generalization quality, in particular when 
using a restricted size of data set. The evaluation of the performance on validation 
data in comparison to the results on test data strengthens our hypothesis for the 
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experimental problem presented in Section IV.4. 
In order to understand the mathematical construction used within this paper, we 
briefly introduce the principal idea and structure of a C N N . We shall see, that the 
scattering transforms in general, and the GS in particular, follow a similar concept 
of concatenating various processing steps which ultimately lead to rather flexible 
grades of invariances in dependence on the chosen parameters. Usually a C N N con
sists of several layers, namely an input, several hidden (since we consider the case of 
deep C N N the number of hidden layers is supposed to be > 2) and one output layer. 
A hidden layer consists of the following steps: first the convolution of the data with 
a small weighting matrix, often referred to as a kernel 1 , which can be interpreted 
as localization of certain properties of the input data. The main advantage in this 
setup is that only the size and number of these (convolutional) kernels is fixed, but 
their coefficients are learned during training. So they reflect the structure of the 
training data in the best way w.r.t the task being solved. The next building block of 
the hidden layer is the application of a non-linearity function, also called activation 
function, which signals if information of this neuron is relevant to be transmitted. 
Finally, in order to reduce redundancy and increase invariance, pooling is applied. 
Due to these building blocks, invariances to specific deformations and variations in 
the data set, are generated in dependence on the specific filters used, whether they 
are learned, as in the classical C N N case or designed, as in the case of scattering 
transforms [23]. In this work, we will derive concrete qualitative statements about 
invariances for a class of music signals and will show by numerical experiments that 
these invariances indeed lead to a better generalization of the CNNs used to classify 
data. 
Note that in a neural network, in particular in CNNs, the output, e.g. classification 
labels, is obtained after several concatenated hidden layers. In the case of scattering 
network the outputs of each layer are stacked together into a feature vector and 
further processing is necessary to obtain the desired result. Usually, after some kind 
of dimensionality reduction, cf. [29], this vector can be fed into a S V M or a dense 
N N , which performs the classification task. 
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Wave GS OutA (GT) GS OutB GS OutC 

Fig. IV. 1: Waves, Outputs A , i.e. GT, Outputs B and Outputs C of GS for all four 
classes of generated sound. 

IV.1.2 Invarince induced by Gabor Scattering 

In this section we give a motivation for the theory and underlying aim of this paper. 
In Fig. IV. 1 we see sound examples from different classes, where Class 0 is a pure 
tone with 5 harmonics, Class 1 is an amplitude modulated version thereof, Class 2 is 
the frequency modulated version and Class 3 contains the amplitude and frequency 
modulated signal. So we have got classes with different amplitudes, as clearly visible 
in the wave forms shown in the left-most plots. In this paper we introduce GS, as 
a new feature extractor that introduces certain invariances. GS has several layers, 
denoted by OutA, OutB and OutC and each layer is invariant with respect to some 
features. The first layer, here OutA, is the spectrogram of the wave form. So we 
see the time-frequency content of the four classes. OutB can be seen to be invariant 

1In order to prevent any confusion with the kernels used in classical machine learning methods 
based on reproducing kernel Hilbert spaces, e.g. the famous support vector machine, c.f.[16], we 
point out that the term kernel as used in this work always means convolutional kernels in the sense 
of filterbanks. Both the fixed kernels used in the scattering transform and the kernels used in the 
CNNs, whose size is fixed, but whose coefficients are learned, should be interpreted as convolutional 
kernels in a filterbank. 
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w.r.t. amplitude changes, while the last layer, OutC is invariant w.r.t. to frequency 
content while encoding the amplitude information. With GS it is therefore possible 
to separate different qualities of information contained in a spectrogram. 
We introduce GS mathematically in the Section IV.2.1, and elaborate on the re
sulting invariances in different layers in Section IV.3.1.1. Numerical experiments, 
showing the benefit of GS, are discussed in Section IV.4. 

IV.2 Materials and Methods 

IV.2.1 Gabor Scattering 

Since Wiatowski and Bolcskei used general semi-discrete frames to obtain a wider 
class of window functions for the scattering transform (cp. [28, 27]), it seems natural 
to consider specific frames used for audio data analysis. Hence we use Gabor frames 
for the scattering transform and study corresponding properties. We next introduce 
the basics of Gabor frames and refer to [11] for more details. A sequence (gk)kLi °f 
elements in a Hilbert space Ti is called frame if there exist positive frame bounds 
A,B>0 such that for all / G Ti 

DO 

A\\f\\2<T,\(f\9k)\2<B\\ff. (IV.l) 
fe=i 

If A = B, then we call (gk)kLi a tight frame. 

Remark 1. In our context the Hilbert space % is either L 2 (R) or £ 2 (Z). 

In order to define Gabor frames we need to introduce two operators, i.e. the 
translation and modulation operator. 

• The translation (time shift) operator: 
— for a function / G L 2 ( R ) and x G R is defined as Txf(t) := fit — x) for 

all t G R. 
— for a function / G £ 2(Z) and k G Z is defined as Tkf(j) := (f(j — fc))jGz-

• The modulation (frequency shift) operator: 
— for a function / G L 2 ( R ) and w G R is defined as Muf(t) := e2™utf(t) 

for all t G R. 
— for a function / G £ 2(Z) and u G [—|, |] is defined as Muf(j) := 

We use these operators to express the STFT of a function / G 7i with respect 
to a given window function g G % as Vgf(x,uj) = {f,M^Txg). In order to reduce 
redundancy, we sample Vgf on a separable lattice A = a Z x I, where I = (3Z in 
case of H = L 2 (R) and 1 = { 0 , w i t h (3 = ± in case U = £2(Z). The 
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sampling is done in time by a > 0 and in frequency by (3 > 0. The resulting samples 
correspond to the coefficients of / w.r.t. a Gabor system. 

Definition 1. (Gabor System) 
Given a window function 0 ^ g G H and lattice parameters a, (3 > 0, the set of 
time-frequency shifted versions of g 

G(g,a,0) = {MP3Takg : (ak,/3j) G A} 

is called a Gabor system. 

This Gabor system is called Gabor frame if it is a frame, see (IV. 1). We pro
ceed to introduce a scattering transform based on Gabor frames. We base our 
considerations on [28] by using a triplet-sequence f2 = ^ ( ^ , cr̂ , 5^)^ , where £ is 
associated to the £-th layer of the network. Note that in this contribution we will 
deal with Hilbert spaces L 2 (M) or £ 2(Z); more precisely in the input layer, i.e. the 
0—th layer, we have Ho — L2(¥L) and due to the discretization inherent in the GT, 
He = £2(Z) W > 0. 
We recall the elements of the triplet: 

• ^e •= {gxeJxt&At with gXe = MPejTaekge, \ e = (aek,/3ej), is a Gabor frame 
indexed by a lattice A^. 

• A non-linearity function (e.g. rectified linear units, modulus function, see [28]) 
o~t : C —>• C, is applied pointwise and is chosen to be Lipschitz-continuous, i.e. 
I l 0 ^ / — o~eh\\2 < I ^ H / — h\\2 for all f,h G H. In this paper we only use the 
modulus function with Lipschitz constant — 1 for all £ G N . 

• Pooling depends on a pooling factor Se > 0, which leads to dimensionality 
reduction. Mostly used are max- or average-pooling, some more examples can 
be found in [28]. In our context, pooling is covered by choosing specific lattices 
A^ in each layer. 

In order to explain the interpretation of GS as C N N , we write I(g)(t) = g(—t) and 
have 

\{f,MPjTakg)\ = \f*(x(MPj{g)))\{ak). {TV.2) 

Thus the Gabor coefficients can be interpreted as the samples of a convolution. 
We start by defining paths on index sets q := (qi,---,qe) = (fiiji, Peje) £ PiZ< x 
... x (3eZ =: Be, £ G N . 

Definition 2. (Gabor Scattering) 
Let Q, = ((^£, ae, A()) be a given triplet-sequence. Then components of the £-th 
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layer of the GS transform are defined to be the output of the operator Ue[qe] : Tie-i —> 
He, que ${L: 

f<f^\k) = Ue[peje]f^rqe-l\k) := at ({f^r^.Mp^T^ge)^) je, k G Z, 

(IV.3) 

where ft-\ is some output-vector of the previous layer and ft ETit W G N . The GS 
operator is defined as 

U[q]f = U[(qi,qe)]f := Ue[qe] • • • U^f. 

Similar to [28], for each layer, we use one atom of the Gabor frame in the sub
sequent layer as output-generating atom, i.e. 0£_i := Note that convolution 
with this element corresponds to low-pass filtering.1 We next introduce a count
able set Q := \J^=0Be, which is the union of all possible paths of the net and the 
space ( £ 2 ( Z ) ) S of sets of Q elements from £ 2 (Z). Now we define the feature extractor 
3>n(/) of a signal / G L2(R) as in [28, Def. 3] based on chosen (not learned) Gabor 
windows. 

Definition 3. (Feature Extractor) 
Let Q = ((^fi,ai,Ai)^ be a triplet-sequence and 4>e the output-generating atom 
for layer £. Then the feature extractor $c> : L2(R) —> ( £ 2 ( Z ) ) S is defined as 

oo 
(IV.4) 

e=o 
In the following section we are going to introduce the signal model which we 

consider in this paper. 

IV.2.2 Musical Signal Model 

Tones are one of the smallest units and simple models of an audio signal, consisting of 
one fundamental frequency £o> corresponding harmonics n£o and a shaping envelope 
An for each harmonic, providing specific timbre. Further, since our ears are limited 
to frequencies below 20kHz, we develop our model over finitely many harmonics, 
i.e. {1,...,N} C N . 
The general model has the following form 

N 

f(t) = J2Mt)e2mVn(t\ (IV.5) 
n=l 

where An(t) > 0 Vn G { 1 , N } and Vt. For one single tone we choose r)n(t) = n^t. 
Moreover we create a space of tones T = { E^=i An(t)e27rin^ot\An G CC°°(M)} and 
assume ||Ai||oo < ~-

1In general one could take (j>e-\ := g\*, A| 6 A | . Since this element is the £-th convolution, it is 
an element of the £-th frame, but because it belongs to the (I — l)-th layer, its index is (I — 1). 
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IV.3 Theoretical Results 

IV.3.1 Gabor Scattering of Music Signals 

IV.3.1.1 Invariance 

In [3] it was already stated that due to the structure of the scattering transform the 
energy of the signal is pushed towards low frequencies, where it is then captured 
by a low-pass filter as output-generating atom. The current section explains how 
GS separates relevant structures of signals modeled by the signal space T . Due to 
the smoothing action of the output-generating atom, each layer expresses certain 
invariances, which will be illustrated by numerical examples in Section IV.3.2. In 
Proposition 1, inspired by [3], we add some assumptions on the analysis window in 
the first layer gi : |<7i(w)| < (7^(1+ |c* |̂s) 1 for some s > 1 and ||č<7i(č)||i = Cgi < oo. 

Proposition 1 (Layer 1). Let f e T with ||^J|oo < Cn < oo Vn G {1, ...,7V}. For 
fixed j, for which no = argmin \(3\j — £on| such that \(3j — £o^o| < ^ , can be found, 

nG{l,...,JV} 
we obtain: 

U\Pij](f)(k) = \{f,MMTaikgi)\ = Ano{aik)\gi{l3ij - n 0 ^ 0 ) | + E^k) (IV.6) 
N N-n0 1 

P i ( / c ) < C S l ^ | K - T f c X [ - a 1 ; a 1 ] | | 0 0 + ^ 1 ^ _ ( l + 
n=l n=2-n 0 0 ' l 

where x is the indicator function. 

Co 
I sx -1 

n~2 

(IV.7) 

Remark 2. Equation (IV.6) shows that for slowly varying amplitude functions An, 
the first layer mainly captures the contributions near the frequencies of the tone's 
harmonics. Obviously, for time-sections during which the envelopes An undergo 
faster changes, such as during a tone's onset, energy will also be found outside 
a small interval around the harmonics' frequencies and thus the error estimate (IV.7) 
becomes less stringent. The second term of the error in (IV.7) depends only on the 
window <7i and its behaviour is governed by the frequency decay of g\. Note that the 
error bound increases for lower frequencies, since the separation of the fundamental 
frequency and corresponding harmonics by the analysis window deteriorates. 

Proof. Stepl - Using the signal model for tones as input, interchanging the finite 
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sum with the integral and performing a substitution u = t — otik, we obtain 
N 

(f,MfiljTaikgi) - {Y,M<0An)Mpl3Taikgi) 
n=l 
N 

— "52 {An, -^9ij-<o^aifcfl ,l) 
n=l 
AT 

T f AJu + a^gAuy-^^-^^+^du. 
n=ljR 

After performing a Taylor series expansion locally around ot\k : 
An(u + aik) = An{aik) + uRn(aik,u), where the remainder can be estimated by 
|i? n(a:i£;,«)! < \\A'n • r f c x[-ai;ai] | |oo, we have 

N 
-27TJ(/3ij-ng0)« lkAn{aik) f gi{u)e-2^hj-n^)udu 

JR 
(/, M(hjTaikgi) = 

n=l 

wi? n ( a 1 A; ,M) t / 1 (M)e- 2 ^ ( / 3 u - n « o ) ( u + a i f c ^M 

Hence we choose n 0 = argminl/^j — £,on\, set 

=[uRn(a1k,u)g1(u)e-2wi^lj-n^){u+aik)du 
JR 

N 

E[k)= J2 e-^v-^^MaiWitfij-nto) 
71=1 

and split the sum to obtain 

(IV.8) 

(IV.9) 

N 
(f, MPlJTaik9l) = A n o ( a 1 f c ) e - 2 - ( ^ - " ^ ) - ^ 1 ( / 3 l J - n 0 £ 0 ) + + ]T £n(fc). 

n=l 
S'tep 2 - We bound the error terms, starting with (IV.8): 

N 

n=l 

N 

E / M i k ( a i M ) ^ t O e ~ ^ u " ~ ^ ) ( t t ^ l f c ) d u 
1 «/ R n= I 

Using triangle inequality and the estimate for the Taylor remainder, we obtain to
gether with the assumption on the analysis window 

N 

n=l 

N , f 
< 53 \\A'n • 7fcX[-«i;ai]||oo / \ugi(u)\du 

n=l ^ 
A' 

< C9l J2 WA'n • TkX[-Cil, Oil] 
n=l 

For the second bound, i.e. the bound of Equation (IV.9), we use the decay condition 
on gi, thus 

N 
\E(k)\ < 0^ £ \An{oiXk)\ 1 + \Pd - £0n\s 

n=l 
n^n0 
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Next we split the sum into n > no and n < TIQ. We estimate the error term for 
n > no: 

N -, N-n0 

\An(aik)\(l + \ßl3 - £0n\s) = | A n o + n ( a i / c ) | ( l + | Ä j - e o n o - e o n | s ) . 

(IV.10) 
n=no+l n=l 

Since n 0 = argmin|/3ij — £onl> we have \/3ij — £o n o | < ^ and also using ||Ai||oo < ~, 
we obtain 

TV-no / 

E 1̂4 no+n (aifc)| 1 + 
n=l 

Co 
-1 N-n0 

< E i n 0 + n 
1 + n — 

s\ -1 

( IV. l l ) 

Further we estimate the error for n < no: 

" o - l " o - l 

K ( a i * O I ( l + \ßi3-Zon\T1< E ^ „ ( « i ^ K l + l Ä j - e o n o + e o n o - e o n r ) - 1 , 
n=l n=l 

where we added and subtracted the term £o^o- Due to the reverse triangle inequality 
and — £o no| < | w e obtain: 

ßij -£on0 -£o(n-no) > £o(n 0 - n ) - Co 

For convenience we call m = n — no and perform a little trick by adding and 
subtracting | , so 
will become more 

£ 0 ( n 0 - n) - «0 -(m + l) + k The reason for this steps 
clear when putting the two sums back together. Now we have 

\ s\ — 1 reo-1 - 1 

\An(aik)\(l + \ßxj - C o ^ l T 1 < E \Ano+m(a1k)\[l + 
m=l—no n=l 

m + 1) -

Shifting the sum, i.e. taking n = m + 1, and using || Ai||oo < ~, we get 

1 s \ - 1 ° 1 
E \Ano+m(oiik)\(l + 

m=l—no 
Co m + 1) - < E 

n=2—n( 

- n n n 0 + n - 1 
1 + n — 

s\ -1 

(IV.12) 

Combining the two sums ( IV. l l ) and (IV.12) and observing that < W o +

1

w _ 1 , we 
obtain 

1 N-n0 

n=2-n 0

 U0 + n 1 

s 1 
( 1 + 6) n ~ 2 ) (IV.13) 

Summing up the error terms, we obtain (IV. 7). 

• 
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To obtain the GS coefficients, we need to apply the output-generating atom as 
in (IV.4). 

Corollary 1 (Output of Layer 1). Let <f>i G \&2 be the output-generating atom, then 
the output of the first layer is 

(Ui\fiij]f * <h)(k) = MPij - nQ0\(Ano * 0O(fc) +
 ei
(fc), 

where 

ei(fc) < | | P i | | L l l 0 i | l i -

Here E1 is the error term of Proposition 1. 

Remark 3. Note that we focus here on an unmodulated Gabor frame element <fti 
and the convolution may be interpreted as a low-pass filter. Hence, in dependence 
on the pooling factor ct\, the temporal fine-structure of Ano corresponding to higher 
frequency content is averaged out. 

Proof. For this proof we use the result of Proposition 1. We show the calculations 

for the first layer, for the second layer it is similar: 

2 

E (l(/> MBlJTaik9l}\- \9l(faj - £0n0)\Ano(k)) • Ml ~ k) 
k 

2 
Y,E,{k)Ml-k) < P i | l L l l 0 i | | 2 

(IV. 14) 

where E^k) < Cgi E t i \\A'n-TkX[-ai; a^+C^ En=2°n0 ( l + \Zo\"\n - ±\s 

• 
We introduce two more operators, first the sampling operator Sa(^f(x)^J = f(ax) 

V i G R and second the periodization operator Pi (/(u;)) = J2k&z f(u ~ „) ^ u e ^-

These operators have the following relation J7(^Sa(f)Sj(u) = Pi(f(uj)). In order to 

see how the second layer captures relevant signal structures, depending on the first 

layer, we propose the following Proposition 2. Recall that G Tie W G N . 

Proposition 2 (Layer 2). Let f G T , E f c ^ o l ^ « o ( - ~ ^01 < £ « i a n d life CO I < 
Cg2(l + | / i | s ) _ 1 . Then the elements of the second layer can be expressed as 

U2[ß2h}U1[ßlJ}f{m) = Ußi3-^no) {M_ß2hAno,Ta2mg2) + E2(m), (IV.15) 

where 

E2(m) < ea,Cg2\Ußi3 ~ & O I E ( l + I M - r f ) ~ + | | P i | | oo • 119111• 
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Remark 4. Note that, since the envelopes An are expected to change slowly except 
around transients, their Fourier transforms concentrate their energy in the low fre
quency range. Moreover the modulation term M_@2h pushes the frequencies of Am 

down by —(32h and therefore they can be captured by the output-generating atom <f>2 

in Corollary 2. In Section IV.3.2 it will be shown by means of the analysis of ex
ample signals, how the second layer output distinguishes tones which have a smooth 
onset (transient) from those which have a sharp attack, which leads to broadband 
characteristics of An around this attack. Similarly, if An undergoes an amplitude 
modulation, the frequency of this modulation can be clearly discerned, cf. Figure IV. 5 
and the corresponding example. This observation is clearly reflected in expression 
(IV. 15). 

Proof. Using the outcome of Proposition 1 we obtain 

U2[f32h}U1[f3l3}f(m) = 

| (S ' Q 1 ( /4„ 0 ) |^ 1 (^ 1 j - £ 0 r a o ) | + E1,Mp2hTa2mg2)e2(z)\ < 

KS_ 1 (4» 0 )l i7iG 9 tf ~ £ono)\, MP2hTa2mg2)e2(Z)\ + \{EU M/32hTa2Jng2)e2(Z)\. 

For the error Ei(k) we use the global estimate \{Ei, Mp2hTa2mg2)< | |£'i | | 0 O-| |g' | | 1. 
Moreover using the notation above and ignoring the constant term \gi(fiij — £o^o)| 
we proceed as follows: 

(Sai(Ano), M/32hTa2mg2) £2(Z) J2 Sai(An0(k))Ta2mg2(k)e-2m^hk 

fcez 

FfSa^Ano) • Ta2mg2)((52h) = J r (S' Q 1 ( /4„ 0 )) * F[TC 

Pi _ ( i n o ) * (M_a2mg2)(P2h) J2A 

. fcez 

k_ 
a i 

^M_a2mg2)((32h). (IV.16) 

Since g is concentrated around 0, the right-hand term in (IV.16) can only contain 
significant values, if Ano has frequency-components concentrated around (32h, hence 
we consider the case k — 0 separately and obtain 

(Sai(Ano), Mp2hTa2mg2)e^(z) (Ano * M_a2mg2)((32h) 

+ e An0 -a2m hmh)- (IV.17) 

It remains to bound the sum of aliases, i.e. the second term of Equation (IV.17): 

k 
e (• — — 

. fcez\{o} 

E E Ano 
fcez\{o} 

A 

a i 

r — 
a i 

E E 
r fcez\{o} 

k_ 

M-a2mg2 

) • ^M_a2mg2) ((32h - r) 

g2(/32h - r 

< 

(IV.18) 
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Using the assumption J2kez\{o} | A i 0 ( - _ ~ ) | < e«i and also the assumption on the 
analysis window g 2 , namely the fast decay of g 2 we obtain: 

E E 
r fcez\{o} 

A i 0

 r 

« 1 
g2(foh - r) < £

a i E - r) 
r 

<eaiCg2Y^^ + \P2h-r\s)~\ (IV.19) 

We rewrite the first term in (IV. 17) and make use of the operator X introduced in 
(IV.2): 

(IV.20) 

(12m 
r 

(An0,Ti32hZM-a2mg2) = —(Ano,Ml32hTa2mg2). 

The last Equation (IV.20) uses Plancherl's theorem. Rewriting the last term we 
obtain 

— {AnoiMp2hTa2mg2) = —(M_p2hAno,Ta2mg2). 

• 

Remark 5. For sufficiently big s the sum J2r ( l + I#2^ ~~ r | s ) decreases fast, e.g. 
taking s = 5 the sum is approximately 2. 

The second layer output is obtained by applying the output-generating atom as 
in (IV.4). 

Corollary 2 (Output of Layer 2). Let 0 2 G ̂ 3 , then the output of the second layer 

is 

U2[^h}U1[l31j]f * 4>2 (m) = IftOfltf - Zono)\\(M_p2hAno,Ta2mg2)\* 0 2 (m) + e 2(m 

where 

e2(m) < | | £ 2 | | L I I ^ | | 2 . 

i/ere _E2 «s i/ie error 0/ Proposition 2. 

Remark 6. iVo£e t/iai m i/ie second layer, applying the output-generating atom 
4>2 £ ^3 removes the fine temporal structure and thus, the second layer output reveals 
information contained in the envelopes An. 

Proof. Proof is similar to the first layer output, see Corollary 1. 

• 
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IV.3.1.2 Deformation Stability 

In this section we study to which extent GS is stable with respect to certain, small 
deformations. This question is interesting, since we may often intuitively assume, 
that the classification of natural signals, be it sound or images, is preserved under 
mild and possibly local deformations. For the signal class T , we consider musically 
meaningful deformations and show stability of GS with respect to these deforma
tions. We consider changes in spectral shape as well as frequency modulations. Note 
that, as opposed to the invariance properties derived in Section IV.3.1.1 for the out
put of specific layers, the derived stability results pertain to the entire feature vector 
obtained from the GS along all included layers, cp. the definition and derivation of 
deformation stability in [22]. The method we apply is inspired by [12] and uses the 
decoupling technique, i.e. in order to prove stability of the feature extractor we first 
take the structural properties of the signal class into account and search for an error 
bound of deformations of the signals in T . In combination with the contractivity 
property ||$fi(/) — &n(h)\\2 < \\f — h\\2 of see [28, Prop. 4], which follows from 
Bg < 1 W e N , where Bg is the upper frame bound of the Gabor frame G(ge, ae, fy), 
this yields deformation stability of the feature extractor. 
Simply deforming a tone would correspond to deformations of the envelope An, n = 
1,...,N. This corresponds to a change in timbre, for example by playing a note 
on a different instrument. Mathematically this can be expressed as: 3 ) ^ (/)(£) = 
En=lAn(t + T(t))e2mn^. 

Lemma 1 (Envelope Changes). Let f 6 T and \A'n(t)\ < Cn(l + | t | s ) _ 1 , for con
stants Cn > 0, n — 1 , N and s > 1. Moreover let ||r||oo < \- Then 

N 

l l / - 5 M / ) l l 2 < t f | M l o o £ c » , 
n = l 

for D > 0 depending only on | | T | | O O . 

Proof. Setting hn(t) = An(t) — 1)AT{An{t)) we obtain 

N 

l l / - ^ ( / ) l | 2 < E l M * ) l | 2 -
n = l 

We apply the mean value theorem for a continuous function An(t) and get 

\K(t)\ < | | T | | O O sup \A'n(y)\. 

Applying the 2—norm on hn(t) and the assumption on A'n(t), we obtain: 
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/ \K{t)\2dt< J \\r\\2J sup \A'n(y)\) dt 

< C 2 | | r | | 2 

— n i l II oo 
f sup (1 + \y\s)~2dt. 

•wê llriiooW 

Splitting the integral into -Bi(O) and M\Si(0) we obtain 

M * ) l l ! < c M o l / sup (1 + \y\s)~2dt . 
Bi(0) M S l T O y G B i ^ H ^ C t ) / 

Using the monotonicity of (1 + |y| s) 1 and in order to remove the supremum, by 
shifting 11T | | o o , we have 

\hn(t)\\l < C2

n\\r\\2J f ldt + 
\ « i ( 0 ) K \Bi(0) 

'i + ll*l - I M 
\s\-2 dt). 

Moreover for t <£ #i(0) we have |(1 - ||^|| 0 0)t| s < |(1 - ^}p) t | s . This leads to 

M * ) l l 2 < p r o o f s + f ( l + | ( l - | | r | | oo )* | s ) - 2 d*y 
\ i]R\Bi(0) / 

Performing a change of variables, i.e. x — (1 — | | r | | o o ) * with ^ = 1 — | | r | | o o > \ we 
obtain 

M O I I l < ClWrWl [2 + 2 jfR(l + | x | s ) " 2 ^ 

2\ 
C 2 | | r | | 2

0 O (2 + 2 
1 + \x\ 

Setting D2 := 2(l + || 1 + u i B |||) a n d summing up we obtain 

v 
l l / - 5 M / ) l l 2 < t f | M l o o £ c » -

n=l 

• 
Remark 7. Harmonics' energy decreases with increasing frequency, hence Cn <^ 
C„_i, /ience t/ie sum ^ = 1 Cn can be expected to be small. 

Another kind of sound deformation results from frequency modulation of / € 
T . This corresponds to, for example, playing higher or lower pitch, or producing 
a vibrato. This can be formulated as: 

N 

2>r : / ( * ) - • £ 4 .,(*)e v >• 
n=l 
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Lemma 2 (Frequency Modulation). Let f G T . Moreover let H^Hoo < 
Then 

arccos(l —^-) 
2̂  • 

N 

wf-vT(f)h<eY: 
n=l n 

N 
Proof. We have 

I I / - 3 t / | | 2 < £ I M * ) I | 2 , 
n=l 

with hn(t) = An(t)(l — e

2mr"(t)y Computing the 2—norm of hn(t) we obtain: 

\hn(t)\2dt= f \An(t)(l-e2™"^)\2dt< | | l - e 2 ™" {t)\\U\Mt)t 
JR 

oo' 

We rewrite 

H _ e2nirn(t)\2 ( COS (27TTn(£)) + % Sin (27TTn(t) 2 ( l - COS (27TTn(£) 

arccos(l — 
Setting || 1 — e27™7"™ !̂!2^ < e2, this term gets small if ||T„(£)||OO < — U s i n g 
the assumptions of our signal model on the envelopes, i.e. ||Ai||oo < \ , we obtain 

N 1 

| | / - S ) T ( / ) | | 2 < e £ - . 
n=l 

• 
Proposition 3 (Deformation Stability). Let $ n : L2(R) (£2(Z))Q, f e T and 
\A'n(t)\ < Cn(l + | t | s ) _ 1 , for constants Cn > 0, n = 1,...,JV and s > 1. Moreover 

let \\T\Ioo < t, and \\T, „11.̂ 3 < a r c c ° s

2 ^ — — . T/ien t/ie feature extractor $ is deformation 
stable w.r.t. 

• envelope changes 1)AT (/) (0 = X^=i + r(^))e 

N 

* n ( / ) - *n(2)A T ( / ) ) | | 2 < ^ l l r l U £ C -
n=l 

/or D > 0 depending only on \\r\loo. 

frequency modulation lDT(^f^j(t) = J2n=i An(t)e2m^ "s"' + 

N i 

$ n ( / ) - $ n ( 2 ) r ( / ) ) 2 < e E " -
n=l n 

Proof. The Proof follows directly from a result of [28, Prop. 4], called contractivity 
property | |$n(/) - ®n(h)\\2 < \\f - h\\2 of $ n , which follows from Be < 1 W G N, 
where £^ is the upper frame bound of the Gabor frame G(ge, a^, fit) and deformation 
stability of the signal class in Lemma 1 and 2. 

• 
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Signal 

O l O l 

•> Gabor transform 
>- reassignment 
>- resampling 

time averaging 

• • channel averaging 

Fig. IV.2: Diagram explaining the naming of the GS building blocks of the Python 
implementation in the following sections. 
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IV.3.2 Visualization Example 

In this section we present some visualizations based on two implementations, one 
in M A T L A B , which we call the GS implementation and the other one in Python, 
which is the channel averaged GS implementation. The main difference between 
these implementations is an averaging step of Layer 2 in the case of the Python 
implementation; averaging over channels is introduced in order to obtain a 2D rep
resentation in each layer. Furthermore, the averaging step significantly accelerates 
the computation of the second layer output. 
Referring to Figure IV.2 the following nomenclature will be used: Layer 1 (LI) is 
the GT, which, after resampling to the desired size, becomes Out A . Output 1 (01) 
is the output of L I , i.e. after applying the output-generating atom. Recall that this 
is done by a low-pass filtering step. Again, Out B is obtained by resampling to the 
desired matrix size. 
Layer 2 (L2) is obtained by applying another GT for each frequency channel. In 
the M A T L A B code Output 2 (02) is then obtained by low-pass filtering the separate 
channels of each resulting spectrogram. In the case of Python implementation (see 
Fig. IV.2), we average all the GT of L2 to one spectrogram (for the sake of speed) 
and then apply a time averaging step in order to obtain 02. Resampling to the 
desired size yields Out C. 
As input signal for this section we generate single tones following the signal model 
from Section IV.2.2. 

IV.3.2.1 Visualization of different frequency channels within the GS imple
mentation 

Figure IV.3 and IV.4, show two tones, both having a smooth envelope, but different 
fundamental frequencies and number of harmonics. The first tone has fundamental 
frequency £o = 800Hz and 15 harmonics and the second tone has fundamental 
frequency £o = 1060Hz and 10 harmonics. 

Content of Figures IV.3 and IV.4: 
• Layer 1: The first spectrogram of Figure IV.3 shows the GT. Observe the 

difference in the fundamental frequencies and that these two tones have a dif
ferent number of harmonics, i.e. tone one has more than tone two. 

• Output 1: The second spectrogram of Figure IV.3 shows Output 1, which is 
is time averaged version of Layer 1. 

• Output 2: For the second layer output, (see Fig.IV.4) we take a fixed frequency 
channel from Layer 1 and compute another GT to obtain a Layer 2 element. By 
applying an output-generating atom, i.e. a low-pass filter, we obtain Output 2. 
Here we show, how different frequency channels of Layer 1 can affect Output 2. 
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Fig. IV.3: First layer (i.e. GT) and Output 1 of two tones with different fundamental 
frequencies. 
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Output 2 evaluated at 800 Hz, i.e. frequency channel 38 of Layer 1 
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Fig. IV.4: Output 2 of two tones with different fundamental frequencies, at different 
fixed frequency channels of Layer 1. 
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The first spectrogram shows Output 2 w.r.t. the fundamental frequency of tone 
one, i.e. £o = 800Hz. Hence no second tone is visible in this output. On the 
other hand, in the second spectrogram, if we take as fixed frequency channel 
in Layer 1 the fundamental frequency of the second tone, i.e. £o — 1060Hz, 
in Output 2 the first tone is not visible. If we consider a frequency that both 
share, i.e. £ = 3200Hz, we see that for Output 2 in the third spectrogram both 
tones are present. Since GS focuses on one frequency channel in each layer 
element, the frequency information in this layer is lost, in other words Layer 2 
is invariant w.r.t. frequency. 

IV.3.2.2 Visualization of different envelopes within the GS implementation 

Here, Figure IV.5, shows two tones, played sequentially, having the same funda
mental frequency £o — 800Hz and 15 harmonics, but different envelopes. The first 
tone has a sharp attack, maintains and goes softly to zero, the second starts with 
a soft attack and has some amplitude modulation. A n amplitude modulated signal 
would for example correspond to f(t) = J2n=i sin(27r20t)e27rm^0', here the signal is 
modulated by 20Hz. The GS output of these signals are shown in Figure IV.5: 

• Layer 1: In the spectrogram showing the GT, we see the difference between 
the envelopes and we see that the signals have the same pitch and the same 
harmonics. 

• Output 1: The output of the first layer is invariant w.r.t. the envelope of the 
signals. This is due to the output-generating atom and the subsampling, which 
removes temporal information of the envelope. In this output no information 
about the envelope (neither the sharp attack nor the amplitude modulation) 
is visible, hence the spectrogram of the different signals look almost the same. 

• Output 2: For the second layer output we took as input a time vector at fixed 
frequency of 800Hz (i.e. frequency channel 38) of the first layer. Output 2 is 
invariant w.r.t. the pitch, but differences on larger scales are captured. Within 
this layer we are able to distinguish the different envelopes of the signals. 
We first see the sharp attack of the first tone and then the modulation with 
a second frequency is visible. 

The source code of the M A T L A B implementation and further examples can be 
found in [14]. 
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Fig. IV.5: Layer 1 (i.e. GT) , Output 1 and Output 2 of the signal having a sharp 
attack and afterwards some modulation. 

IV.3.2.3 Visualization of how frequency and amplitude modulations influence 
the outputs using the channel averaged implementation 

In order to visualize the resampled transformation in a more structured way, we 
created an interactive plot (see Fig.IV.6), which shows 25 different synthetic audio 
signals side by side, transformed into Out A , Out B and Out C with chosen GS 
parameters. Each signal consists of one or more sine waves modulated in amplitude 
and frequency with 5 Hz steps. 

The parameters can be adjusted by sliders and the plot is changed accordingly. 
The chosen parameters to be adjusted were number of frequency channels in Layer 1, 
number of frequency channels in Layer 2, sampling rate and number of harmonics 
of the signal. The code for the interactive plot is available as a part of the reposi
tory [14]. 
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IV.4 Experimental Results 

In the numerical experiments, we compare the GS to a GT representation which is 
one of the standard time-frequency representations used in a preprocessing phase 
for training neural networks applied to audio data. We compare these two time-
frequency representations w.r.t. the performance on limited size of the training 
data set. 
To convert the raw waveform into the desired representations (GS and GT), we have 
used the Gabor-scattering vO.0.4 library [13], which is our Python implementation 
of the GS transform based on the Scipy vl.2.1 [17, 25, 9] implementation of STFT. 
To demonstrate the beneficial properties of GS, we first create synthetic data in 
which we have the data generation under a full control. In this case we generate 
four classes of data that reflect the discriminating properties of GS. Secondly we 
investigate whether the GS representation is beneficial when using a "real" data set 
for training. For this purpose we have utilized the GoodSounds data set [26]. 

IV.4.1 Experiments with Synthetic Data 

In the synthetic data set we created four classes, containing 1 second long signals, 
sampled at 44.1kHz with 16 bit precision. A l l signals consist of a fundamental sine 
wave and four harmonics. The whole process of generating sounds is controlled by 
fixed random seeds for reproducibility. 

IV.4.1.1 Data 

We describe the sound generator model for one component of the final signal by the 
following equation: 

/(*) = A • sin (27r(f£ + cwfm(t, Afm, £y 
mi V/m)^ ~T" ' CWam(t, A a m , ^ a m , (Pam); 

(IV.21) 

where 

cwfm(t, Afm,£fm, ififm) = Afm • sin(27r£ / m£ + ipfm) 

is the frequency modulation and 

CWam(t, A a m , f^ami '•Pam) 

Aam ' sin(27r^amt + (fiam 

) if Aam > 0 and (ipam > 0 or £ a m > o) 

1 else 
is the amplitude modulation. Here A is the amplitude, £ denotes the frequency 
and (p denotes the phase. Furthermore, the amplitude, frequency and phase of the 
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frequency modulation carrier wave is denoted by Afm, £ / m and (pjm respectively and 
for the case of amplitude modulation carrier wave we have Aam, £am and (pam-

To generate five component waves using the sound generator described above, 
we needed to decide upon the parameters of each component wave. We started by 
randomly generating the frequencies and phases of the signal and the carrier waves 
for frequency and amplitude modulation from given intervals. These parameters 
describe the fundamental sine wave of the signal. Next we create harmonics by 
taking multiples (from 2 to 5) of the fundamental frequency £, where A of each next 
harmonic is divided by a factor. Afterwards, by permuting the two parameters, 
namely by turning the amplitude modulation and frequency modulation on and off, 
we defined four classes of sound. These classes are indexed starting from zero. The 
0th class has neither amplitude nor frequency modulation. Class 1 is just amplitude 
modulated, Class 2 is just modulated in frequency and Class 3 is modulated in 
both, amplitude and frequency, as seen in Table IV. 1. At the end, we used those 
parameters to generate each harmonic separately and then summed them together 
to obtain the final audio file. 

Table IV. 1: Overview of classes. 

A — n A — 1 

Afm = 0 class 0 class 1 

Afm = 1 class 2 class 3 

The following parameters were used to obtain GS: n fit = 500 - number of fre
quency channels, n_perseg = 500 - window length, n overlap =250 - window over
lap were taken for Layer 1, i.e. GT, n fit = 50, n__perseg = 50, n overlap = 40 for 
Layer 2, window_length of the time averaging window for Output 2 was set to 5 
with mode set to 'same'. A l l the shapes for Output A , Output B and Output C 
were 240 x 160. Bilinear resampling [20] was used to adjust the shape if necessary. 
The same shape of all of the outputs allows the stacking of matrices into shape 
3 x 240 x 160, which is convenient for C N N , because it can be treated as a 3-channel 
image. Illustration of the generated sounds from all four classes transformed into 
G T and GS can be seen in Section IV. 1.2 in Figure IV. 1. 
With the aforementioned parameters, the mean time necessary to compute the GS 
was 17.4890 ms, while the mean time necessary to compute the GT was 5.2245 ms, 
which is approximately 3 times less. It is important to say, that such comparison is 
only indicative, because the time is highly dependent on chosen parameters, hence 
the final time depends on the specific settings. 
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IV.4.1.2 Training 

In order to compare the discriminating power of both GS and GT, we have gen
erated 10 000 training samples (2 500 from each class) and 20 000 (5 000 from each 
class) validation samples. Since the task at hand is not as challenging as some real 
world data sets, we assume these sizes to be sufficient for both time-frequency rep
resentations to converge to very good performances. To compare the performance 
of GS and G T on a limited set of training data, we have altogether created four sce
narios in which the training set was limited to 400,1000,4 000 and 10 000 samples. 
In all of these scenarios, the size of the validation set remained at its original size of 
20 000 samples and we have split the training set into smaller batches each contain
ing 100 samples with the same number of samples from each class. Batches were 
used to calculate the model error based on which the model weights were updated. 

The C N N consisted of the batch normalization layer, that acted upon the input 
data separately for each channel of the image (we have 3 channels, namely Out A, 
Out B and Out C), followed by four stacks of 2D convolution with average pooling. 
The first three convolutional layers were identical in the number of kernels which 
was set to 16, of the size 3 x 3 with stride l x l . The last convolutional layer was also 
identical apart from using just 8 kernels. Each convolutional layer was initialized 
by a Glorot uniform initialization [7] and followed by a ReLu nonlinearity [15] and 
an average pooling layer with a 2 x 2 pool size. After the last average pooling the 
feature maps were flattened and fully connected to an output layer with 4 neurons 
and a softmax activation function [8]. For more details about the networks archi
tecture the reader should consult the repository [14]. There they also find the exact 
code in order to reproduce the experiment. 

The network's categorical cross-entropy loss function was optimized using the 
Adam optimizer [19] with /r=0.001, (3\=0.9 and /92=0.999. In order to have fair 
comparison, we limit each of the experiments in the terms of computational effort 
as measured by a number of weight updates during the training phase. One weight 
update is made after each batch. Each experiment with synthetic data was limited 
to 2 000 weight updates. To create the network, we have used Python 3.6 program
ming language with Keras framework v2.2.4 [6] on Tensorflow backend vl.12.0 [1]. 
To train the models, we have used two GPUs, namely NVIDIA Titan X P and 
NVIDIA GeForce G T X 1080 T i on the OS Ubuntu 18.04 based system. Experiments 
are fully reproducible and can be obtained by running the code in the repository [14]. 
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Table IV.2: Performance of the C N N trained using GS and GT data. 

T F N train N valid B W U train valid 

GS 400 20 000 280 1.0000 0.9874 
GT 400 20 000 292 1.0000 0.9751 
GS 1000 20 000 650 0.9990 0.9933 
GT 1000 20 000 1640 1.0000 0.9942 
GS 4 000 20 000 1640 0.9995 0.9987 
GT 4 000 20 000 1720 0.9980 0.9943 
GS 10 000 20 000 1800 0.9981 0.9968 
G T 10 000 20 000 1800 0.9994 0.9985 

Table notation: 
T F - Time-frequency representation. N train and N valid-Number of samples in 
training and validation sets. BWU-Weight update after which the highest perfor
mance was achieved on the validation set. Train and val id- accuracy on training 
and validation sets. 

IV.4.1.3 Results 

The results are shown in Table IV.2, listing the accuracies of the model's best weight 
update on training and validation sets. The best weight update was chosen based 
on the performance on the validation set. More detailed tables of the results can 
be found in the aforementioned repository. In this experiment we did not use any 
testing set, because of the synthetic nature of the data. Accuracy is computed as 
a fraction of correct predictions to all predictions. 

The most important observation is visible in Fig.IV.7 where it is shown that 
in the earlier phases of the training GS reaches higher accuracies after less weight 
updates than GT. This effect diminishes with bigger training sets and vanishes 
completely in case of 100 training batches. In case of very limited data i.e. with 
only 400 training samples, the results show that GS even outperformed GT. With 
more training samples, i.e. 1 000 and 4 000, the best performances of GT and GS 
are nearly the same. In this case we could hypothesize that the prior knowledge of 
the intrinsic properties of a time series signal shown by GS (in the invariances of 
Layer 1 and Layer 2) is not needed anymore and the network is able to learn the 
necessary transformation itself. 
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4 train batches (400 samples) 10 train batches (1000 samples) 

GT (best w.u.292: 97.51%) 
GS (bestw.u.280: 98.74%) 

GT (best w.u.1640: 99.42%) 
GS (best w.u.650: 99.33%) 

40 train batches (4000 samples) 

GT (best w.u.1720: 99.43%) 
GS (bestw.u.1640: 99.87%) 

100 train batches (10000 samples) 

GT (best w.u.1800: 99.85%) 
GS (best w.u.1800: 99.68%) 

Weight updates (log) Weight updates (log) 

Fig. IV.7: C N N performance milestone reached over number of weight updates 
Synthetic data. 

Figure notation: Valid acc- Accuracy performance metric measured on the valida
tion set. Best w.u. - Weight update after which the highest performance was reached. 

IV.4.2 Experiments with GoodSounds Data 

In the second set of experiments, we have used the GoodSounds data set [26]. It 
contains monophonic audio recordings of single tones or scales played by 12 different 
musical instruments. The main purpose of this second set of experiments is to 
investigate, whether GS shows superior performance to GT in a classification task 
using real-life data. 

IV.4.2.1 Data 

To transform the data into desired form for training, we removed the silent parts 
using the SoX vl4.4.2 library [4, 24], next we have split all files into 1 s long segments 
sampled at a rate of 44.1kHz with 16 bit precision. A Tukey window was applied 
to all segments to smooth the onset and the offset of each with the aim to prevent 
undesired artifacts after applying the STFT. 

The data set contains 28.55 hours of recordings, which is a reasonable amount of 
audio data to be used in training of Deep Neural Networks considering the nature 

129 



of this task. Unfortunately, the data are distributed into classes unevenly, half of 
the classes are extremely underrepresented, i.e. half of the classes together contain 
only 12.6% of all the data. In order to alleviate this problem, we decided upon an 
equalization strategy by variable stride. 
To avoid extensive equalization techniques, we have discarded all classes that spanned 
less than 10% of the data. In the end we have used 6 classes, namely clarinet, flute, 
trumpet, violin, sax alto and cello. To equalize the number of segments between 
these classes, we introduced aforementioned variable stride, when creating the seg
ments. The less data a particular class contains, the bigger is the overlap between 
segments, thus more segments are generated and vice versa. The whole process of 
generating sounds is controlled by fixed random seeds for reproducibility. Detailed 
information about the available and used data, stride settings for each class, ob
tained number of segments and their split can be seen in Table IV.3. 

Table IV.3: Overview of available and used data. 

A l l available data Obtained segments 
Class Files Dur Ratio Stride Train Valid Test 

Clarinet 3 358 369.70 21.58% 37988 12134 4000 4 000 
Flute 2 308 299.00 17.45% 27412 11796 4000 4 000 

CD Trumpet 1883 228.76 13.35% 22 826 11786 4000 4 000 
CO Violin 1852 204.34 11.93% 19 836 11707 4000 4 000 

Sax alto 1436 201.20 11.74% 19464 11689 4000 4 000 
Cello 2118 194.38 11.35% 15 983 11551 4000 4 000 
Sax tenor 680 63.00 3.68% 

~d Sax soprano 668 50.56 2.95% 
CD CO Sax baritone 576 41.70 2.43% 
+3 O Piccolo 776 35.02 2.04% 

Oboe 494 19.06 1.11% 
Bass 159 6.53 0.38% 
Total 16 308 1713.23 100.00% 70 663 24000 24 000 

Table notation: Files-Number of available audio files. Dur-Duration of all record
ings within one class in minutes. Ratio-Ratio of the duration to total duration of 
all recordings in the data set. Stride - Step size (in samples) used to obtain segments 
of the same length. Train, Valid, Test - Number of segments used to train (excluding 
the leaking segments), validate and test the model. 
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As can be seen in the table, the testing and validation sets were of the same size 
comprising the same number of samples from each class. The remaining samples 
were used for training. To prevent leaking of information from validation and test
ing sets into training set, we have excluded all the training segments originating 
from the audio excerpts, which were already used in validation or testing set. More 
information can be found in the repository [14]. 
The following parameters were used to obtain GS: n_fft = 2000 - number of fre
quency channels, n perseg = 2000 - window length, n overlap = 1750 - window over
lap were taken for Layer 1, i.e. GT, n_fft = 25, n_perseg = 25, n overlap = 20 for 
Layer 2, window_length of the time averaging window for Output 2 was set to 5 
with mode set to 'same'. A l l the shapes for Output A , Output B and Output C 
were 480 x 160. Bilinear resampling [20] was used to adjust the shape if neces
sary. The same shape of all the outputs allows the stacking of matrices into shape 
3 x 480 x 160. Illustration of the sounds from all six classes of musical instruments 
transformed into G T and GS can be found in the repository [14]. 

IV.4.2.2 Training 

In order to make the experiments on synthetic data and the experiments on Good-
Sounds data comparable, we have again used the C N N as a classifier trained in a 
similar way as described in Section IV.4.1.2. We have also pre-processed the data, so 
the audio segments are of the same duration and sampling frequency. However, mu
sical signals have different distribution of frequency components than the synthetic 
data, therefore we had to adjust the parameters of the time-frequency representa
tions. This led to a change in the input dimension to 3 x 480 x 160. These 
changes and the more challenging nature of the task led to slight changes in the 
architecture: 
The number of kernels in the first three convolutional layers was raised to 64. The 
number of kernels in the last convolutional layer was raised to 16. The output 
dimension of this architecture was set to 6, since this was the number of classes. 
The batch size changed to 128 samples per batch. Number of weight updates was 
set to 11000. To prevent unnecessary training, this set of experiments was set to 
terminate after 50 consecutive epochs without an improvement in validation loss 
as measured by categorical crossentropy. The loss function and optimization algo
rithm remained the same as well as the used programming language, framework and 
hardware. Experiments are fully reproducible and can be obtained by running the 
code in the repository [14]. Consider this repository also for more details about the 
networks architecture. 
In this set of experiments, we have trained 10 models in total, 5 scenarios with 
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limited training set (5, 11, 55, 110 and 550 batches each containing 128 samples) 
for each time-frequency representation. In all of these scenarios, the sizes of the 
validation and testing sets remained at their full sizes each consisting of 188 batches 
containing 24 000 samples. 

IV.4.2.3 Results 

Table IV.4 shows the accuracies of the model's best weight update on training, 
validation and testing sets. The best weight update was chosen based on the per
formance on the validation set. As before, more details can be found in the afore
mentioned repository. In this experiment using GoodSounds data, a similar trend 
as for the synthetic data is visible. GS performs better than G T if we are limited 
in training set size, i.e. having 640 training samples, the GS overperformed GT. 

Table IV.4: Performance of C N N - GoodSounds data. 

T F N train N valid N test B W U train valid test 

GS 640 24000 24000 485 0.9781 0.8685 0.8748 
GT 640 24000 24000 485 0.9766 0.8595 0.8653 
GS 1408 24000 24000 1001 0.9773 0.9166 0.9177 
GT 1408 24000 24000 1727 0.9943 0.9194 0.9238 
GS 7040 24000 24000 9735 0.9996 0.9846 0.9853 
GT 7040 24000 24000 8525 0.9999 0.9840 0.9829 
GS 14080 24000 24000 10780 0.9985 0.9900 0.9900 
GT 14080 24000 24000 9790 0.9981 0.9881 0.9883 
GS 70400 24000 24000 11000 0.9963 0.9912 0.9932 
GT 70400 24000 24000 8800 0.9934 0.9895 0.9908 

Table notation: 
T F - Time-frequency representation. N train, N valid and N test - Number of sam
ples in training, validation and testing sets. BWU-Weight update after which the 
highest performance was achieved on the validation set. Train, valid and test-
accuracy on training, validation and testing sets. 

In Fig.IV.8 we again see that in earlier phases of the training, GS reaches higher 
accuracies after less weight updates than GT. This effect diminishes with bigger 
training sets and vanishes in case of 550 training batches. 
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Fig. IV.8: C N N performance milestone reached over number of weight updates 
GoodSounds data. 

Figure notation: Test acc-Accuracy performance metric measured on the testing 
set. Best w.u.-Weight update after which the highest performance was reached. 

IV.5 Discussion and Future Work 

In the current contribution, a scattering transform based on Gabor frames has 
been introduced and its properties investigated by relying on a simple signal model. 
Thereby, we have been able to mathematically express the invariances introduced 
by GS within the first two layers. 
The hypothesis raised in Section IV. 1.1, that explicit encoding of invariances by 
using an adequate feature extractor is beneficial when a restricted amount of data 
is available was substantiated in the experiments presented in the previous section. 
It was shown that in the case of a limited data set the application of a GS represen
tation improves the performance in classification tasks in comparison to using GT. 
In the current implementation and with parameters described in Section IV.4.1.1, 
the GS is approximately 3 times more expensive to compute than GT. However, 
this transformation needs to be done only once - in the preprocessing phase. Hence, 
the majority of computational effort is still spent during training. E.g. in case of 
GoodSounds experiment, the training with GS is about 2.5 times longer than with 
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GT. We need to point out that this is highly dependent on the used data handling 
pipeline, network architecture, software framework and hardware, which all can be 
optimized to alleviate this limitation. While GS is more computationally expensive, 
the obtained improvement justifies its use in certain scenarios, in particular for clas
sification tasks which can be expected to benefit from the invariances introduced by 
GS. In these cases, the numerical experiments have shown that by using GS instead 
of GT a negative effect of a limited data set can be compensated. 
Hypothetically, with enough training samples, both GS and GT should perform 
equally assuming sufficient training, i.e. performing enough weight updates. This 
is shown in the results of both numerical experiments presented in this article (see 
Tables IV.2 and IV.4). This is justified by the fact that GS comprises exclusively 
the information contained within GT, only separated into 3 different channels. We 
assume it is easier for the network to learn from such a separated representation. 
The evidence to support this assumption is visible in the earlier phases of the train
ing, where GS reaches higher accuracies after less weight updates than G T (see 
Fig.IV.7 and Fig.IV.8). This effect increases with smaller data sets while with very 
limited data GS even surpasses GT in performance. This property can be utilized 
in restricted settings, e.g. in embedded systems with limited resources or in medi
cal applications, where sufficient data sets are often too expensive or impossible to 
gather, while the highest possible performance is crucial. 

We believe that GT would eventually reach the same performance as GS even on the 
smallest feasible data sets, but the network would need more trainable parameters, 
i.e. more complex architecture to do the additional work of finding the features that 
GS already provides. Unfortunately in such a case it remains problematic to battle 
the overfitting problem. This opens a new question - whether the performance boost 
of GS would amplify on lowering the number of trainable parameters of the C N N . 
This is out of the scope of this article and will be addressed in the future work. 
In another paper [5], we extended GS to mel-scattering (MS), where we used GS in 
combination with a mel-filterbank. This MS representation reduces the dimension
ality and hence it is computationally less expensive compared to GS. 
It remains to be said, that the parameters in computing GS coefficients have to be 
carefully chosen in order to exploit the beneficial properties of GS by systematically 
capturing data-intrinsic invariances. 
Future work will consist in implementing GS on the G P U , to allow for fast parallel 
computation. At the same time, more involved signal models, in particular con
cerning long-term correlations, will be studied analytically to the end of achieving 
results in the spirit of the theoretical results presented in this paper. 
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Abstract 

Convolutional neural network (CNN) architectures have originated and revolution
ized machine learning for images. In order to take advantage of CNNs in predictive 
modeling with audio data, standard FFT-based signal processing methods are often 
applied to convert the raw audio waveforms into an image-like representations (e.g. 
spectrograms). Even though conventional images and spectrograms differ in their 
feature properties, this kind of pre-processing reduces the amount of training data 
necessary for successful training. In this contribution we investigate how input and 
target representations interplay with the amount of available training data in a mu
sic information retrieval setting. We compare the standard mel-spectrogram inputs 
with a newly proposed representation, called Mel scattering. Furthermore, we inves
tigate the impact of additional target data representations by using an augmented 
target loss function which incorporates unused available information. We observe 
that all proposed methods outperform the standard mel-transform representation 
when using a limited data set and discuss their strengths and limitations. The 
source code for reproducibility of our experiments as well as intermediate results 
and model checkpoints are available in an online repository. 
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V . l Introduction 

Convolutional neural networks (CNNs) [11], a class of deep neural networks (DNNs) 
architectures, originated in image processing and have revolutionized computer vi
sion. The idea of CNNs is the introduction of locality and weight-sharing in the first 
layers of a D N N , i.e. using convolutional layers. This leads to the extraction of local 
patterns, which are searched for over the entire image using the same filter kernels. 
By intermediate pooling operators, the extension of the local search increases across 
the layers and additionally introduces stability to local deformations, [13]. 

Using the principles of CNNs in computer vision to solve problems in machine 
hearing, including music information retrieval (MIR), has equally led to surprising 
successes in various applications. However, the data processing pipeline needs to be 
altered: the actual signal of interest, the raw audio signal, is not directly used as 
input to the network. Usually, it is first pre-processed into an image, allowing for 
a time-frequency interpretation. Typical representations include the spectrogram or 
modifications thereof. This step leads to a reduction of data needed for training [16]. 

In this paper we improve the performance of CNNs, which are trained with 
the standard mel-spectrogram (MT) 1 input representation and limited amount of 
training data. To do so, we propose an alternative input representation called Mel 
scattering (MS), which uses the main concept of Gabor scattering (GS), introduced in 
[2], in combination with a mel-filter bank. Moreover, we improve the learning results 
by transforming the target space within an augmented target loss function (AT), 
introduced in [3]. 

The paper is organized as follows: In Section V.2 we introduce the learning setup 
and the data used in the numerical experiments. In Section V.3 we present the M T , 
and proceed to the definitions of GS and MS. A T is explained in Section V.4. In 
Section V.5 we compare the results of the proposed representations by evaluating 
the classification results of an instrumental sounds data set, serving as a toy data 
set for experiments with different amount of training data. 

V .2 Learning from Data 

Let T> C X be a data set in an input space X, together with some information 
about the data, often called "annotation", which is given in the target space and 
denoted by T C y. Learning the relationship between T> and their annotations in y 
can then be understood as looking for a function ip : X \-t y, which describes with 
sufficient accuracy the desired mapping. The accuracy is usually measured by a loss 
function, which is optimized in each iteration step of the training process to update 

xWe abbreviate with MT, i.e. "mel-transform", in order not to collide with further abbreviations. 
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the weights. Once the learning process is finished, e.g. via a stopping criterion, this 
results in a parameter vector 9 determining a particular model within the previous 
determined architecture. 

Further, given a hypothesis space parametrized by 9, and a set of annotated 
data Zm = V x T = {(xi,yi),..., (xm,ym)}, we learn a model ipg. Let the estimated 
targets be denoted by yi = ipe(xi) and define the empirical loss function Ezm as 

j m 

EZmM = —J2L(yuVi)-

Common, important examples of loss functions include the quadratic loss L(yiy yA = 
(Vi — Vi)2, and the categorical cross-entropy loss (CE). The latter is the concatenation 
of the softmax function on the output vector y = (ipg(xi),..., ipe(xm)) and the cross-
entropy loss; in other words, in the case of categorical cross-entropy, we have 

L(Vi,Vi) = - y i l o g ™j;—j.-

V.2.1 Data Set used for Experiments 

For the classification experiments presented in Section V.5, the GoodSounds data 
set [17] is used. It contains monophonic recordings of single notes or scales played 
by different instruments. From each file, we have removed the silence with SoX 
vl4.4.2 library 2. The output rate was set to 44.1kHz with 16 bit precision. We 
have split each file into segments of the same duration (Is = 44 100samples) and 
applied a Tukey window in order to smooth the onset and offset of the segment, thus 
preventing the undesired artifacts after applying the short-time Fourier transform 
(STFT). Since the classes were not equally represented in the data set, we needed 
to introduce an equalization strategy. To avoid extensive equalization techniques, 
we have used only classes which spanned at least 10% of the whole data set, namely 
clarinet, flute, trumpet, violin, alto saxophone and cello. More precisely, during the 
process of cutting the audio samples into 1 s segments, we introduce increased overlap 
for instrument recordings with fewer samples, thus utilizing a variable stride. This 
resulted in oversampling in underrepresented classes by overlapping the segments. 

V.3 Time-Frequency Representations of Audio 

Classical audio pre-processing tools such as the mel-spectrogram rely on some local
ized, FFT-based analysis. The idea of the resulting time-frequency representation 

2https://launchpad.net/ubuntu/+source/sox/14.4.1-5 
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is to separate the variability in the signal with respect to time and frequency, re
spectively. However, for audio signals which are relevant to human perception, such 
as music or speech, significant variability happens on very different time-levels: the 
frequency content itself can be determined within a few milliseconds. Variations 
in the amplitude of certain signal components, e.g. formants or harmonics, have 
a much slower frequency and should be measured on the scale of up to few seconds. 
Longer-term musical developments, which allow, for example, to determine musical 
style or genre, happen on time-scales of more than several seconds. The basic idea 
of Gabor Scattering, as introduced in [2], see Section V.3.2, is to capture the rele
vant variability at different time-scales and separate them in various layers of the 
representation. 

We first recall (mel-)spectrograms and turn to the definition of the scattering 
transforms in Section V.3.2. 

V.3.1 Spectrograms and Mel-Spectrograms 

Standard time-frequency representations used in audio-processing are based on STFT 
Since we are interested in obtaining several layers of time-frequency representations, 
we define STFT as frame-coefficients with respect to time-frequency-shifted versions 
of a basic window. To this end, we introduce the following operators in some Hilbert 
space %. 

• The translation (time shift) operator for a function / G % and t G R is defined 
as Txf(t) := f(t - x) for all x G R. 

• The modulation (frequency shift) operator for a function / G and t G R is 
defined as Muf(t) := e27TituJf{t) for all u G i 

Now the STFT Vgf of a function / G T-L with respect to a window function g G % 
can be easily seen to be Vgf(x, u) = (/, MuTxg) with the corresponding spectrogram 
\Vgf(x,u)\2. The set of functions 

G{g,a,P) = {MP3Takg : (ah, f3j) G A} 

is a the Gabor system and is called Gabor frame [6], if there exist positive frame 
bounds A, B > 0 such that for all / G Ti 

A\\f\\2 < J2J2\(f^PjTakg}\2 < B\\f\\2. (V.l) 
k j 

Subsampling Vgf on a separable lattice A = a Z x /3Z we obtain the frame-coefficients 
of / w.r.t G(g,a,fi). Choosing A thus corresponds to picking a particular hop size 
in time and a finite number of frequency channels. 
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The mel-spectrogram MSg(f) is defined as the result of weighted averaging 
\Vgf(ak,l3j)\2: 

MSg(f)(ak, u) = £\Vgf(ak, (3j)\2 • T„(j) , 
3 

where Y„ are the mel-filters for v — 1 , K with X filters. 

V.3.2 Gabor Scattering and Mel Scattering 

We next introduce a new feature extractor called Gabor scattering, inspired by Mal-
lat's scattering transform [12] and first introduced in [2]. In this contribution, we 
further extend the idea of Gabor-based scattering by adding a mel-filtering step in 
the first layer. The resulting transform is called Mel scattering. Since the number 
of frequency channels is significantly reduced by applying the filter bank, the com
putation of MS is considerably faster. GS is a feature extractor for audio signals, 
obtained by an iterative application of Gabor transforms (GT), a non-linearity in 
the form of a modulus function and pooling by sub-sampling in each layer. Since 
most of the energy and information of an input signal is known to be captured in the 
first two layers, cp. [1], we only introduce and use the output of those first layers, 
while in principle scattering transforms allow for arbitrarily many layers. In [2], it 
was shown that the output of specific layers of GS lead to invariances w.r.t. certain 
signal properties. 

Coarsely speaking, the output of the first layer is invariant w.r.t. envelope 
changes and mainly captures the frequency content of the signal, while the sec
ond layer is invariant w.r.t. frequency and contains information about the envelope. 
For more details on GS and a mathematical description of its invariances see [2]. 

In the following, since we deal with discrete, finite signals / , we let % = Cc, 
where C is the signal length, and ft G C * for £ = 1,2. The lattice parameters of 
the GT, i.e. Ae = a{L x / ^ Z , can be chosen differently for each layer. 

The first layer, which is basically a GT, corresponds to 

/ i N ( * ) = l ( / , % j W I - (V.2) 

and the second layer can be written as 

/ 2 [ /3 i j ,M](m) = \(fi[Pij],Mp2hTa2mg2)\. (V.3) 

Note that the input function of the second layer is / i , where the next GT is applied 
separately to each frequency channel (3\j. To obtain the output of one layer, one 
needs to apply an output generating atom <f>£, cp. [2]: 
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ft\ßis,ßej] * 4>i(k) = \ {ft-i, MßüTaikgx) \ * <f>e. (V.4) 

for £ G N in general and in our case £ = 1,2. 
The output of the feature extractor is the collection of these coefficients (V.4) 

in one vector, which is used as input to a machine learning task. Based on the GS 
we want to introduce an additional mel-filtering step. The idea is to reduce the 
redundancy in spectrogram by frequency-averaging. The expression in (V.2) is then 
replaced by 

where Y„ corresponds to the mel-filters, as introduced in Section V.3.1. The other 
steps of the scattering procedure remain the same as for GS, i.e. performing another 
GT to obtain layer 2 and afterwards applying an output generating atom in order to 
obtain the MS coefficients. The output of GS and MS can be visually explained by 
Figure V . l . The naming Output A displays either the output of Equation (V.2) in 
case of GS or Equation (V.5) in the MS case. The Output B shows the spectrogram 
after applying the output generating atom and Output C illustrates the output of 
the second layer. 

In the previous sections we introduced different input data representations for sub
sequent classification via deep learning. In the following we want to investigate 
possible enhancement with alternative output/target data representations. To do 
so, we use an augmented target loss function, a general framework is introduced 
in [3]. It allows to integrate known characteristics of the target space via informed 
transformations on the output and target data. We now recall a general formulation 
of A T from [3] and describe subsequently in detail, how it can be applied on the 
studied audio data. 

Our training data is given by the M T of the sounds as inputs together with instru
ment classes as targets, introduced in Section V.2.1. The inputs to the network are 
thus arrays C M 1 2 0 x 1 6 0 and have associated target values C {0, l } 6 , 
corresponding to the 6 instrument classes. As described in Section V.2, in each 
optimization step for the parameters of the neural network, the network's output 

i C M 6 is compared with the targets {yi}r£=l via an underlying loss function L. 
However, training data often naturally contains additional important target infor
mation that is not used in the original representation. We aim to incorporate such 

A M ( * 0 = E \ ( f o , M ß l j T a i k 9 l ) \ • Tu(j) (V.5) 
3 

V.4 Augmented Target Loss Function 
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information tailored to the particular learning problem, enhancing the information 
content from the original target representation. Following the definition in [3], the 
augmented target loss function is given by 

Here, for all j — 1,..., n, we let Xj > 0 be an adjustable weight of Lj, which is some 
standard loss function and lj : {0, l } 6 —>• M.dj is a transformation which encodes the 
additional information on the target space. 

Here, T i corresponds to the identity on M 6 , i.e. no transformation is applied 
in the first component, where L\ is the categorical cross-entropy loss [20]. For 
j = 2 , . . . , n , we choose the dimension dj = 1 and Lj to be the mean squared 
error. The incorporation of additional information on the GoodSounds data set is 
described in detail in the following section. 

V.4.1 Design of Transformations 

We heuristically choose d — 16 transformations %2,... ,%n that use target char
acteristics (features) arising directly from the particular target class, with Tj : 
{0, l } 6 —>• M., for j = 2,... ,17. Amongst others the features are chosen from the 
enhanced scheme of taxonomy [18] and from the table of frequencies, harmonics 
and under tones [21]. We choose transformations that provide information that is 
naturally contained in the underlying instrument classes. The additional terms in 
the loss function (V.6) shall enable to penalize common classification errors. In 
this experiment, the transformations are given by the inner product of the out
put/target and the feature vector. E.g. we directly know to which instrument 
family an instrument belongs and distinguish between woodwind, brass and bowed 
instruments, and moreover between chordophone and aerophone instruments. Let's 
assume a target vector yi(j) = corresponds, respectively, to the instruments 
clarinet, flute, trumpet, violin, saxophone and cello, and the output of the net
work is iji = ( 0 1 , 0 2 , 0 3 , 0 4 , 0 5 , 0 6 ) £ K 6 - The feature vector v\ = (1,1,0,0,1,0) 
then captures the information "target instrument is from family woodwind". The 
transformation may be defined by Xi(yj) = (yi, V\) in order to incorporate this infor
mation. Additionally, by choosing Xj, we can weight the amount of penalization for 
wrong assignments in (Xi(yj) — 1i(yi))2. Amongst others we also use minimum and 
maximum frequencies of the instrument as features. E.g. the feature corresponding 
to minimum frequency v2 = ( 6 1 , b2,b^, 64 , 6 5 , b$) G M 6 . Again the transformation is 
given by %2(yi) = {yi, v2). Choosing the right penalty for this feature could prohibit 
that instruments belonging to the same instrument family are classified wrong, e.g. 

n 
(V.6) 

145 



a cello that would be classified as a violin. One can think about A T as a method 
to more precisely define the measure of distance between the predicted and target 
classes. 

V.5 Numerical Experiments 

In the numerical experiments, we compare the performances of CNNs trained us
ing the C C loss and time-frequency representations mentioned in Section V.3. As 
a baseline, we use the results of M T . Furthermore we compare the baseline with the 
results of M T with AT loss as introduced in Section V.4. The overall task is a multi-
class classification of musical instruments based on the audio signals introduced in 
Section V.2.1. 

V.5.1 Computation of Signal Representations 

The raw audio signals were transformed into M T , MS and GS time-frequency rep
resentations, using the Gabor-scattering vO.0.4 library [7]. The library contains our 
Python implementation of all previously mentioned signal representations, with the 
aim to provide the community with an easy access to all of the transformations. 
The library's core algorithms are based on Scipy vl.2.1 [9, 15, 5] implementation of 
STFT and mel-filter banks from Librosa vO.6.2 library [14]. 

A l l the representations are derived from GT. In order to have a good resolution 
in time and frequency for our classification task, we have chosen the parameters 
heuristically. The final shapes of the representations are shown in Table V . l . The 
three dimensional output of GS contains the G T and outputs of layer 1 and 2 of 
the GS cf. [2], the same applies to MS. The visualizations of the time-frequency 
transformations of an arbitrary training sample are shown in Figure V . l . 

V.5.2 Deep Convolutional Neural Network 

We implemented our experiment in Python 3.6. A C N N was created and trained 
from scratch on Nvidia G T X 1080 T i G P U in Keras 2.2.4 framework [4] using 
the described training set split into batches of size 128. We used an architecture 
consisting of four convolutional stacks. Each of them consists of a convolutional 
layer, rectified-linear unit activation function and average pooling. These stacks 
were followed by a fully connected layer with softmax activation function. Each 
network had to be adjusted slightly, because the input shapes changed according to 
the time-frequency representation used (GS has 3 channels, M T has less frequency 
channels etc.). We have tried to make the results as comparable as possible, therefore 
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Fig. V . l : Visualization of time-frequency transformations. 

the networks differ only in the number of channels of the input layer, the rest of 
the network is only affected by the number of frequency channels, which thanks to 
pooling did not cause significant difference in the number of trainable parameters. 
A l l networks have comparable number of trainable parameters within the range 
from 81042 to 83 882. The weights were optimized using Adam optimizer [10]. 
Reproducible open source code can be found in the repository [8]. 

V.5.3 Training and Results 

A l l the samples were split into training, validation and testing sets in such a way 
that validation and testing sets have exactly the same number of samples from each 
class, while this holds for training set only approximately. Segments from audio files 
that were used in validation or testing were not used in training to prevent leaking 
of information. Detailed information about the used data, stride settings for each 
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Fig. V.2: C N N performance milestone reached over number of weight updates. The 
computational effort in all experiments was limited to 11 000 weight updates. Figure 
notation: Valid acc- Accuracy performance metric measured on the validation set. 
Best w.u.-Weight update after which the highest performance was reached. 
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Table V . l : Shapes and execution time 

T F shape C C AT 

GS 3 x 480 x 160 950 ms -
M T 1 x 120 x 160 250 ms 320 ms 
MS 3 x 120 x 160 450 ms -

Table notation: T F - Time-frequency representation. C C / A T - T h e execution time 
of one weight update during training with C C / A T loss function. 

class, obtained number of segments and their split can be found in the repository [8]. 
In total we have trained 36 different models (MT, MS, GS with C C and M T with 

AT trained on 9 training set sizes), with the following hyper-parameters: number 
of convolutional kernels in the first 3 convolutional layers is 64 each, learning rate 
is 0.001, A of AT is 10 and A of L 2 weight regularization is 0.001. As a baseline 
we have used M T with a standard C C loss function as implemented in the Keras 
framework and described in detail in Section V.2. The computational effort was 
limited to 11000 weight updates. Time necessary for one weight update of each 
model is shown in Table V . l . 

Table V.2 shows the highest achieved accuracies of the C N N models trained with 
M T for different training set sizes along with the improvements of this baseline by 
proposed methods. Accuracy is computed as a fraction of correct predictions to all 
predictions. In Figure V.2 we compare the number of weight updates necessary to 
surpass a certain accuracy threshold for all proposed methods. Occlusion maps [19] 
for a random MS sample are visualized per 3 frequency bins in Figure V.3. 

V.6 Discussion and Conclusions 

Our previous work on Gabor scattering showed that signal variability w.r.t. different 
time scales is separated by this transform, cf. [2], which is a beneficial property for 
learning. The common choice of a time-frequency representation of audio signals 
in predictive modeling is mel-spectrogram; hence, as a natural step, we introduced 
MS in this paper, a new feature extractor which combines the properties of GS 
with mel-filter averaging. We also investigated the impact of additional information 
about the target space through AT on the performance of the trained C N N . 

From the results on GoodSounds dataset shown in Table V.2, we see that all 
proposed methods outperform the baseline (mel-spectrogram with categorical cross-
entropy loss) on the first three most limited training sets, i.e. the data sets with 
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Table V.2: Improvements of the M T Baseline 

Highest validation set accuracies 

NB M T M T A T 
MS GS 

1 63.33 % +3.01 % +3.50% +7.15% 
3 74.37% +0.74 % +0.80 % +7.74% 
5 80.17% + 1.02% +0.31 % +6.60 % 
7 82.93% -1.12% -0.09% +5.63 % 
9 85.40% +0.95 % -0.43 % +5.28 % 

11 86.53% +0.33 % + 1.26% +5.57% 
55 96.06% -0.27% -0.27% +2.52 % 

110 96.31% -0.04% +0.06% +2.53 % 
550 96.00% +0.74% +0.48 % +3.12% 

Corresponding testin g set accuracies 

NB M T M T A T 
MS GS 

1 64.28% +2.73 % +3.36 % +6.93 % 
3 75.61 % +0.58 % +0.32 % +7.26% 
5 80.69 % +0.79 % +0.07% +6.93 % 
7 83.48% -1.13% +0.37% +6.30 % 
9 86.30% +0.54% -0.43 % +5.23 % 

11 87.41 % -0.43 % + 1.30% +4.85 % 
55 96.27% -0.20 % -0.31% +2.26 % 

110 96.80% -0.55 % -0.12% +2.21 % 
550 96.72% +0.27% +0.07% +2.29 % 

Table notation: NB-Number of training batches with 128 samples each. M T , MS 
and GS-mel-spectrogram, Mel scattering and Gabor scattering as input represen
tations with CC. M T here servers as a baseline for comparison with other methods. 
M T A T ~ mel-spectrogram as input representation with AT. Testing set accuracies 
were evaluated after the epoch where the validation accuracy was the highest. 
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Fig. V.3: Visualization of occlusion maps and frequency channel importance based 
on the best performing model trained on 1 batch of MS. Signal shown is ran
domly selected alto sax sample. Figure notation: Input-input representation for 
C N N . Occ-occlusion map created by sliding occlusion window. Input © O c c + -
Elementwise multiplication of input with positive semidefinite occ (negative ele
ments were changed to zeros before multiplication). Blue and red colors - Positive 
and negative influence of particular frequency channel bin on the model performance. 
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the least amount of data. A l l proposed methods also show a trend to achieve better 
results earlier in the training, as visible in Figure V.2. This trend seems to diminish 
with bigger training set sizes. Improvements on the last, biggest training set can 
be justified by the fact that this experiment was interrupted before it had the time 
to converge, therefore highlighting earlier successes of the proposed methods. From 
the newly proposed methods, AT is the least expensive in terms of training time, 
but on the other hand yields the smallest improvement in this experimental setup. 
Nevertheless, it has another advantage: it steers the training towards learning the 
penalized characteristics, e,g. to learn the characteristic of an instrument being or 
not being a wood instrument if the information about this grouping is provided 
through AT. We believe that the positive effect of AT in this setup becomes obso
lete with higher number of training batches because after training above a certain 
accuracy threshold, the network already predicts the correct groups of classes and 
therefore can not gain from A T anymore. 

MS performed better than both M T and M T A T for slightly higher cost of com
putation and also achieved the same performances earlier. GS outperformed all of 
the tested methods and showed an improvement over all training set sizes, however 
this might also suggest that GT (without mel-filtering) would be a better input data 
representation for this task in the first place. As in GS, MS comprises exclusively 
the information of its M T origin. The separation of the embedded information into 
three distinct channels might be the reason for its success. The evidence is visible 
in Figure V.2, which shows MS reaching higher accuracies after less weight updates 
than M T , suggesting that the network did not have to learn similar separation during 
training. Also, the visualization in Figure V.3 supports this by showing a positive 
influence of Outputs A and B on the model's performance. 

It remains to be said, that improvements which can be gained by using AT, MS 
or GS highly depend on the task being solved, on the choice of transformations 
based on the amount of additional available information for AT and on the correctly 
chosen parameters of the time-frequency representations. 

From what was stated above, we can conclude that A T provides a more precise 
measure of distance between outputs and targets. That's why it can help in scenarios 
where the training set is not large enough to allow the learning of all characteristics, 
but can be penalized by AT. We suggest to use/experiment with the proposed meth
ods for other data sets if there is not a sufficient amount of data available or/and 
there exist reasonable transformations in the target space relevant to the task being 
solved. A l l proposed methods might be found useful also in scenarios with limited 
resources for training. 

In order to obtain reliable statistical results on the various methods, it would 
be necessary to run all experiments several hundred times with different seeds. For 
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the current contribution, such a procedure was not included due to the restriction 
of computational resources and is thus left for future work. 
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