ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE

Technická fakulta

Katedra materiálů a strojírenské technologie

Laboratorní zkoušky návarových materiálů proti abrazivnímu opotřebení

Autor: Bc. Eduard Veselík Vedoucí práce: Ing. Petr Hrabě, Ph.D.

Praha 2014

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE

Katedra materiálu a strojírenské technologie

Technická fakulta

ZADÁNÍ DIPLOMOVÉ PRÁCE

Veselík Eduard

Silniční a městská automobilová doprava

Název práce

Laboratorní zkoušky návarových materiálů proti abrazivnímu opotřebení

Anglický název

Laboratory testing of overlaid materials against abrasive wear

Cíle práce

Shromáždit literární podklady o používaných návarových materálech. Vyhodnocení odolnosti experimentálních zkoušek opotřebení.

Metodika

Současný stav řešeného problému (literární rešerše), cíle práce a metody jejího vypracování, výsledky experimentů a jejich diskuze, závěry a přínos práce.

Osnova práce

- 1. Úvod
- 2. Cíl práce a metodika
- 3. Současný stav problematiky opotřebení
- 4. Experimentální zkoušky opotřebení
- 5. Závěr
- 6. Seznam použité literatury

Rozsah textové části

60

Klíčová slova

Abrazivní opotřebení, tvrdost, abrazivní částice

Doporučené zdroje informací

DASTUR, M., R., MOSKOVITC, L., N.: Tallored coating for hardfacing. In: Proceeding of the annual powder. Metalurgy conference, 1983, No 39, s. 307 - 321.

DORAZIL, E.: Strojírenské materiály a povrchové úpravy. Brno, VUT, 1988, 330 s.

Friction and Wear Testing. American Society for Testing and Materials, West Conshohocken, PA, 1987, pp. 186.

KRAKOZOV, E., S.: Sojediněje matalov v tvěrdoj faze. Moskva, Metalurgija, 1976, 264 s.

KUČÍRKOVÁ, V.: Organické povrchové úpravy. Bratislava, STK, 1974, 99 s.

Repair and Maintenance Welding Handbook. ESAB AB, 120 s.

STEDFELD, R., L.: Metals Handbook. Vol. 5., Surface cleaning, finishing and coating. 9 ed. Metals Park, Ohio, American Society for Metals, 1982, XVI,k 715 s.

TUMANOVA, N., CH.: Galvaničeskije pokrytija iz ionnych rasplavov. Kijev, 1983, 164 s.

Časopisy: Strojírenská technologie, MM průmyslové spektrum, TM Svařování - dělení - spojování materiálů, Technik. Firemní literatura: katalogy, prospekty.

Vedoucí práce Hrabě Petr, Ing., Ph.D.

Termín zadání listopad 2012

Termín odevzdání duben 2014

STAL

prof. Ing. Milan Brožek, CSc. Vedoucí katedry

prof. Ing. Vladimír Jurča, CSc. Děkan fakulty

/ Prazo dne 18.3.2013

STRUCTURES INTO A DESCRIPTION PROFESSION AND A DESCRIPTION OF A DESCRIPTIO

Prohlášení

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Ing. Petra Hraběte, Ph.D. a že jsem uvedl všechny prameny, ze kterých jsem čerpal.

V Praze dne 23.2.2014

Eduard Veselík

Abstrakt

V první části práce jsou popsány procesy opotřebení a jeho rozdělení. Detailně je zde shrnuta současná problematika abrazivního opotřebení. Obsahuje základní model abrazivního opotřebení a vlivy, které ovlivňují jeho velikost. Dále jsou zde popsány přístroje na hodnocení odolnosti materiálů proti abrazivnímu opotřebení.

V druhé části je řešena experimentální zkouška odolnosti návarů proti abrazivnímu opotřebení. Je zde popsán výběr materiálů (základního, návarových a abrazivních), výroba vzorků, měření tvrdosti a celý průběh zkoušky. Poslední kapitolou je vyhodnocení odolnosti návarů proti abrazivnímu opotřebení.

Klíčová slova: abraze, navařování, opotřebení, tvrdost

Laboratory testing of overlaid materials against abrasive wear

Abstract

In the first part are described processes and distribution of wear. It's summerized present issues of abrasive wear in details there. It contains basic model of abrasive wear and effects which affect volume of abrasive wear. There are described the devices on the evaluation of the resistance to abrasive wear.

In the second part is solved experimental test of resistence to abrasive wear hardfacing. There is described selection of materials (basic, hardfacing and abrasive), processes of production specimen, measurement of hardness and exam. Last chapter is the evaluation of the restistance to abrasive wear of hardfacing.

Key words: abrasion, welding, wear, hardness

Obsah

1	ÚV	YOD	8
2	CÍ	L PRÁCE A METODIKA	9
2.1	(Cíle práce	9
~ ~		Matadika nráza	0
2.2	Γ	vietourka prace	9
3	SO	UČASNÝ STAV PROBLEMATIKY OPOTŘEBENÍ	10
31	(Dnatřehení	10
5.1			10
3.2	7	Základní procesy porušování povrchu součástí	11
3	.2.1	Mikrořezání	11
3	.2.2	Plastické vytěsňování	12
3	.2.3	Delaminace	12
3	.2.4	Vytrhávání	12
3	.2.5	Hloubkové porušování (výrazné vytrhávání)	13
22	т	Dazdělaní anatřahaní	12
5.5	1		13
3.4	A	Abrazivní opotřebení	13
3	.4.1	Opotřebení volnými nebo vázanými abrazivními částicemi a funkčním	
р	ovrc	hem (interakce dvou těles)	14
3	.4.2	Opotřebení abrazivními částicemi mezi dvěma funkčními povrchy (interak	ce
tì	'í těl	es)	. 14
3	.4.3	Zjednodušený model abrazivního opotřebení	15
	3.4	.3.1 Mechanizmy abrazivního opotřebení	19
3	.4.4	Vlivy na velikost abrazivního opotřebení	20
	3.4	.4.1 Vliv velikosti abrazivních částic	20
	3.4	.4.2 Vliv tvaru abrazivních částic	21
	3.4	.4.3 Vliv pevnosti abrazivních částic	22
	3.4	.4.4 Vliv tvrdosti materiálu a abraziva	23
	3.4	.4.5 Vliv kluzné rychlosti	25
	3.4	.4.6 Vliv vlhkosti	26
3	.4.5	Hodnocení odolnosti materiálů proti abrazivnímu opotřebení	27
	3.4	.5.1 Provozní zkoušky	29
	3.4	.5.2 Laboratorní zkoušky	29

4	EXPERIMENTÁLNÍ ZKOUŠKY OPOTŘEBENÍ	35
4.1	Výroba zkušebních vzorků	35
4	.1.1 Základní materiál	37
4	1.2 Návarové materiály	37
4.2	Volba a příprava abrazivních částic	40
4.3	Měření tvrdosti	43
4.4	Zkoušky odolnosti návarů proti abrazivnímu opotřebení	47
4.5	Vyhodnocení zkoušek	52
5	ZÁVĚR	63
6	SEZNAM POUŽITÉ LITERATURY	64
7	PŘÍLOHY	67
7.1	Příloha I	67
7.2	Příloha II	69
7.3	Příloha III	72
7.4	Příloha IV	75
7.5	Příloha V	77

1 Úvod

V dnešní době je kladen velký důraz na provozuschopnost a bezporuchovost strojů a jejich součástí. Strojní zařízení, které nevykonává správně svoji funkci, musí být vyřazeno z výroby a opraveno, čímž se zvyšují náklady na výrobu. Je tedy snaha, aby součásti strojních zařízení měly co nejdelší dobu životnosti.

V průběhu technické životnosti strojních součástí přesto dochází k jejich opotřebení, přičemž přes 50 % tohoto opotřebení připadá na opotřebení abrazivní. Abrazivní opotřebení způsobují převážně minerální částice, které jsou buď volné, nebo pevně vázané. K abrazivnímu opotřebení dochází při těžbě surovin, v zemědělství, během jakékoliv manipulace se sypkými materiály a při spoustě dalších činností. Jde tedy o nejčastější druh opotřebení.

Často dochází k postupné změně nebo kombinaci více typů opotřebení, nejčastěji jde o abrazivní a adhezní opotřebení. U takto poškozených součástí se následně velmi těžko zkoumá prvotní příčina poškození.

Zvýšení doby životnosti strojních součástí je možné použitím odolnějších materiálů, což by ale bylo drahé při použití takového materiálu na celou strojní součást. Mnohem efektivnější je vyrobit součást z běžných konstrukčních materiálů a pouze opotřebovávaný povrch opatřit vrstvou materiálu s větší odolností proti abrazivnímu opotřebení.

Jednou z možností jak vytvořit takovou vrstvu na strojních součástech je použití návarů, jejichž odolností proti abrazivnímu opotřebení se zabývá tato práce. Znát tyto vlastnosti návarových materiálů je velice důležité pro navrhování nových součástí, které mají odolat abrazivnímu opotřebení a tím prodloužit životnost dané součásti. Jsou však důležité i pro následné opravy součástí, u kterých dochází k navařování abrazivně odstraněného materiálu, který může být nahrazen materiálem s vyšší odolností proti abrazivnímu opotřebení.

2 Cíl práce a metodika

2.1 Cíle práce

Cílem práce je zaprvé shrnout současný stav problematiky opotřebení.

Za druhé se práce snaží určit poměrnou odolnost návarových materiálů proti abrazivnímu opotřebení na zkušebním přístroji s pryžovým kotoučem (volnými abrazivními částicemi). Výstupem této zkoušky jsou hmotnostní úbytky návarového materiálu.

Dalším cílem je určit střední velikost abrazivních částic před a po provedení zkoušky odolnosti proti abrazivnímu opotřebení.

2.2 Metodika práce

Současný stav problematiky opotřebení, který je popsán v první části práce, je řešen formou literární rešerše. Jsou zde uvedeny vlivy na velikost abrazivního opotřebení a přístroje na jeho zkoušení.

Experimentální část práce nejprve popisuje výběr materiálů, základního (S235JR), dále tří návarových (SK 258 TIC – O, SK 299 – O a SK 900 – O), a tří abrazivních (SiO₂, Ocelová drť GH80 a Al_2O_3). Dále je zde popsána výroba zkušebních vzorků a měření jejich tvrdosti dle Vickerse. Následně je popsaný celý průběh zkoušky na přístroji s pryžovým kotoučem. Pro tyto zkoušky byla vytvořena tato metodika měření, hmotnostní úbytky návarových materiálů se budou měřit po nultém, prvním, druhém, pátém, osmém a devátém měření.

Zkoušky byly provedeny pro vybrané návarové materiály za použití tří zvolených abraziv podobné zrnitosti. Výsledky zkoušek návarových materiálů byly porovnány s výsledky zkoušky se základním materiálem, který byl použit jako etalon. Následně byly ještě provedeny zkoušky stejných návarových materiálů při použití abraziva z hnědého korundu tří různých zrnitostí.

Po provedení všech zkoušek následovalo měření střední velikosti abrazivních částic před a po provedení jedné zkoušky.

3 Současný stav problematiky opotřebení

3.1 Opotřebení

Definice opotřebení zní: opotřebení je trvalá nežádoucí změna povrchu nebo rozměrů tuhých těles, vyvolaná vzájemným působením funkčních povrchů nebo funkčního povrchu a média, které opotřebení vyvolává [1].

V současnosti se pojem opotřebování omezuje především na tuhá tělesa. Při analýze opotřebení tuhých těles je třeba vycházet z redukovaného tribologického systému, který má základní třecí těleso, druhé třecí těleso a okolí. Pro dosáhnutí reálných výsledů je třeba s velkou přesností kvantifikovat vstupní veličiny, vybrat vhodný model a diferencovat hloubku vyšetřování, kterou může určovat makroskopický a mikroskopický model. Použitím jednoduchých vztahů vyjadřujících závislosti opotřebení se lze lišit od skutečnosti až o několik řádů [2].

Makroskopické chápání opotřebení odpovídá globálnímu pozorování, tedy integrovanému zachycení více či méně výrazných změn v materiálových a tvarových dvojicích. Souhrn všech těchto změn se označuje jako opotřebení [2].

Mikroskopické chápání opotřebení se zabývá pozorováním základních procesů. Lokální plastické deformace, které se vzhledem k relativnímu pohybu koncentrují na inhomogenní roviny krystalické mřížky, působí dislokačně a vedou ke vzniku trhlin. Zrovna tak struktura kovů na hranici zrn výrazně ovlivňuje opotřebení. Objasnit jednotlivé procesy v této oblasti je možné pouze mikroskopickým pozorováním [2].

Opotřebení se projevuje změnou velikosti a tvaru povrchových materiálových oblastí tuhých těles. Patří k nim deformace, zpevňování, měknutí, oddělování, tavení, sublimace, nanášení a přenášení. Dále se projevuje materiálovou změnou povrchových oblastí tuhých těles. K nim patří adsorpce, absorpce, difuze, legování atd. [2].

Opotřebení má svůj určitý časový průběh. Charakteristický průběh je na obr. 1. Je rozdělen do tří časových úseků, ve kterých se rychlost opotřebování mění. V první fázi, na obrázku vyjádřené rozměrem a, dochází k záběhu součásti. Ve druhé fázi, na obrázku vyjádřené rozměrem b, je průběh normálního technického života součásti. V poslední fázi, označené rozměrem c, dochází k dožívání součásti a její stav se blíží havarijnímu [2].

Obr. 1 Průběh opotřebení, [2]

3.2 Základní procesy porušování povrchu součástí

3.2.1 Mikrořezání

Tvrdé abrazivní částice mohou vtlačováním do třecího povrchu způsobovat mikrořezání materiálu. Mikrořezání se při opotřebení vyskytuje zřídkakdy, jelikož hloubka vniknutí není na řezání dostatečná [2].

3.2.2 Plastické vytěsňování

Vtlačující se objem částice při tření tlačí před sebou, do stran a pod sebe určitý objem materiálu, který za sebou zanechává stopy v podobě rýh. Třecí plocha je tak pokrývána rýhami, které jsou prakticky rovnoběžné s třecí dráhou. Mezi rýhami je tak materiál, který odolal vícenásobné plastické deformaci, čímž je zpevněný a má vyčerpanou zásobu plasticity [2].

Při zatížení takového místa lehce vznikají trhliny a s jejich rostoucím počtem se materiál odděluje od základu. Někdy se stává, že se částice při zatlačení do tvrdší složky materiálu může odklonit od směru třecí dráhy [2].

3.2.3 Delaminace

Materiál se při plastické deformaci může vytěsňovat do stran a po vyčerpání plastické schopnosti materiálu se odděluje od povrchu. Přitom pro tyto částice je charakteristický šupinový tvar.

Šupinky se tvoří podle následujících procesů:

- generování dislokací v podpovrchové vrstvě,
- nahromadění dislokací,
- tvorby poruch,
- hromadění poruch, čím vznikají trhliny [2].

3.2.4 Vytrhávání

Jde o mechanizmus, který se často projevuje při valivém tření. Způsobují ho vysoká špičková napětí v povrchové vrstvě po opracování, dále trhliny po cementaci, kalení, nebo stárnutí.

Vytrhávání těsně předchází tvorba trhlin a jejich rozvoj, kterým se ohraničí malé objemy materiálu a dojde k jeho vytrhnutí [2].

3.2.5 Hloubkové porušování (výrazné vytrhávání)

Hloubkové porušování vzniká při relativním pohybu dvou těles, u kterých došlo k jejich spojení (lokálnímu svarovému spoji). Porušení pak nastává v hloubce jednoho z nich. Vytržená částice zůstává přivařena k druhému tělesu, což je jedna z příčin přenosu materiálu. Produkty takovéhoto opotřebení mohou dosahovat velikost od několika μm až po několik mm [2].

3.3 Rozdělení opotřebení

Opotřebení se dělí na:

- o adhezivní,
- o abrazivní,
- o erozivní,
- o kavitační,
- o únavové,
- o vibrační [1].

V praxi však často dochází k jejich kombinaci.

Experimentální část této práce se týká abrazivního opotřebení, proto se i teoretická bude zabývat pouze opotřebením abrazivním.

3.4 Abrazivní opotřebení

Abrazivní opotřebení je definováno jako ztráta hmoty z povrchu zapříčiněná klouzáním poměrně tvrdým abrazivem, které zanechává rýhu na povrchu součásti [3].

Abrazivní opotřebení je charakterizováno oddělováním částic materiálu z funkční plochy účinkem tvrdšího a drsnějšího povrchu jiného tělesa, nebo abrazivními částicemi. Podle charakteru vzájemných interakcí rozlišujeme dva základní typy abrazivního opotřebení. U prvního typu jde o opotřebení interakcí dvou těles. Nejčastěji jde o volné částice a funkční povrch součásti. K tomuto typu abrazivního opotřebení dochází nejčastěji při zpracování půdy, těžbě surovin apod. U druhého typu jde o

interakci tří těles, zpravidla se jedná o interakci volných částic mezi dvěma funkčními povrchy. Praktickým příkladem tohoto typu abrazivního opotřebení je například drcení nerostů. Schéma obou typů abrazivního opotřebení je na obr. 2 [2].

Obr. 2 Dva základní typy abrazivního opotřebení a) dvou těles, b) tří těles, [2]

3.4.1 Opotřebení volnými nebo vázanými abrazivními částicemi a funkčním povrchem (interakce dvou těles)

Nejjednodušším případem tohoto modelu abrazivního opotřebení je působení brusného papíru po opotřebovávaném povrchu. Vázané abrazivní částice se chovají jako řezný nástroj [4].

Původně se myslelo, že jsou modely opotřebení dvou a tří těles modely podobné, je mezi nimi však několik významných rozdílů, například, že model abrazivního opotřebení dvou těles probíhá přibližně 10x rychleji, než u modelu třítělesového [4].

Nejčastěji se s tímto opotřebením setkáváme při těžbě štěrku, písku, při zpracování půdy v zemědělství a při jakémkoliv přemisťování sypkých materiálů [5].

3.4.2 Opotřebení abrazivními částicemi mezi dvěma funkčními povrchy (interakce tří těles)

Nejčastějším případem tohoto modelu abrazivního opotřebení je účinek abrazivních částic obsažených ve vzduchu. Největší zastoupení v prachu mají sloučeniny Si, nejčastěji SiO₂. V průmyslových oblastech pak převládají přímo zpracovávaná média.

Pokud se tyto nečistoty dostanou mezi kluzné dvojice, lze u nich očekávat abrazivní opotřebení [5].

Opotřebení ploch kluzné dvojice není konstantní, ale závisí na několika faktorech podobně jako u interakce dvou těles. U tohoto typu opotřebení bude mít ovšem velký vliv doba působení. Budou-li mezi funkční plochy přicházet stále nové abrazivní částice, bude opotřebení s časem úměrně stoupat. Pokud ale budou abrazivní částice zůstávat mezi funkčními povrchy, jejich abrazivní účinek se bude stále zmenšovat. Abrazivní opotřebení pak bude narůstat jen velmi pomalu, ale poškození funkčních ploch vyvolá jiný druh opotřebení, zpravidla adhezivní. Pro analýzu takto opotřebených součástí je složité určit prvotní příčinu poškození [5].

Abychom zajistili maximální životnost kluzných dvojic, je nutné zamezit možnému vniknutí abrazivních částic mezi funkční plochy. Toho lze docílit utěsněním kluzné dvojice například těsnícími kroužky, manžetami či labyrinty [5].

3.4.3 Zjednodušený model abrazivního opotřebení

Nejjednodušší model abrazivního opotřebení je případ, kdy pevně vázané tvrdé abrazivní částice při relativním pohybu rýhují opotřebovávaný povrch. U tohoto procesu může i nemusí docházet k oddělování třísek opotřebovávaného materiálu. Tento model je znázorněn na obr. 3. U abrazivního opotřebení dochází ke dvěma extrémům.

Obr. 3 Model abrazivního opotřebení, [6]

K prvnímu extrému dochází, pokud dochází k plastické deformaci spojené s rýhováním povrchu. Na abrazivním zrnu se tvoří nárůstek a materiál je kontinuálně vytlačován do boků a vytváří valy okolo rýhy. Teoreticky v tomto případě nedochází k přenosu materiálu, ani se nevytváří částice otěru. Ve skutečnosti však bude docházek k otěru z důvodu vyčerpání plastické deformační schopnosti povrchových vrstev materiálu [6].

U druhého případu je tvorba rýh spojena s odstraňováním materiálu z povrchu mikrořezáním. V extrémním případě dojde k odstranění celého objemu materiálu rýhy formou třísky bez vytvoření valů okolo rýhy. Ve skutečnosti může docházet při procesu abrazivního opotřebení k porušování jeho povrchových vrstev nízko a vysoko cyklovým kontaktním únavovým procesem a rýhováním společně s oddělováním částic opotřebovávaného materiálu. Při vyšších rychlostech relativních pohybů abrazivních částic a materiálu lze očekávat i další degradační mechanizmy jako například tepelné ovlivnění materiálu, adsorpční porušování a tribotechnické reakce opotřebovávaného materiálu s okolním prostředím [6].

Na obr. 4 je zjednodušený model abrazivního opotřebení kuželovou nerovností podle Rabinowicze [6].

Obr. 4 Model řezného pohybu abrazivní částice, [5]

Pro tento model platí následující vztahy.

$$F = p_m \cdot r^2$$
$$dW_0 = r \cdot h \cdot dl = \frac{F \cdot tg\alpha}{p_m \cdot \pi} dl$$
$$W_0 = K_{abr} \cdot \frac{F \cdot l}{p_m}$$
$$K_{abr} = 0.96 \cdot tg\alpha$$

kde p_m – tvrdost povrchu (závislé na úhlu α)

r – poloměr vtisku

Wo-objem odstraněného materiálu

 K_{abr} – konstanta průměrující úhly částic abraziva (u funkční plochy a abraziva jsou hodnoty od 2.10⁻¹ do 2.10⁻², u dvou ploch a abraziva od 2.10⁻² do 2.10⁻³) [7].

Tato rovnice však vyjadřuje pouze velmi hrubé přiblížení skutečnosti, protože málokdy jsou v kontaktu s opotřebovávaným povrchem všechny částice. Další nepřesnost je způsobena předpokladem, že vnikající kužel je dokonale tuhý. Tato skutečnost nemůže být nikdy splněna. Ve skutečnosti v místě dotyku dochází k pružným, pružně plastickým a plastickým deformacím [5].

K pružným deformacím dochází pokud:

$$\frac{h}{R} = 0.1 - 0.0001$$

k plastickým deformacím dochází pokud:

$$\frac{h}{R} = 0,1-0,2$$

a k mikrořezání pokud:

$$\frac{h}{R} \ge 0,2$$

kde h – hloubka vniku výstupku

R – poloměr daného výstupku [6].

U styku rovinného povrchu s brusným plátnem jsou v kontaktu pouze nejvyšší částice. Se stoupajícím zatížením vznikají plastické deformace a zvyšuje se i počet dotykových bodů. Ačkoliv brusné plátno není ideálně tuhé těleso, pokusy prokázali, že do určité velikosti zatížení se abrazivní částice chovají jako pevně vázané. Se stoupajícím zatížením dochází k porušování hrotů abrazivních částic a zároveň i jejich zatlačování do pojiva nebo podkladového materiálu [5].

Obr. 5 Rozmělnění abrazivních částic, [5]

V praxi často dochází k případům, kde jsou částice zcela volné, nebo jen velmi slabě vázané. Při těchto podmínkách dochází kromě vzájemného pohybu abrazivních částic a povrchu i k vzájemnému pohybu částic mezi sebou. Z toho vyplývá, že volné abrazivní částice mají nižší účinek, než částice vázané.

Při styku abrazivních částic s dvěma povrchy jejich rozmělnění, jak je tomu na obr. 5, nebo k zamáčknutí částic do měkčího povrchu (obr. 6).

Obr. 6 Zamáčknutí abrazivní částice do měkčího povrchu, [5]

Na obr. 6 je částečně zamáčknutá abrazivní částice do materiálu o tvrdosti p_1 (průměr plochy vtisku A_1) a do materiálu o tvrdosti p_2 (průměr plochy A_2).

Rovnice vyplývající z tohoto vztahu je:

$$F = A_1 \cdot p_1 = A_2 \cdot p_2$$

Pokud by se tvrdosti p_1 a p_2 rovnali, rovnali by se i plochy vtisku, což by znamenalo kulatou částici. Častěji se však v praxi vyskytuje případ, kdy se tvrdosti nerovnají. Pak se často částice zamáčkne do měkčího povrchu a rýhuje povrch tvrdší. Paradoxně je pak větší opotřebení tvrdšího povrchu. Opotřebení abrazivními částicemi je velmi komplikovaný děj, při kterém velikost abrazivního opotřebení závisí na velkém množství vlivů [5].

3.4.3.1 Mechanizmy abrazivního opotřebení

Mikroskopické zkoumání abrazivního opotřebení však ukázalo, že tento proces neprobíhá pouze řezáním povrchu. Abrazivní částice mohou způsobovat na povrchu buďto mikrořezání, mikrotrhliny, vytrhávání zrn, nebo únavu po předchozích deformacích [4].

Obr. 7 Mechanizmy abrazivního opotřebení, [4]

3.4.4 Vlivy na velikost abrazivního opotřebení

Velikost abrazivního opotřebení je závislá na:

- velikosti abrazivních částic
- tvaru abrazivních částic
- pevnosti abrazivních částic
- tvrdosti abrazivních částic a návaru
- kluzné rychlosti
- vlhkosti abrazivních částic [1, 5].

3.4.4.1 Vliv velikosti abrazivních částic

Pokud jsou volné abrazivní částice mezi dvěma povrchy, dochází k abrazivnímu opotřebení pouze částicemi, které jsou větší než, mezera mezi oběma povrchy [1]. Ze zkoušek různých materiálů při různém zatížení a velikosti abrazivních částic se ukázalo, že mezi nimi není lineární vazba. Byla zjištěna takzvaná kritická velikost zrna, u které se výrazně mění závislost opotřebení na průměrné velikosti abrazivních částic. Na obr. 8 je závislost objemového otěru na velikosti abraziva při rostoucím zatížení. Z grafu je

patrno, že kritická velikost zrna je závislá na zatížení. Zjistilo se, že kritická velikost zrna je ovlivněna několika parametry. Mezi hlavní patří rozměr vzorku, použité částice a vlastnosti opotřebovávaného materiálu [5].

Obr. 8 Vliv zrnitosti na velikost abrazivního opotřebení, [5]

Hlavním poznatkem tedy je, že se zmenšováním velikosti abrazivních částic pod uvedenou kritickou hodnotu jejich abrazivní účinek znatelně klesá. Tato skutečnost může velmi přispět při řešení problému s nežádoucími účinky abrazivních částic, které se vměšují do maziv [5].

3.4.4.2 Vliv tvaru abrazivních částic

Vliv na velikost abrazivního opotřebení má i tvar abrazivních částic, které se dají charakterizovat těmito faktory:

- množstvím hran či výstupků (makrogeometrie),
- hladkostí povrchu hran či výstupků (mikrogeometrie),
- poloměrem výstupků [5].

Makrogeometrii lze posuzovat například podle součinitele hranatosti. Tento součinitel vyjadřuje poměr povrchu skutečného zrna k povrchu koule o stejném objemu. Měření tohoto součinitele se prování například při určování vlastností slévárenských písků [5].

Lze předpokládat, že čím více se bude částice lišit od ideálního kulového tvaru, tím větší počet výstupků bude mít. Čím více těchto výstupků bude, tím větší bude i pravděpodobnost rýhování a oddělování částic z funkčního povrchu při relativním pohybu [1].

Mikrogeometrii lze použít pro studium vlastního mechanizmu opotřebení. Pro svoji náročnost však není vhodné ji použít pro praktické účely. Touto metodou lze charakterizovat tvar částic a jejich změny v průběhu abrazivního opotřebení [5].

3.4.4.3 Vliv pevnosti abrazivních částic

Pro průběh a intenzitu abrazivního opotřebení má velký význam pevnost abrazivních částic. Při abrazivním opotřebení součástí dochází na jedné straně k porušování materiálu a na druhé straně k otupování a vylamování výstupků a hran abrazivních částic. Ukazuje se, že při malém silovém působení se příliš nemění průměrná velikost zrn, ale mění se jejich mikrogeometrie. Při větším silovém působení dochází k většímu porušení zrn, zejména k jejich fragmentaci [5]. Tím se do jisté míry kompenzuje větší otupování výstupků a hran, což je zřejmě důvodem, proč při větším silovém působení není pokles abrazivity výrazně větší [1].

Na obr. 9 je změna abrazivní schopnosti zrn korundu a SiC při velkém silovém zatížení. Zkouška probíhala mezi rotujícími válci. Při zkoušce se opakovaně používaly tytéž částice a zjišťovalo se opotřebení na zkušebních vzorcích. Opotřebení vytvořené korundem (1, 2) bylo větší než u SiC (3, 4), ale po několikátém pokusu značně pokleslo. Naproti tomu u SiC došlo k výraznému poklesu již na počátku měření a později se intenzita opotřebení výrazně neměnila [5].

Obr. 9 Vliv pevnosti abrazivních částic na velikost opotřebení, [5]

3.4.4.4 Vliv tvrdosti materiálu a abraziva

Z praxe se ukazuje, že existují určité závislosti odolnosti kovů proti abrazivnímu opotřebení na jejich mechanických vlastnostech. Z mechanických vlastností je to především tvrdost, která určuje odpor proti vniknutí tvrdých částic do povrchu. Hloubka vniknutí částice je pak přímo úměrná zatížení a nepřímo úměrná tvrdosti povrchu součásti. Z grafu na obr. 10 je grafická závislost poměrné odolnosti proti abrazivnímu opotřebení na tvrdosti [2].

Obr. 10 Vliv tvrdosti abraziva a povrchu na velkost opotřebení, [8]

Z tohoto grafu vyplývá, že mezi odolností kovů proti abrazivnímu opotřebení ψ_0 a jejich tvrdostí H₀ je přímo úměrná závislost a je možné ji vyjádřit tímto vztahem, kde b je konstanta [2,8].

$$\psi_0 = b.H_0$$

Výsledky několika prací (např. Bowden, Chruščov, Tenenbaum) v této oblasti ukázaly výrazný vliv vzájemného vztahu mezi tvrdostí abraziva a opotřebovávaného kovu. Závislost tvrdosti abraziva H_a a tvrdosti opotřebovávaného materiálu H popisuje následující vztah, jehož výsledkem je koeficient tvrdosti K_T [2,8].

$$K_T = \frac{H}{H_a}$$

Na obr. 11 je grafická závislost odolnosti proti opotřebení na koeficientu tvrdosti. Z grafu je patrné, že odolnost proti abrazivnímu opotřebení výrazně vzroste po překročení koeficientu tvrdosti 0,6 [2].

Obr. 11 Kritický poměr tvrdosti abraziva a povrchu, [2]

3.4.4.5 Vliv kluzné rychlosti

Spousta autorů prokázala, že vliv relativní kluzné rychlosti částic po povrchu není příliš významný. V praxi totiž k abrazivnímu opotřebení dochází převážně při malých relativních kluzných rychlostech, obvykle 0,5 – 3 m/s. Výzkumem se zabýval i Chruščov, který provedl test s materiálem 12 040 a 12 050 na brusném plátně. Bylo zjištěno, že s růstem kluzné rychlosti abrazivní opotřebení mírně stoupá. K podobným závěrům dospěl i Nathan, který též použil pro test brusné plátno. Výsledky jeho pokusu jsou na obr. 12 [5].

Obr. 12 Vliv kluzné rychlosti na velikost abrazivního opotřebení, [5]

Lze očekávat, že se při větších kluzných rychlostech bude vlivem zvyšující se teploty měnit struktura povrchové vrstvy. Růst teploty zapříčiní hlavně pokles tvrdosti v povrchové vrstvě, čímž se sníží její odolnost proti abrazivnímu opotřebení. Pro předcházení těchto vlivů bude vhodné používat při vysokých kluzných rychlostech materiály s velkou odolností proti popouštění [5].

3.4.4.6 Vliv vlhkosti

Vliv vlhkosti na abrazivní opotřebení nebyl zatím příliš zkoumán. Rabinowicz upozornil na rozdíly v opotřebení při nízké a vysoké relativní vlhkosti vzduchu. Dle jeho názoru roste intenzita opotřebení se vzrůstající vlhkostí vzduchu, hlavně pokud vlhkost kondenzuje na povrchu abrazivních částic. Na obr. 13 je výsledek Wahlova pokusu, graf závislosti rychlosti otěru na absolutní vlhkosti vzduchu [5].

Obr. 13 Vliv vlhkosti na velikost abrazivního opotřebení, [5]

Vliv vlhkosti na abrazivní opotřebení nelze zcela jasně interpretovat. Vlhkost abraziva se projevuje při různých podmínkách pokaždé jinak. S vyšší vlhkostí mohou totiž abrazivní opotřebení doprovázet i korozní děje, které výrazně ovlivní chování povrchové vrstvy materiálu. Pokud jde o velmi intenzivní opotřebení, bude rychlost opotřebení převládat nad nárůstem zplodin koroze a jejich eventuálním porušováním povrchu. Při těchto podmínkách nebude vliv vlhkosti nijak významný. Bude-li se jednat o menší intenzitu opotřebení, pak růst korozních zplodin a jejich porušování povrchu může být srovnatelné s opotřebováním povrchu abrazí, případně mohou toto opotřebení usnadňovat. V tomto případě může vlhkost přispět ke zvýšení intenzity abrazivního opotřebení [5].

3.4.5 Hodnocení odolnosti materiálů proti abrazivnímu opotřebení

Aby bylo možné zvolit vhodné materiály pro abrazivní opotřebení již při návrhu, musí se nejprve stanovit jejich charakteristické hodnoty [5]. Velikost opotřebení lze vyjádřit veličinami přímo měřenými, nebo veličinami poměrnými. U prvního způsobu mohou být měřeny rozměrové, objemové nebo hmotnostní úbytky. U způsobu druhého jde o

vyjádření poměru velikosti opotřebení zkoumaného materiálu s opotřebením etalonu. Jde o tzv. poměrnou odolnost proti abrazivnímu opotřebení ψ [9].

$$\psi = \frac{dV_e}{dV_{vz}}$$

kde dV_e je objemový úbytek etalonu

dVvz je objemový úbytek zkoušeného materiálu [9].

Pro orientaci jsou hodnoty poměrné odolnosti proti abrazivnímu opotřebení ψ pro některé materiály v tab. 1.

Opotřebovávaný materiál	Tvrdost	Poměrná odolnost
	(HV)	opotřebení ψ
ocel 12 014 (žíhaná) - ferit	95 - 105	1.0
ocel 12 020 (žíhaná) - ferit + perlit	152	1.2
ocel 12 050 (žíhaná) - ferit + perlit	195 - 205	1.32
ocel 19 152 (žíhaná na měkko) - perlit	167	1.19
ocel 12 050 (kalená) - martenzit	789	1.96
ocel 19152 (kalená) - martenzit	865	2.57
ocel 19 255 (kalená) - martenzit + cementit	750	1.89
ocel 19 436 (kalená) - martenzit + austenit + karbidy M_7C_3	876	3.85
ocel 42 2920 (aust. žíhaná) - austenit	260	1.59
bílá chromová litina Cr15Mo2 (kaleno) - martenzit + austenit + karbidy M ₇ C ₃	67.1 HRC	4.01
nástřik K50	488 - 583	2.3
návar OTS 517	760	2.96

Tab. 1 Orientační hodnoty poměrné odolnosti proti abrazivnímu opotřebení, [6]

3.4.5.1 Provozní zkoušky

Provozní zkoušky probíhají v přirozeném pracovním prostředí součásti. Jejich výsledky však nejsou příliš přesné z důvodu proměnlivosti provozních podmínek. Například při hodnocení opotřebení plužních čepelí jsou výsledky ovlivněny několika faktory. Nejdůležitějšími z nich jsou změna vlhkosti půdy, různé utužení a změnou půdního typu. Tyto zkoušky tedy není možné opakovat při stejných parametrech. Proto mají tyto zkoušky význam pouze pro zařízení pracující ve stejných nebo velmi blízkých podmínkách. Nevýhodou těchto zkoušek je i jejich finanční a časová náročnost oproti laboratorním zkouškám. Příklad návaru připraveného na provozní zkoušky na dlátě kypřiče je na obr. 14 [9].

Obr. 14 Ukázka návaru na dlátě kypřiče, [10]

3.4.5.2 Laboratorní zkoušky

U laboratorních zkoušek lze modelovat pouze některé parametry procesu abrazivního opotřebení. Laboratorní přístroje umožňují detailně sledovat vliv jednotlivých faktorů na intenzitu abrazivního opotřebení.

Jejich výhodou je podstatně nižší finanční i časová náročnost než u provozních zkoušek. Hlavní výhodou je však opakovatelnost zkoušek za stále stejných podmínek [9].

Laboratorní zařízení se dělí na:

- přístroje pracující s vázanými abrazivními částicemi
- přístroje pracující s volnými abrazivními částicemi
- přístroje s vrstvou volných částic mezi dvěma povrchy

Přístroje pracující s vázanými abrazivními částicemi

Vázané abrazivní částice bývají nejčastěji ve formě brusného plátna nebo brusného kotouče. Přístroje využívající brusné plátno se používají nejčastěji. Jejich nespornou výhodou je jejich jednoduchost a hlavně spolehlivost, rozptyl výsledků se pohybuje do 5 %. Nevýhodou těchto zařízení je proměnná kvalita používaného brusného plátna. Ta se musí průběžně kompenzovat etalony. U nás byla v minulosti vypracována metodika zkoušek na přístroji využívající brusné plátno při rotačním pohybu. Tato metodika je popsána v ČSN 01 5084 "Stanovení odolnosti kovových materiálů proti abrazivnímu opotřebení na brusném plátně" [5].

Obr. 15 Přístroj využívající brusné plátno, [11]

Brusné plátno využívá i metoda s přímočarým vratným pohybem, zde je plátno ve formě brusného pásu [5]

Obr. 16 Přístroj využívající brusný pás, [12]

Další metodou využívající vázané abrazivní částice je přístroj s brusným kotoučem, jehož výhodou je možnost použití za vysokých teplot [5].

Obr. 17 Přístroj s brusným kotoučem, [5]

Nevýhodou všech přístrojů s vázanými abrazivními částicemi je ovšem klesající abrazivita jak brusného plátna, tak i brusného kotouče. Abrazivní částice se stále opakujícími se interakcemi s povrchy zkoušených materiálů otupují a vylamují [5]. Optimální situací je, pokud je zkušební vzorek vystaven stále novému povrchu brusného plátna čí kotouče. Tato situace ovšem není docela splněna, protože zkoušený vzorek se částí svého povrchu pohybuje po ploše, která již byla v dotyku se vzorkem. Zavedl se proto tzv. součinitel překrytí [5].

$$\alpha = \frac{S_0}{S_s}$$

- kde S_0 je plocha brusného plátna či kotouče potřebná k uskutečnění zkoušky na novém povrchu
 - S_s je plocha skutečně exponovaného plátna či kotouče

Tento součinitel měl u přístroje sestrojeného Chruščovem hodnotu 2. U přístroje sestrojeného SVÚM byla jeho hodnota původně také 2, avšak u nového přístroje již byla použita hodnota 1, což představuje optimální řešení [5].

Přístroje pracující s volnými abrazivními částicemi

Tyto přístroje lze rozdělit na přístroje s brusnou nádobou, přístroje s pružným kotoučem a bubnové přístroje. U přístrojů s brusnou nádobou jsou abrazivní částice umístěny na dně nádoby, do které zasahuje i zkušební vzorek. Při vzájemném relativním pohybu zkušebních vzorků a částic abraziva v nádobě se jejich povrch opotřebovává. Výhodou těchto přístrojů je větší podobnost se skutečnými provozními podmínkami. Dále pak možnost použití různých druhů abrazivních částic a možnost zkoušet materiály i za vysokých teplot. Nevýhodou těchto zkoušek je opět snižující se abrazivita volných částic následkem jejich interakce s povrchem zkušebních vzorků. Tento problém se v praxi řeší výměnou abrazivních částic [5].

Obr. 18 Přístroj s brusnou nádobou, [11]

Přístroje s pružným kotoučem stlačují abrazivo mezi pružný kotouč a zkušební vzorek. Tato metoda věrně simuluje podmínky strojních zařízení pracujících v zemině. Nevýhodou těchto přístrojů je snížená reprodukovatelnost výsledků zkoušek při použití nestandardního druhu abraziva a různé velikosti částic. Metoda je blíže popsána v experimentální části práce [5].

Obr. 19 Přístroj s brusným kotoučem, [13]

Tento přístroj je blíže popsán v experimentální části práce.

Bubnové přístroje simulují podmínky mletí. Jejich výhodou je jednoduchost a spolehlivost [5].

Obr. 20 Bubnový přístroj, [5]

Dalším přístrojem z této skupiny je přístroj s vrstvou volných částic mezi dvěma povrchy. Největším problémem u přístrojů s vrstvou částic mezi dvěma povrchy je dosáhnout její rovnoměrnosti. Potíže působí i odvod rozdrcených částic z pracovní oblasti a přísun čerstvých [5].

Obr. 21 Přístroj s abrazivem mezi dvěma povrchy, [5]

4 Experimentální zkoušky opotřebení

4.1 Výroba zkušebních vzorků

Jednovrstvé návary byly navařeny na ocelové pásky materiálu o velikosti 30 x 10 x 180 mm. Na pásky základního materiálu byla vyražena čísla pro následnou identifikaci materiálu návaru. Navařování probíhalo na svařovacím automatu firmy ESAB využívající zdroj LAF635 DC, který je na obr. 22. Navařování proběhlo při parametrech uvedených v tab. 2. Následně byly navařené pásky rozřezány na jednotlivé vzorky na stroji Metasecar a na frézce byla základna zarovnána podle povrchu návaru, z důvodu deformace po navařování. Po frézování základní roviny byly návary na protější straně broušeny na rovinné brusce tak, aby vznikla rovná plocha se šířkou alespoň 10 mm. Takto upravené vzorky byly frézovány na výsledný rozměr vorků 24,5 x 40 x 10 mm. Z důvodu odebrání materiálu i v místech s označením vzorku, byl ještě každý z nich znovu označen číslem vzorku (první číslo) a číslem abrazivního média (druhé číslo). Systém značení je v tab. 3 a 4. Očíslovaný vzorek je na obr. 23.

Číslo vzorku / materiál drátu	Průměr drátu [mm]	Proud [A]	Napětí [V]	Výlet drátu [mm]	Rychlost podávání drátu [cm/min]
1 / SK 258 TIC – O	1,6	250	25	25	30
2 / SK 299 – O	1.6	250	25	25	30
3 / SK 900 – O	1.6	250	25	25	30

Zvolené navařovací parametry pro zkušební vzorky

Tab.	2	Navařo	vací parametr	у, [10]
------	---	--------	---------------	---------

Značení materiálu na vzorku						
1	2	3	4			
SK 258	SK299	SK 900	S235JR			

Tab. 3 Označení materiálu na vzorku (první číslo), [10]

Značení druhu abrazivních částic na vzorku						
1	2	3	4	5		
SiO ₂	Ocel. drť	Al2O3 F80	Al2O3 F60	Al2O3 F120		

Tab. 4 Označení druhu abrazivních částic na vzorku (druhé číslo), [10]

Obr. 22 Navařovací automat ESAB, [10]

Obr. 23 Očíslovaný zkušební vzorek, [10]
4.1.1 Základní materiál

Jako základní materiál pro návary byla použita ocel S235JR (11 373 dle ČSN). Jde o běžnou konstrukční ocel se zaručenou svařitelností všemi obvyklými způsoby svařování. S rostoucí tloušťkou materiálu a rostoucí hodnotou uhlíkového ekvivalentu hrozí riziko vzniku trhlin v oblasti svaru. Je tedy vhodné dbát na doporučené podmínky pro svařování jako například ECSC IC 2 (EN 1011) [14].

Chemické složení materiálu (hmotnostní %) je v tab. 5.

С	Mn	S	Р	Ν	Fe
0,19	1,5	0,045	0,045	0,014	základ

Tab. 5 Chemické složení materiálů S235JR, [14]

4.1.2 Návarové materiály

Pro navaření zkušebních vzorků byly použity tyto materiály:

SK 258 TIC – O

SK 299 – O

SK 900 – O

SK 258 TIC – O

Dle DIN 8555 (starší norma): MF 6-GF-60-GP.

Drát z chrom-titanové oceli je vhodný pro návary vysoce odolné otěru, při zachování odolnosti silným tlakům a rázům. Při použití vysokého předehřevu je možno dosáhnout struktury bez trhlin. Ve struktuře materiálu jsou jemně rozptýleny karbidy titanu. Materiál je obrobitelný pouze broušením. Průměrná tvrdost návaru se pohybuje okolo 58 HRC. Tento materiál se hojně využívá v cementárnách pro renovaci drtičů vápence.

Je vhodný například pro válcové drtiče, kladivové drtiče, zuby lžic stavebních rypadel, břity radlic dozerů nebo zemědělské stroje [15],[17].

Chemické složení materiálu (hmotnostní %) je v tab. 6.

С	Mn	Si	Cr	Мо	Fe	Ti
1,8	0,9	0,2	6,1	1,4	základ	5,5

Tab. 6 Chemické složení materiálu SK258 TIC-O, [15]

Optimální navařovací parametry dle Böhler Welding jsou v tab. 7.

Průměr drátu [mm]	Proud [A]	Napětí [V]	Výlet drátu [mm]	
1,6	180 - 200	26 - 30	35-40	

Tab. 7 Doporučené navařovací parametry pro SK258 TIC-O, [15]

SK 299 – O

Dle DIN 8555 (starší norma): MF 10-GF-65-GZ.

Drát z chrom-niobiové oceli je vhodný pro návary dílů opotřebovávaných otěrem při vysoké teplotě (nad 650°C). Návar dosahuje tvrdosti okolo 64 HRC při 20°C, 61 HRC při 400°C a 57 HRC při 650°C. Materiál je obrobitelný pouze broušením. Používá se pro drtiče slinku a šnekové dopravníky [16],[17].

Chemické složení materiálu (hmotnostní %) je v tab. 8.

С	Mn	Si	Cr	Nb	V	Fe	В
4,9	0,3	1	1,3	6,8	6	základ	0,7

Tab. 8 Chemické složení materiálu SK299-O, [16]

Průměr drátu [mm]	Proud [A]	Napětí [V]	Výlet drátu [mm]	
1,6	180 - 200	26 - 30	35 - 40	

Optimální navařovací parametry dle Böhler Welding jsou v tab. 9

Tab. 9 Doporučené navařovací parametry pro SK299-O, [16]

$\mathbf{SK} - \mathbf{900} - \mathbf{O}$

Dle DIN 8555 (starší norma): MF 21-GF-65-G.

Drát z wolframové oceli je vhodný pro navařování dílů extrémně opotřebovávaných otěrem, při malých rázech a tlaku. Složení a velikost částic je optimalizována tak, aby bylo dosaženo nejlepší kombinace houževnatosti a odolnosti proti opotřebení. Struktura materiálu obsahuje 35% karbidů wolframu, 30 % karbidů železo-wolframu a 35 % austenitu a martenzitu. Návary dosahují tvrdosti okolo 63 HRC. Materiál je obrobitelný pouze broušením. Používá se pro transportní šneky, zemní vrtáky, mísící lopatky, korunky, rýhovací frézy atd. [17],[18].

Chemické složení materiálu (hmotnostní %) je v tab. 10.

С	Mn	Si	Cr	W	Fe
2,9	0,5	0,4	5,8	42	základ

Tab. 10 Chemické složení materiálu SK900-O, [118]

Optimální navařovací parametry dle Böhler Welding jsou v tab. 11.

Průměr drátu [mm]	Proud [A]	Napětí [V]	Výlet drátu [mm]
1,6	180 - 200	26 - 30	35 - 40

Tab. 11 Doporučené navařovací parametry pro SK299-O, [18]

4.2 Volba a příprava abrazivních částic

Pro zkoušky abrazivního opotřebení byly vybrány tyto typy abrazivních částic,

- křemičitý písek (SiO₂)
- ocelová drť GH80
- hnědý korund (Al₂O₃) F60
- hnědý korund (Al₂O₃) F80
- hnědý korund (Al₂O₃) F120

Křemičitý písek (SiO₂)

Ostrohranný písek byl dodán o zrnitosti 0,1 - 0,3 mm. Pro zachování podobné velikosti zrn všech abrazivních materiálů byla vyselektována pouze zrna o velikosti 0,2 - 0,3 mm (na obr. 24). Písek byl nejprve prosetý přes síto s velikostí oka 0,3 mm, kvůli případným nečistotám, nebo obsahu nadsítných zrn. Následně byl celý proces opakován se sítem s velikostí oka 0,2 mm, tentokrát byly ovšem odebírány pro další použití nadsítné frakce [19].

Obr. 24 Abrazivo SiO₂, [10]

Tvrdost křemičitého písku se pohybuje od 1000 – 1103 HV [19].

Ocelová drť GH80

Ocelová drť je vyrobena ze směsi ocele, která je složena z malého procenta uhlíku, síry, fosforu a chromu. Směs je tepelně upravena. Metalografická struktura směsi je mezi martenzitem, troostitem, sorbitem a bayleyitem. Charakteristickými vlastnostmi jsou tvrdost a odolnost proti opotřebení [20]. Typ GH je nejtvrdší vyráběná ocelová drť, která zůstává stále v ostrohranné formě [21]. Její tvrdost se pohybuje mezi 748 – 867 HV. Směs má ostrohranná zrna, která jsou určena především pro použití v tryskacích komorách. Drť ocelové směsi je na obr. 25 [20].

Chemické složení ocelové drtě (hmotnostní %) je v tab. 12.

С	Mn	Si	Р	S	Fe
0,8-1,1	0,6-0,8	0,6-0,8	< 0,04	< 0,04	základ

Tab. 12 Chemické složení ocelové drtě GH 80, [20]

Obr. 25 Abrazivo ocelová drť GH80, [10]

Hnědý korund (Al₂O₃)

Hnědý korund se vyrábí pálením bauxitu v indukčních pecích při teplotách okolo 1600°C. Po jeho vychladnutí je rozdrcen a roztříděn [22]. Tvrdost hnědého korundu se pohybuje mezi 1800 – 2000 HV. Na obr. 26 jsou zrna hnědého korundu zrnitosti F80 [2].

Pro zkoušky byly použity zrnitosti F60, F80 a F120.

Chemické složení hnědého korundu (hmotnostní %) je v tab. 13.

Al ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	CaO	Na ₂ O
> 95	< 1	< 0,3	2,8	0,3	0,12

Tab. 13 Chemické složení Al₂O₃, [22]

Obr. 26 *Abrazivo Al*₂*O*₃, [10]

4.3 Měření tvrdosti

Tvrdost byla měřena dle Vickerse (ČSN 42 0374). Při této metodě se do materiálu vtlačuje diamantový jehlan se čtvercovou základnou, jak je naznačeno na obr. 27. Následně se mikroskopicky zjišťuje délka obou úhlopříček. Výhodou této metody je možnost použití pro různé tvrdosti a stejná přesnost ve všech rozsazích [23].

Zkouška probíhala na tvrdoměru HP0 250, který je na obr. 28. Bylo použito základní zatížení 29,4 N (30 kg).

Obr. 27 Vtisky metodou dle Vickerse, [23]

Obr. 28 Tvrdoměr HPO 250

Tvrdost byla měřena na 9 místech na každém vzorku, aby bylo dosaženo dostatečného množství hodnot. Rozmístění jednotlivých bodů měření je na obr. 29. Na dalším obrázku (obr. 30) jsou potom patrné tečky po vtisku diamantového jehlanu.

Postup měření tvrdosti vzorku byl následující. Vzorek se umístil na měřící plochu tak, aby diamantový jehlan vnikl do materiálu v místě, kde chceme měřit. Následně se pomocí matice na pohyblivém šroubu posunul do měřící polohy. Po zaostření zorné části mikroskopu se pomocí tlačítka spustilo měření. Na diamantový jehlan začalo působit zatížení a tím se začal vtlačovat do materiálu. Po uplynutí zatěžovací doby se jehlan odlehčil a pomocí mikroskopu s noniovou stupnicí se změřily úhlopříčky vtisku, které se zapsaly do tabulky. Ukázka výsledků pro vzorek 1.1 je v tab. 14. Takto se měření opakovalo devětkrát pro každý vzorek. Výsledky všech měření jsou v příloze I.

Obr. 29 Rozmístění bodů měření tvrdosti, [10]

Obr. 30 Tečky po vtiskách, [10]

Naměřené hodnoty se zprůměrují podle tohoto vzorce:

$$d = \frac{d_1 + d_2}{2}$$

kde d-průměr délek úhlopříček

d_{1,2} – délka úhlopříček

Naměřené hodnoty úhlopříček vtisku pro vzorek číslo 1.1									
Bod měření	1	2	3	4	5	6	7	8	9
d1 [mm]	0,265	0,268	0,265	0,271	0,275	0,268	0,27	0,263	0,261
d2 [mm]	0,264	0,271	0,264	0,27	0,27	0,266	0,273	0,259	0,258
d [mm]	0,2645	0,2695	0,2645	0,2705	0,2725	0,267	0,2715	0,261	0,2595

Tab. 14 Hodnoty úhlopříček vtisků při měření tvrdosti, [10]

Pak je již možné vypočítat hodnoty tvrdosti dle Vickerse podle vzorce:

$$HV = 0,189.\frac{F}{d^2}$$

kde HV – tvrdost dle Vickerse

F – zatěžující síla (29,4 N)

d – průměr délek úhlopříček

Výsledné hodnoty tvrdosti pro vzorek 1.1 jsou v tab. 15. Přehled vypočtených tvrdostí ve všech zvolených bodech vzorků jsou v příloze II.

Vypočtené hodnoty tvrdosti HV pro vzorek číslo 1.1								
Bod měření	Bod měření 1 2 3 4 5 6 7 8 9							9
Tvrdost HV 795 766 795 763 746 780 755 817 826								

Tab. 15 Vypočtené hodnoty tvrdosti pro vzorek 1.1, [10]

Z těchto údajů bylo možné vytvořit povrchový graf tvrdosti pro každý vzorek. Na obr. 31 je povrchový graf pro vzorek 1.1, kde jsou body měření vyjádřeny v délkových jednotkách.

Obr. 31 Hodnota tvrdosti dle Vickerse v jednotlivých bodech měření, [10]

Zprůměrované hodnoty tvrdosti pro každý vzorek jsou v tab. 16.

Číslo vzorku	Ø tvrdost vzorku HV	Ø tvrdost návaru HV
1.1	783	
1.2	730	760
1.3	767	
2.1	1 008	
2.2	1 074	1044
2.3	1 049	
3.1	1 088	
3.2	1 050	1071
3.3	1 074	
4.1	231	
4.2	223	224
4.3	219	

Tab. 16 Hodnoty tvrdosti dle Vicekrse pro všechny vzorky, [10]

U vzorků 1.4, 1.5, 2.4, 2.5, 3.4, a 3.5 se tvrdost neměřila. Jelikož se jednalo o stejné materiály návarů, byly použity hodnoty tvrdosti pro návary 1, 2 a 3.

Pro experiment je důležitá i tvrdost abrazivních částic, která je uvedena v tab. 17.

Abrazivo	Tvrdost HV
Křemičitý písek (Si02)	1000 - 1103
Ocelová drť GH 80	748 - 867
Hnědý korund (Al2O3)	1800 - 2000

Tab. 17 Tvrdost abrazivních materiálů dle Vickerse

4.4 Zkoušky odolnosti návarů proti abrazivnímu opotřebení

Zkoušky odolnosti návarů proti abrazivnímu opotřebení probíhaly v modelu interakce dvou těles, tedy stykem mezi povrchem a abrazivními částicemi. Pro tyto zkoušky byl zvolen přístroj využívající volné abrazivní částice, konkrétně přístroj s pryžovým kotoučem, který je na obr. 32. Tento přístroj má průměr pryžového kotouče 130 mm, šířku kotouče 10 mm a jeho otáčky čítají 345 ot/min. Zkušebního zatížení bylo dosaženo umístěním závaží o hmotnosti 580 g na posledním zářezu páky. Na vzorek tedy působila přítlačná síla 32 N. Zkoušky probíhaly s abrazivními částicemi podobné velikosti, aby byly výsledky porovnatelné.

Postup měření byl následující. Nejprve bylo nutné odvážit správné množství abraziva tak, aby zkouška trvala přesně 1 minutu. K tomuto účelu bylo použito vah OHAVC CL SERIES s přesností 0,1 g (obr. 33). Prvním abrazivním materiálem byl křemičitý písek, kterého bylo třeba 250 g. Kompletní přehled množství abraziva pro každou zkoušku je v tab. 18.

Navařený vzorek byl umístěn do držáku na přístroji tak, aby bylo viditelné označení na vzorku, jak je vidět na obr. 34. Tím bylo dosaženo toho, že při opakovaném vyndávání vzorku pro následné vážení, bude vzorek usazen zpět vždy ve stejné poloze. Zároveň bylo zkontrolováno, že se kotouč dotýká celou šířkou broušeného povrchu vzorku.

Obr. 32 Přístroj s pryžovým kotoučem, [10]

Obr. 33 Digitální váhy OHAVC, [10]

Obr. 34 Upnutí vzorku do přístroje, [10]

Abrazivo	SiO ₂	Oc. drť GH80	Al ₂ O ₃ F60	Al ₂ O ₃ F80	Al ₂ O ₃ F120
Hmotnost [g]	250	430	210	280	270

Tab. 18 Hmotnostní dávky abraziva na dobu zkoušky jedné minuty, [10]

Na vzorku bylo provedeno 0. měření, jehož cílem bylo vytvořit alespoň minimální rádius na opotřebovávané ploše. Následně byl vzorek vyjmut z přístroje a byl očištěn v acetonu od nečistot z abrazivních částic z důvodu zachování čistoty vah a možné odchylky při vážení. Po usušení bylo možné vzorek zvážit. Vážení probíhalo na vahách KERN ABS s přesností 0,0001 g. Váhy jsou na obr. 35.

Obr. 35 Digitální váhy KERN ABS, [10]

Po zvážení byl vzorek opět upevněn do přístroje a provedena další zkouška. Zkoušek bylo provedeno celkem 10, z nichž byl vážen hmotnostní úbytek pouze po nultém, prvním, druhém, pátém, osmém, a devátém měření. Výsledky byly zapsány to tabulky, která je v příloze III.

Takto probíhaly zkoušky i pro ocelovou drť a hnědý korund F80.

Na obr 36. jsou vzorky po provedení zkoušek abrazivního opotřebení

Obr. 36 Zkušební vzorky po provedení zkoušek, [10]

Po těchto zkouškách bylo zjištěno, že hmotnostní úbytky při použití abrazivních materiálů křemičitý písek a ocelová drť byly minimální. Pro ocelovou drť téměř nulové. Důvod těchto výsledků je popsán ve vyhodnocení zkoušek. Bylo tedy rozhodnuto, že se na dalších vzorcích provedou ještě zkoušky hnědým korundem o zrnitostech F60 a F120, pro porovnání vlivu velikosti abrazivních částic.

Následně se ještě provedly zkoušky s materiálem S235JR, který byl zvolen jako etalon pro výpočet poměrné odolnosti návarů proti abrazivnímu opotřebení.

Tyto zkoušky byly provedeny stejně jako v předchozích případech.

Dalším měřením bylo měření velikosti abrazivních částic před a po jedné zkoušce. Částice byly nasnímány mikroskopem SZP11-T ZOOM (obr. 37) do programu QUICKPHOTO INDUSTRIAL 2.3, kde bylo snímku přiřazeno měřítko a pomocí nástrojů změřeny vždy dva rozměry jednotlivých částic. Ukázka snímku z mikroskopu je na obr. 38. Velikost čáry měřítka na snímku znamená 1000 µm. Snímky před a po provedení zkoušky jsou v příloze IV. Pro toto měření bylo změřeno vždy 100 náhodných částic. Výsledek byl exportován do tabulek, které jsou v příloze V.

Obr. 37 Mikroskop SZP11-T ZOOM, [10]

Obr. 38 Ukázka nasnímaného snímku, [10]

4.5 Vyhodnocení zkoušek

Cílem hlavních zkoušek bylo zjistit odolnost návarů proti abrazivnímu opotřebení za použití tří druhů abrazivních částic s podobnou velikostí. Hodnocení odolnosti probíhalo měřením hmotnostních úbytků, celkem pětkrát na každém vzorku. Hmotnostní úbytky jsou v následujících grafech vyneseny v závislosti na dráze. Jednotlivé body měření jsou pro přehlednost proloženy lineárními trendy. Výsledky zkoušek s podobnou velikostí jsou na následujících sedmi grafech, které jsou rozděleny do dvou skupin.

Na prvních třech grafech (obr. 39 – 41) jsou zobrazeny výsledky zkoušek dle použitého abraziva.

Obr. 39 Hmotnostní úbytky návarů při použití abrazivních částic křemičitého písku,

[10]

Obr. 40 Hmotnostní úbytky návarů při použití abrazivních částic ocelové drtě, [10]

Obr. 41 Hmotnostní úbytky návarů při použití abrazivních částic hnědého korundu, [10]

U zkoušek s křemičitým pískem byly průběhy lineárních trendů podle očekávání. Avšak při použití ocelové drti byly průběhy lineárních trendů posunuty, což může být způsobeno pouze minimálními hmotnostními úbytky vyvolanými tímto abrazivem. Nejpřesnější průběh lineárních trendů je u hnědého korundu, u kterého byly naopak naměřeny největší celkové hmotnostní úbytky. Navzdory očekávání byly při použití ocelové drtě a hnědého korundu největší hmotnostní úbytky naměřeny u materiálu SK 900.

Na dalších čtyřech grafech (obr. 42 – 45) jsou výsledky zobrazeny pro jednotlivé materiály.

Obr. 42 Hmotnostní úbytky návaru SK 258 při použití tří druhů abrazivních částic, [10]

Obr. 43 Hmotnostní úbytky návaru SK 299 při použití tří druhů abrazivních částic, [10]

Obr. 44 Hmotnostní úbytky návaru SK 900 při použití tří druhů abrazivních částic, [10]

Obr. 45 Hmotnostní úbytky materiálu S 235JR při použití tří druhů abrazivních částic, [10]

Na obr. 46 jsou zobrazeny hmotnostní úbytky materiálu S 235JR, u kterého bylo při použití křemičitého písku naměřeno 5 hmotnostních úbytků, jako u návarových materiálů. Při zkouškách s použitím ocelové drtě a hnědého korundu byly naměřeny pouze 3 hmotnostní úbytky z důvodu velkého úbytku materiálu. Lineární trendy jsou tedy zobrazeny se statistickým odhadem.

Při zobrazení hmotnostních úbytků pro jednotlivé materiály se potvrzuje, že největší hmotnostní úbytky byly naměřeny při použití hnědého korundu, jak bylo uvedeno výše. Stejně tak se potvrdilo, že k nejmenším hmotnostním úbytkům dojde při použití ocelové drtě, což bylo nejpravděpodobněji způsobeno tím, že tvrdost abrazivních částic ocelové drtě byla menší než tvrdost návarů. U materiálu S 235JR, který má výrazně menší tvrdost než abrazivní částice ocelové drtě, byly naměřeny podobné hmotnostní úbytky jako při použití abrazivních částic hnědého korundu.

Hodnoty hmotnostních úbytků při použití abrazivních částic křemičitého písku pro jednotlivé materiály jsou v tab. 19. Veškeré hodnoty hmotnostních úbytků jsou v příloze III. Z těchto hodnot byly vypočítány průměrné úbytky po jednom měření.

Hmotnostní úbytky pro jednotlivá měření (SiO ₂) [mg]							
Č.m.	SK 258	SK 299	SK 900	S235JR			
1	3,80	2,10	0,10	15,00			
2	4,80	1,80	0,20	13,20			
3	2,50	1,40	1,90	11,70			
4	2,50	1,40	1,90	11,70			
5	2,50	1,40	1,90	11,70			
6	3,10	1,20	1,70	9,93			
7	3,10	1,20	1,70	9,93			
8	3,10	1,20	1,70	9,93			
9	2,70	2,50	1,80	11,60			
Ø úbytek	3,12	1,57	1,43	11,63			

Tab. 19 Hmotnostní úbytky po každém měření pro všechny materiály, [10]

Následně byly vypočteny poměrné odolnosti proti abrazivnímu opotřebení návarů vůči etalonu. Výpočet probíhal podle vzorce:

$$\psi = \frac{dm_e}{dm_{vz}}$$

kde dm_e je hmotnostní úbytek etalonu

dm_{vz} je hmotnostní úbytek zkoušeného návaru.

Výsledné hodnoty poměrných odolností proti abrazivnímu opotřebení pro různé typy abraziva jsou uvedeny v tab. 21.

Poměrná o	Poměrná odolnost proti abrazivnímu opotřebení							
	Ψ							
Návar	SiO ₂	Ocel. Drť	Al ₂ O ₃					
SK 258	3,73	180,00	6,08					
SK 299	7,36	309,13	22,98					
SK 900	8,13	98,07	2,42					

Tab. 20 Hodnoty poměrné odolnosti návarů proti abrazivnímu opotřebení, [10]

U zkoušek s použitím podobné velikosti abrazivních částic měl u ocelové drti a Al_2O_3 největší poměrnou odolnost materiál SK 299, u abraziva SiO₂ měl větší poměrnou odolnost materiál SK 900, avšak pouze o nepatrný rozdíl. Dalo by se tedy říci, že nejlépe z těchto zkoušek vyšel materiál SK 299. Naproti tomu materiál SK 900 nesplnil očekávaný průběh zkoušek a u ocelové drti a Al_2O_3 dopadl ze tří materiálů nejhůře.

Na následujících šesti grafech jsou výsledky zkoušek se stejným typem abraziva rozdílné zrnitosti. Grafy jsou seřazeny nejdříve podle zrnitosti abraziva (obr. 46 - 48), následně podle jednotlivých materiálů (obr. 49 - 51).

Obr. 46 Hmotnostní úbytky návarů při použití abrazivních částic hnědého korundu zrnitosti F60, [10]

Obr. 47 Hmotnostní úbytky návarů při použití abrazivních částic hnědého korundu zrnitosti F80, [10]

Obr. 48 Hmotnostní úbytky návarů při použití abrazivních částic hnědého korundu zrnitosti F120, [10]

Obr. 49 Hmotnostní úbytky návaru SK 258 při použití tří zrnitostí hnědého korundu, [10]

Obr. 50 Hmotnostní úbytky návaru SK 299 při použití tří zrnitostí hnědého korundu, [10]

Obr. 51 Hmotnostní úbytky návaru SK 900 při použití tří zrnitostí hnědého korundu, [10]

U zkoušek s abrazivem Al₂O₃ s různou zrnitostí byly výsledky velmi podobné jako v případě zkoušek s podobnou zrnitostí. U všech zrnitostí tedy F60, F80 a F120 měl největší poměrnou odolnost mezi návarovými materiály návar SK 299 a nejmenší návar SK 900.

Pro zkoušky odolnosti návarů proti abrazivnímu opotřebení byla použita abraziva: SiO₂, ocelová drť GH80 a Al₂O₃ o zrnitostech F60, F80 a F120. Na následujících grafech (obr. 52 - 53) jsou rozměry abrazivních částic vždy před a po provedení jedné zkoušky po dobu jedné minuty.

U první zkoušky, která měla probíhat s podobnou velikostí abrazivních částic, byla velikost částic ocelové drtě lehce větší, než by měla být. Tato skutečnost by měla znamenat větší hmotnostní úbytky na zkoušeném materiálu, což se však nestalo, naopak hmotnostní úbytky způsobené ocelovou drtí byly z důvodu menší tvrdosti minimální, jak již bylo uvedeno výše. Na průběh zkoušky tedy tato nepřesnost neměla vliv.

U SiO₂ a ocelové drtě byly úbytky rozměrů částic podobné, u Al_2O_3 téměř žádné rozměrové úbytky nebyly.

U zkoušek s abrazivem Al_2O_3 byly největší rozměrové úbytky zaznamenány u zrnitosti F60, tedy největších použitých částicích. U zrnitostí F80 a F120 nedošlo téměř k žádným rozměrovým úbytkům.

Obr. 52 Porovnání střední velikosti abrazivních částic podobné zrnitosti, [10]

Obr. 53 Porovnání střední velikosti abrazivních částic různé zrnitosti, [10]

5 Závěr

Cílem této diplomové práce bylo seznámení s abrazivním opotřebením a vlivy, které určují jeho velikost. Tato témata jsou shrnuta v druhé kapitole.

Hlavním cílem této práce bylo provést laboratorní zkoušky odolnosti návarových materiálů proti abrazivnímu opotřebení. Tomu se věnuje třetí kapitola. Zkoušky probíhaly na přístroji s pryžovým kotoučem používajícím volné abrazivní částice. Pro tyto zkoušky byly vybrány návarové materiály od firmy Böhler Welding, konkrétně materiály SK 258 TIC – O, SK 299 – O a SK 900 – O. Prvotně měly být materiály porovnány mezi sebou, v průběhu zkoušek došlo k rozhodnutí porovnat je s etalonem. Jako etalon byl vybrán základní materiál použitý pro návary, a to S235JR. Z abrazivních materiálů byly zvoleny křemičitý písek (SiO₂), ocelová drť GH80 a hnědý korund (Al₂O₃).

První zkoušky probíhaly s vybranými návarovými materiály a etalonem. Pro první zkoušky byly použity zvolené abrazivní materiály podobné zrnitosti. Výsledkem těchto zkoušek jsou grafy s hmotnostními úbytky a koeficienty odolnosti návarových materiálů proti abrazivnímu opotřebení vůči etalonu. Výsledky jsou v kapitole 4.5. Koeficienty odolnosti proti abrazivnímu opotřebení při použití abrazivních částic ocelové drtě jsou bohužel velmi zkreslené, jelikož z důvodu vyšší tvrdosti návarových materiálů než ocelové drtě docházelo na návarech pouze k minimálním hmotnostním úbytkům.

Další zkoušky byly provedeny opět na stejných návarových materiálech, ovšem bez etalonu. Jako abrazivo byl použit pouze hnědý korund o zrnitosti F60, F80 a F120. Tyto zkoušky tedy porovnávaly odolnost návarů proti abrazivnímu opotřebení pouze mezi sebou. Výsledky jsou grafy s hmotnostními úbytky v kapitole 4.5.

Poslední měření zjišťovalo střední velikost abrazivních částic před a po provedení zkoušek. Výsledky tohoto měření jsou vykresleny ve sloupcových grafech v kapitole 4.5.

Jako nejodolnější materiál proti abrazivnímu opotřebení z výše vybraných se jeví materiál SK 299 – O. Ve většině zkoušek měl nejmenší hmotnostní úbytky.

6 Seznam použité literatury

- Pošta, J. Veselý, P. Dvořák, M.: *Degradace strojních součástí*, Praha: ČZU, 2002, 67 stran. ISBN 80 213 0967 9.
- [2] BLAŠKOVIČ, P.- BALLA, J. DZIMKO, M.: *Tribológia*. Bratislava: ALFA, 1990, 360 stran. ISBN 80 05 00633 0.
- Bruce, R. W.: *Handbook of lubrication and trialogy*, 2. vydání, Boca Raton:
 CRC Press, 2012, 1169 stran. ISBN 978 1 4200 6908 2.
- [4] Mechanism of abrasive wear in lubricated contacts, [on-line], citováno
 20.1.2014, dostupné z: http://share.pdfonline.com/49b80366973b4c3d9855a3c48cde0e4e/Mechanism%
 20of%20abrasive%20wear%20in%20lubricated%20contacts.htm
- [5] VOCEL, M. DUFEK, V. a kol.: *Tření a opotřebení strojních součástí*. Praha: STNL, 1976, 376 stran.
- [6] Suchánek, J. Abrazivní opotřebeni kovových materiálu, [on-line], citováno 20.1.2014, dostupné z: http://www.tribotechnika.sk/tribotechnika-12010/abrazivni-opotrebeni-kovovych-materialu.html
- [7] Rabinowicy, E.:Friction and wear of materials, New Yourk: J. Wiley and Sons, 1965 stran. ISBN 0-471-83084-4.
- [8] CHRUŠČOV, M.M. BABIČEV, M.A.: *Abrazivnoje Iznašivánije*, Moskva: Nauka, 1970, 251 stran.
- [9] Skalický, V. *Použití návarů*, on-line], citováno 28.1.2014, dostupné z: http://mechanizaceweb.cz/pouziti-navaru
- [10] Vlastní fotografie, naměřené hodnoty, výpočty

- [11] Hrabě, P., Chortěborský, R. a kol.: Abrazívní opotřebení návarových materiálů na bázi Fe-Cr-C, [on-line], citováno 20.1.2014, dostupné z: http://www.konstrukce.cz/UserFiles/files/K/2009/abraz_01.pdf#page=3&zoom= 170,0,836
- [12] Abrasive wear behavior of Al-SiC composites produced by pressure infiltration technique, [on-line], citováno 20.1.2014, dostupné z: http://www.sciencedirect.com/science/article/pii/S0043164800004993
- [13] *Hardbanding Wear Testing*, [on-line], citováno 20.1.2014, dostupné z: http://www.hardbanding.com/resources/detail/hardbanding-wear-testing/
- [14] Přehled vlastností oceli S235JR, [on-line], citováno 20.1.2014, dostupné z: http://prirucka.bolzano.cz/cz/technickapodpora/techprirI/tycovaocel/EN10025/S235JRG2/
- [15] Böhler Welding: Sudokay, [on-line], citováno 20.1.2014, dostupné z: http://www.soudokay.com/english/files/SK_258_TIC-O.pdf
- [16] Böhler Welding: Sudokay, [on-line], citováno 20.1.2014, dostupné z: http://www.soudokay.com/english/files/SK_299-O.pdf
- [17] Böhler Welding: *Opravy a návary*, [on-line], citováno 20.1.2014, dostupné z: http://www.bohler-uddeholm.cz/czech/files/Opravy_a_navary.pdf
- [18] Böhler Welding: Sudokay, [on-line], citováno 20.1.2014, dostupné z: http://www.soudokay.com/english/files/SK_900-O.pdf
- [19] Crystal Quartz (SiO2) and Fused Silica, [on-line], citováno 20.1.2014, dostupné
 z: http://www.mt-berlin.com/frames_cryst/descriptions/quartz%20.htm
- [20] Ocelová drť, [on-line], citováno 20.1.2014, dostupné z: http://www.pkit.cz/ocelova-drt.php
- [21] Comprex: *Ocelová drť*, [on-line], citováno 20.1.2014, dostupné z: http://www.comprexcz.cz/tryskaci-materialy/ocelova-drt.html

- [22] Comprex:*Korund Hnědý*, [on-line], citováno 20.1.2014, dostupné z: http://www.comprexcz.cz/tryskaci-materialy/korund-hnedy.html
- [23] *Zkoušky tvrdosti*, [on-line], citováno 20.1.2014, dostupné z: http://www.ateam.zcu.cz/Zkousky_tvrdosti.pdf

7 Přílohy

7.1 Příloha I

Naměřené hodnoty úhlopříček vtisku a tvrdost pro vzorek číslo 1.1									
Bod měření	1	2	3	4	5	6	7	8	9
d1 [mm]	0,265	0,268	0,265	0,271	0,275	0,268	0,270	0,263	0,261
d2 [mm]	0,264	0,271	0,264	0,270	0,270	0,266	0,273	0,259	0,258
d [mm]	0,265	0,270	0,265	0,271	0,273	0,267	0,272	0,261	0,260
HV	795	766	795	763	746	780	755	817	826
Nan	něřené h	odnoty ú	hlopříče	k vtisku :	a tvrdost	pro vzo	rek číslo	1.2	
Bod měření	1	2	3	4	5	6	7	8	9
d1 [mm]	0,277	0,289	0,268	0,287	0,279	0,279	0,284	0,279	0,275
d2 [mm]	0,276	0,277	0,284	0,285	0,257	0,282	0,288	0,273	0,277
d [mm]	0,277	0,283	0,276	0,286	0,268	0,281	0,286	0,276	0,276
HV	728	695	730	680	774	707	680	730	730
Nan	něřené h	odnoty ú	hlopříče	k vtisku :	a tvrdost	pro vzo	rek číslo	1.3	
Bod měření	1	2	3	4	5	6	7	8	9
d1 [mm]	0,268	0,273	0,264	0,271	0,268	0,265	0,274	0,272	0,270
d2 [mm]	0,270	0,271	0,263	0,269	0,264	0,264	0,275	0,274	0,274
d [mm]	0,269	0,272	0,264	0,270	0,266	0,265	0,275	0,273	0,272
HV	769	752	801	763	786	795	738	746	752

Naměřené hodnoty úhlopříček vtisku a tvrdost pro vzorek číslo 2.1									
Bod měření	1	2	3	4	5	6	7	8	9
d1 [mm]	0,235	0,231	0,237	0,246	0,242	0,232	0,238	0,218	0,228
d2 [mm]	0,233	0,236	0,225	0,255	0,244	0,242	0,231	0,228	0,233
d [mm]	0,234	0,234	0,231	0,251	0,243	0,237	0,235	0,223	0,231
HV	1016	1020	1042	886	942	990	1012	1119	1047
Nan	něřené ho	odnoty ú	hlopříče	k vtisku	a tvrdost	t pro vzo	rek číslo	2.2	
Bod měření	1	2	3	4	5	6	7	8	9
d1 [mm]	0,222	0,230	0,236	0,236	0,235	0,218	0,228	0,221	0,226
d2 [mm]	0,229	0,238	0,227	0,232	0,229	0,223	0,224	0,226	0,225
d [mm]	0,226	0,234	0,232	0,234	0,232	0,221	0,226	0,224	0,226
HV	1094	1016	1038	1016	1033	1144	1089	1114	1094
Nan	něřené ho	odnoty ú	hlopříče	k vtisku	a tvrdost	t pro vzo	rek číslo	2.3	
Bod měření	1	2	3	4	5	6	7	8	9
d1 [mm]	0,239	0,237	0,233	0,235	0,222	0,241	0,224	0,220	0,229
d2 [mm]	0,242	0,230	0,225	0,230	0,225	0,237	0,228	0,222	0,231
d [mm]	0,241	0,234	0,229	0,233	0,224	0,239	0,226	0,221	0,230
HV	962	1020	1061	1029	1114	974	1089	1139	1051

Naměřené hodnoty úhlopříček vtisku a tvrdost pro vzorek číslo 3.1									
Bod měření	1	2	3	4	5	6	7	8	9
d1 [mm]	0,224	0,218	0,242	0,227	0,212	0,240	0,224	0,226	0,235
d2 [mm]	0,225	0,221	0,236	0,216	0,210	0,238	0,226	0,222	0,237
d [mm]	0,225	0,220	0,239	0,222	0,211	0,239	0,225	0,224	0,236
HV	1104	1154	974	1134	1249	974	1099	1109	999
Nai	něřené h	odnoty ú	hlopříče	k vtisku	a tvrdost	pro vzoi	rek číslo	3.2	
Bod měření	1	2	3	4	5	6	7	8	9
d1 [mm]	0,234	0,234	0,222	0,242	0,241	0,222	0,232	0,218	0,227
d2 [mm]	0,241	0,233	0,230	0,237	0,240	0,225	0,225	0,222	0,224
d [mm]	0,238	0,234	0,226	0,240	0,241	0,224	0,229	0,220	0,226
HV	986	1020	1089	970	962	1114	1065	1149	1094
Nai	něřené h	odnoty ú	hlopříče	k vtisku	a tvrdost	pro vzoi	rek číslo	3.3	
Bod měření	1	2	3	4	5	6	7	8	9
d1 [mm]	0,228	0,222	0,230	0,232	0,225	0,220	0,233	0,230	0,227
d2 [mm]	0,226	0,224	0,232	0,234	0,226	0,222	0,232	0,231	0,223
d [mm]	0,227	0,223	0,231	0,233	0,226	0,221	0,233	0,231	0,225
HV	1079	1119	1042	1025	1094	1139	1029	1047	1099

Naměřené hodnoty úhlopříček vtisku a tvrdost pro vzorek číslo 6.1						
Č.m.	1	2	3	4		
d1 [mm]	0,490	0,495	0,495	0,485		
d2 [mm]	0,489	0,500	0,491	0,484		
d [mm]	0,490	0,498	0,493	0,485		
HV	232	225	229	237		

Naměřené hodnoty úhlopříček vtisku a tvrdost pro vzorek číslo 6.2						
Č.m.	1	2	3	4		
d1 [mm]	0,489	0,508	0,511	0,503		
d2 [mm]	0,485	0,494	0,509	0,497		
d [mm]	0,487	0,501	0,510	0,500		
HV	235	222	214	222		

Naměřené hodnoty úhlopříček vtisku a tvrdost pro vzorek číslo 6.3						
Č.m.	1	2	3	4		
d1 [mm]	0,499	0,508	0,529	0,490		
d2 [mm]	0,495	0,504	0,522	0,493		
d [mm]	0,497	0,506	0,526	0,492		
HV	225	217	201	230		

7.2 Příloha II

7.3 Příloha III

Naměřené hodnoty pro SiO2 [g]							
č.m.	SK 258	SK 299	SK 900				
0	76,6954	73,9087	79,6231				
1	76,6916	73,9066	79,6230				
2	76,6868	73,9048	79,6228				
5	76,6792	73,9006	79,6171				
8	76,6698	73,8970	79,6119				
9	76,6671	73,8945	79,6101				

Naměřené hodnoty pro ocelovou drť GH80 [g]								
č.m.	SK 258	SK 299	SK 900					
0	82,5161	73,7020	75,7467					
1	82,5136	73,7010	75,7449					
2	82,5130	73,7003	75,7428					
5	82,5128	73,7000	75,7408					
8	82,5115	73,6994	75,7367					
9	82,5112	73,6992	75,7362					

Naměřené hodnoty pro Al2O3 F60 [g]				
č.m.	SK 258	SK 299	SK 900	
0	82,4390	73,6710	75,6670	
1	82,3831	73,6392	75,5959	
2	82,3357	73,6130	75,5398	
5	82,2049	73,5394	75,3892	
8	82,0852	73,4718	75,2482	
9	82,0469	73,4502	75,1971	

Naměřené hodnoty pro Al2O3 F80 [g]					
č.m.	SK 258	SK 299	SK 900		
0	76,5036	72,7270	79,8912		
1	76,4739	72,7181	79,8200		
2	76,4453	72,7088	79,7570		
5	76,3624	72,6884	79,5614		
8	76,2905	72,6687	79,3370		
9	76,2625	72,6632	79,2862		

Naměřené hodnoty pro Al2O3 F120 [g]									
č.m.	SK 258	SK 299	SK 900						
0	76,6672	73,8950	79,6099						
1	76,6559	73,8920	79,5542						
2	76,6470	73,8893	79,5009						
5	76,6204	73,8822	79,3563						
8	76,5962	73,8729	79,2285						
9	76,5890	73,8708	79,1883						
Naměřené hodnoty pro S235JR [g]									
---------------------------------	---------	-----------------	---------	--	--	--	--	--	--
č.m.	SiC2	iC2 Oc. Drť							
0	81,1356	74,9653	75,5743						
1	81,1206	74,7682	75,3833						
2	81,1074	81,1074 74,6028							
5	81,0723	74,1753	74,7599						
8	81,0425	_	-						
9	81,0309	_	-						

Hmotnostní úbytky pro výpočet poměrné odolnosti návarů proti abrazivnímu opotřebení

Hmotnostní úbytky pro jednotlivá měření (SiC) [mg]								
Č.m.	SK 258	SK 299	SK 900	S235JR				
1	3,80	2,10	0,10	15,00				
2	4,80	1,80	0,20	13,20				
3	2,50	1,40	1,90	11,70				
4	2,50	1,40	1,90	11,70				
5	2,50	1,40	1,90	11,70				
6	3,10	1,20	1,70	9,93				
7	3,10	1,20	1,70	9,93				
8	3,10	1,20	1,70	9,93				
9	2,70	2,50	1,80	11,60				
Ø úbytek	3,12	1,57	1,43	11,63				

Hmotnostní úbytky pro jednotlivá měření (ocelová drť) [mg]										
Č.m.	Č.m. SK 258 SK 299 SK 900 S235J									
1	2,50	1,00	1,80	197,10						
2	0,60	0,70	2,10	165,40						
3	0,20	0,30	2,00	142,50						
4	0,20	0,30	2,00	142,50						
5	0,20	0,30	2,00	142,50						
6	1,30	0,60	1,37	-						
7	1,30	0,60	1,37	-						
8	1,30	0,60	1,37	-						
9	0,30	0,20	0,50	-						
Ø úbytek	0,88	0,51	1,61	158,00						

Hmotnostní úbytky pro jednotlivá měření (Al ₂ O ₃) [mg]									
Č.m.	SK 258	SK 299	SK 900	S235JR					
1	29,70	8,90	71,20	191,00					
2	28,60	9,30	63,00	169,60					
3	27,63	6,80	65,20	151,27					
4	27,63	6,80	65,20	151,27					
5	27,63	6,80	65,20	151,27					
6	23,97	6,57	74,80	-					
7	23,97	6,57	74,80	-					
8	23,97	6,57	74,80	-					
9	28,00	5,50	50,80	-					
Ø úbytek	26,79	7,09	67,22	162,88					

7.4 Příloha IV

SiO₂ před zkouškou

SiO₂ po zkoušce

oc. drť před zkouškou

oc. drť po zkoušce

Al₂O₃F60 před zkouškou

Al2O3 F60po zkoušce

Al₂O₃F80 před zkouškou

Al2O3 F80po zkoušce

Al₂O₃F120 před zkouškou

Al₂O₃ F120po zkoušce

7.5 Příloha V

Naměřené hodnoty SiO ₂ před zkouškou							
Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]
1	294	51	261	101	210	151	277
2	232	52	315	102	159	152	262
3	295	53	218	103	242	153	289
4	258	54	156	104	176	154	229
5	336	55	249	105	289	155	306
6	309	56	212	106	220	156	226
7	293	57	218	107	284	157	323
8	257	58	273	108	161	158	166
9	339	59	290	109	300	159	310
10	167	60	167	110	182	160	200
11	316	61	310	111	279	161	353
12	258	62	239	112	166	162	210
13	329	63	289	113	190	163	235
14	288	64	238	114	132	164	156
15	341	65	201	115	277	165	275
16	169	66	171	116	140	166	185
17	265	67	265	117	218	167	279
18	220	68	200	118	134	168	159
19	248	69	256	119	219	169	416
20	299	70	212	120	189	170	224
21	356	71	332	121	210	171	244
22	258	72	273	122	160	172	201
23	354	73	303	123	253	173	228
24	291	74	243	124	190	174	163
25	370	75	265	125	241	175	229
26	188	76	190	126	108	176	159
27	248	77	374	127	189	177	298
28	295	78	198	128	134	178	223
29	384	79	313	129	235	179	263
30	317	80	235	130	170	180	151
31	205	81	232	131	228	181	263
32	236	82	257	132	184	182	153
33	281	83	201	133	207	183	240
34	261	84	206	134	174	184	220
35	397	85	220	135	222	185	220
36	126	86	206	136	209	186	166
37	350	87	220	137	268	187	190
38	172	88	174	138	183	188	162
39	132	89	311	139	211	189	240
40	191	90	228	140	164	190	158
41	295	91	158	141	217	191	194
42	225	92	178	142	153	192	188
43	170	93	224	143	279	193	304
44	267	94	195	144	131	194	105
45	212	95	252	145	262	195	250
46	172	96	154	146	195	196	281
47	275	97	258	147	319	197	263
48	163	98	256	148	221	198	175
49	301	99	312	149	293	199	213
50	194	100	326	150	232	200	163

Naměřené hodnoty SiO ₂ po zkoušce								
Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	
1	270	51	342	101	285	151	222	
2	205	52	143	102	148	152	201	
3	230	53	311	103	268	153	260	
4	163	54	175	104	164	154	217	
5	226	55	243	105	201	155	160	
6	139	56	227	106	225	156	134	
7	161	57	160	107	187	157	284	
8	136	58	141	108	208	158	111	
9	250	59	245	109	217	159	261	
10	212	60	172	110	173	160	175	
11	302	61	134	111	308	161	163	
12	192	62	133	112	167	162	142	
13	308	63	284	113	254	163	255	
14	173	64	170	114	213	164	204	
15	218	65	214	115	225	165	221	
16	196	66	226	116	231	166	169	
17	243	67	216	117	266	167	277	
18	163	68	291	118	213	168	193	
19	235	69	310	119	230	169	265	
20	169	70	218	120	221	170	208	
21	265	71	250	121	263	171	249	
22	197	72	184	122	170	172	165	
23	246	73	309	123	272	173	245	
24	191	74	10	124	180	174	130	
25	277	75	245	125	240	175	267	
26	182	76	190	126	172	176	172	
27	284	77	294	127	316	177	219	
28	167	78	226	128	181	178	189	
29	184	79	239	129	214	179	255	
30	114	80	119	130	151	180	209	
31	240	81	217	131	213	181	211	
32	177	82	173	132	185	182	182	
33	284	83	186	133	264	183	337	
34	185	84	158	134	171	184	163	
35	390	85	181	135	262	185	288	
36	169	86	103	136	244	186	149	
37	239	87	388	137	208	187	290	
38	133	88	194	138	150	188	224	
39	288	89	206	139	250	189	194	
40	231	90	196	140	208	190	130	
41	274	91	332	141	276	191	184	
42	143	92	296	142	181	192	226	
43	237	93	270	143	319	193	225	
44	193	94	220	144	230	194	278	
45	247	95	289	145	273	195	232	
46	174	96	231	146	171	196	211	
47	308	97	112	147	235	197	275	
48	221	98	104	148	194	198	197	
49	211	99	199	149	228	199	205	
50	176	100	176	150	128	200	143	

Naměì	Naměřené hodnoty ocelová drť GH 80 před zkouškou								
Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]		
1	570	51	680	101	381	151	384		
2	308	52	439	102	191	152	353		
3	412	53	358	103	738	153	425		
4	367	54	362	104	231	154	289		
5	386	55	683	105	523	155	248		
6	434	56	352	106	284	156	125		
7	411	57	176	107	339	157	486		
8	265	58	95	108	221	158	330		
9	231	59	411	109	296	159	217		
10	149	60	145	110	198	160	138		
11	392	61	277	111	232	161	281		
12	250	62	338	112	129	162	124		
13	647	63	310	113	423	163	250		
14	361	64	532	114	291	164	215		
15	344	65	732	115	457	165	267		
16	225	66	378	116	362	166	168		
17	543	67	249	117	374	167	309		
18	240	68	293	118	240	168	169		
19	406	69	351	119	86	169	462		
20	302	70	380	120	105	170	329		
21	421	71	446	121	86	171	660		
22	428	72	324	122	61	172	309		
23	250	73	366	123	395	173	568		
24	110	74	266	124	286	174	267		
25	424	75	405	125	190	175	317		
26	213	76	571	126	114	176	467		
27	321	77	495	127	363	177	319		
28	501	78	206	128	216	178	228		
29	357	79	492	129	182	179	485		
30	191	80	358	130	107	180	288		
31	449	81	315	131	107	181	303		
32	253	82	175	132	74	182	191		
33	516	83	631	133	225	183	505		
34	338	84	354	134	18	184	480		
35	342	85	383	135	30	185	542		
36	234	86	172	136	79	186	347		
37	744	87	334	137	186	187	271		
38	233	88	257	138	159	188	433		
39	368	89	612	139	244	189	319		
40	186	90	235	140	276	190	441		
41	560	91	270	141	380	191	246		
42	367	92	286	142	310	192	220		
43	326	93	363	143	539	193	363		
44	198	94	570	144	269	194	275		
45	435	95	119	145	364	195	637		
46	272	96	159	146	243	196	206		
47	246	97	423	147	246	197	451		
48	316	98	390	148	220	198	323		
49	612	99	631	149	417	199	477		
50	285	100	431	150	128	200	321		

Naměřené hodnoty ocelová drť GH 80 po zkoušce								
Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	
1	606	51	48	101	402	151	592	
2	362	52	39	102	223	152	222	
3	385	53	359	103	385	153	374	
4	322	54	124	104	356	154	272	
5	749	55	331	105	529	155	232	
6	414	56	137	106	313	156	151	
7	291	57	239	107	406	157	407	
8	306	58	124	108	217	158	145	
9	482	59	157	109	296	159	434	
10	323	60	87	110	171	160	279	
11	326	61	321	111	189	161	226	
12	226	62	161	112	142	162	287	
13	349	63	148	113	296	163	274	
14	128	64	107	114	192	164	346	
15	622	65	520	115	482	165	583	
16	195	66	193	116	344	166	259	
17	593	67	375	117	341	167	275	
18	318	68	184	118	360	168	242	
19	372	69	321	119	585	169	368	
20	202	70	243	120	280	170	227	
21	143	71	256	121	340	171	217	
22	128	72	102	122	209	172	231	
23	409	73	336	123	337	173	274	
24	441	74	137	124	331	174	340	
25	213	75	257	125	189	175	364	
26	144	76	168	126	107	176	246	
27	620	77	662	127	147	177	421	
28	233	78	267	128	152	178	198	
29	376	79	221	129	445	179	469	
30	472	80	99	130	131	180	379	
31	243	81	515	131	375	181	448	
32	124	82	187	132	335	182	220	
33	365	83	296	133	301	183	728	
25	290	04	526	134	140	104	308	
35	242	86	406	135	328	105	403	
30	300	87	400	130	328	187	612	
38	342	88	110	137	358	188	421	
30	481	89	269	130	214	189	524	
40	298	90	162	1/10	331	107	154	
40	103	91	311	1/1	372	190	181	
41	152	92	156	1/12	215	197	130	
43	561	93	311	143	263	193	569	
44	325	94	238	144	394	194	292	
45	243	95	370	145	363	195	375	
46	2.54	96	186	146	245	196	312	
47	184	97	543	147	312	197	544	
48	180	98	221	148	132	198	310	
49	115	99	299	149	274	199	368	
50	128	100	160	150	208	200	382	
-	-						-	

Naměřené hodnoty Al ₂ O ₃ F60 před zkouškou								
Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	
1	499	51	498	101	552	151	475	
2	260	52	270	102	269	152	225	
3	496	53	239	103	371	153	365	
4	361	54	358	104	284	154	385	
5	516	55	495	105	425	155	413	
6	267	56	231	106	247	156	367	
7	449	57	625	107	471	157	327	
8	323	58	301	108	353	158	272	
9	567	59	380	109	693	159	412	
10	298	60	245	110	250	160	402	
11	502	61	351	111	394	161	302	
12	226	62	249	112	172	162	466	
13	475	63	364	113	354	163	360	
14	173	64	313	114	285	164	197	
15	621	65	364	115	447	165	590	
16	366	66	249	116	193	166	123	
17	306	67	317	117	514	167	649	
18	239	68	229	118	246	168	313	
19	289	69	486	119	457	169	474	
20	320	70	255	120	287	170	293	
21	555	71	571	121	638	171	582	
22	258	72	166	122	237	172	307	
23	456	73	308	123	434	173	258	
24	321	74	259	124	388	174	253	
25	304	75	304	125	459	175	574	
26	239	76	390	126	270	176	212	
27	539	77	216	127	443	177	529	
28	164	78	318	128	255	178	242	
29	579	79	273	129	410	179	470	
30	300	80	318	130	172	180	247	
31	516	81	413	131	512	181	409	
32	137	82	504	132	260	182	256	
33	348	83	458	133	648	183	366	
34	312	84	192	134	210	184	614	
35	408	85	322	135	392	185	488	
36	147	86	295	136	299	186	404	
3/	436	8/	435	13/	327	18/	612	
38	238	88	232	138	266	188	227	
39	732	89	609	139	486	189	631	
40	512	90	346	140	253	190	235	
41	509	91	420	141	192	191	433	
42	294	92	271	142	505	192	329	
45	3/1	93	380	145	400	193	240	
44	520	94	413	144	100	194	388	
43	529	95	291 100	145	288	195	408	
40	244	90	400	140	201 512	190	182	
4/	204	91	404	14/	271	197	40/	
40	219	90	229	140	3/1	198	234 120	
47 50	200	77	202	149	390	200	430	
50	299	100	202	150	204	200	205	

Naměřené hodnoty Al ₂ O ₃ F60 po zkoušce								
Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	
1	441	51	429	101	397	151	451	
2	246	52	329	102	290	152	296	
3	575	53	350	103	408	153	411	
4	236	54	315	104	247	154	361	
5	617	55	321	105	405	155	407	
6	125	56	332	106	175	156	245	
7	325	57	392	107	348	157	358	
8	224	58	334	108	245	158	271	
9	381	59	566	109	425	159	559	
10	161	60	280	110	295	160	541	
11	369	61	386	111	402	161	564	
12	217	62	272	112	222	162	169	
13	318	63	274	113	357	163	358	
14	252	64	275	114	395	164	242	
15	476	65	226	115	606	165	376	
16	266	66	376	116	194	166	250	
17	286	67	390	117	389	167	343	
18	275	68	299	118	347	168	363	
19	309	69	336	119	425	169	303	
20	317	70	210	120	260	170	273	
21	327	71	245	121	443	171	427	
22	144	72	283	122	179	172	280	
23	365	73	481	123	345	173	270	
24	220	74	240	124	212	174	422	
25	307	75	431	125	297	175	282	
26	218	76	261	126	153	176	181	
27	300	77	405	127	306	177	400	
28	212	78	289	128	346	178	250	
29	211	79	431	129	406	179	423	
30	248	80	255	130	38	180	234	
31	484	81	378	131	233	181	286	
32	335	82	334	132	469	182	281	
33	279	83	320	133	303	183	634	
34	343	84	364	134	283	184	342	
35	348	85	510	135	401	185	215	
36	267	86	285	136	275	186	211	
37	351	87	403	137	424	187	465	
38	147	88	330	138	169	188	345	
39	371	89	558	139	352	189	567	
40	341	90	233	140	264	190	221	
41	297	91	250	141	298	191	438	
42	317	92	481	142	326	192	196	
43	355	93	457	143	332	193	337	
44	305	94	294	144	294	194	251	
45	253	95	258	145	321	195	331	
46	352	96	211	146	154	196	558	
47	415	97	124	147	343	197	308	
48	212	98	233	148	180	198	343	
49	285	99	160	149	546	199	339	
50	202	100	246	150	244	200	275	

Naměřené hodnoty Al ₂ O ₃ F80 před zkouškou								
Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	
1	398	51	341	101	280	151	294	
2	284	52	189	102	258	152	189	
3	374	53	368	103	240	153	389	
4	278	54	204	104	203	154	203	
5	448	55	332	105	317	155	322	
6	110	56	240	106	230	156	225	
7	311	57	229	107	571	157	358	
8	159	58	214	108	207	158	214	
9	262	59	286	109	389	159	311	
10	177	60	103	110	209	160	260	
11	352	61	228	111	305	161	345	
12	249	62	190	112	175	162	141	
13	283	63	336	113	352	163	351	
14	182	64	299	114	221	164	189	
15	480	65	338	115	309	165	268	
16	139	66	166	116	246	166	208	
17	407	67	398	117	220	167	313	
18	149	68	209	118	134	168	282	
19	288	69	465	119	368	169	326	
20	164	70	261	120	121	170	217	
21	491	71	301	121	315	171	299	
22	290	72	240	122	202	172	226	
23	387	73	355	123	294	173	419	
24	233	74	289	124	310	174	217	
25	671	75	258	125	238	175	453	
26	279	76	339	126	309	176	197	
27	305	77	303	127	258	177	343	
28	225	78	264	128	194	178	215	
29	195	79	339	129	414	179	474	
30	298	80	448	130	158	180	223	
31	285	81	386	131	426	181	286	
32	252	82	352	132	157	182	297	
33	393	83	426	133	220	183	370	
34	153	84	245	134	215	184	227	
35	311	85	223	135	203	185	318	
36	223	86	306	136	250	186	341	
37	327	87	316	137	325	187	245	
38	231	88	202	138	262	188	115	
39	349	89	354	139	230	189	514	
40	287	90	202	140	163	190	209	
41	302	91	443	141	296	191	319	
42	253	92	218	142	160	192	226	
43	332	93	366	143	333	193	332	
44	189	94	192	144	163	194	161	
45	351	95	238	145	230	195	366	
46	204	96	95	146	252	196	308	
47	302	97	257	147	286	197	343	
48	258	98	133	148	194	198	134	
49	265	99	362	149	349	199	377	
50	110	100	183	150	321	200	220	

Naměřené hodnoty Al ₂ O ₃ F80 po zkoušce								
Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	
1	373	51	334	101	300	151	303	
2	276	52	211	102	242	152	205	
3	306	53	389	103	340	153	258	
4	187	54	221	104	158	154	153	
5	349	55	267	105	400	155	294	
6	235	56	200	106	268	156	123	
7	471	57	266	107	332	157	439	
8	215	58	227	108	244	158	123	
9	284	59	294	109	202	159	249	
10	206	60	212	110	295	160	232	
11	383	61	354	111	379	161	255	
12	327	62	143	112	207	162	187	
13	409	63	498	113	358	163	281	
14	249	64	229	114	288	164	159	
15	267	65	311	115	331	165	235	
16	205	66	160	116	234	166	286	
17	333	67	399	117	42	167	405	
18	235	68	253	118	190	168	199	
19	435	69	344	119	336	169	270	
20	236	70	229	120	290	170	181	
21	310	71	348	121	391	171	404	
22	168	72	230	122	208	172	238	
23	268	73	347	123	285	173	271	
24	199	74	221	124	130	174	179	
25	477	75	350	125	369	175	94	
26	310	76	179	126	133	176	83	
27	376	77	284	127	349	177	233	
28	247	78	217	128	222	178	213	
29	309	79	322	129	362	179	409	
30	235	80	268	130	170	180	163	
31	331	81	484	131	259	181	398	
32	244	82	282	132	288	182	150	
33	280	83	464	133	305	183	330	
34	250	84	327	134	217	184	351	
35	488	85	289	135	325	185	321	
36	258	86	229	136	204	186	247	
37	465	87	337	137	212	187	404	
38	261	88	253	138	345	188	162	
39	349	89	243	139	378	189	310	
40	241	90	162	140	154	190	210	
41	317	91	350	141	336	191	463	
42	215	92	266	142	150	192	222	
43	395	93	349	143	344	193	346	
44	133	94	172	144	253	194	137	
45	318	95	313	145	285	195	303	
46	208	96	160	146	290	196	165	
47	296	97	183	147	367	197	397	
48	279	98	173	148	323	198	162	
49	350	99	230	149	398	199	202	
50	210	100	369	150	320	200	403	

Naměřené hodnoty Al ₂ O ₃ F120 před zkouškou										
Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]			
1	161	51	151	101	161	151	173			
2	162	52	145	102	104	152	106			
3	226	53	116	103	204	153	222			
4	119	54	297	104	124	154	148			
5	103	55	99	105	219	155	250			
6	91	56	166	106	83	156	91			
7	161	57	130	107	186	157	218			
8	133	58	256	108	124	158	145			
9	185	59	119	109	206	159	183			
10	130	60	117	110	134	160	135			
11	131	61	142	111	169	161	209			
12	98	62	161	112	119	162	140			
13	189	63	109	113	205	163	200			
14	127	64	163	114	158	164	71			
15	238	65	161	115	210	165	213			
16	95	66	149	116	108	166	157			
17	195	67	108	117	191	167	251			
18	73	68	151	118	118	168	177			
19	191	69	91	119	169	169	231			
20	90	70	188	120	90	170	183			
21	219	71	108	121	171	171	140			
22	111	72	162	122	87	172	122			
23	192	73	169	123	90	173	264			
24	186	74	135	124	31	174	138			
25	195	75	167	125	147	175	245			
26	116	76	82	126	107	176	109			
27	207	77	88	127	157	177	188			
28	96	78	107	128	99	178	165			
29	159	79	213	129	310	179	179			
30	120	80	135	130	103	180	150			
31	202	81	109	131	182	181	195			
32	251	82	155	132	87	182	152			
33	148	83	203	133	240	183	242			
34	170	84	267	134	130	184	148			
35	132	85	158	135	185	185	150			
36	171	86	205	136	107	186	147			
37	79	87	106	137	213	187	214			
38	204	88	257	138	139	188	143			
39	98	89	136	139	198	189	271			
40	170	90	195	140	140	190	166			
41	103	91	127	141	184	191	199			
42	141	92	276	142	144	192	79			
43	126	93	120	143	197	193	182			
44	165	94	181	144	103	194	151			
45	118	95	134	145	202	195	213			
46	223	96	231	146	122	196	126			
47	133	97	163	147	186	197	184			
48	182	98	281	148	153	198	107			
49	155	99	147	149	237	199	62			
50	160	100	281	150	127	200	52			

Naměřené hodnoty Al ₂ O ₃ F120 po zkoušce										
Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]	Č.m.	Délka [µm]			
1	207	51	310	101	222	151	194			
2	126	52	58	102	122	152	83			
3	208	53	201	103	165	153	177			
4	91	54	77	104	123	154	136			
5	189	55	169	105	165	155	151			
6	154	56	76	106	70	156	109			
7	196	57	149	107	172	157	205			
8	108	58	61	108	127	158	140			
9	237	59	191	109	160	159	190			
10	126	60	131	110	132	160	81			
11	236	61	280	111	197	161	209			
12	177	62	123	112	73	162	109			
13	163	63	220	113	144	163	115			
14	213	64	100	114	59	164	173			
15	208	65	218	115	165	165	146			
16	119	66	198	116	71	166	154			
17	182	67	165	117	220	167	141			
18	111	68	107	118	69	168	180			
19	181	69	275	119	180	169	180			
20	130	70	46	120	163	170	113			
21	173	71	175	121	227	171	182			
22	120	72	114	122	115	172	73			
23	299	73	156	123	283	173	166			
24	132	74	139	124	91	174	102			
25	208	75	175	125	135	175	192			
26	96	76	166	126	100	176	134			
27	251	77	188	127	152	177	231			
28	73	78	144	128	132	178	90			
29	252	79	151	129	189	179	155			
30	164	80	112	130	69	180	123			
31	175	81	144	131	211	181	175			
32	110	82	144	132	96	182	147			
33	173	83	235	133	144	183	177			
34	151	84	134	134	154	184	85			
35	171	85	156	135	178	185	238			
36	172	86	135	136	92	186	104			
37	203	87	218	137	161	187	161			
38	78	88	92	138	85	188	76			
39	211	89	175	139	187	189	255			
40	101	90	72	140	142	190	120			
41	202	91	185	141	202	191	210			
42	139	92	129	142	130	192	108			
43	180	93	123	143	155	193	192			
44	91	94	142	144	106	194	109			
45	189	95	189	145	199	195	172			
46	105	96	82	146	64	196	116			
47	206	97	218	147	136	197	222			
48	119	98	131	148	164	198	109			
49	246	99	161	149	186	199	159			
50	143	100	85	150	145	200	113			