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Abstrakt: Metabolomika je poměrně novým oborem biochemie zabývaj́ıćı se
studiem metabolit̊u, jejich dynamickými změnami, interakcemi a odpověd’mi na
podněty. Vzhledem k relativńımu charakteru metabolomických dat na ně může
být pohĺıženo jako na tzv. kompozičńı data. Vektory takovýchto dat maj́ı kladné
složky; nav́ıc nás nezaj́ımaj́ı jejich absolutńı hodnoty, ale pod́ıly mezi nimi. Aby-
chom mohli pracovat s kompozičńımi daty v klasickém euklidovském prostoru,
muśıme použ́ıt specifické souřadnicové systémy. Dále muśıme při analýze meta-
bolomických dat brát v úvahu materiál, který je použit pro měřeńı, a v neposledńı
řadě i to, že máme k dispozici typicky řádově méně pozorováńı než proměnných,
tedy hovoř́ıme o tzv. vysoce-dimenzionálńıch datech. Pro analýzu takového sou-
boru muśı být použity speciálńı statistické metody. Prvńı část́ı statistické analýzy
je předzpracováńı dat souvisej́ıćı s vyjádřeńım metabolomických (kompozičńıch)
dat v tzv. logratio souřadnićıch. V metabolomice také použ́ıváme tzv. kontroly
kvality, které nám pomáhaj́ı v odstraňováńı chyb měřeńı. Daľśım problémem jsou
nulové hodnoty. Většina v současnosti použ́ıvaných statistických metod pro kom-
pozičńı data neumı́ pracovat s nulovými hodnotami, proto je muśıme umět vhodně
nahradit. Vlastńı statistická analýza může být provedena pomoćı celé řady po-
stup̊u. Prvńı, nejpopulárněǰśı, je metoda hlavńıch komponent. Ta je východiskem
pro metodu částečných nejmenš́ıch čtverc̊u či jej́ı ortogonálńı podobu. Pokud
pracujeme s trojrozměrnými datovými tabulkami, můžeme analýzu provést také
pomoćı metody PARAFAC. Důležitou součást́ı této práce jsou také praktické
př́ıklady na reálných datových souborech z Laboratoře metabolomiky Univerzity
Palackého Olomouc.
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Olomouc.

Key words: Compositional data, metabolomics, partial least squares regression,
multivariate statistical analysis, practical application, imputation of zeros.

Number of pages: 130

Number of appendices: 0

Language: English

3



Statement of originality

I hereby declare that this dissertation thesis has been completed indepen-
dently, under the supervision of Doc. RNDr. Karel Hron, Ph.D. All the materials
and resources are cited with regard to the scientific ethics, copyrights and the laws
protecting intellectual property. This thesis or its parts were not submitted to
obtain any other or the same academic title.

Olomouc, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

signature

4



Contents

List of abbreviations 8

Aims of the thesis 9

Introduction 10

1 Compositional data 17
1.1 Introduction to compositional data . . . . . . . . . . . . . . . . . 17
1.2 Logratio methodology . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Regression for compositional data . . . . . . . . . . . . . . . . . . 23

2 Metabolomics 26
2.1 Introduction to metabolomics . . . . . . . . . . . . . . . . . . . . 26
2.2 Data normalization in metabolomics . . . . . . . . . . . . . . . . 30

3 Multidimensional statistical analysis 33
3.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 The use of quality control samples . . . . . . . . . . . . . . 33
3.1.2 Imputation of missing values and rounded zeros . . . . . . 37

3.2 Principal component analysis . . . . . . . . . . . . . . . . . . . . 39
3.3 Partial least squares regression . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Theoretical background . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Estimation of the number of components . . . . . . . . . . 51
3.3.4 Example with data from metabolomics . . . . . . . . . . . 53

3.4 Orthogonal partial least squares regression . . . . . . . . . . . . . 57
3.5 Parametric models for imputation of rounded zeros . . . . . . . . 61

3.5.1 Theoretical background for imputation model . . . . . . . 61
3.5.2 Modification with variation matrix . . . . . . . . . . . . . 64
3.5.3 Alternative approaches . . . . . . . . . . . . . . . . . . . . 64
3.5.4 Validation criteria . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.5 The practical application of imputation model . . . . . . . 67

3.6 PARAFAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5



3.6.1 Building up the model . . . . . . . . . . . . . . . . . . . . 73
3.6.2 Practical application of PARAFAC . . . . . . . . . . . . . 78

4 Practical application 86
4.1 Data introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Targeted analysis of serum samples . . . . . . . . . . . . . . . . . 87
4.3 Untargeted analysis of serum samples . . . . . . . . . . . . . . . . 96
4.4 Targeted analysis of urine samples . . . . . . . . . . . . . . . . . . 105
4.5 Comparison with the other transformations . . . . . . . . . . . . . 110

4.5.1 Logarithmic transformation . . . . . . . . . . . . . . . . . 111
4.5.2 The probabilistic quotient normalization . . . . . . . . . . 112

Conclusion 116

References 119

6



Acknowledgement

I would like to thank to my supervisor Doc. RNDr. Karel Hron, Ph.D. for help-
fulness, guidance and patience during the preparation of the scientific papers and
this thesis. I want to thank to all my colleagues and friends from the Laboratory
of Metabolomics who provided a friendly environment for my research, especially
to my consultant from the laboratory, prof. RNDr. Tomáš Adam, Ph.D. I am
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List of abbreviations

Throughout the thesis, the following standard abbreviations are used. Other

nonstandard abbreviations are introduced in the text as it is needed.

ADCS average difference in covariance structure
alr coordinates additive logratio coordinates

ALS alternating least squares
AUC area under the curve
CED compositional error deviation

clr coorinates centered logratio coordinates
CV coefficient of variation

ilr coordinates isometric logratio coordinates
LOESS local regression

MCADD medium chain acyl-CoA dehydrogenase deficiency
MSEP mean squared error of prediction

m/z mass to change ratio
NIPALS nonliear iterative partial least squares

OPLS-DA orthogonal partial least squares regression - discriminant
analysis

PARAFAC parallel factor analysis
PCA principal component analysis

PLS-DA partial least squares regression - discriminant analysis
PQN probabilistic quotient normalization

PRESS predicted error sum of squares
QC quality control

SVD singular value decomposition
VIP variable importance in the projection
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Aims of the thesis

This thesis aims to be a complex guide for the statistical processing of me-

tabolomic (compositional) data sets. The main goal is to study the possibility

of using advanced multivariate statistical methods for the statistical analysis of

metabolomic data. Inputs from metabolomics have a specific structure - they have

properties of so called compositional data. The thesis is focused on the analysis of

this type of data. The second property of the metabolomic data is connected with

the size of the data table, where typically much more metabolites than observati-

ons occur - these data have so called high-dimensional structure. Accordingly,

the specific statistical approach must be used for their analysis. The thesis deals

with popular methods for statistical processing of high-dimensional metabolo-

mic data, like principal component analysis, partial least squares regression and

parallel factor analysis (PARAFAC), which are adopted for the case of composi-

tional data. The problem of the presence of zeros in the data table, that makes

not possible to apply the logratio methodology to metabolomic (compositional)

data, is also discussed. All algorithms are processed by appropriate software tool,

the R software. The large part of the thesis is devoted to application of the lo-

gratio methodology to a wide range of data sets from metabolomics.

9



Introduction

Compositional data (or compositions for short) are multivariate observati-

ons with positive components, and they can be represented without loss of in-

formation as data with a constant sum constraint like proportions or percen-

tages [1–3]. In such a case, the sum of the compounds (parts) is not important and

the only relevant information is contained in the ratios between the parts. Hence,

the constant sum is just a representation, not an inherent property of the data,

describing quantitatively parts of a whole and following a relative scale. Com-

positional data occur in a wide range of applications involving geochemistry,

analytical chemistry, and its related fields. Nevertheless, up to now just a few

papers following the concept of compositional data were published in the field of

metabolomics and proteomics [4–7].

Metabolomics aims at studying metabolites, their dynamic changes, interacti-

ons and responses to stimuli. It is applied to the metabolism of plants, bacteria,

animals and humans. In humans all biological materials from biofluids (blood,

urine) till tissues are analyzed. Although absolute values of biomarkers compared

with reference ranges (data from the healthy population) is the most frequently

used approach, ratios of metabolite data are frequently analyzed in the biochemi-

cal diagnostic practice. The reason for their use is, for example, to compensate for

the “hydration” of an organism (correction for creatinine in case of urinary measu-

rements), or for variability introduced by a sampling technique (dry blood spots).

In diagnostic procedures that interpret data based on “profiling” (semiquantita-

tive data [8, 9] on more variables in patient’s biofluid by common techniques,

e.g. organic acids in urine by gas chromatography - mass spectrometry), rela-
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tive changes are more relevant/informative than absolute values. It suggests that

metabolomic data can indeed be considered as observations carrying relative in-

formation, i.e. as compositional data [6].

Some authors correctly argue that the content of each biofluid is heavily in-

fluenced by endogenous sources (e.g. diet), thus concentration levels of meta-

bolites can vary by orders of magnitude. In heavy insults (e.g. genetic enzyme

defect, toxicity), the concentration of specific metabolite(s) can increase by or-

ders of magnitudes. If this change represents a substantial part of a possible

fixed constant sum constraint of compositional data (like 1 in case of proportions

and 100 for percentages), it can lead to biased effects like spurious correlation

(all correlation coefficients tend to be negative, thus, the covariance structure of

the data is destroyed) and also the relative scale of compositional parts is com-

pletely ignored [1, 3]. This situation is pointed out in detail, e.g., by Sysi-Aho

in [10]. Nevertheless, these doubts reflect exactly the case when compositional

data, represented by a chosen constant sum constraint, are analyzed using stan-

dard statistical methods. On the other hand, this problem is correctly handled by

the logratio approach to compositional data analysis that we expand throughout

the thesis. The relative dominance of metabolites is then correctly reflected by

the multivariate structure of the analyzed data.

Very important part of the statistical evaluation is the preprocessing of meta-

bolomic data. The measuring instruments have some limitations and measuring

errors can be present in data, for example pressure in the machine can diverge or

the temperature in the room can change. To correct these errors special statistical

methods must be used. Measurements of standard samples (so called quality con-

trol samples) must be stable in time. Then signal correction by LOESS method

based on the quality control samples must be done before statistical processing

itself is performed [11,12].

Almost none of statistical methods is able to process data that contain mea-

surement artifacts like missing values (pure absence of the measurement in some

entries) or values below a detection limit (resulting as the effect of rounding errors,
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we also refer to rounded zeros). Especially, values below a detection limit occur

frequently in natural sciences related to chemometric data or data from geoche-

mistry. Their proper replacement must precede any further statistical analysis.

Although for the case of standard multivariate data a comprehensive methodo-

logy exists [13], even applicable to high-dimensional data [14], it fails in case of

compositional data. Due to their specific nature, each value to be imputed needs

to be considered in a relative sense, as ratios with the other parts in a composi-

tion. Imputation methods are already developed for both, missing values [15] and

rounded zeros [16–18]. However, these methods fail in case of high-dimensional

compositional data sets.

It is widely common in chemometrics, and particularly in metabolomics,

to normalize and scale the observations prior to further statistical analysis [19,20].

While most of the normalization techniques are heuristic ones, it is also possi-

ble to derive systematic approaches based on natural features of the underly-

ing observations. The relative character of metabolite observations is reflected

in the practice by many kinds of normalization techniques that are an integral

part of research publications in the field worldwide and are exhaustively descri-

bed in all chemometrics handbooks [19]. Let us mention, e.g., the well-known

AUC normalization whose aim is to normalize a group of signals with peaks by

standardizing the area under the curve (AUC) to the group median, mean or

any other proper representation. Another approach is represented by rationing

to landmarks, e.g. to normalization of urine end-product metabolites to creati-

nine, that is often used also in general in chemometrics. The choice of any such

normalization is usually strongly data dependent in practice, which affects the ob-

jectivity and makes any further comparisons hardly attainable [21–26]. All these

possibilities of normalization of the original biomarker values to dimensionless

observations just reflect the fact that metabolomic observations are of relative

nature, i.e. they are compositional data.

After the normalization step, data are popularly transformed using the log-

transformation (popular in metabolomics), or alternatively (and preferably here)
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expressed as proper logratio coordinates that capture relative nature of metabolo-

mic (compositional) data. Both transformations will be discussed in the following

chapters.

The statistical analysis of two-way data starts typically with principal compo-

nent analysis [27–29]. This method must be adapted to work with compositional

data [3], i.e. a special coordinate system must be used for the analysis. This

method will be introduced in this thesis with its imaging method called biplot.

The application of biplot to compositional data is known [3, 29], but it belongs

to basic processing methods of two-way data and must be shown for the better

complexity of the whole procedure.

Concerning further statistical analysis, the problem occurs because more me-

tabolites (in hundreds) than biological materials (only tens) are present in these

data sets. Therefore, suitable methods must be applied for this kind of observati-

ons. One of them is partial least squares regression (PLS regression), concretely

its popular special case partial least squares - discriminant analysis (PLS-DA)

[30–33]. PLS-DA is devoted to a particular regression problem, where the re-

sponse is formed by categorical variables, whose values represent single groups

that occur in the data set. This approach can also be considered as a compromise

between usual discriminant analysis and discriminant analysis on the significant

principal components of the predictor variables [34]. Nevertheless, the standard

PLS-DA method needs to be adapted to compositional data, because (as men-

tioned above) using raw observations could lead to useless results. This method

will be used in a wide range of applications in this thesis because of the specific

characteristics of metabolomic data.

A special modification of the PLS model can also be used. It is called ortho-

gonal - partial least squares (OPLS) method and it works with the orthogonal

variation in the data [35, 36]. Results of OPLS are popularly visualized using

S-plot which is a scatter plot of correlations and covariance of the data. It is

a useful tool for detection of important markers of some disease.

Special techniques of metabolomic (compositional) data processing need to
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be applied, when they form a three-way structure. This structure arises typically

when samples of some biological material are measured at more time points.

The resulting data array has a structure of a data cube with samples in rows,

variables in columns and time points in slices. This cube may be splitted to indi-

vidual tables, one table for one time point. For statistical processing of three-way

observations well established tools like PARAFAC [37, 38] or Tucker3 [39] exist,

they are still rarely used in the compositional context [40–42], with no metabo-

lomics application known.

The crucial parts of this thesis are practical applications of all presented

methods. All data from examples were measured in the Laboratory of Meta-

bolomics from the Institute of Molecular and Translational Medicine, Palacký

University Olomouc. The last chapter of the thesis consist of practical exam-

ples that show a coherent approach of statistical processing of the metabolomic

data files. The data preprocessing, including the imputation of rounded zeros,

is demonstrated here followed by application of principal component analysis,

partial least squares regression and orthogonal partial least squares regression.

The interpretation of results is also contained in this chapter.

The whole procedure of complete statistical evaluation of metabolomic data,

as presented in this thesis, is used in everyday practice in the Laboratory of

Metabolomics. Some parts could be rather elementary for mathematical audience,

but they are very useful for people from the outside of the statistical field.

All calculations and graphs were performed by the statistical software R [43]

using basic packages. Some special packages were also employed, like robCom-

positions (logratio methodology of compositional data) [44], xcms [45–47], CA-

MERA [48], muma [49] (previous three for the untargeted analysis of metaboli-

tes), zCompositions [50], pls [51], PTAk [52, 53] and ThreeWay [54].

This dissertation thesis strongly relies on papers that were published, accepted

and submitted during my Ph.D. studies:

• C. Kanagaratham, A. Kalivodová, L. Najdekr, D. Friedecký, T. Adam, D.

Moreno, J.V. Garmendia, M. Hajduch, J.B. De Sanctis, D. Radzioch, Fe-
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malization techniques for PARAFAC modeling of urine metabolomic data,

submitted, 2016 [59].

15
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Chapter 1

Compositional data

1.1. Introduction to compositional data

Data from metabolomics closely follow properties of compositional data, and

thus, their statistical analysis needs to account for this fact. Such data are cha-

racterized by features like scale invariance (the information in a composition does

not depend on the particular units in which the composition is expressed) and

the relative scale (ratios and not absolute distances are important when dissi-

milarities of observations are analyzed). The concept of relative scale naturally

occurs already for most positive univariate data sets [63]. Although absolute (Euc-

lidean) distances within two pairs of samples taken at two observations, (5; 10

and 100; 105 in ppm) are the same, their interpretation is different. In the first

case, most observers would say there is double the total amount in the second

observation compared to the first while in the second case they say that the values

are high but approximately the same. Another property which is crucial for any

meaningful statistical analysis of compositional data is called subcompositional

incoherence, i.e. information conveyed by a composition should not be in contra-

diction with that coming from a subcomposition that involves only a subset of

the variables [64].

Representation of compositions through vectors with a constant sum is a very

popular attitude. Any composition can be expressed in proportions with an ap-

propriate scaling factor. The operation used for the assigning this constant sum
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is called the closure [1–3] and it is defined for a composition x = (x1, . . . , xD)
′

with the formula

C(x) =

(
κ · x∑D
i=1 xi

,
κ · x∑D
i=1 xi

, . . . ,
κ · xD∑D
i=1 xi

)′
, (1.1)

where κ > 0 is the sum of components. The choice of κ is often 1 (proportions)

or 100 (percentages).

The sample space of compositions is called the simplex defined as [1–3]

SD =

{
x = (x, x, . . . , xD)

′

∣∣∣∣∣xi > 0, i = 1, 2, . . . , D;
D∑
i=1

xi = κ

}
, (1.2)

Two operations are defined on the simplex. The first operation is called

the perturbation [1–3] and it represents an analogy to the sum of two real vectors.

Let’s have two compositions x ∈ SD and y ∈ SD, the perturbation of x and y is

x⊕ y = C(xy, xy, . . . , xDyD)
′
∈ SD. (1.3)

The second operation - powering - is formed by powering the vector (com-

position x ∈ SD) by a constant α ∈ R,

α� x = C(x
α, x

α, . . . , xD
α)
′
∈ SD. (1.4)

The natural geometry of compositions, called the Aitchison geometry, ac-

counts for all the features mentioned above (see, e.g. [2,3,65] for details). The Ait-

chison geometry has all the usual properties that are known from the Euclidean

geometry, for which standard statistical methods are designed [66]. However, ope-

rations of the Aitchison geometry, like the above mentioned perturbation and

powering, are different from the Euclidean geometry case. For this reason, usual

multivariate statistical methods like principal component analysis, factor ana-

lysis or correlation analysis cannot be directly applied to compositional data,
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since otherwise interpretations of the results and conclusions can be mislea-

ding [3, 7, 65,67–69].

The Euclidean vector space structure of for the Aitchison geometry is comple-

ted by the inner product, norm and distance. The Aitchison inner product of two

compositions x,y ∈ SD is defined as [1–3]

〈x,y〉a =
1

2D

D∑
i=1

D∑
j=1

ln
xi
xj

ln
yi
yj
. (1.5)

The Aitchison norm for a composition x ∈ SD is characterized by the formula

‖x‖a =
√
〈x,x〉a =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
xi
xj

)2

. (1.6)

The Aitchison distance between x ∈ SD and y ∈ SD is given as

da(x,y) = ‖x	 y‖a =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
xi
xj
− ln

yi
yj

)2

. (1.7)

1.2. Logratio methodology

Statistical data analysis is usually carried out in the Euclidean geometry and

not in the Aitchison geometry. Thus, the central idea is to express compositions

from the simplex in real coordinates and then to apply the standard multivariate

methods. From a mathematical point of view, we search for a basis (or generating

system) with respect to the Aitchison geometry in order to express compositional

data in coefficients of such a basis (coordinate system). As these coefficients are

build up using logarithms of ratios of compositional parts, we refer to logratio

coordinates. Currently, three basic logratio coordinate systems occur in the lite-

rature: additive, centered and isometric logratio coordinates. Nevertheless, only

the latter two can be recommended in general, because they map the Aitchi-

son geometry to the Euclidean one isometrically. The use of logratio coordinates
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preserves the relative scale property of compositions, which is of primary impor-

tance in chemometrics, and follow all requirements for a meaningful analysis of

compositions as mentioned above. For more detailed discussions on these issues,

see [1, 70].

The centered logratio (clr) coordinates [1, 3] are defined for a composition

x = (x1, . . . , xD)′ as

clr(x) = r = (r1, . . . , rD)′ =

(
ln

x1

D

√∏D
i=1 xi

, . . . , ln
xD

D

√∏D
i=1 xi

)′
. (1.8)

Although the resulting variables are quite easily interpretable (each of them corre-

sponds to one of the original compositional parts), clr coordinates are coefficients

with respect to a generating system on the simplex. For this reason, the re-

sulting covariance matrix of a random composition in clr coordinates is singu-

lar [1, 65]. This is a serious limitation for many standard multivariate statistical

methods [67]. The singularity restriction of the clr coordinates is overcome by

the isometric logratio (ilr) coordinates, resulting in D − 1 coordinates with re-

spect to an orthonormal basis. Unfortunately, it is thus not possible to assign

a coordinate to each of the original compositional parts simultaneously, as it was

the case of clr coordinates. Nevertheless, as there are infinitely many ways to

construct an orthonormal basis, its proper choice [71, 72] allows to construct co-

ordinates with an intuitive interpretation. Thus we get a (D−1)-dimensional real

vector ilr(x) = z = (z1, . . . , zD−1)
′ [3, 65,71], where

zi =

√
D − i

D − i+ 1
ln

xi

D−i

√∏D
j=i+1 xj

, i = 1, . . . , D − 1. (1.9)
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The inverse mapping of z back to the original composition x is then given by

x1 = exp

(√
D − 1√
D

z1

)
,

xi = exp

(
−

i−1∑
j=1

1√
(D − j + 1)(D − j)

zj +

√
D − i√

D − i+ 1
zi

)
, (1.10)

xD = exp

(
−

D−1∑
j=1

1√
(D − j + 1)(D − j)

zj

)
,

Afterward, a possible closure operation in order to get a prescribed constant sum

constraint of the components can be applied.

With the above orthonormal (ilr) coordinates (1.9), the variable z1 carries all

the relevant information about the compositional part x1, because it explains all

the ratios between x1 and the other parts of x [15,71]. In z1, this is expressed by

the logratio between x1 and the remaining parts in the composition, represented

by their geometric mean. Obviously, if we permute the parts x2, . . . , xD in (1.9),

the interpretation of z1 remains unchanged. The interpretation of z1 holds also

when the remaining coordinates are constructed with respect to another ortho-

normal basis on the simplex [70,71].

Now we can proceed to construct such an orthonormal basis, where the first

ilr coordinate explains the relative information about a compositional part of in-

terest. For this purpose, the indices in formula (1.9) are just permuted such that

the part of interest plays the role of x1. Accordingly, in order to assign such coor-

dinates to each compositional part xl, l = 1, . . . , D, we need to construct D diffe-

rent ilr coordinate systems, where the D-tuple (x1, . . . , xD)′ in (1.9) is replaced by

(xl, x1, . . . , xl−1, xl+1, . . . , xD)′ =: (x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D )
′
[71]. The corre-

sponding ilr coordinates are thus

z
(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1. (1.11)

As a special case we get z
(1)
i = zi, for i = 1, . . . , D − 1. Obviously, the vector
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z(l) = (z
(l)
1 , . . . , z

(l)
D−1)

′
is again a vector of orthonormal coordinates. Finally, later

on we will see the advantage to relate the clr coefficients and the ilr coordinates

linearly as r = Vz. The matrix V = (v1, . . . ,vD−1) has dimension D × (D − 1)

and its columns are formed by the orthonormal basis vectors in clr coordinates,

vi =

√
D − i

D − i+ 1

(
0, . . . , 0, 1,− 1

D − i
, . . . ,− 1

D − i

)′
, i = 1, . . . , D − 1.

(1.12)

Interestingly, rl =
√

D−1
D
z
(l)
1 , l = 1, . . . , D, i.e. rl is proportional to z

(l)
1 , and

thus each clr variable (separately) captures all the relative information about

the compositional part xl as well.

The third basic logratio coordinate system is called the additive logratio (alr)

coordinates. This system is not very often used because results of statistical pro-

cessing in alr coordinates might depend on the denominator used in the formula

and they represents coordinates with respect to a basis that is not orthonor-

mal. As a consequence, alr coordinates do not form an isometric mapping [2, 3].

Though, as we can see in the following text, these coordinates can naturally occur

as a result of combining transformations and normalizations used in metabolo-

mics.

The definition of the alr coordinates for a composition x = (x1, . . . , xD)′ is as

follows [1, 3]:

alr(x) = w = (w1, . . . , wD−1)
′ =

(
ln
x1
xD

, ln
x2
xD

, . . . , ln
xD−1
xD

)′
. (1.13)

The resulting coordinates are not symmetric [2,3], because the denominator used

in (1.13), xD, can be replaced by any other compositional part. As a consequence,

alr coordinates are not invariant under permutation of components, that forms

the final principle of compositional data analysis [64]. The way out is to use clr or

ilr coordinates instead of alr [3]; this strategy is followed throughout the thesis.
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1.3. Regression for compositional data

Very important part of the logratio methodology is the regression analysis. Its

aim is to explain the response (real) variable Y by using explanatory variables

x1, . . . , xD. A linear regression model can be written using a conditional expected

value as

E(Y |x) = β0 + β1x1 + . . .+ βDxD, (1.14)

where β0, . . . , βD are the unknown regression coefficients that are to be estimated

[71]. Direct estimation of these parameters in (1.14) using the standard least

squares method could be misleading in case compositional explanatory variables

due to their specific geometrical properties. Therefore, several approaches for

regression models with compositional explanatory variables were suggested. As

a special case, when compositional data are considered as observations with a unit

constant sum constraint, the problem is known as experiments with mixtures

[73–75]. However, apart from numerical problems, this approach does not follow

the basic principles of a meaningful compositional data analysis [1, 71].

Regression with compositional explanatory variables can be carried out by

first applying ilr coordinates to covariate composition. For a regression mo-

del between Y and x (composition) we use coordinates z by applying formula

(1.9). The standard multiple linear regression of Y on the explanatory variables

z = (z1, . . . , zD−1)
′ is thus obtained,

E(Y |z) = γ0 + γ1z1 + . . .+ γD−1zD−1. (1.15)

As in formula (1.11), we can consider the lth ilr basis, for l = 1, . . . , D, resulting

in a regression model

E(Y |z) = γ0 + γ
(l)
1 z

(l)
1 + . . .+ γ

(l)
D−1z

(l)
D−1. (1.16)

Since z
(l)
1 explains all the relative information about part x

(l)
1 , also the inter-

pretation of the coefficient γ
(l)
1 can be associated to this part. The interpre-

tation of the other regression coefficients (except γ0) is not straightforward,

23



because the corresponding explanatory variables (coordinates) do not fully re-

present one particular part of the composition. Consequently, a possible way to

evaluate the contribution of each compositional part for explaining the response

Y separately is to consider D regression models according to (1.16) by taking

l ∈ {1, . . . , D}, and to interpret the coefficients γ
(l)
1 , representing the relative

information on parts x
(l)
1 [71].

Taking a sample with n observations of the response and the explanatory

variables, (x1, Y1), . . . , (xn, Yn), with xi = (xi1, . . . , xiD)
′

for i = 1, . . . , n, we get

the sample version of the regression model (1.15) as

Yi = γ0 + γ1zi1 + . . .+ γD−1zi,D−1 + εi, i = 1, . . . , n, (1.17)

where the explanatory variables zi = (1, zi1, . . . , zi,D−1)
′

result from the ilr coor-

dinates of xi (also 1 for the intercept term is added), and εi represents the error

term. Without loss of generality, we develop just the sample version of the model

(1.15); its generalization for model (1.16) is straightforward. Using the notation

Y = (Y1, . . . ,Yn)′ for the observation vector, Z = (z1, . . . , zn)′ for the n × D

design matrix, and εεε = (ε1, . . . , εn)
′

for the error term, the model (1.17) can be

rewritten in matrix form,

Y = Zγ + ε. (1.18)

Accepting the standard assumptions on the random variables εi (uncorrelated,

with the same variance σ2), the regression coefficients γγγ can be estimated with

the least squares method as

γ̂ = (Z′Z)
−1

Z′Y. (1.19)

Note that a regression model with the ilr variables z
(1)
1 , . . . , z

(D)
1 as covariates,

which seems to be advantageous for interpretation purposes, would not be appro-

priate because it results in singularity (remember that z
(1)
1 , . . . , z

(D)
1 are propor-

tional to the clr variables). Namely, the corresponding design matrix of the re-

gression model would not have full rank in columns and (1.19) could not be used

for parameter estimation. In this case, the theory of singular regression models
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would have to be considered [71, 76], which is rarely done in practice due to

its complexity. Note also that the regression model (1.17) can be extended to

the multivariate case, where more than one response, say q > 1 response varia-

bles, are considered. Then, Y just stands for an n× q data matrix and γ denotes

a D× q matrix of regression parameters; their estimation formula (1.19) remains

(formally) unaltered.

Another case leading to the singularity of the regression model (1.17), that

frequently occurs in chemometrics, comes with more explanatory variables to be

involved in the analysis than the number of observations (samples). Here, partial

least squares regression seems to be advantageous for estimation of the regression

parameters (it will be introduced in Section 3.3).

25



Chapter 2

Metabolomics

2.1. Introduction to metabolomics

Metabolomics is a quite new field of biochemistry and it aims at studying

metabolites, their dynamic changes, interactions and responses to stimuli. It is

a science which studies the complex profile of low-molecular weight metabolites

present in biological samples at a specific time [56]. Metabolomics is connected

with the study of metabolites and metaboloms. The metabolome is the set of small

molecular mass organic compounds found in a given biological material. The me-

tabolite is a conception which includes all organic substances naturally occurring

from the metabolism of all living organisms. Metabolites are the end products

of all cellular processes and are a direct outcome of enzymatic and protein acti-

vity [77]. Metabolomics is the analysis of metabolome in a given condition [78].

The term ”of given condition”is very important here because metabolites may

change in different environments (for example metabolome is different in healthy

and sick organisms).

The metabolomics is focused on two main groups of organisms - human (and

animals) and plants. This thesis will target on the metabolomics of human and

animals.

The metabolomics is one part of the family of ”omics”disciplines. It is closely

connected with lipidomics, glycomics and proteomics at the cellular base. This

connection is better visible from Figure 2.1 [79].
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Figure 2.1: The connection between metabolomics and the other
”omics”disciplines [79]. 27



Thanks to a new technology it is possible to measure thousands of metaboli-

tes simultaneously from only minimal amounts of sample in presence [80]. This

possibility allows defining different attitudes to the analysis of metabolomic sam-

ples. The classical division is done by targeted and untargeted approaches [80].

Both of these methods have a specific pros and cons and their choice depends

on the experimental objective, measuring instrument, available time and the ex-

pert [81].

In the targeted analysis the list of metabolites, which are measured, is done

before the analysis. The amount of metabolites is not so large (one or two hun-

dreds), because this analysis is very often related only to one specific biochemical

pathway. All metabolites are identified before the analysis, therefore, the inter-

pretation of the targeted analysis is easier [78, 80, 81]. This approach is used for

pharmacokinetic studies of drug metabolism and for measuring the influence of

therapeutics or genetic modifications on a specific enzyme. The targeted analyzes

were used as first methods applied in metabolomics and they provide a highly

sensitive and robust method for measuring a significant number of biologically

important metabolites with relatively high efficiency [80]. The targeted scree-

ning of blood samples of newborn babies is also used as a preventive program

in hospitals all around the world [78]. The disadvantage of the targeted method

may be the price because metabolites used in the analysis must be once adjusted

to the machine before the first analysis. This process is done with commerci-

ally available chemical standards, but a majority of metabolites are not available

commercially or their standards are very expensive. The use of these standards

may be a source of the measuring bias [81].

The untargeted metabolomic methods are global in scope and have the aim of

simultaneously measuring as many metabolites as possible from biological sam-

ples without bias [78, 80]. These metabolites are not known before the experi-

ment [81]. This method enables to detect almost all known metabolites. The first

disadvantage of the untargeted method is that the output of the analysis is the list

of thousands potential metabolites (so called chromatographic peaks) [80, 81].
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These peaks must be identified. This procedure is not so easy, despite the fact

that several softwares for the identification exist (for example the sequential use

of R packages xcms [45–47], CAMERA [48] and muma [49]). Some peaks are

misleading, some are only the fractions of real metabolites and some metabo-

lites may produce more than only one peak [80]. On the other hand, there is

a higher chance to find some new biomarker of some disease by this attitude,

because of the better complexity of the data table. The second disadvantage of

this method is a higher presence of zero values that need to be imputed prior to

further statistical analysis. Nevertheless, the untargeted metabolomics has great

potential to provide insights into fundamental biological processes [80]. Moreover,

the sensitivity and specificity of this method are not so high like in the targeted

analysis [81].

Some authors also work with the third term - the semi-targeted analysis [81].

This is a type of targeted analysis, accordingly it defines metabolites to be tested

before the experiment and set the method to detect these specific metabolites with

high accuracy, precision, sensitivity and specificity [81]. The difference between

targeted and semi-targeted methods is in a number of defined metabolites. In this

terminology, the targeted analysis is done only for small amount of metabolites

(often less than 20), the semi-targeted analysis works with a larger group of

metabolites [81]. We won’t use this term in this thesis.

Data sets from metabolomics have a specific structure. The data matrix X

consist of n observations in rows and D variables in columns. Usually more varia-

bles (in hundreds) than samples (only in tens) is presented in data (n < D) [77].

Data with this structure are called high-dimensional data. Statistical analysis

of this type of data requires special methods like partial least squares regres-

sion that will be presented in Section 3.3. Data from metabolomics also closely

follow the properties of compositional data, so ratios between metabolites in-

stead of their absolute values form the source of relevant information [6]. As

a consequence, it is recommended to perform their analysis using the logratio

methodology.

29



Almost all examples used in this thesis are related to the diagnosis of inhe-

rited metabolic disorders. They represent a large group of diseases caused by

gene mutations resulting in dysfunctional enzymes. The defects are presented

biochemically by elevated levels of substrates of the dysfunctional enzymes (in

the normal healthy situation these enzymes convert the substrates into products

keeping the homeostasis). These diagnostic metabolites are discovered from a ran-

dom sample of observations and can also be deduced from the knowledge of bio-

chemical pathways. The majority of genetic enzyme defects has been discovered

by diagnostic biochemists, who noticed an unusually high concentration of par-

ticular metabolites. This observation led to the theory of causative defects which

was subsequently confirmed by enzyme assays. Changes which might accompany

the defects, which are not easily deductible from biochemistry, are hard to be

discovered by traditional ways. Our preliminary results [7] suggest that methods

of supervised metabolomics provide potentially effective ways for the recognition

of such phenomena.

2.2. Data normalization in metabolomics

Data analysis in metabolomics is a very specific process. It is closely related to

the material, which is measured and processed (cells, blood, urine, plasma, . . .).

Accordingly, a specific approach is used also for the analysis of urine samples

as urine volume can vary widely based on upon water consumption and other

physiological factors. Consequently, the concentrations of metabolites in urine

vary substantially and proper normalizing for these effects is necessary [21]. Two

methods of data normalization are used in practice - creatinine normalization

and normalization by the area under the curve [21–26].

The first method of normalization is related to a very specific metabolite,

called creatinine, which is presented in all urine samples. Creatinine is a che-

mical waste product in the blood (a by-product of normal muscle contractions)

which passes through kidneys to be filtered and eliminated in urine. It comes
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through creatine, a supplier of energy to the muscle. Under normal conditions,

urinary creatinine output is relatively constant and measurable. As a result, it

has become common practice to normalize urinary analyte levels to this metabo-

lite. However, creatinine production does vary and excretion can be impacted by

an external stressor such as kidney impairment. In these cases, normalization to

creatinine is obviously not warranted [21–23] and can even lead to strongly biased

results, when any such kidney disease is not a priori known. Moreover, in practice

the level of creatinine is different in various samples, thus, each sample is divi-

ded by a different scaling constant. Although this type of creatinine variation is

exactly the reason, for which creatinine was employed for normalization purposes,

it leads to oblige (biased) coordinates with respect to the logratio methodology

(alr coordinates), where scale invariance is automatically an inherent feature of

any coordinate system [1,3].

The second normalization is performed through the area under the curve

(AUC) of all peaks, identified with metabolite concentrations in the analysis.

By this popular approach, coefficients of metabolites are rescaled by the average

AUC. Each mass spectrum (metabolite) is thus divided by average variable area

across observations [24–26]. Therefore, up to a constant (resulting from taking

the average), it is the well-known total sum normalization, where all elements of

a given fingerprint are divided by the total sum of this fingerprint. The average

AUC can be computed several ways; while the standard option is formed by

the arithmetic mean, in the case of positive data the geometric mean of AUC

seems to be more preferable as it also would correspond to centering of log-

transformed data across metabolites.

After the normalization step, data are popularly transformed using the log-

transformations (popular in metabolomics), or alternatively taking the propo-

sed logratio coordinates. It is important to note that although the popular log-

transformation of the input data removes the relative (measurement) scale effects,

the scale invariance of compositions is destroyed. The reason is that any norma-

lization applied to the original data prior to log-transforming would alter ratios
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between components that form the source of relevant information in urine meta-

bolomic data.
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Chapter 3

Multidimensional statistical
analysis

3.1. Data preprocessing

3.1.1. The use of quality control samples

A very important part of the statistical evaluation is formed by preproces-

sing of metabolomic data. The first reason for doing this procedure is the fact

that measuring instruments have some limitations and measurement errors can

be present in the data, for example pressure in the machine can diverge or tem-

perature in the room can change. Special statistical methods must be used to

correct these errors. The quality control (QC) samples are used for this purpose.

QC samples are mixtures of all samples from the specific analysis. They are me-

asured continuously in the whole analysis on the first ten positions and then as

every fourth sample in a way. It is known that signal of these QC samples must

be stable in time; if there is some trend, it must be revised. The signal correction

by LOESS (LOcal regrESSion) method is used for this purpose [11,12]. The LO-

ESS curve is fitted to the QC samples with respect to the order of injection.

A correction curve for the whole analytical run is then interpolated, to which

the total data set for that feature is normalized [12].

The LOESS curve fitting is a combination of linear least squares regression and

nonlinear regression. It fits simple models to localized subsets of the data to build
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up a function that describes the deterministic part of the variation in the data,

point by point. In this way, there is no requirement of specifying a global function

of any form to fit a model to the data, but only to fit segments of the data.

In this implementation, the local polynomials that are fitted to each subset of

the data are constrained to be either first or second degree (the second degree

is used in this thesis). The resulting polynomial is fitted using weighted least

squares [12, 82]. In this implementation, the standard tri-cubic weight function

is used [11, 12]. The last parameter which is used in LOESS method is called

the smoothing parameter. It determines how much of the data is used to fit each

local polynomial. This parameter is a number from the interval 〈(λ+ 1)/n, 1〉,

where λ is the degree of the local polynomial and n denotes the total number of

QC samples. The value of this parameter is the proportion of data used in each

fit [12]. This parameter is often set up to 0.75 in our analyzes.

The second correction of LOESS curve is done through the comparison of

the maximum and minimum interpolated value of QC samples. If the ratio of

the maximum and the minimum of new QC values is higher than 10, the particular

metabolite is deleted from the data set, because its values are much differentiated

and the measurement error in the data is still high. Metabolites with negative

values of this ratio (probably caused by the instrument error) are also skipped.

The procedure of using LOESS is visible from Figures 3.1 - 3.3. In Figure 3.1

the time flow of one particular metabolite - the N-acetylaspartate - is shown.

The axis x is formed by the indexes of individual samples in the machine, the axis

y is the peak area of individual samples, the black points (•) are samples of

healthy controls, the blue squares (�) denote individual samples of patients with

a specific disease and the red rectangles (N) are QC samples. Groups of patients

and controls are separated only in Figure 3.1, in the other plots they are denoted

together as black points. The structure of the data is the following: first eight QC

samples are not used in the analysis (they are measured only for the stabilization

of the system), so the first two rectangles in the plot are QC samples with numbers

9 and 10, then sequentions of three samples (patients and controls mixed together)
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Figure 3.1: Time flow of N-acetylaspartate - the raw data.
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Figure 3.2: Time flow of N-acetylaspartate - the LOESS curve.
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Figure 3.3: Time flow of N-acetylaspartate - the final data.

and one QC follow. The increasing trend in the data is visible. QC samples should

be stable in time so this trend must be reduced. In Figure 3.2 the same data

are shown with the fitted LOESS curve to QC samples - the blue circled line.

Then the corresponding interpolated values from the curve are evaluated for each

sample. These interpolated values are represented by blue circles on the fitted

line. The result is shown in Figure 3.3. The scale of the y axis has changed,

but this doesn’t lead to any problem because we are only interested in ratios

of metabolites, not in absolute values. QC samples are spaced around the value

1 now; moreover, the position of the outlier (the first sample in the analysis -

the black point in the left upper corner of the graph) is preserved. This process

is done with all metabolites to be analyzed, so values from y axis of Figure 3.3

are taken to the resulting data table, used for further statistical analysis.

The next step of the preprocessing is the computation of the coefficients of

variation (CV) of QCs. All features with CV higher than 30 % are rejected from

further processing.
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The last step of the preprocessing of the data is an imputation of zeros. This

issue is discussed separately in the following section.

3.1.2. Imputation of missing values and rounded zeros

The second very common problem of all chemometric methods is the presence

of missing entries in data tables. Standard statistical methods are not able to

work with missing values, therefore, they must be imputed by reasonable items

in advance. A number of types of missing entries occur in data, we will focus only

on two of them - standard missing values and so called rounded zeros. The origin

of missing values may be caused by several reasons, for instance, the values are not

reasonable for some particular variables or variables can not be measured in some

samples because of some technical problems. It is not reasonable to simply discard

such observations or remove the corresponding variables. The better option is to

replace these data by reasonable values [83]. Standard missing values are not

frequently present in chemometric data.

The second type of missing entries - rounded zeros - are more common in data

sets from metabolomics. These zeros are connected with limitations of measu-

rement devices. Every measuring device has a threshold of adjustment which is

called the detection limit. Values below this threshold are not recorded and the in-

strument evaluates them as zeros. These zeros must be imputed with respect to

the detection limit. The ascribed value must not exceed this threshold [18]. Some

methods of imputation were published [17,18,50,84] but none of them deal with

high-dimensional compositional data.

The simplest way to impute missing values of a part is to replace them by

the geometric mean of all available data in this part, since the geometric mean

reflects the best linear unbiased estimator, see [85] for details. A similar approach

is to fill a missing entries with a small predefined value or with the median of

the rest values across all samples (evidently with exclusion of all missing values)

or with a two thirds (or a half) of the minimum found in the appropriate co-

lumn of non-missing data [86–88]. The specific approach is an imputation of zero
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values by two thirds of minimal value in particular feature (metabolite), where

the imputation is done within a group of samples. This means that zeros are repla-

ced individually for each group (controls/patients) per each feature. Similarly as

in the case of standard multivariate data, these approaches would completely

ignore the multivariate data structure and would underestimate the covariance

structure of the data set. For these reasons, they should not be used in practice.

Several algorithms are available for the imputation of missing values in com-

positional data. For example, a modified version of the k-nearest neighbour (knn)

imputation can be used, where the missing entries in a composition are replaced

by using the available variable information of the k neighbouring observations

with respect to an appropriate distance measure, the Aitchison distance, and

using an adjustment of the imputations [15, 86]. However, knn imputation still

does not fully account for the multivariate relations between the compositional

parts as this is only considered indirectly when searching for the k-nearest nei-

ghbors. For this reason, among other alternatives, as a second approach which

fully accounts for the multivariate relations between the compositional parts,

a regression-based imputation procedure was introduced in [15]. It consists of

an iterative regression-based algorithm, where the ilr coordinates (1.9) are repe-

atedly and sequentially applied for i = 1, . . . , D in order to improve the starting

solution, represented by results of the knn imputation.

However, these algorithms do not account for the problem of rounded zeros.

The replacement of rounded zeros represents a constrained version of missing

values imputation. Namely, when xij represents a rounded zero for a particu-

lar observation i and a variable j, it holds that xij < eij, where eij is a thre-

shold. The above mentioned regression-based algorithm thus can be used, where

the particular (constrained) case should be taken into account. The initialization

of the iterative procedure is provided by taking 2/3 of the detection limit for

the affected data entries [16, 58]. Note that for more than 10% of rounded ze-

ros this might result in a serious distortion of the multivariate data structure,

even new outlying observations might arise. Thus, a substantial improvement of
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the initial imputation is necessary; hereat, the crucial point is to express the thre-

shold values in coordinates [18]. This guarantees that the estimated values are

placed below the detection limit throughout the estimation process.

Although in the regression step of the algorithm the usual least squares re-

gression can be also replaced by a proper robust counterpart, suppressing possible

outlying observations, neither of them is able to cope with high-dimensional data.

The way out, based on the use of PLS regression, is introduced in Section 3.5.

3.2. Principal component analysis

One of the basic methods used in multivariate data analysis (especially for

visualization of the data structure) is definitely principal component analysis

(PCA). The aim of this method is to reduce the dimensionality of data by preser-

ving the most information identified with variability contained in the data set. Its

main principle is to construct an orthogonal coordinate system, which is formed

by latent variables, so that only the first few variables explain most of variability

in data. The goal of PCA is also the reduction of the effect of measurement error

and elimination of components associated with the noise [28].

Principal component analysis belongs to the family of unsupervised methods.

This means that the algorithm does not know anything about specific groups

in samples.

As PCA is not scale invariant, proper scaling of samples must be performed

prior to the analysis [27].

Let’s have a real data matrix X of dimension n×D, i.e., with n observations

and D variables, which is centered and possibly also scaled. The direction of

the highest variability in data is called the first principal component (PC1) and

it is defined by a loading vector p1 = (p1, . . . , pD)
′

[27]. The length of loading

vectors is normalized to 1; that means p
′
1p1 = 1. The corresponding scores are

linear combinations of loadings and sample vectors. Let’s have i-th observation

xi = (xi1, . . . , xiD)
′
, the score ti1 of PC1 is given as
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ti1 = xi1p1 + . . .+ xiDpD = x
′

ip1, i = 1, . . . , n, (3.1)

and for the whole data matrix X the score vector t1 is obtained by

t1 = Xp1. (3.2)

The second principal component (PC2) is formed as an orthonormal direction

to PC1 and again acquires the maximum possible variability of scores. The follow-

ing principal components are orthogonal to all previous components and their

direction has to cover the maximum possible variance of the data projected on this

direction [27]. In the standard analysis, usually only first two (or maximum three)

principal components are considered for practical reasons with the hope that

they contain most of the total variance in the data set. Nevertheless, in general,

the number of principal components is limited only by the number of variables.

Loading vectors of all principal components are orthogonal to each other,

which means that the data transformation by PCA is a rotation of the coordinate

system. For the orthogonal vectors holds that the scalar product is zero, so we

have p
′
jpk = 0, j, k = 1, . . . , D, j 6= k. PCA scores are also orthogonal to each

other, resulting in t
′
jtk = 0, for j, k = 1, . . . , D, j 6= k and tj = (t1j, . . . , tnj)

′
.

The loading matrix, denoted as P, is formed by all loading vectors and all score

vectors result in the score matrix, T. Now it is possible to build a model

T = XP. (3.3)

The data matrix X can be reconstructed from the score matrix T using only

a first few principal components corresponding to the main structure of the data

(the matrix T has now less columns than by considering all D principal com-

ponents). The result is an approximation of the input matrix, denoted as Xapp,

with reduced noise

Xapp = TP
′
, X = TP

′
+ E, E = X−Xapp, (3.4)
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where E is the error (residual) matrix.

PCA is connected with singular value decomposition (SVD). Let’s have a data

matrix X of dimension n × D and rank k ≤ min(n,D). This matrix can be

decomposed into a product of three different matrices [89,90]

X = UDV
′
, (3.5)

where U is a n× k matrix with orthonormal columns containing the left singular

vectors, D is a diagonal matrix of dimension k×k containing singular values and

V is a D × k matrix with orthonormal columns containing right singular values.

Columns of the last matrix are loadings. Scores are formed by the product of

the first two matrices

X = (UD)V
′
= TP

′
. (3.6)

Loadings give weights of the original variables in the principal components.

Scores (columns of the matrix T) contribute the coordinates in the space of latent

variables. Columns of the matrix U give the same coordinates in a normalized

form (their variances are unit), whereas columns of T have variances correspon-

ding to the variance of each particular principal component [90]. These variances

are denoted as λi

λi =
d2i

n− 1
, i = 1, . . . , k, (3.7)

where di, i = 1, . . . , k are diagonal elements of the matrix D sorted in descending

order. The variance explained by the i-th principal component is expressed as

fraction λi/
∑k

j=1 λj.

The compositional approach to PCA is very similar to the standard one.

The only difference is in the data matrix, which is used for the analysis. In the lo-

gratio approach, the original (compositional) data matrix X is expressed in cen-

tered clr coordinates (1.8), which is denoted as R. Then the PCA machinery can
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be performed [3]. Ilr coordinates (1.9) may also be used, but their specific in-

terpretation needs to be taken into account for interpretation of loadings (scores

corresponding to nonzero singular values are the same). For this reason, ilr (ortho-

normal) coordinates are still not much popular in the context of compositional

PCA.

A graphical representation of PCA is called biplot. It is a planar graph used

for the projection of scores and loadings of the first two principal components into

one plot. Scores, which represent observations, are displayed as points. Loadings,

which represent variables, are displayed by arrows (rays) in the same plot [3,29].

The interpretation of the compositional biplot is quite different from the inter-

pretation of the standard one. The loading matrix P (corresponding to the mat-

rix R) represents clr coordinates of the original variables in compositional biplot.

Let‘s denote elements of the matrix R (respectively X) as rij (xij), its rows

ri.(xi.), i = 1, . . . , n, and columns rj(xj), j = 1, . . . , D. The same notation is

used also for matrices T and P. The inner product of rows of matrices T and P

approximates the matrix of clr coordinates R

t
′

i.pj. ≈ rij = ln
xij
g(xi)

, i = 1, . . . , n, j = 1, . . . , D, (3.8)

where g(xi) = D

√∏D
j=1 xij denotes the geometric mean of the given D-part com-

position xi. (row of the matrix X).

The single clr variables can be interpreted as those capturing all the rela-

tive information (in term of ratios) about the corresponding compositional parts.

However, the geometric mean in the denominator of clr coordinates can be dri-

ven by possible distortion of involved parts, therefore, the interpretation of clr

variables in the sense of original compositional parts requires a careful selection

of parts [91].

The first important element of the biplot is the origin, which represents

the center (the geometric mean of parts used in clr coordinates) of the data.
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The position of the origin is zero for the first two principal components using

the centered data set [3].

The other properties are connected with rays and links between vertices of

the biplot. They provide an information about the relative variability of a lo-

gratio in a data set. The length of rays estimates the standard deviation of clr

coordinates

‖pj.‖2 = p
′

j.pj. ≈
1

n− 1
r
′

jrj =
1

n− 1

n∑
l=1

(
ln

xlj
g(xl)

)2

= var

(
ln

x.j
g(xi)

)
. (3.9)

The link between two vertices estimates the standard deviation of the logratio

between the corresponding compositional parts [3, 91].

‖pi. − pj.‖2 ≈
1

n− 1
(ri − rj)

′
(ri − rj) =

1

n− 1

n∑
l=1

(rli − rlj)
2

=
1

n− 1

n∑
l=1

(
ln

xli
g(xl)

− ln
xlj
g(xl)

)2

=
1

n− 1

n∑
l=1

(
ln
xli
xlj

)2

= var

(
ln

xi
xj

)
. (3.10)

Consequently var
(

ln xi

xj

)
can be approximated as the (squared) length of a link.

The connection between observations and variables in the plot is performed by

the projection of a score onto a link, which represents an approximate difference

between two clr coordinates rij and rik. It is the logratio between original values

xij and xik.

t
′

i.(pj. − pk.) ≈ rij − rik = ln
xij
g(xi)

− ln
xik
g(xi)

= ln
xij
xik

. (3.11)

The last property is connected with the Euclidean distance of two score vectors

(rows of the matrix T), which approximates the Mahalanobis distance between
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clr coefficients in the full space with the estimated covariance matrix SR of clr

coordinates,

‖ti. − tj.‖2 ≈ (ri. − rj.)
′
S−1R (ri. − rj.), (3.12)

see [91] for further details.

3.3. Partial least squares regression

3.3.1. Theoretical background

Very common problem of metabolomic data sets is their high-dimensionality

(= the presence of more variables than observations). Therefore, suitable me-

thods must be used for their analysis. One of them is partial least squares (PLS)

regression which is a class of methods for modeling relations between sets of

explanatory and response variables by means of latent variables [92]. It can be

viewed as a combination of principal component analysis and multiple regres-

sion [93, 94], nevertheless, instead of finding hyperplanes of minimum variance

between the response and independent variables using directly principal compo-

nent regression, it finds a linear regression model by projecting the predicted

variables and the observable variables to a new space. PLS can be used for both

regression and classification purposes and it can be employed also for reducing

the dimensionality of the data. The intrinsic assumption of all PLS methods is

that the observed data are generated by a system or process which is guided

by a small number of latent (not directly observed or measured) variables [92].

PLS is a widely used method in chemometrics for multivariate calibration and

finds increasing interest also in other areas, like when dealing with highly colli-

near predictor variables [27, 94–96]. Partial least squares - discriminant analysis

(PLS-DA) is a special type of a regression analysis where the response variables

represent group labels. PLS-DA is one of supervised methods. The information

about grouping in samples is used in the analysis.

Consider explanatory and response variables, whose sample values are recor-
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ded in the matrix X of dimension n × D and in the matrix Y of size n × q.

Data in rows of the matrix X represent n objects with D features (explanatory

variables), Y describes for the same n objects q properties (response variables).

In PLS-DA, the matrix Y consists of binary variables describing the different

categories (e.g. zeroes and ones in the case of two categories). The number of

dependent variables is equal to the number of categories [34].

Partial least squares applied to the multivariate case (q > 1) is also known

under the term PLS2, whereas the case q = 1 is denoted by PLS1. The aim of

PLS2 regression is to find a linear relationship between the response and expla-

natory variables, using an D× q matrix B of regression coefficients, and an error

matrix E [27, 96],

Y = XB + E. (3.13)

In PLS1 regression, formula (3.13) has the form y = Xb + e, where b are the re-

gression coefficients and e is a vector of errors. The columns of X and Y are

assumed to be mean-centered before parameter estimation is performed. Con-

sequently, the absolute term parameters are omitted from further considerations.

Instead of directly estimating the regression coefficients in the relation (3.13),

X and Y can be modeled by linear latent variables according to the regression

models

X = TP′ + EX (3.14)

Y = UQ′ + EY , (3.15)

where EX and EY are matrices of residuals. The matrices T and U represent score

matrices and the matrices P and Q are loading matrices. All of these matrices

have a columns, where a ≤ min(D, q, n) is the number of PLS components [27,

35, 92] (to be chosen by the user). The scores in T are linear combinations of

the explanatory variables and can be considered as good summaries. The same

relationship holds for the response variables and the matrix U [27].
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Then the relationship between the scores becomes

U = TD + H, (3.16)

where D is a diagonal matrix with elements d1, . . . , da, and H is the residual

matrix [27]. Since all quantities in Equation (3.16) are unknown (latent variable

problem), the parameter estimation needs to be based on an additional criterion.

In case of PLS2, this criterion is the maximization of the covariance between

scores, corresponding to explanatory and response variables. The requirements of

high (total) explained variance of X and high correlation between X and Y are

both included in this criterion. Consider a weight vector d for the explanatory

variables (t = Xd), and a weight vector c vector for the response variables

(u = Yc) [27, 92]. Then the maximization problem can be written as

cov(t,u) = cov(Xd,Yc)→ max
‖t‖=‖u‖=1

. (3.17)

The solution of the maximization problem is formed by the first score vectors

t1 and u1, columns of the corresponding score matrices (their unit length is

required for uniqueness of the solution). For the next score vectors we impose

orthogonality constraints to the previous score vectors, i.e., t
′
jtl = 0 and u

′
jul = 0

for 1 ≤ j < l ≤ a [27]. Finally, the score matrices T and U (together with matrices

formed by weight vectors d and c) are used for the estimation of the regression

parameters B.

There are several algorithms for solving the PLS problem. One proposal is

based on nonlinear iterative partial least squares (NIPALS) algorithm. Another

one - the Kernel algorithm - is named from using eigen-decompositions of so-

called kernel matrices, being products of X and Y. The SIMPLS algorithm avo-

ids deflation steps at each iteration of PLS procedure. Orthogonal projection to

latent structures (OPLS) aims at removing variation from X that is orthogonal

to the response variables [35,92,97,98]. OPLS will be discussed in Section 3.4.

Some variables from the matrix X can be important for the modeling of

Y. These variables have typically large absolute values of regression coefficients.

46



A summary of this importance of variables from X for both Y and X are provided

by VIP scores (variable importance in the projection) [94, 99]. VIP scores for

the case of PLS1 will be defined, therefore we have only vector y and the formula

(3.15) can be rewritten as y = Tv + f [99], where v is the vector of regression

coefficients of the matrix T. Projections are done for a latent variables. Let’s have

k = 1, . . . , a, tk stands for the k-th column of the matrix T. VIP for the j-th

explanatory variable overall latent variables measures the contribution of each

predictor variable to the model by taking into account the covariance between

X and y, expressed as weight wjk, which is obtained by the use of NIPALS

algorithm, [99,100]

VIPj =

√√√√D
a∑
k=1

(v2kt
′
ktk)w

2
jk/

a∑
k=1

v2kt
′
ktk, j = 1, . . . , D, (3.18)

where vk = t
′

ky(k)/t
′

ktk is obtained for each column of the score matrix T, y(k)

is vector y for the k-th latent variable from the NIPALS algorithm (for further

details see [99]). The average of squared VIP scores is equal to one, therefore VIP

scores greater than one are often chosen as important variables [99]. This is not

a statistically justified limit and can be shown to be very sensitive to the presence

of non-relevant information referring to X [100].

In the following text is described, how PLS-DA can be used in the case of com-

positional explanatory variables [6]. The algorithm is optimized for the balanced

case. This means that there is the same amount of members in each category. We

will employ the approach of [101] which uses the clr coordinates for the represen-

tation of compositional covariates but tries to avoid the resulting additional zero

constant sum constraint by using the orthonormal (ilr) coordinates. Let X be an

n×D matrix of compositional data (sampled compositional parts x1, . . . , xD) and

Y be an n × q matrix of responses representing the groups. As in the standard

case, the columns of Y are mean-centered. However, mean-centering of the com-

positions X is done with respect to the Aitchison geometry, i.e. the centering
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is performed in ilr coordinates. Concretely, compositions are expressed in ilr co-

ordinates, e.g. (1.9), using, the resulting variables are mean-centered and then

transformed back to the original space with (1.10).

Following the case of linear regression with compositional explanatory vari-

ables (Section 1.3, [71]), where applying the clr coordinates leads to a biased

estimation of the regression coefficients due to the singular covariance matrix of

the clr variables, the ilr coordinates may be used for the purpose of PLS mo-

deling. Subsequently, the matrix X is fisrtly expressed in ilr coordinates Z, e.g.,

using Equation (1.9). The PLS regression problem has now the form

Y = ZΓ + E, (3.19)

where Γ stands for a (D − 1)× q matrix of regression coefficients.

Nevertheless, the ilr coordinates (1.9) allows only for a meaningful interpre-

tation of the elements in the first row of Γ, because just the first column of Z can

be associated with one particular compositional part (here x1). The interpretation

of the other regression coefficients is not straightforward because the correspon-

ding explanatory variables (coordinates) do not fully represent one particular

part of the composition. For associations also to the other parts, we thus need

to use a permutation of the parts, leading to the general setting (1.11) and to

data matrices Z(l). Each of the resulting first ilr coordinates, the observations of

z
(l)
1 , l = 1, . . . , D, describe all the relative information about the compositional

part xl.

Consequently, a possible way to evaluate the contribution of each compositio-

nal part for explaining the response variables Y separately is to consider D PLS

regression models

Y = Z(l)Γ(l) + E(l), (3.20)

according to (1.11), by taking l ∈ {1, . . . , D}, and to interpret the coefficients of

the first row of the parameter matrix Γ(l), representing the part x
(l)
1 [71]. The out-

lined procedure thus suggests employing PLS regression D times, such that each

compositional part is once at the first position in the permuted composition. Since
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such a procedure would lead to a high computational complexity, the orthogonal

relation between the different ilr coordinates can be employed [65]. As an advan-

tage, the regression coefficients need to be estimated just for one regression mo-

del and then derived for the other models by using orthogonal transformations

of the regression parameters. Note, however, that coefficients of z
(l)
1 should be

always treated individually as they come from individual PLS models.

The final procedure is as follows. We use the matrix V from (1.12), with rows

vi·, i = 1, . . . , D, that relates the clr coordinates (1.8) and the ilr coordinates

(1.9). Consequently, we form D × (D − 1) matrices V(l), for l ∈ {1, . . . , D},

V(1) = (v1·,v2·, . . . ,vD−1,·,vD·)
′ = V

V(l) = (vl·,vl−1,·, . . . ,v1·,vl+1,·, . . . ,vD·)
′, l = 2, . . . , D − 1;

V(D) = (vD·,vD−1·, . . . ,v2·,v1·)
′,

and define a new orthogonal matrix Q(l),

Q(l) = V′V(l). (3.21)

The matrices Z(l) corresponding to ilr coordinates (1.11) are related to Z by

Z(l) = ZQ(l), (3.22)

see [65]. Substituting (3.22) into the model (3.19) gives

Y = Z(l)(Q(l))′Γ + E(l) = Z(l)Γ(l) + E(l). (3.23)

Thus, the estimated regression coefficients Γ from the model (3.19), Γ̂, can be

used to estimate coefficients in regression models that correspond to coordinates

Z(l),

Γ̂
(l)

= (Q(l))′Γ̂, l = 1, . . . , D. (3.24)

Finally, to complete the estimation process with respect to the above interpre-

tation, we collect the first rows of the matrices Γ̂
(l)

as rows of a new D×q matrix

of regression coefficients. Specially, for q = 1 (the response variable is univariate)

we thus, get a vector g = (γ̂
(1)
1 , γ̂

(2)
1 , . . . , γ̂

(D)
1 )′.
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3.3.2. Evaluation

A further evaluation of the resulting regression model can be done by testing

for significance of the regression parameters. For PLS-DA, it is common to use

resampling techniques for this purpose, like the jack-knife procedure [102,103] or

bootstrap [104]. In the balanced case, jack-knife works as follows. One observation

from each group is taken out from the data matrix X and from the matrix Y. Then

the regression parameters are estimated from PLS-DA. This process is carried out

in turn by omitting another observation from each group in both data sets. Fi-

nally, the variability of the regression parameters is evaluated by their standard

deviation. The process for the unbalanced case is basically the same [104, 105].

The idea of the bootstrap procedure is to draw random samples with replace-

ment from each group of the original data, where the bootstrap group samples

have the same size as the original groups. This results in a bootstrap data set

for the explanatory variables and the response, where PLS-DA is applied to es-

timate the parameters. Repeating this procedure many times allows estimating

the variability of the regression parameters [104,106]. The standardized regression

estimates are then obtained by dividing the regression parameters of the original

data by the estimated standard deviations (obtained from jack-knife or boot-

strap), and they can be compared with quantiles of the standard normal distri-

bution. For the case q = 1 and the estimated parameters g = (γ̂
(1)
1 , γ̂

(2)
1 , . . . , γ̂

(D)
1 )′,

the estimates are recomputed using jack-knife or bootstrap, and from the results

the standard deviations s1, . . . , sD are computed. The significance of the stan-

dardized regression estimates, γ̂
(1)
1 /s1, γ̂

(2)
1 /s2, . . . , γ̂

(D)
1 /sD, is evaluated by com-

paring them with α/2 and 1−α/2 quantiles of the standard normal distribution

(typically, α = 0.05 is chosen). In order to reduce the risk of false positives,

a Bonferroni correction is applied, resulting in an adjusted α-level of significance,

αadj = α
D

, that is used further in Section 3.3.4. If the standardized regression

coefficient is outside the mentioned interval, the regression coefficient is signifi-

cantly different from zero, and thus, the corresponding variable contributes to

the discrimination task.
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3.3.3. Estimation of the number of components

An appropriate estimation of the number of PLS components that avoids

underfitting as well as overfit is essential, for example for the performance of

an imputation algorithm (Section 3.5).

Two measures of evaluation of optimal number of components are shown

in this thesis. The first one, simpler, is based on the mean squared error of pre-

diction (MSEP) criterion. The principle of the method follows. The data set for

q = 1 is denoted as L = {(yi, xi1, xi2, . . . , xiD), i = 1, . . . , n}. L is divided rando-

mly in K segments Lk, k = 1, . . . , K, of roughly equal size. Let fK be the predictor

from L/Lk (all observation are not from Lk). The K-fold cross-validation estimate

is [107]

MSEP =
1

n

K∑
k=1

∑
i∈Lk

(fk(xi)− yi)2.

where xi = (xi1, xi2, . . . , xiD). The bias of MSEP is of order (K − 1)−1n−1.

In practice, partial least squares regression is applied on data, using 1, . . . , l

components, and MSEP is computed for each number of components, using

K = 10. The minimum of these MSEPs is chosen, and the optimal number of

components is the number corresponding with this minimum. The estimation of

the number of components by MSEP is used in the practical example in Section

3.3.4.

The second algorithm for the estimation of the number of components is

similar to ideas of [108], where a bootstrap procedure was taken. This procedure

is used in the imputation algorithm is Section 3.5.1.

1. Based on a sample of i = 1, . . . , n observations (yi, xi1, xi2, . . . , xiD), R bo-

otstrap data sets, each consisting of n samples with replacement, are taken

jointly from the pairs of response and predictors, resulting in the paired

data sets (y∗r ,X
∗
r), for r = 1, . . . , R.
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2. Partial least squares regression is applied to each pair, using 1, . . . , k compo-

nents. The predicted error sum of squares (PRESS) criterion is computed,

using a 10-fold cross validation procedure. PRESS is the sum of squares

of the prediction errors, where each fitted value, ŷi,−i, is obtained from

the remaining n–1 observations, then using the fitted regression function to

obtain the predicted value for the ith observation [107]:

PRESS =
n∑
i=1

(yi − ŷi,−i)2.

3. For each number of components, the arithmetic mean of the PRESS values

overall bootstrap samples is calculated. The minimum of these arithmetic

means is chosen, and the standard deviation of the PRESS values is calcula-

ted for that number of components determining this minimum. A threshold

for the imputation of rounded zeros is fixed given by this minimum plus

one standard deviation.

4. The final PLS model is determined with the smallest number of components,

for which the mean PRESS value is still below the threshold. This ensures

the selection of a parsimonious model that is not significantly worse than

the possibly larger model with the smallest cross-validation prediction error.

The above mentioned procedure to find the optimal number of PLS compo-

nents is illustrated in Figure 3.4. The plot represents prediction errors for 100

bootstrap samples based on a simulated data set (100 variables). Shown are

the prediction errors (PRESS) for the bootstrap samples for different numbers

of PLS components (the results are connected by the gray lines). The parallel

boxplots show the variability of these errors for each number of components.

The lower horizontal line is placed at the minimum of the mean PRESS values

(marked by white-filled quadrangles) for each number of components. The upper

horizontal line determines the threshold given by this minimum plus one standard

deviation of the bootstrap results corresponding to the number of components at
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Figure 3.4: Simulation of a bootstrap procedure used for the estimation of the op-
timal number PLS components.

the minimum. The most parsimonious model, here seven PLS components, for

which the mean is below this threshold is selected [58].

3.3.4. Example with data from metabolomics

In the following text, PLS-DA algorithm (accommodated for compositional

data) is applied to a real data set from metabolomics connected with inherited

metabolic disorders [6]. The problem is related to untargeted analysis of a disease

named medium chain acyl-CoA dehydrogenase deficiency (MCADD) [7]. Based

on newborn screenings from reports from Australia, Germany and the USA [109],

fatty acid oxidation disorders are one of the most prevalent groups of metabolic

diseases. At least 15 different disorders of fatty acid metabolism are recently

known [110]. MCADD is one of the most common fatty oxidation defects and it

is inherited in the autosomal recessive trait. The main marker is octanoylcarnitine

(C8) and secondary markers are hexanoylcarnitine (C6), decanoylcarnitine (C10),
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and decenoylcarnitine (C10:1) [111].

In this application, we examine dry blood spots which were obtained from

a screening program of newborns. The data set contains a group of healthy cont-

rols (n = 23) and a group of patients suffering from an MCAD deficiency (n = 23).

Quality control samples are used.

The result of the outlined procedure is a table of peak areas (areas of possi-

ble metabolites); more than 500 peaks are detected by the untargeted method.

These peaks represent possible metabolites, which might be important markers

of the disease. Raw data from Orbitrap Elite are processed by Bioconductor

packages xcms [45–47] and CAMERA [48]. xcms is used for peak detection and

alignment across the samples. The CAMERA package is used to exclude isotopic

patterns. In order to remove possible systematic errors, LOESS signal correction

is applied on quality control samples [11, 12]; no scaling of data is performed.

Rounded zeros occur in the data set and they are replaced by 2/3 of the mi-

nimum value from a particular group (patients/controls) in single metabolites

(without any adjustment of the non-zero metabolite intensities). A small number

of zeros occurred in the concrete example (4.5%). Now we proceed to analyze

the peaks for statistical significance. Because not the absolute values of peak

areas, but rather their relative contributions are of interest, they represent com-

positional data and should be handled accordingly. Nevertheless, for the sake

of comparison, both the standard and the compositional PLS-DA method are

performed.

The MSEP for the standard approach is displayed in Table 3.1. From this

table, it is visible that the optimal number of PLS components equals to 3.

MSEP 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp
Standard approach 0.0461 0.0310 0.0284 0.0288 0.0285 0.0321
Logratio approach 0.0474 0.0182 0.0158 0.0139 0.0122 0.0128

Table 3.1: Mean squared error of prediction (MSEP) for the MCADD data, for
different numbers of PLS components for the standard and the logratio approach.

The significance of the standardized regression coefficients is analyzed using
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PLS-DA with three components and bootstrap with 100 replications [6]. The re-

sults are displayed in Figure 3.5. From this plot, it is visible that almost one fifth

of the corresponding regression coefficients are marked as significant (they are

located above/below the cut-off line, represented by the Bonferroni-corrected

quantile of the standard normal distribution). The most significant peaks for pa-

tients (situated above the line - in the upper part of the graph) are denoted with

codes UL1, U1 and UL2. The first and the third are unknown lipids. Within this

study, the second is the other unknown metabolite. These three possible meta-

bolites need further research. Known markers of the MCADD are C6 located on

the 13th position, C8 on the 16th position, C10 on the 19th position and C10:1

on the 21th position. These results could be considered as satisfactory, because

the known markers are placed on the upper positions in the resulting significance

plot.

As a second step, the compositional approach to PLS-DA is applied, including

bootstrap with 100 replications in order to analyze the significance of the regres-

sion parameters. The resulting MSEP is displayed in Table 3.1. From the second

line of this table, it is visible that MSEP has smaller values in the case of the lo-

gratio approach. Although the appropriate number of components is 5, the same

number 3 of components as for the standard case is used for the comaprison of

both approaches. Figure 3.6 shows the results of the significance analysis of the re-

gression coefficients. The structure of the outcome is similar to the standard case;

approximately one fifth of the corresponding regression coefficients are marked

as significant (with the same interpretation of this feature as in the first plot).

Nevertheless, the compositional approach is more sensitive and returns better

results with respect to the known markers of the disease. In particular, the above

mentioned acylcarnitines C8 (the main marker of the disease) and C6 are on

the second and the third position in the graph. The first position is occupied

by an unknown marker denoted as U2. This feature also needs further research.

Also C10:1 (10th) and C10 (25th) are higher compared to the standard approach

to PLS-DA. According to the MSEP, the proper number of PLS components is
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Figure 3.5: Standardized regression coefficients in PLS-DA for the original
MCADD data set (after centering).

five in the logratio approach. Looking at the resulting outputs for 5 components

(the figure is skipped in this thesis) we could conclude that the results would be

even better than in Figure 3.6. Marker C8 is moved to the first position and all

markers are placed higher above the cut-off line than in Figure 3.6. This confirms

once again our preliminary finding that the logratio approach to compositional

(metabolomics) data analysis better detects important peaks, related to the par-

ticular disease.

As a result, the compositional PLS-DA procedure turned out to be more

accurate in identifying significant metabolites. Based on these experiments, PLS-

DA seems to be more reliable and accurate with respect to expert knowledge for

the compositional approach [6].
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Figure 3.6: Standardized regression coefficients in PLS-DA for the original
MCADD data set with application of compositional approach.

3.4. Orthogonal partial least squares regression

Orthogonal partial least squares regression (OPLS) is a modification of the PLS

regression [35]. Simultaneously as PLS, it belongs to the group of supervised me-

thods. The known information about data (e.g. the separation of observations to

groups) is contained in the matrix Y.

The idea of OPLS is to separate the systematic variation in data matrix X

into two parts. The first one is linearly related to Y and represents between class

variation, the second one is unrelated (orthogonal) to Y and refers to as the un-

correlated variation, which forms the within class variation [35, 36]. The matrix

Y is connected to the additional information provided by the matrix X. For

classification purposes, OPLS is often called orthogonal partial least squares -
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discriminant analysis (OPLS-DA).

The model includes two modeled variations - the Y-predictive (TPP′P ) and

the Y-orthogonal (TOP′O) components. Only the first one is used for the modeling

of Y [35]

X = TPP′P + TOP′O + EX , (3.25)

Y = TPC′P + EY , (3.26)

where EX and EY are residual matrices of X and Y, respectively, T is the score

matrix and P is the loading matrix.

OPLS-DA can be used in the case of compositional explanatory variables,

where ilr coordinates (1.11) are taken to obtain the matrix of covariate values

Z(l), l = 1, . . . , D. Accordingly, formulas (3.25) and (3.26) change to

Z(l) = T
(l)
P P

(l)′

P + T
(l)
O P

(l)′

O + E
(l)

Z(l) , l = 1, . . . , D, (3.27)

Y = T
(l)
P C

(l)′

P + E
(l)
Y , l = 1, . . . , D. (3.28)

Both methods, PLS-DA and OPLS-DA, have its own properties. The between

class variation and the within-class variation are separated by OPLS-DA but not

by PLS-DA. Both have been used for modeling two classes of data to increase

the class separation, simplify interpretation and find potential biomarkers. For

the two-class problem, OPLS-DA is recommended to obtain a clearer and more

straightforward interpretation. It can also provide an understanding of the interc-

lass variation [35]. The advantage of OPLS-DA is also that the model is rotated

so that class separation is found in the first predictive component, also referred to

as the correlated variation, and variation not related to class separation is seen

in orthogonal components, also referred to as the uncorrelated variation. This

separation of predictive and orthogonal components facilitates model interpre-

tation [36].
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The difference between PLS-DA and OPLS-DA methods is also visible from

Figure 3.7 (the picture comes from [36]). Squares and circles denote two different

groups of samples (for example patients and controls). The OPLS-DA model is

rotated; thanks to this fact, the between class variation (the difference between

patients and controls) is found in the predictive component tp and within class

variation is visible from the first y-orthogonal component to [36].

Figure 3.7: The difference between PLS-DA and OPLS-DA methods [36].

The possibility, how to visualize results of OPLS-DA, is a special graph called

S-plot. It visualizes the covariance and correlation between variables and the mo-

deled class designation. Accordingly, the influence in the model is captured.

The S-plot helps by identifying statistically significant and potentially biochemi-

cally significant metabolites, based both on contributions to the model and their

reliability [36]. The S-plot is a scatter plot that combines the covariance (the con-

tribution of the magnitude of model component scores) and correlation (the re-

liability of model component scores) loading profiles resulting from a projection-

based model. The S-plot uses these two vectors in the scatter structure [36]

Cov(t,xi) =
t′xi
N − 1

, (3.29)
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Corr(t,xi) =
Cov(t,xi)

stsxi

, (3.30)

where t is the score vector in the model, xi denotes the centered variable from

the data matrix X (column of the matrix X) and s stands for an estimate of

the standard deviation. The name S-plot comes from the shape of the graph.

In the optimal situation, the scatter plot should have the shape of the letter

S. Metabolites which are in the left lower corner and right upper corner are

denoted as the most significant. The S-plot is used for the comparison of only

two groups of samples, where the significant metabolites distinguish between these

two groups. A complimentary tool for identification of interesting compounds is to

plot the loading vector, Cov(t,X), with its corresponding jack-knifed confidence

intervals as these provide additional information about metabolite variability [36].

The example of the S-plot is shown in Figure 3.8. This plot was used for
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the OPLS-DA analysis of two groups of samples (patients and controls). From

the point of view of reliability, the importance of metabolites is evaluated mainly

from y-axis. First twenty significant metabolites are highlighted by red color with

their names. Blue points represent the rest of metabolites. We can compare these

results with the other graphs and try to find important markers of the disease.

3.5. Parametric models for imputation of roun-

ded zeros

3.5.1. Theoretical background for imputation model

As mentioned in Section 3.1.2, only a few algorithms exist for the impu-

tation of rounded zeros in high-dimensional compositional data sets. The crucial

point for building up a reasonable imputation procedure is to find interpretable

orthonormal coordinates in order to enable further processing in the standard

Euclidean geometry. Since there is no canonical basis on the simplex, a set of

orthonormal coordinate systems (1.11) needs to be employed sequentially in order

to perform the imputation for each of the original compositional parts. The pro-

cedure needs to be able to capture both the relative information, conveyed by

the compositional data themselves, and the absolute nature of the corresponding

detection limits, for a meaningful imputation of rounded zeros.

Based on previous considerations and following the structure of the impu-

tation procedure in [18], an iterative regression-based algorithm for the repla-

cement of rounded zeros is introduced in Algorithm 3.5.1. It is based on PLS

regression, introduced in Section 3.3 with the evaluation of the optimal number

of components (based on PRESS values) announced in Section 3.3.3, thus able to

cope also with high-dimensional compositional data sets [58]. In addition, some

notation is given beforehand.

To avoid complicated notation in Algorithm 3.5.1, we assume that M(x1) ≥

M(x2) ≥ . . . ≥ M(xD), with M(xj) denoting the number of rounded zero cells

in variable xj. Denote ml ⊂ {1, . . . , n} the indices of the rounded zeros in variable
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Algorithm 3.5.1 PLS
1: for j ∈ {1, ..., D} do . INITIALIZATION OF ROUNDED ZEROS

2: Initialize all xij , i ∈ mj with 2/3 of the corresponding detection limit.

3: end for

4: Sort variables based on M(x1) ≥ M(x2) ≥ . . . ≥ M(xD). For easier notation, we

assume that the variables are already sorted. . SORTING

5: Let c be large, e.g. c = 9999999, and ε small, e.g. ε = 0.1, set r = 1.

6: function Estimate the optimal number of components

7: Run the function REGRESSION from below to determine the optimal number

8: of components (see Section 3.3.3) for each variable including rounded zeros

9: . INITIALIZATION OF NUMBER OF COMPONENTS

10: end function

11: while c > ε do

12: r ← r + 1

13: for l ∈ {1, ..., D} do

14: function Coordinate

15: Take X(l) (l-th variable at first position) with elements x
(l)
ij ;

16: compute coordinate representation z
(l)
1 and Z

(l)
−1.

17: Let el be the detection limit of the l-th part; compute coordinates

18:

ψ
(l)
i =

√
D − 1

D
ln

el
D−1

√∏D
j=2 x

(l)
ij

for i ∈ ml. (3.31)

19: . REPRESENTATION IN COORDINATES

20: end function

21: function Regression

22: With previously estimated optimal number of components, estimate the

23: regression coefficients β with PLS regression:

24: z
(l)
1 = Z

(l)
−1β + ε with Z

(l)
−1 = TPT . PLS REGRESSION

25: end function
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26: function Replacement

27: Use the estimated regression coefficients β̂ to impute the rounded zeros:

ẑ
(l)
i1 = β̂

T
z(l)i,−1 − σ̂

φ

(
ψ
(l)
i −

ˆβ
T
z(l)i,−1

σ̂

)

Φ

(
ψ
(l)
i −

ˆβ
T
z(l)i,−1

σ̂

) for i ∈ ml, (3.32)

28: corresponds to the rounded zeros in z
(l)
1 , and φ and Φ are density and

29: distribution function of the standard normal distribution, respectively;

30: σ̂ is the estimated conditional standard deviation

31: of variable z
(l)
1 . . REPLACEMENT

32: end function

33: function Inverse mapping

34: Use Equation (1.10) to express back in the original sample space; reorder

35: the variables.

36: The values that were originally rounded zeros in the cells ml in variable

37: xl are updated. . INVERSE MAPPING

38: end function

39: function Re-Scaling

40: Due to the nature of this inverse mapping, the scale of variables is

41: changed. Call Mi the set with the cells of the i-th observation that were

42: rounded zeros, and Oi = {1, . . . , D}\Mi. A cell xij , for any j ∈Mi,

43: is adjusted (multiplied) by the factor fij =

∑
o∈Oi

xio∑
o∈Oi

x̂io
, where x̂io denote

44: the inverse mapped values from the previous step. . ADJUSTMENT

45: end function

46: end for

47: function Update criteria

48: Update c as the sum of squared differences of the elements of X in the r-th

49: and the (r − 1)-th iteration.

50: end function

51: end while

52: Bring the variables to the original order . UNDO SORTING
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xl, and ol = {1, . . . , n}\ml the indices corresponding to the remaining cells of

xl. Denote z
(l)
1 as the first coordinate according to (1.11), and Z

(l)
−1 containing

the remaining D−2 coordinates. The first column of Z
(l)
−1 consists of ones, taking

care of an intercept term in PLS regression, and the observations (rows) are

denoted by z
(l)
i,−1, for i = 1, . . . , n.

Note that due to the complexity of the above algorithm, a rigorous proof of

convergence is not available. Nevertheless, our practical experience shows that

usually just a few iterations are necessary to reach the convergence criterion.

3.5.2. Modification with variation matrix

The second possible algorithm for the imputation of rounded zeros in high-

dimensional data makes use of the variation matrix [1] for selecting variables

to reduce the dimension of the data. A slightly modified algorithm of [18] is then

used to replace rounded zeros.

The covariance structure of compositions is described by the variation matrix

T [1, 3]. The entries of this matrix are variances of log-ratios of two-part sub-

compositions, tjk = var
(

ln
xij
xik

)
, for i = 1, . . . , n, and j, k = 1, . . . , D. Here, “var”

denotes the empirical variance. Low values in the variation matrix indicate strong

association between the parts in terms of their proportionality. When replacing

rounded zeros in a particular compositional part, an optimal prediction model

with a subcomposition of the remaining variables is identified, using a ranking

from the variation matrix elements. The number of predictor variables in the mo-

del is kept low, and thus, the rounded zeros imputation is based on ordinary

least-squares (OLS) regression. For more details see [58].

3.5.3. Alternative approaches

The available methods for rounded zeros imputation are collected in the R-

package zCompositions [50]. These methods will be briefly introduced and employed

in the simulation study in Section 3.5.5. Some of these methods are not able to

work with high-dimensional data, but they are useful in the simulation part.

64



One method used for the imputation of rounded zeros is called multiplica-

tive replacement (mult repl), which imputes left-censored compositional values

by a given fraction of the corresponding detection limit. The default fraction is

0.65 times the detection limit of a variable. The multiplicative adjustment is ap-

plied in such a manner that the row-wise sums are made equal to the original

values including rounded zeros whenever the data are in closed form, i.e. if they

have to sum up to a constant. In this case, the absolute values are not preser-

ved. The multiplicative replacement does not modify the original values above

the detection limit if the data are not presented in a closed form [58].

Also multiplicative log-normal replacement (mult lognorm) is used for the im-

putation, where [112] consider the univariate log-odds for the i-th variable (for

values above detection limit). They model the compositions using a multiplicative

logistic normal mixture for this purpose.

Multiplicative Kaplan-Meier smoothing spline replacement (mult KMSS) is

another way how to impute rounded zeros. This method replaces left-censored

rounded zeros by averaging (geometric mean) random draws from a cubic smoo-

thing spline fit. This spline is fit to the inverse Kaplan-Meier empirical cumula-

tive distribution function to values below the corresponding limit of detection or

censoring threshold, and the values below detection limit are replaced by the fit-

ted values. Note that this method works in a univariate manner, applied inde-

pendently to each compositional part containing values below detection limit.

However, afterward multiplicative adjustment is applied to preserve the multiva-

riate compositional properties of the samples. Unfortunately, the implementation

in the R-package zCompositions [50] frequently leads to errors when the smoo-

thing spline is fit, and is thus, problematic in use with high-dimensional data.

Log-ratio data augmentation algorithm (lr da) is simulation-based data aug-

mentation algorithm and it uses D−1 additive log-ratio coordinates [1] for the re-

presentation of a D-part compositional data set and an MCMC (Markov chain

Monte Carlo) approach. Consequently, left-censored compositional parts are im-

puted by simulated values from their posterior predictive distributions. A com-
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mon conjugate normal inverted-Wishart distribution with non-informative prior

is assumed for the model parameters in the coordinate space [113].

The last option for the imputation of rounded zeros, presented in this thesis,

is called additive log-ratio EM algorithm (lr em). As for the data augmentation

algorithm, this method expresses compositional data in additive log-ratio coor-

dinates, where an EM algorithm is applied sequentially, i.e. D − 1 regressions

are performed for one iteration. This method thus does not work in situations

with more variables than observations. The main difference to approaches like [15]

and [18] is that just one coordinate system is taken for the whole iteration process

and when convergence is reached, the coordinates are expressed back in the ori-

ginal space. For this reason, the approach needs, at least, one compositional part

without rounded zeros. Finally, a correction factor based on the residual covari-

ance obtained by censored regression is applied.

3.5.4. Validation criteria

The numerical properties of the proposed algorithm are investigated in the

following for two kinds of simulated data and for a data set from metabolomics.

In order to compare with other approaches, some evaluation criteria are introdu-

ced [15,18].

The validation criteria defined in this section [18] assume that the complete

data information is available. After introducing rounded zeros, a comparison can

be made with the imputed data sets. The imputed data set is denoted by the sym-

bol ∗.

Average difference in covariance structure (ADCS)

Let S = [sij] be the sample covariance matrix of the original observations in ilr

coordinates zij and S∗ = [s∗ij] denote the sample covariance matrix computed

with the same ilr observations where all the rounded zeros have been imputed.

The measure of the average difference between both covariance matrices [15],
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based on the Frobenius matrix norm ‖ · ‖F , is

ADCS =

√√√√ 1

(D − 1)2

D−1∑
i=1

D−1∑
j=1

(
sij − s∗ij

)2
=

1

D − 1
‖S− S∗‖F . (3.33)

Compositional error deviation (CED)

The criterion

1
nM

∑
k∈M

da(xk,x
∗
k)

max
{xi,xj∈X}

{da(xi,xj)}
(3.34)

is a generalization of the measure applied in [15] and used in [18]. Here, nM is

the number of samples xk containing at least one rounded zero, M is the index set

referring to such samples, and x∗k is the completed observation. The denominator

is the maximum distance in the original data set. Here, da stands for the Aitchison

distance (1.7).

3.5.5. The practical application of imputation model

Simulation study

For simulating compositional data, the so-called normal distribution on the sim-

plex is used in combination with a latent model. A random composition X follows

a multivariate normal distribution on the simplex if, and only if, the vector of ilr

coordinates Z = ilr(X) (its elements are constructing by formula (1.9)) follows

a multivariate normal distribution on RD−1 with mean vector µ and covariance

matrix Σ [3, 63]. Thus, X ∼ ND
S (µ,Σ) denotes a D-part composition X that is

multivariate normally distributed on the simplex.

The choice of the parameters µ and Σ in the simulation study determine

the shape of the raw (compositional) data on the simplex. The further away µ is

from the null vector (indicates equilibrium on the simplex), the closer the com-

positions are to the border of the simplex. The choice of the covariance matrix
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Σ determines how elongated the data points appear in the sample space. Finally,

the choice of a latent model expresses further relationships between variables [58].

For the purpose of the study, a data set Z with n observation (compositions

in ilr coordinates) and D original parts is simulated by the latent model

Z = TBT + E, (3.35)

where the columns of E are independently normally distributed with N (0, 0.01).

The columns of the n×k matrix T are drawn from a standard normal distribution,

and the elements of B are drawn from a uniform distribution in [−1, 1]. The ob-

tained matrix Z is then expressed in the simplex as matrix X using the inverse

isometric log-ratio mapping given in equation (1.10).

Rounded zeros are placed in every second column of X for all values below

a certain quantile, xj < Qd(xj), where d is varied in the simulation between 0

and 0.3 (see for example Figure 3.9). In each step of the simulation, 100 data sets

are produced and the average results are reported.

In the following we present three scenarios [58]:

(a) Low-dimensional scenario: k = 3 components (latent variables) are used

to generate the data X with n = 50 observations and D = 16 variables.

With this scenario, the methods are compared in the low-dimensional case.

The fraction (quantile) of values below detection limit is varied between 0

and 0.3 and in every second variable the respective values are replaced by

zeros.

(b) High-dimensional scenario: k = 6 components are used to generate the data

with n = 50 observations and D = 128 variables. Again, rounded zeros are

introduced in every second variable with varying fractions.

(c) Fixed amount (10%) of rounded zeros, changing dimension: k = 6

components are used to generate data with n = 50 observations and varying

amounts of compositional parts (2, 4, 8, 16, 32, 64, 128, 256).
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Figure 3.9: Low-dimensional scenario (a). Simulation results for a three-
component model with 16 variables and with varying fractions of rounded zeros.
Validation criterias are ADCS (left plot) and CED (right plot).

All methods discussed above are applied; the abbreviations in figures be-

low represent the following approaches: varOLS refers to the regression method

from Section 3.5.2, PLS to the PLS method from Section 3.5.1, mult lognorm

is the multiplicative log-normal replacement method (Section 3.5.3), mult repl

is the multiplicative replacement method, lr da and lr em the log-ratio data

augmentation algorithm and the additive log-ratio EM algorithm, and finally

the abbreviation mult KSS belongs to the multiplicative Kaplan-Meier smoo-

thing spline replacement from Section 3.5.3.

Figure 3.9 shows the simulation results in the low-dimensional case. For both

measures, the alternative variant with the variation matrix (the varOLS me-

thod) gives best results for small amounts of rounded zeros; for higher amounts,

the PLS approach (Algorithm 3.5.1) is preferable. Multiplicative replacement and

multiplicative log-normal replacement show similar behavior and are still reaso-

nable (however, not that the vertical axis is log-transformed). lr da leads to much

poorer results, and lr em and mult KMSS had numerical difficulties, mostly wi-
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thout any outcome.

In the higher-dimensional setting, the method PLS clearly outperforms the

other methods, see Figure 3.10. Not all methods provide results. For example,

the additive log-ratio EM algorithm cannot deal with high-dimensional data since

a least-squares regression is used with D− 1 predictors but n is smaller than D.

The replacement methods and varOLS are relatively comparable in performance.
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Figure 3.10: High-dimensional scenario (b). Simulation results for a six-
component model with varying fractions of rounded zeros. Validation criterias
are ADCS (left plot) and CED (right plot).

Figure 3.11 presents results from the last scenario with varying numbers of

variables and a fixed fraction of rounded zeros (0.1). As it was already visi-

ble in the previous results, varOLS performs well in low-dimensional situations,

whereas PLS clearly outperforms other methods when the number of variables is

higher.

One of the reasons for the good performance of the PLS method in the simu-

lations is the way how the data were simulated: Since we already used a latent

variable model for simulating the data, it can be assumed that a method like

PLS which makes use of this latent structure will be more successful than me-
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Figure 3.11: Varying dimension of data scenario (c). Simulation results for a three-
component model and a fixed fraction of rounded zeros (0.1). Rounded zeros are
placed again in every second variable. Validation criterias are ADCS (left plot)
and CED (right plot).

thods that do not make use of this fact. In real high-dimensional data situations,

however, one can often assume such an underlying model, because PLS regression

turned out to be very successful for prediction in high-dimensional applications

in chemometrics, metabolomics, etc. In the following section, a data set from

metabolomics is used as a basis for simulations, the different methods are again

compared.

Although the methods discussed in Section 3.5.3 are quick to compute, they

have either limitations concerning the dimensionality, concerning the numerical

stability, or concerning the quality of the results. In fact, for the simulation in

the metabolomic data set, it turned out that for a relative amount of rounded

zeros of more than 0.1, only the methods varOLS and PLS gave results. The dra-

wback of these methods is higher computational effort: on a standard PC, varOLS

takes around 10 minutes for one run, and PLS about 30 minutes. However, this

is because rounded zeros were included in every second variable [58].
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Data set from metabolomics

The presented imputation procedure is applied to a data set from meta-

bolomics. Here LC-MS spectra from dried blood spots of samples from patients

suffered from MCADD and healthy controls (data used in the example in Section

3.3.4) are considered [7]. Here only 278 metabolites were used, because of the com-

putational severity of the imputation algorithm. These chosen metabolites also

does not contain rounded zeros in original data table.

Figure 3.12 shows results from the data where the detection limit is artificially

increased in every second variable (with a fraction of rounded zeros from 0.05

to 0.25 in steps of 0.05). Not all methods can be applied on data with higher

number of variables than observations, e.g. the data augmentation method (lr

da) as well as the expectation-maximization method (lr em)). These methods

are thus, excluded from Figure 3.12. Only few methods give results for higher

fractions (≥ 0.1) of rounded zeros, e.g. mult KMSS and mult lognormal provide

only results for a fraction of rounded zeros equal to 0.05.
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Figure 3.12: Results from the replacement of rounded zeros for the MCADD data.
Validation criterias are ADCS (left plot) and CED (right plot).
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For the precision measure CED, the varOLS method shows slightly better

performance than the PLS method; for the covariance comparisons using ADCS,

the PLS method gives slightly better results. PLS uses the full multivariate

information for imputation, while varOLS uses at most 25 predictors, i.e. not

even 10% of the available predictors. A reason for this could be that the predictors

also included imputed rounded zeros; using them all covers the full data structure

but leads to a possible cumulation of errors; using only a subset will lead to a loss

of information but avoids errors.

Our procedures are available in the R package robCompositions [44] at github.

3.6. PARAFAC

3.6.1. Building up the model

As mentioned in the introductory section, metabolite (compositional) data

may form a three-way structure. The typical example are repeated measurements

of samples in time. Similarly as for PCA, also in this context clr coordinates are

preferable. In general, multi-way data are characterized by several sets of variables

that are measured in a crossed fashion [114]; as an example, the same set of

variables is measured in different times. In practice, three-way data are of primary

interest, especially also in the form of three-way compositions. Let’s have I×J×K

data array (cube): we have I samples and J variables (compositional parts), every

sample is measured K times [41]. Consequently, each of K tables of dimension I×

J (slices of the cube) can be considered as a compositional data matrix, ready to

be processed using the logratio methodology. In the following text of this section,

the whole data cube is denoted as X, for slices the notation Xk, k = 1, . . . , K is

used. A graphical representation of three-way data is displayed in Figure 3.13.

By following the previous considerations, the first mode is represented by

samples, placed in rows of the data cube. The second mode is formed by variables

(columns) and the third mode, frequently represented by time, form slices or

tubes [114–116]. For the possibility to deal with three-way data in a statistical
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X

Figure 3.13: Graphical representation of the data array (cube) X and its slices
Xk.

software and also to ease the notation, the data cube is matricized into the form

of two-way matrix [115, 117]. Matricizing is done by concatenating matrices for

different levels of the third mode next to each other. The column-dimension of

the resulting matrix thus becomes quite large in the mode consisting of two prior

modes, i.e., the final matrix has dimension I × JK. This structure is visible

in Figure 3.14.

Figure 3.14: The principle of unfolding the data cube X into data matrix X.
The principle of centering and scaling of the unfolded data matrix X.

Also preprocessing of three-way data, that is of particular importance in the che-

mometric context [114,118], must take account specific structure of the observati-

ons. The centering is done by the procedure called the single-centering when

the unfolded data matrix of dimension I × JK is centered across the first mode,

i.e. single columns are centered. It is possible to center also in more modes si-
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multaneously (e.g., centering the first mode and then the second mode), but it is

rather avoided as such centering scheme can destroy the multilinear behavior of

the data. Note that result of centering of compositional data in log-coordinates

across rows in single slices is nothing else than clr coordinates of the respective

observations; it is easy to see, if we rewrite clr coordinates of a composition

x = (x1, . . . , xD)′ as yi = ln(xi)− 1
D

∑D
i=1 ln(xi), i = 1, . . . , D. The scaling is usu-

ally done through rows of the unfolded data matrix, so we refer to scaling within

the first mode. If some variable of the second mode is scaled, it is necessary to

scale all columns where this variable occurs. Scaling in more modes is also possi-

ble, but not recommended for practical applications. The principle of centering

and scaling three-way data is shown in Figure 3.14. For particular metabolomic

applications, scaling within the first mode is replaced by specific approaches in

each slice, like the AUC normalization or normalization to creatinine, mentioned

in Section 2.2.

PARAllel FACtor analysis (PARAFAC) as a special version of the three-way

PCA is one of popular decomposition methods for three-way data in chemomet-

rics [59,119–121]. The PARAFAC model was invented by R. Harshman [38] and by

J. Carroll [37], who named the model CANDECOMP (CANonical DECOMPosi-

tion), being an alternative to previously introduced Tucker3 model [114,115,122].

The difference between bilinear PCA and PARAFAC is that PARAFAC result of

one score matrix and two loading matrices; moreover, in the case of PARAFAC,

the requirement of orthogonality of loadings is not needed to identify the mo-

del [115].

The PARAFAC model is structural model with score matrix AI×F and two lo-

adings matrices BJ×F , and CK×F with elements aif , bjf , and ckf , for i = 1, . . . , I,

j = 1, . . . , J , k = 1, . . . , K, and f = 1, . . . , F , where F denotes the number of

factors that are extracted. The PARAFAC model in terms of single elements of

the data cube X = (xijk) (i.e. for ith observation of jth variable in kth time),

can be written as [115,122–125]:
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xijk =
F∑
f=1

aifbjfckf + eijk i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K; (3.36)

here eijk stand for residuals. The structure of the model is also visible in Fi-

gure 3.15.

X E

Figure 3.15: Graphical representation of the formula (3.36).

By considering F factors, the PARAFAC model consists of F (I + J + K)

parameters. The advantage of the PARAFAC model is the uniqueness of the so-

lution; consequently, there is no problem with rotational freedom like for PCA.

Then, if the data is indeed trilinear (if two modes are fixed, then the third mode

is linear), the underlying spectra (or whatever constitute the variables) will be

found according to the number of components employed and appropriate signal-

to-noise ratio [114, 126]. Unique solutions can be expected if the loading vectors

are linear independent in two of the modes, and furthermore, in the third mode,

the less restrictive condition that no two loading vectors are linearly dependent

must be fulfilled. The mathematical meaning of uniqueness is that the estimated

PARAFAC model cannot be rotated without a loss of fit, as opposed to two-

way analysis (PCA), where one may rotate scores and loadings without changing

the fit of the model. A unique solution, therefore, means that no restrictions are

necessary to identify the estimate the model apart from trivial variations of scale

and column order [114].

The solution of the model (3.36) is obtained using the alternating least squa-

res (ALS) algorithm. The principle of ALS is through breaking up iteratively
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the model into three sets of parameters, such that it is linear in each set given fi-

xed values for the other two sets [123]. Furthermore, we assume that the loadings

in two modes are known and then the unknown set of parameters of the last mode

are estimated [114, 122]. Explicitly, we define M =
[
vec(b1c

′
1), . . . , vec(bFc

′
F )
]

and proceed to minimization problem [114,115]

min
AM
‖X−AM′‖2F , (3.37)

where ‖X‖2F = tr(X′X) denotes the Frobenius norm of X [114,115,125]. The mo-

del for estimation of scores A is

X = AM + EA, (3.38)

where X represents unfolded matrix X and EA errors of the model, both being

of dimension I × JK. The conditional least squares estimate of A is then

A = XM(M′M)
+

(3.39)

with the Moore-Penrose inverse (M′M)+ of M′M. The loading matrices B and C

are estimated analogously [114,115,122]. The algorithm is repeated until conver-

gence (i.e., when the changes of scores and loadings from two consecutive steps

are small enough) that can be achieved much faster by setting proper initiali-

zation values [115]. Note that stability of the ALS algorithm (faster convergence,

avoiding local minima) can be strengthened also by setting further constraints to

the model (mostly connected to orthonormality of loadings), but they may some-

times lead to problems with interpretation of loadings of the model [114,115] for

any kind of data preprocessing.

In the context of PARAFAC modeling of three-way metabolomic data, the nor-

malization is done for each slice that replaces scaling within the first mode (i.e.

just centering across the first mode is performed).
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3.6.2. Practical application of PARAFAC

Multi-way data occur also in metabolomics in the form of repeated measu-

rements at several time points. A specific case is represented by urine samples

of newborn babies, suffered from asphyxia, which are analyzed in this section.

Asphyxia is caused by lack of oxygen during the birth that may cause health pro-

blems (brain damage, etc.) and some changes in metabolites of the baby [127].

Urine samples were collected from 9 patients at five time points (7, 28, 52, 76

and 100 hours after the birth). Samples were processed using targeted metabo-

lomic analysis by HPLC-MS/MS (High-Performance Liquid Chromatography -

Mass Spectrometry), resulting in 179 analyzed metabolites. As a consequence,

a structure of the three-way data cube has dimension 9 × 179 × 5 (samples ×

metabolites × time points).

Data were processed in the R software [43]; in addition to standard packages

also those on PARAFAC modeling [52,54] and analysis of compositional data [44]

were employed. At first, quality control-based robust LOESS signal correction

method was applied [12], and consequently also zero replacement according to [17]

in order to enable further processing based on logarithmic calculations.
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Figure 3.16: Trends of lactate (a) and thiamine (b) levels in time points for each
patient.
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It is expected that levels of some metabolites change substantially shortly after

the birth. It is demonstrated for the cases of lactate and thiamine, see Figure 3.16,

for AUC normalized samples. Accordingly, the level of lactate is very high just

after the birth (concretely after seven hours), then it sharply decreases, as is

clearly visible in the case of 28 hours after the birth and beyond. This trend

is clearly caused by lactic acidoses due to anaerobic conditions (well known by

chemical consequences of asphyxia). An opposite pattern can be observed for

thiamine, which level is very small at the beginning, but then it mostly increases

and substantially differentiates among patients. The trend is caused by treatment

of asphictic newborns with a parental infusion of vitamin cocktail (that includes

thiamine); this treatment was the same for all babies. Note that results after

taking the normalization to creatinine would be very similar, thus, they are not

displayed here.
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Figure 3.17: Boxplots of uridine - AUC normalized raw data.

The trend of metabolite levels in time can be also visualized using box-

plots. Such boxplot series for the case of uridine is displayed in Figure 3.17.

We can observe similar patterns like for lactate with highest values in the first

28 hours of babies’ life for the majority of the other metabolites. The differen-
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Figure 3.18: Boxplots of uridine after log-transformation (a) or clr coordinates
(b).

ces in further time points (with rather small absolute values) will be highlighted

by taking any logarithm-based data transformation that captures the relative

(ratio based) changes of metabolite levels. For this purpose, both the standard

log-transformation and the clr coordinates (1.8) are applied, the latter honoring

also the principle of scale invariance of the original observations (i.e. that not

factual metabolite levels, but rather their relative contributions are of primary

interest). The results, displayed in Figure 3.18, are very similar, small differences

in both location and scale are caused by aggregation of metabolites by geomet-

ric mean (clr coordinates) instead of arithmetic one (resulting from the AUC

normalization) in the denominator of logratios.

The absolute scale of observations, obtained by using either log-transformation

or taking the clr coordinates, is also a necessary assumption to proceed with PA-

RAFAC modeling. The reason is that most of the standard statistical methods

rely on the Euclidean geometry in real space [66] that is not coherent with the re-

lative character of the original urine metabolomic data. For this purpose, three

preprocessing options are compared:

80



A) clr coordinates are applied, irrespective to previous scaling (AUC, norma-

lization by creatinine);

B) data normalized by AUC, then log-transformation applied;

C) data normalized by creatinine, then log-transformation applied.

The normalization of the level of creatinine and the AUC in combination

with the clr coordinates yield the same results, due to scale invariance [59]. For

this reason, they are included in one option denoted as A. Option B differs just

very slightly (being also a general experience); the reason is the AUC normali-

zation, where the original metabolite levels are divided by their average (arithme-

tic mean) and then taking the log-transformation. If the arithmetic mean would

be replaced by the similar geometric mean as discussed above, then the resulting

observations were exactly the same (clr coordinates). On the other hand, option

C differs substantially due to log-transformation of ratios of all metabolites with

one common denominator; this corresponds to additive logratio (alr) coordina-

tes (1.13). Note that, in addition to geometric incovencies, results of PARAFAC

modeling in alr coordinates might depend on the chosen common denominator,

and, therefore, this must be chosen carefully.

The PARAFAC model was built for two components and the resulting loa-

dings were plotted in order to ease recognition of patterns. No orthogonality con-

straints were applied, because the results were already nicely interpretable using

default setting; possible nonnegativity constraints became irrelevant after taking

clr coordinates/log-transformations. The variation explained by the PARAFAC

model (27.4%) was almost the same for the options A and B. The explained

variation for the option C was slightly higher - 32.2%.

The first two scores (of the first mode) and loadings (of the second and

the third mode) are displayed in this section. The first mode represents patients

(Figure 3.19), the second mode shows metabolites (Figure 3.20) and the third

mode displays changes in time points (Figure 3.21). As the results for option B

are almost the same as for A, just the latter are shown here and option B is
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Figure 3.19: Scores of the first mode of PARAFAC for preprocessing options A
and B (the results are the same) (a) and C (b).

assigned to the A; on the other hand, PARAFAC outputs for option C are sub-

stantially different. The smallest difference is in the first mode. Patients numbers

P5 and P8 are placed as outliers in both variants. The reason for the remoteness

of the patient P8 is caused by the fact that P8 had the smallest gestational age

and it had very serious brain damage. On the other hand, the patient P5 suffe-

red from asthma. Patients P3, P6 and P9 are characterized by similar patterns.

Patients P1, P2, P4 and P7 form another cluster in the first mode, just P1 tend

to exhibit outlyingness for the latter option. The reason might be that structure

of metabolites in a time of this patient differs the most by taking the creatinine

normalization (which is also visible directly from the raw data).

Metabolites in the second mode are represented only by abbreviations, most

of them hidden in the main cluster. The biggest difference is in ST049, ST368

and ST220; while the first one is a clear outlier for the option C, the remaining

form outliers for A and B. ST049 is N-acetylserotonin, which is most probably

irregular data, because its values vary from chemical noise (104 arbitrary units)

to very high numbers (107); consequently, they are not associated with specific

time points but with particular patients. Moreover, Human Metabolome Data-
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Figure 3.20: Loadings of the second mode of PARAFAC for preprocessing options
A and B (the results are the same) (a) and C (b).

base considers ST049 as undetectable in human urine. Note that options A and

B are not influenced by this metabolite. ST220 (homovanillate) and ST368 (3-

methoxytyramine) have very small chromatographic peaks and they are prone

to the variability of instrument measurements. Their solitude is true because

their structure is very different from the other metabolites. Accordingly, ST220

and ST368 have very small values at the first time point and these values are

growing in time. Also metabolites discussed above show an interesting behavior

with respect to preprocessing done. Lactate (ST137) moved from the border to

the middle of the main cluster for the option C, while thiamine (ST230) and uri-

dine (ST218) are contained in the cluster of the majority of metabolites in both

cases. Metabolites with high values shortly after the birth (ST137, ST143, ST201,

ST007) are clustered near the main cluster in Figure 3.20a and tend to be more

widespread in Figure 3.20b.

The structure of the time mode is the most interesting. The trend of loadings

for options A and B corresponds to trends from Figures 3.16-3.18 and general

preliminary expectations with the somehow exceptional position of the first time

point. This differs dramatically from C, where no such patterns can be observed,
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Figure 3.21: Loadings of the third mode of PARAFAC for preprocessing options
A and B (the results are the same) (a) and C (b).
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Figure 3.22: Boxplots of creatinine levels.

the loadings thus, seem not reflect the true reality of the data. The reason might

be a specific trend of creatinine in time that affects the other metabolites through

pairwise logratios in the alr coordinates. The level of creatinine is very high

in the time of 7 hours after the birth comparing to the other metabolites, which
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is visible from boxplots in Figure 3.22 and corresponds also to the position of

creatinine by newborns in general [128]. This fact probably causes the strange

behavior of time loadings in Figure 3.21b, where the specific role of pairwise

logratios with creatinine is pronounced.
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Chapter 4

Practical application

This chapter is a summarization of all methods presented in the previous

chapters in term of real metabolomic data. The whole methodology is demon-

strated on data sets analyzed by targeted and untargeted analyzes. All results

are discussed and compared.

4.1. Data introduction

Data sets chosen for this chapter were not measured on human. They re-

present serum samples of grazing horses evaluated by targeted and untargeted

analyzes. The samples are divided into two groups - healthy controls and patients

influenced by atypical myopathy (acquired equine multiple acyl-CoA dehydroge-

nase deficiency). Atypical myopathy is a fatal muscle disease and it is probably

caused by ingestion of maple seeds containing toxic hypoglycin A [61, 129]. 12

controls and 10 patients are involved in the analysis, but repeated investigation

of some patients has led to more samples. Accordingly, the final number of patient

samples is 19.

The additional data set for a deeper comparison of methods consist of urine

samples, evaluated by targeted analysis. These samples were not able for all

horses, but results of the statistical evaluation are still very informative. Only 5

controls and 6 patients (every measured only once) were used for this analysis.
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4.2. Targeted analysis of serum samples

The first data set is formed by serum samples, evaluated by targeted analysis.

As already mentioned, 12 controls and 19 patients are involved in the analysis.

The number of metabolites is 176, so high-dimensional data are obtained; there-

fore, statistical processing must be performed with special methods like partial

least squares regression.

The QC samples are very stable (generally in all targeted analyzes), so the in-

fluence of signal correction is very small. This trend is visible for example in Fi-

gure 4.1 which represents the time flow of acylcarnitine C10:2. This data set

grows also a different tendency - peak areas are much smaller in control sam-

ples (denoted as black points in the figure) in comparison with patients (blue

squares) in a lot of metabolites. The QC samples are often placed in the middle

of the graph (see Figure 4.1) and this fact may indicate a potential marker of

the disease.
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Figure 4.1: Time flow of acylcarnitine C10:2 - raw data.
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Interpolated values (after LOESS procedure) of QC samples are very small

(from 1 to 2). Almost all coefficients of variation (CV) are lower than 30 %.

Only one metabolite (succinyladenosine) had CV = 36.3 % and thus, it was

removed from the analysis. These facts also support prescription on the stability

of the data set.

In this step of the analysis, the final size of the data table was obtained - 31

observations× 175 metabolites. Now we are not interested in time flow of the data

and thus, we can reorder the data table in a more digested way: the samples are

reordered by groups of controls and patients.

The next step of the analysis is the imputation of zeros. In the targeted

analysis, zeros are not often present; it is caused by the fact that all measured

metabolites are known and the measurement device is calibrated on their values.

Consequently, levels of all metabolites are detected. Also for this data table, all

values are higher than zero.

The last step of preprocessing is the application of clr coordinates (1.8) and

centering the resulting data column-wise.

Now we can evaluate graphical and numerical results of the analysis. Both

types of methods - supervised and unsupervised - were used. Green points (•)

are used for labelling controls, blue triangles (N) denote patients.

The first graph used for the analysis of the metabolomic (compositional) data

set is the score plot of the principal component analysis (PCA) in Figure 4.2.

Data ellipses are also visualized in this plot. These ellipses are made for first two

scores separately for patient and control samples. They are based on Cholesky

decomposition of the covariance matrix of these scores. These ellipses correspond

to 75% quantile of F distribution with 2 and n− 2 degrees of freedom. When va-

riables have a multivariate normal distribution, data ellipses represent estimated

probability contours [130]. Ellipses are made only for a better interpretation and

visualization of separation of groups (controls/patients) in samples. The same

approach is used also in the following examples. In Figure 4.2 two clusters can
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be clearly observed - patients are separated from controls. The variability ex-

plained by the first two principal components is 70.1% which is quite high and

results seem reasonable. Only one patient is in the cluster of controls - it is sam-

ple denoted as ”Patient 19”, which is a horse performed at the early stage of

the disease. The group of patients is more differentiated, this might be due to

different severity of the disease. The other differences are visible from PCA biplot

(Figure 4.3). Here also rays representing metabolites are contained - for better vi-

sualization only the first 30 most important loading vectors are used. A heuristic

rule for the selection of the most important metabolites is used. Rays, represen-

ting metabolites, are sorted by their lengths and first 30 with longest rays are

chosen. A large difference between controls and patients seems to be due to a big

group of acylcarnitines (C6, C10, C10:2, C12:1 etc.) - all patients have higher

relative values in these acylcarnitines than controls. Also other metabolites can

be assigned to this group of potential markers, for example, isobutylglycine (de-

noted as ISObutGLY butGLY in biplot) or phenylpropionylglycine (denoted as

phenylpropGly). The second group of metabolites (hippurate, cystine, . . .) is not

so expressive. This trend is also visible from boxplots of the original data in clr

coordinates (alternatively z(l) from (1.11)); in Figure 4.4 boxplots of acylcarnitine

C10:2 and isobutylglycine are displayed. Both metabolites are characterized by

higher values in patient samples. On the other hand, in Figure 4.5 boxplot of

hippurate is showed; here the level of this metabolite is increased in patients, but

the difference between two groups of samples is not so significant.

The difference between groups of patients and controls is more visible from

the score plot of partial least squares - discriminant analysis (PLS-DA) which is

displayed in Figure 4.6. This method works a priory with the information about

classification of both groups (patients, controls). The outlyingness of Patient 19

is preserved also here. Differences between metabolites are also visible from bi-

plot of PLS-DA in Figure 4.7, the above described structure is preserved. VIP

scores are also evaluated, but as was written in Section 3.3.1, their values are

slightly sensitive. With the use of ”greater than one”rule 60 metabolites would
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Figure 4.6: Score plot of partial least squares - discriminant analysis of serum
samples analyzed by the targeted approach.
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Figure 4.8: VIP scores of PLS-DA of serum samples analyzed by the targeted
approach.

be chosen (32 are acylcarnitines), therefore, a heuristic rule for the selection of

important metabolites is used. A list of first 30 metabolites with the highest VIP

scores from PLS-DA is presented in Figure 4.8. All metabolites in this list have

VIP scores greater than 1.3, which stands for the important difference between

groups. The level of 1.3 is denoted by a red line. Mean ± one standard deviation

is marked in these barplots. The first five metabolites have scores even greater

than 2, which is marked by a blue line in the graph. On the second position

the above mentioned acylcarnitine C10:2 (written as C10.2) is placed, isobutyl-

glycine appears in the 10th position. Hippurate is also in this list, but its position

is less important (29th). High values of the first 30 metabolites can be caused by

the fact that matrix of clr coefficients is used instead of the standard real data

matrix.

Data were also evaluated by orthogonal partial least squares - discriminant
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Figure 4.9: Score plot of orthogonal partial leas squares - discriminant analysis
of serum samples analyzed by the targeted approach.
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Figure 4.10: S-plot of serum samples analyzed by the targeted approach.
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bottom part of Figure 4.10.
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analysis (OPLS-DA) which also confirms a clear differentiation between our

groups. The resulting score plot is displayed in Figure 4.9 and the exceptional

position of Patient 19 can be observed again. The interpretation of metabolites

is obtained through S-plot (Figure 4.10). Here we can see 30 most important

metabolites that lead to separation of patients and controls. These are ordered

by absolute values of reliability and metabolites with highest values are chosen as

important markers. The importance of magnitude is evaluated as minor marker

of significance. For better visualization also the zoom of S-plot is provided: left

bottom part in Figure 4.11 and right top part in Figure 4.12. All red metabolites

in the left bottom corner are typical for the group of patients. Again the same

group of acylcarnitines with isobutylglycine can be seen in Figure 4.11 - all these

metabolites are potential markers of the disease and they are elevated in pati-

ent samples. Metabolites in Figure 4.12 are typical for the group of controls. This

group is much smaller than the previous one and metabolites are slightly different

than in other methods.

The position of acylcarnitines in samples of horse patients with the atypical

myopathy are validated in the literature [129]. Our results seem to be reasonable

in comparison with their conclusions. A quite big group of acylcarnitines thus

can be considered as markers of this disease.

4.3. Untargeted analysis of serum samples

In this section, we try to point out some differences between metabolomic

data coming from targeted and untargeted approaches because the untargeted

approach returns slightly different results than the targeted approach. The diffe-

rence is in number of metabolites included in the analysis which can cause also

differences in results. We can find, for example, some new markers of the disease

by the untargeted approach in metabolites which are not included in the tar-

geted one. Accordingly, the second data set connected with atypical myopathy

of horses comes from analysis of serum samples by the untargeted approach. As

a consequence, at the beginning 777 peaks (potential metabolites marked by nu-
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merical codes) are considered for 12 control and 19 patient samples in this appro-

ach. The QC samples are very different, so the influence of using signal correction

is very different in particular peaks. For example, peak numbered 152.061966 has

an increasing trend as visible from Figure 4.13. The final shape without any trend

after the signal correction is displayed in Figure 4.14. We can see that internal

relationship between samples is preserved; only the increasing trend is corrected.
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Figure 4.13: Time flow of the peak 152.061966 - raw data.

The range of interpolated values of QC samples is very broad, some values

are even negative. This is caused by the fact that the first QC has zero values

for some peaks and its interpolated values processed by LOESS are calculated as

negative. Seven peaks with this property are excluded from the analysis. The next

step consists of a comparison between the maximum and minimum interpolated

values of QC samples. Ratios of these values vary between 1 to 184, all peaks

with this ratio higher than 10 are also excluded (finally 15 of them). Furthermore,

peaks with CV higher than 30 % are omitted as well, together 207 of them in this

data set. The final size of the data matrix is thus, 548 peaks and 31 samples,

97



0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

152.061966

Index

O
rig

in
al

 d
at

a/
va

lu
e 

fr
om

 th
e 

cu
rv

e

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

● Patients and controls
QC

Figure 4.14: Time flow of the peak 152.061966 - corrected data.

which are grouped as controls and patients.

The last, very important part of the preprocessing consists of the imputation

of zero values. A number of zeros was not high - here only 0.3% of all values. Zeros

were imputed by the Algorithm 3.5.1. At the end, clr coordinates are applied and

data table is mean centered.

The statistical analysis of this data set is more difficult than is the case of

targeted approach. It is caused by a big amount of peaks, furthermore, some

of them are not even metabolites but only fractions or noise. We are not able

to distinguish between them and correct metabolites; it is just possible to find

some known metabolites in a public database on the Internet, but this must be

done manually for every peak. Peaks are denoted by numerical codes in our plots.

These codes are called m/z (mass-to-change ratio) and represent the distribution

of ions by mass in a sample. The characteristics m/z is very precise and it is

presented in seven and more decimal numbers.
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Figure 4.15: Score plot of principal component analysis of serum samples analyzed
by the untargeted approach.

Principal component analysis is not as clear as in the case of targeted appro-

ach, but we can still distinguish between groups of controls and patients - see

score plot in Figure 4.15. The percentage of explained variability is 59.02% which

is sufficient for data with this dimension. A horizontal partition of samples also

can be seen here. This trend is connected with peaks used in the analysis and

becomes more visible from biplot in Figure 4.16, where again thirty loadings with

longest rays that correspond to clr coefficients are observed. A group of peaks

going to the lower part of the plot can be observed. These peaks are suspect to be

the reason of the horizontal separation of samples, but we are not able to define

them now. The only metabolites which can be identified in this plot are listed

in Table 4.1. All metabolites are the same carnitines as in the targeted approach,

whose values are increased in patient samples.

The difference between groups of controls and patients in term of acylcarniti-

nes is also confirmed by boxplots. For example, a boxplot of the peak 316.24799
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Figure 4.16: PCA biplot of serum samples analyzed by the untargeted approach.

m/z Potential metabolite
260.1855769 C6
288.2169034 C8
314.2324508 C10:1
316.24799 C10

Table 4.1: Potential metabolites and their mass-to-change ratios.

(C10) is presented in Figure 4.17.

Groups of patients and controls are better splitted in partial least squares -

discriminant analysis (score plot in Figure 4.18 and biplot in Figure 4.19), where

the information on grouping of samples is taken into account as well. The out-

lyingness of Patient 19 pronounces now similarly as in the targeted approach;

elevated acylcarnitines are also preserved. The problem with high VIP scores is

also present in the untargeted approach. VIP greater than one is performed in 80

metabolites, only first 30 of them are displayed in Figure 4.20 and their values

are greater than 2.2. The first VIP score is even higher than 6. In the VIP scores
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samples analyzed by the untargeted approach.
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plot elevated acylcarnitines are contained in the group of the first ten highest

VIP scores (VIP > 3.3).
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Figure 4.21: Score plot of orthogonal partial leas squares - discriminant analysis
of serum samples analyzed by the untargeted approach.

The score plot of OPLS-DA (Figure 4.21) shows a similar structure of samples

as PCA - one layer cluster divided into patient and control samples and three

smaller clusters - through separation of controls and patients is clearly better now.

Two of these smaller clusters are formed by patient samples and one remaining

is formed by control samples. Patients 23 and 24 from the smallest cluster had

a specific progression of the disease, separation of the other two smaller clusters

is not so clear. Because this pattern didn’t occur for the targeted approach, we

can assume that levels of some specific peaks are very different for these smaller

groups. Unfortunately, we are not able to identify them now.

If we analyze S-plots (Figures 4.22 - 4.24), previously identified carnitines can

be found in positions in the left bottom corner of the plot. These peaks are very

important for the group of patients; particularly, C8 is in the first position from

the bottom, C10 is 4th, C6 is 6th and C10:1 occupies the 7th position.
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Figure 4.22: S-plot of serum samples analyzed by the untargeted approach.
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Figure 4.23: S-plot of serum samples analyzed by the untargeted approach - left
bottom part of Figure 4.22.

104



●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.5 3.0 3.5 4.0 4.5 5.0

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

S−plot (OPLS−DA) − top 

Variable magnitude

R
el

ia
bi

lit
y

●

●

●
●

644.4728603

437.2426584
321.1486375 159.0764467

Figure 4.24: S-plot of serum samples analyzed by the untargeted approach - right
top part of Figure 4.22.

The conclusion is the same as for the targeted approach. Chosen acylcarnitines

are possibly very important markers of the atypical myopathy because they are

placed in the first positions in lists of important metabolites in all methods used

for the statistical analysis. We are able to identify them from the group of 548

peaks that further supports relevancy of the conclusion. On the other hand, some

new peaks (not identified yet) occur in this data set, which cause the separation

of patients with specific progression of the disease. These peaks are not visible

in the targeted analysis, which illustrates the main differences between targeted

and untargeted approaches.

4.4. Targeted analysis of urine samples

As a third approach, the targeted analysis of urine samples of horses suffered

from atypical myopathy is performed. This approach is presented for the complex

view on the data. The urine was not able for all horses, thus, only 5 controls and

6 patients are included in the analysis. The structure of metabolites presented
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in urine is different than is serum; accordingly, the slightly different list of me-

tabolites is considered. The resulting data matrix has 11 rows and 165 columns.

Data were normalized by AUC. Though, we are interested, how different origins

of metabolites (serum, urine) affect results of their statistical processing using

the logratio methodology.

Because of the targeted analysis, results of the preprocessing are very similar

to those from Section 4.2. Accordingly, QC samples are very stable, also, the range

of interpolated values is the same as in the case of serum samples. All coefficients

of variation (CV) are lower than 30 % and zero values are not present in data.
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Figure 4.25: PCA biplot of urine samples analyzed by the targeted approach.

Only selected graphical results are discussed in this section. Firstly, PCA

biplot is displayed in Figure 4.25. The difference between groups of samples and

controls is nicely visible; the outlier close to the control group is the known

Patient 19. The specific Patient 19 is preserved in all data sets on purpose. It is

here for the demonstration of stability of all our methods. This sample enables
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us to compare all our methods and types of analyzes. The list of important

metabolites (in terms of their expressive clr coefficients) for the patient group is

very similar in the case of serum samples. Particularly, the group of acylcarnitines

and isobutylglycine are preserved here. On the other hand, arrows in the direction

of controls are slightly different, as a result of different materials (serum and

urine). The reason is that metabolomic composition of urine of healthy controls

naturally differs from the serum of the same controls. The percentage of explained

variability is high (77.31%) which enables for very realistic conclusions.
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Figure 4.26: Biplot of partial least squares - discriminant analysis of urine samples
analyzed by the targeted approach.

Similar results are provided also by PLS-DA biplot, see Figure 4.26. The only

difference concerns Patient 19, being now an outlier of all samples in the right

bottom corner of the plot. The reason for this behavior may be metabolite called

nicotinate. The concentration of this metabolite is 33 times higher in the urine of

Patient 19 than in the other samples. The only exception is Control 6, which has

a concentration of this metabolite 12 times higher than average. This control is

the last point in the cluster of controls close to the outlying patient. The loading
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Figure 4.27: VIP scores of PLS-DA of urine samples analyzed by the targeted
approach.

vector of nicotinate is visible through the respective arrow in both previous plots.

Note that the position of acylcarnitines is still preserved in Figure 4.26.

The position of leading metabolites, acylcarnitines, is also confirmed by the VIP

scores plot in Figure 4.27. First four metabolites with the highest VIP scores (VIP

> 2.1) are acylcarnitines, followed by riboflavin. From data matrix in clr coordi-

nates, it is easy to see that riboflavin has high values for all controls and Patient

19. On the contrary, concentrations of riboflavin in patient samples are very

low. As a consequence, riboflavin may be a further marker of atypical myopathy

in the case of urine samples. The arrows of riboflavin are also visible in Figures

4.25 and 4.26.

Last three plots in this section are connected with the S-plot of OPLS-DA, see

Figures 4.28 - 4.30. In Figure 4.29 the left bottom part of this plot is zoomed. It

includes metabolites important for the group of patients and here acylcarnitines

are placed. By zooming the left upper part of the S-plot in Figure 4.30 riboflavin

occurs in the first position of important metabolites for controls.

Riboflavin was also measured in the case of serum samples. The difference
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between controls and samples was not present - concentrations are rather different

inside groups of patients and controls. Nicotinate was not measured in serum

samples.

To conclude, acylcarnitines are confirmed as important markers of atypical

myopathy using the logratio approach to statistical analysis of metabolomic (com-

positional) data. We also found supplementary marker - riboflavin. It is detected

also in serum samples, but in urine samples, this metabolite appears to be much

more expressive.

4.5. Comparison with the other transformations

Two comparisons with the other transformations are shown in this section.

Firstly, log-transformation is applied to metabolomic data. The second transfor-

mation; that appears recently to be popular in chemometrics, is called proba-

bilistic quotient normalization (PQN) [131, 132]. Data used in this section are

serum samples evaluated by targeted analysis in Section 4.2, resulting in stable
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and complex outputs.

4.5.1. Logarithmic transformation

The application of the log-transformation is a very common method how to

transform data in chemometrics. Without using any transformations (such as clr

coordinates) metabolomic data are often skewly distributed and the logarithm is

used to symmetrize the data distribution before centering and possible further

processing. Nevertheless, it is not appropriate transformation for metabolomic

data that have compositional nature; particularly, the logarithm does not take

into account scale invariance of compositions.
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Figure 4.31: PCA biplot of serum samples analyzed by the targeted approach
with log-transformation.

In this section, only basic outputs are presented that enable to recognize ma-

jor differences between the logratio approach and clr coordinates. In Figure 4.31

the PCA biplot is displayed and it is easy to see that some differences, e.g. con-

cerning acylcarnitines, occur. In Figure 4.3 fewer acylcarnitines are in the group
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Figure 4.32: VIP scores of PLS-DA of serum samples analyzed by the targeted
approach with log-transformation.

of most important metabolites and some metabolites are located also in the left

part of the plot that enables to recognize metabolite characteristic for the group

of control samples. In Figure 4.31 these metabolites from the left disappeared and

more acylcarnitines are in the right part of the plot. Particularly, the PCA biplot

of log-transformed metabolomic data is characterized by a distorted structure,

where almost all arrows follow the same direction, which indicates damage of

the covariance structure. This effect is known also from geochemistry [67] and

indicates that using log-transformation might be misleading here.

The same trend as in PCA is also visible from the VIP scores plot of OPLS-

DA which is displayed in Figure 4.32. In the list of 30 most important metabolites

(with the highest VIP scores), more acylcarnitines than for the logratio approach

are contained. This trend is also present in S-plot, which is not shown here.

4.5.2. The probabilistic quotient normalization

The second popular way of transformation of chemometric data, discussed

here, is the probabilistic quotient normalization (PQN) [131,132]. PQN is based

on the calculation of a most probable dilution factor by looking at the distribution
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of the quotients of the amplitudes of a test spectrum by those of a reference

spectrum [131]. According to recent studies [132], PQN appears to be the best

transformation for metabolomic data sets.

The principle of the PQN is as follows. The size effect si is calculated for every

sample by the median of the ratios of parts in the i-th sample, i = 1, . . . , n, with

the corresponding elements of a reference sample xref : si = median(xi1/x
ref
1 , . . . ,

xin/x
ref
n ), where xrefj is the median of the jth metabolite. The final transformed

data are given as [132]

xPQNi = (xi1/si, . . . , xin/si).
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Figure 4.33: PCA biplot of serum samples analyzed by the targeted approach
with PQN.

The PQN is applied to serum samples evaluated by the targeted approach,

similarly as in the previous section. PCA biplot for centered data is shown in Fi-

gure 4.33. The difference is very clear in comparison with Figure 4.3. Differen-
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Figure 4.34: VIP scores of PLS-DA of serum samples analyzed by the targeted
approach with PQN.

ces between clusters of patients and controls are still present, but the structure

of metabolites (loadings) has damaged. Rays of acylcarnitines in the direction

of patient samples are the same, but rays of the other metabolites have no

clear meaning. For example, oligopeptides glycine (GLY), glycyl-valine (GLY-

VAL), glycyl-glycine (GLYGLY) and even fucose are highlighted as important,

but these metabolites seem to be driven by only one control sample (the green

point in the left upper corner of the plot). This specific position of this control is

not visible in all previous PCA graphs, which means that the use of logratio ap-

proach and log-transformation are somehow robust in the case of the presence of

individual outliers. Also, metabolites in the left part of the plot (near to the group

of controls) are rather unusual. Finally, the percentage of variability explained

by the model is much lower.

The difference in the first thirty important metabolites is also visible from

the VIP scores plot in Figure 4.34. Only five acylcarnitines are in the list, the rest

of metabolites mentioned there are less meaningful than metabolites from Fi-

gure 4.8. Also, the above mentioned glycyl-valine and glycyl-glycine are contained

in the plot. The same trend is visible also from the S-plot, which is not shown
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in this thesis.

Note that logarithmic transformation applied to data transformed by PQN

would lead to results comparable with those from Section 4.5.1. Moreover, PQN

leads just to a particular representation of the input metabolomic (compositio-

nal) data, so their clr coordinates would be exactly the same as for Section 4.2.

From this point of view, PQN can not be recommended as transformation for

metabolomic data.
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Conclusions

This thesis contains a comprehensive guide to the statistical analysis of me-

tabolomic data using the logratio methodology as developed during my study

at the Department of Mathematical Analysis and Applications of Mathematics,

Faculty of Science, Palacký University Olomouc and by cooperation with the La-

boratory of Metabolomics, Institute of Molecular and Translational Medicine,

Palacký University Olomouc. Procedures and algorithms introduced in this thesis

are in everyday use in the Laboratory of Metabolomics [6, 7, 56].

Compositional data and specific coordinates that enable the statistical ana-

lysis in Euclidean space were introduced in Section 1. The specific field of bio-

chemistry, called metabolomics, was proposed in Section 2. Section 3 is the lar-

gest in this thesis and presents specific tools used for the statistical analysis of

compositional data. The basic preprocessing of such data including elemental al-

gorithms for imputation of missing and zero values were introduced in Section

3.1. Multivariate methods for the statistical analysis were suggested starting with

principal component analysis in Section 3.2. Partial least squares regression as

a tool that is appropriate for regression analysis of high-dimensional data was in-

troduced in Section 3.3 and the extension of this method, orthogonal partial least

squares regression, was presented in Section 3.4. Special parametric models for

imputation of zero values (rounded zeros) using partial least squares regression

were presented in Section 3.5. For statistical analysis of three-way compositional

data, the PARAFAC model was adapted in Section 3.6. The last Section 4 con-

sist of the practical applications of all presented methods to real data sets from

metabolomics.
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While some methods, discussed in this thesis, are popular even in the context

of compositional data, other need to be adapted with any support of previous de-

velopments. This was definitely the case of partial least squares regression in ilr

coordinates, appropriate tool for statistical analysis of high-dimensional com-

positional data [6]. Similarly, although PARAFAC modeling of three-way com-

positional data was previously discussed in literature [40–42], its adaptation to

metabolomics for the specific case of urine metabolomic data (including compa-

risons to standard approaches) wasn’t published yet [59]. Finally, another novel

part of the thesis is a parametric model for imputation of rounded zeros based on

partial least squares regression and logratio methodology [58]. The presence of

rounded zeros in metabolomic (and also chemometric) data is quite common and

this algorithm may help to solve problems with data in a wide range of practical

applications.

The most difficult part of this thesis was the necessity of complex view on

data. Metabolomic data have a lot of specific features (they are high-dimensional,

with specific covariance structure and mostly of compositional nature) and any

reasonable method must take care of all of them. Proper statistical analysis of

metabolomic samples is crucial for the reliability of the results for further inter-

pretation and processing. In the chemometric and also metabolomic communities,

compositional data are still considered as observations with a fixed constant sum

constraint, although this is just a possible representation of the relative infor-

mation, carried by the compositional parts, not an inherent property of the data.

Note that the popular logarithmic transformation would solve the problem of

moving the relative scale to the absolute one (necessary for a further reasonable

statistical analysis), but just for single metabolites, without considering their rela-

tive multivariate relations to the other metabolites in the data set. Consequently,

application of standard statistical techniques to raw or rescaled metabolomic

data often leads to biased results due to ignoring the mathematical implications.

On the other hand, the logratio approach to statistical analysis of compositional

data is a well mathematically justified methodology that could provide a concise
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approach to the statistical treatment of biomarkers in metabolomics. Although

absolute values of biomarkers compared to reference ranges (data from the heal-

thy population) is the most frequently used approach, the nature of the resulting

multivariate observations is a relative one, i.e. relative contributions of metabo-

lites are of primary interest.

More possibilities for future extension of this thesis exist. The first one con-

cerns robustness aspects of the above mentioned statistical analysis that enable

to suppress the influence of outlier observations. They might destroy a picture

of the multivariate structure of the observations as often results from classical

statistical methods. Especially the robust version of logratio partial least squa-

res regression may be very helpful. Also, a focus on sparse counterparts to me-

thods like principal component analysis and partial least squares, that provide

a substantial simplification by interpretation of the results, can be useful, but

are particularly challenging in the case of high-dimensional compositional data.

The last extension can be focused on the development of new interpretable lo-

gratio coordinates. Although recent experiences show clear advantages of logratio

coordinates where the first coordinate aggregates information from log-ratios for

a particular compositional part of interest, their usefulness is limited if there are

distortions like rounding errors or other data ”problems”in the involved parts.

A possible way out is to use a ”robust”(weighted) version of these coordinates,

called weighted balances, where the remaining parts (with respect to the part of

interest) in the first coordinate are weighted in a way that is relevant to the aims

of the statistical analysis. Such weights can be, e.g., derived according to quality

assessment analysis and elements of classical/robust variation matrix of com-

positions. Finally, a new library in the software R [43] summarizing the logratio

approach to the statistical analysis of metabolomic data would be very useful.

I hope that the presented thesis helps to expansion of the logratio methodology

also to the important field of metabolomic data, and to chemometrics in general.
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method for metabolomics data using optimal selection of multiple internal
standards,” Bioinformatics, vol. 8, no. 93, 2007.

[11] W. Cleveland, “Robust locally weighted regression and smoothing scatter-
plots,” Journal of the American Statistical Association, vol. 74, no. 368,
pp. 829–836, 1979.

[12] W. B. Dunn, D. Broadhurst, P. Begley, E. Zelena, S. Francis-McIntyre,
N. Anderson, M. Brown, J. Knowles, A. Halsall, J. Haselden, A. W. Ni-
cholls, I. Wilson, D. Kell, and R. Goodacre, “Procedures for large-scale
metabolic profiling of serum and plasma using gas chromatography and
liquid chromatography coupled to mass spectrometry,” Nature Protocols,
vol. 6, no. 7, pp. 1060–1083, 2011.

[13] R. Little and D. Rubin, Statistical analysis with missing data. Wiley, Ho-
boken, 2002.

[14] B. Walczak and D. Massart, “Dealing with missing data. Part I,” Chemo-
metrics and Intelligent Laboratory Systems, vol. 58, pp. 15–27, 2001.

[15] K. Hron, M. Templ, and P. Filzmoser, “Imputation of missing values for
compositional data using classical and robust methods,” Computational
Statistics & Data Analysis, vol. 54, no. 12, pp. 3095–3107, 2010.

[16] J. Mart́ın-Fernández, C. Barceló-Vidal, and V. Pawlowsky-Glahn, “Dealing
with zeros and missing values in compositional data sets using nonparamet-
ric imputation,” Mathematical Geology, vol. 35, no. 3, pp. 253–278, 2003.

[17] J. A. Mart́ın-Fernández, J. Palarea-Albaladejo, and R. A. Olea, “Dea-
ling with zeros,” in Compositional data analysis: Theory and applications
(V. Pawlowsky-Glahn and A. Buccianti, eds.), pp. 43–58, Wiley, Chichester,
2011.

[18] J. Mart́ın-Fernández, K. Hron, M. Templ, P. Filzmoser, and J. Palarea-
Albaladejo, “Model-based replacement of rounded zeros in compositional
data: Classical and robust approaches,” Computational Statistics and Data
Analysis, vol. 56, no. 9, pp. 2688–2704, 2012.

[19] R. Brereton, Chemometrics for pattern recognition. Wiley, Chichester, 2009.

120



[20] R. Goodacre, D. Broadhurst, A. Smilde, B. Kristal, J. Baker, R. Beger,
C. Bessant, S. Connor, G. Capuani, C. Craig, T. Ebbels, D. Kell, C. Ma-
netti, G. Newton, J. Paternostro, G. Somorjai, M. Sjöström, J. Trygg, and
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[33] E. Szymańska, E. Saccenti, A. Smilde, and J. Westerhuis, “Double-check:
validation of diagnostic statistics for PLS-DA models in metabolomics stu-
dies,” Metabolomics, vol. 8, pp. S3–S16, 2012.
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D. Moreno, J. V. Garmendia, M. Hajduch, J. B. De Sanctis, and D. Radzi-
och, “Fenretinide prevents inflammation and airway hyperresponsiveness in
a mouse model of allergic asthma,” American Journal of Respiratory Cell
and Molecular Biology, vol. 51, no. 6, pp. 783–792, 2014.
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P. Flachs, K. Bardová, M. Rossmeisl, J. Olza, G. Salim de Castro, P. Cal-
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[68] K. Hron, M. Jeĺınková, P. Filzmoser, R. Kreuziger, P. Bednář, and
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Palacký University Olomouc

Supervisor: Doc. RNDr. Karel Hron, Ph.D.
Department of Mathematical Analysis and Applications
of Mathematics
Faculty of Science
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List of abbreviations

Throughout the thesis summary, the following standard abbreviations are used. Other

nonstandard abbreviations are introduced in the text as it is needed.

ADCS average difference in covariance structure
alr coordinates additive logratio coordinates

ALS alternating least squares
AUC area under the curve
CED compositional error deviation

clr coorinates centered logratio coordinates
CV coefficient of variation

ilr coordinates isometric logratio coordinates
LOESS local regression

MCADD medium chain acyl-CoA dehydrogenase deficiency
MSEP mean squared error of prediction

m/z mass to change ratio
NIPALS nonliear iterative partial least squares

OPLS-DA orthogonal partial least squares regression - discriminant
analysis

PARAFAC parallel factor analysis
PCA principal component analysis

PLS-DA partial least squares regression - discriminant analysis
PQN probabilistic quotient normalization

PRESS predicted error sum of squares
QC quality control

SVD singular value decomposition
VIP variable importance in the projection
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1. Abstract

The metabolomics is a quite new field of biochemistry which aims at studying meta-

bolites, their dynamic changes, interactions and responses to stimuli. Because of relative

character of metabolomic data, they can be considered as so called compositional data.

They are characterized by positive entries, moreover, not their absolute values but ratios

between them are of primary interest. In order to analyze statistically compositional data

in standard Euclidean space, specific coordinate systems must be used. Furthermore, for

the analysis of metabolomic data also the biochemical material must be considered, and

finally, also the fact that substantially less observations than variables are available; we

refer to so called high-dimensional compositional data. For statistical analysis of such

data set, special statistical procedures must be applied. Prior to the statistical analysis

itself, preprocessing of compositional data must be carried out, needed for further repre-

sentation of logratio coordinates (quality control, zero values of compositional parts). So

the statistical analysis itself can be performed using a wide range of proper methods.

The most popular one is principal component analysis that can be accompanied by par-

tial least squares method and its orthogonal modification. For the analysis of three-way

metabolomic data, PARAFAC is recently preferred choice in chemometrics. Methodo-

logical outputs are demonstrated on real data from the Laboratory of Metabolomics,

Palacký University Olomouc.

Key words: Compositional data, metabolomics, partial least squares regression, multi-

variate statistical analysis, practical application, imputation of zeros.
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2. Abstrakt v českém jazyce

Metabolomika je poměrně novým oborem biochemie zabývaj́ıćı se studiem meta-

bolit̊u, jejich dynamickými změnami, interakcemi a odpověd’mi na podněty. Vzhledem

k relativńımu charakteru metabolomických dat na ně může být pohĺıženo jako na tzv.

kompozičńı data. Vektory takovýchto dat maj́ı kladné složky; nav́ıc nás nezaj́ımaj́ı je-

jich absolutńı hodnoty, ale pod́ıly mezi nimi. Abychom mohli pracovat s kompozičńımi

daty v klasickém euklidovském prostoru, muśıme použ́ıt specifické souřadnicové systémy.

Dále muśıme při analýze metabolomických dat brát v úvahu materiál, který je použit pro

měřeńı, a v neposledńı řadě i to, že máme k dispozici typicky řádově méně pozorováńı

než proměnných, hovoř́ıme o tzv. vysoce-dimenzionálńıch datech. Pro analýzu takového

souboru muśı být použity speciálńı statistické metody. Prvńı část́ı statistické analýzy

je předzpracováńı dat, souvisej́ıćı s vyjádřeńım metabolomických (kompozičńıch) dat

v tzv. logratio souřadnićıch. V metabolomice také použ́ıváme tzv. kontroly kvality, které

nám pomáhaj́ı v odstraňováńı chyb měřeńı. Daľśım problémem jsou nulové hodnoty.

Většina v současnosti použ́ıvaných statistických metod pro kompozičńı data neumı́ pra-

covat s nulovými hodnotami, proto je muśıme umět vhodně nahradit. Vlastńı statistická

analýza může být provedena pomoćı celé řady postup̊u. Prvńı, nejpopulárněǰśı, je metoda

hlavńıch komponent. Ta je východiskem pro metodu částečných nejmenš́ıch čtverc̊u či jej́ı

ortogonálńı podobu. Pokud pracujeme s trojrozměrnými datovými tabulkami, můžeme

analýzu provést také pomoćı metody PARAFAC. Důležitou součást́ı disertačńı práce

jsou také praktické př́ıklady na reálných datech z Laboratoře metabolomiky Univerzity

Palackého Olomouc.

Kĺıčová slova Kompozičńı data, metabolomika, metoda částečných nejmenš́ıch čtverc̊u,

mnohorozměrná statistická analýza, praktická aplikace, nahrazováńı nul.
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3. Introduction

Compositional data (or compositions for short) are multivariate observations with

positive components, and they can be represented without loss of information as data

with a constant sum constraint like proportions or percentages [1, 2]. In such a case,

the sum of the compounds (parts) is not important and the only relevant information is

contained in ratios between the parts.

Metabolomics aims at studying metabolites, their dynamic changes, interactions and

responses to stimuli. It is applied to the metabolism of plants, bacteria, animals and

humans. In humans all biological materials from biofluids (blood, urine) till tissues are

analyzed. Although absolute values of biomarkers compared with reference ranges (data

from the healthy population) is the most frequently used approach, ratios of metabolite

data are frequently analyzed in the biochemical diagnostic practice and relative changes

are more relevant/informative than absolute values. It suggests that metabolomic data

can indeed be considered as observations carrying relative information, i.e. as composi-

tional data [3].

Very important part of the statistical evaluation is the preprocessing of metabolo-

mic data. The measuring instruments have some limitations and measuring errors can

be present in data. To correct these errors, special statistical methods must be used.

The signal correction by the LOESS method based on the quality control samples must

be done before statistical processing itself is performed [4,5].

It is widely common in chemometrics, and particularly in metabolomics, to normalize

and scale observations prior to further statistical analysis [6,7]. While most of the norma-

lization techniques are heuristic ones, it is also possible to derive systematic approaches

based on natural features of the underlying observations. The relative character of meta-

bolite observations is reflected in practice by many kinds of normalization techniques [6].

Let us mention, e.g., the well-known AUC normalization whose aim is to normalize

a group of signals with peaks by standardizing the area under the curve (AUC) to

the group median, mean or any other proper representation. Another approach is repre-

sented by rationing to landmarks, e.g. to normalization of urine end-product metabolites
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to creatinine, that is often used also in general in chemometrics. The choice of any such

normalization is usually strongly data dependent in practice, which affects the objecti-

vity and makes any further comparisons hardly attainable [8–10]. After the normalization

step, data are popularly transformed using the log-transformation (popular in metabo-

lomics), or alternatively (and preferably here) expressed as proper logratio coordinates

that capture relative nature of metabolomic (compositional) data.

The statistical analysis of two-way data starts typically with principal component

analysis [11, 12]. This method must be adapted to work with compositional data, i.e.

a special coordinate system must be used for the analysis [2]. Concerning further statis-

tical analysis, the problem occurs because more metabolites (in hundreds) than biological

materials (only tens) are present in these data sets. Therefore, suitable methods must be

applied for this kind of observations. One of them is partial least squares regression (PLS

regression), concretely its popular special case partial least squares - discriminant analy-

sis (PLS-DA) [13]. The standard PLS-DA method needs to be adapted to compositional

data, because using raw observations could lead to useless results. A special modification

of the PLS model can also be used. It is called orthogonal - partial least squares (OPLS)

method and it works with the orthogonal variation in the data [14]. Results of OPLS

regression are popularly visualized using S-plot which is a scatter plot of correlations

and covariance of the data. Special techniques of metabolomic (compositional) data pro-

cessing need to be applied, when they form a three-way structure. This structure arises

typically when samples of some biological material are measured at more time points.

For statistical processing of three-way observations the PARAFAC model [15] represents

one of popular tools in chemometrics.

The final part of the thesis is the practical application of all presented methods.

Because of the limitation of this summary, all examples are skipped (for further infor-

mation see the original dissertation thesis). Examples from the theoretical chapters are

also omitted.

The whole procedure of complete statistical evaluation of metabolomic data as pre-

sented in the thesis is used in everyday practice in the Laboratory of Metabolomics,
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Institute of Molecular and Translational Medicine, Palacký University Olomouc. Some

parts could be rather elementary for mathematical audience, but they are very useful for

people from the outside of the statistical field.

4. Recent state summary

4.1. Compositional data

Compositional data occur in a wide range of applications involving geochemistry,

analytical chemistry, and its related fields. Nevertheless, up to now just a few papers

following the concept of compositional data were published in the field of metabolomics

and proteomics [3, 16–18]. These data are characterized by features like scale invariance

(the information in a composition does not depend on the particular units in which

the composition is expressed) and the relative scale (ratios and not absolute distan-

ces are important when dissimilarities of observations are analyzed). Another property

which is crucial for any meaningful statistical analysis of compositional data is called

subcompositional incoherence, i.e. information conveyed by a composition should not be

in contradiction with that coming from a subcomposition that involves only a subset of

variables [19].

The sample space of D-part composition x = (x, x, . . . , xD)
′

is called the simplex

defined as [1, 2]

SD =

{
x = (x, x, . . . , xD)

′

∣∣∣∣∣xi > 0, i = 1, 2, . . . , D;
D∑
i=1

xi = κ

}
. (1)

The natural geometry of compositions is called the Aitchison geometry and it has

all usual properties that are known from the Euclidean geometry, for which standard

statistical methods are designed [20]. However, operations of the Aitchison geometry are

different from the Euclidean geometry case. For this reason, usual multivariate statistical

methods cannot be directly applied to compositional data, since otherwise interpretations

of the results and conclusions can be misleading [2].
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Statistical data analysis is usually carried out in the Euclidean geometry and not

in the Aitchison geometry. Thus, the central idea is to express compositions from the sim-

plex in real coordinates and then to apply the standard multivariate methods. From a mat-

hematical point of view, we search for a basis (or generating system) with respect to

the Aitchison geometry in order to express compositional data in coefficients of such

a basis (coordinate system). As these coefficients are build up using logarithms of ratios

of compositional parts, we refer to logratio coordinates. Currently, three basic logratio

coordinate systems occur in the literature: additive, centered and isometric logratio co-

ordinates. Nevertheless, only the latter two can be recommended in general, because

they map the Aitchison geometry to the Euclidean one isometrically. The use of logratio

coordinates preserves the relative scale property of compositions, which is of primary im-

portance in chemometrics, and follow all requirements for a meaningful analysis of com-

positions as mentioned above. For more detailed discussions on these issues, see [1, 21].

The centered logratio (clr) coordinates [1,2] are defined for a composition x = (x1, . . . , xD)′

as

clr(x) = r = (r1, . . . , rD)′ =

(
ln

x1

D

√∏D
i=1 xi

, . . . , ln
xD

D

√∏D
i=1 xi

)′
. (2)

Although the resulting variables are quite easily interpretable (each of them corresponds

to one of the original compositional parts), clr coordinates are coefficients with respect

to a generating system on the simplex. For this reason, the resulting covariance matrix

of a random composition in clr coordinates is singular [1,22]. The singularity restriction

of the clr coordinates is overcome by the isometric logratio (ilr) coordinates, resulting

in D− 1 coordinates with respect to an orthonormal basis. Unfortunately, it is thus not

possible to assign a coordinate to each of the original compositional parts simultane-

ously, as it was the case for clr coordinates. Nevertheless, as there are infinitely many

ways to construct an orthonormal basis, its proper choice [23] allows to construct coor-

dinates with an intuitive interpretation. Thus we get a (D − 1)-dimensional real vector
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ilr(x) = z = (z1, . . . , zD−1)
′ [2, 22], where

zi =

√
D − i

D − i+ 1
ln

xi

D−i

√∏D
j=i+1 xj

, i = 1, . . . , D − 1. (3)

The inverse mapping of z back to the original composition x is then given by

x1 = exp

(√
D − 1√
D

z1

)
,

xi = exp

(
−

i−1∑
j=1

1√
(D − j + 1)(D − j)

zj +

√
D − i√

D − i+ 1
zi

)
, (4)

xD = exp

(
−

D−1∑
j=1

1√
(D − j + 1)(D − j)

zj

)
.

With the orthonormal (ilr) coordinates (3), the variable z1 carries all the relevant in-

formation about the compositional part x1, because it explains all the ratios between x1

and the other parts of x [24].

Now we can proceed to construct such an orthonormal basis, where the first ilr co-

ordinate explains the relative information about a compositional part of interest. For

this purpose, the indices in formula (3) are just permuted such that the part of interest

plays the role of x1. Accordingly, in order to assign such coordinates to each composi-

tional part xl, l = 1, . . . , D, we need to construct D different ilr coordinate systems,

where the D-tuple (x1, . . . , xD)′ in (3) is replaced by (xl, x1, . . . , xl−1, xl+1, . . . , xD)′ =:

(x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D )
′

[24]. The corresponding ilr coordinates are thus

z
(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1. (5)

Obviously, the vector z(l) = (z
(l)
1 , . . . , z

(l)
D−1)

′
is again a vector of orthonormal coordina-

tes. The relation between the clr coefficients and the ilr coordinates is linear r = Vz.

The matrix V = (v1, . . . ,vD−1) has dimension D × (D − 1) and its columns are formed

11



by the orthonormal basis vectors in clr coordinates,

vi =

√
D − i

D − i+ 1

(
0, . . . , 0, 1,− 1

D − i
, . . . ,− 1

D − i

)′
, i = 1, . . . , D − 1. (6)

The third basic logratio coordinate system is called the additive logratio (alr) coordi-

nates. This system is not very often used because results of statistical processing in alr

coordinates might depend on the denominator used in the formula and they represents

coordinates with respect to a basis that is not orthonormal. As a consequence, alr co-

ordinates do not form an isometric mapping [2]. Though, as we can see in the following

text, these coordinates can naturally occur as a result of combining transformations and

normalizations used in metabolomics.

The definition of the alr coordinates for a composition x = (x1, . . . , xD)′ is as follows

[1, 2]:

alr(x) = w = (w1, . . . , wD−1)
′ =

(
ln
x1
xD

, ln
x2
xD

, . . . , ln
xD−1
xD

)′
. (7)

The resulting coordinates are not symmetric [2], because the denominator used in (7),

xD, can be replaced by any other compositional part. As a consequence, alr coordinates

are not invariant under permutation of components, that forms the final principle of

compositional data analysis [19]. The way out is to use clr or ilr coordinates instead of

alr [2].

Very important part of the logratio methodology is the regression analysis. Its aim

is to explain the response (real) variable Y by using explanatory variables x1, . . . , xD.

Regression with compositional explanatory variables can be carried out by first applying

ilr coordinates to covariate composition. For a regression model between Y and x (com-

position) we use coordinates z by applying formula (3). The standard multiple linear

regression of Y on the explanatory variables z = (z1, . . . , zD−1)
′ is thus obtained,

E(Y |z) = γ0 + γ1z1 + . . .+ γD−1zD−1. (8)
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As in formula (5), we can consider the lth ilr basis, for l = 1, . . . , D, resulting in a re-

gression model

E(Y |z) = γ0 + γ
(l)
1 z

(l)
1 + . . .+ γ

(l)
D−1z

(l)
D−1. (9)

Since z
(l)
1 explains all the relative information about part x

(l)
1 , also the interpretation

of the coefficient γ
(l)
1 can be associated to this part. The interpretation of the other

regression coefficients (except γ0) is not straightforward, because the corresponding ex-

planatory variables (coordinates) do not fully represent one particular part of the com-

position. Consequently, a possible way to evaluate the contribution of each compositional

part for explaining the response Y separately is to consider D regression models accor-

ding to (9) by taking l ∈ {1, . . . , D}, and to interpret the coefficients γ
(l)
1 , representing

the relative information on parts x
(l)
1 [24].

4.2. Metabolomics

Metabolomics is a quite new field of biochemistry and it aims at studying meta-

bolites, their dynamic changes, interactions and responses to stimuli. It is possible to

measure thousands of metabolites simultaneously from only minimal amounts of sam-

ple in presence [25]. This possibility allows defining different attitudes to the analysis

of metabolomic samples. The classical division is done by targeted and untargeted ap-

proaches. In the targeted analysis the list of metabolites, which are measured, is done

before the analysis. The untargeted metabolomic methods are global in scope and have

the aim of simultaneously measuring as many metabolites as possible from biological

samples without bias [25]. These metabolites (here called peaks) are not known before

the experiment [26] and must be identified after the analysis.

Data analysis in metabolomics is a very specific process. It is closely related to the ma-

terial, which is measured and processed (cells, blood, urine, plasma, . . .). Accordingly,

a specific approach is used, e.g., also for the analysis of urine samples as urine vo-

lume can vary widely based on upon water consumption and other physiological factors.

Consequently, the concentrations of metabolites in urine vary substantially and pro-

per normalizing for these effects is necessary [8]. Two methods of data normalization
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are used in practice - creatinine normalization and normalization by the area under

the curve [8–10]. The first method of normalization is related to the very specific meta-

bolite, called creatinine, that is presented in all urine samples. Creatinine is a chemical

waste product in blood that passes through kidneys to be filtered and eliminated in urine.

Under normal conditions, urinary creatinine output is relatively constant and measura-

ble. As a result, it has become common practice to normalize urinary analyte levels

to this metabolite. Moreover, in practice, the level of creatinine is different in various

samples, thus, each sample is divided by a different scaling constant. The second nor-

malization is performed through the area under the curve (AUC) of all peaks, identified

with metabolite concentrations in the analysis. Each mass spectrum (metabolite profile)

is thus divided by average variable area across observations [10].

After the normalization step, data are popularly transformed using the log-transfor-

mations (popular in metabolomics), or alternatively taking the proposed logratio coordi-

nates. It is important to note that although the popular log-transformation of the input

data removes the relative (measurement) scale effects, the scale invariance of compositi-

ons is destroyed.

4.3. The use of quality control samples

A very important part of the statistical evaluation is formed by preprocessing of me-

tabolomic data. The first reason for doing this procedure is the fact that measuring

instruments have some limitations and measurement errors can be present in the data.

Special statistical methods must be used to correct these errors. The quality control

(QC) samples are used for this purpose. QC samples are mixtures of all samples from

the specific analysis. They are measured continuously in the whole analysis on the first

ten positions and then as every fourth sample in a way. It is known that signal of these

QC samples must be stable in time; if there is some trend, it must be revised. The sig-

nal correction by LOESS (LOcal regrESSion) method is used for this purpose [4, 5].

The LOESS curve is fitted to the QC samples with respect to the order of injection.

A correction curve for the whole analytical run is then interpolated, to which the total
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data set for that feature is normalized [5].

4.4. Imputation of missing values and rounded zeros

The second step of data preprocessing is connected with imputation, because almost

none of statistical methods is able to process data that contain measurement artifacts

like missing values (pure absence of the measurement in some entries) or values below

a detection limit (resulting as the effect of rounding errors or imprecision of the measuring

device, we also refer to rounded zeros). Especially, values below detection limit occur

frequently in chemometric data. Their proper replacement must precede any further

statistical analysis. Although for the case of standard multivariate data a comprehensive

methodology exists [27], even applicable to high-dimensional data [28], it fails in case of

compositional data.

4.5. Multidimensional statistical analysis

The final step of statistical evaluation of data in metabolomics is the multidimensional

analysis itself. One of the basic methods used in multivariate data analysis (especially for

visualization of the data structure) is principal component analysis (PCA). The aim of

this method is to reduce the dimensionality of data by preserving the most information

identified with variability contained in the data set. Its main principle is to construct

an orthogonal coordinate system, which is formed by latent variables, so that only the first

variables explain most of variability in data. The goal of PCA is also the reduction of

the effect of measurement error and elimination of components associated with the noise

[12].

Very common problem of metabolomic data sets is their high-dimensionality (=

the presence of more variables than observations). Therefore, suitable methods must

be used for their analysis. One of them is partial least squares (PLS) regression, which

is a class of methods for modeling relations between sets of explanatory and response

variables by means of latent variables [29, 30]. PLS can be used for both regression and

classification purposes, and it can be employed also for reducing the dimensionality of
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the data. The intrinsic assumption of all PLS methods is that the observed data are

generated by a system or process which is guided by a small number of latent (not di-

rectly observed or measured) variables [29]. Partial least squares - discriminant analysis

(PLS-DA) is a special type of a regression analysis where the response variables represent

group labels.

Finally, the statistical processing of three-way observations is done with PARAllel

FACtor analysis (PARAFAC), but it is still rarely used in the compositional context

[31–33], with no metabolomics application known so far.

5. Thesis objectives

This thesis aims to be a complex guide for the statistical processing of metabolomic

(compositional) data sets. The main goal is to explain the possibility of using advan-

ced multivariate statistical methods for the statistical analysis of metabolomic data by

using the logratio methodology. Methods like principal component analysis, partial le-

ast squared regression or parallel factor analysis (PARAFAC) are adopted for the case

of compositional data. The only limitation of the logratio methodology is more com-

plex interpretation of results in logratio coordinates. An important part of the thesis is

formed by applications of the logratio methodology to a wide range of data sets from

metabolomics (which are skipped in this summary).

6. Theoretical framework

Four multidimensional statistical methods are presented for the analysis of metabolo-

mic data sets - principal component analysis, partial least squares regression - discrimi-

nant analysis, its orthogonal extension and PARAFAC model. Finally also the paramet-

ric model for imputation of rounded zeros is introduced. Except of principal component

analysis, adaptations (developments) of the other methods can be considered as new

contributions to statistical processing of metabolomic (compositional) data.
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6.1. Principal component analysis

As mentioned in Section 4.5., one of basic methods used in multivariate data analysis

is principal component analysis (PCA) which is used for the reduction of dimensio-

nality of data by preserving the most information identified with variability contained

in the data set. The standard approach to PCA is commonly known, in the logratio appro-

ach, the main difference is the necessity of expressing the input data matrix in centered

clr coordinates (2). Ilr coordinates (3) can also be used, but their specific interpretation

needs to be taken into account.

The direction of the highest variability in data is captured by the first principal

component (PC1), the second principal component (PC2) is formed by an orthonor-

mal direction to PC1 and again acquires the maximum possible variability. Following

principal components are orthogonal to all previous components and their directions

have to cover the maximum possible variance of the data projected on this direction [11].

In the standard analysis, usually only first two (or maximum three) principal components

are considered for practical reasons with the hope that they contain most of the total

variance in the data set. Nevertheless, in general, the number of principal components is

limited only by the number of variables.

A graphical representation of PCA is called biplot. It is a planar graph used for

the projection of so called scores (coordinates of principal components) and loadings

(the corresponding basis vectors) of the first two principal components into one plot.

Scores, which represent the structure of the compositional data set in Euclidean space,

are displayed as points and they can be used to visualise grouping in the data. Loa-

dings, which represent the corresponding clr variables, are displayed by arrows (rays) in

the same plot [2]. The interpretation of the compositional biplot (in clr coordinates) is

slightly different from the interpretation of the standard one and it is presented in detail

in the thesis.

17



6.2. Partial least squares - discriminant analysis

Partial least squares - discriminant analysis (PLS-DA) is a popular classification tool

in metabolomics. For the case of compositional data, instead of taking clr coordinates

that impose the additional constant sum constraint, ilr coordinates (3) are employed [2].

Let X be an n×D matrix of compositional data (sampled compositional parts x1, . . . , xD)

and Y be an n× q matrix of responses representing the groups. As in the standard case,

the columns of Y are mean-centered. However, mean-centering of the compositions X

is done with respect to the Aitchison geometry, i.e. the centering is performed in the ilr

coordinates.

Following the case of linear regression with compositional explanatory variables (see

Section 4.1, [24]), where applying the clr coordinates leads to a biased estimation of

the regression coefficients due to the singular covariance matrix of the clr variables, the ilr

coordinates may be used for the purpose of PLS modeling. Subsequently, the matrix X

is firstly expressed in ilr coordinates Z (3). The PLS regression problem has the form [3]

Y = ZΓ + E, (10)

where Γ stands for a (D − 1)× q matrix of regression coefficients.

Nevertheless, the ilr coordinates (3) allows only for a meaningful interpretation of

the elements in the first row of Γ, because just the first column of Z can be associa-

ted with one particular compositional part (here x1). The interpretation of the other

regression coefficients is not straightforward because the corresponding explanatory va-

riables (coordinates) do not fully represent one particular part of the composition. For

associations also to the other parts, we thus need to use a permutation of the parts,

leading to the general setting (5) and to data matrices Z(l). Each of the resulting first ilr

coordinates, the observations of z
(l)
1 , l = 1, . . . , D, describes all the relative information

about the compositional part xl.

Consequently, a possible way to evaluate the contribution of each compositional part

for explaining the response variables Y separately is to consider D PLS regression models

Y = Z(l)Γ(l) + E(l), (11)
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according to (5), by taking l ∈ {1, . . . , D}, and to interpret the coefficients of the first

row of the parameter matrix Γ(l), representing the part x
(l)
1 [24]. The outlined procedure

thus suggests employing PLS regression D times, such that each compositional part is

once at the first position in the permuted composition. Since such a procedure would

lead to a high computational complexity, the orthogonal relation between the different

ilr coordinates can be employed [22]. As an advantage, the regression coefficients need

to be estimated just for one regression model and then derived for the other models

by using orthogonal transformations of the regression parameters. Note, however, that

coefficients of z
(l)
1 should be always treated individually as they come from individual

PLS models.

The final procedure is as follows. We use the matrix V from (6), with rows vi·, i =

1, . . . , D, that relates the clr coordinates (2) and the ilr coordinates (3). Consequently,

we form D × (D − 1) matrices V(l), for l ∈ {1, . . . , D},

V(1) = (v1·,v2·, . . . ,vD−1,·,vD·)
′ = V

V(l) = (vl·,vl−1,·, . . . ,v1·,vl+1,·, . . . ,vD·)
′, l = 2, . . . , D − 1;

V(D) = (vD·,vD−1·, . . . ,v2·,v1·)
′,

and define a new orthogonal matrix Q(l),

Q(l) = V′V(l). (12)

The matrices Z(l) corresponding to ilr coordinates (5) are related to Z by

Z(l) = ZQ(l), (13)

see [22]. Substituting (13) into the model (10) gives

Y = Z(l)(Q(l))′Γ + E(l) = Z(l)Γ(l) + E(l). (14)

Thus, the estimated regression coefficients Γ from the model (10), Γ̂, can be used to

estimate coefficients in regression models that correspond to coordinates Z(l),

Γ̂
(l)

= (Q(l))′Γ̂, l = 1, . . . , D. (15)
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Finally, to complete the estimation process with respect to the above interpretation, we

collect the first rows of the matrices Γ̂
(l)

as rows of a new D × q matrix of regression

coefficients. Specially, for q = 1 (the response variable is univariate) we thus, get a vector

g = (γ̂
(1)
1 , γ̂

(2)
1 , . . . , γ̂

(D)
1 )′.

A further evaluation of the resulting regression model can be done by testing for

significance of the regression parameters. For PLS-DA, it is common to use resampling

techniques for this purpose, like bootstrap [34]. The idea of the bootstrap procedure is

to draw random samples with replacement from each group of the original data, where

the bootstrap group samples have the same size as the original groups. This results

in a bootstrap data set for the explanatory variables and the response, where PLS-DA

is applied to estimate the parameters. Repeating this procedure many times allows es-

timating the variability of the regression parameters [34]. The standardized regression

estimates are obtained by dividing the regression parameters of the original data by

the estimated standard deviations (obtained from bootstrap), and they can be compared

with quantiles of the standard normal distribution. For the case q = 1 and the estima-

ted parameters g = (γ̂
(1)
1 , γ̂

(2)
1 , . . . , γ̂

(D)
1 )′, the estimates are recomputed using bootstrap,

and from the results the standard deviations s1, . . . , sD are computed. The significance

of the standardized regression estimates, γ̂
(1)
1 /s1, γ̂

(2)
1 /s2, . . . , γ̂

(D)
1 /sD, is evaluated by

comparing them with α/2 and 1 − α/2 quantiles of the standard normal distribution

(typically, α = 0.05 is chosen). In order to reduce the risk of false positives, a Bonferroni

correction is applied, resulting in an adjusted α-level of significance, αadj = α
D

. If the stan-

dardized regression coefficient is outside the mentioned interval, the regression coefficient

is significantly different from zero, and thus, the corresponding variable contributes to

the discrimination task.

The significance of the standardized regression coefficients is analyzed using PLS-DA

with three components and bootstrap with 100 replications in example on real data set

in the thesis.

The possible modification of PLS regression is orthogonal partial least squares -
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discriminant analysis (OPLS). The idea of OPLS is to separate the systematic variation

in data matrix Z(l) (in ilr coordinates (5)) into two parts. The first one is linearly related

to Y and represents between class variation, the second one is unrelated (orthogonal) to

Y and refers to as the uncorrelated variation, which forms the within class variation [35].

The matrix Y is thus connected to the additional information provided by the matrix

Z(l). For classification purposes, OPLS is often called orthogonal partial least squares -

discriminant analysis (OPLS-DA).

6.3. Parametric model for imputation of rounded zeros

Only few algorithms exist for the imputation of rounded zeros in high-dimensional

compositional data sets. The crucial point for building up a reasonable imputation pro-

cedure is to find interpretable orthonormal coordinates in order to enable further proces-

sing in the standard Euclidean geometry. Since there is no canonical basis on the simplex,

a set of orthonormal coordinate systems (5) needs to be employed sequentially in order

to perform the imputation for each of the original compositional parts. The procedure

needs to be able to capture both the relative information, conveyed by the compositio-

nal data themselves and the absolute nature of the corresponding detection limits, for

a meaningful imputation of rounded zeros.

Based on previous considerations and following the structure of the imputation pro-

cedure in [36], an iterative regression-based algorithm for the replacement of rounded

zeros is introduced in Algorithm 6.1. It is based on PLS regression, with the evaluation

of the optimal number of components based on PRESS criterion announced in the thesis,

thus able to cope also with high-dimensional compositional data sets [37]. In addition,

some notation is given beforehand.

To avoid complicated notation in Algorithm 6.1, we assume thatM(x1) ≥M(x2) ≥

. . . ≥M(xD), withM(xj) denoting the number of rounded zero cells in variable xj. De-

noteml ⊂ {1, . . . , n} the indices of the rounded zeros in variable xl, and ol = {1, . . . , n}\ml

the indices corresponding to the remaining cells of xl. Denote z
(l)
1 as the first coordinate

according to (5), and Z
(l)
−1 containing the remaining D − 2 coordinates. The first co-
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Algorithm 6.1 PLS
1: for j ∈ {1, ..., D} do . INITIALIZATION OF ROUNDED ZEROS

2: Initialize all xij , i ∈ mj with 2/3 of the corresponding detection limit.

3: end for

4: Sort variables based on M(x1) ≥ M(x2) ≥ . . . ≥ M(xD). For easier notation, we assume

that the variables are already sorted. . SORTING

5: Let c be large, e.g. c = 9999999, and ε small, e.g. ε = 0.1, set r = 1.

6: function Estimate the optimal number of components

7: Run the function REGRESSION from below to determine the optimal number

8: of components (see Section 3.3.3 in the thesis) for each variable including rounded zeros

9: . INITIALIZATION OF NUMBER OF COMPONENTS

10: end function

11: while c > ε do

12: r ← r + 1

13: for l ∈ {1, ..., D} do

14: function Coordinate

15: Take X(l) (l-th variable at first position) with elements x
(l)
ij ;

16: compute coordinate representation z
(l)
1 and Z

(l)
−1.

17: Let el be the detection limit of the l-th part; compute coordinates

18:

ψ
(l)
i =

√
D − 1

D
ln

el
D−1

√∏D
j=2 x

(l)
ij

for i ∈ ml. (16)

19: . REPRESENTATION IN COORDINATES

20: end function

21: function Regression

22: With previously estimated optimal number of components, estimate the

23: regression coefficients β with PLS regression:

24: z
(l)
1 = Z

(l)
−1β + ε with Z

(l)
−1 = TPT . PLS REGRESSION

25: end function
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26: function Replacement

27: Use the estimated regression coefficients β̂ to impute the rounded zeros:

ẑ
(l)
i1 = β̂

T
z(l)i,−1 − σ̂

φ

(
ψ
(l)
i −

ˆβ
T
z(l)i,−1

σ̂

)

Φ

(
ψ
(l)
i −

ˆβ
T
z(l)i,−1

σ̂

) for i ∈ ml, (17)

28: corresponds to the rounded zeros in z
(l)
1 , and φ and Φ are density and

29: distribution function of the standard normal distribution, respectively;

30: σ̂ is the estimated conditional standard deviation

31: of variable z
(l)
1 . . REPLACEMENT

32: end function

33: function Inverse mapping

34: Use Equation (4) to express back in the original sample space; reorder

35: the variables.

36: The values that were originally rounded zeros in the cells ml in variable

37: xl are updated. . INVERSE MAPPING

38: end function

39: function Re-Scaling

40: Due to the nature of this inverse mapping, the scale of variables is

41: changed. Call Mi the set with the cells of the i-th observation that were

42: rounded zeros, and Oi = {1, . . . , D}\Mi. A cell xij , for any j ∈Mi,

43: is adjusted (multiplied) by the factor fij =

∑
o∈Oi

xio∑
o∈Oi

x̂io
, where x̂io denote

44: the inverse mapped values from the previous step. . ADJUSTMENT

45: end function

46: end for

47: function Update criteria

48: Update c as the sum of squared differences of the elements of X in the r-th

49: and the (r − 1)-th iteration.

50: end function

51: end while

52: Bring the variables to the original order . UNDO SORTING
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lumn of Z
(l)
−1 consists of ones, taking care of an intercept term in PLS regression, and

the observations (rows) are denoted by z
(l)
i,−1, for i = 1, . . . , n.

Note that due to the complexity of the algorithm, a rigorous proof of convergence is

not available. Nevertheless, our practical experience shows that usually just a few iterati-

ons are necessary to reach the convergence criterion. The practical application of the al-

gorithm on data from metabolomics and simulation study are presented in the thesis.

6.4. PARAFAC

Metabolite (compositional) data may form a three-way structure. The typical example

are repeated measurements of samples in time. In practice, three-way data are of primary

interest, especially also in the form of three-way compositions. Let’s have I×J×K data

array (cube): we have I samples and J variables (compositional parts), every sample

is measured K times [32]. Consequently, each of K tables of dimension I × J (slices of

the cube) can be considered as a compositional data matrix, ready to be processed using

the logratio methodology. In the following text of this section, the whole data cube is

denoted as X, for slices the notation Xk, k = 1, . . . , K is used.

For the possibility to deal with three-way data in a statistical software and also to

ease the notation, the data cube is matricized into the form of two-way matrix [38].

Matricizing is done by concatenating matrices for different levels of the third mode next

to each other. The column-dimension of the resulting matrix thus becomes quite large

in the mode consisting of two prior modes, i.e., the final matrix has dimension I × JK.

Also preprocessing of three-way data, that is of particular importance in the chemo-

metric context [39], must take account specific structure of the observations. The cente-

ring is done by the procedure called the single-centering when the unfolded data ma-

trix of dimension I × JK is centered across the first mode, i.e. single columns are

centered. Note that result of centering of compositional data in log-coordinates across

rows in single slices is nothing else than clr coordinates of the respective observations;

it is easy to see, if we rewrite clr coordinates of a composition x = (x1, . . . , xD)′ as

yi = ln(xi) − 1
D

∑D
i=1 ln(xi), i = 1, . . . , D. The scaling is usually done through rows of
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the unfolded data matrix, so we refer to scaling within the first mode. For particular me-

tabolomic applications, scaling within the first mode is replaced by specific approaches

in each slice, like the AUC normalization or normalization to creatinine.

PARAllel FACtor analysis (PARAFAC) is one of popular decomposition methods

for three-way data in chemometrics [40, 41]. It is a structural model with score matrix

AI×F and two loadings matrices BJ×F , and CK×F with elements aif , bjf , and ckf , for

i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . , K, and f = 1, . . . , F , where F denotes the number of

factors that are extracted. The PARAFAC model in terms of single elements of the data

cube X = (xijk) (i.e. for ith observation of jth variable in kth time), can be written

as [42]:

xijk =
F∑
f=1

aifbjfckf + eijk i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K; (18)

here eijk stand for residuals. The structure of the model is also visible from Figure 1 [41].

X E

Figure 1: Graphical representation of the formula (18).

By considering F factors, the PARAFAC model consists of F (I+J+K) parameters.

The advantage of the PARAFAC model is the uniqueness of the solution; consequently,

there is no problem with rotational freedom like for principal component analysis.

The solution of the model (18) is obtained using alternating least squares (ALS)

algorithm. The principle of ALS is through breaking up iteratively the model into three

sets of parameters, such that it is linear in each set given fixed values for the other two
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sets [42]. Furthermore, we assume that the loadings in two modes are known and then

the unknown set of parameters of the last mode are estimated [39, 43]. Explicitly, we

define M =
[
vec(b1c

′
1), . . . , vec(bFc

′
F )
]

and proceed to minimization problem [38,39]

min
AM
‖X−AM′‖2F , (19)

where ‖X‖2F = tr(X′X) denotes the Frobenius norm of X [38]. The model for estimation

of scores A is

X = AM + EA, (20)

where X represents unfolded matrix X and EA errors of the model, both being of di-

mension I × JK. The conditional least squares estimate of A is then

A = XM(M′M)
+

(21)

with the Moore-Penrose inverse (M′M)+ of M′M. The loading matrices B and C are

estimated analogously [38, 39]. The algorithm is repeated until convergence (i.e., when

the changes of scores and loadings from two consecutive steps are small enough) that

can be achieved much faster by setting proper initialization values [38].

In the context of PARAFAC modeling of three-way metabolomic data, the normali-

zation is done for each slice that replaces scaling within the first mode (i.e. just centering

across the first mode is performed). The practical application of this model is shown

in the thesis.

7. Original results and summary

The thesis contains a comprehensive guide to the statistical analysis of metabolomic

data using the logratio methodology as developed during my study at the Department

of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký

University Olomouc and my cooperation with the Laboratory of Metabolomics, Institute

of Molecular and Translational Medicine, Palacký University Olomouc. No such broad
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guide to the analysis of metabolomic (compositional) data does exist yet. Procedures

and algorithms introduced in this thesis are in everyday use in the Laboratory of Meta-

bolomics [3, 18,44].

Although the logratio methodology was used for the first time with metabolomic data

already in [17], this concept was further expanded in publications, based on methodolo-

gical outputs of the thesis.

In addition to development of a concise procedure to analyze metabolomic data using

the logratio methodology, the dissertation thesis newly contributes to three methods for

the statistical analysis of multidimensional compositional data. In particular, an adap-

tation of partial least squares - discriminant analysis to orthonormal logratio coordina-

tes was presented in Section 6.2 of this summary. This concept seems to be very useful

for the statistical analysis of high-dimensional compositional data, not just for classi-

fication purposes, but also for a range of other purposes, when partial least squares

regression represents a proper alternative to the standard least squares model. The se-

cond major contribution, presented in the thesis, concerns the parametric model for

imputation of rounded zeros based on partial least squares regression and logratio me-

thodology [37] with the Algorithm 6.1. The presence of rounded zeros in metabolomic

(and also chemometric) data is quite common and this algorithm overcomes other me-

thods that are currently applied with metabolomic data. The last major contribution

concerns PARAFAC modeling of three-way metabolomic (compositional) data. Althou-

ght PARAFAC model itself was not updated, a comparison of specific techniques used

for the normalization of urine samples in combination with the use of clr coordinates

or log-transformation in the context of three-way modeling seems to be of particular

importance in metabolomic practice [41].

The most difficult part of this thesis was the necessity of complex view on data.

Metabolomic data have a lot of specific features (they are high-dimensional, with speci-

fic covariance structure and mostly of compositional nature) and any reasonable method

must take care of all of them. Proper statistical analysis of metabolomic samples is crucial

for the reliability of the results for further interpretation and processing. In the chemo-
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metric and also metabolomic communities, compositional data are still considered as

observations with a fixed constant sum constraint, although this is just a possible repre-

sentation of the relative information, carried by the compositional parts, not an inherent

property of the data. Note that the popular logarithmic transformation would solve

the problem of moving the relative scale to the absolute one (necessary for a further

reasonable statistical analysis), but just for single metabolites, without considering their

relative multivariate relations to the other metabolites in the data set. Consequently,

application of standard statistical techniques to raw or rescaled metabolomic data of-

ten leads to biased results due to ignoring the mathematical implications. On the other

hand, the logratio approach to statistical analysis of compositional data is a well mathe-

matically justified methodology that could provide a concise approach to the statistical

treatment of biomarkers in metabolomics.

I hope that the presented thesis helps to expansion of the logratio methodology also

to the important field of metabolomic data, and to chemometrics in general.
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techniques for PARAFAC modeling of urine metabolomic data, submitted, 2016

[41].
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metody v MS metabolomice (presentation, in Czech).

• Satelite Workshop on Panomics Data Analysis 2013, 20.11. 2013, Olomouc (CZ):

Statistics in metabolomics (presentation).
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(presentation).

• LinStat 2014, 24.-28.8. 2014, Linköping (SW) - Partial least squares discriminant

analysis and compositional data applied in metabolomics (presentation, Young

Scientists Awards obtained)

• Ercim 2014, 6. - 8.12. 2014, Pisa (IT): PLS-DA for metabolomical (compositional)

data using the logratio approach (presentation).

• ODAM 2015, 20.-22.5. 2015, Olomouc (CZ): PARAFAC for compositional data

with application to metabolomics (presentation).

• CoDaWork 2015, 1.-5.6. 2015, L´Escala (ES): Imputation of rounded zeros for data

from metabolomics (presentation).
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odacre, and T. Adam, “Oxidized phosphatidylcholines suggest oxidative stress in

patients with medium-chain acyl-CoA dehydrogenase deficiency,” Talanta, vol. 139,

pp. 62–66, 2015.

[19] J. Egozcue, “Reply to “On the Harker variation diagrams; . . . ” by J.A. Cortés,”

Mathematical Geosciences, vol. 41, no. 7, pp. 829–834, 2009.

[20] M. Eaton, Multivariate statistics. A vector space approach. John Wiley & Sons, New

York, 1983.

[21] J. Egozcue and V. Pawlowsky-Glahn, “Groups of parts and their balances in com-

positional data analysis,” Mathematical Geology, vol. 37, pp. 795–828, 2005.

[22] J. Egozcue, V. Pawlowsky-Glahn, G. Mateu-Figueras, and C. Barceló-Vidal, “Iso-
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