BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
USTAV POCITACOVE GRAFIKY A MULTIMEDIi

VISUALIZATION AND SIMULATION METHODS OF
SOLAR SYSTEM BODIES

METODY VIZUALIZACE A SIMULACE TELES SLUNECNI SOUSTAVY

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR ANDREJ HYROS
AUTOR PRACE

SUPERVISOR Ing. JIRI NOVAK

VEDOUCI PRACE

BRNO 2023

-r

L) FACULTY
ISR G OF INFORMATION |
(s] Ry 1\[s] s[4 TECHNOLOGY |

Bachelor's Thesis Assignment |||||||||||||||||||

Institut: Department of Computer Graphics and Multimedia (UPGM) 146248
Student: Hyro$ Andrej

Programme: Information Technology

Specialization: Information Technology

Title: Visualization and simulation methods of Solar System bodies

Category: Modelling and Simulation
Academic year: 2022/23

Assignment:

1.
2.
3.
4.

5.

Study the basic principles of orbital mechanics (two-body problem, N-body problem, Kepler's laws
of planetary motion).

Extract highly accurate ephemeridal data of chosen objects in the Solar System.

Create a tool with Graphical User Interface (GUI) enabling visualization of objects orbital motion.
Perform a motion simulation of chosen objects modelled as two-body problem and N-body
problem.

Evaluate the achieved results and discuss future development of the project.

Literature:
¢ CURTIS, Howard D. Orbital mechanics for engineering students. Amsterdam ; Boston: Elsevier

Butterworth-Heinemann, 2005, xv, 673 s. : il. ; 26 cm. ISBN 0-7506-6169-0.

Requirements for the semestral defence:
1. and 2. assignment points.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Novak Jiri, Ing.

Head of Department: Cernocky Jan, prof. Dr. Ing.
Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 23.1.2023

Faculty of Information Technology, Brno University of Technology / Bozetéchova 1/2 /612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract

The aim of this thesis is to create program for simulating and visualizing the motion of n
bodies according to Newton’s laws. The input consists of a list of bodies and their initial
conditions. After completing the simulation, the motion of individual objects of the entire
system is animated in application with graphical user interface, and a file containing posi-
tions of simulated system is saved. During the simulation, first-order differential equations
are solved. Various numerical integration algorithms were implemented in the program,
which allows the user to choose a suitable algorithm for their simulation needs and achieve
optimal simulation results. The program has been validated by comparing its output with
data from NASA.

Abstrakt

Tato praca sa zaoberd vyvojom programu na simuldciu a vizualiziciu pohybu n telies
podla Newtonovych zakonov. Vstupom je zoznam telies a ich pociatoéné podmienky.
Po dokonceni simulécie je vzajomny pohyb telies celého systému animovany v programe
s grafickym uzivatelskym rozhranim a je uloZeny stbor s priebehom simulacie. Pocas
simulécie st riesené diferencialne rovnice prvého radu. V praci boli implementované viaceré
algoritmy numerickej integracie, ktoré umoznuju pouzivatelovi zvolit si vhodny algoritmus
pre potreby jeho simuldcie a dosiahnuf tak optimalny priebeh simuldcie. Program bol
prehlaseny ako validny po porovnani vystupu programu s datami od NASA.

Keywords

simulation, visualization, n-body problem, orbital mechanics, Newton’s Laws, Kepler’s
Laws, Solar system, numerical methods

KIicové slova
simulécia, vizualizacia, problém n telies, orbitalna mechanika, Newtonove pohybové zikony,
Keplerove zakony, Slnecné ststava, numerické metody

Reference

HYROS, Andrej. Visualization and simulation methods of Solar System bodies. Brno,
2023. Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Jiti Novak

Rozsireny abstrakt

Tato praca sa zaobera vyvojom programu na simuléciu a vizualizaciu pohybu n telies podla
Newtonovych zakonov. Je dodlezité vediet predpovedat pohyby planét v nasej slnecnej su-
stave, pretoze to umoznuje lepsie porozumiet prirode a vyvoju vesmiru. NavysSe, poznanie
tychto pohybov ndm umozinuje planovat vesmirne misie a navigaciu vo vesmire. Schopnost
predpovedat pohyby planét ndm pomaha v oblasti astronémie a astrofyziky, napriklad pri
objavovani novych exoplanét a lepSom porozumeni tymto svetom. Okrem toho, skimanie
pohybov planét a ostatnych telies v slnecnej stustave poméaha aj v pochopeni historie nasho
slne¢ného systému a jeho vzniku. Pohyby planét a nebeskych telies sa vSeobecne riadia
Newtonovym zakonom univerzilnej gravitacie. Tento zakon hovori, ze kazdé hmotné teleso
v priestore gravitacne ovplyviiuje pohyby inych telies. Sila posobiaca medzi dvoma tele-
sami je priamo tmerna ich hmotnostiam a nepriamo timerna druhej mocnine vzdialenosti
medzi nimi. V doésledku tychto zakonov sa planéty pohybuji okolo Slnka po eliptickych
drahach. Pohyby planét mozno predpovedat pomocou matematickych modelov zaloZenych
na zakonoch fyziky a matematiky. Zakladom pre predpovedanie pohybu planét je znalost ich
hmotnosti a poc¢iatocnych podmienok, teda ich pozicie a rychlosti v uréitom case. Pouzitim
Newtonovych pohybovych zdkonov a zakonu gravitacie sa potom vypocita sila pdsobiaca
na planétu a jej draha v urcitom case. Tieto vypocCty moézu byt velmi zlozité a vypocetne
naroc¢né, pretoze zahrnuju mnoho vypoctov interakcii medzi mnohymi telesami. Problém
predpovedania pohybu telies radime do dvoch kategorii: problém dvoch telies a problém
n telies. Problém dvoch telies sa tyka pohybu dvoch teles v priestore, ktoré gravit¢ne in-
teraguju. Pri rieseni tohto problému sa zanedbavajui akékolvek iné sily a predpoklada sa,
ze vzajomna pritazlivost tychto dvoch telies je jedinou silou, ktord na ne pdsobi. Je to
ale idealizovany model a pre praktické aplikacie nie velmi pouzitelny. Toto riesi problém n
telies, ktory berie do tivahy vplyvy vsetkych telies v modelovanom systéme. RieSenie tohto
problému je zlozitejsie a vyzaduje si pouzitie numerickych metéd na riesenie diferencidlnych
rovnic, ktoré opisuja pohyb vsetkych telies v modelovanom systéme. V ramci tejto prace
bol vypracovany program, ktory je schopny riesit obidva problémy a predpovedat pohyby
jednotlivych objektov modelovaného systému v ¢ase. Pre riesenie diferencidlnych rovnic
boli implementované tri integracné metddy, a to Eulerova, Runge-Kutta a Adams-Bashfort.
Uzivatel si tak moze zvolit vhodnt metédu pre jeho potreby. Ak potrebuje simulovat pri-
blizenie asteroidu s presnostou na stovky kilometrov, pouzije pre-snejsiu, ale vypoctovo
omnoho naro¢nejsiu metédu. V pripade simuldcie, ktora nevyzaduje vysoku presnost moze
siahnut po rychlejsSom algoritme. Sucastou prace bola aj extrakcia vysoko presnych efe-
meridov (tabulky pozicii a rychlosti nebeskych telies) od americkej agentiry NASA, ktoré
sltizia na validaciu implementovaného modelu. Dalej bol vytvoreny program s grafickym uzi-
vatelskym rozhranim, ktory umozni zadavat pociatoéné podmienky pre simulaciu a nasledne
zobrazi animaciu vykonanej simulédcie. Systém a jeho pociatoéné podmienky su definované
v stuboroch typu JSON, ktoré je mozné importovat do aplikdcie. Vystupom aplikacie je
mimo animacie aj textovy subor typu csv, ktory je struktdrou podobny efemeridom od
NASA. Pocas testovania boli vystupné data validované s pomocou existujucich efemeri-
dov a otestované boli aj doby trvania simulacie pri rozliécnych numerickych integraénych
metddach a rozlicnom pocte telies v simulovanom systéme. V ramci experimenotvania s
hotovym programom bolo simulovanych niekolko scenarov, ako napriklad blizke priblizenie
asteroidu Apophis k Zemi v roku 2029, alebo hypoteticky prelet ¢erveného trpaslika nasou
stustavou.

Visualization and simulation methods of Solar Sys-
tem bodies

Declaration

Prehlasujem, Ze som bakalarsku pracu vypracoval samostatne pod vedenim pana Ing. Jifiho
Novaka. Uviedol som vsetky zdroje a literdrne pramene, publikacie a dalsSie zdroje, z ktorych
som cerpal.

Andrej Hyros
May 9, 2023

Acknowledgements

I would like to thank my supervisor Ing. Novak for assistance, patience and always pointing
me in the right direction.

Contents

Introduction

Fundamentals of orbital mechanics

2.1 Newton’s Laws of Motion e
2.2 Newton’s Law of Universal Gravitation
2.3 Kepler’s Laws of planetary motion
2.4 KinematiCs e e e e e e e e

3 Predicting motions of celestial bodies
3.1 Two-body problem
3.2 N-body problem e
3.3 Simulating N-body problem 000 oL
3.4 Datasource e e e e e e e e e e e
4 Program design and implementation
4.1 Graphical user interface o Lo
4.2 Program data interface L Lo o oo
4.3 Simulator implementation Lo Lo 0oL
4.4 Visualizing theresults oo oo
4.5 Testing and validation L o o Lo
5 Experiments
5.1 Experiment 1: Red dwarf fiyby o000
5.2 Experiment 2: Close encounter with asteroid Apophis
5.3 Experiment 3: n-body vs 2-body simulation
5.4 Experiment 4 - Resonance of Jupiter’s moons
6 Future work
7 Conclusion
Bibliography

A SD card content hierarchy

33
33
36
38
41

42

43

44

46

Chapter 1

Introduction

Aim of this thesis is to provide a tool for simulation and visualization of various celestial
bodies in our Solar system, including planets, comets, asteroids and other objects. The
problem of predicting motion of individual objects in a group that are gravitationally in-
fluencing each other is known as the n-body problem. This problem has been known since
the ages of Newton, when he realized that not only initial velocity and position of object
must be known to predict its motion, but also the gravitational influence of nearby bodies
must be taken into account. Despite this problem being known for hundreds of years, no
practical analytical solution was ever found for more than two bodies. However, numerical
integration methods can be used to get approximate trajectories of objects over time. The
simulation of such systems has been a fundamental aspect of scientific research for many
years. These simulations allow scientists to study and predict the behavior of complex sys-
tems that are difficult or impossible to observe in real life. The simulation algorithms used
in created application include Euler, Runge-Kutta and Adams-Bashforth. The application
is written in Python and takes a file specifying the simulated objects as input. The output
of the application is a document containing simulated data and an animation of the system
in a 3D plot. The application provides the user with interactive features, including the
ability to zoom inside the animated system and rotate the plot to view the system from
different angles. Chapter 2 introduces the basics of orbital mechanics to the reader, which
are necessary to understand the n-body problem. Chapter 3 takes a closer look on n-body
problem and how it can be solved. Specifics of created application are described in chapter
4.

Chapter 2

Fundamentals of orbital mechanics

Orbital mechanics is a field of study that deals with the motion of objects in space under
the influence of gravity. It is a fundamental concept in space exploration and is used to
predict the motion of planets, satellites, and other celestial objects. It is also necessary
for planning of any space mission. This chapter will provide an overview of some of the
key concepts and equations used in orbital mechanics. We will start by introducing the
basic principles of Newtonian mechanics and the laws of motion. The chapter will then
explore Kepler’s laws of planetary motion. Kinematics is also briefly explained. Finally,
we will discuss some of the challenges that arise when attempting to model and predict
the motion of objects in space. Following text is not intended to be overly detailed as this
chapter on orbital mechanics presents only the most important concepts extracted from
the great amount of available literature such as [1], [16], [5] and [2]. Overall, this chapter
aims to provide a foundation for understanding the principles of orbital mechanics and the
equations that govern the motion of objects in space. It will be a useful reference for anyone
interested in space or other related fields.

2.1 Newton’s Laws of Motion

Newtonian mechanics is a fundamental branch of physics that describes the behavior of ob-
jects in motion. The principles of Newtonian mechanics are based on three laws of motion,
which were first described by Sir Isaac Newton in the late 17th century. These laws form
the basis for understanding how objects move and interact with each other. Laws citation
from this section and much more details about Newton’s laws can be found at [16].

The first law of motion, also known as the law of inertia, states:

LA Body remains at rest or in uniform motion unless acted upon by a force.“

Mathematically, this can be expressed as equation

Freo=>» F=0 (2.1)

where Fj¢; is the net force acting on the object, or in other words, sum of all forces
acting on the object. If F,.; = 0, then the object will remain at rest or continue to move
at a constant velocity. If Fj,; # 0, then the object will accelerate. Simpler interpretation
of this law is that the only way to alter the motion of a body is to exert a force upon it.

The degree to which the motion is altered depends on how great the exerted force is. This
is stated by Newton’s second law:

LA body acted upon by a force moves in such a manner that the time rate of change of
momentum equals the force*

This law is also known as the law of acceleration. It relates the net force acting on an
object to its acceleration, expressed by equation as

F=am (2.2)

where m is the mass of the object, a is its acceleration, and F' is the net force acting
on the object. This law shows that the acceleration of an object is directly proportional to
the net force acting on it and inversely proportional to its mass.

The third law of motion, also known as the law of action and reaction, states:

f two bodies exert forces on each other, these forces are equal in magnitude and oppo-
site in direction.”

This means that if an object exerts a force on another object, the second object will exert
an equal and opposite force on the first object. Mathematically, this can be expressed as
equation

Fl=-F (2.3)

where F7j is the force exerted by one object on another, and F5 is the force exerted by the
second object on the first.

ht,
Figure 2.1: Visualization of Newton’s third law. Image source at [11].

These three laws of motion can be used to derive the equations of motion for a wide
range of systems, including those involving orbital mechanics. For example, the motion of a
satellite in orbit around a planet can be described by Newton’s second law of motion, taking
into account the gravitational force between the satellite and the planet. The resulting
equation of motion is known as the two-body problem and can be solved analytically. This
problem is described in greater detail in chapter 3.

2.2 Newton’s Law of Universal Gravitation

Newton’s law of universal gravitation is one of the fundamental laws of physics and plays a
crucial role in understanding the behavior of celestial bodies. The law, derived from obser-
vations by Isaac Newton [12], states that any two particles in the universe attract each other

with a force that is proportional to the product of their masses and inversely proportional
to the square of the distance between them. Mathematically, it can be expressed as
Gmim

F= r—122 (2.4)
where G is universal constant named gravitational constant. It is fundamental constant of
universe that determines the strength of gravitational force between two objects. The value
of G is known to four significant digits as 6.674 x 10! m®kg~!s~2.
This law is also applicable to all objects across the universe. This law not only explains the
motion of celestial objects like planets and stars, but it also governs the motion of objects on
Earth. For example, the gravitational attraction between the Earth and the Moon causes
the Moon to orbit around the Earth and also causes the tides on Earth. Together with
Newton’s laws of motion, these laws enable us to model the motion of objects in space and
on Earth, and to make predictions about their behavior. It is worth noting that the law
of universal gravitation is only accurate for relatively small distances and speeds. At high
speeds and in strong gravitational fields, the effects of general relativity become important
and must be taken into account. Nonetheless, Newton’s law of universal gravitation remains
a crucial tool in understanding the behavior of celestial bodies.

F; F> @

Figure 2.2: Visualization of Law of Universal Gravitation. Image source at [13].

2.3 Kepler’s Laws of planetary motion

Kepler’s laws describe the motion of planets in the solar system and are fundamental to
understanding orbital mechanics. These laws were formulated by Johannes Kepler in the
early 17th century, based on the observations of the planets made by Tycho Brahe.

Kepler’s first law, also known as the law of orbits, states that planets move around the
sun in elliptical orbits, with the sun at one of the foci of the ellipse [11]. The shape of the
ellipse is determined by the eccentricity of the orbit, which is a measure of how elongated
the ellipse is. The distance between the sun and the planet varies throughout the orbit, with
the closest point called the periapsis and the furthest point called the apoapsis. Depending
on the body being orbited, these points can have different names like aphelion/perihelion
for Sun, or apogee/perigee for the Earth. This law can be expressed mathematically as:

p
r = 2.5
1+ ecosf (2:5)
where 7 is the distance between the planet and the sun, p is the semi-latus rectum of

the ellipse, e is the eccentricity of the orbit, and 0 is the angle between the perihelion and

the current position of the planet.

Kepler’s second law, also known as the law of areas, states that a planet moves faster
when it is closer to the sun and slower when it is farther away [11]. This law can be
expressed mathematically as:

dA 1 ,db
_ 1 0d0

=z 2.
dt 2 dit (26)

where A is the area swept out by the line connecting the planet to the sun in a given
time interval, and Cé—’? is the rate at which this area is swept out [11]. This law implies that
the planet moves with equal areas in equal times.

Figure 2.3: Visualization of Kepler’s second law - blue areas are equal and swept in equal
time. Image source at [11].

Kepler’s third law, also known as the law of periods, states that the square of the orbital
period of a planet is proportional to the cube of the semi-major axis of its orbit. This law
can be expressed mathematically as:

2 4m? 3
T° = ma (2.7)
where T is the orbital period of the planet, a is the semi-major axis of the orbit, M is
the mass of the sun, m is the mass of the planet, and G is the gravitational constant.
Kepler’s laws provide a fundamental framework for understanding the motion of planets
in the solar system, and have been used extensively in the field of orbital mechanics. They
played a key role in the development of the laws of gravitation by Isaac Newton, which
describe the motion of objects under the influence of gravity.

2.4 Kinematics

In this section, basics of kinematics are explored. Kinematics is the study of motion without
considering its causes [1]. Specifically, the concepts of position, velocity, and acceleration
over time are described as these will be important part of solving the n-body problem.

zZ A
- U
N
a = P
\'\
"|
— .'II
T /
/
Path /
yd
/
0 / -
/ T
y /

Figure 2.4: Object P traveling along path in reference frame. Position, velocity and accel-
erations vectors are visible.

Position refers to the location of an object relative to a reference point. It is usually
represented by a vector that describes the distance and direction between the object and the
reference point. In one-dimensional motion, the position of an object is typically measured
along a straight line, while in two-dimensional or three-dimensional motion, the position
can be described by two or three coordinates, respectively.

To keep track of motion of any object over time, frame of reference is needed [5]. It
consists of three dimensional cartesian coordinate system and clock that keeps track of time.

Rephrased from [8] and [2], velocity is a vector quantity that describes the rate at which
an object changes its position. It is defined as the change in position divided by the change
in time. Note that vectors in following equations are shown in bold. Mathematically,
velocity is expressed as:

A
At

v (2.8)

where v is the velocity vector, Ar is the change in position vector, and At is the change
in time. The unit of velocity is meters per second (ms~!) in the SI system. The velocity
vector has both magnitude and direction. The magnitude of the velocity vector is called
speed, which is the distance traveled per unit of time.

Acceleration is the rate at which an object changes its velocity. It is defined as the
change in velocity divided by the change in time. Mathematically, acceleration is expressed
as:

_AV

- (2.9)

a

where a is the acceleration vector, and Av is the change in velocity vector. The unit of
acceleration is meters per second squared (ms~2) in the SI system.

Following two equations are taken from [5]. As stated above, velocity v and acceleration
a of the object travelling through time frame are first and second derivatives by time of the
position vector r:

do(t): dy(t)s de(D. oo
k = v, L (D k 2.1
“ s G EER = 0 (0 4 vy (05 + 0 (1) (2.10)

dvg(t)s dvy(t): dv,(t) - N N .
= k=ay 2(t)k 2.11
S T+ Tk = a8+ a4y (0 + ax() (2.11)

Vectors i, j and k are all unit vectors pointing from origin in the positive direction of
xz, y and z axes. For convenience, time derivatives have shorthand notation where overhead
dot is used, so:

v=rp (2.12)

a=v=r (2.13)

Chapter 3

Predicting motions of celestial
bodies

Predicting motions of celestial bodies is very important ability for any civilization and is
absolutely necessary for sending spacecrafts to Moon and other planets. As we discover
more and more asteroids in the vicinity of Earth (known as near-Earth asteroids), we
can also predict their motion. For example, NASA plans to launch telescope carrying
spacecraft! into low Earth orbit, which is expected to find 90% of near-Earth asteroids over
140 meters in length. Motions of these asteroids can then be simulated into the future. In
case of discovering high probability of collision with the Earth with enough time in advance,
action can be taken.

Different approaches to predicting these motions are used based of number of objects in
simulated system. With two body systems, like Earth-Moon system, analytical approach
can be used. With systems where 3 or more bodies are involved, equations became more
complex and can only be solved numerically [2]. In classical mechanics, these problems are
known as the two-body problem and the n-body problem, respectively. I will describe them
in greater detail in following sections.

3.1 Two-body problem

As stated above, two-body problem is problem of predicting motions of two bodies that
influence each other by their gravity. It is assumed that no other forces exists in the system
or are ignored. Unlike n-body problem, 2-body problem can be solved analytically by
calculating gravitational force between the two objects by using Newton’s Law of Universal
Gravitation equation (2.4). The two-body problem is an idealized model, as it assumes that
the two masses are point masses that are not affected by gravitational influence from any
other objects in the universe. While this is not true in real-world situations, the two-body
problem provides a useful approximation for analyzing the motion of celestial bodies over
short timescales.

3.2 N-body problem

N-body problem is a problem in classical mechanics of predicting motions of three or
more bodies that are gravitationally interacting with each other and is much more complex

!'NEO Surveyor - https://www.jpl.nasa.gov/missions/near-earth-object-surveyor

https://www.jpl.nasa.gov/missions/near-earth-object-surveyor

then two-body problem [2]. The n-body problem assumes n point masses (from now on
referenced as objects) where each object is defined by its mass m;, position vector r; and
velocity vector vi within inertial reference frame. Also i = 1,2, ..., n.

z A
o

)

Figure 3.1: Visualization of three body problem. Each body is exerting gravitational force
on every other body.

Solving this problem involves solving equations of motions for all objects in the system.
These equations are the Newtonian equations of motion, which are a set of second-order
Ordinary Differential Equations (ODE). They describe the motion of each object in the
system as a function of time. Governing equations of n-body problem are Newton’s second
law (2.2) [2] and Newton’s law of Universal Gravitation (2.4), which is the only source of
force. Therefore, no other force than gravity is taken into account. From (2.2) [1], the force
exerted on object ¢ by object j is

mgimy

F;; = _G—|7"ij|2 I'jj (3.1)

where vector rj is position vector of object 7 in reference frame. Vector rj; is pointing from

object i to object j and |r;;| is its magnitude. Symbol #j; is a unit vector pointing in the
same direction as rjj, but has length equal to one. Using #j; = 2. to manipulate the
J

751
equation we get

Fyj= -G =gy (3:2)

— = r
Irijl? Irij] gl Y

10

Let F; be the total force exerted upon object ¢ by all the other objects. Thus the total force
F; is sum of all the forces from other objects

n n
m;m;
Fi=)» Fj=)» -G |7f”|3” rij (3.3)
. . ¥
JJ#e JJ 74

At any given point in time ¢, position and velocity vectors, r; and r; respectively, of any
given object, are known. Thus:

VZ:aZ:_:_Z szm3|l|3: Z|7’Z—7’|3 (34)
JJ#i / JJ#i !

is set of 6NV first-order ODEs [4]. By knowing initial condition it is possible to calculate
position and velocity in any given time ¢.

3.3 Simulating N-body problem

To predict motions of celestial bodies or objects, model of system containing such objects
must be created first. By definition, model is imitation of one system by other system
[14], in this case computer program is used to model Solar System from the real world.
This modeled system can be greatly simplified compared to the real world one, as not all
information about real world system is relevant to the purpose of model. Experimenting
with such model to gain new information about modeled system is called simulation. For
this thesis specifically, new information about Solar System means predicting motions of its
elements, that is celestial bodies. Important to note is that data from simulation can not
be perfectly accurate compared to the reality. This is because reality is continuous, while
computer trying to model it is strictly discrete. Therefore, some amount of error will always
be present in results of simulation. Though this error can be reduced by choosing the right
simulation methods and its parameters. To validate created model, i. e. to declare that it
models reality with enough precision to be considered accurate or usable, data from NASA
will be used. Several terms regarding simulation are used many times in this thesis. This
listing explains them briefly:

e Simulation time - Total duration of simulated process.
e Simulation step - Single iteration of simulation.

e Time step - Amount of simulated time that elapses between two following simulation
steps.

e Step count - Number of simulation steps that have been taken during simulation. Its
value is calculated by dividing simulation time with time step.

Note that the unit of time throughout the simulation are seconds. Since first-order ODE
are part of created model, numerical methods are used for integrating them. Numerical
methods involve dividing continuous time into many small discrete time steps, calculating
forces between objects at each time step and then using calculated force to determine the
acceleration of each object. Object is then moved in this direction for chosen time step.
Main control loop of simulation simplified and written into code as:

11

simulation_time = 60 * 60 * 24 # one day of simulation
elapsed_time = 0
time_step = 1
while elapsed_time < simulation_time:
for body in bodies:
acc = get_acceleration(body)
integrate(body, acc, time_step)
elapsed_time += time_step

Listing 3.1: Simulation loop

In this code snippet, while loops represents passing of simulation time, where each
iteration is single simulation step. Of course, every object in simulated system must be
taken into account and thus for loop that iterates over all of the objects. For each object,
force exerted upon it is calculated by equation (3.4). Written into code as:

def get_acceleration(current_body) :
acceleration = [0, 0, 0] # 3D vector
for body in bodies:
if body is current_body:
continue
r = current_body.position - body.position
acceleration += body.mass * r / (magnitude(r) ** 3)
acceleration *= -G_CONSTANT
return acceleration

Listing 3.2: Acceleration calculation

Because acceleration of every objects needs to be computed in respect to every other
object, two nested for loops are required to create every possible pair of objects. This makes
the time complexity of single step O(n?) where n is number of objects in simulated system.
When acceleration is known, its integration can be performed. Three different integration
methods were implemented. These methods vary in computation cost and accuracy. Most
simple and straightforward numerical integration methods is Euler method. Written into
code as:

def integration(body, acceleration, time_step):
body.position += body.velocity * time_step
body.velocity += acceleration * time_step

Listing 3.3: Euler integration step
Implemented algorithms for solving numerical integration are described in following sub-
sections 3.3.1, 3.3.2, 3.3.3 and were studied from [3], [14] and [17].
3.3.1 Euler method

Fuler method, is a numerical method for solving ODEs with a given initial value. The
method is based on approximating the solution curve with small line segments, using the
slope of the tangent line at each point to determine the direction and length of the segment.
It is also the simplest, as it calculates result using only initial value [14]. General formula

12

for calculating value in next step is

y(t+h) =y(t) +h- [t y(t)) (3.5)

\J

to to+h ty + 2h

Figure 3.2: Visualization of how Euler method works. Small step in the direction of the
derivative of the solution at each point is taken.

In case of this thesis, two equations are being solved, one for position and one for velocity
of simulated object. From (3.4) these are

r(t+h)=r(t)+h- V(t,r(t),v(t)) (3.6)

v(t+h) =v(t)+h-A(t,r(t),v(t)) (3.7)

where r and v are position and velocity at time ¢, respectively. h is selected time step and
functions V' and A returns velocity and acceleration at time ¢, respectively. These functions
are defined as

V(t,r(t),v(t)) =7 (3.8)

A(t,r(t),v(t)) =0 (3.9)

Initial position and velocity must be known to start integration method. Eueler method is
fairly simple and its computation cost is smaller compared to other methods, but it is way
less precise.

3.3.2 Runge-Kutta

Runge-Kutta methods perform other computations within single step to achieve more pre-
cise results while keeping same step size [14]. There are many variants of this method, but
most widely used one is known as Runge-Kutta 4. Runge-Kutta 4 is method of fourth order
and calculates four intermediate values that are then used to approximate the solution of
given differential equation. They are typically denoted as ki, ..., k,, where n is the order

13

of method. These intermediate values are then used to update the dependent variable and
advance the solution to the next step. To approximate the value of y(t+ h), we use formula

ky ka ks Ry

_ Mo 2 M 3.10
y(t+h) =y(t) + T3 t3 TS (3.10)
where intermediate values are calculated as

By = h f(t,y(®)) (3.11)

h k
ko= he f(t+ 500 + 5) (3.12)

h k
ks =h- f(t+ 500+ 5) (3.13)
ky=h- f(t+h,y(t) + k3) (3.14)

Based on these formulas, it can be noted that the function f is evaluated four times during
single step. While Runge-Kutta 4 method is much more precise then Euler method, it
is computationally more expensive, because it has to evaluate function A multiple times
during single step. This is even more pronounced in this application where two ODEs are
being solved. As stated in 3.3.1, velocity and acceleration are both calculated in single step,
therefore two sets of intermediate values are calculated:

ky = he V(t,r(t),v(t)) (3.15)
o= h- Alt,r(t), v(t)) (3.16)
(3.17)

ky = h- V(t,r(t) + ks, 0(t) + Is) (3.18)
L= h- A(t,r(t) + ks, 0(t) + Is) (3.19)

Finally calculating values at the end of the step:

ki ke ks kg
_ Moy M 3.20
r(t+h) =r(t) + G + 3 + 3 + G (3.20)

ho by Iy 1
24242 (3.21)

v(t+h) =ov(t) + s T3t3 15

14

f y(?ﬂy
J{l-'_l
Yo —+ hk;} .
Yo -+ iky /2
Yo -+ hky /2
Yo ¢ E
to tg+ h/? ILLO +h g

Figure 3.3: Visualization of how Runge-Kutta method works. Runge-Kutta method calcu-
lates a weighted average of several estimates of the derivative of the solution at each point
to compute a more accurate approximation of the solution.

3.3.3 Adams-Bashfort

Adams-Bashfort method is an example of multi-step method. These methods use values
from previous simulation steps to compute solution at the next step. Specifically, if the
method uses n previous solutions then this method is of n-th order. The problem with
multi-step methods is starting them while only one previous solution, the initial value, is
provided. This can be solved by using other single step method, like Euler method, to
compute first n solutions and then continue with multi-step method. General formula for
n-th order of Adams-Bashfort method is:

y(t+h) =y(t) + h-(cof(t) + c2f (t = h) + csf(t —2h) + ... + e f(t — h(n +1))) (3.22)

where ¢, are coefficients that can be determined by integrating the differential equation
using a Taylor series expansion [3]. The idea is to use the known values of the function and
its derivatives at previous time steps to approximate the value of the function at the next
time step. For solving n-body problem, 4-th order method was implemented. Formulas are

r(t+ h) = r(t) + %(55%5) OVt —R) + 3TV (E—2h) + OV (t—3h)) (3.23)

v(t+h) = v(t) + %(55,4@) £ 59A(t — h) + 3TA(t — 2h) + 9A(t — 3h)) (3.24)

Compared to other numerical methods for solving ODEs, such as the Runge-Kutta methods,
this method can be faster for large systems of equations, since it only requires information

15

from a few previous time steps to compute the solution at the next time step. However, it
can be less accurate than some other methods. More about Adams-Bashfort can be found
at [3].

3.4 Data source

For modeling real planetary system, precise initial conditions are needed. These data are
available at NASA’s Horizons system at [7]. It is an online Solar system data and ephemeris?
computation service that provides information about the positions and motions of objects
in our Solar system. The Horizons system can be quite complex and may require some
knowledge of astronomy and celestial mechanics to use effectively. However for needs of
this thesis, simple textual vector data is sufficient.

1 Ephemeris Type: [Vector Table

<

2 @ Target Body: Earth
3 B} Coordinate Center: Sun (body center) [500@10]
4 @ Time Specification: Start=2023-01-01 TDB , Stop=2033-06-23, Step=1 (days)

5) Table Settings: custom

Figure 3.4: Interface of Horizons system web application with all the relevant settings of
ephemeris data.

Listing 3.4 show example of data® retrieved from interface.

3k 3k 3k 3k 3k >k Sk 3k 3k Sk 3k >k Sk >k 5k Sk 3k >k 3k 3k 5k Sk 3k >k 3k Sk ok Sk 3k >k 3k Sk ok Sk 3k >k 3k Sk >k Sk sk ok ok sk sk k >k

JDTDB, Calendar Date, X, Y, Z, VX, VY, VZ,

3k 3k 3k 3k 3k >k 3k >k 5k Sk 3k >k Sk >k 5k Sk 3k >k 3k >k 5k Sk sk >k 3k Sk ok Sk 3k >k 3k Sk ok Sk sk >k 3k Sk >k Sk %k ok 5k sk sk ok k k

$$SOE

2459945 .5,-2.546E+07,1.448E+08,-7.309E+03,-2.981E+01,-5.280E+00,-6.389E-04,
2459946 .5,-2.804E+07,1.444E+08,-7.364E+03,-2.971E+01,-5.799E+00,-6.203E-04,
2459947 .5,-2.984E+07,1.440E+08,-7 .402E+03,-2.9610+01,-5.988E+00,-6.078E-04,
$$EOE

3k 3k 3k Sk 3k >k 3k >k 5k Sk 3k >k Sk >k 5k Sk 3k >k 3k >k 3k Sk 3k >k 3k Sk ok Sk sk ok 5k Sk ok Sk 3k ok Sk 3k >k Sk k ok 5k 3k k ok sk k 5k

Listing 3.4: Example data from Horizons

2Table, chart, or other document that provides information about the positions and movements of celestial
objects
3Decimal places were trimmed for better readability

16

These table settings were used when extracting data for simulating Solar system and
other experiments:

» Ephemeris type - State vector table containing position and velocity vectors.
e Calendar type - Mixed.

o Units - Kilometers and seconds. These were converted to meters before importing
them to solver application.

o Table format - Comma separated values (csv) file type.

These data are used for initial conditions in simulations and in experiments from section
4.5.2 to validate implemented simulator.

17

Chapter 4

Program design and
implementation

Main purpose of implemented application is to provide general n-body problem solver with
multiple integration methods to choose from. This also included implementing Graphical
User Interface (GUI). The interface is intuitive and simple to navigate, making it accessible
to users of all skill levels. The interface includes options for importing systems, selecting nu-
merical integration algorithms, adjusting simulation parameters, and exporting the results.
The user can pause and restart the simulation, and observe the motion of the simulated
objects. The ability to export the simulation results in csv format is another important
feature of the n-body solver application. This enables the user to analyze and manipulate
the data in external programs, such as Excel, MATLAB or python notebooks, and fur-
ther explore the behavior of the simulated system. The csv format provides a flexible and
widely supported file type, making it easy to share the results with others. The n-body

problem solver also allows the user to import and simulate any system by importing a spe-
cific JavaScript Object Notation (JSON) file. This provides flexibility and convenience, as
the user can easily switch between different systems without having to manually enter the
initial conditions for each object. The ability to import systems also enables the user to
collaborate and share simulations with others, as they can easily share the JSON files. This
also ensures ability to create custom systems, so that user is not constrained to presets.

4.1 Graphical user interface

Graphical user interface was implemented using Qt framework, specifically its Python bind-
ing PyQt [15]. Qt is cross-platform framework, which makes this application usable on most
platforms.

18

[] [] N-Body Simulator

Simulation:

Step size (seconds): 3600
Simulation time (days): 300\

GERGERRGE

Log step (sim.steps): 86400

Algorithm: Euler (<]
Simulation: N-Body Simulation

o
z [AU]

Progress: 100 %

Bodies imported:

Imported JSON: planets_and_dwarf_planets.json

Animation:

START RESET

Figure 4.1: Main window of the application in MacOS enviroment.

Layout of GUI itself was designed using QtDesigner tool. Back-end code was written
for it in python language. As can be seen on figure 4.2, GUI consists of simulation and
animation control section, animation widget and import/export buttons. This section will
explain how various elements of GUI works. First step to start simulating any system is
to give the application data about the system itself. To do this, user must use IMPORT
button, which will open file explorer dialog window. User now should locate desired JSON
file (JSON input format is described in 4.2.1) and select it. Application will parse bodies
from selected JSON file and store them in memory. This is indicated by checked checkbox
labeled by text ,,Bodies imported:“. Name of imported file is also visible in GUI. Next,
simulation settings can be adjusted. These include:

e Simulation time - Total duration of simulated process.
e Step size - Length of single simulation iteration.

e Log step - Determines, after how many time steps should data about position and
velocity be logged. This option is set by default to single day.

e Algorithm - Sets the numerical integration algorithm.

By setting Log Step option to one, there will as many logs in output file as there are
simulation steps. Algorithm As already stated in 3.3, three methods are implemented:

e Euler method - Is selected by default. Described in 3.3.1.
e Runge-Kutta 4 - Described in 3.3.2.

e Adams-Bashfort - Described in 3.3.3.

19

Also possibility to simplify n-body problem to a set of two-body problems was implemented.
Purpose of this is purely educational, so that users can see the difference. Whether system
is to be solved as n-body or two-body problem is determined by imported JSON file in the
“Type” field. This is again explained in more detail in 4.2.1. To start simulation after all
settings were set, RUN SIMULATION button must be pressed. These simulations can take a
long time, so they are performed on thread that is separate from GUI thread. This makes
sure that GUI will not freeze during longer simulations. When simulation starts, dialog box
containing progress bar and percentage appears. This dialog box can only be closed after
simulation is done.

Simulation in progress

Simulating

60 %

Figure 4.2: Dialog box during simulation.

Note that the animation output is not running alongside the simulation, but rather waits
until simulation is done. When simulation is ready, button START in animation controls will
be enabled, and after clicking it, animation will start. Animation can be brought to the
beginning by pressing RESET button. In animation, simulated trajectories of objects are
traced by colored lines from start of the simulation to current frame. Position and names of
simulated objects indicated by round mark leading the trajectory are always displayed at
simulation time displayed on top left of animation widget. Animation is 3D scene and can
be rotated or zoomed. Distances are indicated by x, y and z axes, which displays distances
in AU! units. Slider underneath the animation widget indicates progress of the animation.

To clear completed animation and import new system, user should click CLEAR button
in simulation control section. This will free all previously imported bodies from memory,
as well as animation and simulation objects.

4.2 Program data interface

This section describes input/output specification of n-body problem solver.

4.2.1 Input

For any simulation using numerical integration methods, the required input are the initial
conditions. For simulation of the n-body problem, each body in simulated system must be
described by pair of initial conditions: position and velocity. Additionally, mass of object

! Astronomical units - mean distance from the centre of the earth to the centre of the sun (1.496e 48 km)

20

© 00 O O = W N+~

— = = e =
T W N~ O

is required for force calculations. IN-body solver takes JSON document describing single
system as an input. Two different JSON file configurations exist, one is for the n-body
problem, while the other one describes two-body problem, which except for list of bodies
must include common attractor body for these objects. Both types of JSON documents
must contain following fields:

SystemName - String containing the name of the system.

Type - String determining simulation type. Two possible values are “nbody” and
“2body”.

DataGregorian - String in format “2000-Jan-01 00:00:00.0000”. This string specifies
initial date of simulation.

DateJulian - Julian calendar version of previous field.

CoordinateCenter - String specifying coordinate center of imported system. How-
ever, value of this field does not have any impact on program as support for different
types of coordinate centers was not implemented and therefore is purely infromational.

System - This is the list of objects to be simulated.

Objects have these fields:

BodyName - String containing the name of this object. It is displayed in animation
and output file is named by it.

Mass - Integer value representing mass of the object in kilograms.

Position - Vector of three floats. It is the position of an object in reference frame.
Unit used is meter.

Velocity - Vector of three floats. It is the velocity of an object. Unit used is meters
per second.

Example of such JSON:

{
"SystemName": "Solar System",
"Type": "mnbody",
"DateGregorian": "2000-Jan-01 00:00:00.0000",
"DateJulian": 2451544 .500000000,
"CoordinateCenter": "Sun (body center)",
"System": [
{
"BodyName": "Sun",
"Mass": 1.989e30,
"Position": [0, 0, O],
"Velocity": [0, 0, 0]
},
{

21

16
17
18
19
20
21
22
23
24
25
26
27
28
29

© 00 N O O i W N~

— = =
N = O

"BodyName": "Mercury",

"Mass": 0.330e24,

"Position": [-2.105E+10, -6.640E+10, -3.492E+09],
"Velocity": [3.665E+04, -1.228E+03, -4.368E+03]

// ... rest of planets is here

"BodyName": "Apophis",

"Mass": 2.1el0,

"Position": [-1.555+11, -2.068E+10, -2.683E+09],
"Velocity": [7.088E+03, -2.600E+04, 1.547E+03]

Listing 4.1: JSON input document example

Additionally, if “Type” field is set to “2body”, another Attractor field is required. This

field describes main attractor body for two-body simulation and it looks like this:

{

llTypell . ll2bodyll ,

"CoordinateCenter": "Sun (body center)",
"Attractor": {
"BodyName": "Sun",
"Mass": 1.989e30,
"Position": [0, 0, O],
"Velocity": [0, 0, 0]
},
"System": [...]

Listing 4.2: Attractor field for two-body input file

It is also possible to import csv file that was previously produced by the application

and replay its animation. This can be done by pressing IMPORT CSV button and selecting
folder with csv files.

22

~N O Otk W N

4.2.2 Output

The application generates two types of output. One is of course the animated simulation
which can be viewed in graphical user interface and is described in section 4.4.

Other type is csv document which stores the position and velocity of objects throughout
simulation. Example of such document? created for Mars:

% Coordinate vector over time for "Mars"

date,x,y,z
2000-01-01
2000-01-01
2000-01-01
2000-01-01
2000-01-02

00:00:00,207995054983.6,-3143009713.9,-5178781243.4
00:00:00,207996349987.1,-3116715293.2,-5178262233.7
11:06:40,208045637615.3,-2064904387.7,-5157439373.0
22:13:20,208090023716.3,-1013043736.4,-5136494992.1
09:20:00,208129509790.4, 3884186415.9,-5115429647.3

Listing 4.3: CSV output document example

Export is only possible after simulation was performed. Otherwise, EXPORT button can
not be clicked. After clicking it, file explorer dialog window appears. User should choose
folder where he wants to export simulation results. After selecting folder, another sub-folder
named by system name from JSON input will be created. If folder with such name already
exists in selected folder, numbers will be appended to the name until it is unique within
selected folder. Also any whitespaces in the name will be replaced by underscores. Inside
this sub-folder, csv files for each body will be written. If JSON from listing 4.1 was im-
ported, created subfolder would be named Solar_System and csv files inside Apophis.csv

such as:

selected_folder/
| Solar_System/
. _Mercury.csv
. _Venus.csv

| Earth.csv

| Mars.csv

, _Jupiter.csv
| Saturn.csv
| Uranus.csv
. _Neptune.csv
| _Apophis.csv
| _Solar_System2/

Figure 4.3: Directory structure of exported simulation. There is one csv file for each object
in simulated system.

2Decimal places were trimmed for vectors to fit in single line

23

4.3 Simulator implementation

The simulation is implemented in Python using an object-oriented approach. Simulation
and integration methods are all implemented without any integration or simulation libraries.
The simulation logic is defined in a base class that all simulation types and algorithms in-
herit from. This allows for easy extension of the simulation with new simulation types or
algorithms. Base class 4.3.1 implements main simulation control loop (simplified code at
3.1) and acceleration calculation (see 3.2), as these are mostly same among all methods.
Fach subclass then defines its do_step() function, which is place where logic of each inte-
gration method is implemented. Some subclasses however do override the simulation loop
method from base class because they require some extra or modified logic.

For the 2-body simulation, the simulation class calculates the gravitational force between
two objects based on their masses and distance, and then updates their positions and
velocities based on the force and the time step. In two-body simulation, there are two
types of objects:

o Attractor - Main body of simulated system. When simulating moon system, this
should be planet and when solar systems, it should be star.

e Orbiter - All the other simulated objects in imported system.

Attractor should be always set as the most massive body in imported system. While
there can be always exactly one attractor, there can be multiple orbiters. Pair with attrac-
tor is created for each orbiter. These pairs are then treated as a set of two-body problems
which is solved for duration of selected simulation time. This also means, that while every
orbiter is updated once every simulation step, attractor is updated as many times as the
count of orbiters in a single step. This process is repeated until the desired simulation time
is reached.

For the n-body simulation, the base class uses the same gravitational force calculation,
but applies it to all pairs of objects in the simulation. This can quickly become computa-
tionally intensive for large numbers of objects, so three algorithms are implemented which
have different efficiency to precision ratio: Euler, Runge-Kutta and Adams-Bashforth.

As described in detail in section 3.3.1, the Euler algorithm is the simplest and fastest,
but it can be less accurate than the other algorithms. It uses a first-order approximation
to update the positions and velocities of the objects at each time step.

The Runge-Kutta algorithm is a more accurate but slower algorithm that uses a 4th
order approximation to update the positions and velocities of the objects at each time step.
This means, that acceleration calculation must be performed 4 times for every body in each
step, making it slowe. For more details, see section 3.3.2.

The Adams-Bashforth algorithm is the accurate and also quite fast. It is a multistep

method which uses not only the current state, but also states from past steps. Again, this
method is described in section 3.3.3.

24

Results from simulation are stored into separate lists. The frequency of logging is
determined by selected log step3.

4.3.1 Relevant classes

Some classes and their methods relevant to simulation are listed in this section and ex-
plained briefly.

class SimulatorBase

This is base class for all simulations and algorithms. It implements common methods
and stores simulation settings and parameters like list of simulated objects, step size,
simulation time and log step. This class inherits from QThread class, which comes
from PyQt framework. This enables moving simulation to its own thread and still
be able to communicate progress to GUI using PyQt’s slots and signals mechanics.
Important methods and signals are:

e run() - Overloaded method from base QThread class. This method must be
implemented for threading to work.

e start_simulation() - Starts simulation control loop. Also progress tracking
is implemented here.

e get_acc() - Calculates acceleration between all pairs of objects.

e sig simulation_done - Signal that is sent to controller after simulation fin-

ished.

o sig progress_made - Signal sent after every 5% of progress was made.

class Simulator2Body

Inherits from SimulatorBase. Implements simulation of two-body problem.

e start_simulation() - Starts simulation control loop. Consists of calling base
method from SimulatorBase and then appending attractor to list of bodies for
further manipulation.

o get_acc() - Calculates acceleration between all pairs of objects. Overloaded
from base class calculation of acceleration beacuse it is different for two-body
problem.

e do_step() - Logic of single simulation step

class SimulatorNBodyEuler

3Log step is explained in 4.1

25

Inherits from SimulatorBase. Implements simulation of Euler method for n-body
problem. Simulation control is inherited from base class. Simulation step is imple-
mented in do_step () method.

class SimulatorNBodyRK4

Inherits from SimulatorBase. Implements simulation of Runge-Kutta 4 method
for n-body problem. Simulation control is inherited from base class. Simulation step
is implemented in do_step() method.

class SimulatorNBody AdamsBashfort

Inherits from SimulatorBase. Implements simulation of Euler method for n-body
problem. Simulation step is implemented in do_step() method.

e start_simulation() - Starts simulation control loop. Must be overloaded due
to specifics of this method. First four steps are calculated using Euler method,
followed by normal simulation control loop from base method.

e do_step_euler() Euler method step used for starting the method.

class Body

This class describes single simulated object. Its attributes are:
e pos - Stores current position of body as 3D vector in meters.
o vel - Stores current velocity of body as 3D vector in meters per second.
e mass - Stores mass of object in kilograms. Value of this attribute never changes.
« name - Name of objects. Is used for export and in animation.

« velocity log - Log for velocity vectors over time. Individual logs for x, y and z
elements exist. This log is driven by log step.

o position log - Log for position vectors over time. Individual logs for z, y and z
elements exist. This log is driven by log step.

e t_log - Log for passed simulation time. Is used during export.

o acc_log - Acceleration log for Adams-Bashfort method. Logs acceleration every
single step.

e vel log - Velocity log for Adams-Bashfort method. Logs velocity every single
step.

Method log_data() is used to store current postion and velocity into logs.

26

4.4 Visualizing the results

The animation of the simulated system is implemented using Python and the matplotlib
9] library’s FuncAnimation class. The plot is presented in 3D, where each axis has
astronomical unit (AU) units. The animation can be resumed, stopped, and reset
from the graphical user interface (GUI). To create the animation, the FuncAnimation
class is used to generate a sequence of frames that represent the position of the simu-
lated objects at each log step. Each frame is then plotted using matplotlib’s Axes3D
module to create the 3D plot.

Date: 2000-04-09 12:53:20

Mars

0.75

0.5

0.25

-0.25
-0.75 05 ‘F;‘.p,'\.“

-0.75

Figure 4.4: Animation widget. It shows simulated objects in the reference frame traveling
along their simulated trajectories.

The FuncAnimation class takes several arguments, including a function that gen-
erates the frames, the number of frames to generate, the time interval between frames,
and a callback function to be called at the end of each frame. In this implementation,
the function that generates the frames takes the simulated data as input and returns
the positions of the objects at each time step. Interval between frames is always set
to 20 milliseconds. The GUI allows the user to control the animation using buttons
for resuming, stopping, and resetting the animation. These buttons are linked to call-
back functions that modify the FuncAnimation object accordingly. Application also
provides the user with the ability to zoom inside the animated system and rotate the

27

whole plot. These functionalities are implemented using matplotlib’s interactive fea-
tures. To enable zooming, the user can use the scroll wheel on their mouse to zoom in
or out of the plot. The zooming is implemented using matplotlib’s ax.set_x1im()
and ax.set_ylim() functions, which adjust the limits of the x and y axes to zoom in
or out. User can also click and drag the plot to rotate it in 3D space. By providing
these interactive features, the application allows the user to explore the simulated
system in greater detail and gain a better understanding of its behavior. Overall, the
animation is an important aspect of the application as it provides a visual represen-
tation of the simulated system’s behavior over time. By allowing the user to control
the animation, the application provides an interactive and informative experience.

4.4.1 Relevant classes

Class responsible for animation is described in this section.

class NBodyAnimation

This class is always created for specific simulation and the instance is cleared from
memory before another animation starts. Important methods are:

o setup_animation() - Sets up plot to be ready for animation. Labels, limits
and ticks of Axes are set accordingly in this method.

e animate() - Initialises FuncAnimation object. Creates artist objects for it.
These are line plots for trajectory, markers for current position of objects, and
labels for names of objects. Also single label for displaying time is created here.

e update_animation() - Draws current frame. This function is called for every
frame update.

e adjust_ticks() - Dynamically adjusts tick spacing after zoom events. This
ensures that axes of animation plot are clean and readable.

4.5 Testing and validation

In this section, we will discuss the testing methodology used for the simulation ap-
plication and the obtained results.

Three algorithms, namely Euler, Runge-Kutta, and Adams-Bashforth, were im-
plemented and tested on two different systems of planets: the Solar system planets
including asteroid Apophis* and the Solar System planets plus four dwarf planets
Ceres, Pluto-Charon system, Makemake and Sedna. These systems have 10 and 13
objects, respectively. The time taken to complete the simulation and the accuracy of
the results obtained were measured and compared for the three algorithms. Initial

4Apophis is famous near Earth asteroid. More at 5.2

28

conditions for these tests and masses were retrieved from [7] and [10]. Simulation
settings were following:

e Simulation time - 10 years
e Time step - 3600 seconds = 1 hour

Based on these settings, number of steps can be calculated as Simulation time /
Time step and it is equal to 87600 steps. Then another set of tests was performed,
with smaller time step of 1 minute.

29

4.5.1 Time

Six testing runs were recorded. Different combinations of algorithms and simulated
system were tried. Duration results are shown in following table:

Table 4.1: Table shows time it took to simulate each combination of algorithm and count
of bodies in simulated system.

Algorithm 10-body system | 13-body system
Euler 91s (1.51 min) 268's (4.46 min)

Runge-Kutta 508s (8.46min) | 1095s (18.25min)
Adams-Bashfort | 256 s (4.26 min) 281s (4.68 min)

These results confirm that Runge-Kutta 4 is indeed slowest of the implemented
methods as stated in 3.3.2. Of course, these numbers are highly depended on specifi-
cations of machine, that run the simulation, but they can be used reliably to compare
integration methods in terms of performance. Another interesting observation is the
difference between Euler and Adams-Bashfort methods. When simulating 10-body
systems, difference between these methods was 195 seconds, while with 13-body sys-
tem it was only 25 seconds.

4.5.2 Precision

Results of following tests were exported and analyzed using Jupyter notebook and
matplotlib tools. The accuracy of each algorithm was evaluated based on the devi-
ation of the simulated results from the actual data obtained from NASA. The results
showed that the Runge-Kutta algorithm was the most accurate among the three al-
gorithms. After 10 years of simulation, the simulated position and velocity of Earth
were almost identical to the actual data from NASA. On the other hand, the Euler
algorithm performed the worst, with the simulated position of Earth being completely
opposite to the actual data after nine years of simulation. The Adams-Bashforth al-
gorithm also showed some deviation from the actual data, but the difference was not
as significant as that of the Euler algorithm. It is worth noting that smaller time step
would of course lead to smaller errors, but the computational cost would be higher.
Following image shows differences between results (blue) and data from NASA (or-
ange). The Runge-Kutta plots closely track real data such that the resulting plot
appears to show only single curve. Based on these results, implemented solver was
declared as valid.

30

—— Solver
— JPL

»n wm
EEZ o 2
= 9.8 S o
£ .3 A
n g umg
S aE g 8 2
< K QO S o ©
o © O nfrn.v.
w0 .-
T T —— -1 B
— ruiiiHHHv ulll-”U. S < o S % v
— [— H o A S 0 =
I — — S<Es 3 .,>
— g — SE%=E E2w%
U”“II“HH e S.mrm @Wt
_— I R e S g 2=9 T 52
— T 1 | = ER =
| et lnet rmud
Sy e | = _ =82F E27%
I R =2 g
T = % 2T=<- TLE
g | — - > o] =
V.nnl.ll.l.uu.l. " N QS — = are
—— — = —] E a5 S.Mupr
Il.llu 7 .)_.m = S = R=T =
S| e—T—F—F—T .1|.....|...!......|H..uV B K_) N 2 =
o = o = 5 Heze O &2
—_— — 2 = SRS L 4
—] 5 .llllul-lllu o = mte dt.l
‘|I|U|llm o mh u.«maf o 2N
= T | "2 FZEE Zga3
—— — = TS 8™ = EX
—r—— | — n . =
— —T 2Sis EEE
— |t abfa e o
L L =4 5 O 5 n I
- S— em + feX
| =.25.7= o T m
— SRRl - D
| O — >
I L ———— RS) S O —
= = g¢&-2 R=2F
— S & g 8 = 2
2 EE 3 TEE
T | | T 2EEs E°%
[— o =
T — — lwsm.% Lnu.v,.m.d
— I — & 2 g © S =
RmOW 6.ta
558 2=
. 0 9 mt
m o n g9 0 o w2 1 9o n o N QT Y & g
= — o =] m“ T 7 A H4 S S o A+ 4sm1y Mmua
Lo g — O
[w]x [w] LT ° D73 &
rS o FE..I.
mOAL&e =)
o o &8 Y
~Z &8 & o m

31

Inner solar system

FE\\

15

i

1/

N\

=)
<
— 0.0
N
-0.5 = ‘
\ \ / Sun
_ " —— Mercury |
1.0 y
—— Venus
\ —— Earth
____/ —— Mars
-15 :
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15
X [AU]

Figure 4.6: Mercury’s unstable orbit in blue during simulation using Euler method. Orbits
of Earth and Venus also show significant errors as can be seen by thickness of their plots.

32

Chapter 5

Experiments

This chapter discusses performed experiments with implemented solver. Some exper-
iments are then compared to data from NASA.

5.1 Experiment 1: Red dwarf flyby

The aim of this experiment was to observe how the planets of the Solar system would
react to a fictive star that was placed “above” Solar system between orbits of Jupiter
and Mars and sent through the Solar system. The simulation was run to determine
the effect of the star’s gravitational force on the planets’ orbits.

Fictive star

*Not to scale

Figure 5.1: Approximate placement of fictive red dwarf star with its velocity vector shown.

Two experiments were performed with two different masses of fictive star. These
are two extremes of known red dwarf masses and they are 0.6 and 0.08 solar masses,
respectively. Velocity is that of Proxima Centaury, closest star to our Sun, and it is
equal to 22.2kms~!. Exact position vector can be found in file massive_red_dwarf.json
from A. Position of other planets are from 1st of January 2000 and were retrieved
from [7].

33

g W oo W oo
z [AU]

Red dwarf

/.u/piter
Earth

Mars Mercury Sun

x [AU]

Figure 5.2: Disrupted Solar system after flyby.

As expected, Solar system was completely disrupted and broken by flyby of such
massive star. While Mercury and Venus stayed on similar orbits around the Sun,
Earth’s orbit was significantly changed. Mars, Jupiter and Saturn were “stolen” by
passing star and started orbiting around it. Neptune and Uranus were catapulted
into deep space and became so-called rogue planets. A rogue planet, also known as
a free-floating planet, is a planetary-mass object that orbits through space without
being gravitationally bound to a star.

34

Earth's distance from Sun

Distance [AU]

T T T T T
0 200 400 600 800 1000
Time [days]

Figure 5.3: New orbit of Earth shown as a distance from the Sun. Each period represents
single orbit. Aphelion and perihelion can be seen as maximum and minimum in single
period.

As can be seen on figure 5.3, Earth’s new orbit has high eccentricity, with per-
ihelion and aphelion at ~2 AU and 6.7 AU, respectively. Period of orbit was also
shortened to 249 days. Event like this would of course end our civilization. It is
worth mentioning that results of such event could be completely different depending
on position of planets during the event.

Second part of experiment involved lighter red dwarf star of 0.08 solar masses.
This flyby was much less dramatic and all planets remained on orbit around the
Sun with slightly changed orbits. Figure 5.4 show how orbits of inner planets have
changed after flyby. While Mercury was not affected at all, Earth’s eccentricity was
slightly increased. Most significant changes happened to Mars - its aphelion was
increased by almost 50 %.

35

Distance of inner planets from Sun

—— Earth
— Mars
—— Mercury
201 Venus

E) _

2 1.5

[1¥)

(=}

[

1]

5

0

(]

0.5

T T T T T
0 2000 4000 6000 8000 10000
Time [days]

Figure 5.4: Vertical bars to the left of curves show present-day aphelion-perihelion interval

of inner planets. Flyby event happened around day 1000 and its effects on planets can be
seen as a change of aphelion and perihelion.

Paremeters of this simulation are following;:

Simulation time - 30 years

Time step - 55 minutes

Initial date - 1st of January, 2000

Integration method - Runge-Kutta

5.2 Experiment 2: Close encounter with asteroid Apophis

In this experiment, Runge-Kutta simulator was used to simulate the solar system,
including the asteroid Apophis, for a period of 6.7 years from 2023 to 2029. The time
step used was 60 seconds, which provided a reasonable balance between simulation
accuracy and computational time required.

Apophis is a near-Earth asteroid discovered in 2004. Initially it caused concern
in the science community due to calculations showing a possibility of impact with
planet Earth in 2029 or 2036. Apophis is approximately 370 meters in diameter and
is classified as a potentially hazardous asteroid due to its size and orbit that brings
it close to Earth periodically. Scientific observations and simulations of Apophis are
important for understanding the potential risks of asteroid impacts and developing

36

strategies for mitigating them. If it was to collide with Farth, then it could severely
disrupt our civilization. More about asteroid Apophis can be found at [6].

During this simulation, it was found out that Apophis had a close approach to
Earth in 2029. This simulation was also used to again test the accuracy of imple-
mented simulation. I compared our simulated data with data provided by NASA
and found that the simulation was off by about three million kilometers in predicting
the closest approach distance of Apophis to Earth. Although this might sound like a
significant error, it is relatively small when considering the scale of astronomical dis-
tances. Predicted closest approach distance was 3.2 million kilometers, while NASA’s
prediction was only 65,000 kilometers. This difference can be attributed to various
factors, such as different model used by NASA’s simulator, small inaccuracies in the
input data. Smaller time step could be also used to increase precision.

To visualize and compare our simulated data with NASA’s data, plots were created
plots of the predicted positions of Apophis for each day during the period of the
close approach. These plots showed the differences between predicted positions and
NASA’s predicted positions. Despite the simulation’s inaccuracy, this experiment
shows the usefulness of numerical simulation methods in predicting the behavior of
complex systems such as the solar system. Simulation provided a reasonably accurate
prediction of Apophis’s position during its close approach to Earth. Furthermore, this
experiment highlights the importance of verifying simulation results with real-world
data to ensure their accuracy and reliability.

Distance between planet Earth and asteroid Apophis

2.0 - : /a — M
\ \ /’f Solver
\ \/
1.5
2 .
= |\
g 1.0 /
8
[a)
0.5 1 N\
\
0.0 v

0 500 1000 1500 2000
Simulation time [days]

Figure 5.5: Distance between planet Earth and asteroid Apophis accoring to implemented
simulator and NASA.

37

Predictions shown on figure 5.5 overlay nicely and it is hard to see the difference.
Zoomed part of plot showing the close encounter event is shown on figure 5.6.

0.030 A

0.025 ~

0.020 ~

0.015 1

Distance [AU]

0.010 ~

0.005 + JPL

Solver

0.000 A
2282.5 2285.0 2287.5 2290.0 2292.5 2295.0 2297.5 2300.0
Simulation time [days]

Figure 5.6: Difference can be clearly seen when zoomed into plot 5.5

Exact distance predicted by simulation is 0.022 AU, which is 329100 kilometers
while NASA’s figure is 0.00043 AU which is 65 075 kilometers. This distance is smaller
distance then orbits of some satellites. Experiment was repeated with 6 times smaller
time step of 10 seconds, but results were not significantly different.

5.3 Experiment 3: n-body vs 2-body simulation

The purpose of this experiment was to compare the results obtained from a n-body
simulation with those from a 2-body simulation. The Solar system was used as
the system to be simulated. The 2-body simulation involved only the sun and the
simulated object, while the n-body simulation included all the planets of the Solar
system. Simulations were run for the same amount of time, and the results were
compared.

Simulations were done with these settings:

e Simulation time - 2 years

o Time step - 60 seconds

« Initial date - 1st of January, 2000

o Integration method n-body - Runge-Kutta 4

First simulated object was planet Earth. On figure 5.8, distance between Earth in

n-body and two-body simulation can be seen. Maximum deviation during simulated

38

two years was 0.0042 AU, which is ~628311.057 km, about twice the distance between
Earth and Moon. In astronomical scale, this is relatively small distance.

Position difference of Earth between two simulations

0.004 4
0.003 A
5
=
@
2 0.002 -
8
h
]
0.001 4
0.000 1
T T T T T T T T
0 100 200 300 400 500 600 700
Time [days]

Figure 5.7: Position differences of Earth between 2 an n-body simulations.

Second simulated body was planet Mercury. It was chosen because of its close

distance to the Sun, therefore differences should be more notable. Same figure as
with Earth:

39

Position difference of Mercury between two simulations

0.200 4

0.175 +

0.150 4

0.125 +

0.100 4

0.075 4

Distance [AU]

0.050 4

0.025 4

0.000 +

T T T T T T T
0 100 200 300 400 500 600 700
Time [days]

Figure 5.8: Position differences of Mercury between 2 an n-body simulations.

In simulated two years, Mercury made 8 orbits around the Sun. These corresponds
to spikes that can be seen on the plot. With increasing time of simulation, the
error is increasingly growing. It seems like that time step of 60 seconds makes the
Mercury-Sun system unstable, and therefore smaller time step should be chosen for
this algorithm.

40

5.4 Experiment 4 - Resonance of Jupiter’s moons

In this experiment, simulation of Jupiter and its three closest moons Ganymede,
Europa and Io was performed to confirm that the three moons are indeed in 4:2:1
resonance. This means, that while Ganymede makes single orbit, Europa makes
exactly two and Io exactly four orbits. Integration method used was Runge-Kutta
for high precision. Time step was set to sixty seconds and simulation time was just
over 7 days. Results can be seen on following figure:

1e6 Periods of Jupiter's moons
—— Ganymede
Europa
g P
— o
E °]
1]
=
2 41
=
m
£
[P
[=]
=
5
£ 01
o
_2 -
_4 -
0 1 2 3 4 5 6 7
Time [days]

Figure 5.9: Differences in altitude of Jupiter’s moon over simulated time. Individual orbits
and their 4:2:1 resonance can be seen as periods of graphed curves.

Orbital resonance can be visually confirmed from results in figure 5.9. Resonance
was also confirmed numerically from simulated data in jupyter notebook tool.

41

Chapter 6

Future work

While the current simulation program provides satisfactory results, there are still im-
provements that could be made to the code to increase its capabilities. One potential
area of future work is rewriting the simulation program in a faster language, such as
C++. While Python is a powerful and versatile language, it can be computationally
expensive for large-scale simulations. By rewriting the program in a faster language,
the simulations could be run more efficiently and effectively, allowing for more com-
plex and large-scale simulations. Also vectorization could be utilized, instead of using
object-oriented approach to access object data. Another area of future work could be
to allow for more simulations to run in parallel or at least queue them. Currently, the
simulation program can only run one simulation at a time. By enabling the program
to run multiple simulations simultaneously, time of users could be saved. Further-
more, the ability to customize the algorithms used in the simulation could be added.
For example, the order of the Runge-Kutta or Adams-Bashforth methods could be
selected, allowing for greater control over the accuracy and efficiency of the simula-
tion. This could be particularly useful for simulations that require a high degree of
accuracy or are computationally expensive. Lastly, another improvement could be
the ability to rewind the animation of the simulation by manipulating the animation
slider. Currently, the animation can only be played forward, making it difficult to
analyze specific moments in the simulation. By allowing for the ability to rewind the
animation, users could easily go back to specific moments and analyze the motion of
the celestial objects in greater detail. Also GUI tool for creating input JSON files
could be created, as writing them manually is tedious and error-prone.

In conclusion, while the current n-body problem simulation program is functional,
there are still improvements that can be made to increase its accuracy, efficiency,
and capabilities. By rewriting the program in a faster language, allowing for more
simulations to run in parallel, enabling greater customization of algorithms, and
allowing for the ability to rewind the animation, the program could become an even
more powerful tool for understanding the motion of celestial objects.

42

Chapter 7

Conclusion

The objective of this thesis was to explore the concepts of orbital mechanics and n-
body problem, and develop a program that enables users to simulate general n-body
problem and visualize it through an animation. Users can define the simulation by
choosing an algorithm, step size, and simulation time. Simulating two-body problems
is also possible. Simulated systems are defined by JSON files, which contain initial
conditions needed for simulation. Results from simulator can be exported as csv file
and further manipulated or analyzed. In addition to the numerical output in the
form of CSV files, the application also includes an animation feature that displays
the simulated system throughout the simulation time. This feature provides a visual
way for the user to verify the output of the simulator and to observe expected events.
To validate created simulator, highly accurate ephemeris data were extracted from
NASA website to use as benchmark data. After the validation process, multiple
experiments were conducted. These included a comparison between two-body and n-
body problems, a simulation of the asteroid Apophis close approach to Earth in 2029
and finally flyby of a fictive star through the Solar system. While the application
produces correct data, there is room for improvements, both in terms of features
and performance. Additional algorithms could be incorporated, and more animation
controls could be added to enhance the user experience.

43

Bibliography

[1] CroBoTOV, V. A. Orbital Mechanics. 3rd ed. American Institute of
Aeronautics and Astronautics, Inc., 2002.

[2] GOLDSTEIN, H., POOLE, C. and SAFKO, J. Classical Mechanics. 3rd ed.
Addison Wesley, 2008. ISBN 978-3-540-5670-0.

[3] HAIRER, E., NORSETT, S. P. and WANNER, G. Solving Ordinary Differentail
Equation I. Springer, 2008. ISBN 978-3-540-5670-0.

[4] HAYES, W. Available at:
https://www.cs.toronto.edu/~wayne/research/thesis/msc/node24.html.

[5] HOWARD, C. D. Orbital mechanics for engineering students. Amsterdam:
Elsevier Butterworth-Heinemann, 2005. ISBN 0-7506-6169-0.

6] JET PROPULSION LABORATORY. PSmall-Body Database. Available at:
https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr=Apophis&view=0PC.

(7] JET PROPULSION LABORATORY. Horizons Web-Interface [Online resource].
2022. Available at: https://ssd.jpl.nasa.gov/horizons.cgi.

[8] KLEPPNER, D. and KOLENKOW, R. An introduction to mechanics. 2nd ed.
Cambridge University Press, 2014. ISBN 978-0-521-19811-0.

9] MATPLOTLIB DEVELOPMENT TEAM. Matplotlib 3.7.1 documentation [Online
documentation|. 2023. Available at: https://matplotlib.org/stable/index.html#.

[10] NASA. Planetary fact sheet. 2023. Available at:
https://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html.

[11] Nave, C. R. HyperPhysics. 2005-2023. Available at:
http://hyperphysics.phy-astr.gsu.edu/hbase/kepler.html.

[12] NEWTON, 1. The Principia. University of California Press, 1999.

[13] NILSSON, D. Law of Universal gravitation visualisation. Available at:
https://upload.wikimedia.org/wikipedia/commons/0/0e/

NewtonsLawOfUniversalGravitation.svg.

[14] PERINGER, P. Modelovdni a simulace - IMS Studijni opora [Online resource].
2021. Available at: https://wis.fit.vutbr.cz/FIT/st/cfs.php?file=
%2Fcourse’2FIMS-IT),2Ftexts%2Fopora-ims.pdf&cid=11453.

44

http://www.cs.toronto.edu/~wayne/research/thesis/msc/node24.html
https://ssd.jpl.nasa.gov/horizons.cgi
https://matpiotiib.org/stabie/index.htmi%23
http://cnasa.gov/planetary/factsheet/
http://gsu.edu/hbase/kepler
http://wikimedia.org/
http://vutbr.cz/FIT/st/cf

[15] THE QT COMPANY LTD. Qt for Python [Online documentation]. 2023.
Available at: https://doc.qt.io/qtforpython/.

[16] THORNTON, S. T. and MARION, J. B. Classical Dynamics of Particles and
Systems. Hth ed. Brooks/Cole, 2014. ISBN 0-534-40896-6.

[17] VITASEK, E. Numerické metody. Nakladatelstvi technické leteratury, 1987.

45

https://doc.qt.io/qtforpython/

Appendix A

SD card content hierarchy

root/
| _src/
| _animation.py
| _body.py
| _controller.py
| _csv_reader.py
| _csv_writer.py
| figure widget.py
| main_window.py
| _main.py
| simulation_dialog.py
| _main.py
| _system_importer.py
._utils.py
| forms/
| mainWindow.ui
| _simulationDialog.ui
| simulation/
| simulator_2body.py
| simulator_base.py
| simulator_nbody_adams_bashfort.py
| simulator_nbody_euler.py
| _simulator_nbody_rk4.py
| ui/
| ui_mainWindow.py
| _ui_simulationDialog.py
| _presets/
2body/
| 2body_solar_system. json
| _earth_and_sun. json
nbody/
| _apophis_2023. json
| jupiter_and_moons. json
| massive_red_dwarf.json
| solar_system. json

46

