
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

REINFORCEMENT LEARNING FOR AUTOMATED
STOCK PORTFOLIO ALLOCATION
VYUŽITÍ ZPĚTNOVAZEBNÉHO UČENÍ PRO AUTOMATICKOU ALOKACI AKCIOVÉHO
PORTFOLIA

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ZDENĚK LAPEŠ
AUTOR PRÁCE

SUPERVISOR doc. RNDr. MILAN ČEŠKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023



 

Institut: Department of Intelligent Systems (UITS)
 

Student: Lapeš Zdeněk
 

Programme: Information Technology
 

Specialization: Information Technology
 

 

Category: Artificial Intelligence
 

Academic year: 2022/23
  

Assignment:
 

1. Study the state-of-the-art methods for automated stock portfolio allocation. Focus on the methods
based on reinforcement learning and planning in Markov Decision Processes.

2. Experimentally evaluate selected open access tools for automated portfolio allocation including
e.g. FinRL-Meta and identify their weak points.

3. Propose and implement improvements of a selected method/tool allowing to mitigate theseweak
points.

4. Using suitable benchmarks and datasets, perform a detailed experimental evaluation of the
implemented improvements with the focus on the portfolio allocation returns.

 

Literature: 
Rao A., Jelvis T., Foundations of Reinforcement Learning with Applications in Finance. 1st Edition,
Taylor & Francis 2022
* Li, Xinyi and Li, Yinchuan and Zhan, Yuancheng and Liu, Xiao-Yang, Optimistic Bull or Pessimistic
Bear: Adaptive Deep Reinforcement Learning for Stock Portfolio Allocation, In ICML 2019.
* Liu X.-Y. Rui J. Gao J. aj.: FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven
Deep Reinforcement Learning in Quantitative Finance. Workshop on Data Centric AI 35th Conference on
Neural Information Processing Systems at NeurIPS 2021.
* Mao Guan and Xiao-Yang Liu. 2021. Explainable Deep Reinforcement Learning for Portfolio
Management: An Empirical Approach. In ICAIF 2021.

Requirements for the semestral defence: 
Items 1, 2, and partially 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
 

Supervisor: Češka Milan, doc. RNDr., Ph.D.
 

Head of Department: Hanáček Petr, doc. Dr. Ing.
 

Beginning of work: 1.11.2022
 

Submission deadline: 10.5.2023
 

Approval date: 3.11.2022

Bachelor's Thesis Assignment
148202

Reinforcement Learning for Automated Stock Portfolio AllocationTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno



Abstract
This thesis is focused on the topic of reinforcement learning applied to a task of portfolio
allocation. To accomplish this objective, the thesis first presents an overview of the funda-
mental theory, which includes the latest value-based and policy-based methods. Following
that, the thesis describes the Stock portfolio environment, and finally, the experimental
and implementation details are presented. The creation of datasets is discussed in detail,
along with the rationale and methodology behind it. The RL agent is then trained and
tested on three datasets, and the results obtained are promising and outperform common
benchmarks. However, it was discovered that the annual return of the agent is still not bet-
ter than the returns generated by the world’s top investors. The pipeline was implemented
in Python 3.10, and technology from Weights & Biases was used to monitor all datasets,
models, and hyperparameters. In conclusion, this work represents a significant step forward
in the development of more effective RL agents for financial investments, with the potential
to exceed even the performance of the world’s greatest investors.

Abstrakt
Tato práce je zaměřena na téma posilovacího učení aplikovaného na úlohu alokace portfolia.
K dosažení tohoto cíle práce nejprve uvádí přehled základní teorie, která zahrnuje nejnovější
metody založené na hodnotách a politikách. Následně je v práci popsáno prostředí port-
folia Stock a nakonec jsou uvedeny podrobnosti o experimentu a implementaci. Podrobně
je rozebrána tvorba datových souborů a její zdůvodnění a metodika. RL agent je poté vy-
cvičen a otestován na třech datových sadách a získané výsledky jsou slibné a překonávají
běžné benchmarky. Bylo však zjištěno, že roční výnos agenta stále není lepší než výnosy
generované nejlepšími světovými investory. Pipeline byla implementována v jazyce Python
3.10 a ke sledování všech datových sad, modelů a hyperparametrů byla použita technolo-
gie Weights & Biases. Závěrem lze říci, že tato práce představuje významný krok vpřed
ve vývoji efektivnějších RL agentů pro finanční investice, kteří mají potenciál překonat i
výkonnost nejlepších světových investorů.
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Rozšířený abstrakt
Tato práce se zaměřuje na využití posilovaného učení pro alokaci akciového portfolia. V
úvodu jsou vysvětleny základní pojmy a algoritmy posilovaného učení, včetně Markovových
procesů, které jsou jeho základem. Poté si řekneme o Value based metodách, mezi které patří
Dynamic Programming, Monte Carlo a Temporal Difference. Value-Based metody se snaží
naučit, jaká je kvalitu stavů, ve kterých se agent nacházel, a nebo kvalitu akcí provedených
agentem v daných stavech. Dále jsou vysvětleny Policy based metody, mezi které patří
Stochastic Policy Gradient a REINFORCE (Monte Carlo Policy Gradients), které se snaží
najít nejlepší rozhodovací strategii agenta, při které bude schopen dosáhnout svého cíle.
Na závěr zmíníme teorii o hlubokém posilovaném učení, která využívá neuronové sítě pro
naučení vhodné policy a také vysvětlíme koncept učení Aktor-kritik, který kombinuje Value
based a Policy based metody pro trenování agenta. V naší práci jsme použili následujicí
algoritmy A2C, SAC, DDPG, PPO a TD3.

V dalších kapitolách se věnujeme problematice alokace portfolia a přiblížíme přístup k
trenování agenta s posilovaným učením. Popíšeme také, jak jsme přistupovali k vytváření
datasetu, včetně výběru jednotlivých indikátorů z následujicích analýz fundamentalní a
technickou k popisu finančního prostředí. Poté vysvětlíme implementaci prostředí pro alokaci
portfolia, stanovíme akční prostor, který vymezuje možnosti agenta, v úkonu vybírání, jak
moc bude která spolenost nakoupena do portfolia. V neposlední řadě vysvětlíme funkci
odměn, která slouží k ohodnocování kvality provedených rozhodnutí agentem v prostředí.

Dále představujeme způsob, kterým jsme vybírali hyperparametry, které pomáhají agen-
tovi učit se chovat v daném prostředí. Hyperparametry volíme pomocí tzv metody hyperpa-
rameters tuning. A rozebereme zde seznamem parametrů, nad kterými se tuning prováděl,
a vysvětlíme, jak a proč byli hodnoty těchto parametrů ohraničeny. Jako další experiment
představujeme zkoumání vlivu datasetu na výkon agenta. V této části jsou představeny
výsledky agentů, kteří byli natrénováni na třech různých datasetech a porovnáme, jak se
agentovi dařilo v prostředí chovat. Dále je zde prezentován vliv každého datasetu na výkon
agenta. Agenti jsou natrénováni na těchto datasetech fundamentální dataset, technický
dataset a kombinace a jsou porovnáni mezi sebou. Následuje popis experimentu zaměřeného
na robustnost modelu. Nejprve je proveden výběr nejlepší konfigurace z předchozího experi-
mentu, kde byl prováděn hyperparametrický tuning. Následně natrénujeme několik modelů
na stejné konfiguraci hyperparametrů a ty potom provnáme podle metriky výkon portfolia,
která vyjadřuje, jak velké zhodnocení dosáhla daná skladba akcií v portfoliu.

V posledním experimentu jsou naše natrénované modely porovnány s veřejně dostupným
modelem využívajícím posilované učení pro alokaci portfolia, dále s standardními strate-
giemi pro alokaci portfolia, jako je Maximalizace Sharpeho poměru nebo Minimalizace rizika
portfolia, a nakonec s indexy, jako jsou Dow Jones Index, Nasdaq Composite, S&P500 a
Russell 2000. A experimentálně bylo zjistěno, že agent je schopen porazit všechny porovná-
vané strategie a většinu porovnávaných indexů ve zhodnocení portfolia. Také je dikutováno,
jak si agent vedl, např. v době propadů na burze, a jakých výsledků bylo možné dosáhnout
průměrným ročním zhodnocením.

Experimenty byly prováděny z účelem vytvořit a zjistit, jakých výsledků může agent
dosáhnout, zda bude možné použivat daného agenta na reálné burze. Z výsledků výše pop-
saných experimentů jsme experimentálně zjistili, že agent je schopen provádět alokaci port-
folia dostatečně přesně, aby porazil standardní strategie a většinu porovnávaných indexů.
Během experimentů jsme zjistili, jakých výsledků je možné agentem dosáhnout. Všechny
výsledky jsou prezentovány veřejně ze stránky Weights & Biases, kde jsou uloženy všechny
datasety a modely, a také současně všechny logované údalosti při tréninku a testování mod-



elů. Tím jsme chtěli zajistit reprodukovatelnost výsledků a snadnou dostupnost pro další
výzkumníci v této oblasti.
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Chapter 1

Introduction

1.1 Background
The Portfolio allocation problem is to spread appropriate finite cash budget into financial
instruments [10]. Under the financial instruments, we can imagine Stocks, Bonds, Mu-
tual Funds, Commodities, Derivatives, Real Estate Investments Trusts (REITs), Exchange-
Traded Funds (ETFs), and many more. The outcome should be to increase the initial capital
over the course of a selected investing horizon, which can vary from a few days to decades.
Portfolio management is essential for investors, particularly those who manage large sums
of money such as institutional investors, pension funds, and wealthy individuals. While
allocating assets instead of cash one must think about minimizing risk and maximizing
the expected return on the investment. For that, the key considered strategy is diversifica-
tion, which involves spreading investments across different instrument classes and markets
in order to reduce the overall risk of the portfolio. A portfolio full of different assets can
change over time due to market conditions, where the value of other assets may increase or
decrease, which may cause the portfolio to become imbalanced. Re-balancing ensures that
the portfolio remains aligned with the investor’s goals and risk tolerance.

Among other portfolio allocation strategies could be mentioned Modern portfolio the-
ory (MPT) to optimally allocate assets in a portfolio [19]. MPT uses statistical tools to
determine the efficient frontier, which is the set of optimal portfolios that offer the highest
expected return for a given level of risk, or the lowest risk for a given level of expected
return [22]. Another approach is Mean-variance optimization, which uses mathematical
models to determine the optimal portfolio based on an investor’s risk tolerance and ex-
pected returns [15].

These approaches are not too appropriate for portfolio management, because the stock
market is stochastic, volatile, quickly changing, and uncertain environment. These strategies
are not flexible enough to adapt to the changing environment like the stock market, because
they assume the future will be similar to the past, which may not always be accurate.

So, the most recent state-of-the-art portfolio management strategies are based on ma-
chine learning techniques. Reinforcement learning (RL) is a type of machine learning that
is well-suited for solving problems involving decision-making and control [17]. In the context
of portfolio allocation, RL can be used to optimize the allocation of assets in a portfolio in
order to maximize returns or minimize risk. RL algorithms can learn from historical data
and adapt to changing market conditions, which can lead to more efficient and profitable
portfolio management. The benefits of RL have been used in many different fields, such as
robotics, games, and finances.
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In the last decade, RL has become popular, because of its ability to learn difficult tasks in
a variety of domains without knowing the environment model [17]. RL has advantages, such
as flexibility, adaptability, and utilization of various information like e.q. experience gained
from the environment under certain conditions. The agent is trained under a certain policy
in a particular environment, which is modeled using Markov Decision Process (MDP). MDP
is a mathematical framework for modeling sequential decision-making problems [13]. MDP
can be used to model the fully observable environment, where the agent can observe the state
of the environment. If the environment is not fully observable, then the agent can observe
only a part of the state of the environment, which is called partially observable Markov
decision process (POMDP) [7]. In finances, the environment is usually fully observable,
because the agent can observe the state of the environment. MDP is composed of the
following elements:

1. State: The state is the current situation of the environment.

2. Action: The action is the decision that the agent can take.

3. Reward: The reward is the feedback that the agent receives after taking an action.

4. Transition: The transition is the change of the state after taking an action.

In agent training we handle the following problems:

• State space
The state space is a finite set of all possible configurations of the environment. In the
context of portfolio allocation, the state space can be defined as the finite set of all
possible instrument features (fundamental and technical analysis) and their weights
in the portfolio.

• Action space
Action space should be designed so that the agent weights the assets in the portfolio.
Here the question is: Should be this asset in the portfolio and if yes, what is the
weight of this asset in the portfolio? These decisions are crucial for the performance
of the agent. It is really difficult to find the optimal policy for the portfolio allocation
because the agent has to choose between multiple assets with various differences in
information about the assets. Also, actions should be considered profitable and safe
in the long term, which means that the agent usually has to make decisions based on
long-term rewards or on the defined investment horizon.

• Reward function
The reward should reflect the agent’s performance in the environment. Is the current
portfolio value increasing or decreasing after the agent takes actions proposed by the
policy?

When the state space is too large, then is merely impossible to be explored with the
limited computational resources Deep Reinforcement Learning (DRL) can be used. DRL is
a subfield of Reinforcement Learning (RL) that combines the use of deep neural networks
with RL algorithms. In traditional RL, the agent’s policy and value functions are typically
represented by simple, hand-designed features or a small number of parameters. In contrast,
DRL uses deep neural networks to represent these functions, allowing the agent to learn from
high-dimensional and complex inputs. DRL algorithms are used to train agents to perform
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a wide range of tasks, such as playing video games, controlling robotic arms, and driving
cars. There are several popular algorithms in DRL, such as: Deep Q-Network (DQN),
Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO), Soft
Actor-Critic (SAC), and Twin Delayed Deep Deterministic Policy Gradient (TD3).

1.2 Limitations
1. Data availability: DRL models require large amounts of historical data to train

effectively, which may be difficult to obtain for certain assets or markets.

2. Model Over-fitting: DRL models can easily over-fit to the training data, leading
to poor performance on unseen data.

3. High computational cost: DRL models can require significant computational re-
sources to train agents.

4. Risk management: DRL models may not be able to effectively handle risk manage-
ment, such as different market situations (Market sentiment, Bull and Bear markets).

1.3 Aim of the Thesis
We will evaluate the performance of portfolio allocation methods based on DRL and com-
pare them to traditional portfolio optimization techniques (MPT, Mean-Variance). Our goal
is to determine the potential of DRL for portfolio allocation and identify the limitations of
DRL-based portfolio allocation methods for future research.

The thesis objectives are:

• Experimental evaluation & Benchmarks
Compare existing portfolio allocation agents. Evaluate the performance of the RL
agents by comparing them with the baseline portfolio management strategies, such as
MPT, Mean-Variance Optimization, and indexes (DJI, Nasdaq-100, S&P500, RUS-
SEL2000).

• Dataset
Create a suitable datasets for the portfolio allocation problem. Datasets will be fo-
cused on the company’s financial data, such as fundamental and technical analysis
data.

• Reimplementation
Try to improve current agents (Portfolio Allocation agent from FinRL [4]) with new
datasets, focusing on Data Engineering and different DRL algorithms.

The thesis is be implemented using the programming language Python3 and open-source
libraries such as NumPy, Pandas, Stable Baselines3, and OpenAI Gym.
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Chapter 2

Reinforcement Learning

The motivation for this chapter comes from the influential book on reinforcement learning
by Richard Sutton and Andrew Barto and Foundations of Reinforcement Learning with
Application in Finance by Ashwin Rao and Tikhon Jelvis [13, 17].

This chapter discusses the application of Reinforcement Learning techniques in the
context of portfolio allocation. We provide an introduction to Markov Theory in section 2.2,
first examining Markov processes, Markov reward processes and Markov decision processes,
which are the basic building blocks of Reinforcement Learning. We then describe Model
Free Methods in section 2.3 and section 2.4. We discuss Model Free Reinforcement Learning
Methods in detail with the advantages and disadvantages of each approach. Let us start
with an introduction to artificial intelligence in general and its different types of learning:

Supervised Learning In supervised learning (SL), a model is trained on a labeled
dataset, where the input data is paired with corresponding output labels. The model learns
to make predictions based on the labeled examples, and the goal is to minimize the error
between predicted outputs and actual labels. Common applications of supervised learning
include image classification, speech recognition, and sentiment analysis.

Semi-supervised Learning Semi-supervised learning (SSL) is a combination of super-
vised and unsupervised learning. It uses a small labeled dataset along with a large unlabeled
dataset for training. The model leverages the limited labeled examples to learn patterns
from the unlabeled data and then makes predictions on unseen data. SSL is useful when
obtaining labeled data is expensive or time-consuming. It is often used in scenarios where
obtaining a large labeled dataset is challenging, such as in medical diagnosis or fraud de-
tection.

Unsupervised Learning In unsupervised learning (UL), the model learns from unla-
beled data without any predefined output labels. The goal is to find underlying patterns,
structures, or relationships within the data. Everyday unsupervised learning tasks include
clustering, dimensional reduction, and anomaly detection. UL is used in scenarios where la-
beled data is scarce or not available, and the model needs to discover patterns autonomously
from the data.

The last type is Reinforcement Learning and this entire chapter will be devoted to it,
let’s dive into it in more detail.
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2.1 Introduction
Reinforcement learning (RL) is an exciting field at the intersection of artificial intelligence
(AI) and machine learning (ML) that deals with training agents to make optimal decisions
in dynamic environments. RL is inspired by the way humans learn from experience, like
trial-and-error, and an agent interacts with an environment the same way and receives
feedback in the form of rewards (typically positive number, e.g.: 1) or penalties (typically
negative number, e.g.: −1), and uses this feedback to learn and improve its decision-making
abilities, section 2.1.

At the heart of RL lies the concept of an agent, which takes actions in an environment
to achieve specific goals. The environment is typically modeled as a Markov decision process
(MDP), later defined in section 2.2.3, which is a mathematical framework that describes
how an agent interacts with an environment in discrete time steps.

The goal of an RL agent is to learn a policy, denoted by 𝜋, which is a mapping from
states to actions that maximize the cumulative reward 𝐺𝑡 over time 𝑇 . The agent uses this
policy to select actions at each time step, and the environment responds with a new state
and a reward. The agent then updates its policy based on the observed rewards and states,
aiming to improve its decision-making abilities and achieve higher rewards in the long run.
This is the RL advantage because, unlike supervised learning, RL does not require labeled
data [14].

The sequence of states, actions, and rewards that the agent experiences is called a
trajectory, and it looks like this:

(𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, . . . , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇 , 𝑆𝑇 ) (2.1)

This sequence of state-action-reward can be finite or infinite, depending on the environ-
ment and the agent’s goal. A pretty good example of this is the game of chess, where the
game ends when one of the players wins or the game is a draw. In this case, the trajectory
is finite, and the agent’s goal is to maximize the cumulative reward over time 𝑇 . On the
other hand, the self-driving car example is an infinite-horizon problem, where the agent’s
goal is to maximize the cumulative reward over an infinite time horizon or until the car
reaches its destination [18].

Figure 2.1: The agent interacts with the environment and learns to maximize the cumulative
reward over time 𝑇 .

Because RL algorithms are categorized by the way it learns, there are many different
types of RL algorithms. Based on the different approaches we can categorize RL algorithms
into these classes:
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• Value-based

– No Policy (implicit)
– Value function

• Policy-based

– Policy
– No Value function

• Actor-critic

– Policy
– Value function

• Model-based

– Policy and/or Value function

– Model

• Model-free

– Policy and/or Value function

– No model

As we can see in fig. 2.2, the main difference is that the agent/algorithm learns the
decision process based on Value-based methods, Policy-based methods, Model-based models
or some other combination of these classes. In this section, we explain the concepts of Value-
based methods in section 2.3 and Policy-based methods in section 2.4, and leave untouched
Model-based methods as this work does not use them in the implementation.

Figure 2.2: The relationship between model, value function, and policy. Source [18]:

2.2 Markov Theory
This section provides an introduction to Markov theory, which is the fundamental building
block of Reinforcement Learning. We begin by Markov Process, described in section 2.2.1,
which is a stochastic process that satisfies the Markov property. We then move on to Markov
Reward Process, described in section 2.2.2, which is a Markov process with a reward func-
tion. Finally, we describe the most important for RL Markov Decision Process, described
in section 2.2.3, which is a Markov Reward process with decision-making ability.
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2.2.1 Markov Process

The Markov process (MP), also known as Markov Chains, describes the states of an envi-
ronment and models the dynamics of state transitions. In an MP, an agent can only observe
the changing states of the environment and has no influence over them. Markov process has
two key properties. Firstly, state transitions are non-deterministic. States are modeled as
realizations of random variables, defined in section 2.2.1. Secondly, the future state is only
dependent on the current state, and not on previous states, simplifying causality with the
Markov property [13, 3].

Probability Functions

The first property of an MP states that each concrete state of an environment is the
realization of a discrete random variable 𝑋 from set 𝑉 with a certain probability Pr [𝑋 = 𝑥],
where 𝑥 ∈ 𝑉 and set 𝑉 contains all states of an environment. A state is a realization of a
random experiment that the environment assumes with a certain probability, and this can
be represented as a probability function [18]:

𝑃 (𝑋 = 𝑋(𝜔)) = 𝑃 (𝑋 = 𝑥) (2.2)

The repeated successive execution of a random experiment can be represented as a
stochastic process, which is a sequence of random variables, e.g., 𝑋𝑡(𝜔), 𝑋𝑡+1(𝜔), . . . 𝑋𝑛(𝜔),
where a single term can be shortened to 𝑋𝑡 and it represents the state of the environment
at time 𝑡, 𝑡 ∈ N, 𝜔 is an elementary outcome of all possible outcomes Ω [3, 13].

Stochastic Process (Random Process)

A stochastic process is defined as a collection of random variables defined on a common
probability space (Ω,ℱ , 𝑃 ), where Ω is a sample space, ℱ is a 𝜎-algebra, and 𝑃 is a
probability measure, and the random variables, indexed by some set 𝑇 , all take values in
the same mathematical space 𝑆, which must be measurable with respect to some 𝜎-algebra
Σ. In other words, a stochastic process is a collection of random variables 𝑋𝑡, indexed by
time 𝑡, so the definition is [21]:

𝑋0, 𝑋1, 𝑋2, · · · for discrete-time (2.3)

or
{𝑋𝑡}𝑡≥0 for continuous-time. (2.4)

In stochastic processes the probability that the environment assumes a certain state
depends on the realized states of previous random variables. For example, if the weather
forecast is assumed to be a stochastic process, then yesterday’s weather may still have
an influence on tomorrow’s weather. To represent this causality complicates the modeling
of stochastic processes so that with the definition of Markov property, in section 2.2.1,
the dependence of future states is assumed only on the current state. This is the second
important property of the Markov process [18].

Markov Property

The Markov property, which is defined using conditional probability, states that “The fu-
ture is independent of the past, given the present.” The stochastic process has the Markov
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property if and only if, for all time steps 𝑡 ∈ 𝐼, where 𝐼 is some (totally ordered) set, the con-
ditional probability of the next state given the current state is equal to the conditional prob-
ability of the next state given all the previous states: Pr [𝑋𝑡+1|𝑋𝑡] = Pr [𝑋𝑡+1|𝑋1, . . . , 𝑋𝑡]

This property has several advantages in practical reinforcement learning, including the
uniqueness and distinctiveness of states, as well as the ability to precisely formulate the
probability of state transitions, defined as [17, 18]:

𝒫(𝑥′|𝑥) = Pr
[︀
𝑋𝑡+1 = 𝑥′|𝑋𝑡 = 𝑥

]︀
(2.5)

Given 𝑛 possible states, 𝑠 ∈ 𝒮, then the probability of transitioning from state 𝑠 to state
𝑠′ can be represented as a matrix 𝒫, and because probability summation rule, the sum of
transition probabilities from state 𝑠 to any other state 𝑠′ must equal to 1.

Definition 1. The Markov process is a stochastic process that satisfies the Markov property
and is described as tuple (𝒮,𝒫) for which holds:[1]

• 𝒮 = 𝑠1, 𝑠2, · · · , 𝑠𝑛 is a finite set of states

• 𝒫 is an 𝑛 × 𝑛 transition probability matrix which sums to 1 for each row, so each
value 𝑝𝑖𝑗 is the probability of transitioning from state 𝑠𝑖 to state 𝑠𝑗 in interval ⟨0; 1⟩

Starting States

The probability distribution of start states is denoted as 𝜇 : 𝑁 → [0, 1] in order to perform
simulations and compute the probability distribution of states at specific future time steps.
A Markov Process is fully specified by the transition probability function 𝒫, which governs
the complete dynamics of the process.

• Specification of the transition probability function 𝒫.

• Specification of the probability distribution of start states (denote this as 𝜇 : 𝑁 ∈
[0, 1]).

Given 𝜇 and 𝒫, we can generate sampling traces of the Markov Process and answer questions
such as the probability distribution of states at specific future time steps or the expected
time of the first occurrence of a specific state, given a certain starting probability distri-
bution 𝜇. The separation of concerns between 𝒫 and 𝜇 is key to the conceptualization of
Markov Processes [13].

Terminal States

Markov Processes can terminate at specific state (e.g., based on rules for winning or losing
in games). Termination can occur after a variable number of time steps (episodic) or after a
fixed number of time steps (as in many financial applications). If all sampling traces of the
Markov Process reach a terminal state, they are called episodic sequences. The notion of
episodic sequences is important in Reinforcement Learning. In some financial applications,
the Markov Process terminates after a fixed number of time steps 𝑇 , and states with time
index 𝑡 = 𝑇 are labeled as terminal states. States with time index 𝑡 < 𝑇 transition to states
𝑆𝑡+1 with time index 𝑡+ 1 [13].
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Figure 2.3: Markov Process with Start state 𝑆0 and Terminal state 𝑆3, because there is no
edge from 𝑆3.

The examples shown here only include states and transition probabilities. To fully define
an environment within the framework of RL, actions, and rewards also need to be defined, so
in the next section, we will introduce Markov Reward Process (MRP) and Markov Decision
Process (MDP) to be able to define RL environments [17].

2.2.2 Markov Reward Process

Markov Reward Process (MRP) is a Markov Process with rewards. These rewards are
random, and all we need to do is to specify the probability distributions of these rewards as
we make state transitions. The main purpose of Markov Reward Processes is to calculate
how much reward we would accumulate (in expectation, from each of the non-terminal
states) if we let the process run indefinitely, bearing in mind that future rewards need to be
discounted appropriately 𝛾 (otherwise, the sum of rewards could blow up to ∞). In order
to solve the problem of calculating expected accumulative rewards, defined in section 2.2.2,
from each non-terminal state, we will first set up some formalism for Markov Reward
Processes and develop some theory on calculating rewards accumulation [13].

The main objective of an RL agent is to maximize the sum of rewards from each time
step. The agent can observe different episodes in the Markov process but lacks the means
to determine the actual quality of an episode. By calculating the reward, we can precisely
measure the goodness of an episode or even a single state using the state-value function,
defined in section 2.2.2. This allows the agent to actively transition to favorable states and
maximize the reward [13].

Definition 2. Markov Reward Process is a Markov Process, along with a time-indexed
sequence of Reward random variables 𝑅𝑡 ∈ 𝐷 (a countable subset of R) for time steps 𝑡 =
1, 2, . . ., satisfying the Markov Property (including Rewards): 𝒫(𝑅𝑡+1, 𝑆𝑡+1)|𝑆𝑡, 𝑆𝑡−1, . . . , 𝑆0] =
𝑃 [(𝑅𝑡+1, 𝑆𝑡+1)|𝑆𝑡] for all 𝑡 ≥ 0. MRP is a tuple (𝒮,𝒫,ℛ, 𝛾) for which holds:[13]

• 𝒮 = 𝑠1, 𝑠2, · · · , 𝑠𝑛 is a finite set of states

• 𝒫 is an 𝑛 × 𝑛 transition probability matrix which sums to 1 for each row, so each
value 𝑝𝑖𝑗 is the probability of transitioning from state 𝑠𝑖 to state 𝑠𝑗 in interval ⟨0; 1⟩

• ℛ is a sequence of random variables 𝑅1, 𝑅2, · · · , 𝑅𝑛 where 𝑅𝑡 is a random variable
that represents the reward for transitioning from state 𝑠𝑡 to state 𝑠𝑡+1

• 𝛾 is a discount factor in interval ⟨0; 1⟩

𝒫(𝑠, 𝑟, 𝑠′) = Pr
[︀
𝑅𝑡+1 = 𝑟, 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠

]︀
for time steps 𝑡 = 0, 1, 2, . . . (2.6)

for all 𝑠 ∈ 𝑁, 𝑟 ∈ 𝐷, 𝑠′ ∈ 𝑆, such that
∑︁
𝑠′∈𝑆

∑︁
𝑟∈𝐷
𝒫(𝑠, 𝑟, 𝑠′) = 1 for all 𝑠 ∈ 𝑁
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Reward function

The reward function ℛ(𝑠) is a function that maps a state 𝑠 to a reward 𝑟 and specifies
how much reward and agent expects from the environment given current state 𝑠. If an
agent is in a state 𝑠 at time 𝑡, the agent receives reward 𝑅𝑡+1 at time 𝑡 + 1, when it
transitions to a subsequent state 𝑠′. Rewards of an episode can be represented as a sequence
(𝑅1, 𝑅2, . . . , 𝑅𝑡) [18].

When to receive the reward? An Reinforcement Learning Agent, which we will in-
troduce later, should receive a reward for a good action and a penalty for a bad action.
Good actions are those that lead to the agent’s main goal, while bad actions are those that
lead to a state that is not desirable for the agent. That is, an agent should not receive (one
small) reward when it can then receive a large penalty, for example in chess by taking one
piece, when it can then lose the game by getting checkmate [17].

Expected reward

The expected reward, denoted as 𝐺𝑡 at time 𝑡 is the discounted sum of rewards in a single
episode, is defined as:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + . . . =
∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 (2.7)

We can also calculate the expected rewards for state-action pairs as a two-argument
function 𝑟 : 𝑆 ×𝐴→ 𝑅, is defined as:

𝑟(𝑠, 𝑎) =

∞∑︁
𝑡=0

𝛾𝑡𝑅𝑡+1𝑃 (𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎) (2.8)

Discount factor 𝛾 The calculation also involves the discount factor 𝛾 which is a value in
the interval ⟨0, 1⟩. If 𝛾 is equal to one, then the expected reward can goes to infinity, that
is why the agent can only calculate the reward in the case of always terminating episodes.
If 𝛾 is less than one, the reward has a finite value, allowing the agent to determine the
quality of an episode. The discount factor is not only useful mathematically but also for
tuning the agent’s rewards. If early rewards in an episode are more significant than later
ones, 𝛾 should be close to zero. If the rewards represent monetary gains, then it is the case,
as early rewards earn additional interest. On the other hand, the closer 𝛾 is to one, the
more important later rewards are [13, 17, 12].

State-value Function

The state-value function provides information about the long-term expected reward for
each state in an environment. With this information, an agent can determine which state
to transition to in order to maximize the reward of an episode. Specifically, the agent should
choose the state that has the highest long-term expected reward. If the agent observes a
sequence of states and rewards, it can remember the subsequent rewards for each state,
calculate the reward of an episode, and iteratively update the probabilities for a higher oc-
currence of rewards over multiple episodes. As the number of episodes approaches infinity,
the estimated probabilities converge to the true probabilities, and the long-term expected
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reward of a state can be accurately determined. Intuitively, the more episodes and conse-
quent rewards an agent observes, the better it can estimate the value of each state. We
will introduce the methods for determining the state-value function and the action-value
function in the next subsection, along with a recursive iterative approach for calculating
the state-value function based on Bellman’s equation [18].

Since episodes may start with different states due to state transition probabilities, the
expected reward of a particular state is the expected value of the conditional density func-
tion over the probabilities of rewards for that state. Thus, 𝐺𝑡 can be treated mathematically
as a continuous random variable. To derive Bellman’s equation, defined later in this subsec-
tion, we need to make use of the definition of the (Recursive) State-value function [18, 13].

𝑣(𝑠) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠]

= 𝐸[𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠]

= 𝐸[𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡+1)|𝑆𝑡 = 𝑠]

= ℛ(𝑠) + 𝛾
∑︁
𝑠′∈𝒮
𝒫(𝑠′|𝑠)𝑣(𝑠′)

(2.9)

where 𝛾 is the discount factor, ℛ(𝑠) is the immediate reward for state 𝑠, 𝒫(𝑠′|𝑠) is the
transition probability from state 𝑠 to state 𝑠′, and 𝒮 is the set of all possible states in
the environment. The last equation expresses that the long-term expected reward of a state
depends only on the immediate reward and the long-term expected reward of the subsequent
states.

In the case of Finite Markov Reward Processes, let’s assume that the state space is
denoted as 𝒮 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}, and the subset of states of interest is denoted as 𝒩 with
𝑚 ≤ 𝑛 states. We can use bold-face notation to represent functions as column vectors and
matrices since we are dealing with finite states/transitions. So, 𝑉 is a column vector of
length 𝑚, 𝑃 is an 𝑚×𝑚 matrix, and 𝑅 is a column vector of length 𝑚 (with rows/columns
corresponding to states in 𝒩 ). We can express the equation in vector and matrix notation
as follows:

𝑉 = ℛ+ 𝛾𝒫 · 𝑉
= (𝐼𝑚 − 𝛾𝒫)−1 ·ℛ

(2.10)

where 𝐼𝑚 is the identity matrix of size 𝑚×𝑚, and 𝛾 is the discount factor [13].
By extending the section 2.2.2 to include actions, we arrive at the most important

equation in all of the reinforcement learning: The Bellman equation, defined in section 2.2.3.
It states that to calculate the long-term expected reward from a state, an agent only needs
to add together the reward of the current state and the long-term expected reward of the
next state [18].

2.2.3 Markov Decision Process

The Markov Decision Process (MDP) allows an agent to actively influence changes in the
state of the environment through its actions. Within the MDP, the agent has the ability
to jointly determine the subsequent state to which the environment should transition. The
agent’s primary goal is to strategically choose actions that maximize the expected payoff.
In the previous subsections, we addressed the aspect of sequential uncertainty (e.g., MRP)
using the Markov process framework and extended it to include the uncertain reward 𝑅𝑡 ∈ ℛ
at each state transition 𝑝(𝑠′, 𝑟, 𝑠), referred to as Markov reward processes. However, this
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framework lacks the notion of sequential decision making, and in this section, this notion is
introduced in terms of MDP, a generalization of MRP that includes the notion of sequential
decision making [13].
Definition 3. Markov decision process is the Markov reward process with actions. It is an
tuple (𝑆,𝐴,𝒫,ℛ, 𝛾), where:

• 𝒮 is a finite set of states, known as the State Space

• 𝒜 is a finite set of actions, known as the Action Space

• 𝒫 is a transition probability function 𝑝(𝑠′, 𝑟, 𝑠, 𝑎), which is a function that maps a
state 𝑠, an action 𝑎, a next state 𝑠′ and a reward 𝑟 to a probability 𝑝(𝑠′, 𝑟, 𝑠, 𝑎)

• ℛ is a reward function 𝑟(𝑠, 𝑎), which is a function that maps a state 𝑠 and an action
𝑎 to a reward 𝑟(𝑠, 𝑎)

• 𝛾 ∈ [0, 1] is the discount factor

Stochastic Policy function

A Stochastic Policy function, denoted by 𝜋, in the context of MDPs, is a function that maps
states to actions. It represents the agent’s decision-making strategy for selecting actions
based on the current state.
Definition 4. A policy is defined as 𝜋 : 𝒮 → 𝒜, where 𝒮 is the set of states and 𝒜 is the
set of actions. Notation for a policy is as follows:

𝜋(𝑎|𝑠) = P(𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠) (2.11)
Policy refers to the specification of an Agent’s actions based on the current state in a

Markov Decision Process. The policy can be deterministic, meaning it selects a single action
for each state. It is represented as a function 𝜋𝐷 : 𝑁 → 𝒜, where 𝜋𝐷(𝑠) represents the action
to be taken in state 𝑠. Or it can be stochastic, meaning it selects actions probabilistically
based on some probability distribution over actions for each state. A policy is a function that
maps states to actions and represents the agent’s decision-making strategy. Mathematically,
a Policy is represented as a function 𝜋 : 𝑁 ×𝐴→ [0, 1], where 𝑁 represents the state space
and 𝐴 represents the action space. The function 𝜋(𝑠, 𝑎) represents the probability of taking
action 𝑎 in state 𝑠 at time step 𝑡 = 0, 1, 2, . . ., for all 𝑠 ∈ 𝑁 and 𝑎 ∈ 𝐴. It is assumed
that the sum of probabilities for all actions in a given state is equal to 1. A Policy is
usually assumed to be Markovian, meaning that the action probabilities depend only on
the current state and not the history. It is also assumed to be stationary, meaning that the
action probabilities do not change over time. However, if the policy needs to depend on the
time step 𝑡, we can include 𝑡 as part of the state, which would make the policy stationary
but may increase computational cost due to the enlarged state space. In the more general
case, where states or rewards are uncountable, the same concepts apply except that the
mathematical formalism needs to be more detailed and more careful. Specifically, we’d end
up with integrals instead of summations, and probability density functions (for continuous
probability distributions) instead of probability mass functions (for discrete probability
distributions). For ease of notation and more importantly, for ease of understanding of the
core concepts (without being distracted by heavy mathematical formalism), we’ve chosen
to stay with discrete-time, countable 𝒮, countable 𝒜 [13].

Policies and action-value functions are closely related and are used interchangeably in
many reinforcement learning algorithms, but they are conceptually distinct.
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State-value Function for Stochastic Policy 𝜋

The value function 𝑉𝜋(𝑠) for a stochastic policy 𝜋 is the expected cumulative discounted
reward the agent can obtain from state 𝑠 by following policy 𝜋 and then continuing to follow
𝜋 thereafter. It can be computed recursively using the Bellman equation, which relates the
Value Function of a state.to the rewards and transitions of the MDP. It is defined as:

𝑣𝜋(𝑠)
.
= 𝜋 [𝑔𝑡|𝑆𝑡 = 𝑠]

= [𝑟𝑡+1 = 𝛾𝑔𝑡+1|𝑆𝑡 = 𝑠]

= 𝜋

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑆𝑡 = 𝑠

]︃
=
∑︁
𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑟, 𝑠′|𝑠, 𝑎)
[︀
𝑟 + 𝛾𝑣𝜋(𝑠

′)
]︀

, for all 𝑠 ∈ 𝒮

(2.12)

where E𝜋 denotes the expectation with respect to the states and rewards generated by
following policy 𝜋 [17].

Action-value Function

Action-Value Function 𝑞𝜋(𝑠, 𝑎), which maps a (state, action) pair to the expected reward
originating from that pair when following the policy 𝜋. The Action-Value Function is de-
noted by 𝑞𝜋 and is crucial in developing various Dynamic Programming and Reinforcement
Learning algorithms for the MDP Prediction problem [17].

Definition 5. The action-value function 𝑄𝜋(𝑠, 𝑎) for a policy 𝜋 is the expected cumulative
discounted reward the agent can obtain from state 𝑠, taking action 𝑎, and then following
policy 𝜋 thereafter. It is defined as:

𝑞𝜋(𝑠, 𝑎) = E𝜋

[︃ ∞∑︁
𝑡=0

𝛾𝑡𝑅𝑡+1|𝑆0 = 𝑠,𝐴0 = 𝑎

]︃
(2.13)

The table of action-value functions is also called Q-Table. A policy and the action-value
functions of an agent can both be represented by |𝒮| × |𝒜| matrix. Implementations of RL
algorithms then mostly use only the matrix of action-value functions and infer the policy
from them. The goal of an agent is to maximize the return. In the above context, this means
to find a policy that yields as much return as possible, therefore in section 2.2.3 we define
the Optimal Value Funtions [17].

To avoid confusion, 𝑣𝜋 is referred to as the State-Value Function, while 𝑞𝜋 is referred to
as the Action-Value Function. The Action-Value Function provides information about the
expected returns from specific state-action pairs and is useful for making decisions about
which actions to take in an MDP. The relationship between the state-value function and
the action-value function can be defined as:

𝑣𝜋(𝑠) = max
𝑎∈𝒜

𝑞𝜋(𝑠, 𝑎) (2.14)

Optimal State-value and Action-value Functions

The goal of an agent is to maximize the reward, which means finding a policy that yields
the highest possible return. To compare two policies, let 𝜋 and 𝜋′ be two different stochastic
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policies. Then 𝜋′ is considered better or equal to 𝜋 if 𝑣𝜋′(𝑠) ≥ 𝑣𝜋(𝑠) holds for all states 𝑠.
It can be shown that there is always at least one policy that is better or equal to all other
policies, and this policy is called the optimal policy 𝜋*. If an agent uses the optimal policy,
then for all states and actions the agent will use the optimal state-value function:

Definition 6. The Optimal State-value function 𝑣*(𝑠) is the maximum value function over
all possible policies and is defined as:

𝑣*(𝑠) = max
𝜋

𝑣𝜋(𝑠) (2.15)

and the optimal action-value function:

Definition 7. The Optimal Action-value function 𝑞*(𝑠, 𝑎) is the maximum action-value
function over all possible policies. It is defined as:

𝑞*(𝑠, 𝑎) = max
𝜋

𝑞𝜋(𝑠, 𝑎) (2.16)

If the optimal action-value 𝑞* function is found, the optimal policy 𝜋* can be derived.
The optimal policy function 𝜋*(𝑎|𝑠) always selects an action 𝑎 with a selection probability
of 1 for which 𝑞*(𝑠, 𝑎) is maximal for a given state 𝑠. It also follows that the optimal policy
is deterministic, meaning for the same state, the optimal policy function always selects
exactly the same action. The transition from stochastic to deterministic policy is explained
by the greedy selection1 of actions in the last equation [2, 13]:

𝜋*(𝑎|𝑠) =

{︃
1, if 𝑎 = argmax*𝑞(𝑠, 𝑎)

0, else
(2.17)

Bellman’s Optimality Equation

The optimal state-value function 𝑣*(𝑠) must satisfy Bellman’s equation, which provides a
recursive rule for determining the long-term expected return of each state. In order to incor-
porate actions, the State-value function for a Markov Reward Process (MRP) is extended
to include actions as the second parameter, leading to Bellman’s optimality equation for
𝑣*(𝑠) [17]:

𝑣*(𝑠)
.
= max

𝑎∈𝒜
𝑞𝜋*(𝑠, 𝑎)

= max
𝑎∈𝒜

E[𝑅𝑡+1 + 𝛾𝑣*(𝑆𝑡+1)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= max
𝑎∈𝒜

∑︁
𝑠′,𝑟

𝑝(𝑟, 𝑠′|𝑠, 𝑎)
[︀
𝑟 + 𝛾𝑣*(𝑠

′)
]︀ (2.18)

This equation derives the recursive relation to the subsequent state, allowing the refer-
ence to the optimal policy to be omitted. Similarly, the Action-value function 𝑞*(𝑠, 𝑎) can
be derived as [17]:

𝑞*(𝑠, 𝑎) = E[𝑅𝑡+1 + 𝛾max
𝑎′∈𝒜

𝑞*(𝑆𝑡+1, 𝑎
′)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

=
∑︁
𝑠′,𝑟

𝑝(𝑟, 𝑠′|𝑠, 𝑎)
[︂
𝑟 + 𝛾max

𝑎′∈𝒜
𝑞*(𝑠

′, 𝑎′)

]︂ (2.19)

1Always choose action with the highest expected reward.
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The Bellman Optimality equation can be used to recursively calculate value functions
by updating the value of each state based on the immediate reward and the long-term
expected reward of the next state. With this solid understanding of Markov Decision Pro-
cesses (MDP), which form the foundation for Reinforcement Learning (RL), we can delve
into the different learning methods used in RL [17].

2.3 Value-based learning
This section presents value-based algorithms that iteratively compute state-value or action-
value functions of states and actions. These functions are then used to derive continuously
improving policies. Therefore, these algorithms are referred to as value-based algorithms.
In section 2.3.1 we address Planning algorithm, which requires prior knowledge of transition
probabilities and rewards. In section 2.3.2 we address Monte Carlo methods, that do not
require prior knowledge of transition probabilities and rewards. In section 2.3.3 we address
Temporal Difference methods, finally in section 2.3.4 we address Function Approximation
methods, that deals with the large state/action spaces.

2.3.1 Dynamic Programming

The term dynamic programming (DP) refers to a collection of algorithms that can be used
to compute optimal policies in Markov decision processes (MDPs) when a perfect model of
the environment is available. Classical DP algorithms are limited in reinforcement learning
due to their assumptions of a perfect model and computational expense. DP uses value
functions to organize the search for good policies, and the Bellman optimality equations
define optimal value functions (State-value function and Action-value function). DP al-
gorithms are effective for problems with finite states, action, and reward sets. However,
for continuous problems, exact solutions are limited. One approach is to approximate so-
lutions by discretizing the state and action spaces and applying finite-state DP methods.
The second approach is to use function approximation to approximate the value functions.
DP planning algorithms consist of the evaluation of a given policy, called policy prediction,
defined in section 2.3.1 and the subsequent improvement of the policy, called policy im-
provement, defined in section 2.3.1. The goal of these two steps is to infer 𝑣*(𝑠) or 𝑞*(𝑠, 𝑎)
for all the states and actions in a procedure called Generalized Policy Iteration, defined
in section 2.3.1 [17, 18].

Policy Iteration

Policy iteration consists of 2 steps: policy evaluation and policy improvement. The policy
prediction step, defined in section 2.3.1, is used to estimate the value function 𝑣𝜋 for a
given policy 𝜋. The policy improvement step, defined in section 2.3.1 is used to improve
the policy 𝜋 by selecting the action that maximizes the value function 𝑣𝜋 [17].

Policy Prediction Policy evaluation, or prediction, is the process of computing the state-
value function for an arbitrary policy. The state-value function denoted as 𝑣𝜋(𝑠), represents
the expected sum of discounted rewards from a given state 𝑠 when following policy 𝜋.
If the dynamics of the environment are completely known, the policy evaluation can be
formulated as a system of simultaneous linear equations, which can be solved iteratively
using update rules based on the Bellman equation for 𝑣𝜋. This process involves finding
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successive approximations of the value function, starting from an initial approximation, and
updating it according to the Bellman equation until convergence is achieved to 𝑣𝑘(𝑠) ≈ 𝑣𝜋(𝑠)
with:

𝑣𝑘+1(𝑠) =
∑︁
𝑎∈𝒜

𝜋(𝑎|𝑠)

(︃
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝒮

𝑃 (𝑠′|𝑠, 𝑎)𝑣𝑘(𝑠′)

)︃
(2.20)

for all states, this equation is analogous to Bellman’s optimality equation for 𝑣*(𝑠) in
iterative form. Once 𝑣𝜋(𝑠) is computed for a given policy, the action-value function can be
obtained [17, 18]:

𝑞𝜋(𝑠, 𝑎) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎] = 𝑅(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈𝒮

𝑃 (𝑠′|𝑠, 𝑎)𝑣𝜋(𝑠′) (2.21)

Policy Improvement This equation represents Bellman’s equation for 𝑞𝜋(𝑠, 𝑎) and can
be utilized in the Policy Improvement step to generate a new policy. It is important to
verify that the new deterministic policy is better than or equal to the old policy, given that
this condition holds for all states:

𝑞𝜋(𝑠, 𝜋
′(𝑠)) ≥ 𝑣𝜋(𝑠) (2.22)

This means that choosing action 𝑎′ = 𝜋′(𝑠) in state 𝑠 under policy 𝜋 produces a better result
than action 𝑎 = 𝜋(𝑠).Afterward the action-value function 𝑞𝜋′(𝑠, 𝑎) is computed for the new
policy 𝜋′ in the Policy Evaluation step and improved with 𝜋′(𝑠) = argmax𝑎 𝑞𝜋′(𝑠, 𝑎) [18, 17].

Value Iteration

Value iteration effectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep. In general, the
entire class of truncated policy iteration algorithms can be thought of as sequences of
sweeps, some of which use policy evaluation updates and some of which use value iteration
updates. Because the max operation in the update equation definition 8 is the only difference
between these updates, this just means that the max operation is added to some sweeps
of policy evaluation. All of these algorithms converge to an optimal policy for discounted
finite MDPs. The algorithm pseudocode is presented in appendix A.1 [17].

Definition 8. Value Iteration Equation is that iteratively computes the state-value
function 𝑉𝑘(𝑠) for a given policy 𝜋 using the Bellman equation:

𝑣𝑘+1(𝑠)
.
= max

𝑎
E [𝑅𝑡+1 + 𝛾𝑣𝑘(𝑆𝑡+1)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝑣𝑘(𝑠
′)]

(2.23)

Generalized Policy Iteration

If Policy Evaluation and Policy Improvement steps are executed enough times and no more
improvement of the old policy over the new policy is found, then optimal 𝑞* and 𝜋* are
found. Well-known algorithms in DP which implement this Generalized Policy Iteration are
the Policy Iteration algorithm and its special case the Value Iteration algorithm, defined
above in section 2.3.1. They use the equations Bellman’s equations for 𝑣*(𝑠) and 𝑞*(𝑠, 𝑎)
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and a variant of the Generalized Policy Iteration method, where 𝑣𝜋(𝑠) does not have to
be determined. The iteration in the Policy Evaluation step is immediately followed by the
Policy Improvement step [17, 8].

Figure 2.4: Generalized Policy Iteration con-
vergence.

2.3.2 Monte Carlo Methods

In this chapter, we explore Monte Carlo methods for es-
timating value functions in the context of reinforcement
learning (RL) without assuming complete knowledge of
the environment (transition probabilities and reward func-
tion). Monte Carlo methods use sample sequences of
states, actions, and rewards from actual or simulated in-
teractions with the environment for learning. These meth-
ods can be used to solve the RL problem for episodic
tasks, where experience is divided into episodes and value
estimates and policies are updated only on the completion
of an episode.

MC methods allow an agent to infer the optimal pol-
icy 𝜋* from the optimal action-value function 𝑞*(𝑠, 𝑎) es-
timated through experience. MC methods use the itera-
tive procedure Generalized Policy Iteration to incrementally infer 𝜋*. First, a finite trajec-
tory (𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, · · · , 𝑅𝑛, 𝑆𝑛) is generated, where actions are selected according to
a stochastic policy 𝜋(𝑎|𝑠) and states and rewards come from the unknown environmental
dynamics. From this episode, the return 𝐺𝑡 is computed for all state-action pairs reached.
Then, the policy evaluation step is performed using the update equation [17, 18, 13]:

𝑞𝑘+1(𝑠, 𝑎) = 𝑞𝑘(𝑠, 𝑎) + 𝛼(𝐺𝑡 − 𝑞𝑘(𝑠, 𝑎)) (2.24)
where 𝛼 ∈ (0, 1) is a learning rate and 𝐺𝑡 is the sum of discounted rewards starting from
action 𝑎 in state 𝑠. The term 𝐺𝑡 − 𝑞𝑘(𝑠, 𝑎) corrects the value of 𝑞𝑘+1(𝑠, 𝑎) in the direction
of the target 𝐺𝑡. The index 𝑘 represents the current episode, and in the limiting case,
𝑞𝑘(𝑠, 𝑎) = 𝑞𝜋(𝑠, 𝑎), where 𝜋 is the optimal policy [17].

𝜋0
𝐸−→ 𝑞𝜋0

𝐼−→ 𝜋1
𝐸−→ 𝑞𝜋1

𝐼−→ 𝜋2
𝐸−→ 𝑞𝜋2

𝐼−→ ·𝜋*
𝐸−→ 𝑞𝜋* (2.25)

Since MC methods do not require knowledge of the environment dynamics, a non-
deterministic policy should be used for episode generation to ensure the exploration of all
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states and actions. A stochastic policy, such as the 𝜖-greedy approach, is commonly used in
MC methods for exploration [18].

Epsilon-Greedy Policy Exploration The 𝜖-greedy approach for exploration selects
actions randomly according to:

𝜋′(𝑎|𝑆) =

{︃
1− 𝜖+ 𝜖

|𝒜| if 𝑎 = 𝐴*

𝜖
|𝒜| if 𝑎 ̸= 𝐴* (2.26)

where 𝐴* = argmax𝑎(𝑆𝑡, 𝑎). A Greedy action is an action with the highest estimated action
value according to the current policy. The process of modifying action values in the policy
evaluation step and setting a new policy in the policy improvement step is referred to as
training the RL agent. It follows from eq. (2.24) that MC methods use the 𝐺𝑡 return of an
episode, which can only be computed when the episode is completed. Therefore, MC meth-
ods can only be used in environments with finite, i.e. always ending, episodes. This strategy
is called bootstrapping, defined in section 2.3.3, when the methods do not need to wait for
the end of the episode, but only need n-steps to improve the policy, the whole strategy
is called n-steps bootstrapping and next method Temporal-Difference uses this strategy to
improve convergence to optimal value-function citeFITMT25127, sutton2018reinforcement,
rl-course-david-silver.

2.3.3 Temporal-Difference Methods

Temporal-difference (TD) learning is a fundamental concept in reinforcement learning that
combines ideas from Monte Carlo and dynamic programming (DP). TD methods allow
for learning from raw experience without a model of the environment’s dynamics, similar
to Monte Carlo methods, but also update estimates based on other learned estimates,
without waiting for a final outcome (like DP methods) using n-step bootstrapping, defined
in section 2.3.3. The relationship between TD, DP, and Monte Carlo is a recurring theme
in reinforcement learning theory, and these ideas can be blended and combined in various
ways. Both TD and Monte Carlo methods are used for policy evaluation, estimating the
value function for a given policy. However, TD methods differ from Monte Carlo methods
in that they update their value functions 𝑣𝑡+1(𝑠) or 𝑞𝑡+1(𝑎, 𝑠) estimates based on the non-
terminal states observed in the experience, and they do not have to wait until the end of
the episode to determine the increment to the value function [14, 17].

n-step Bootstrapping

The n-step bootstrapping is a strategy to improve the convergence of the value function.
The idea is to look only n-steps ahead to update value function, instead of using the return
of whole the episode. We show the difference in TD and MC methods.

The TD target is the sum of the reward and the discounted value of the next state, and
it serves as the target for the TD update. The 1-step TD target 𝐺𝑡 is:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑉 (𝑆𝑡+1) (2.27)

or for 2-step TD target 𝐺𝑡:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑉 (𝑆𝑡+2) (2.28)
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and for n-step TD target 𝐺𝑡:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + · · ·+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉 (𝑆𝑡+𝑛) (2.29)

while Monte Carlo Target 𝐺𝑡:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + · · ·+ 𝛾𝑇−𝑡−1𝑅𝑇 (2.30)

The learning rule for (simplest) TD(0), also known as 1-step TD is the following update
equation:

𝑉 (𝑆𝑡) = 𝑉 (𝑆𝑡) + 𝛼 · (𝑅𝑡+1 + 𝛾 · 𝑉 (𝑆𝑡+1)− 𝑉 (𝑆𝑡)) (2.31)

where 𝑉 (𝑆𝑡) is the estimated value of state 𝑆𝑡, 𝛼 is the learning rate, 𝑅𝑡+1 is the reward
received at time step 𝑡+ 1, 𝛾 is the discount factor, and 𝑉 (𝑆𝑡+1) is the current estimate of
the value of the next state. On the other for the n-step bootstrapping the learning rule for
TD(n), also known as n-step TD is the following update equation:

𝑉𝑡:𝑡+𝑛 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + · · ·+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉 (𝑆𝑡+𝑛) , for 0 ≤ 𝑡 ≤ 𝑇 (2.32)

The TD Error is the difference between the TD target and the current value function
estimate:

𝑅𝑡+1 + 𝛾 · 𝑉 (𝑆𝑡+1)− 𝑉 (𝑆𝑡) (2.33)

and represents the error in the current estimate of the value function, and the TD target
represents the updated estimate of the value function for the current state. By using the
TD error and TD target in the update rule, TD methods can learn from raw experience and
update the value function at each time step, making them well-suited for online learning
tasks [17].

In addition to TD(0), there are also other variations of TD methods such as TD(𝜆),
which is a family of methods that use eligibility traces to combine TD(0) updates with
Monte Carlo-like updates. TD(𝜆) methods have a parameter 𝜆 that controls the trade-off
between the bias and variance of the updates. When 𝜆 is set to 0, TD(𝜆) reduces to TD(0),
and when 𝜆 is set to 1, TD(𝜆) reduces to Monte Carlo updates. TD(𝜆) methods update
the value function for not only the current state but also for all the states visited in the
episode, weighted by their eligibility traces. The eligibility traces keeps track of the recent
history of state visits and decay over time with a decay factor 𝜆, which determines the
credit assignment to different states [17].

TD methods do not have to wait until the end of the episode to update the value
function. Instead, they can make updates at each time step, using the observed reward
and the estimate of the value function for the next state. This makes TD methods more
computationally efficient and allows for online learning in environments where episodes are
long or never-ending. Like DP and Monte Carlo methods, TD methods also use the iterative
Generalized Policy Iteration (GPI) procedure to determine the optimal policy. The policy
evaluation step in TD methods differs from Monte Carlo methods in that it uses the TD
error, which is the difference between the TD target and the current estimate of the value
function, as the update rule [17].

On-Policy Learning (SARSA)

The TD methods use the action-value function for the evaluation step and iteratively de-
termine 𝑞𝜋(𝑠, 𝑎). A TD method that implements this practice is called SARSA and adjusts
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the action-value function in the evaluation step for a state-action pair at each time-step of
the episode as [17, 14]:

𝑞𝑡+1(𝑠, 𝑎) = 𝑞𝑡(𝑠, 𝑎) + 𝛼
(︀
𝑅𝑡+1 + 𝛾𝑞𝑡(𝑠

′, 𝑎′)− 𝑞𝑡(𝑠, 𝑎)
)︀

(2.34)

The TD methods, such as SARSA, utilize the action-value function for evaluating and
updating the action-value estimates. SARSA adjusts the action-value function at each time
step of the episode based on the sequence of transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′) generated by the
environment dynamics and the current epsilon-greedy policy. The updated action-value
function is used to determine the new policy at the next time step. This process is repeated
iteratively until optimal action value and policy functions are found. SARSA is an on-policy
algorithm, as it evaluates and improves the same policy used for selecting actions [14]:

𝑞𝑡+1(𝑠, 𝑎) = 𝑞𝑡(𝑠, 𝑎) + 𝛼
(︁
𝑅𝑡+1 + 𝛾max

𝑎*
𝑞𝑡(𝑠

′, 𝑎*)− 𝑞𝑡(𝑠, 𝑎)
)︁

(2.35)

Off-Policy Learning (Q Learning)

On the other hand, off-policy algorithms, like Q-learning, evaluate and improve one policy
while using a different policy for selecting actions. This can be useful, for example, when
introducing a new version of an agent with a different policy to learn from an old agent with
a well-performing policy. In Q-learning, the action maximizing action (𝑎*) of all action-value
functions at a fixed state 𝑠′ is always chosen when updating the action-value function for a
given state-action pair (𝑠, 𝑎), regardless of which action 𝑎* of the policy was chosen. After
updating the action-value function, the policy improvement step is performed using the
epsilon-greedy approach with respect to the current policy (𝜋) and optionally the old policy
(𝜇) as well. An off-policy TD control algorithm known as Q-learning, defined by [18, 17]:

𝑄(𝑆𝑡, 𝐴𝑡)← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼
[︁
𝑅𝑡+1 + 𝛾max

𝑎
𝑄(𝑆𝑡+1, 𝑎)−𝑄(𝑆𝑡, 𝐴𝑡)

]︁
(2.36)

In this case, the learned action-value function, 𝑄, directly approximates 𝑞*, the optimal
action-value function, independent of the policy being followed. This dramatically simplifies
the analysis of the algorithm and enables early convergence proofs. The policy still has an
effect in that it determines which state-action pairs are visited and updated. However, all
that is required for correct convergence is that all pairs (transition matrix) continue to be
updated. This is a minimal requirement in the sense that any method guaranteed to find
optimal behavior in the general case must require it. The Q-learning algorithm is show
in algorithm 1 [14, 17].

2.3.4 Function Approximation

The Monte Carlo and Temporal Difference algorithms discussed earlier are known as tabular
methods because they rely on a matrix of action returns and values of dimension |𝒮|𝒜|.
However, when the number of states or actions is extremely large, as in the case of Portfolio
Allocation, where the state space is the entire stock market, which may include data from
thousands of stocks, the economic situation of the entire world, and the current political
situation, all of these things need to be taken into account, so the state space is huge. The
agent managing which assets it allocates funds to uses these observations, which very often
change every single second, so this matrix becomes excessively huge. This poses a problem
in terms of memory requirements, and it becomes almost impossible for an agent using MC
or TD methods to comprehensively evaluate all the states and derive a policy [17, 18].
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Approximate Methods, which utilize parametrized function approximators such as deci-
sion trees, regression methods, or neural networks, differ from Tabular Methods in that they
do not rely on matrices to estimate action-value returns. These methods have emerged as a
solution approach to the limitations of Tabular Methods, as they are more memory efficient
and capable of generalization. When neural networks are used as function approximators,
then these algorithms are classified as Deep Reinforcement Learning (DRL) [18].

The mean square error is defined as:

𝑉 𝐸(𝑤)
.
=
∑︁
𝑠∈𝒮

𝜇(𝑠) [𝑣𝜋(𝑠)− 𝑣(𝑠,𝑤)] (2.37)

where 𝜇(𝑠) is the probability of visiting state 𝑠, and 𝑣(𝑠,𝑤) is the output of the function
approximator for state 𝑠 and weight vector 𝑤. The objective is to minimize the error
between the target output and the output of the function approximator, this is done by
minimizing the 𝑉 𝐸(𝑠).

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a widely used method for function approximation in
value prediction. It is well-suited for online reinforcement learning. In SGD, the weight
vector is updated at each time step based on a small step in the direction of the negative
gradient of the squared error for a single example. The step size is controlled by a positive
parameter called the learning rate. The target output for each example may be a noisy
approximation or a bootstrapping target [17].

The Approximate Solution Methods use a function approximator to approximate the
action-value function 𝑞𝜋(𝑠, 𝑎) or the state-value function 𝑣𝜋(𝑠) as: 𝑣(𝑠,𝑤) ≈ 𝑣𝜋(𝑠) or
𝑞(𝑠, 𝑎,𝑤) ≈ 𝑞𝜋(𝑠, 𝑎), where 𝑤 ∈ R𝑑, 𝑑 ∈ N

The Gradient-descent update for state-value prediction is:

𝑤𝑡+1 = 𝑤𝑡 − 𝛼 [𝑣𝜋(𝑆𝑡)− 𝑣(𝑆𝑡,𝑤)]∇𝑣(𝑆𝑡,𝑤) (2.38)

where 𝛼 is the learning rate, and ∇𝑣(𝑆𝑡,𝑤) is the gradient of the function approximator
with respect to the weight vector 𝑤.

The eq. (2.38) can be extended to n-step returns:

𝑤𝑡+𝑛
.
= 𝑤𝑡+𝑛−1 + 𝛼 [𝐺𝑡:𝑡+𝑛 − 𝑣(𝑆𝑡,𝑤𝑡+𝑛−1)]∇𝑣(𝑆𝑡,𝑤𝑡+𝑛−1) (2.39)

where the n-step return is:

𝐺𝑡:𝑡+𝑛
.
= 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + · · ·+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑣(𝑆𝑡+𝑛,𝑤𝑡+𝑛−1) (2.40)

On the other hand, the Gradient-descent update for action-value prediction is:

𝑤𝑡+1 = 𝑤𝑡 + 𝛼 [𝑈𝑡 − 𝑞(𝑆𝑡, 𝐴𝑡,𝑤𝑡)]∇𝑞(𝑆𝑡, 𝐴𝑡,𝑤𝑡) (2.41)

where the 𝑈𝑡 is the TD target, as mentioned earlier, and the ∇𝑞(𝑆𝑡, 𝐴𝑡,𝑤𝑡) is the gradient
of the function approximator with respect to the weight vector 𝑤 [17].

The weights for one-step SARSA are updated using the following rule:

𝑤𝑡+1 = 𝑤𝑡 + 𝛼 [𝑅𝑡+1 + 𝛾𝑞𝜋(𝑆𝑡+1, 𝐴𝑡+1,𝑤)− 𝑞𝜋(𝑆𝑡, 𝐴𝑡,𝑤)]∇𝑞𝜋(𝑆𝑡, 𝐴𝑡,𝑤) (2.42)
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and can be extended to n-step SARSA:

𝑤𝑡+1 = 𝑤𝑡 + 𝛼 [𝐺𝑡:𝑡+𝑛 − 𝑞𝜋(𝑆𝑡, 𝐴𝑡,𝑤)]∇𝑞𝜋(𝑆𝑡, 𝐴𝑡,𝑤) (2.43)

The update is performed in a way that each vector’s component responsible for a part of
the error is updated accordingly, with a higher share of the error being adjusted if the slope
of the error with respect to that component is large. The weights are adjusted until the
difference between two subsequent updates is less than a defined 𝜀 value (typically a small
number), at which point 𝑞𝜋 is considered found and the optimal policy can be derived. In
practice, early stopping is often used in deep learning instead of 𝜀. Now that the vectors of
state-action values are no longer represented as a look-up table, they can be written as an
approximation by the neural network. Furthermore, the policy improvement step can also
incorporate the 𝜖-greedy approach for action selection [18, 13, 13].

𝑦 =

⎛⎜⎝𝑞(𝑠, 𝑎1,𝑤)
...

𝑞(𝑠, 𝑎𝑛,𝑤)

⎞⎟⎠ (2.44)

2.4 Policy-based learning
In this section, we explore a new approach that involves learning a parameterized policy
without relying on action-value estimates. The policy’s parameter vector is denoted as 𝜃,
and the probability of selecting actions is represented as 𝜋(𝑎|𝑠,𝜃). We focus on methods
that update the policy parameter based on the gradient of a scalar performance measure
𝐽(𝜃), aiming to maximize performance without necessarily using a value function for action
selection. But later, in section 2.4.3 we will describe Actor-Critic methods that combine
the policy gradient methods with the value-based methods [17].

2.4.1 Stochastic Policy Gradient Methods

All algorithms that use a parameterized policy are referred to as policy gradient methods.
We can represent the policy with a parameter vector 𝜃 ∈ R𝑑, where 𝑑 ∈ N. Then, extend-
ing eq. (2.11), we can formulate the probability of executing action 𝑎 in the state 𝑠 with
parameters 𝜃 at time-step 𝑡 of policy 𝜋𝜃 as:

𝜋(𝑎|𝑠,𝜃) = Pr [𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠,𝜃𝑡 = 𝜃] (2.45)

If a performance measure 𝐽(𝜃) is introduced on the parameter vector, then the policy
gradient methods can iteratively update the parameter vector using the gradient ascent
procedure as follows:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼∇̂𝐽(𝜃𝑡) (2.46)

where ∇̂𝐽(𝜃𝑡) is a stochastic estimate whose expectation is the true gradient of 𝐽(𝜃) con-
cerning 𝜃.

Deriving a loss function for the performance measure in policy gradient methods is not
as straightforward as in the case of value-based methods. Similar to the distinction between
MC methods and TD methods, we need to differentiate between finite and infinite episodes.
For both cases, the theorem on policy gradients provides a way to compute the gradient
∇𝐽(𝜃) [17, 18].
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The Policy Gradient Theorem

For finite episodes, we can measure the quality of the parameter vector based on the return
of the first state of the episode. The policy gradient theorem for the episodic case establishes
the gradient of the return of the first state of the episode with respect to the parameter
vector.

First note that the gradient of the state-value function can be written in terms of the
action-value function as [17]:

∇𝑣𝜋𝜃
(𝑠) = ∇

(︃∑︁
𝑎

𝜋(𝑎|𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

)︃
=
∑︁
𝑎

(∇𝜋(𝑎|𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎) + 𝜋(𝑎|𝑠,𝜃)∇𝑞𝜋𝜃

(𝑠, 𝑎))

...

=
∑︁
𝑠

∞∑︁
𝑘=0

𝑃𝑟(𝑠→ 𝑥, 𝑘, 𝜋𝜃)
∑︁
𝑎

∇𝜋(𝑎|𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

(2.47)

where Pr [𝑠→ 𝑥, 𝑘, 𝜋𝜃] is the probability of a state transition from 𝑠 to 𝑥 in 𝑘 steps under
policy 𝜋(𝑎|𝑠,𝜃). This probability thus serves as a weighting of the gradient of the return.
Moreover, this can be further written:

∇𝐽(𝜃) = ∇𝑣𝜋𝜃
(𝑠0)

=
∑︁
𝑠

(︃ ∞∑︁
𝑘=0

𝑃𝑟(𝑠0 → 𝑠, 𝑘, 𝜋𝜃)

)︃∑︁
𝑎

∇𝜋(𝑎|𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

=
∑︁
𝑠

𝜂(𝑠)
∑︁
𝑎

∇𝜋(𝑎|𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

=
∑︁

𝑠′𝜂(𝑠′)
∑︁
𝑠

𝜂(𝑠)∑︀
′𝑠 𝜂(𝑠

′)

∑︁
𝑎∇𝜋(𝑎|𝑠,𝜃)𝑞𝜋𝜃

(𝑠, 𝑎)

=
∑︁
𝑠′

𝜂(𝑠′)
∑︁
𝑠

𝜇(𝑠)
∑︁
𝑎

∇𝜋(𝑎|𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

∝
∑︁
𝑠

𝜇(𝑠)
∑︁
𝑎

∇𝜋(𝑎|𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

(2.48)

where 𝑠0 is the first state of the episode, 𝑠′ is the next state, 𝜂(𝑠) is the probability of being
in state 𝑠 at particular time-step and 𝐺𝑡 is the return of the episode [17, 18].

The eq. (2.48) shows, that 𝐽(𝜃) is proportional to the probability sum of
∑︀

𝑠 𝜇(𝑠), which
denotes the likelihood that the agent is in the state 𝑠, multiplied by the sum of weighted
gradients of the probabilities for the selection of actions. The proportionality constant is
represented as

∑︀
𝑠 𝜂(𝑠). Practically, this equation provides insight that when the agent is

in a state, it should move in the direction of weights that represent the greatest increase
in the probability of selecting an action in that state, weighted by the expected return for
that state and action [18].

In the case of infinite episodes, the performance measure 𝐽(𝜃) is the average reward per
time-step. The gradient ∇𝐽(𝜃) can then be determined by the theorem of policy gradients
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for infinite episodes, see eq. (2.49), thus the calculations of the gradient for the infinite case
correspond to those of the episodic case.

∇𝐽(𝜃) =
∑︁
𝑠

𝜇(𝑠)
∑︁
𝑎

∇𝜋(𝑎|𝑠,𝜃)𝑞𝜋𝜃
)(𝑠, 𝑎) (2.49)

Discrete Action Space

Policy gradient methods allow for flexible parameterization of the policy as long as it is
differentiable with respect to its parameters. A common approach for discrete action spaces
is to use softmax in action preferences, where actions with higher preferences have higher
probabilities of being selected:

𝜋(𝑎|𝑠,𝜃) = 𝑒ℎ(𝑠,𝑎,𝜃)∑︀
𝑏 𝑒

ℎ(𝑠,𝑏,𝜃)
, (2.50)

where 𝜋(𝑎|𝑠, 𝜃) is the probability of selecting action 𝑎 in state 𝑠 with policy parameterized
by 𝜃, and ℎ(𝑠, 𝑎, 𝜃) is the parameterized numerical preference for state-action pair (𝑠, 𝑎). The
preferences ℎ(𝑠, 𝑎, 𝜃) can be parameterized using deep neural networks or linear features:

ℎ(𝑠, 𝑎,𝜃) = 𝜃𝑇𝑥(𝑠, 𝑎), (2.51)

where 𝜃 is the vector of parameters (e.g., connection weights) and 𝑥(𝑠, 𝑎) is a feature vector
for state-action pair (𝑠, 𝑎). Choosing an appropriate reduction schedule for the tempera-
ture parameter in softmax can be challenging without prior knowledge of the true action
values [17].

2.4.2 REINFORCE: Monte Carlo Policy Gradient

The REINFORCE algorithm is a purely policy-based approach that utilizes the return of
complete finite episodes for parameter updates, that is the reason of Monte Carlo in the
name of this method. Similar to classical TD methods, it adjusts the return gradually
with each time step, unlike MC methods where the return is updated at the end of each
episode [14, 17].

First, we extend the introduction of 𝐴𝑡 in REINFORCE similar to how we introduced 𝑆𝑡

in eq. (2.48), by replacing a sum with an expectation under the policy 𝜋, and then sampling
from it. We add the necessary weighting by multiplying and dividing the summed terms by
𝜋(𝑎|𝑆𝑡,𝜃) without changing the equality. Continuing from eq. (2.48), we have [17, 14]:

∇𝐽(𝜃) ∝ 𝐸𝜋

[︃∑︁
𝑎

𝑞𝜋𝜃
(𝑠, 𝑎)∇𝜋(𝑎|𝑠,𝜃)

]︃

= 𝐸𝜋

[︃∑︁
𝑎

𝜋(𝑎|𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

∇𝜋(𝑎|𝑠,𝜃)
𝜋(𝑎|𝑠,𝜃)

]︃

= 𝐸𝜋

[︃∑︁
𝑎

𝜋(𝑎|𝑠,𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)∇ log 𝜋(𝑎|𝑠,𝜃)

]︃

= 𝐸𝜋

[︃∑︁
𝑎

𝐺𝑡∇ log 𝜋(𝑎|𝑠,𝜃)

]︃
(2.52)
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In this algorithm, the weight vector 𝜃 is updated using the product of the return 𝐺𝑡 and
the gradient vector ∇ ln𝜋(𝑎|𝑠,𝜃), which represents the steepest increase in the probability
of selecting action 𝑎 in state 𝑠. This policy parameterization vector adjustment ensures that
𝜃 is updated with the scaling factor 𝐺𝑡. Update equation for the policy parameterization
vector 𝜃 is [18, 17, 14]:

𝜃𝑡+1
.
= 𝜃𝑡 + 𝛼𝐺𝑡

∇𝜋(𝑎|𝑠,𝜃𝑡)
𝜋(𝑎, 𝑠,𝜃𝑡)

𝜃𝑡+1
.
= 𝜃𝑡 + 𝛼𝐺𝑡∇ ln𝜋(𝑎|𝑠,𝜃𝑡)

(2.53)

and the final equation used in the algorithm looks like this (including the discount factor):

𝜃𝑡+1
.
= 𝜃𝑡 + 𝛼𝛾𝑡𝐺𝑡∇ ln𝜋(𝑎|𝑠,𝜃𝑡) (2.54)

The algorithm employs stochastic gradient ascent for optimization, as the weights are
updated at each time step. Depending on whether the action space of the environment is
discrete or continuous, the policy parametrizations described in the previous subsection
can be used for the gradient ∇ ln𝜋(𝑎|𝑠,𝜃𝑡). One drawback of this algorithm is the high
variability in returns between time steps and the associated “slowness” of the learning
process. This variance arises from the non-adaptive and loose formulation of the scaling
factor. See algorithm 2 for the pseudocode of the REINFORCE algorithm.

The improvement of the REINFORCE algorithm is the REINFORCE with Baseline
𝑏(𝑠).

∇𝐽(𝜃) ∝ 𝐸𝜋

[︃∑︁
𝑎

(𝑞𝜋(𝑠, 𝑎)− 𝑏(𝑠))∇ log 𝜋(𝑎|𝑠,𝜃)

]︃
(2.55)

𝜃𝑡+1
.
= 𝜃𝑡 + 𝛼𝛾𝑡(𝐺𝑡 − 𝑏(𝑠))∇ ln𝜋(𝑎|𝑠,𝜃𝑡) (2.56)

One natural choice for the baseline is an estimate of the state value, 𝑣(𝑆𝑡, 𝑤), where
𝑤 ∈ R𝑑 is a weight vector learned by one of the methods presented in previous sec-
tions [18, 17, 14]. The reason why we introduce REINFORCE with Baseline is that the
next section 2.4.3 will introduce Actor-Critic methods, which are a combination of REIN-
FORCE with Baseline and TD methods.

2.4.3 Actor-Critic Policy Gradient Methods

In actor-critic methods, the state-value function is used to assess actions, including the
second state of a transition, and estimate the one-step return. This is different from REIN-
FORCE with baseline, which only estimates the value of the first state. One-step actor-critic
methods are fully online and incremental, making them easier to understand and implement
compared to eligibility trace methods. A vector of constants can be used as the baseline.
The concept of Actor-Critic methods can be formulated, when a function approximator
with bootstrapping, such as TD(0) or SARSA(0), is used as the baseline. In this case, the
Critic computes the scaling factor and the Actor adjusts the policy parameter 𝜃. The weight
update formula for the Actor-network is then as follows [17, 18]:

𝜃𝑡+1
.
= 𝜃𝑡𝛼 (𝐺𝑡:𝑡+1 − 𝑣(𝑆𝑡,𝑤))∇ ln𝜋(𝐴𝑡|𝑆𝑡, 𝜃𝑡)

= 𝜃𝑡 + 𝛼 (𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡+1,𝑤 − 𝑣(𝑆𝑡,𝑤)))∇ ln𝜋(𝐴𝑡|𝑆𝑡, 𝜃𝑡)

= 𝜃𝑡 + 𝛼𝛿𝑡∇ ln𝜋(𝐴𝑡|𝑆𝑡, 𝜃𝑡)

(2.57)
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The policy gradient update formula can be written as:

∇𝐽(𝜃) ∝
∑︁

𝜇(𝑠)
∑︁

(𝑞𝜋(𝜃)(𝑠, 𝑎)− 𝑏(𝑠))∇𝜋(𝑎|𝑠,𝜃) (2.58)

Continuous Action Space

Continuous Action-space Policy Gradient methods can be used in environments with dis-
crete as well as with continuous action space. Value-based methods have the disadvantage
that they can only be used in environments with discrete action space. Whether a given pol-
icy gradient method can be used on discrete or continuous action space is determined by the
policy parametrization. In the case of a discrete action space, a numerical value function,
denoted as ℎ(𝑠, 𝑎, 𝜃) ∈ R, can be computed for each state-action pair. The computation
of these values can be done, for example, via a neural network. An exponential Softmax
distribution can then specify the probability with which an action should be selected, as
shown in eq. (2.50) [18, 17]:

For large or continuous action spaces, instead of evaluating individual actions, parame-
ters of distribution functions such as the Normal distribution are computed. The parameters
of the Normal distribution are the mean 𝜇 ∈ R and the variance 𝜎2 ≤ 0. The Normal dis-
tribution is defined on R, which makes it suitable for continuous action spaces. The mean
and variance can be parametrized and approximated as [17]:

𝜋(𝑎|𝑠, 𝜃) = 1√
2𝜋𝜎(𝑠, 𝜃)

exp

(︂
−(𝑎− 𝜇(𝑠, 𝜃))2

2𝜎(𝑠, 𝜃)2

)︂
(2.37)

From eq. (2.37), it can be seen that the policy parameter vector can be described as
𝜃 = (𝜃𝜇, 𝜃𝜎), and its parameters can be computed using a single neural network. This
enables the implementation of continuous actions for stochastic policies [18, 17, 14].
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Chapter 3

Stock Portfolio Allocation

In this chapter, our primary objective is to present the methodology we used to tackle
the Reinforcement Learning problem, with a main focus on the Portfolio Allocation task.
We will provide a detailed explanation of the entire pipeline fig. 3.1, starting from the
Data Engineering Step. In this step, the data is prepared for use in reinforcement learning.
This involves collecting raw data from various sources, transforming the data into fea-
tures suitable for reinforcement learning, and splitting the dataset into training and testing
sets section 3.1. Then go on the Environment Modeling Step. This step involves configur-
ing the environment in which the RL model will operate, including setting up the state
and action spaces and defining the reward function, this is described in section 3.2. In the
next chapter we also explain the Agent Layer, where the model itself is developed here.
It includes training the model on the training set, evaluating the model’s performance on
the testing set, fine-tuning the model’s hyperparameters to optimize its performance, and
conducting robustness testing on unseen data multiple times to ensure that the model can
generalize well, this is discussed in chapter 4.

Figure 3.1: The pipeline for solving the RL problem in the stock market [9]

3.1 Data Engineering
Data engineering is critical in AI to ensure the quality, preparation, integration, scalabil-
ity, governance, and performance optimization of models. It involves cleaning and trans-
forming data for training an accurate model. In this section, we describe our approach to
data engineering used for Portfolio Management by first defining the data collection sec-
tion 3.1.1, data cleaning section 3.1.2, feature engineering section 3.1.3 and dataset split-
ting section 3.1.4.
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3.1.1 Data Collection

Raw data was gathered from these sources:

• Yahoo Finance: https://finance.yahoo.com/

• Financial Modeling Prep: https://financialmodelingprep.com/

• TradingView: https://www.tradingview.com/

these sources provide financial data for 65000+ tickers, with a history of over 30 years.
We focus on tickers (companies) from Dow Jones Industrial Average (DJIA), which

includes 30 companies. More about which companies are included in DJIA, you can read
in [20].

3.1.2 Data Cleaning

We use the following company data in our datasets: prices, financial statements, and tech-
nical indicators. Prices are used to calculate earnings, and financial statements are used to
calculate fundamentals. Fundamental indicators and technical analysis indicators are used
for feature engineering. Data cleaning is done by removing rows with missing values. Miss-
ing values are replaced by the average of the column. If data is completely missing on a
date, all rows up to that next date are removed for the other companies. This can happen
mostly for companies that are not listed in any time period. Data cleaning is performed for
all data sets.

3.1.3 Feature Engineering

In this subsection, we describe our approach to feature engineering which we divide into
three parts: Fundamental Analysis, described in section 3.1.3, Technical Analysis, described
in section 3.1.3, and Combined Fundamental and Technical Analysis is described in sec-
tion 3.1.3. The datasets comprise additional attributes such as candlestick patterns (price)
and volumes, which are not discussed in this subsection.

Fundamental Analysis

The first features that we used for our datasets are fundamental information about com-
panies. This type of data is essentially the key and crucial information that is utilized to
analyze the financial well-being, performance, and worth of a company or asset. It encom-
passes information regarding the financial statements, business operations, management
team, industry, and economic backdrop of a company. Investors, analysts, and financial
experts commonly use fundamental data to make informed investment decisions and eval-
uate the inherent value of an asset. The subsequent text outlines the features that were
incorporated into our dataset. There also exists a plethora of other fundamental features
that can be used, but we have chosen to focus on the following features, with the theoretical
concepts sourced from [6]:

Operating Margin The Operating Margin represents how efficiently a company is able
to generate profit through its core operations. It is expressed on a per-sale basis after
accounting for variable costs but before paying any interest or taxes (EBIT). Higher margins
are considered better than lower margins and can be compared between similar competitors
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but not across different industries. To calculate the operating margin, divide operating
income (earnings) by sales (revenues):

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑀𝑎𝑟𝑔𝑖𝑛 =
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐼𝑛𝑐𝑜𝑚𝑒

𝑁𝑒𝑡 𝑆𝑎𝑙𝑒𝑠
(3.1)

where Operating Income refers to the adjusted revenue of a company after all expenses of
operation and depreciation are subtracted. Expenses of operation or operating expenses are
simply the costs incurred in order to keep the business running. Net Sales may be defined as
money paid by customers. Sales are a company’s core revenue for a given period. Operating
margin, expressed as a percentage, indicates the earnings generated from each dollar of
sales after accounting for direct costs. Higher margins mean more profit from each sale.

Net Profit Margin The Net Profit Margin is a profitability ratio that measures a com-
pany’s ability to generate income after all expenses and taxes have been paid Net Income.
It is calculated by dividing a company’s Net Income, by its Total Revenue. The Net Profit
Margin is a measure of how much of each dollar of revenue is left over after all expenses
and taxes have been paid. It is a useful metric for comparing the profitability of different
companies in the same industry. The higher the net profit margin, the more profitable a
company is. The net profit margin is calculated as follows:

𝑁𝑒𝑡 𝑃𝑟𝑜𝑓𝑖𝑡 𝑀𝑎𝑟𝑔𝑖𝑛 =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒
(3.2)

Return On Assets Return on assets (ROA) is a measure of profitability that calculates
how much profit a company makes with the money it has invested. It is calculated by
dividing a company’s Net Income by its Total Assets. The higher the ROA, the more
profitable a company is. The ROA is calculated as follows:

𝑅𝑒𝑡𝑢𝑟𝑛 𝑂𝑛 𝐴𝑠𝑠𝑒𝑡𝑠 =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
(3.3)

Return On Equity Return on equity (ROE) is a measure of profitability that calculates
how much profit a company makes with the money shareholders have invested. It is calcu-
lated by dividing a company’s Net Income by its Average Shareholders’ Equity. The higher
the ROE, the more profitable a company is. The ROE is calculated as follows:

𝑅𝑒𝑡𝑢𝑟𝑛 𝑂𝑛 𝐸𝑞𝑢𝑖𝑡𝑦 =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑒𝑟𝑠′ 𝐸𝑞𝑢𝑖𝑡𝑦
(3.4)

Current Ratio The current ratio is a liquidity ratio that measures a company’s ability to
pay short-term and long-term obligations. It is calculated by dividing a company’s Current
Assets by its Current Liabilities. The higher the current ratio, the more capable a company
is of paying its short-term and long-term obligations. The current ratio is calculated as
follows:

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
(3.5)

where Current Assets is Cash&Equivalent + Short Term Investments + Account Receivable
+ Inventory. If the Current Ratio is lower than 1 that is a sign of financial distress, and
the company could be unable to pay its short-term and long-term obligations. On the other
hand, if the Current Ratio is too high, it could be a sign that the company is not using its
assets efficiently.
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Quick Ratio The quick ratio is a liquidity ratio that measures a company’s ability to
pay short-term obligations. It is calculated by dividing a company’s Quick Assets by its
Current Liabilities. The higher the quick ratio, the more capable a company is of paying
its short-term obligations. The quick ratio is calculated as follows:

𝑄𝑢𝑖𝑐𝑘 𝑅𝑎𝑡𝑖𝑜 =
𝑄𝑢𝑖𝑐𝑘 𝐴𝑠𝑠𝑒𝑡𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
(3.6)

where Quick Ratio is Cash & Equivalents + Marketable Securities + Net Accounts Re-
ceivable. If the company would have a Quick Ratio is lower than 1, it would be a sign of
financial distress, and the company would be unable to pay its short-term obligations.

Cash Ratio The cash ratio is a liquidity ratio that measures a company’s ability to pay
short-term obligations. It is calculated by dividing a company’s Cash & Equivalents by its
Current Liabilities. The higher the cash ratio, the more capable a company is of paying its
short-term obligations. The cash ratio is calculated as follows:

𝐶𝑎𝑠ℎ 𝑅𝑎𝑡𝑖𝑜 =
𝐶𝑎𝑠ℎ&𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
(3.7)

Inventory Turnover The inventory turnover ratio is a measure of how efficiently a
company is managing its inventory. It is calculated by dividing a company’s COGS by its
Average Value of Inventory. The higher the inventory turnover ratio, the more efficiently a
company is managing its inventory. The inventory turnover ratio is calculated as follows:

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
𝐶𝑂𝐺𝑆

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉 𝑎𝑙𝑢𝑒 𝑜𝑓 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
(3.8)

where COGS is an acronym for Cost of Goods Sold, which is also known as the cost of sales.
To calculate inventory turnover, analysts use COGS instead of sales because inventory is
valued at cost. Some companies may use sales instead of COGS, which can inflate the ratio.

Receivables Turnover The receivables turnover ratio is a measure of how efficiently a
company is managing its accounts receivable. It is calculated by dividing a company’s Net
Credit Sales by its Average Accounts Receivable. The higher the receivables turnover ratio,
the more efficiently a company is managing its accounts receivable. The receivables turnover
ratio is calculated as follows:

𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒𝑠 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
𝑁𝑒𝑡 𝐶𝑟𝑒𝑑𝑖𝑡 𝑆𝑎𝑙𝑒𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒
(3.9)

where 𝑁𝑒𝑡 𝐶𝑟𝑒𝑑𝑖𝑡 𝑆𝑎𝑙𝑒𝑠 is the total sales minus the cash sales. The receivables turnover
ratio measures a company’s ability to collect accounts receivable. A low ratio suggests
difficulty collecting payments, while a high ratio may indicate efficient collection, but may
also suggest lost sales due to not extending credit long enough.

Payables Turnover The accounts payable turnover ratio is a short-term liquidity mea-
sure used to quantify the rate at which a company pays off its suppliers. Accounts payable
turnover shows how many times a company pays off its accounts payable during a period.
It is calculated by dividing a company’s total supply purchases by its average accounts
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payable. The higher the payables turnover ratio, the more efficiently a company is manag-
ing its accounts payable. The payables turnover ratio is calculated as follows:

𝑃𝑎𝑦𝑎𝑏𝑙𝑒𝑠 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
𝑇𝑆𝑃

(𝐵𝐴𝑃 + 𝐸𝐴𝑃 )/2
(3.10)

where TSP is the total supply purchase, BAP is the beginning accounts payable, and EAP
is the ending accounts payable. If the payables turnover ratio is too low, it could be a sign
that the company has trouble paying its suppliers. If the payables turnover ratio is too high,
it could be a sign that the company is not using its assets efficiently.

Debt Ratio The debt ratio is a measure of a company’s financial leverage. It is calculated
by dividing a company’s Total Liabilities by its Total Assets. The higher the debt ratio, the
more debt a company is using to finance its assets. The debt ratio is calculated as follows:

𝐷𝑒𝑏𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑒𝑏𝑡+ (𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑠 𝑃𝑎𝑦𝑎𝑏𝑙𝑒+ 𝑇𝑎𝑥𝑒𝑠 𝑃𝑎𝑦𝑎𝑏𝑙𝑒)

𝑇𝑜𝑡𝑎𝑙𝐴𝑠𝑠𝑒𝑡𝑠
(3.11)

A lower debt ratio is preferable. A Debt Ratio greater than 1.0 implies that a company
has more debt than assets, whereas a Debt Ratio less than 1 indicates that a company has
more assets than debt.

Debt Equity Ratio The Debt to Equity Ratio (D/E) is a measure of a company’s
financial leverage. It is calculated by dividing a company’s Total Liabilities by its Total
Equity. The higher the debt-equity ratio, the more debt a company is using to finance its
assets. The debt-equity ratio is calculated as follows:

𝐷𝑒𝑏𝑡 𝐸𝑞𝑢𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐸𝑞𝑢𝑖𝑡𝑦
(3.12)

where Total Liabilities are Traditional Debt + (Accounts Payable + Taxes Payable). A lower
Debt Equity Ratio is preferable.

Price Earnings Ratio The Price Earnings Ratio (P/E) is a measure of a company’s
value relative to its earnings. It is calculated by dividing a company’s Stock Price by its
Earnings per Share. The higher the price-earnings ratio, the more expensive a company’s
stock is relative to its earnings. The price-earnings ratio is calculated as follows:

𝑃𝑟𝑖𝑐𝑒 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝑆𝑡𝑜𝑐𝑘 𝑃𝑟𝑖𝑐𝑒

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑃𝑒𝑟 𝑆ℎ𝑎𝑟𝑒
(3.13)

High P/E implies investors anticipate greater future earnings growth compared to low P/E
companies. A low P/E can signal undervaluation or exceptional performance relative to
past trends.

Price Book Value Ratio The Price Book Value Ratio (P/B) is a measure of a company’s
value relative to its book value. It is calculated by dividing a company’s Stock Price by
its Book Value per Share. The higher the price-book value ratio, the more expensive a
company’s stock is relative to its book value. The price-book value ratio is calculated as
follows:

𝑃𝑟𝑖𝑐𝑒 𝐵𝑜𝑜𝑘 𝑉 𝑎𝑙𝑢𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑆𝑡𝑜𝑐𝑘 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝐵𝑜𝑜𝑘 𝑉 𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒
(3.14)

34



A low P/B ratio, especially below one, could signal undervaluation where the stock price
is lower than the value of the company’s assets. A P/B ratio above one indicates the stock
is trading at a premium to book value, potentially overvalued. For instance, a P/B ratio of
three means the stock trades at three times its book value.

Dividend Yield The dividend yield, expressed as a percentage, is a financial ratio (divi-
dend/price) that shows how much a company pays out in dividends each year relative to its
stock price. It is calculated by dividing a company’s Annual Dividend by its Stock Price. It
is a measure of a company’s profitability. The higher the dividend yield, the more profitable
a company is. The dividend yield is calculated as follows:

𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑌 𝑖𝑒𝑙𝑑 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑

𝑆𝑡𝑜𝑐𝑘 𝑃𝑟𝑖𝑐𝑒
(3.15)

Technical Analysis

Technical analysis is a method used in financial markets such as stocks, currencies, and
commodities to analyze historical price data and identify patterns, trends, and signals
that can be used to make trading decisions. Technical analysis is based on the belief that
historical price and volume data can provide insight into future price movements and focuses
primarily on the analysis of price charts and other technical indicators. In this section we
present the technical indicators that we have selected based on the correlation between all
indicators.

Technical indicators are calculated based on historical share price data. To calculate
these indicators, the Finta framework was used, which provides more than 100 different
functions for calculating technical indicators. The framework is written in Python and is
available on GitHub [11].

First, we calculate all technical indicators for each stock present in the dataset, followed
by determining the correlation matrix between all indicators. This matrix comprises the
correlation coefficient values between each pair of indicators, which serve as a gauge for
measuring the linear correlation between two variables. We apply a drop threshold of 0.5
for the correlation coefficient, implying that if |𝜌| > 0.5, we discard either the first or
second indicator, where |𝜌| represents the absolute value of the correlation between the
two variables (indicators). As the image (correlation matrix) for all indicators is extensive,
we only present the correlation matrix of the final indicators (correlation matrix of the
uncorrelated indicators), in fig. 3.2, that we utilized in the Technical Analysis Dataset. Since
the correlation matrix has symmetry, only the segment above the diagonal is presented.

Combined Fundamental and Technical Analysis

Combining datasets is a process in which two or more datasets are merged or joined together
to create a new dataset that contains information from both. In this case, the combined
fundamental and technical analysis involves combining features from both fundamental
analysis and technical analysis, both described in section 3.1.3.

By combining fundamental and technical analysis, we can create a more comprehensive
and accurate picture of the market. For example, fundamental analysis can help identify
undervalued or overvalued assets, while technical analysis can help identify trends and
potential buying or selling opportunities. The specific features used in the combined analysis
can depend on the specific dataset and the reinforcement learning task being performed.
However, we leave all features from both analyses.
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Figure 3.2: Correlation matrix of technical indicators after removing correlated indicators.

3.1.4 Dataset Splitting

Dataset splitting refers to the process of dividing a dataset into two or more subsets to
be used for training and testing reinforcement learning models. In this particular case, the
dataset is a time series data, which means that the order of the data points is important,
and the dataset must be split in a way that preserves the temporal ordering.

The division coefficient of 0.6 means that 60% of the dataset will be used for training,
and 40% will be used for testing. This is a common split ratio, but the exact ratio can vary
depending on the size and complexity of the dataset, as well as the specific reinforcement
learning task being performed.

In this case, since the dataset consists of daily data and spans a period from 2008-03-
20 to 2022-12-16, we can split it based on time. The first 60% of the data, starting from
the beginning of the dataset on 2008-03-20, will be used for training, and the remaining
40% of the data will be used for testing. This ensures that the model is trained on past
data and tested on future data, which is a more realistic scenario.

The training set will be used to train the reinforcement learning model, while the test-
ing set will be used to evaluate its performance. By splitting the dataset, we can avoid
overfitting, which is when the model memorizes the training data and performs poorly
on new, unseen data. The testing set provides a way to measure the model’s generaliza-
tion performance on unseen data, which is an important metric for evaluating the model’s
effectiveness.
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Dataset splitting is an important step in reinforcement learning that helps ensure that
the model is trained and tested on different subsets of data. In this case, the dataset is split
into training and testing sets based on time, with 60% of the data used for training and
40% used for testing. This split ensures that the model is evaluated on unseen data and
can generalize well to new data.

3.2 Environment Modeling
In the preceding section, we explained the process of creating datasets and selecting features
to represent the state of the environment. This section delves deeper into the modeling of
the entire environment, encompassing the Action Space, State Space, and Reward function.
The action space is defined as a vector of weights, where each weight denotes the percentage
amount that a particular stock is represented in the portfolio. This is discussed in detail
in section 3.2.1. The state space is a matrix of 𝐾 features of each stock (𝑁 stocks) that
reflects the state of the environment at each time step 𝑡, as explained in section 3.2.1. The
reward function is employed to calculate the reward for each action taken in the current
state at time step 𝑡, as elaborated in section 3.2.1. The objective of the agent is to maximize
the reward by selecting the best action/weights for each state, which involves reallocating
the stock weights in the portfolio. In other words, the agent aims to determine the optimal
weights for each stock in the portfolio at a particular time step 𝑡 to obtain maximum
portfolio appreciation. The fig. 3.3 illustrates how the agent generates the weights for the
portfolio.

Figure 3.3: How the agent produces the weights for the portfolio [4].

3.2.1 Portfolio Management Task

Portfolio allocation or management refers to the process of selecting and distributing invest-
ments in a way that meets the investor’s goals and risk tolerance. It involves diversifying
the portfolio across different asset classes, such as stocks, bonds, and real estate, to reduce
risk and increase returns. In our thesis we focus on diversifying the capital between 𝑁
stocks, where 𝑁 is the number of stocks in the portfolio. The ultimate goal of portfolio
management is to maximize the returns while minimizing the risk for the investor. The risk
can be evaluated as the variance of the portfolio returns [4].

State and Observation Space

In the context of portfolio management, the State Space and Observation space refer to
the same set of variables. The state space is a matrix with dimensions 𝑁 × 𝐾, where 𝑁
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represents the number of risky assets, or stocks, and 𝐾 represents the number of features
used to describe the environment. These features were discussed in detail in the previous
section section 3.1, and consist of fundamental or technical indicators that describe the
current condition of each stock at a specific time step 𝑡. In our case, the time step is defined
as one day, so we use daily data representing one day of stock market activity.

Action Space

The action space for a portfolio allocation agent is a vector of 𝑁+1 values, which represents
the weights of 𝑁 stocks and the weight of cash (How much is each stock represented in the
portfolio). The reason for including the weight of cash in the action space is that sometimes
investors do not want to invest all of their capital and prefer to keep some cash as a reserve
for future trades. The action provided by the agent is a vector of values bounded between
0 and 1.

The action vector is then normalized using the softmax function. The softmax function
converts the original vector of real values into a new vector of real values that fall within the
range of 0 to 1, and all values summed to 1. This allows for a more intuitive representation
of the weights and ensures that the weights always add up to 1 [4].

Action vector is provided by an agent at time step 𝑡 and is defined as follows:

𝑎(𝑡) = [𝑎1(𝑡), 𝑎2(𝑡), . . . , 𝑎𝑁 (𝑡), 𝑎𝑐𝑎𝑠ℎ(𝑡)] (3.16)

where 𝑎𝑖(𝑡) is the value before normalization for stock 𝑖 at time step 𝑡 and 𝑎𝑐𝑎𝑠ℎ(𝑡) is for
cash at time step 𝑡. The weights vector 𝑤(𝑡) is defined as follows:

𝑤(𝑡) = softmax(𝑎(𝑡)) = exp(𝑎(𝑡))∑︀𝑁
𝑖=1 exp(𝑎𝑖(𝑡))

= [𝑤1(𝑡), 𝑤2(𝑡), . . . , 𝑤𝑁 (𝑡), 𝑤𝑐𝑎𝑠ℎ(𝑡)]

(3.17)

where 𝑤𝑖(𝑡) is the normalized weight for stock 𝑖 at time step 𝑡 and 𝑤𝑐𝑎𝑠ℎ(𝑡) is for cash at
time step 𝑡. All weights vectors must sum to 1, that is the first constraint, and it directly
implies the second constrained that each weight must be bounded between 0 and 1:

𝑁∑︁
𝑖=1

𝑤𝑖(𝑡) = 1; 𝑤𝑖(𝑡) ∈ [0, 1]; for 𝑡 = 1, . . . , 𝑇 (3.18)

Reward Function

The reward function represents the change in the value of the portfolio from one time step
to the next. First we need to define Price Relative Vector 𝑦(𝑡) ∈ R𝑁 :

𝑦(𝑡) =

[︂
𝑝1(𝑡)

𝑝1(𝑡− 1)
,

𝑝2(𝑡)

𝑝2(𝑡− 1)
, · · · , 𝑝𝑁 (𝑡)

𝑝𝑁 (𝑡− 1)
, 1

]︂
, for 𝑡 = 1, . . . , 𝑇 (3.19)

where the 𝑝𝑖(𝑡) is the price of a risky asset (stock) at time step 𝑡, and 𝑝𝑖(𝑡)
𝑝𝑖(𝑡−1) represents the

relative change in price from one-time slot to the next of stock 𝑖, we incorporate into the
vector also the change of cash, which is constant value 1 (we assume that cash value does
not change its value).

Now we can define our Reward function as the rate of portfolio return:

𝜌(𝑡) = 𝑤(𝑡− 1)⊤𝑦(𝑡)− 1 , for 𝑡 = 1, . . . , 𝑇 (3.20)
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The reward function measures the change in the portfolio’s value between consecutive time
steps. We assume that there are no transaction costs associated with each operation, as
these can vary depending on the broker. Additionally, we don’t factor in any dividends.
Instead, the reward is solely based on the change in the value of each stock.

Lastly we defined the portfolio value 𝑣(𝑡) ∈ R at time step 𝑡. First let the 𝑣(0) be an
initial capital, then for 𝑡 = 1, . . . , 𝑇 is portfolio value defined as follows:

𝑣(𝑡) = 𝑣(0)

𝑡∏︁
𝜏=1

[𝜌(𝜏) + 1]

= 𝑣(𝑡− 1)(𝜌(𝑡) + 1) , for 𝑡 = 1, . . . , 𝑇

(3.21)

where 𝜌(𝑡) is change in portfolio value (Reward) at time step 𝑡.

3.2.2 How we determine agent performance

The agent’s performance is assessed using the test/total_reward attribute. To compute the
value of test/total_reward, we initialize the portfolio value 𝑣 at time step 𝑡 = 0 to value 1,
so 𝑣(0) = 1 and then further calculate it as the cumulative product of the rewards obtained
by the agent during the testing phase, as shown in eq. (3.21).

For example, if the agent’s received a reward at time step 𝑡 = 1 is 𝜌(1) = −0.1, which
implies that the portfolio is currently worth 0.9 or 90% from its previous value, in other
words, portfolio value decreased by 10%, then the value of test/total_reward would be at
the start of the times step 𝑡 = 2:

𝑣(1) = (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑤𝑎𝑟𝑑+ 1)× 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜𝑉 𝑎𝑙𝑢𝑒

= (𝜌(1) + 1)× 𝑣(0)

= (−0.1 + 1)× 1 = 0.9

(3.22)

Let now consider the second time step 𝑡 = 2. If in the second time step, the agent receives
a reward of 0.1, the value of test/total_reward would be at the start of the time step 𝑡 = 3:

𝑣(2) = (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑤𝑎𝑟𝑑+ 1)× 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜𝑉 𝑎𝑙𝑢𝑒

= (𝜌(2) + 1)× 𝑣(1)

= (0.1 + 1)× 0.9 = 0.99

(3.23)

Therefore, if the final value of test/total_reward is 1.9, it indicates that the agent obtained
a total cumulative reward of 0.9 throughout all the steps, which is equivalent to a portfolio
return of 90% over the certain period.
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Chapter 4

Experiments and Results

In this chapter, we will present the outcomes of our experiments, including any issues en-
countered during the experimentation process. We demonstrate the performance of our
agent in a given environment through a series of experiments and provide additional details
on hyperparameter selection and comparison of different hyperparameter settings in sec-
tion 4.3. We also evaluate and compare the advantages and disadvantages of the datasets
used in training our model in 4.4, with a focus on identifying the most appropriate dataset.
The robustness of our model is assessed in 4.5. Furthermore, we compare the performance
of our model with standard indices such as the S&P 500 Index and DJI Index, and discuss
the results of our experiments with baseline models and benchmarks. To maintain consis-
tency in our results, we primarily compare our model’s performance with the DJI Index
as the datasets are derived from companies in the DJI Index. However, we also compare
our results with other indices and State-of-the-Art AI4Finance in 4.6. All experiments were
documented during our testing period from 2017-01-25 to 2022-12-16. Last assessment
will involve examining important portfolio metrics, as described in section 4.7. Finally, we
summarize our findings and discuss the results of our experiments in 4.8.

In addition, we provide details of our approach to performance testing and the MLOps
concepts used, including tracking training and testing of our models, in Section 4.1.2.

To ensure Reproducibility of our work we also make publicly available on the W&B
website all datasets, models, and training/testing logs with a history of all hyperparameters
for each algorithm. By visiting the following URL: https://wandb.ai/investai/
portfolio-allocation, anyone can access the results of each run, and reproduce our
findings while comparing them with their own experiments.

4.1 Hardware & Tools

4.1.1 Hardware

The computer used for experiments has the following specifications:

• Operating System: Ubuntu 20.04.6 LTS (GNU/Linux 5.4.0-146-generic x86_64)

• CPU: 2 x Intel Xeon CPU E5-2620 v3 @ 2.40GHz, each with six cores, for a total of
12 cores.

• RAM: 2 x 32 GB RAM running at 2133MHz, using quad-channel architecture for
faster memory access
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• GPU: 4 x NVIDIA GTX 1080 (Pascal) with 8GB RAM each, providing a total of
32GB GPU memory.

4.1.2 Weights & Biases

Weights & Biases (W&B) is a powerful ML experiment tracking and visualization tool that
helps data scientists and machine learning practitioners manage their experiments. With
W&B, users can log experiment metrics in real-time, track hyperparameters, and compare
and reproduce experiments easily. W&B offers various visualization tools like interactive
plots, histograms, and confusion matrices, which help users analyze and understand exper-
imental results.

• Experiment tracking: W&B allows users to log experiment metrics such as loss, accu-
racy, and other custom metrics in real-time during training. These metrics are logged
to a central dashboard, making it easy to monitor and compare multiple experiments.

• Hyperparameter tuning: W&B supports hyperparameter sweeps, allowing users to
explore different hyperparameter configurations in parallel and find optimal hyperpa-
rameter settings for their models.

• Visualization: W&B provides a variety of visualization tools, including interactive
graphs, histograms, confusion matrices, and more, to help users analyze and under-
stand experimental results. We use some of the W&B graphs to compare hyperparam-
eters and their values to understand their effect on the overall range of rewards ap-
pendix C.1.

• Artifact management: W&B allows users to log and version datasets, models, and
other artifacts, making it easy to track and reproduce experiments with specific data
and model versions.

• Collaboration: W&B enables team collaboration by allowing users to share experi-
ment results, visualizations, and artifacts with team members, facilitating communi-
cation and collaboration among team members.

Due to the variety of features available through the W&B API, we have chosen not to
provide a comprehensive description of each one. However, we recommend looking at the
W&B documentation available at https://docs.wandb.ai/ for an explanation of all APIs
and features.

4.2 Focus of the experiments
Our aim is to determine the best hyperparameters and datasets for training and testing,
that provide the agent to get the highest portfolio value over time. To achieve this, we
use a hyperparameter sweeping approach to testing the hyperparameters for each algorithm
and dataset. The performance of each hyperparameter configuration is determined based
on the model’s output, using a metric named as test/total_reward. This metric represents
the cumulative product of the portfolio value, as described by the equation in eq. (3.21)
and then further described in section 3.2.2. The higher the value of test/total_reward, the
better the performance of the model.
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We compare the best and worst performing models with State-of-the-Art AI4Finance
and common indexes and strategies as baselines. Our results indicate that appropriate hy-
perparameters and good featured datasets can train the agent sufficiently well to outperform
common indexes and other publicly available models for Portfolio Allocation (using Rein-
forcement Learning). This makes them valuable tools for portfolio allocation in financial
markets.

Thus, the main goal of this chapter is to evaluate the trained models’ performance
through rigorous experimentation and identify the best hyperparameters and datasets for
optimal performance.

We also test the model’s robustness by assessing its stability using the best hyperparam-
eters for the dataset and the specific algorithm used to train the model. This helps us ensure
that the model is reliable and can perform consistently well under different conditions. The
robustness test helps us identify potential weaknesses or limitations that may need to be
addressed.

4.3 First experiment: Hyperparameter Tuning
Since the configuration of hyperparameters is crucial for the performance of any machine-
learning model. We performed a hyperparameter sweep to find the best hyperparameters
for our models through a bunch of hyperparameters shown in table 4.1. In this case, the
hyperparameter sweep was performed on 27 hyperparameters using the Weights & Biases
Sweep, this helps us to track and visualize the training process and store a bunch of hyper-
parameter configurations. The range or value of each hyperparameter was chosen based on
prior knowledge.

4.3.1 Time Steps

The only hyperparameter, which stays the same throughout hyperparameter sweeping was
Time Steps parameter. We conducted experiments by varying its value from 20000 to 100000
and found that values up to 50, 000 still improve the model’s performance. However, values
above 50000 did not provide any significant improvement in the model’s performance, and
the training time increased considerably. As a result, we decided to use 50000 time steps
for all the models that we experimented with in this chapter.

4.3.2 Selection of hyperparameters

In this subsection, we will discuss other hyperparameters and explain how we selected the
range of values for them. Once the range or values of each hyperparameter was set, as shown
in table 4.1, the process of finding the best configuration of hyperparameters was a kind of
brute force, except that we at least restrict the exploration space in which the W&B Sweep
is trying to find optimal hyperparameter through randomly selecting each hyperparameter
for the given run.

The Sweep involved 5 distinct reinforcement learning algorithms - namely A2C, PPO,
SAC, DDPG, and TD3 - and each of these algorithms was trained on 3 unique datasets,
which were introduced in the preceding chapter and referred to as Fundamental, Techni-
cal, and Combined. In total, this resulted in 15 different combinations of algorithms
and datasets. Furthermore, each combination was subjected to 10 rounds of training, cul-
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minating in a total of 150 train/test runs. These runs are accessible on W&B at the
following URL: https://wandb.ai/investai/portfolio-allocation.

It is worth emphasizing that when performing a hyperparameter sweep, certain hyper-
parameters may be selected even though the algorithm does not require them, that means
in such cases, we simply discard those unnecessary chosen hyperparameters and only pass
the necessary ones to the algorithm.

In table 4.1, the hyperparameters that underwent tuning during the hyperparameter
sweep are displayed. The values enclosed in <> indicate the range from which W&B Sweep
can randomly select a value for a particular run, while those enclosed in [ ] represent the list
of values from which W&B Sweep can randomly choose a value for a particular run. The
performance of the agent with respect to the hyperparameters is presented in the graphs,
which compare and analyze the performance of several of the best and worst models. These
graphs can be found in appendix C.1.

Parameter Values/range
learning_rate <0.0001, 0.01>
n_steps [32, 64, 128, 256, 512, 1024, 2048]
gamma <0.9, 0.999>
gae_lambda <0.8, 0.999>
ent_coef <0.0001, 0.01>
vf_coef <0.0001, 0.01>
max_grad_norm <0.5, 0.99>
rms_prop_eps <0.0001, 0.01>
sde_sample_freq <4, 32>
batch_size [32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]
n_epochs <1, 10>
clip_range <0.1, 0.3>
clip_range_vf [None, 0.05, 0.1, 0.15, 0.2]
target_kl <0.01, 0.05>
buffer_size [1000, 2000, 3000, 4000, 5000]
learning_starts <100, 1000>
tau <0.001, 0.01>
train_freq <1, 4>
gradient_steps <1, 4>
target_update_interval <1, 4>
target_entropy <0.1, 0.2>
policy_delay <1, 4>
target_policy_noise <0.1, 0.2>
target_noise_clip <0.1, 0.2>
exploration_fraction <0.1, 0.2>
exploration_initial_eps <0.1, 0.2>
exploration_final_eps <0.1, 0.2>

Table 4.1: Hyperparameters range/values to select from, for the hyperparameter sweep.

4.3.3 Hyperparameter Sweep Results

We evaluate the agent’s performance based on test/total_reward attribute. In appendix C.1
is shown how the hyperparameter tuning was performed on given hyperparameters and how
much each influenced the test/total_reward. It distinguishes individual training runs, and
the color of the curve corresponds to its value, a higher value of test/total_reward is repre-
sented by an orange curve, indicating better performance, conversely, a lower value is repre-
sented by a purple curve, indicating poor performance. These graphs have two columns: the
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first column represents the algorithm, and the last column represents the test/total_reward.
The hyperparameters, which were tuned during the hyperparameter sweep, are located be-
tween these two columns. Including three graphs instead of one makes the results more
readable and easier to analyze.

The table 4.2 presents the configurations of the top 2 and bottom 2 models, including
their hyperparameters and the corresponding test/total_reward values.

Model ID p3irnh80 8tml2ozg zfjr0ks0 pky1wslb
algo DDPG A2C A2C PPO
learning_rate 0.00685 0.00671 0.00698 0.00471
n_steps 256 128 128 32
gamma 0.9294 0.94108 0.93858 0.9289
gae_lambda 0.99624 0.90203 0.9383 0.85115
ent_coef 0.00203 0.0013 0.00525 0.00173
vf_coef 0.0082 0.00683 0.00125 0.00527
max_grad_norm 0.71475 0.56558 0.94281 0.77201
rms_prop_eps 0.00024 0.00435 0.0075 0.0067
sde_sample_freq 30 26 23 15
batch_size 128 64 8192 64
n_epochs 5 8 7 8
clip_range 0.18938 0.19559 0.2274 0.22578
clip_range_vf 0.05 0.15 0.05
target_kl 0.02394 0.04957 0.03176 0.03337
buffer_size 2000 5000 2000 2000
learning_starts 387 163 569 165
tau 0.00815 0.00461 0.00269 0.00469
train_freq 2 2 3 2
gradient_steps 1 3 1 3
target_update_interval 3 2 4 2
target_entropy 0.19013 0.15826 0.18233 0.13979
policy_delay 2 4 2 3
target_policy_noise 0.11459 0.15052 0.10674 0.12649
target_noise_clip 0.18538 0.10527 0.18672 0.14197
exploration_fraction 0.12082 0.10871 0.16125 0.16269
exploration_final_eps 0.18574 0.10366 0.10618 0.19131
exploration_initial_eps 0.16609 0.10003 0.16434 0.1039
test/total_reward 1.97214 1.97061 1.62093 1.63348

Table 4.2: Best and worst model and their training hyperparameters. All hyperparameters
are also available online URL: https://wandb.ai/investai/portfolio-allocation
with much more details and experiments.

4.4 Datasets Impact
In this section, we will assess the models based on the datasets they were trained on.
Specifically, we will show and evaluate the 6 best and 6 worst agents/models according
to the specific datasets (Fundamental, Technical, and Combined). The outcomes of this
comparison are presented in table 4.3. Although the results in table 4.3 may vary depending
on the hyperparameters, we can still observe that the Technical Dataset is the worst, while
the Combined Dataset is the best, and the Fundamental Dataset is good enough for training
the agent.

Our assumption that the Fundamental Dataset would be sufficient for training a
profitable agent has been confirmed, although the Combined Dataset can yield better
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results despite being more complex and difficult to train. As expected, the Technical
Dataset performed the worst, as technical indicators are not as reliable as fundamental
indicators for assessing the health and future growth of a company. Since the Technical
Analysis is based on the assumption that the past price movements can predict future price
movements, it is not surprising that the Technical Dataset performed the worst and it shows
that the market history does not guarantee the same results in the future.

Model ID Dataset Type test/total_reward
p3irnh80 Combined 1.972
8tml2ozg Combined 1.970
geaioz9h Fundamental 1.965
8iq9e37s Combined 1.956
y3zz2sv3 Combined 1.955
4qr3nk43 Fundamental 1.945

zfjr0ks0 Fundamental 1.620
pky1wslb Combined 1.633
2161deh4 Technical 1.642
ipl1v8io Technical 1.643
2161deh4 Technical 1.642
2161deh4 Technical 1.642

Table 4.3: Examples of 6 best models in the upper part and 6 worst models in the lower
part of the table.

4.5 Testing of Robustness
In this section, we will examine whether the hyperparameters setup, which seems the best
(p3irnh80 ) is robust or not by conducting multiple tests on the models and training them
with the same hyperparameters. We trained 11 models using the same hyperparameters
but different seeds, and tested them all on the Combined Dataset. The results are summa-
rized in table 4.4, which shows the test/total_reward for each of the 11 models. The mean
test/total_reward across the models is 1.824, indicating that the models perform well on
the test dataset. Although there is some variation in performance between the models,
with a spread of 0.249 between the highest and lowest cumulative reward values (test/to-
tal_reward), the distinction is significant since it has the potential to greatly impact the
long-term returns. Overall, these results suggest that the models are robust enough to be
used in real-life scenarios. It is worth noting that the variation in performance between
the models may be due to differences in the random seeds used during training, which can
affect the initial conditions of the learning process.
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Table 4.4: Robust Test: Trained models using hyperparameters from the best model trained
using sweep. The mean is 1.824 and the spread between the highest and the lowest reward
is 0.249.

Model ID test/total_reward

kyr89ols 1.723
l75jybwn 1.769
axq1epdr 1.776
3hiqutvc 1.785
sey6enti 1.799
w1xo3vul 1.806
4y7nkqyj 1.807
mliee6kz 1.864
e5pzquaz 1.882
r92of0f3 1.887
p3irnh80 1.972

4.6 Baselines & Benchmarks
In this section, we compare the performance of the agent to several baselines, including well-
known market indexes as: The S&P 500 Index (GSPC),The Dow Jones Industrial
Average (DJI), The Russell 2000 (RUT), The NASDAQ Composite (IXIC). And
in our comparison, we also incorporate investment strategies as Minimum Variance,
Maximum Sharpe Ratio [6].

4.6.1 Comparing Portfolio Performance: Analysis from 2017 to 2022

In fig. 4.1, we demonstrate that an agent can achieve successful outcomes when trained
with appropriate hyperparameters and dataset (model id: zfjr0ks0 ), while unsuitable hy-
perparameters and dataset can result in unsatisfactory outcomes (model id: p3irnh80 ).
The zfjr0ks0 model surpassed standard indexes such as DJI, GSPC, IXIC, and RUT, al-
though not consistently throughout the testing period. It is evident that the zfjr0ks0 model
outperformed almost all baseline indexes and strategies, with the exception of IXIC (NAS-
DAQ Composite) during a specific period from 2020 until the end of the testing period
in 2022, when our model began to outperform even IXIC. There could be various reasons
why our agent was outperformed by the Nasdaq 100 during the testing period. However,
we believe that the primary reason is that our agent is designed to operate with only 30
stocks, while the NASDAQ Comosite comprises 100 stocks. This limited scope of stocks
may have resulted in fewer investment opportunities for our agent, which could have led to
lower returns compared to the Nasdaq 100. Nonetheless, it is worth noting that our model
did eventually outperform the Nasdaq 100 Index by the end of 2023.

Currently, we lack adequate data to conduct a thorough comparison between our de-
veloped model and the State-of-the-Art AI4Finance. However, in the following subsection
where we will have the necessary data, we intend to perform a comprehensive comparison.
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Figure 4.1: Cumulative returns of the best(zfjr0ks0) and worst(p3irnh80) performing mod-
els, indexes (DJI, GSPC, IXIC, RUT), and strategies (minimum variance and maximum
Sharpe ratio), during the testing period (2017-2022).

4.6.2 Drawdowns Analysis from 2017 to 2022

Now we look at how the portfolios performing in drawdowns1 Based on the drawdown
graphs in fig. 4.2, we observe that the best model, trained on appropriate datasets and
hyperparameters, outperforms the DJI index for larger drawdowns (around 6%). Since
our dataset comprises companies included in the DJI index we decide for our analysis to
compare the drawdowns of the model with the highest and lowest test/total_reward, as well
as two indexes (IXIC and DJI ). The IXIC (Nasdaq 100 Index) has been chosen as the
baseline for performance in drawdowns since it outperformed our model during the period
between 2020 and 2022.

1In the stock market, drawdown refers to the percentage decline in an investment’s value from its peak
to its subsequent low point. Essentially, it represents the loss experienced by an investor in a particular
investment over a certain period of time.
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(a) The model with the highest test/to-
tal_reward

(b) The Dow Jones Industrial Average (DJI)

(c) The model with the lowest test/total_reward (d) The Nasdaq 100 Index (IXIC)

Figure 4.2: Drawdown analysis of the best and worst performing models, and indexes (DJI
and IXIC).

4.6.3 Performance of Different Portfolios: Monthly and Annualy

In figs. 4.3 to 4.5, we compared our models against baseline indexes and strategies based
on their monthly and annual returns. We presented the results in a graph, where the model
with the highest return was compared to the DJI and IXIC indexes. Our model consistently
outperformed the DJI index in most months and years, but was outperformed by the IXIC
index in 2019, 2020, and 2021. However, in 2022, when the IXIC index lost more than -30%
of its value, our model was able to keep the majority of its value and only lost less than
-8%.

It’s worth noting that our models achieved significant outperformance during the big
drawdown period caused by the COVID-19 pandemic. The our model performed better
than the DJI index during February, March, and April of 2020, indicating that our model
was able to learn which companies with specific features were better to hold during this
period.

48



Although there were some months where the DJI index performed better than our
models, the performance difference was not significant. Overall, we concluded that our
models performed well in the majority of months, as demonstrated by the annual graphs.

It’s important to note that our model was trained on companies from the DJI index,
which may have influenced the comparison with the IXIC index. Therefore, the comparison
may not be entirely fair. Nonetheless, the results suggest that our model is able to learn
what companies to hold during certain time periods and can outperform baseline indexes.

Figure 4.3: The monthly and annual returns of the model with the highest test/total_reward

Figure 4.4: The monthly and annual returns of DJI Index
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Figure 4.5: The monthly and annual returns of IXIC Index

4.7 Portfolio Metrics
This section presents the Portfolio Metrics Comparison of the models developed in this
thesis, compared to various indexes, strategies, and a model developed by AI4Finance [4].

We do not provide an explanation of the metrics used to compare models because they
are more related to Economic/Finance topics. However, we have referenced the Pyfolio
website, where these metrics are fully described, for readers who seek additional information
on the topic. The performance metrics were calculated using the Pyfolio framework and
readers can find more information on the metrics by referring to [5, 16].

4.7.1 Comparison with State-of-the-Art AI4Finance

The table 4.5 compares our models with the model from AI4Finance [4]. Due to the lack of
data, we used the results from the published paper and comparison was made only for the
period from 2020-07-01 to 2021-10-29.

As shown in the table 4.5, our models are not the best compared to the AI4Finance
model. The AI4Finance model outperforms our models in almost all performance metrics,
but our models are still better than the indexes and common strategies. Our models were
outperformed by approximately 3.1% annually, which is quite significant. This could be due
to various reasons, such as using different hyperparameters or training the models on differ-
ent datasets. Our models were trained on a combined dataset of technical and fundamental
analysis, while the AI4Finance model was trained only on technical analysis but included
the covariance matrix between stocks, which we did not consider in our datasets. Of course
it would be interesting to compare our models with the AI4Finance model over a longer
period, but unfortunately, we do not have the data for that.
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Metric / Model ID zfjr0ks0 p3irnh80 AI4Finance

Annual return 0.213 0.265 0.296

Cum. returns 0.295 0.369 0.415

Annual volatility 0.128 0.130 0.140

Sharpe ratio 1.573 1.866 1.930

Calmar ratio 2.323 2.911 3.350

Stability 0.893 0.931 0.920

Max drawdown -0.092 -0.091 -0.088

Omega ratio 1.299 1.367 1.380

Sortino ratio 2.349 2.792 2.940

Skew -0.127 -0.228 -0.110

Kurtosis 1.574 1.580 1.450

Tail ratio 1.110 1.028 1.100

Daily value at risk -0.015 -0.014 -0.017

Beta 0.888 0.920 0.980

Alpha -0.025 0.009 0.020

Table 4.5: Performance metrics of the models vs. AI4Finance model, during the testing
period of 2020-07-01 to 2021-10-29.

4.7.2 Comparison with Indexes and Strategies

The table 4.6 shows the comparison of our models with the S&P 500 (GSPC), NASDAQ
Composite (IXIC), Dow Jones Industrial Average (DJI), Russell 2000 (RUT), Maximum
Sharpe Ratio strategy, and Minimum Variance strategy. The comparison is based on the
testing period from 2017-01-25 to 2022-12-16.

As seen in table 4.6, our models outperform most of the other models/strategies in
almost all performance metrics. The green bold values indicate the best results for each
metric. However, the best values for a portfolio can vary depending on the desired outcome
and other factors.
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Metric
/ Port-
folio
main-
tainer

zfjr0ks0
(model)

p3irnh80
(model)

DJI
Index

GSPC
Index

IXIC
Index

RUT
Index

Max
Sharpe
Ratio
Port-
folio

Min
Vari-
ance
Port-
folio

Annual
return 0.085 0.122 0.089 0.094 0.116 0.043 0.093 0.092

Cum.
re-
turns

0.621 0.972 0.654 0.695 0.911 0.284 0.686 0.683

Annual
volatil-
ity

0.181 0.188 0.202 0.203 0.239 0.253 0.158 0.159

Sharpe
ratio 0.543 0.706 0.525 0.544 0.581 0.295 0.641 0.640

Calmar
ratio 0.288 0.391 0.241 0.276 0.325 0.101 0.350 0.349

Stability 0.855 0.913 0.798 0.845 0.820 0.461 0.905 0.906

Max
draw-
down

-0.297 -0.312 -0.371 -0.339 -0.357 -0.431 -0.265 -0.264

Omega
ratio 1.118 1.158 1.114 1.115 1.116 1.057 1.136 1.135

Sortino
ratio 0.763 0.994 0.723 0.751 0.802 0.404 0.907 0.904

Skew -0.249 -0.312 -0.593 -0.549 -0.465 -0.782 -0.246 -0.240

Kurtosis 16.819 19.569 19.640 14.205 7.418 10.450 14.315 14.286

Tail
ratio 0.883 0.884 0.891 0.859 0.862 0.984 0.937 0.930

Daily
value
at risk

-0.022 -0.023 -0.025 -0.024 -0.030 -0.032 -0.019 -0.018

Beta 0.879 0.921 1.000 0.966 1.007 1.083 0.636 0.637

Alpha 0.005 0.036 0.000 0.008 0.032 -0.039 0.034 0.035

Table 4.6: Performance metrics of the models vs. indexes and strategies, during the testing
period of 2017-01-25 to 2022-12-15.

4.8 Summary
In this chapter, we conducted empirical experiments to evaluate how well a Deep Reinforce-
ment Learning (DRL) agent can perform in the portfolio management task. Our results
show that DRL has a huge potential in portfolio allocation as it can outperform common
strategies and indexes. We used DRL algorithms to explore the relationship between the
reward (i.e., portfolio return) and the input (i.e., features) and measured the prediction
power using portfolio metrics. We found that the Fundamental Features or a combination
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of Fundamental and Technical Analysis features can effectively describe the environment
and be used to train DRL agents.

Portfolio management is a challenging task that requires a lot of data, which is often
expensive and difficult to obtain. Our Stock Portfolio Allocation Environment, modeled
using MDP, aims to identify how stocks are valued and which State Space features affect
price movements. We assume that the Financial Market operates like any other market
where the price of a stock or asset increases when people buy it and decreases when people
sell it. Therefore, our model attempts to predict how much each feature affects future
price movements (people’s interest to buy/sell). Since the Stock Market is predominantly
controlled by “Big Money” players such as banks and hedge funds, we believe that our
research is crucial for portfolio managers to improve their decision-making capabilities.

In addition to the future work mentioned earlier, we see a great opportunity to extend
our model by incorporating a system that automatically places orders to the broker based
on the weight predicted by our model. This would streamline the entire process of portfolio
management and eliminate the need for manual intervention.

Furthermore, we believe that our model can benefit from the inclusion of additional
features such as sentiment analysis, macroeconomic factors, and industry-specific factors.
The inclusion of these features can help our model to better capture the market’s behavior
and improve its performance.

Another area of improvement that we believe warrants further exploration is the reward
function. While our experiments have shown that the reward function we used was effective
to some extent, we acknowledge that it may not capture all the nuances of the market.
Therefore, we recommend exploring alternative reward functions that can better account
for the goodness or badness of actions taken by the agent.

Overall, we believe that our study has demonstrated the potential of DRL in portfolio
allocation, but there are still many avenues for improvement and further research. By
incorporating these future works, we can enhance the performance of our model and make
it more suitable for real-world applications.
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Chapter 5

Conclusions

The aim of this thesis was to develop a profitable portfolio allocation strategy using deep
reinforcement learning, and we successfully achieved this goal as outlined in Chapter 1.

One of the main contributions of this work is the creation of three datasets that describe
the environment for the agent, as well as the implementation of a training and testing
pipeline that is connected to the Weights and Biases platform. We were able to identify
the most appropriate dataset for training the agent, which consists of a combination of
fundamental and technical analysis features. We found that technical analysis alone is not
sufficient to predict future stock prices, but it can serve as a useful indicator for the agent
to learn the best strategy. In contrast, the fundamental analysis provides a good enough
description of the agent’s world to predict stock prices without any additional factors.

Furthermore, we independently configured hyperparameters for each common RL al-
gorithm and dataset and made them publicly available through Weights and Biases. This
transparency and reproducibility of our work make it easier for other researchers to replicate
and improve upon our results.

Although our agent’s performance could not match the annual returns of investors like
Warren Buffett or Peter Lynch, who consistently achieve over 20%, we were able to generate
an annual return of over 12%. Based on our model’s returns, there is considerable room for
improvement, which could enable us to surpass even these legendary investors.

We found that our agent could learn the best strategy even in the case of the COVID-19
pandemic and other major drops in the stock market. Specifically, the agent with the lowest
cumulative return was more efficient during such events, while the agent with the highest
cumulative return was more effective during draw-downs and skyrocketing markets.

Overall, our RL-based approach for portfolio allocation holds great potential, and we
suggest future work to further enhance our results by incorporating additional factors such
as sentiment analysis, macroeconomic factors, and industry-specific factors. These enhance-
ments could enable us to train more accurate RL agents that surpass even the top investors
in the field. It will be intriguing to observe how these factors can be implemented in real-time
market scenarios to predict market trends and facilitate investment decisions.

Finally, we believe that our work can inspire further research in this area. In conclusion,
our findings, along with the availability of data and computational resources, suggest that
RL-based portfolio allocation is a promising direction for future investment research.
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Appendix A

Reinforcement Learning
Algorithms

In this appendix, we present pseudocode for various RL methods and algorithms, which are
used in the field of RL research and applications.

A.1 Value Iteration Algorithm in DP

Value Iteration Algorithm
Algorithm parameter: a small threshold 𝜖 > 0 determining accuracy of
estimation

Initialize 𝑉 (𝑠), for all 𝑠 ∈ 𝑆, arbitrarily except that 𝑉 (terminal) = 0
Loop:

for each 𝑠 ∈ 𝑆 :
𝑣 ← 𝑉 (𝑠)
𝑉 (𝑠)← max𝑎

∑︀
𝑠′,𝑟 𝑝(𝑠

′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑉 (𝑠′))
𝛿 ← max(𝛿, |𝑣 − 𝑉 (𝑠)|)

until 𝛿 < 𝜖
Output a deterministic policy 𝜋, such that
𝜋(𝑠)← argmax𝑎

∑︀
𝑠′,𝑟 𝑝(𝑠

′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑉 (𝑠′))

A.2 Q-Learning Off-policy TD Control

Algorithm parameters: step size 𝛼 ∈ (0, 1], small 𝜖 > 0
Initialize 𝑄(𝑠, 𝑎) for all 𝑠 ∈ 𝒮+, 𝑎 ∈ 𝒜(𝑠) arbitrarily, except that 𝑄(terminal, ·) = 0
Loop for each episode: for each episode do

Initialize 𝑆 Loop for each step of episode: while 𝑆 is not terminal do
Choose 𝐴 from 𝑆 using policy derived from 𝑄 (e.g., 𝜖-greedy) Take action
𝐴, observe 𝑅, 𝑆′ 𝑄(𝑆,𝐴)← 𝑄(𝑆,𝐴) + 𝛼 · [𝑅+max𝑎𝑄(𝑆′, 𝑎)−𝑄(𝑆,𝐴)]
𝑆 ← 𝑆′

end
end

Algorithm 1: Q-learning (Off-policy TD Control)
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A.3 REINFORCE: Monte-Carlo Policy-Gradient Control

/* Input: */
a differentiable policy parameterization 𝜋(𝑎|𝑠,𝜃);
a differentiable state-value parameterization 𝑣(𝑎|𝑤);
Algorithm parameters: step size 𝛼𝜃 > 0, 𝛼𝑤 > 0;
Initialize policy parameter 𝜃 ∈ R𝑑′ and state-value weights 𝑤 ∈ R𝑑 arbitrarily (e.g.,
𝜃 = 0,𝑤 = 0);

while Loop forever (for each episode): do
Generate an episode 𝑆0, 𝐴0, 𝑅1, . . . , 𝑆𝑇 − 1, 𝐴𝑇 − 1, 𝑅𝑇 , following 𝜋(·|·, 𝜃);
for Loop for each step of the episode 𝑡 = 0, 1, . . . , 𝑇 − 1: do

𝐺𝑡 ←
∑︀𝑇

𝑘=𝑡+1𝑅𝑘;
𝛿 ← 𝐺− 𝑣(𝑆𝑡,𝑤);
𝑤 ← 𝑤 + 𝛼𝑤𝛿∇𝑣(𝑆𝑡,𝑤);
𝜃 ← 𝜃 + 𝛼𝜃𝛾𝑡𝛿∇ ln𝜋(𝐴𝑡|𝑆𝑡,𝜃);

end
end

Algorithm 2: REINFORCE Algorithm
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Appendix B

Setting up and running the
program

The root directory of the implementation code contains a README.md file that provides
instructions for installing the program. Following the steps outlined in this file should be
sufficient for completing the installation process.

The program has been tested on both MacOS 13.2.1 and Ubuntu 20.04.6 LTS (GNU/Linux
5.4.0-146-generic x86_64), using Python version 3.10.11.

B.1 Prepare Environment
Run these commands from the root directory of the implementation code. It will create a
virtual environment and install the required packages:
mkdir -p out/baseline out/dataset out/model # create directories for results
python3 -m venv venv # create virtual environment
source venv/bin/activate # activate virtual environment
pip3 install -r requirements.txt # install required packages

B.2 Datasets
Datasets are available at the following links:

1. https://wandb.ai/investai/portfolio-allocation/artifacts/dataset/stoc
kcombineddailydataset/v0/files

2. https://wandb.ai/investai/portfolio-allocation/artifacts/dataset/stoc
kfadailydataset/v2/files

3. https://wandb.ai/investai/portfolio-allocation/artifacts/dataset/stoc
ktadailydataset/v0/files.

Please download them and place them in the out/dataset folder.

B.3 Baseline
The baseline is available at the following link:
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1. https://wandb.ai/investai/portfolio-allocation/artifacts/baseline/bas
eline/v1/files

Please download it and place it in the out/baseline folder.

B.4 Examples of running Train/Test program
All examples assume that the current working directory is the root directory of the imple-
mentation code.

B.4.1 .env file

The scripts expect the .env file in the root directory of the implementation code. This file
contains the following variables, please fill the WANDB_API_KEY with your API key:

# W&B
WANDB_API_KEY=’’
WANDB_ENTITY=’investai’
WANDB_PROJECT=’portfolio-allocation’
WANDB_TAGS=’["None"]’
WANDB_JOB_TYPE=’train’
WANDB_RUN_GROUP=’exp-1’
WANDB_MODE=’online’
WANDB_DIR=’${PWD}/out/model’

If you don’t want to use Weights & Biases, you can remove the arguments with prefix
–wandb from the examples (sweep run will not work), if you want to use it, it will be
necessary to run the following command before running any of the following commands:

wandb login # to login to your W&B account

B.4.2 Run the program to print the help message

PYTHONPATH=$PWD/investai python3 \
investai/run/portfolio_allocation/thesis/train.py \

--help

B.4.3 Single Run (train/test)

PYTHONPATH=$PWD/investai python3 \
investai/run/portfolio_allocation/thesis/train.py \
--dataset-paths out/dataset/stockfadailydataset.csv \
--algorithms ppo \
--project-verbose=’i’ \
--train-verbose=1 \
--total-timesteps=1000 \
--train=1 \
--test=1 \
--env-id=1 \
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--wandb=1 \
--wandb-run-group="exp-run-1" \
--wandb-verbose=1 \
--baseline-path=out/baseline/baseline.csv

B.4.4 Sweep Run: 3 runs with random hyperparameters over 2 datasets
and 5 algorithms (train/test)

PYTHONPATH=$PWD/investai python3 \
investai/run/portfolio_allocation/thesis/train.py \
--dataset-paths \

out/dataset/stockfadailydataset.csv \
out/dataset/stockcombineddailydataset.csv \

--algorithms \
ppo \
a2c \
td3 \
ddpg \
sac \

--project-verbose=’i’ \
--train-verbose=1 \
--total-timesteps=1000 \
--train=1 \
--test=1 \
--env-id=1 \
--wandb=1 \
--wandb-sweep=1 \
--wandb-sweep-count=3 \
--wandb-verbose=1 \
--wandb-run-group="exp-sweep-1" \
--baseline-path=out/baseline/baseline.csv

61



Appendix C

Graphs

C.1 Hyperparameters Tuning Results

Figure C.1: W&B Chart of parameters and their performance

Figure C.2: W&B Chart of parameters and their performance
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Figure C.3: W&B Chart of parameters and their performance
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