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Abstract 

This thesis deals with probabilistic models for automatic speaker verification. In particular, the 
Probabilistic Linear Discriminant Analysis (PLDA) model, which models i-vector representation 
of speech utterances, is analyzed in detail. The thesis proposes extensions to the standard state-
of-the-art P L D A model. The newly proposed Full Posterior Distribution P L D A also models the 
uncertainty associated with the i-vector generation process. A new discriminative approach to 
training the speaker verification system based on the P L D A model is also proposed. 

When comparing the original P L D A with the model extended by considering the i-vector 
uncertainty, results obtained with the extended model show up to 20% relative improvement 
on tests with short segments. As the test segments get longer (more than one minute), the 
performance gain of the extended model is lower, but it is never worse than the baseline. Training 
data are, however, usually available in the form of segments which are sufficiently long and 
therefore, in such cases, there is no gain from using the extended model for training. Instead, 
the training can be performed with the original P L D A model and the extended model can be 
used if the task is to test on the short segments. 

The discriminative classifier is based on classifying pairs of i-vectors into two classes rep­
resenting target and non-target trials. The functional form for obtaining the score for every 
i-vector pair is derived from the P L D A model and training is based on the logistic regres­
sion minimizing the cross-entropy error function between the correct labeling of all trials and 
the probabilistic labeling proposed by the system. The results obtained with discriminatively 
trained system are similar to those obtained with generative baseline, but the discriminative 
approach shows the ability to output better calibrated scores. This property leads to a better 
actual verification performance on an unseen evaluation set, which is an important feature for 
real use scenarios. 
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Chapter 1 

Introduction 

Automatic speaker recognition (SRE) is a process of comparing bio-metric signals produced by 
the human vocal tract and answering the question to whom the given signal belongs or simply 
whether two signals were produced by the same individual. 

Similarly to the D N A , image of the iris, contour lines of the fingerprints, etc. - voice 
is a common type of bio-metric data, which every individual can produce and which is easy to 
capture. Thanks to its nature of being easily obtained, the the bio-metric systems based on voice 
find a broad use in law-enforcement and intelligence. This property, however, is not desired in 
the authentication systems. Therefore, in such scenarios of using voice for authentication, the 
voice verification is usually combined with other methods like knowing the secret password or 
providing additional bio-metric signals. If the voice is to be a single source of bio-metric data and 
the system knows the supposedly secret content of the speech and is able to use this knowledge, 
then we consider the S R E system as text-dependent, otherwise we talk about a text-independent 
system. 

Speech is also a very complex signal carrying not only the desired content, but also other 
various information. After it is produced by a vocal tract, which is characteristic to every 
speaker and therefore it inputs most of the speaker-related information to the signal, it passes 
through some environment to a point where it is recorded. This environment or channel has a 
great effect on the quality of such signal, which causes the degradation in performance of S R E 
systems. This behavior is, of course, an important topic for research and we will address it in 
this work as well. 

A n S R E system is built with an assumption that the information relevant to the speaker 
in the given recording is independent on the information related to channel, language, content 
(in case of the text-independent system), etc. Current state-of-the-art systems are designed to 
decouple the information contained in the signal into the speaker- and channel-related parts. As 
already mentioned, the problem can be viewed as answering two types of questions: (i) Who is 
speaking in this recording? — then we talk about the speaker identification or (ii-a) Is it the 
same speaker speaking in these two (or even more) recordings? or (ii-b) Is this speaker speaking 
in this recording? — then we talk about speaker verification. 

Both questions (ii-a) and (ii-b) represent a so-called speaker verification trial. If the correct 
answer is "yes" then the trial is called a target trial. If "no" is the correct answer, then we talk 
about a non-target trial. 

As we can see, speaker verification constitutes a two-class problem, where the task is to 
decide whether a test utterance belongs to a given speaker, or, equivalently, whether a set of 
recordings (e.g. one enrollment and one test utterance) belongs to the same speaker. These 
two very similar formulations are equivalent, but they correspond to two different discriminative 

1 
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approaches. We will address the latter formulation when describing a discriminative approach 
later. 

A n example for the verification task can be a scenario widely used by a law enforcement. 
Given some utterances belonging to a particular person, the goal is to search in a collection of 
data and find the recordings corresponding to the given person. A speaker verification can be 
turned into identification, by restricting the set of compared utterances. 

Speaker identification is then a multi-class classification problem, where the task is to assign 
a correct label to the utterance, where each label corresponds to one of the speakers from the 
set of known speakers. The assumption, whether the test segment belongs to the set of known 
speakers, constitutes two classification problems: the closed set identification — the segment is 
always assumed to belong to one of the speakers, and the open-set identification — the segment 
does not have to belong to any of the speakers. The open-set problem is a more difficult scenario. 
If a new speaker is to be added to the known speaker set, a procedure called enrollment is carried 
out. It consists of collecting a sufficient amount of speech data, assigning it a unique speaker 
label and creating a corresponding speaker model. 

1.1 Motivation and Contribution 

My work on the topics of this thesis started when I was building subsystems for the NIST 
SRE 2010 in the team of people from Agnitio, Brno and Crim (ABC) . Later during the 2010 
BOSARIS workshop held in Brno, I was working on the analysis of systems submitted by the 
A B C team to the NIST S R E 2010. The main focus was on Probabilistic Linear Discriminant 
Analysis using i-vectors as features as it showed excellent results in the evaluations. At that 
time it was already becoming apparent that P L D A and i-vectors will become a new state-
of-the-art in SRE. I was also working with Lukáš Bürget on one of the research directions, 
where the goal was to formulate a discriminative way of training the PLDA-l ike model. The 
goal of obtaining a discriminatively trained S R E system based on the P L D A was successfully 
achieved [Bürget et al., 2011, Cumani et al., 2011] and for a very short time (until the intro­
duction of the i-vector length normalization [Garcia-Romero, 2011]), this technique was pro­
viding the best results. I continued my work on discriminative training, dataset design and 
calibration [Ferrer et al., 2012, Ferrer et al., 2011] as a member of B U T and SRI team in the 
I A R P A Biometrics Exploitation & Science Technology (BEST) program. Later on, I was work­
ing with Sandro Cumani on various topics in SRE, the main being the extension of the P L D A 
model [Cumani et al., 2014], which takes into account the uncertainty about the i-vector. As 
the uncertainty of the i-vector estimate depends mainly on the duration of speech segments from 
which the i-vectors are extracted, the proposed extension turned out to be effective mainly for 
short segments. At the same time when developing the P L D A extension, I was also working both 
on a speaker- and language modeling, calibration and fusion [Plchot et al., 2013] for a D A R P A 
R A T S (Robust Automatic Transription of Speech) project in a team led by B B N Technologies. 
Working on R A T S allowed me to compare generative P L D A with its discriminative counterpart 
in a very noisy and degraded acoustic environment. 

1.1.1 Claims 

The goal of this thesis is to investigate the contemporary state-of-the-art techniques in text-
independent speaker verification field. The main focus is on the analysis and further improve­
ment of the Probabilistic Linear Discriminant Analysis (PLDA) . The main contributions can be 
summarized in the following points: 
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Analysis of the P L D A : I analyzed the performance of presented methods on various 
datasets representing different levels of acoustic signal distortions and channel variabilities. 
Also a direct comparison of the main techniques considered as the state-of-the-art before 
introduction of P L D A is provided on a common dataset. 

Extension of the P L D A : The proposed extended P L D A model takes into account an un­
certainty of the input features, which improves performance on the short speech segments 
with respect to the original P L D A model. 

Discriminative training of the P L D A : The proposed discriminative approach to P L D A 
model training offers an interesting alternative to the currently preferred generative ap­
proach. Presented results suggest that the discriminatively trained P L D A model offers 
well calibrated outputs and therefore poses as a viable option for a practical use. 



Chapter 2 

Gaussian Mixture Modeling of 
Acoustic Features 

The main role of the G M M is to estimate an underlying distribution of acoustic features extracted 
from speech segments and inherently model the hidden classes, which are being formed by 
individual speakers, various acoustic channels or some other common properties. This ability 
of unsupervised modeling of classes is later exploited by a supervised algorithm focused on 
extracting the information about the distributions of particular classes, e.g. those associated 
with speaker identities. 

Let us define a speech segment as a set of F-dimensional acoustic features: X = {xiX2 . . . xr}. 
A G M M [Bishop, 2006] is then defined as a weighted sum (mixture) of a set of C multivariate 
normal distributions of the form: 

c 
(2.1) 

c=l 

where p(x|9) is the probability of x given the G M M model 9 with C mixtures and are 
individual mixture weights, also called mixing coefficients, satisfying the constraints that > 
0 and Ylc=iw^ = 1- N ( x ! V^c\ is a F-variate Gaussian component P D F with mean /j,^ 
and covariance matrix S*-̂ : 

(2.2) 

The whole G M M 9 is then represented by parameters 

with c= 1...C (2.3) 

or more conveniently by the supervectors and the matrix of stacked parameters as: 

(2.4) 

(2.5) 

4 
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It should be noted, that the covariance matrices can be full rank or constrained to be diagonal. 
Sometimes, the parameters can be also shared among the Gaussian components. In general, the 
configuration with full covariance matrices needs more training data to properly estimate all 
the parameters. Often the G M M with larger amount of components with diagonal covariance 
matrices is used instead of the configuration with full rank covariance matrices. 

For evaluating the G M M model given the data, and therefore also for estimating its pa­
rameters, it is necessary to define the quantities associated with individual G M M components. 
Having observed the data point Xj, posterior probabilities p(c|xj)—also referred to as occupation 

(c) 
probabilities and shortly denoted as 7- —can be computed using the Bayes rule: 

(c) )N(x i ; /x( c),5]( c) 
7 ^ = 7, , , V / ~, T T V - (2-6) 

The configuration of the posterior probabilities for each feature vector is referred to as the 
alignment of the data to the mixture components. In this text, we will always assume, that the 
alignment of the feature vectors to Gaussian components is always based on U B M . 

It is also convenient to define Baum-Welch statistics. Having our speech segment X which 
consists of i = 1... r feature vectors of dimensionality F and the alignment of each feature 
vector Xj defined by (2.6), the Baum-Welsch [Kenny et al., 2007] statistics are defined as 

iv(c) = E%(c) (2-7) 
i=l 

f(c)=E%(c)x, (2.8) 
i=l 

S ( c ) = ] T 7 f W . (2.9) 

We refer to these as the zero-, the first-, and the second-order statistics (or cumulants) respec­
tively. For the simplification of the derivations, often the statistics centered around the U B M 
mean are defined as 

f(c) = f (c) _ ^ ( c y c ) ( 2 1 0 ) 

S(c) = S ( c ) _ f ( c y c ) T _ ^ ( c j f ( c ) T + ^ ( c y c y c j T ( 2 n ) 

For further simplification, the statistics can be stacked into the form of supervector and 
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matrices as: 

N 
0 N&I 

0 0 

•f(l)-

f(C) 

' S « 0 

0 S(2) 

0 0 

0 

0 

N(C)! 

(2.12) 

0 

0 

8(C) 

where the identity matrices in (2 .12) have the same dimensionality as the feature vector. Stacked 
centered statistics f and S are created according to the same scheme as their non-centered 
version. 

2.1 Max imum Likelihood Estimate of Parameters 

Given enough training data and some initial G M M configuration A ^ 0 ) , we want to estimate the 
new parameters, which best matches the underlying distribution of the data. A possible approach 
is to perform a Maximum-Likelihood (ML) estimate [Reynolds and Rose, 1995, Bishop, 2006] 
and search for the solution of 

A M L = argmaxp(X|A) (2-13) 
A 

Assuming that the statistical independence of the frames/feature vectors, the likelihood of the 
data X , given the model parameters A , is given as 

T 

p(X|A) = JJS(xi;A). (2.14) 
i=l 

Usually, the logarithm of the likelihood is required for evaluating the model and estimating the 
parameters. Its basic form is given as 

T C 

l ogp (X |A) = ^ l o g ^ ^ c ) ^ ( x , ; , , ( c ) , s ( c ) ) . (2.15) 
i=l c=l 
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For any choice of distributions ft(c) over the Gaussian components, we can rewrite this likelihood 
as 

, P ( X J , C | A ) qi(c) 
logp(X|A) = ^ l o g p ( x j | A ) = ^ J ^ f t ( c ) l o g 

i=i i=l c=l 
p(c|xj,A) qi(c) 

c 

c 
$>i (c) log ( w ^ U ; ^ ^ 

(2.16) 

c=l 
C 

where the last term 
c=l 

c 

c=l 

ft (c) log- ^ - D K L ( « ( C ) | | 7 { c ) 

(c) 

(2.17) 
c=i 7 i ' 

corresponds to the Kullback-Leibler (KL) divergence between (c) and the posterior distribution 
p(c|xj,A) = ^ \ c \ Hence, if we set ft(c) to the true posterior r ) \ c \ the K L divergence vanishes 
and the likelihood can be expressed as 

C 

logp(X|A) = ]T 
i=l 

c 
Y: llC) log ( w ^ U; , S ( c ) ) ) - £ 7 , ( C ) log 7 ? C ) 

c=l c=l 

(2.18) 

Using the Baum-Welch statistics, we can further rewrite the log-likelihood [Kenny et al., 2004] 
and get 

C 

logp(X|A) = ]T 
c=l 

lot 
(2vr)F/2|5]( c)|V2 

(2.19) 

r C (c) 

i=l c=l 
If (c)' 

which is the correct likelihood, if the statistics were collected with the true posterior distribution 
(c) 

jI . If the true posterior distribution is not available and is provided via different model, e.g. 
Universal Background Model (UBM), then this function serves as an approximation and a lower-
bound of the correct likelihood, since the omitted K L divergence is always non-negative. 

Unfortunately, direct optimization of the parameters given the data is analytically in­
tractable. However, M L estimates of the parameters can be obtained iteratively by means 
of E M algorithm [Dempster et al., 1977, Bishop, 2006]. 

For the E-step of the E M algorithm, the auxiliary function can be constructed from (2.19) 
as 

c 
• G M M ( A , A ( ° ) ) = ]T 

c=l 
< } log 

1 
(2vr)F/2|5]( c)|V2 

4 t r (sW"1 (sic) - t \ ( c V c ) T - ^ c k { f + < y v c ) T (2.20) 

c 
+ log («0 

c=l 
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By fixing the alignment of the data using the current model estimate A*-0-1, we obtain 7 ^ and 

collect the statistics {N^j, f j ^ , S ^ } . In the M-step of the algorithm, the new M L estimate of 
parameters is then computed as 

#ML = argmaxQ G MM(A,A(°)) (2.21) 
A 

for which the update formulas are given as: 

u(c) - — L f ( c ) 
M M L - N ( C )

 1 

T(c) -
 1 qto _ ,/c) ,/c) T

 (n 99\ 

,(c) AT(C) 
1V1U j. 

Repeating the E and M steps guarantees not to decrease the likelihood and iterating is usually 
stopped when the likelihood increase in two consecutive iterations is smaller than some conver­
gence threshold. For more detailed derivations following roughly our notation, we refer the kind 
reader to [Glembek, 2012]. 

2.2 Latent Variable Models for Speaker Recognition 

In this Section, we will describe essential techniques based on Factor Analysis [Bishop, 2006]. 
These techniques build upon the M A P estimate of the speaker-dependent G M M , while taking 
into account either inter- or intra-session variability or both of them at the same time. To 
study the problematic in detail, we refer the reader to the following publications [Kenny, 2005, 
Kenny et al., 2007, Kenny et al., 2005]. 

Let us begin with a brief description of M A P adaptation in terms of hidden variable models 
by following [Kenny, 2005]. Continuing with the notation of G M M from previous section, we 
will define the a speaker-dependent supervector g(s) as a latent variable model for speaker s as 

g(a) =/* + Dz(a). (2.23) 

The speaker-dependent supervector is distributed according to g ~ ( / i , D D T ) and a CF x S 
matrix D acts as a prior on the U B M mean supervector fi. Latent variable zs is a S-dimensional 
speaker-dependent hidden vector distributed according to the standard normal distribution, 
N(z|0,1). The S in the dimensionalities of the variabilities denotes an arbitrary positive number 
and will be discussed later in the end of Section 2.2.1. 

The log-likelihood of data and hidden variable is based on the general G M M log-likelihood 
function as defined in Section 2.1. We will assume fixed data alignment [Kenny, 2005] and 
represent the log-likelihood by the means of the Baum-Welch statistics collected using U B M . 
As already discussed in the previous section, this is an approximated log-likelihood acting as 
a lower-bound to the real log likelihood. Using the Universal Background Model to collect the 
statistics for all observations X = {xiX2 . . . xr} corresponding to the speaker s, we get 

logp(X|D,z) =G + H(z) 

° = g b g ( 2 7 r ) ^ ( 0 | V 2 ) " ^ ^ ) ( ^ 4 ) 

H(z) = z T D T 5 r 1 f x - ^ z T D T 5 ] - 1 N x D z , 
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where 5] is a block diagonal covariance matrix of the U B M composed as in (2.3), N j , fx and Sx 
are stacked zero-, first- and second-order centered statistics collected with the U B M according 
to (2.8), (2.10) and (2.7). 

The joint log-likelihood of the observed data X and the hiden variable is given by 

logp(X,z |D) =logp(X|D,z)p(z) 

K s + (zTT>T^-1ix - V D T ^ N X D Z - V z ) , 
(2.25) 

where the term is a constant (also referred to as a normalization term), which does not 
depend on z and D . Leaving out the Ks, the posterior of the hidden variable z, given the data 
X observed for speaker s, is given as: 

logp(z|X) oc logp(X, z) oc ( z T D T 5 T i f x - V D ^ ^ N X D Z - ^ z T z ) . (2.26) 

By completion of squares, the posterior for z is also Gaussian 

K z l X H ^ z l / ^ T - 1 ) (2.27) 

with precision matrix and mean given by 

r z = ( D T S " 1 N x D + I) (2.28) 

/x z = r - W s - 1 ? * (2.29) 

The mean of supervector posterior p(g|X) (i.e. its M A P estimate) is the given as 

g = (J, + D / i z 

= /x + D ( D T S - 1 N x D + I ) - 1 D T £ - 1 f x (2.30) 

= /x + ( N x + S ( D D T ) - 1 ) - 1 f x 

2.2.1 Training Prior Hyper-Parameters 

In the previous section, we discussed how to artificially supply a prior by means of another 
model (UBM). Now, we will describe how to train it from the data in a M L fashion. The 
training objective is to maximize the likelihood of the training data p ( X | D , z ) . Similarly to 
the G M M training, the M L estimate of the parameters can be obtained by means of E M algo­
rithm [Brummer, 2009]. While the other parameters {fi, S , w } could be also re-estimated, here 
we will consider, re-estimating only the matrix D . Taking the z as a hidden variable, the E M 
auxiliary function is then constructed as 

Q(D, D 0 ) = ] T ( l o g p ( X s , z |D 0 ) ) z | x 3 ,w |D 0 , ( 2 - 3 1 ) 
s 

where p(Xs, z|Do) is the joint probability of the observations X s for speaker s. Considering that 

p ( X s , z | D ) = l ogp (X s |D , z )+ logp(z ) (2.32) 

and p(z) being set to a standard normal distribution and kept fixed, there is no need to re-
estimate parameters of p(z), as any changes in the prior distribution can be equivalently accom­
plished by appropriately changing fj, and D . Therefore, we can simplify the auxiliary function 
as 

Q(D, D 0 ) = ] T ( l o g p ( X s | z , D 0 ) ) z | x 3 ,Do- (2-33) 
* 
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By looking at the expression for the joint likelihood (2.25) and realizing that Ks does not 
depend on D , we can further express the auxiliary function as 

1 
Q ( D , D 0 ) = ]T z ^ S " 1 ^ - ^ T D ^ ^ N X . D Z 

Z|XS,DQ 

J > [s-i ( f X s ( z ) D T - i N x D ( z z T ) D T y 
(2.34) 

where the expectations are taken over z | X s , Do- Now, in order to minimize the auxiliary function, 
we can take its derivative with respect to D and set it to zero: 

d 
dB 

5 T 1 f f X s ( z ) D T - ^ N X s D ( z z T ) D 0, 

which gives 
0. ^ E - 1 ( f X s ( z ) - N X s D ( z z 1 

s 

We need to solve the linear system 

(2.35) 

(2.36) 

(2.37) 

where c is spanning the rows of the matrices corresponding to individual U B M components. 
The expectation over the hidden variable (z) is given as a mean of the posterior distribution of 
z given the Do (see (2.29)) and (zz T ) = (z)(z T) + Y% l \ where Y% ^ is the covariance matrix 
(see (2.28)) of the posterior of z given Do . Finally, the closed-form solution for computing the 
hyper-parameters is : 

D C = E + r .£ 1 ) ) ) - 1 (2.38) 

The framework described in this section allows for setting different dimensionalities and con­
straints for D . In theory, we could take D as a full CF xCF matrix. This would be impractical, 
since the amount of parameters to train would be very large. For this reason, D is often con­
strained to be diagonal or low rank. Taking D as a low-rank CF x S matrix constraints the 
speaker-dependent supervector to lie in a 5-dimensional subspace, which is a widely used ap­
proach. The use of the subspace modeling will be shown in the following sections. 



Chapter 3 

Probabilistic Linear Discriminant 
Analysis and i—vectors 

In the last four years, S R E systems based on the i-vectors and Probabilistic Linear Discrimi­
nant Analysis (PLDA) became state-of-the art. In P L D A model, an i-vector cf> is considered 
to be a realization of a random variable whose generation process can be described in terms 
of a set of latent variables. Different P L D A models exist, which use different numbers of hid­
den variables as well as different priors. The two favourite models are heavy-tailed P L D A 
( H T P L D A ) [Kenny, 2010], where Student's t-distribution is imposed on the latent variables and 
the P L D A [Prince and Elder, 2007], which assumes Gaussian priors. 

3.1 I—vector approach 

The main idea behind the i-vector model is to transform the large utterance specific G M M 
supervector s into a small subspace, while retaining most of the important variability. From the 
perspective of speaker recognition, the supervector s contains both the speaker and inter-session 
characteristics of a given speech segment and is modeled according to: 

where u is the U B M G M M mean supervector, composed of C G M M components of dimension 
F. T is a low-rank rectangular matrix representing M bases spanning the sub-space including 
important inter and intra-speaker variability in the supervector space. The subspace defined by 
the matrix T is often referred to as "i-vector subspace" or "total variability subspace". Vector 
w is a realization of a latent variable W , of size M, having a standard normal prior distribution 

The principle of i-vectors resides in tying the latent variable to every utterance, independent 
of speaker. The same steps as already described for the subspace modeling in Section 2.2 will 
apply also to i-vectors. 

Ultimately, the aim is to estimate the parameters of the posterior distribution of the latent 
variable W for each set of r input features extracted from the given speech segment X = 
{xiX2 . . . xr}. Assuming the standard normal prior for W , the posterior distribution is also 
Gaussian: 

s = u + Tw (3.1) 

W ~ X(0,I). (3.2) 

w | x ~ N ( < £ x , r ^ ) . (3.3) 

11 
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with mean vector and precision matrix as in (2.28 and 2.29): 

0X = r~ 1 T T s- 1 f a ; X 
c 

T X = I + ^ i V X

C ) T ( C ) ' T W , (3.4) 
c=l 

respectively. As in chapter 2, in these equations, N$ (2.7) are the zero-order statistics collected 
with the U B M for the set of feature vectors in X , is the FxM sub-matrix of T corresponding 
to the c-th mixture component such that T = ( T ^ 1 ^ , . . . , T ^ T ) , and fx is the supervector 

stacking the first-order statistics f x

c \ centered (see (2.10)) around the corresponding U B M 
means, 5](c) is the U B M c-th covariance matrix, 5] is a block diagonal matrix composed of 
matrices T,(c\ and 7 ^ is the occupation probability of feature vector x4 for the c-th Gaussian 
component. 

The i-vector </> - a low dimensional fixed-length vector, which represents the segment X of a 
variable length, is then computed as the M A P point estimate of the variable W , i.e., the mean 
of the posterior distribution -Pw|x( w )-

A Maximum-Likelihood estimate of matrix T can be obtained by following the steps from Sec­
tion 2.2.1. Each submatrix T C can be re-estimated as in (2.38): 

x 
[ f ^ V x K ^ ^ x + r x 1 ) " 1 ] - ( 3- 5) 

Note that the we do not require any speaker labels and the T matrix is trained in an unsupervised 
way. The G M M subspace framework is then used as a feature extractor of the low-dimensional 
vectors containing most of the relevant variability from the original data - both useful and 
harmful for the target classification task. The presence of the unwanted variability in the 
i-vectors has to be dealt with when using i-vectors as features for classifiers or when using 
i-vectors directly for scoring. 

3.2 Probabilistic Linear Discriminant Analysis 

A l l P L D A models for speaker recognition [Kenny, 2010, Brummer and de Villiers, 2010] repre­
sent the speaker identity in terms of a latent variable Y which is assumed to be tied across 
all segments of the same speaker. Usually, inter-speaker variability for a speech segment X , 
is represented by hidden variable Xj . The hidden variables Xj are assumed to be i.i.d. with 
respect to the speech segments. 

In the most common P L D A model, an i-vector cf) is the sum of multiple terms [Kenny, 2010]: 

0 = m + Uy + V x + e (3.6) 

where m is the i-vector mean, y is a realization of the speaker identity variable Y , x is the 
realization of channel variable X and e is the realization of the residual noise E . 

The role of matrices U and V is to constrain the dimension of the sub-spaces for y and x, 
providing the bases for a speaker subspace, often called "eigenvoices" and bases for a channel 
subspace, usually called "eigenchannels". In this work, we will assume standard normal priors 
for the speaker identity variable Y and channel variable X . The noise E is assumed to be 
Gaussian distributed with the diagonal covariance matrix of the residual data variability D _ 1 : 
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Y~X(0,I) (3.7) 
X~X(0,I) (3.8) 
E~X (0 ,D _ 1 ) . (3.9) 

In case of this P L D A model, an across-class covariance matrix is defined as S a c = U T U , 
which is often low rank and limits the speaker variability to live in a subspace spanned by the 
columns of the reduced rank matrix U . Similarly, a within-class covariance matrix is defined as 
S W C = V T V + D- 1. 

3.3 Trial scoring 

Given the sets of enrollment and test segments forming a speaker verification trial, we obtain 
a speaker verification score. In this section, we will define the score as a log-likelihood ratio 
between the hypotheses that all of the segments were generated by the same speaker and that 
each set of segments was generated independently by a different speaker. 

Since i-vectors are assumed independent given the hidden variables, the likelihood that a set 
of n speech segments X i . . . Xn belongs to the same speaker (hypothesis Hs) can be evaluated 
as: 

I ( X i . . . Xn\Hs) = P<s>l...<j>n(4>1... 4>n\Hs 

n P&i\Y,Xi (<t>i\y, Xj) PXi (Xi) * Q PY(y)dy , (3.10) 

where 4>i is the i-vector extracted from segment X i , P&1...&n\HB(tt>i •••<t>n) 1S the joint proba­
bility of the i-vectors given the same speaker hypothesis Hs, -Px(x) and Py(y) are the prior 
distributions for X and Y , respectively. -P#|Y,X (0|y>x) is the conditional distribution of an 
i-vector given the hidden variables. It is related to the distribution -PE(e) of the noise term by 
f#|Y,x (<t>\y, x) = PE(0 - m - Uy - Vx). 

In order to obtain an inference about the speaker identity, we ask the question, whether a set 
of n enrollment segments X e i . . . X e „ for a known (target) speaker and a set of m test segments 
of a single unknown speaker X ^ . . . Xtm belong to the same speaker or not. Specifically, we want 
to compute the log-likelihood ratio of the segments being observed under the same speaker and 
different speaker hypotheses 

„ _ 1 [ P k i • • • X e „ , Xf x • . . Xtm\Hs) / q 1 1 l 
( \J*ei • • • ̂ e „ j -~ti • • • * M m \-"-d) 

Since speaker factors are assumed independent, the speaker verification log-likelihood ratio 
s can be formulated as: 

s — log - ' ' ' ^ e " ' ' ' ' ^ t m ^ s ^ 3̂ 12) 
I ( X e i . . . X e n |-ffs) I (Xti • • • Xfm \Hg) 

It is worth noting, that the log-likelihood ratio calculated in this way is symmetric in terms 
of swapping the enroll and test sets. Also note that standard i-vector, which is extracted by 
M A P point estimate of the posterior distribution of W given X , and classified by P L D A , does 
not embed the intrinsic uncertainty of its estimate. We will address this fact in the next chapter, 
where we will extend the P L D A model and no longer consider the segment X being represented 
by a single i-vector, but to the i-vector distribution W | X . 
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3.4 Simplified P L D A Model 

It is convenient to assume that the noise term E has a full covariance matrix, so that the terms 
V x and e in (3.6) can be merged. Therefore, in our approach a distribution of i-vector (f> is 
modeled as: 

0 = m + U y + e . (3.13) 

In this model, we restrict only the speaker variability to reside in the subspace spanned by the 
reduced rank matrix U . The across class covariance matrix is again defined as 5]a c = U T U . 
Channel variability is then modeled by a full rank within class covariance matrix — A 
Speaker factors and the residual noise priors are assumed to be Gaussian, i.e.: 

Y ~ N(0,1) , E ~ N(0, A " 1 ) , (3.14) 

where A is the precision matrix of noise E . According to (3.13) and (3.14), the conditional 
distribution of an i-vector random variable given a value y for the speaker identity Y is: 

* | ( Y = y) - ^ ( m + U y ^ - 1 ) . (3.15) 

Omitting the channel factors, which in our model are now embedded in the noise term, the 
likelihood that the n speech segments X i . . . X n belong to the same speaker can be computed by 
means of a simplified expression of (3.10) as: 

Z(Xi . . . Xn\Hs) = P#1...#„(01 ... 4>n\Hs) 

n p « s i Y ( & | y ) J V ( y ) d y . (3.16) 

3.4.1 Closed-Form Solution for Scoring 

In order to compute the likelihood of a set of n i-vectors (f>i .. .(j)n (or corresponding speech 
segments X i . . . X n , we observe that the joint log-likelihood of the i-vectors and the hidden 
variables is: 

l o g . . # „ , Y ( 0 I •••<£„,y\H a) = ^ l o g P # | Y ( 0 j | y ) + l o g P Y ( y ) 

1 
i=l 

i=l 

1 T 

•-((pi - m - U y ) A (</>j - m - U y ) + y + k, (3.17) 

where k is a constant collecting the terms that do not depend on speaker identity y . Since 
equation 3.17 is a quadratic function, using "completion of squares", we can observe that the 
posterior distribution of Y given a set of i-vectors is Gaussian 

Y | * i . . . * n ~ X ( y ) P - 1 ; (3.18) 

with precision matrix and mean: 

P = I + U i A U 

y = P " 1 U T ^ A ( ^ in) (3.19) 
i=l 
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The likelihood that a set of segments belongs to the same speaker can be written as: 

P*1...*n{Qi • • • <Pn\Hs) = 757—TT T - v , (3-20 
P(y0\<t>l • • • <Pn) 

where y 0 is an arbitrary vector, which does not cause the denominator to be zero. For the 
convenience, we can set the y 0 = 0, so that U y 0 = 0 and derive a closed form solution for the 
same speaker hypothesis [Brummer and de Villiers, 2010]: 

togP#1...#„(01...0n|ffa) = ^2 
i=l 
1 

1 M 1 T 

- l o g | A | - y l o g 2 v r - - ( ^ - m) A(0 i - m) 

1 S 
- - l o g l P l + ^ P y - -log27r , 

where M is the i-vector dimension, and S is the speaker factor dimension. 

(3.21) 



Chapter 4 

Full Posterior Distribution P L D A 
Model 

In this chapter, we will demonstrate, how to extend the standard P L D A model, where we 
considered the utterance to be sufficiently well represented by a single i-vector. We will show 
that the simple and effective P L D A framework can still be used even if a speech segment is no 
more represented by a single i-vector but by its posterior distribution. In particular, we will 
derive the formulation of likelihood for a standard Gaussian P L D A model based on the i-vector 
posterior distribution, and propose a new P L D A model where the inter-speaker variability is 
assumed to have an utterance-dependent distribution. We will show that it is possible to rely 
on the standard P L D A framework simply replacing the P L D A likelihood definition. 

It is well known, that the goodness of the i-vector estimate depends mainly on the covariance 
of the distribution, which accounts for the "uncertainty" of the i-vector extraction process. This 
ucertainity of the i-vector estimate is however not exploited by many standard and popular clas­
sifiers based on i-vectors, such as the ones based on cosine distance scoring [Dehak et al., 2010], 
P L D A [Kenny, 2010], discriminative P L D A [Bürget et al., 2011] or SVMs [Cumani et al., 2013]. 

The i-vector covariance depends on the zero-order statistics estimated using a U B M for the 
set of observed features (see equation (3.4) in Chapter 3.1). These statistics are affected by 
several factors such as the noise level, the channel characteristics, and the acoustic content of 
the observed features, but the predominant factor is the number of the observed feature frames 
- duration of a given utterance. Shorter utterances tend to produce larger covariances, so that 
i-vector estimates become less reliable. 

4.1 Incorporating the I—vector Posterior Distribution into 
P L D A 

The standard i-vector, which is extracted by M A P point estimate of the posterior distribution of 
W given X does not embed the intrinsic uncertainty of its estimate. Remembering the likelihood 
computation for the standard P L D A (see 3.10), we can extend this model by considering all 
possible i-vectors, which correspond to the speech segments X i . . . X n . 

We refer to this new model as the P L D A based on the "Full Posterior Distribution" ( F P D -
P L D A ) of W given X . As previously mentioned, we now assume that every segment X is no 
represented by a single i-vector corresponding to the most likely value of the latent variable w 
in the i-vector model (3.1). Instead segment X will be represented by the i-vector extractor 
distribution W | X (see (3.3)). Therefore, the uncertainty in i-vector estimate will be taken into 

16 
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account. In the following text, we will refer to the posterior distribution W | X simply as to 
i-vector posterior distribution. 

The P L D A model allows computing the likelihood of a speech segment given a realization 
w of the random variable W | X . The likelihood of a set of segments X i . . . X n , thus, can be 
evaluated by integrating the P L D A likelihood (see equations 3.10 and 3.17) over all possible 
realizations following the posterior distribution W | X i . . . X n . 

I ( X i . . . Tn\Hs) = / ••• / iVi. . .w„ ( w i . . . wn\Hs) Y[ 
Jwi Jwn •_, 

Pwi\Xi(wi)dwi (4.1) 

where the first factor is the likelihood of the segments according to the original P L D A model 
given realizations w i , . . . , w n of the i-vector posterior random variables, computed as in (3.10), 
and the second factor is the posterior probability of realizations w i , . . . , w n representing seg­
ments X i . . . X n according to the i-vector extractor model. Using the form of (3.10) in (4.1), 
the likelihood can be rewritten as: 

I ( X i . . . X n \ H S n 
i=l 

Pwt\Y,Xi (wj |y,xj 

• Px.i(xi)Pwi\Xi ( w i ) dxjdwj ^v (y )dy (4.2) 

It is worth noting that, if the posterior for W | X is replaced by a delta distribution centered 
in the posterior mean <5(0j), the likelihood of the original P L D A model using MAP-estimated 
i-vectors, given by (3.10), is obtained. 

4.2 Extending the Classical Simplified P L D A 

We will continue with the derivations using the simplified P L D A model introduced in the pre­
vious chapter (3.4). Starting from the point where we introduced the likelihood of a set of 
segments given the same speaker hypothesis in 3.16, we introduce the full i-vector posterior into 
the equation and we get: 

l(Xl...Xn\Hs)= f ••• f f Pv(y) fl 
Jwi Jwn Jy i = 1 

A v i | Y ( w j | y ) P W i | x i ( w i ) d w i dy 

/ p Y ( y ) J | / P w i | Y ( w j | y ) P W i | x i ( w i ) d w i 

Jy i=i Uni 
dy (4.3) 

According to the Gaussian assumptions given in (3.3) and (3.14), the inner integral can be 
computed as 

/ ^w i |Y (w j | y )Pw i | x i (w j )dwj 
J w, 

1 
\— I A —1 I 2 

-e 2 
| ( w j - m - U y ) T A ( w i - m - U y ) 

wi (2ir) 2 IA 
\ e-\(vfi-4>i)TTi(vfi-4>i)Aw. 

(2TT)^ r - 1 2 

(4.4) 
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where 4>

i and Tj are the mean and precision matrix of W j | X j computed as in (3.4). Integral 
(4.4) can be interpreted as the convolution of two Gaussian distributions, leading to: 

n 
/ (X! . . . X n | Y = y) = J ] r (4.5) 

i=i ( 2 v r ) - | A - 1 + r - 1 | 2 

. e ( ^ - m - U y ) T ( A - 1 + r - 1 ) - 1 ( ^ - m - U y ) _ 

Comparing (4.5) and (3.17), we can see that now the covariance matrix of noise becomes segment-
dependent as [ A - 1 + r - 1 ] . Considering the similarity of both models, we can say that the 
F P D - P L D A can be equivalently represented (likelihood calculation can be "similated") by the 
standard P L D A modeling the usual i-vectors (i.e. i-vector posterior means), while assuming 
modified utterance dependent prior imposed on residual noise 

E i ~ X ( 0 , [ A - 1 + r r 1 ] ) . (4.6) 

4.3 Scoring with F P D - P L D A 

The log-likelihood that a set of segments belongs to the same speaker can be obtained by means 
of the same steps followed for the standard Gaussian P L D A model, just using the modified 
likelihood in (4.5). The new P L D A model can be described as: 

0 = m + Uy + e, (4.7) 

as in (3.13), but with an segment-dependent distribution of the residual noise E . The i-vector 
associated to speech segment Xj is again the mean (f)i of the i-vector posterior W j | X j , but the 
priors of the P L D A parameters are given by: 

E i - ^ O . A ^ + r r ^ - ^ O . A - y , Y ~ X ( 0 , I ) , (4.8) 

where 
A B , , i = ( A - 1 + r r 1 ) - 1 . (4.9) 

In the following text, to simplify the notation, we will refer to distributions without explicitly 
naming the corresponding hidden variable, e.g., we will write P(y) rather than Py(y). 

To compute the likelihood of a set of n i-vectors <p1... <j>n (i.e., of the set of speech segments 
n ) , we follow the same steps as in the previous section on the standard P L D A . Similarly 

to 3.17, we observe that the joint log-likelihood of the i-vectors and the hidden variables is: 

n 
log P(0!.. . 4>n, y |H8) = log P(4>iIy) + log P(y) 

i=i 

1. . - , T . E - m - Uy) Aeq,i {<t>i - m - Uy) (4.10) 
i=l 
1 T 

+ y + k, 

The posterior distribution of y given a set of i-vectors is again Gaussian: 

y | 0 1 . . > „ ~ K ( y , p - 1 ) , (4.11) 
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with parameters: 

P = I + ^ U T A e ^ U 
i=l 

n 
y = p - 1 U T ] T A e ( ? , i (0, m 

(4.12) 

(4.13) 
i=l 

The likelihood of a set of segments belonging to the same speaker can be written as 

P(<t>i...<t>n\yo)P(y0) P(<t>1...<t>n\Hs 

P(yo\4>i • • • 4>r, 
(4.14) 

which is the same form as in the original P L D A and setting y 0 = 0 for the convenience will 
produce the similar equation to (3.21). Using (4.11), and (4.5) we finally get 

log P(<f>l...<f>n\H 
n 

1 M 1 T 

2 l o S \Aeq,i\ ~ Y l o g 2 7 F ~ 2 ^ ~ ^ Ae«'^^ ~ m^ 

1 1 s 
- l o g | P | + - y i P y - - log2vr , (4.15) 

where M is the i-vector dimension, and S is the speaker factor dimension. Again that the 
difference to the standard P L D A lies in the segment-based A e ( ? j j , which greatly affect the com­
putational complexity of scoring. 

4.4 Parameter Estimation 

The model presented in (4.7) allows obtaining a simple expression for computing the log-
likelihood ratio of a speaker recognition trial. However, it does not allow the update formulas 
to be easily derived. A n equivalent expression of (4.7), where the contributions of the i-vector 
posterior covariance and of the residual noise are decoupled, is more suitable for the estimation 
of model parameters [Kenny et al., 2013]. To this extent, the segment-dependent residual term 
Ej can be written as: 

Ej = CjXj + E , (4.16) 

where Cj is is given by the Cholesky decomposition C j C j = T " 1 , Xj is a standard Gaussian 
distributed random variable, Xj ~ N(0,I), and E is the P L D A residual term introduced in 
(3.14). The corresponding P L D A model is then given by: 

<f>i = m + Uy + Cixi + ei , (4.17) 

where Xj is a realization of Xj. It is worth noting that (4.17) formally corresponds to the P L D A 
model in (3.6) with the channel sub-space matrix V replaced by a segment-dependent matrix 
Cj. The same steps to derive the E M algorithm for the P L D A model (3.6) can be easily modified 
to estimate the parameters of the F P D - P L D A model. The details of the derivation of the E M 
algorithm can be found in [Kenny et al., 2013] or [Brummer, 2010] with modifications related 
to this model. 
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4.5 I—vector Pre-Processing 

We assume that i-vectors are standard-normal distributed and both speaker and channel effects 
modeled by the Gaussian P L D A are additive, statistically independent and normally distributed. 
In [Kenny, 2010], Patrick Kenny clearly demonstrated that these assumptions are not satisfied, 
which leads to a sub-optimal performance of the model. Additionally the score normalization was 
needed (s-norm) to obtain better results contradicting the intuition that a good generative model 
should produce well calibrated likelihood ratios which do not need to be further normalized. 

A simple method of normalizing i-vectors to suit the Gaussian P L D A model was introduced 
in [Garcia-Romero, 2011]. The normalization generally consists of two steps: data whitening 
and length normalization. Whitening is the process where we enforce the total covariance matrix 
of i-vectors to be identity. The whitening can be performed as 

0 w h t = D 1 / 2 E

T 0 , (4.18) 

where E and D are the orthogonal matrix of eigenvectors (in columns of E) and diagonal 
matrix of eigenvalues of the total covariance matrix estimated on training i-vectors, respectively. 
Length normalization is a nonlinear transformation where we divide each i-vector by its norm 
and transform it to a vector of unit length: 

0 „ o r m = irrir- (4.19) 

4.5.1 Length Normalization 

Performing a transformation of the data into the unit length indeed again violates the Gaussian 
assumptions as the samples drawn from the high-dimensional standard normal Gaussians lie 
far away from the unit sphere. In fact, the samples are mostly present in a thin shell of a 
multidimensional sphere, of which distance from the origin is increasing with the dimensionality 
of data. If we are considering 600—dimensional i-vectors and knowing that the distribution of 
lengths of standard-normal distributed i-vectors follows Chi distribution, inner radius would be 
approximately 24 (see the mode of the Chi distribution in Figure 4.1). 

When comparing the actual lengths of the i-vectors extracted from the training data and 
held out evaluation data, we observe completely different distributions of the lengths. In Fig­
ure 4.1, we present a situation of the i-vectors extracted for the Domain Adaptation Chal­
lenge [MITLL, 2103]. There are three different datasets (training, adaptation and evaluation set) 
used in the Adaptation Challenge coming from various L D C data collections. The training set 
consists of all telephone calls from the all speakers taken from Switchboard-I and Switchboard-II 
(all phases) corporas. The adaptation set is composed of all telephone calls from all speakers 
taken from the NIST S R E data collections from years 2004, 2005, 2006 and 2008. Finally, the 
evaluation set is the telephone data from NIST S R E 2010 evaluations. 

Not only we can observe a considerable shift in the lengths distributions of the individual 
databases, but all distributions have a longer right tail. The P D F of Chi distribution with 600 
degrees of freedom representing the distribution of 600 dimensional standard normal distributed 
vectors is depicted in black color. As the i-vector extractor was trained on the training data, 
the i-vector length distribution of this dataset is closest to the expected distribution. 

These shifts between datasets indeed lead to problems. As pointed out in 
[Garcia-Romero, 2011], the shift in the i-vector lengths would introduce a global scaling in 
the obtained scores (see equations 3.21 or 5.10). Scaling could be partly recovered by means of 
the linear calibration. However, especially in the cases, when the evaluation data are composed 



4.5 I-vector Pre-Processing 21 

0.3 
Chieoo 

training 
adaptation 
evaluation 

0 
16 19 22 25 28 31 34 37 40 

i-vector length 

Figure 4.1: Histograms of the i-vector length distributions of three sets of Domain Adaptation 
Challenge. A probability density function of Chi distribution with 600 degrees of freedom 
depicted in black represents the distribution of 600 dimensional standard normal distributed 
vectors. 

of recordings coming from different sources, there would be more such scalings and one global 
calibration would not be sufficient to overcome this problem. 

By performing normalization to unit length, we place all i-vectors on a surface of a common 
unit sphere and effectively greatly compress all distances between them. Also we replace a 
distribution of their lengths by a constant. Wi th a proper scaling, the constant could be even 
set into the mode of the Chi distribution, which in the end is not necessary. This way, we 
made the distribution of the i-vector lengths closer to the distribution of lengths of the i-vectors 
following standard-normal distribution. We also avoided problems with the score scaling. It is 
important to note, that before actual length normalization, we must ensure that the i-vectors 
are normalized to zero mean. Although zero mean of the i-vectors is also assumed by the i -
vector extraction model, it is often not the case for i-vectors extracted from some held out data. 
After all of these transformations, the P L D A is trained on normalized i-vectors. Alternatively 
the cosine scoring can be directly performed. 

4.5.2 Application to Full Posterior Distribution 

This section presents the length normalization applied to the i-vector posterior distribution. A 
straightforward approach is to replace the i-vector distribution W | X by W = p^my, which 

forces all realizations of W to lie on the unit sphere. However, since the resulting random 
variable W would not be Gaussian distributed, it would not be possible to rely on the simple 
derivations of Section 3.4, and to avoid the higher complexity introduced by the use of a non 
Gaussian distribution. 

Alternatively, the length normalization can be seen as a non-linear transformation F((f)0) of 
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the observed i-vector </>0, which can be approximated by its first order Taylor expansion around 
the i-vector itself. The expansion is given by: 

F(<f>) = F(cf>0) + JF(<f>0)(<f> - <f>o) + o(H -<f>0\\), (4.20) 

where JF{4>Q) is the Jacobian of F computed at <j>0 and F is the function F(x) = T T ^ T T . The 
linear transformation which approximates the length normalization function around the i-vector 
is then: 

F(<f>) = F(cf>0) + J F (0o ) (0 - 0 O ) = v + ( I ~ V ^ U (4.21) 
\m\\ 

where v = T I ^ T T and I is the identity matrix. 
The extension to the full i-vector posterior consists in computing the first order Taylor 

expansion of F centered at the posterior distribution mean <f>%, and applying the resulting 
linear transformation to the i-vector posterior W | X ~ 3\f(0x, T ^ 1 ) . The expansion of F around 
0x is: 

H<t>x) = vx + ( I ^ I X , r x ) ^ x = vx + A 0 X , (4.22) 
110x11 

where v x = jj^jf a n d A. = — jj^jp^ • Thus, the transformed distribution is given by: 

. T 

v l l0xH ' | l 0X 

Expression (4.23) can be further approximated as: 

* ( l i X T . ~ v x v ^ T - ^ I - vxvl)) , (4.23) 
'x / 

W ~ 3NT | 7 7 ^ 7 7 ,
 F x

 0 | . (4.24) 
VH^xll 110x11V 

In the experimental section, we show that these linearizations of the length normalization 
are effective. In particular, the approximation (4.24) allows a simplification of (4.23) with­
out incurring in any performance degradation. We will refer to (4.23) as "Projected Length 
Normalization" (FPD1), and to (4.24) as "Length Normalization" (FPD2). 



Chapter 5 

Discriminative Training of P L D A 

In this chapter, we propose to estimate verification scores using a discriminative model rather 
than a generative P L D A model. More specifically, the speaker verification score for a pair of 
i-vectors is computed using a function having the functional form derived from the standard 
P L D A model. The parameters of the function, however, are estimated using a discriminative 
training criterion. We use an objective function that directly addresses the speaker verification 
task, i.e. the discrimination between "same-speaker" and "different-speaker" trials. In other 
words, a binary classifier that takes a pair of i-vectors as an input, is trained to answer the 
question of whether or not the two i-vectors come from the same speaker. We show that the 
functional form derived from P L D A can be interpreted as a binary linear classifier in a non­
linear ly expanded space of i-vector pairs. We have experimented with two discriminative linear 
classifiers, namely linear support vector machines (SVM) and logistic regression. The advantage 
of logistic regression is its probabilistic interpretation: the linear output of this classifier can 
be directly interpreted as the desired log-likelihood ratio verification score. We will concentrate 
more on training with logistic regression and we will use the abbreviation D P L D A (Discrminative 
P L D A ) for such systems later in Chapter 6. 

5.1 Original Mode l 

In order to effectively deploy the discriminative approach to speaker recognition, we need to 
derive an efficient scheme for obtaining scores for the training examples. We will build our model 
on previously presented L D A principles and consider a special form of P L D A , a two-covariance 
model, where the simplification is obtained by merging together the residual noise and inter-
session components. In this model, both speaker and inter-session variabilities are modeled 
using across-class and within-class full covariance matrices XI a c and 5]w c. The two-covariance 
model is a generative linear-Gaussian model, where latent vectors y representing speakers (or 
more generally classes) are assumed to be distributed according to prior distribution 

For a given speaker represented by a vector y, the distribution of i-vectors is assumed to be 

The maximum likelihood estimates of the model parameters, fi, S a c , and 5]w c, can be obtained 
by means of E M algorithm similar to the previous sections. Alternatively, if we want to only 

(5.2) 

23 



5.2 Verification Score of a Trial 24 

obtain a reasonable initialization of the parameters for the discriminative training, the param­
eters can be directly estimated on the training data as for standard L D A . The training data 
(i-vectors) come from a database comprising recordings of many speakers (to capture across-class 
variability), each recorded in several sessions (to capture within-class variability). 

5.2 Verification Score of a Trial 

To obtain an effective way of scoring, we will consider a trial to be composed only by two i -
vectors (4>i, 4>2)• Note, that multi-session scoring, when more i-vectors are available for enroll 
or test or both, can be easily achieved by averaging the corresponding i-vectors and using the 
resulting means as single i-vectors. The averaging of i-vectors does not cause any significant 
problems or deterioration of the performance [Villalba et al., 2013] and in fact is widely used in 
the community. 

We will follow the same steps as in 3.4.1 but with the constraint of a single i-vector per 
enroll and test part of the evaluation trial. In the case of a same-speaker trial (hypothesis Hs), 
a single vector y representing a particular speaker is generated from the prior p(y), for which 
both (f)1 and <fi2 are generated from p(<t>\y). For a different-speaker trial (hypothesis Ho), two 
vectors y i , y 2 ) representing two different speakers are independently generated from p(y). For 
each, one of the i-vectors 0 1 and 0 2 is generated. The speaker verification score can be again 
calculated as a log-likelihood ratio between the two hypotheses Hs and Hd as 

s = l o g 7A. A. I TT \ • (5-3 

P{<Pl,<P2\Hd) 
The joint likelihood of the two independent i-vectors being generated from a particular speaker 
factor y is the product of two likelihoods: 

p(<Pi,<p2\y) =p(</ ,ily)p(02ly)- ( 5- 4) 

Considering the hypothesis Hs that these two i-vectors can be generated by any speaker common 
for both of them, we marginalize over all possible speakers: 

p(<t>i,<t>2\Hs) = J p(<t>i,<t>2\y)p(y)dy- (5-5) 

For the different speaker hypothesis we again marginalize over all possible speakers and 
compute the likelihood of the i-vectors being generated independently by any two speakers: 

p{4>\,4>2\Hd) = Jp(0i|yi)p(yi)dyi Jp(</>2|y2)p(y2)dy2> 

= P{4>1)P{4>2)- (5-6) 

Plugging the conditional likelihoods (5.5) and (5.6) into the log-likelihood ration (5.3) we obtain 

p((f)1,(f)2\Hs) 
S = l Q g (A, A, \TI \ (5-7) P{<Pl,<P2\Hd) 

i „ /p(0i ly)p(02ly)p(y)^y 
" G PW)PW) • ( } 

The integrals, which can be interpreted as convolutions of Gaussians, can be evaluated analyti­
cally giving 

l ogN 01 
02 7 
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01 ß s t o i o 
02 ß 0 Stat 

where the total covariance matrix is given as £ tot 
= S a c + s 

Gaussian distributions and simplifying the final expression, we obtain 

+ (0i + 02) c + A;, 

(5.9) 

By expanding the log of 

(5.10) 
where 

r 
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c 

k 
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I v " 1
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1. 

+ 2 S 6 

log | S t o t | - - log | S W C + 2 S a c 

+/ i . r (S t o J — ( S m c + 2 S a c ) (5.11) 

We recall that the computation of a bilinear form x T A y can be expressed in terms of the 
Frobenius inner product as x T A y = (A, xy T ) = vec(A) Tvec(xyT), where vec(-) stacks the 
columns of a matrix into a vector. Therefore, the log-likelihood ratio score can be written as a 
dot product of a vector of weights w T , and an expanded vector (p(4>i, 0 2 ) representing a trial: 

W ¥>(01,0 2 

'vec(A) T p 

vec(r) 
c 
k 

vec(0102

r + 020? ) 
Vec(010^ + 020J) 

01 + 02 
1 

(5.12) 

Hence, we have obtained a generative generalized linear classifier [Bishop, 2006], where the 
probability for a same-speaker trial can be computed from the log-likelihood ratio score using 
the sigmoid activation function as 

P(#s|01,02 o lo. P(01,02l#s) 
1 -P(01 ,02l#s 

+ log 
p(Hs) 

l-p(Hs 

<j(s + logit(p(Hs))). (5.13) 

Adding the logit(p(Hs)) score, which adjusts the constant k in the vector of weights, allows for 
setting different priors for both hypotheses. 

5.3 Discriminative classifier 
In this section, we describe how we train the weights w directly, in order to discriminate between 
same-speaker and different-speaker trials, without having to explicitly model the distributions 
of i-vectors. To represent a trial, we keep the same expansion (f(4>1,4>2) as defined in (5.12). 
Hence, we reuse the functional form for computing verification scores that provided excellent 
results with generative P L D A . 



5.3 Discriminative classifier 26 

5.3.1 Logistic Regression 
The set of training examples r i . . . riji G T, which we continue referring to as training trials, 
comprises both different-speaker and same-speaker trials. By trial r we understand a combina­
tion of two i-vectors r = (f>2). By introducing the variable for trial, our score for a particular 
trial becomes sr = wT<p(r) = wT(p(01, (f>2). Let us also define the coding scheme t € {—1,1} to 
represent labels for the different-speaker, and same-speaker trials, respectively. Assigning each 
trial a log-likelihood ratio sr and the correct label tr, the log probability of recognizing the trial 
correctly can be expressed as 

logp(t r |r) = - log(l + e x p ( - s r i r ) ) . (5.14) 

This is easy to see from equation (5.13) and recalling that cr(—s) = 1 — cr(s). In the case of 
logistic regression, the objective function to maximize with respect to the optimized parameters 
w is the log posterior probability of correct labeling of all training examples, i.e. the sum of 
expressions (5.14) evaluated for all training trials. 

Q = ^ l o g p ( t r | s r ( w ) ) (5.15) 
reT 

= ] T - l o g ( l + exp(- t r s r (w))) (5.16) 
reT 

Equivalently, this can be expressed by minimizing the cross-entropy error function, which is a 
sum over all training trials 

E(w) = J2arELR(trsr) (5.17) 
reT 

where the logistic regression loss function 

ELR(trsr) = log(l + e x p ( - i r s r ) ) (5.18) 

is simply the negative log probability (5.14) of correctly recognizing a trial. 
To control over-fitting to training data and to keep the optimized parameters from reaching 

large values, we can introduce a regularization by adding a penalty term to the error function. 
The simplest form of the regularization penalty is the sum of squares of all parameters, leading 
to a modified error function 

^(w) = a r E L R ( t r s r ) + - ||w||2, (5.19) 
reT 

where ||w||2 = w T w and the coefficient A is a constant controlling the tradeoff between the 
error function and the regularizer. This L2 regularizer can be extended by incorporating a prior 
knowledge of the parameters w and therefore allow it to limit the distance of the optimized pa­
rameters from some particular offset (for example the parameters estimated from the generative 
model). The error function then takes the form of 

E(w) = Y, arELR(trsr) + - ||w - w||2. (5.20) 
reT 

This regularization can be seen as imposing an isotropic Gaussian prior on the parameters 
[Bishop, 2006]. The w defines the mean of the isotropic Gaussian prior and the regularization 
constant A can be seen as a parameter to control the variance of this prior. 
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The coefficients an allow us to weight individual trials. When set to zero, it can be used 
to "turn off" some unwanted trials - for example same i-vector trials or cross-gender trials. 
We use these coefficients also to assign different weights to same-speaker and different-speaker 
trials. This allows us to select a particular operating point, around which we want to optimize 
the performance of our system without relying on the proportion of same- and different-speaker 
trials in the training set. The advantage of using the cross-entropy objective for training is that 
it reflects performance of the system over a wide range of operating points (around the selected 
one). We can show that by setting the a coefficients proportional to the number of same-
(|Ti|) and different-speaker trials (|T21) as 2iog(2)|Ti| a n < ^ 2iog(2)|T 2 | '

 o u r e r r o r function without 
regularization becomes 

which is the Cur performance measure for the speaker verification task as defined 
in [Brummer and du Preez, 2006]. This probabilistic behavior of the logistic regression clas­
sifier is one of its advantages against the S V M as it trains the weights so that the score 
s r = wT<^(r) = w T <^(0 1 ,0 2 ) can be interpreted as the log-likelihood ratio between hypotheses 
Hs and H^, and therefore, the calibration step is not so necessary. 

— log(l + exp(sr(w))) + — M 1 + exp(sr(w))) 



Chapter 6 

Experimental Results 

This chapter will present results obtained with the presented techniques on various datasets. 
First, to put the presented techniques into the historical context, we will present a short de­
scription and performance comparison of the past state-of-the-art techniques on a common S R E 
2010 dataset.In Section 6.2, we will take the standard P L D A without any i-vector normalization 
as a baseline and present (still on S R E 2010 dataset) the effects of discriminatively trained P L D A 
and i-vector length normalization.Finally, we will compare all presented P L D A techniques on 
NIST S R E 2012 dataset in Section 6.4. The superiority of the full-posterior P L D A for short 
segments, where the uncertainty of extracted i-vectors is high, will be demonstrated on modified 
NIST S R E 2010 datasets. 

6.1 Comparison of Techniques on N I S T S R E 2010 

In Figure 6.1, we can observe the evolution of the S R E systems. Clearly, the introduction of 
the channel adaptation has dramatically increased the performance, especially when the system 
was evaluated on data coming from different collection or simply containing channel effects not 
present during the U B M training. 

JFA was another milestone, which greatly improved the performance at the time when it 
was introduced. Surprisingly, the effect is not so big on the NIST S R E 2010. However this 
technique led to the introduction of i-vectors and we can observe another substantial gain in 
the performance with the cosine distance scoring of i-vectors. 

If we compare P L D A with the cosine distance scoring, we do not see much of a difference 
between the two systems. In fact the cosine distance scoring is better on the low miss-rate region 
of the D E T curve. However, this situation has changed in favor of P L D A after applying length 
normalization. 

6.2 Evolution of the P L D A 

After the NIST S R E 2010 evaluation, P L D A was in the center of the interest of the research 
community. Shortly after the NIST workshop and Odyssey 2010 conference in Brno, we have 
introduced a discriminative way of training the P L D A parameters. It was the BOSARIS work­
shop in Brno, where both the training using S V M [Cumani et al., 2013] and logistic regres­
sion [Burget et al., 2011] were developed. 

In Figure 6.2, we can observe the effect of both discriminatively trained P L D A , length 
normalization and additional condition-dependent mean normalization (mean of the training 
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False Alarm probability (in %) 

Figure 6.1: Comparison of S R E techniques on female subset of NIST S R E 2010 condition 5 

i-vectors coming from the telephone data was removed from the evaluation data). A l l of the 
P L D A systems are trained on the same dataset as described in the previous section. The baseline 
P L D A system represented by the blue D E T curve is taken from the previous section, the red 
D E T curve represents the discriminatively trained P L D A system, with no length normalization 
or other transformation of i-vectors. D P L D A was trained with all of the parameters initialized 
as matrices of zeros. The target prior probability was set to 0.001 to reflect the NIST S R E 
2010 primary metric. The regularization was performed by means of early stopping during this 
experiment. It took approximately 30 iterations for the algorithm to converge. 

The Magenta line represents the system with length normalization that was tuned to get 
the best overall results for all NIST S R E 2010 conditions. In this system, i-vectors were first 
reduced into 150 dimensions and then the P L D A with both full rank matrices representing 
speaker and channel subspaces was trained. The last system represented by the black D E T 
curve is a modification of the magenta system which consists only in the condition dependent 
mean normalization. This has further improved the P L D A system on the telephone condition. 
It should be noted, that this approach was specific to the particular training list used during 
these experiments. During our other experiments with the P L D A , we have extended our training 
list with the additional telephone and microphone data and the positive effect of this condition-
dependent mean normalization was reduced. 

The discriminative training can apparently deal with the non-Gaussian behavior of the i -
vectors and produce significantly better results than the baseline P L D A . However, the discrim-
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inative P L D A was not superior to the generative trained version for very long time. Shortly 
after this approach was developed, a length normalization was introduced, and standard P L D A 
with the i-vector pre-processing as described in chapter 4.5 has reached the performance of the 
heavy-ta d on 
i-vectors urve 
for the I dard 
P L D A w 

X2 CO 
o 

CO 
CO 

PLDA 
DPLDA 
PLDA+LDA+Length norm 
PLDA+LDA+Length norm.+MF 

0.1 0.2 0.5 1 2 5 
False Alarm probability (in %) 

Figure 6.2: Comparison of P L D A systems on female subset of NIST S R E 2010 condition 5: Blue 
system is a standard P L D A without length normalization, red D E T curve represents discrimina-
tively trained P L D A (DPLDA) , magenta and black corresponds to the standard P L D A system 
with length normalization and additional condition dependent mean normalization. 

6.3 Analysis of P L D A and D P L D A on R A T S Data 

Evaluating S R E performance on the R A T S data poses many more challenges than simply taking 
the state-of-the-art system and running it on the data. This extremely noisy data has brought 
a lot of attention to developing different variants of robust acoustic features and voice activity 
detection. It would be out of the scope of this work to discuss the RATS-specific techniques 
and we refer the reader to a general system description [Plchot et al., 2013] of our submission 
for the R A T S evaluation in 2013, from which we derive our baseline system. 

It is important to mention the composition of the training set for P L D A . After tuning the 
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Table 6.1: Comparison of the P L D A and D P L D A systems trained on all data, 10s segments 
or 30 s segmets. Results are given on the R A T S Patrol development sets. 30s-30s and IOS-IOS 

correspond to the duration of the enrollment and test utterances. The metrics are FA_10, which 
correspond to the false alarm rate at miss rate 10% and MISS-2.5 is a miss rate at false alarm 
rate 2.5%. E E R stands for equal-error rate. 

3 0 s - 3 0 s 1 0 s - 1 0 s 
System FA_10 MISS.2.5 E E R FA_10 MISS.2.5 E E R 
P L D A all 3.53 13.36 6.21 10.04 27.01 10.04 
D P L D A all 3.68 13.89 6.30 10.03 28.11 10.02 
P L D A 30 s 3.32 12.62 6.06 9.99 26.41 9.99 
D P L D A 30 s 3.12 12.09 5.81 9.29 26.43 9.66 
P L D A 10 s 3.54 13.21 6.17 9.29 25.75 9.65 
D P L D A 10 s 3.48 13.24 6.08 9.01 25.94 9.49 

composition of our training data, the general consensus was to use as many short cuts from the 
segments as possible along with the original long segments. The reason for this composition is 
greatly influenced by the evaluations, where the emphasis is put on the performance obtained 
on the 30s and 10s cuts. There is also a 3s and 120s test condition in R A T S S R E evaluation 
protocol. The 120 s condition is getting less attention as the program goals for this test were 
mostly achieved. The 3 s condition was considered too hard especially in the first two phases of 
the R A T S project and we did not focus on tuning for these durations. 

The final training list for our baseline P L D A system was a compromise between the perfor­
mance on the short duration segments and a reasonable amount of data for training the D P L D A 
system. In total, it contained 210 thousand segments, out of which 70 thousand were randomly 
selected 30 s cuts and another 70 thousand were randomly selected 10 s cuts. The training of 
P L D A followed the same recipe as previously described, with L D A dimensionality reduction 
to 200 dimensions and length normalization. Corresponding D P L D A systems were trained us­
ing parameters initialized to zeros. As the trials in the R A T S S R E evaluations are defined as 
multi-session (6 enrollment segments versus one test), our development test sets also follow this 
scheme. In order to obtain the scores with the D P L D A system, we used i-vector averaging 
to represent the multi-session trial as a standard one-to-one i-vector trial. We performed the 
multi-session scoring with standard P L D A , but it should be noted that doing the averaging does 
not significantly change the results. 

Results of the experiments reported on the metrics of the R A T S program are summarized 
in table 6.1. We report only results obtained on the R A T S Patrol team development test sets 
as the key for the official evaluation set of the program was not available at the time of writing 
this text. 

It can be seen that training both systems on the whole dataset yields slightly worse per­
formance than training a duration-dependent system. Also the D P L D A system is performing 
slightly worse than the P L D A system when trained on all data. The situation has finally turned 
in favor of D P L D A when training duration-dependent systems. In these scenarios, the D P L D A 
outperformed P L D A on almost all metrics. 
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6.4 Ful l Posterior Distributions P L D A 

The proposed P L D A model aims at addressing the uncertainty in i-vector estimates. Thus, a 
dataset was defined that consists of speech segments, from NIST SRE10 extended core condition, 
which were cut, after Voice Activity Detection, to obtain segments of variable duration in the 
range 3-30, 10-30, 3-60, and 10-60 seconds, respectively. These sets of segments have been 
scored according to the official NIST S R E 2010 conditions 1-5 [NIST, 2010]. 

A l l experiments were performed using i-vector posteriors with dimensionality 400. The 
P L D A was trained with a speaker variability sub-space of dimensionality 120, and full channel 
variability sub-space. Although both female and male speaker tests were performed, we report 
more detailed results on the female datasets only, because the NIST S R E 2010 core test on 
female speakers is known to be more difficult, thus more often compared in the literature. 

Table 6.2 summarizes the results of the tests performed on the NIST S R E 2010 female 
extended conditions, including the core condition (condition 5), in terms of percent Equal Error 
Rate and normalized minimum Detection Cost Function (DCF 0 id and D C F n e w ) as defined by 
NIST for SRE08 and SRE10 evaluations [NIST, 2010]. In this table, the P L D A and F P D - P L D A 
systems are compared using the original interview data, or telephone conversations, without any 
cut. Labels "tel" and "tel+mic" refer to the datasets used for training the P L D A parameters, 
including telephone data only, or additional microphone data. Labels "Std" and " F P D " refer to 
the standard and the Full Posterior Distribution P L D A , respectively. The first two rows give the 
baseline results, obtained using standard i-vectors trained on telephone data only, for the five 
NIST 2010 conditions. It can be observed that the matched conditions 5 and 1 — tel-tel and 
int-int, respectively, achieve the best results, whereas the difficulty of the task decreases from 
condition 2 to condition 4. The same behavior is confirmed for the other experimental conditions, 
shown in the remaining lines, and for the other tests using variable duration segments. The new 
model not only keeps the accuracy of the standard model, as expected for long segments, but 
also shows a slight relative improvement in three conditions (2,3,4). The third row describes the 
effect of using the i-vector covariance also in training. As expected, since the training segments 
have long durations, the results are similar to the ones reported in the second row. The last 
three rows show the effect of adding microphone data in training the P L D A parameters: sensible 
performance improvement is obtained, excluding, as expected, the matched tel-tel condition 5. 

Since the system trained with the "tel" list performs worse than the one trained with the 
"tel+mic" list, all the remaining experiment on the NIST 2010 data, whenever not mentioned, 
have been performed with the latter. Table 6.3 compares, in its first three rows, the performance 
of the P L D A and F P D - P L D A classifiers using the two length-normalization methods described 
in Chapter 4.5 on the 3-60 seconds cuts. The results of the last row show that there is no 
advantage in using the full i-vector posterior in training the P L D A models. The effect of the 
two length-normalization approaches is comparable, thus in the following we will present only 
the results obtained with the Projected Length Normalization (FPD2) (4.24). 

6.4.1 Comparison on N I S T 2012 

Pooled results for female and male speakers are reported in Table 6.4 for the NIST 2012 S R E 
. The i-vector dimension was increased to 600. Moreover, Linear Discriminant Analysis was 
performed to reduce the i-vector dimensionality to 200, before applying i-vector whitening 
and length normalization. Since the resulting i-vectors are already small, no dimensionality 
reduction was applied for the speaker sub^space, i.e. the speaker sub-space was set to 200. 

The results comparing standard P L D A and F P D - P L D A are given in Table 6.4 in terms of 
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minimum and actual C p r i m a r y . Note, that in contrast to min-DCF, there is no analytic version 
of the " minimum" Cprimary- By "minimum", we mean a Cprimary as defined by NIST, but with 
calibration performed on the evaluation data 

These results show that the Asymmetric F P D - P L D A is almost equivalent to the standard 
P L D A . For minimum Cprirnary, it gains for conditions 2 and 5, which include short and variable 
duration segments. A n excellent result have been obtained with discriminatively trained P L D A 
in terns of the actual Cprimary, where the calibration loss for D P L D A system is low compared 
to the other two techniques. These results confirm that D P L D A is a technique with a built-in 
calibration, which is a very useful property for a real use scenario. 



Table 6.2: Results for the core extended NIST SRE2010 female tests in terms of % EER, minDCF 0id x 1000 and m i n D C F n e w x 1000 using different training lists 
and PLDA models. Label "tel" and "tel+mic" refer to the datasets used for training the PLDA, including or not microphone data. "Std" and "FPD" labels refer to 
standard PLDA and FPD-PLDA, respectively. I-vector posterior length-normalization is performed by means of (4.24). 

List Train Test 
condition 2 condition 3 condition 4 condition 1 condition 5 

List Train Test E E R D C F o l d DCF new EER D C F o l d DCFnew EER D C F o l d DCFnew EER D C F o l d DCFnew EER D C F o l d DCFnew 

tel Std Std 4.2 224 641 2.5 113 445 1.7 102 411 2.0 84 346 2.0 100 339 
tel Std FPD 3.9 214 638 2.3 111 462 1.6 101 419 1.7 81 346 2.0 100 346 
tel FPD FPD 3.9 214 635 2.4 110 450 1.6 99 415 1.8 79 345 2.0 98 336 

tel+mic Std Std 2.6 124 460 2.2 103 405 1.1 65 303 1.8 68 258 1.9 105 335 
tel+mic Std FPD 2.3 114 455 2.1 103 402 1.0 60 296 1.7 63 254 2.0 103 347 
tel+mic FPD FPD 2.3 112 455 2.0 100 396 1.0 59 288 1.6 60 253 2.0 101 344 

Table 6.3: Results for cuts of 3-60 second test data, using different length-normalization approaches. The PLDA parameters are trained using both microphone and 
telephone data. Labels "Std" and "FPD" refer to standard PLDA and FPD-PLDA, respectively, and the numeric suffix of FPD corresponds to the i-vector posterior 
length-normalization method. 

Train Test 
condition 2 condition 3 condition 4 condition 1 condition 5 

Train Test E E R D C F o l d DCFnew EER D C F o l d DCFnew EER D C F o l d DCFnew EER D C F o l d DCFnew EER D C F o l d DCFnew 

Std Std 9.1 384 812 7.8 368 832 7.3 312 695 7.0 273 630 6.7 337 729 
Std FPD1 (eq. 4.23) 6.7 327 791 6.1 343 838 5.2 259 676 4.8 232 603 6.2 322 722 
Std FPD2 (eq. 4.24) 6.7 328 791 6.2 343 838 5.2 259 676 4.7 232 603 6.2 323 722 
FPD 2 FPD 2 6.5 327 796 6.3 355 837 5.0 255 676 4.6 229 601 6.3 328 731 



Table 6.4: NIST S R E 2012 core-extended test: comparison of D P L D A , P L D A and Asymmetric F P D - P L D A on minimum and actual C'primary • The 
numbers associated to the conditions refer to the mean duration of the segments, after voice activity detection, and to the corresponding standard 
deviation. 

System 

Condition 1 
interview 

without added noise 
45s - 41 

Condition 2 
phone call 

without added noise 
56s - 48 

Condition 3 
interview 

with added noise 
75s - 37 

Condition 4 
phone call 

phone with added noise 
110s- 56 

Condition 5 
phone call 

from a noisy environment 
57s - 48 

DPLDA (min) 0.230 0.261 0.206 0.287 0.249 
PLDA (min) 0.255 0.206 0.244 0.265 0.222 

F P D - P L D A (min) 0.253 0.193 0.241 0.264 0.211 
DPLDA (act) 0.250 0.300 0.215 0.339 0.333 
PLDA (act) 0.336 0.292 0.294 0.370 0.342 

F P D - P L D A (act) 0.336 0.292 0.293 0.389 0.344 



Chapter 7 

Conclusions 

This work proposes two variants of the Probabilistic Discriminant Analysis, which, in its stan­
dard form, is currently considered as the state-of-the art technique in the text-independent 
speaker recognition. Preceding state-of-the art techniques have been put into the context with 
the standard P L D A , which also serves as a baseline for the proposed modifications. The per­
formed comparison of all techniques on the NIST S R E 2010 dataset presents a historical progress 
in the S R E technology. In Figure 6.1, we can identify two milestones in the S R E technology. It is 
an introduction of the channel compensation techniques and using i-vectors as low-dimensional, 
information-rich features for modeling. 

Discriminative P L D A 

The functional form of the standard P L D A model for evaluating the speaker verification trial 
has been used as a basis for designing the discriminative approach to training of the P L D A 
parameters. A single discriminative model then directly addresses the symmetric speaker ver­
ification task: a discrimination between the same- and different-speaker trial formed by two 
i-vectors. Although the discriminative training was initially bringing substantial improvements 
with respect to original P L D A , after the application of the length normalization of i-vectors, 
the standard P L D A model achieves slightly better performance in the minimum D C F and E E R 
metrics. 

The performed comparative study of P L D A and D P L D A in various acoustic environments 
has also shown slightly better overall performance of the standard generative P L D A in terms 
of minimum D C F and E E R evaluation metrics. In the domain of highly degraded R A T S data, 
the discriminative approach has shown minor improvements in the duration-dependent systems 
with respect to generative baseline. These experiments, however, show a theoretical best possible 
performance not taking into account any calibration loss. 

Minimizing the cross-entropy error function as an objective for discriminative training of 
D P L D A forces the system to output scores in form of calibrated log-likelihood ratios. The 
possibility of weighting individual trials allows for setting the desired operating point of the 
system already during training, which makes the consecutive calibration step less necessary. The 
quality of the calibration of the D P L D A scores has been confirmed by the experiments where 
the calibration loss on an unseen evaluation set is lower than for the other P L D A variants. This 
behavior is a desirable property in a real use scenario, where the actual error rates matter much 
more than the theoretical minimum error rates. 
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Full Posterior Distribution P L D A 

In generative approach, a P L D A model which exploits the uncertainty of the i-vector extraction 
process has been presented. The basic idea lies in the formulation of the P L D A likelihood, which 
has been derived for a Gaussian P L D A model based on the i-vector posterior distribution. The 
new formulation of likelihood evaluation defines a new P L D A model, where the inter-speaker 
variability is assumed to have a segment-dependent distribution. 

Taking into account the posterior distribution of all i-vectors representing an utterace also 
leads to the need of normalize this distribution in line with the already established length 
normalization of i-vectors. Two i-vector pre-processing techniques complying with the new 
P L D A model have been proposed and their effects were compared on the system accuracy. 
It was shown that an approximate version of a linearized length normalization is sufficiently 
accurate. 

The complexity of the P L D A and F P D - P L D A implementations has been analyzed and an 
Asymmetric F P D - P L D A approach has been proposed. The asymmetric approach allows for a 
substantial complexity reduction in a practical detection scenario with known target speakers. 

The results obtained both on the extended core tests and on short cuts of different duration 
of the NIST S R E 2010, and on the extended tests of NIST S R E 2012, confirm that the F P D -
P L D A outperforms P L D A mostly for short variable duration test segments. No loss in the 
performance has been observed for the standard tests containing long test segments. It was 
also experimentally demonstrated that for the scenarios when sufficiently long utterances are 
available for training the P L D A model, we can use the standard P L D A for training and F P D -
P L D A for scoring. Therefore in most real use cases, there is no need to perform more expensive 
F P D - P L D A training. 

Future Work 

The F P D - P L D A can clearly outperform the baseline when testing on short utterances and 
D P L D A excels at producing well-calibrated scores. Therefore both techniques present a viable 
option for a real use and should be evaluated in production systems. In my opinion, there are 
more unknowns in the discriminative approach to be explored. A possible direction for future 
research could be to address the problem of overtraining the model on the training data and 
propose more sophisticated ways of regularization. Also an automatic forming of all possible 
trials in the discriminative training by taking all possible i-vector pairs does not correspond 
to the real test and could be redesigned. For example forming the trials out of the same 
utterance, just recorded over different microphone introduces many artificial positive examples, 
which should be avoided. From the perspective of the functional form for scoring, other blocks 
can be added to simulate the i-vector pre-processing or condition-dependent calibration. 
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