BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INFORMATION SYSTEMS
USTAV INFORMACNICH SYSTEMU

INFRASTRUCTURE AS CODE IN AGILE SOFTWARE
DEVELOPMENT

INFRASTRUKTURA JAKO KOD V AGILNiM VYVO]JI SOFTWARE

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR VOJTECH HROMADKA
AUTOR PRACE

SUPERVISOR RNDr. MAREK RYCHL?, Ph.D.

VEDOUCI PRACE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2019/2020
Bachelor's Thesis Specification [|[|[IlIIHI
23145

Student: Hromadka Vojtéch
Programme: Information Technology

Title: Infrastructure as Code in Agile Software Development
Category: Information Systems
Assignment:

1. Study Infrastructure as Code (laC) technologies (e.g., Terraform, Chef, Ansible, Cloud
Formation, Google Deployment Manager), evaluate and compare these technologies. Make
yourself familiar with Continuous Delivery and Continuous Integration (CI/CD) concepts,
technologies, and applications in agile software development.

2. Choose one laC technology and describe its utilisation and possible issues in CI/CD in agile
development using a Git code repository.

3. Design an agent which controls concurrent access to infrastructure resources in a cloud and
prevents collisions of concurrent laC deployments.

4. After consulting with the supervisor, implement the agent and demonstrate its usage in
appropriate examples.

5. Describe, evaluate and publish the results as an open source.

Recommended literature:
¢ Yevgeniy Brikman. Terraform: Up & Running: Writing Infrastructure as Code. 2nd ed.
O'Reilly Media, 2019. ISBN 1492046876.
¢ Gene Kim, Jez Humble, Patrick Debois, John Willis. The DevOps Handbook: How to Create
World-Class Agility, Reliability, and Security in Technology Organizations. IT Revolution,
2016. ISBN 194278807X.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Rychly Marek, RNDr., Ph.D.
Head of Department: Kolaf Du$an, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: July 31, 2020

Approval date: October 21, 2019

Bachelor's Thesis Specification/23145/2019/xhroma13 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract

This thesis is focused on the usage of infrastructure as code in agile software development.
Concepts such as continuous integration and delivery, DevOps are analyzed. Further cloud
environments are analyzed. In this work are compared different infrastructure as code tools.
For the prevention of possible issues in using infrastructure as code software was designed.
The software purpose is to control concurrent access to infrastructure creation with a tool
called Terraform. The software was then is for experiments. The first experiment demon-
strates that workflow with Terraform agent is behaving correctly. The second experiments
demonstrate control of concurrent access to infrastructure creation.

Abstrakt

Tato bakalarska préace je zaméfena na vyuzivani infrastruktury jako kédu v agilnim vyvoji
software. Rozebira dalsi obvyklé koncepty, které jsou pouziviny pii agilnim vyvoji mezi
které patii DevOps, kontinudlni integrace a dorucovani. Daéle je zaméfena na vyuziti
cloudu a na porovnavani jednotlivych nastroju vyuzivanych v infrastruktuie jako koédu.
Pro prevenci moznych problémt pii vyuzivani infrastruktury jako kédu byl navrzen soft-
ware, ktery ma za tcel kontrolovat soubézny pristup k vytvareni infrastruktury s nastrojem
Terraform. S timto softwarem byly nasledné provedeny dva experimenty. Prvni experiment
demonstruje zdali lze uplatnit navrhovany pracovni postup se softwarem, druhy experiment
demonstruje spravnost feseni pri soubézném pristupu.

Keywords

Infrastructure as code, Agile development, Terraform, DevOps, Cloud

Klicova slova
Infrastruktura jako koéd, Agilni vyvoj, Terraform, DevOps, Cloud

Reference

HROMADKA, Vojtéch. Infrastructure as Code in Agile Software Development. Brno,
2020. Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor RNDr. Marek Rychly, Ph.D.

Rozsireny abstrakt

Vyuzivani agilnich metodik ve vyvoji software roste ¢im dal tim vice na popularité. Vyvo-
jarské spolec¢nosti jsou schopni diky témto metodam rychleji reagovat na pozadavky od
zadavatele, a tim prizpusobit software dle nejnovéjsich potieb. Obvyklou soucasti agilniho
vyvoje spociva v prijeti DevOps kultury, kterd vyznamné pomaha urychlit proces dorucovani
v podobé vytvareni automatizovanych procesi jako je kontinualni integrace a kontinualni
dorucovani.

Nedilnou soucasti DevOps kultury a agilniho vyvoje je vyuzivani nastroju za ucelem
vytvareni infrastruktury jako kédu. Infrastruktura jako kod umoznuje abstrakei samotného
hardware do formy kdédu jako je tomu zvykem pii vytvareni software. Pro vyvareni infras-
truktury jako kédu existuje nékolik nastroju, které podporuji vytvareni infrastruktury na
virtudlnich strojich nebo nastroje které zajistuji prostiedky od cloudovych poskytovatelt.
Tyto néastroje se obvykle daji zakomponovat do autimazitovanych rutin jako je kontinudlni
dorucovani.

Tato prace se zaméiuje na uvedeni ¢tendfe do problematiky DevOps a praktickych
vyuziti metod, které zrychluji vyvoj a dorucovani softwaru zejména z pohledu vytvareni
infrastruktury s pomoci infrastruktury jako kédu.

Cilem této prace je prozkoumat moznosti infrastruktury jako kédu a popsat mozny
vyskyt problému pri vyuzivani danych nastroju, poté navrhnout agenta, ktery zabrani
kolizim pii soubézném vytvareni infrastruktury v cloudovém prostiedi.

Hlavni ¢asti celé prace je navrh a implementace serverového agenta, ktery je integrovany
do cloudové sluzby, tak aby byl schopny kontrolovat soubézny piistup k zménam infrastruk-
tury. Pro vytvoreni takového agenta je nutné zvolit nad kterym néastrojem bude pracovat.
Prozkoumat jak dany néastroj pracuje, jaky je jeho obvykly pracovni postup a ten potom
zapouzdrit a vylepsit o pozadované funkce.

Pro ucely této prace je vybrat Terraform, ktery se jevi jako univerzalni néstroj in-
frastruktury jako kédu. Nasledné jsou navrhnuty vylepseni pracovniho postupu s danym
nastrojem a to tak, ze by méli zlepSit tymovou spolupraci. Navrzeny agent spolupracuje
s verzovacim systémem GitHub tak, ze pokazdé pii vytvareni nové verze infrastruktury,
agent zajisti aby byla vytvorena nejnovéjsi verze na zakladé poslednich zmén na GitHubu.

To vSechno je na zavér prace naimplementovano a agent je nasazeny do cloudu. Urcité
aspekty souvisejici s agentem jsou integrovany do cloudového prostredi pro spravnou funkcional-
itu celého programu. Druha implementovand c¢ast je klientskd ¢ast programu, kterd je
schopna komunikovat s agentem pomoci volani API.

Jako posledni bod préace jsou provedeny nalezité experimenty, které demonstruji funkénost
softwaru a zaroven vysvétluji vyuziti v praxi. Prvni experiment méa na starost zjisténi zak-
ladnich pozadavkt na software jako je navrzené zlepseni tymové spolupriace. Druhy exper-
iment zobrazuje funkénost programu pfi soubézném pokusu o vytvoreni infrastrukturu.

Infrastructure as Code in Agile Software Devel-
opment

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of RNDr. Marek Rychly, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Vojtéch Hromadka
July 30, 2020

Acknowledgements

First I would like to thank my supervisor, RNDr. Marek Rychly, Ph.D. For his willingness
and his advice while creating this work. Also, I would like to thank Ing. Peter Malina from
FlowUp that he helped me to put together the assignment of this thesis.

Contents

1 Introduction

2 Agile development

2.1 DevOpS . . v i e
2.2 Continuous integration and delivery
2.3 Team collaboration
2.4 Containerization e
2.5 Cloud vS ON-Premise o vttt
2.6 Cloud-native o i i e e e
2.7 Cloud Providers. o o i e e e

3 Infrastructure as a code

3.1 Existing Infrastructure as Code Tools

3.2 Cloud specific IaC tools

3.3 Research on similar existing solutions
4 Design

4.1 Terraform workflow

4.2 Designing the agent L L oo o
5 Implementation

5.1 Server Side e

5.2 Client o e e

5.3 Securing connectiono

5.4 Cloud configuration and deployment

6 Experiments
6.1 Experimment 1
6.2 Experimment 2 Lo

7 Conclusion
Bibliography

A Content of the storage medium

N

w

— © © 00 = Ut =

14
15
16

18
18
19

23
23
26
26
27

28
28
30

32

33

35

Chapter 1

Introduction

Software development methods are growing increasingly with a passion for agile develop-
ment. The agile concept is focused on fast reaction to changes during development and fast
delivery of new versions of the software even with small incremental changes.

Chapter 2 is about brief insight into agile and DevOps culture, about its utilization
and common practices that are adopted by these cultures and how cloud is taking place in
the current market and its benefits compared to on-premise solutions.

For agile development, proper tooling must be chosen to be able to deliver fast, with
confidence and without errors. A Teams first steps to practising agile are usually utilising
continuous integration and continuous delivery tools to build, test and deploy applications,
but it does not end there.

In the actual world where cloud computing is increasingly getting popular, enterprises
adapting tooling in form of infrastructure as code which allows abstract the physical layer
of infrastructure. Infrastructure as code allows creating multiple environments of a project
without the challenge to manage them all manually. A closer look into infrastructure as
code practices is in Chapter 3.

This thesis focuses on practical aspects of using infrastructure as code in agile devel-
opment and cloud environment. In Chapter 4.2 is designed agent that should improve
team collaboration and allow control of concurrent access of creation infrastructure with
Terraform tool to prevent collisions.

The motivation behind creating software that can control concurrent access to the in-
frastructure changes is to help enterprise teams to collaborate better without the need of
explicit communication of new changes and also removing the urge of having dedicated
team members to manage this kind of operations.

Chapter 5 focuses on the implementation of the Terraform concurrent agent and de-
scribes the approach that is used to create the application and how it is integrated into
Google Cloud.

Last Chapter 6 describes testing and experimenting with the final application in the real
scenarios and shows how the Terraform concurrent agent could be utilized in the develop-
ment of larger projects.

Chapter 2

Agile development

Agile development is one of many development methodologies. This type of methodology
is built on principles like simple design, continuous delivery, self-organizing teams and face-
to-face communication, fast response. These principles are derived from four core agile
values.

Composition of four agile values:

e Individuals and interactions over processes and tools
e Working software over extensive documentation
e Collaboration with customer over contract negotiation

e Responding to change over following a plan

In agile development value on the left side is more important than values on the right.
However, it does not mean that values on the right side are not important. According
to the set of these values twelve agile principles were proposed. These principles enhance
the importance of agility in software development.

Some principles derived from these values are improved by using a cloud environment for
development. Such as scalability, providing infrastructure (both hardware and software),
fast delivery mechanisms, lowering cost and increasing software quality. In the bigger
picture cloud computing affects agile software development with increasing prominence [22].

Agile software development has various methods and since general talk about it may
not give a clear idea of how agile development works, Scrum is stated as the most popular
agile framework.

Scrum

Scrum is defined as a flexible, holistic product, a development strategy where developers
work as a unit to reach a common goal. One development cycle is called Sprint. Sprints are
usually no long-term plans that have an elected amount of features that are implemented
in one development cycle. After every sprint, Sprint Planning is arranged to prioritize
the features. Sprints are created from Sprint Backlogs which works as a to-do list.

In Scrum daily meetings are held. Each team member should be prepared and share
answers to three basic questions.

e What did the member yesterday do that contributed to sprint goal?

e What does the member plans to do today?
e Are there any difficulties that can prevent the member from contributing?

After each iteration, team members are part of a Retrospective meeting where they
share and identify lessons and improvements for the next sprints [22].

With this simple example of how scrum works, it is safe to say that in the modern
world agile development is a great way to work on projects for customers that are driven
by fast-changing demand on the market as agile offers solutions for certain problems.

2.1 DevOps

In the first place, DevOps is a culture, not a specific method on how to approach an issue.
However, there exist tactics that should help to create own methods which could shorten
operations of software design changes [1].

DevOps is a culture and a mindset of people practising it. For most cases, that culture
is about trust, team empowerment and cooperation. It also means DevOps is open to
learning new things and finding solutions [16].

Wants to deliver newest \Wants to guarantee stability
featuers < of service
2
[=]

2
(]
S
=
0
=]
=
Developer Operator

Figure 2.1: Misunderstanding is frequent event in divided teams

Dividing software development team into the development and operations team is a long-
lasting practice. Both teams have different needs and ideas. The development team would
like to release the newest features as soon as possible. On the opposite hand, the operations
team would prefer the stability of software over releasing new versions.

The essential idea behind DevOps is quite simple. Build a bridge between development
and operations team. The development team should know what needs to be done by
the operations team and vice versa. Ideally, operations should be part of the development
team, so that everyone has the same knowledge base.

Another approach of building the bridge between those two teams is to merge them,
where both developers and operations could do the same work. Develop and deploy their
work later on without being dependent on the second team.

With both of those approaches, development may concentrate on creating features to
production as fast as possible or delivering on time with good quality instead of blaming
the second team for their mistakes. Both approaches support the agile concept of fast
development.

Why is DevOps important? In current I'T market is dominated by the speed of releasing
products. This can be seen by the popularity of agile techniques to shorten development cy-
cles. And when development cycles are fast enough, there is a bigger need to correctly create
space where that product can be placed and regularly updated. With DevOps, it is safer
to make changes more often because of automated pipelines of the whole deployment [1].

DevOps in practise

DevOps work usually lays in increasing automation and faster deployment process.

First DevOps task is to create an automated deployment mechanism. Deployment strat-
egy is mostly based on deployment scripts or some continuous delivery system, which is
triggered by the CI system. Strategies to deploy to different environments such as develop-
ment or production may differ. While the development environment is usually automated.
Deployment to production often needs manual triggering.

Infrastructure as code, provisioning and configuring environments repeatedly and reli-
ably is part of DevOps expertise and can be part of the CI/CD'! pipeline. Tools such as
Terraform, Chef or Puppet are used for this purpose. Infrastructure as code is mentioned
in Chapter3

Developers and operators actively monitor applications and services that were devel-
oped, both in production or other environments. Monitoring is done for various purposes,
such as providing visibility over failures of deployment or quality of provided services. With
proper monitoring faster response to bugs and anomalies is achieved which leads to greater
customer satisfaction [16].

" lam

Ops

X

Figure 2.2: DevOps cycle [20]

2.2 Continuous integration and delivery

Continuous integration (CI) and continuous delivery (CD) embody a culture, set of operating
principles, and collection of practices that enable application development teams to deliver
code changes more frequently and reliably. The implementation is also known as the C1/CD
pipeline and is one of the best practices for DevOps teams to implement. [18]

To be able to create your CI/CD pipeline, proper tooling and technology must be chosen.
While implementing a CI/CD, teams have to decide which tools fit best in their business
and technology stack.

! Continuous integration/Continuous delivery

Continuous integration

Continuous integration is a philosophy that supports rapid software development. Operat-
ing principles are based on that philosophy and they help to achieve delivering of new code
frequently and reliably. Using this method it is easier to detect bugs in code sooner than in
large additions of code less often.

Teams that want to implement CI/CD to their business often start with version control
systems. Code checking can be done frequently for smaller features but also for longer time
frames. Development teams are using different strategies for different cases and define how
code is merged into production environments.

There are many techniques like version-control branching, which is based on creating
a branch for each environment where software is running. One branch is development, for
the newest features. The second branch is created for testing, where the testing is done
and after all the needed steps are done, code is merged to the production branch which
represents the code used in the latest version of the production system.

The second strategy could be feature flags. This mechanism is built around turning on
or off features at run time. A production system is using master branch code to run. Newest
features are flagged and until they are tested, they can not be flagged as production-ready
so neither be deployed.

Building the software as a whole is then automated by packaging all the code, database
and other components. This packaging may differ depending on which languages are
used. [18]

Continuous delivery

Continuous delivery is part of CI/CD that delivers software to its desired environments.
Usually, teams have more environments such as development, testing and production. Each
of those environments should have same configurations but are for different purposes.

The objective of continuous integration is to gather code at one place to be handed to
continuous delivery. After everything is set up, a continuous delivery process could look
like this:

First, the code is pulled from a version control system and starts a build of an applica-
tion. Then the infrastructure as code tool is executed to change required infrastructure in
a given environment. This step is more important for a cloud environment as they are more
mutable. Next step is moving a built application to the target environment and configuring
environment variables dependent on the environment that is being used. After everything
is set up, the application is pushed to their appropriate services, such as web servers, API
services. Then an application is deployed, the last thing to do is execute any steps required
to restart services that are needed for new code to take effect. At the moment when is
application successfully deployed, continuous tests are executed, if tests fail rollback will be
applied.

More and different steps could be part of continuous delivery. Those which are men-
tioned here should give a good understanding of a given problematic [18].

Testing in CI/CD

The vast part of CI/CD is testing. The optimal case is to deliver new versions of software as
quickly as possible. Also, quality assurance is very important. This means that the CI/CD
pipeline should have included various types of tests to be executed in process of delivering

new versions, and in case tests will find an error in code or delivery process, a rescue
plan should exist. That rescue plan might be a rollback to the previous version.

However, the best practice in testing is before continuous delivery is executed. Before
releasing a new feature, developers should run unit tests, functional tests and regression
tests on their local environment. This leads to correct code in version control systems after
committing a new portion of code without breaking the working environment.

Testing code is the first part of the testing of the whole software. There are more like
performance testing, API testing, security testing, all these can be also automated. The key
to automating these tests is the ability to trigger them some easy way such as the command
line.

When all testing is automated, it can be integrated into the CI/CD pipeline. Raw code
testing can be done in CI while committing or merging with the master branch. Other tests
like performance testing could be done only after deploying the new version to the target
environment and if those fails, rollback can be executed [18].

Cl/CD
7\ 7\

Plan Code Build Test Release Deploy Operate
Continuous Integration Continuous Delivery

Figure 2.3: CI/CD process [7]

2.3 Team collaboration

In today’s world where is a big demand on speed and even more in agile development.
Teams have to choose the best way to collaborate. In software development, there are
a few points of view. First, that should come in mind is how to effectively share code with
the team. In history, before 2005 teams used to share code within version control systems
that were centralized and they usually stored each version of the software. They primarily
offered prevention of bad things happening, but they did not help in developers daily life
very much. Git changed that with its branching system and better control of code [19].

Git
Birth of Git helped developers to create revisions, not only versions of the software. Software
development changed because there were many benefits to this approach. Instead of writing

a whole new version based on a previous one, teams could easily implement to their workflow
small incremental additions. Git offers a branching system, where developers can create

a new branch from the latest version which gives them a complete copy of the software
repository and allowing them to do their individual needs such as new feature or bug fix.

Git also keeps a graph which contains a complete history of commits and merging
branches. That helps developers to identify problems with each version and can be easily
reverted or reviewed.

The big plus of git is that it is decentralized and allows great local development even
without internet access. Each individual of a team can clone a repository to a local computer
and work with it on their computer. They can commit changes that are ready to be part
of the remote repository. Those pushed commits are usually reviewed by other members
and then integrated to a master branch which can be production code [19].

GitOps

GitOps uses git repository or another VCS? to improve the work of the operations or DevOps
team. With GitOps practice configuration files of infrastructure, container-orchestration
and other important segments of the software are stored in VCS. Configuration files of
infrastructure and other tools are written in a declarative style. These source repositories
are becoming a source of truth for the whole project in repositories.

Before GitOps, it was common to write a deployment ticket and wait until an operator
successfully deploys the application. Now it is more frequent to edit changes in the repos-
itory and create a pull request (PR). After that PR is reviewed by other team members,
automated pipeline (CD) is triggered and changes of infrastructure and other configurations
are executed.

The fact that GitOps is realized leads to easier testing different environments, reduces
,bus factor”, reduces wait time before a new version is deployed and improves overview of
infrastructure logic which is handled by infrastructure as code (IaC). Manual toil is also
greatly reduced. Very important is that GitOps improves the ability to operate systems
safely because operators now do not need to spend so much time with toil®, they can spend
more time on improving CI/CD pipeline which leads to better automation [15].

2.4 Containerization

Containers improve the way the organizations deliver services to end-users. Containers im-
prove agility because applications are a faster and more flexible way than using monolithic
architectures which make applications difficult to update. Containers can be shipped as
a whole to correct the place and replace the older version of service without noticeable im-
pact. That approach significantly helps to deliver changes sooner than before as it is easier
to write the code and create a container [3]. Containers offer light-weight virtualisation,
faster than Virtual Machines. Containers provide the ability to manage and migrate ap-
plication dependencies along with the application with omitting the underlying operating
system [8].

The most popular containerization engine is Docker. Docker creates containers with
Docker files to create Docker images which are then deployed to the prepared infrastructure
manually, or in CI/CD pipeline.

Zyersion control system
3repetitive time-consuming activity

" Mirwal) virwal 7 Virwal)

machine machine machine
App 1 App 2 App 3
App 1 App 2
Guest OS Guest OS Guest 0OS .
Docker engine
\L i) .
™y i Ty
Hypervisor Host OS
e " J
s ™ ' ™
Infrastructure Infrastructure
b - p -

Figure 2.4: Different type of virtualizing application virtual machines versus containeriza-
tion

2.5 Cloud vs on-premise

Small and medium-sized enterprises (SME) might want to keep their business small or
to grow it. When they start to grow it may get harder to manage IT infrastructure.
With a bigger company, more on-premise hardware is needed and it can grow gradually or
exponentially and takes usually a long time to return on investment [21].

With cloud computing there is no need to take care of your infrastructure, it is provided
from a cloud provider in a form of Infrastructure as a service or Platform as a service. Cloud
often offers to pay as you go, which means it does not involve large initial investment [8][21].

2.6 Cloud-native

Cloud-native is a well-known term but is not that often described more than ,we are on
a cloud®. There are many key ideas behind being Cloud-native. One of them is specific de-
sign patterns that became very successful while creating cloud applications. Most frequent
arguments of cloud-native are as following.

e Cloud-native applications can operate on a global scale. The ordinary web application
can be accessed anywhere in the world through the internet. Cloud-native application
has replicas of servers and data centres around the whole world so that accessing
application results in minimal latencies, for example, google sites can be reached from
Europe with lowest latencies, even though Google is located in the United States of
America. That is because they have replicas in many places in Europe. This approach
creates very robust applications.

e Cloud-native applications have to scale well with many concurrent users. Assumption
here that application can horizontally scale automatically. That approach requires
careful observation of synchronization and consistency in distributed systems.

e Applications are built on assumption that infrastructure is unstable. Even though
one zone of servers will crash down because of some natural disaster the application
will still run in a different place so the user does not realize that there is trouble.

e Upgrading or testing Cloud-native applications do not affect end users.

e Security must not be forgotten, cloud-native applications are built of many small
components and these components can not hold sensitive data. Access control needs
to be managed at multiple levels.

There are many cloud-native applications that the population uses every day but maybe
does not know that it is a cloud-native application. For example, The Netflix movie stream-
ing service is one. Also other big players in the current world such as Facebook, Twitter.

At first to become cloud-native, Infrastructure as a Service replaces on-premise infras-
tructure with virtual machines running in the cloud. It was very difficult to engineer
scalability and security at the same time with only on-premise solutions.

The first major design pattern for cloud-native applications was Microservice architec-
ture. This architecture relies on dividing application to small independent components and
it easy to scale and reliable. That each component is called microservice. All microservices
should be designed for constant failure and recovery.

It must be possible to encapsulate each microservice instance so that it can be easily
manipulated. Containerization is the solution.

With all this, it is possible to create a well-developed cloud-native application based on
microservice architecture [8].

\/

Continuous Delivery

Cloud-Native

Microservices

Figure 2.5: Basic principles of cloud-native development [12]

10

Full stack example of Cloud-Native application

Before creating a new cloud-native application, it is good practice to choose proper tooling,
there are a lot of tools for different parts of the application.

On the bottom of the whole application should lay a cloud environment. At the moment
the cloud market offers many solutions, most popular are Amazon web services, Microsoft
Azure, Google cloud platform, VMware etc.

After the selection of cloud provider, usage of provisioning infrastructure as code tool
is desirable to create resources for a project. After choosing the 1aC provisioning tool such
as Terraform or Cloudformation. Next tool to utilize could be infrastructure configuration
tools like Chef, Puppet or Ansible. With these tools, infrastructure is prepared for serving
a given purpose.

To be able to deploy to the cloud, developers tend to use runtime environments in which
application runs. Those environments are usually created with Container Engines such as
Docker, which allows to enclose application with needed components.

Orchestration and Management is the next step of being cloud-native, tools like Kuber-
netes or Docker Swarm are used to manage container clusters for easy orchestration across
multiple hosts. They provide load balancing, scheduling of containers etc.

Many languages support microservice architecture. The ideal one is chosen by the de-
velopment team. The code is being shipped to runtime services with CI/CD tools such as
Jenkins, Travis CI and others.

The last step of cloud-native application is Monitoring, Logging and Auditing. This
is one of the key features to manage Cloud Native Infrastructure. All modern monitoring
tools support monitoring of containers and microservices [12].

2.7 Cloud Providers

The current market of cloud providing is formed by many professionals. This Section will
compare the largest providers which are Amazon Web Services, Microsoft Azure and Google
Cloud Platform. Even though these platforms usually provide similar options for enterprise,
each has more specific advantages and differ a bit from others. Choice of cloud vendor is
on individual customer consideration.

Nowadays, most of the cloud providers offer IaaS* and PaaS°. Big companies mentioned
before are no exception.

Amazon Web Services

At the current state, Amazon Web Services is the largest and maintains 33% share of
the worldwide market since they offer a vast amount of services and tools to work with.
It offers more than 175 services at a moment across compute, storage, database, analytics,
networking, mobile, IoT and more. AWS has been the biggest laaS provider for over 10
years, it is the most mature provider. However, AWS big weakness is the cost of resources.
AWS also focuses on a public cloud rather than a hybrid cloud or private cloud. This
implies that sometimes it is not the best choice for an enterprise customer [4].

4Infrastructure as a service
5Platform as a service

11

Microsoft Azure

Microsoft Azure is a close competitor to AWS with 18% of market share. Azure is popular
due to Microsoft is seen as a safe bet because most clients already have experience with
the company. Azure offers exceptional cloud infrastructure and believes that hybrid cloud
is important, so it is supportive of private data centres [4].

Google Cloud Platform

Google Cloud Platform is not that big in the competition. Its main benefits compared to
other are expertise and industry-leading tools in deep learning and artificial intelligence,
machine learning and data analytics. Google has deep expertise around open source tech-
nologies. Especially potential lays in containers since Google developed the Kubernetes
which is becoming an industry standard [4].

12

Chapter 3

Infrastructure as a code

Automation of infrastructure is a key DevOps practice. The philosophy behind this is that
infrastructure gets a new level of abstraction, infrastructure becomes part of code which
describes the desired infrastructure configuration in definition files. That means we can
treat infrastructure as another part of the software.

Why is infrastructure as code important? The answer is quite simple. It saves time.
It reduces the time spent on doing repetitive things such as patching infrastructure. IaC
allowed to create definition files of configuration and so it reduces propensity on errors.
Before checklists were made to make sure everything is set up correctly and even though
it has a predisposition for human error. Another plus of this that is IaC tools often create
snapshots on every version of infrastructure. Because of this, it is simpler to inspect changes
with each new infrastructure update.

TaC is improving automation of whole software deployment since infrastructure can be
created along with building application. Now there are a lot of tools that can be integrated
into CI/CD pipeline such as Ansible, Chef, Puppet etc.

When infrastructure is automated, it is easier to test software in a sandbox environment.
It is easy to spin up a new environment, test the new version of the application and then
tear down infrastructure in minutes.

In the ,cloud age®* it is even easier to run these configurations. Because there is no
need to buy physicals servers. It is easier to set up infrastructure on cloud servers which
are provided by many companies. On the cloud, there is no need to be afraid of the local
server having enough memory because it can be easily added by requesting the provider for
more [13].

However, once the infrastructure is managed by IaC tool it might be troublesome to
manually debug problems. That is because the IaC tool usually holds a current state which
is the last snapshot of applied infrastructure. When is that infrastructure manually changed
it may corrupt given state and prevent the tool from working correctly [9].

13

Production environment

laC tool
(e.g. Terraform)

Developer/Operator

Development environment

Figure 3.1: IaC is also part of CI/CD pipeline

3.1 Existing Infrastructure as Code Tools

As TaC is rapidly growing many tools are competing at the same time. Different tools are
used for different purposes. IaC tools can be divided into four general categories: ad hoc
scripts, configuration management tools, server templating tools and server provisioning
tools. Where ad hoc scripts are the most straightforward solutions which allow creating
infrastructure but without the option of managing it with ease [17][6].

Terraform

Terraform is a server provisioning tool. This means it is responsible for server creation in
opposite to IaC tools that install and configure an existing server [6].It is a universal IaC
tool that is cloud-agnostic and helps to manage large infrastructure for different kind of
applications [5]. Its automation is often different. Some teams run Terraform locally but
use the consistent working directory for Terraform to run in. Another approach could use
different orchestration tools such as Jenkins to run Terraform [17].

Terraform uses its domain-specific language. Infrastructure is described using high-level
configuration syntax. The infrastructure that Terraform can manage includes low-level
components such as compute instances, storage to high-level components such as SaaS'.

The core usage of Terraform is built on planning and applying configuration files. Before
creating or updating infrastructure Terraform informs the user about changes in a plan that
contains exact information about resource changes in existing infrastructure to increase
safety and reduce human error. After inspecting changes, the plan can be applied and
infrastructure is updated in a moment [9].

Terraform state

State file which Terraform uses is a mirror of configuration created with Terraform in a text
file. Every resource that is stated in this file is currently being managed by Terraform.
Unfortunately, the state can not be created by reading actual infrastructure.

ISoftware as a service

14

By default, Terraform state is stored locally in file terraform.tfstate. This approach is
not ideal while working in a team. To remove this problem, the remote state is an option.
The remote state can be stored in a remote data storage. Supported options for storing
the state are remote storage buckets, Terraform Cloud and similar options provided by cloud
providers. That strategy empowers team collaboration in infrastructure creation [10].

Chef

Chef is a popular IaC configuration management tool among CI/CD practitioners. Chef
handles installation and management of software on existing servers. Chef uses Ruby-based
DSL to create its recipies and cookbooks. It has versioning system that allows maintaining
a consistent configuration. Each cookbook should relate to a single task, but it can deliver
different server configurations based on resource definition. Chef uses a procedural approach
to its configuration, as describing procedure is necessary to get the desired state.

Thanks to its support for cloud provisioning APIs, Chef works well with other IaC server
provisioning tools. Chef is cloud-agnostic and works with many cloud service providers [6][17].

Puppet

Similar to Chef, Puppet is a popular configuration management tool that helps with con-
tinuous delivery of software. It has Ruby-based DSL. Puppet which uses a declarative ap-
proach to its configuration. Defining the desired state of your infrastructure causes Puppet
to automatically enforce the desired state and fixes any incorrect changes. This approach is
mainly directed toward system administrators. It can be integrated with the leading cloud
providers such as AWS, Azure, Google Cloud and VMware [5][17][6].

Ansible

Ansible is an open-source infrastructure configuration tool. Ansible forms infrastructure by
describing relations between system components as opposed to others which manage systems
independently. It describes its configurations in YAML in form of Ansible Playbooks,
because of that configurations are easy to understand and deploy. Its functionality can be
extended by writing new modules and plugins [5].

3.2 Cloud specific IaC tools

A few tools are dedicated to the specific cloud and in general, they provide similar options
for users but can not be used for multi-cloud projects as they are integrated into a specific
cloud.

AWS CloudFormation

AWS CloudFormation is a similar IaC server provisioning tool to Terraform, but it is deeply
integrated into AWS Cloud. AWS CloudFormation does not have its DSL? instead it is
using JSON or YAML templates or programming languages to describe infrastructure.
This tool allows rollbacking automatically if errors are detected. CloudFormation sup-
ports deployment across multiple AWS accounts and regions within a single template [5][17].

2Domain specific language

15

Azure Resource Manager

A similar tool like AWS CloudFormation but this time for Microsofts cloud Azure. Azure
Resource Manager creates infrastructure declaratively described in JSON templates. With
these templates, it is possible to organize dependent resources into groups which allow to
deploy or delete these groups in a single action [5][17].

Google Cloud Deployment Manager

As the title says, an IaC server provisioning tool created specifically for Google Cloud
Platform. The tool configuration definition is created in YAML, JINJA2 or Python files.

Google CDM? supports previews. This approach allows to examine changes of infras-
tructure rather than executing changes directly. Human errors can be avoided, which helps
to stabilize infrastructure as a whole [5][17].

3.3 Research on similar existing solutions

This Section is focused on exploring existing solutions which are controlling concurrent
access to deploying or automating Terraform configuration.

Atlantis

Atlantis is an open-source tool that allows improved collaboration on projects where Ter-
raform is used. Its review and applying system is done in pull requests created in version
control system. It allows automation of infrastructure creation. [2]. Atlantis is deployed as
a single binary executable. A developer adds a GitHub or GitLab token for a repository
containing Terraform code. The installation itself adds hooks to given source repository
which allows operating during pull requests. It can run in a container or virtual machine.
Requirements are that Atlantis can communicate with VCS and infrastructure that is being
changed [14].

Figure 3.2 shows a workflow adopted by developers while using Atlantis. Its workflow is
based around feature branches and creating Pull Requests. Communication with Atlantis is
defined within comments on Pull Requests, when Pull Request is created, terraform plan is
created and Atlantis comments the output of plan back to comment section. Developers
then can apply infrastructure by commenting atlantis apply on a pull request to apply
the planned infrastructure [2][14].

Atlantis is a good tool to add to the CI/CD pipeline while using Terraform. However,
it does not support control of concurrent access to infrastructure changes.

Terraform Cloud

Terraform Cloud is a commercial product that offers an extension of Terraform workflow.
Working with Terraform Cloud offers its servers to run and maintain Terraform runs on
their servers.

With Terraform Cloud practicals it is possible to manage the whole infrastructure auto-
matically or within a nice GUI*. Terraform Cloud offers complete control over infrastructure
changes, automated planning, applying and storing remote states. Terraform Cloud can

3Cloud Deployment Manager
4Graphic user interface

16

ﬂws

git push

==
Create Pull R it
teale Pull Request |
Add comment
——"atlantis plan’ 1o Pull—j
Request
GitHub API hook -
- git pull

terraform plan

Add terraform plan
legl-output s comment to—
Pull Request

Review and appove Pull Request (LGTM!
i pp equest ()

Add comment
l—"atlantis apply' to Pull=jm
Request

GitHub API hook
-

terraform apply

Merge Pull Request
rge Pull Requ

Figure 3.2: Workflow with Atlantis automation tool [14]

be connected with popular VCS such as GitHub or GitLab. It improves team collabora-
tion with nice visible history and well-organized infrastructure operating in a user-friendly
GUI [11].

Terraform Cloud comes with improved locking of Terraform state. While all operations
run in a central location. It allows detecting attempts of creating a new plan while an exist-
ing plan is waiting for approval. These operations can be queued. With this, some control
over concurrent accessing to Terraform is implemented [10].

17

Chapter 4

Design

This Chapter focuses on designing an infrastructure provisioning agent that improves team
collaboration and controls concurrent access to infrastructure managing with IaC tool
Terraform. The Agent should improve the continuous delivery workflow of Terraform.

The workflow between ordinary use of Terraform and using an agent is stated.

4.1 Terraform workflow

ii' — _>Q>
Pull

DevOps ves

terraform plan tfConfig.tf
-«

DevOps

terraform apply

/

Cloud infrastructure

remote
Terraform
State

Figure 4.1: Currently adopted style of terraform workflow

Figure 4.1 shows currently recommended basic workflow with Terraform [9]. Its usage
is based on sharing Terraform configuration in VCS and having dedicated team members
to manage its configuration and infrastructure while having state file in remote storage.

18

As mentioned in Chapter 3.1. Terraform configuration is based on planning and ap-
plying infrastructure with its CLI. Terraform files consist of resources configuration. After
running terraform plan command it displays required changes. Either it can be creation,
updating, replacement or destroying a resource. A user then reviews changes and can run
terraform apply to apply these changes. All these commands are executed from the Ter-
raform directory on the user computer where Terraform configuration files are located.

Possible issues

Current terraform workflow brings possible issues to flawless development. Especially for
those who would like to add terraforming infrastructure to CI/CD pipeline and to larger
projects, where may occur multiple concurrent changes at one time. And to who would like
to adopt more GitOps style, with version control systems such as git to be the source of
truth without need of pulling code to the local computer.

e While working in a larger team on a big project. Each developer may have different re-
quirements for actual running infrastructure. That implies that there may encounter
more infrastructure needs and changes. If for example, one developer wants to add
one infrastructure resource addition such as database creation and at the same time
someone else is upgrading Kubernetes cluster which takes a long time to proceed.
An issue can be caused and Terraform automatically locks terraform state from fur-
ther editing to protect the state from corrupting. This may cause problems such as
inconsistent terraform state compared to actual infrastructure and further manual
steps are required, such as unlocking state file.

e Second issue is that terraform is being run from a local computer with pulled infras-
tructure definition files. This approach is not significantly bad but it might cause
troubles. For example, a developer which currently want to change infrastructure
does not have the necessarily latest version of source repository and applies infras-
tructure which is not suitable for all team members that are working on the project.
The goal is to make sure when somebody decides to update infrastructure, it will be
the last possible version which is merged to the master branch.

4.2 Designing the agent

Terraform agent should meet several requirements.

e Agent should allow the concurrent deployment of infrastructure to reduce failures in
larger teams or projects.

e Inclusion of Terraform to CI/CD pipeline should be implemented, demand that Ter-
raform should be more GitOps focused should be met.

e Team collaboration improve. Remove the need to have dedicated team members to
manage infrastructure.

19

Trigger »
L 2. Terraform agent
ol
nand ; :
Developer GitHub < =]
,E.c_'l'-'__.-""’ |
o |
»ﬂ'ia" ||5.
le!i{__x"’ 5 |
- |
.-"'-...f.l |
p B _*E':'x
| '
- Google Cloud Platform < terraform
" \ remote
state
— e ._-"I-J_)

Figure 4.2: Workflow with usage of Agent

Technology specification

Terraform agent is designed to work at Google Cloud Platform, which was chosen because
of personal preferences and because the platform offers many important IaaS components
that are often used for small and larger projects. Choosing GCP' over other cloud providers
does not have an impact as the tools used are available at other providers too.

The agent uses for its functionality service called App Engine which is a fully managed
service by platform and offers compute power to run applications. App Engine is used for
the server part of the agent.

Cloud Build, which is google build-in CI/CD platform is used for running automated
triggers to work with GitHub repository.

Server side

The server side of the agent is designed to create plans and apply the newest infrastructure
depending on the given source repository. Agent server should be able to use Terraform
to plan infrastructure, send planned infrastructure changes and apply those changes after
users request.

1Google Cloud Platform

20

Since agent needs requests from a user from client-side or Cloud Build CI/CD pipeline.
The proper interface must be chosen. The agent uses the API listener to create responses
to requests.

When a successful attempt of infrastructure changes is achieved, the agent writes the last
changes of infrastructure back to the source repository. Changelogs should improve visibility
of how is infrastructure changed from last time. That information may be valuable for every
developer that is involved in the development.

Client side

The client-side is designed to make API calls on the agent server. Main purposes of the client
are to review infrastructure changes of actual plan which is sent to client from server and
applying that infrastructure plan later on. Another functionality is calling for new terraform
plan if something fails on CI/CD pipeline. This should be used only as a backup plan.

API calls are made on a public domain, so some security is necessary. Without security,
anyone could run changes on infrastructure without permission.

Terraform agent is designed to improve stated issues in Section 4.1. As shown in Fig-
ure 4.2, using agent should remove some manual toil which has to be done by specialized
team members. With Terraform agent, developer or operator could add a new configura-
tion and commit it to the source repository. After pushing these changes, an automatical
trigger would notice the agent, the agent creates a terraform plan then saves it in local stor-
age. The developer can then inspect changes by calling client-side of the agent to review
changes which Terraform planned. When everything seems correct developer can call again
the client-side of agent and apply those changes. After applying, the agent will commit
changelog of infrastructure to the Github.

Improved team collaboration

Terraform agent is trying to improve the workflow of working with Terraform as a team.
In a normal team, a dedicated person which is taking care of infrastructure is needed.

With the agent, that holds credentials to access and manage infrastructure. There is
no more need for that person, now everyone can use the tool without having explicit rights
to the project by calling from the client application.

The Agent uses the most recent mirror of the source repository. As it is creating plans
from latest merged changes. This allows having always a prepared plan for the newest
infrastructure.

The important part here is also reviewing changes with the client-side application. That
part of infrastructure managing is crucial because interventions to infrastructure should be
double-checked, once during pull requests by team members to check if the configuration
is correct. The second time when is infrastructure being applied. This approach should
significantly reduce the error rate in managing infrastructure and support the smoothness
of whole development.

Controling concurrent access

Larger projects may encounter inconvenience while working in bigger teams. Multiple
concurrent changes of infrastructure may be one of them. Usually, only one Terraform
configuration is created for each project on Google Cloud Platform, that is because if
there were multiple terraform configurations it could cause a mess and harder view on

21

the whole infrastructure. This approach is not best suitable for large projects. Only one
configuration means only one terraform state. And when multiple concurrent changes are
made, big chance of locking the terraform state comes to play. When is state locked, manual
intervention may be necessary.

To prevent these obstacles agent can create a queue of changes, which will prevent
Terraform from locking the state. Since the approach of the agent is using actual GitHub
repository as a source of truth, not only it does prevent the state from locking by creating
a queue. It also uses all merged configurations after last planning to create a new plan with
all latest merges to master branch.

22

Chapter 5

Implementation

This Chapter provides information about the implementation of Terraform agent. The im-
plementation is divided into two code parts which consist of a server and client-side of
the application. Essential usage of cloud for correct behaviour of the whole application is
also part of the implementation.

Due to requirements described in 4.2 REST API is implemented to answer requests
from the client application and the automatic triggers from Cloud Build service.

5.1 Server Side

The server side of the application is designed to create responses to API calling from
client-side of application. This Section takes a closer look at the more important parts of
the implementation. Application is created in the Go language.

API implementation

After is agent created and successfully deployed into cloud virtual machine, copy of in-
frastructure repository from GitHub is created. And starts listening for HT'TP or HTTPS
requests.

API uses the HTTP Echo web framework for its implementation. The Echo responds
to three endpoints.

e /Jterraform/plan
e /terraform/show
e /Jterraform/apply

Each of these endpoints responses to API calling and runs corresponding routine.

Plan

Calling the /terraform/plan endpoint results in pulling the latest changes of the source
repository, where Terraform configuration files lay. After having the latest configuration,
terraform init is called via executable of Terraform. terraform init initializes working
directory and creates the first part of Terraform state within the current working directory.
Initialization is important because it prepares Terraform to further callings. It downloads

23

all provider plugins of providers which are mentioned in Terraform configuration such as
Google, Kubernetes, etc. More importantly, it creates a connection to remote storage,
where Terraform state will be stored.

After initialization, routine calls terraform plan to create a plan of infrastructure changes.
Text file with stated changes is stored in virtual machines file system. At the same time,
plan.out is created. This file is in binary format and contains the execution plan of what
needs to be done to create changes in the desired cloud environment and waits in the work-
ing directory until terraform apply is called.

Show

Calling /terraform/show results in sending information about planned changes via HT'TP
response. The response is filled with information about future infrastructure changes which
was previously created by terraform plan.

This part is essential for developers or operators to be able to preview expected changes.
Many unwanted errors may be avoided just by double-checking this report.

Apply

When /terraform/apply endpoint is hit, routine checks if any plan exists in its working
directory and starts executing the Terraform plan created before. Since applying can take
a longer time to finish, HTTP streaming is implemented via Gorilla web sockets. First,
a handshake is realized, and after that terraform apply is called to create resources on
the cloud. While execution is in progress, the server sends information about resource
creation to the client.

After successful applying of new changes. Log of last changes in file infrastructure
changes is committed back to the source repository where the configuration is. The execu-
tion plan is destroyed, so it can not be reapplied.

GitHub API

GitHub Go library go-github is used for communicating with GitHub API where source
repository is located. The library is mainly used to communicate via Personal access token.

GitHub access is used to clone and pull repository which is essential for Terraform to
run commands. Another usage is for application, so it could create a log of changes in
the repository. This approach improves visibility over the whole infrastructure and better
tracking of errors.

Containerizing application

The server-side of the application is containerized with Docker. Containerization of the ap-
plication allows enclosing of necessary components such as Terraform and all used libraries
which are essential for the application to run.

Dockering the application is separated into two parts, the first part consists of building
the server agent and creating an executable with Go image.

The Second part uses alpine image, to reduce application size at the minimum. Every
needed resource is added to make the agent run smoothly. Executable of Terraform is
added, so the agent can all Terraform commands inside the container. Also, a service
account which has access to Google Cloud Platform project is encapsulated, so the agent

24

does have the right to change running infrastructure. This service account is mounted as
an environment variable, which gives access to the whole container to access specific Google
Cloud Platform project.

Controlling concurrent access

[API request]

Is agent locked? rurn Terrafl:lrm
ag Create lock 1—[:: operation

.

s "

Write a response and
remaove lock

L. o

is AP call for
\terraformishow ? [>| Create response

is APl call for
\terraformiapply ? Deny request

fqueue

[F‘ut Terraform plan in]

Figure 5.1: Agents decision tree for multiple concurrent accesses

The goal of this work is to implement concurrent access control to infrastructure creation
on the cloud environment and solve or evade problems with state locking by controlling it
appropriately.

Controlling concurrent access is realized with library sync. After waitgroup is initialized.
All the endpoints share access to that synchronization variable.

When endpoint /terraform/plan is called, check if there is another running process which
is currently working with Terraform remote state is executed. If there is an existing process

25

such as applying or planning of state at the same moment. Terraform agent prevents to
run usual routine after calling an endpoint. Instead, these requests are queued and merged.
This principle is derivated from the design itself.

Figure 5.1 shows how the agent responds to each API callings. Hitting /terraform/plan
or /terraform/apply leads to creating lock which prevents other unwanted callings to be
processed.

Terraform plan and Terraform apply are operations that refresh the Terraform state.
This means that these two operations can not be called at the same time. In case if
/terraform/plan endpoint is hit twice, it runs a Terraform plan for the first time, second
calling is queued and ran after the first one finishes. This has to be done because two
separate callings were probably made by an automatic trigger which will be discussed in
Section 5.4. And it means that two infrastructure changes have been made. This approach
guarantees that the latest configuration of infrastructure will be applied.

When is /terraform/apply hit, it first checks if plan.out exists. This plan is previously
created by Terraform plan. If a plan exists, it starts to execute it. However, calling
the second time for Terraform apply is prohibited, because applying locks agent from other
callings. If /terraform/plan is hit while applying is in progress, it does queue the request
and will be processed later after applying is done.

5.2 Client

The client-side of application is created to call API endpoints of the server. The client is
CLI' application. This part of the application is very simple.

The client has three commands.Command plan which is used to call for planning on
the server. This option is here as a backup if automatic planning fails for some reason. show
calls for information about the current plan and writes text in the standard output. This
command should be bread and butter for a developers life as it helps to inspect changes
which leads to fewer errors. Both plan and show receive information in JSON format. On
the other hand, apply uses streaming for its data transmission as its response may last
a longer period.

5.3 Securing connection

Since the agent is divided into client and server and communication is done via open API,
some security is required so that everyone can not use that API to change infrastructure
on an unfamiliar project.

Each agent is integrated into a project which is an environment for future development.
Thanks to that, each agent has a different URL which exposes the API to the internet.

All that is implemented is communicating via an access token, which is transmitted
in the HTTP header. The access token is created when the client and server application
is built. This approach binds the client and the server without anyone be able to get
that token because all the communication is done over HT'TPS which is the default for
applications that run on App Engine.

Lcommand-line interface

26

5.4 Cloud configuration and deployment

As the agent is designed to work in Google Cloud Platform few configurations must be done
for it to work properly. There are two important parts are to deal with. Both are equally
important if the agent should work like is described in 4.2.

App Engine deployment

The agent is deployed to App Engine. The application itself is deployed with a file called
app.yaml and running command gcloud app deploy app.yaml. This file contains all the con-
figuration to successful deployment.

runtime: custom
service: agent
env: flex
automatic_scaling:
max_num_instances: 1
resources:
cpu: 1
memory_gb: 0.5
disk_size_gb: 10

The configuration is trying to achieve the cheapest configuration for the final virtual
machine because it can significantly lower the price.

Custom runtime and the environment is chosen because default options are not viable
since the container needs to have encapsulated Terraform binary and other environment
settings to work properly.

Trigger configuration

Service Cloud Build is used to automatically trigger routine which hits the terraform/plan
endpoint of the agent and starts the planning of new infrastructure changes. This plan is
then stored in the file system of the virtual machine where the agent runs. That step is cru-
cial for the agent to run as intended because without it it would not be much improvement
for the workflow of the Terraform.

27

Chapter 6

Experiments

This Chapter is containing real-world scenarios where the agent possible could be used
and results are stated for each experiment. Both experiments are using GitHub repository
called BP-infratest and client-side application of the agent called tfagent. Both experiments
contain just a few resources that are managed by Terraform for easier demonstration.
The number of affected resources is not important as the agent should work the same way
with less or more of them.

6.1 Experimment 1

The first experiment was designed to demonstrate basic usage of the agent and how it is
used in the real world.

After installing the agent to the destination project. Source repository BP-infratest was
created on GitHub and connected to Cloud Build service where the trigger is created. That
trigger then uses configuration from the cloudbuild.yaml located in the GitHub repository.

\clodubuild.yaml
\init.tf
\storage.tf

Terraform configuration files init.tf and storage.tf are also created. The init.tf con-
tains the configuration of resource providers such as Google, Kubernetes etc. It also has
information about backed storage where is Terraform state stored. File storage.tf holds
configuration of bucket storage. Creation of bucket was chosen just as a demonstration of
some non-complex resource which takes short time to create.

Now when the configuration is created only on the local computer, it has to be pushed on
GitHub or merged to master via branch merging to run the trigger which starts automatic
planning.

Figure 6.1 shows that the automatic trigger is executed and runs proper commands to
hit the terraform/plan to create the plan. After the trigger is done, the client application
runs command . /tfagent show. The agent responds with infrastructure changes and the user
can examine them.

28

file:///clodubuild
file:///init

Steps Duration BUILD LOG EXECUTION DETAILS BUILD ARTIFACTS

@ Build Summary 00:00:14 _
1Step [] Wraplines [] Show newestentriesfirst T 4
0 0: ger.io/cloud-builders/curl 00:00:06 1 starting build "49c81609-38fd-45f3-ab63-b8c967cc1def”
-¢ curl -H "Authorization: Bearer THISISRANDOM ? FETCHSOURCE

4 Fetching storage object: gs://891955668559.cloudbuild-source.googleusercontent.com/bb74812
5 Copying gs://891955668559.cloudbuild-source.googleusercontent.com/bb748122bd5b@sb7ea98dade
6 / [8 files][8.8 B/ 1.6 KiB]
7/ [1 files][1.6 KiB/ 1.6 KiB]
8 Operation completed over 1 objects/1.6 KiB.
9 BUILD
18 Already have image (with digest): ger.io/cloud-builders/curl
1 % Total % Received % Xferd Average Speed Time Time Time Current
12 Dload Upload Total Spent Left Speed
13
14 2] a [:] 8 e] [} a - a
15] a] 8 -]]] 8 -]
16] e e 8 -]]] 8 -]
17]]] e -]] -] e -]
18]]] e -]] -] e -]
19] a a 8 2] a a a - a
28] a a 8 2] a a a - -- : a
21 1ee 94 1lee 94 -]] 17 @ ©:86:85 ©:00:85 --:--:-- 22
22 "planning succesfully finished, you can take a look on planned changes with ./tfagent show
23 PUSH

Figure 6.1: Successfully planned infrastructure with trigger

Terraform will perform the~following actions:

google_storage_bucket.auto-expire will be created

+ resource "google_storage_bucket" "bucket-demonstration" {
+ bucket_policy_only = (known after apply)

force_destroy = true

id = (known after apply)

location = "EU"

name = "demonstration-bucket"

project = "vojtah-sandbox"

self_link = (known after apply)

storage_class = "STANDARD"

url = (known after apply)

b

+ + + + + + + 4+

Plan: 1 to add, O to change, O to destroy.

When is the user satisfied with stated changes, it can be applied with client command
./tfagent apply. Which will create real-time communication with server and output is
streamed.

Applying infrastructure plan

This might take a while...

connecting to server

google_storage_bucket.bucket-demonstration: Creation complete after 1s

Apply complete! Resources: 1 added, O changed, O destroyed.
Successfully finished logging on git

And at the same time, if the applying of the newest infrastructure is successful. Changelog
which has the same format as the output of . /tfagent show is pushed to GitHub.

29

The first experiment was successful and did what was expected without any problems.

6.2 Experimment 2

The second experiment is designed to try out the concurrent access control feature. This
experiment will test if other requests are processed while Agent will be applying the newest
changes.

The expected behaviour is that other requests to apply the infrastructure will be denied
as the operation can run applying only once because of shared Terraform state. If a request
for planning appears the agent should queue the request and process it after applying is
done.

Before creating the second experiment Google Project was cleared from previous ex-
periments. For this experiment, a resource which takes longer time to create is necessary.
For demonstration purpose resource which is using sleep is utilised because creating other
components such as Kubernetes cluster or database instance are paid and unnecessary for
demonstrating functionality.

First will be executed applying of the long creating resource and then experimenting if
everything works correctly while creating new requests is done.

After executing the trigger by pushing to the master branch plan is created and then is
called . /tfagent show:

Terraform will perform the~following actioms:

null_resource.sleep will be created
+ resource "null_resource" "sleep" {
+ id = (known after apply)
b

Plan: 1 to add, O to change, O to destroy.

Then . /tfagent apply is executed and experimenting can be launched. null_reource.sleep
creation is configured to last for four minutes which should be enough to demonstrate
functionality.

Applying infrastructure plan

This might take a while...

connecting to server

null_resource.sleep: Provisioning with ’local-exec’...

null_resource.sleep (local-exec): Executing: ["/bin/sh" "-c" " sleep 240\n"]
null_resource.sleep: Still creating... [10s elapsed]
null_resource.sleep: Still creating... [230s elapsed]

Apply complete! Resources: 1 added, O changed, O destroyed.
Successfully finished logging on git

30

While the applying is in run following steps were done:

e Added bucket storage resource in Terraform configuration and pushed to the master
branch.

e Added PubSub topic (Google Cloud Platform asynchronous messaging) and merged
to maser branch through the pull request.

e Called for ./tfagent apply for second time.

As the applying of the infrastructure was in the process, the planning was queued up
and waited to finish the current operation. After applying was done, both resources were
planned automatically and merged into one plan which is wanted behaviour. While trying
to call second apply, the client got a response that applying is in progress and exited.

The second experiment can be called success. Concurrent access to infrastructure
changes meet requirements stated at beginning of the experiment.

31

Chapter 7

Conclusion

The world of agile development is based on fast and reliable development cycles. Continuous
integration and delivery is a big part of the process because it allows deploying almost
instantaneously when a new feature is created. Another big part of agile development is
the use of infrastructure as a code. Agile development is often connected to DevOps culture
because it builds a bridge between developers and operations teams which provides better
team communication starting by developing to deploying the product.

Infrastructure as a code became popular because it allows to abstract infrastructure as
another part of the code stored in version control systems. There are many existing tools
for managing infrastructure with IaC. This thesis compared popular tools and divided them
based on usage for different purposes.

Cloud and cloud-native applications were mentioned as they are increasingly used in
modern agile development because they do not need initial capital and also provide a lot
of different solutions for various applications.

In the second part a Terraform concurrent agent was designed which works as a Ter-
raform workflow extension. It aimed to improve team collaboration and controlling concur-
rent access to Terraform state which is held by Terraform and used for its operations.The ap-
plication is realized as two parts. A server and a client. The server is API which reacts
to requests from the client-side of application. The server-side of the agent is running in
the Google Cloud Platform and takes advantages of diffrent services provided by the cloud
environment. The software is released under MIT license on GitHub. The repository can
be found here: https://github.com/hromadkavojta/terraform-concurrent-agent

Two experiments were performed to prove that the agent is working correctly. The first
experiment was done to see if the agent is behaving as the proposed design and can im-
prove team collaboration and supports the culture of GitOps. The second experiment had
to demonstrate control of concurrent access to Terraform state and that it prevents the state
from corrupting or locking. Both experiments successfully used Terraform to create the in-
frastructure and the second experiment confirmed that the agent controls concurrent access
correctly.

However, the price of the virtual machine where the server runs even in the lowest
configuration can be a critical aspect of choosing this type of solution over a different
solution. This criticism is understandable because monthly it can become an expensive
matter in terms of smaller projects. In future development, it would be beneficial to find a
solution that does not need to be running constantly to decrease the price of VMs.

32

https://github.com/hromadkavojta/terraform-concurrent-agent

Bibliography

1]

ARrtAc, M., Borovssak, T., D1 NiTT0, E., GUERRIERO, M. and TAMBURRI, D. A.
DevOps: Introducing Infrastructure-as-Code. IEEE. 2017, p. 497-498.

ATLANTIS. What Is Atlantis? TgpXu [online]. [cit. 2020-21-07]. Available at:
https://www.runatlantis.io/guide/#getting-started.

BAKER, C. Want to be more agile? Get containers for your apps TpXu [online]. [cit.
2020-26-07]. Available at: https://www.itworldcanada.com/article/want-to-be-more-
agile-get-containers-for-your-apps/421733.

CAREY, S. AWS wvs Azure vs Google Cloud: What’s the best cloud platform for
enterprise? TpXu [online]. [cit. 2020-15-07]. Available at:
https://www.computerworld.com/article/3429365/aws-vs-azure-vs-google-whats-
the-best-cloud-platform-for-enterprise.html.

CHAN, M. 15 Infrastructure as Code tools you can use to automate your deployments
TgXwu [online]. [cit. 2020-15-01]. Available at:
https://www.thorntech.com/2018/04/15-infrastructure-as-code-tools/.

DANEK, B. Why Choose Terraform Over Chef, Puppet, Ansible, SaltStack And
CloudFormation? TgXu [online]. [cit. 2020-14-07]. Available at:
https://selleo.com/blog/why-choose-terraform-over-chef-puppet-ansible-
saltstack-and-cloudformation.

ENEH, T. Most popular CI1/CD pipelines and tools TgXu [online]. [cit. 2020-10-07].
Available at:
https://medium.com/faun/most-popular-ci-cd-pipelines-and-tools-ccfdce42986.

GANNON, D., BARGA, R. and SUNDARESAN, N. Cloud-Native Applications. I[EEFE
Cloud Computing. IEEE. 2017, vol. 4, no. 5, p. 16-21. ISSN 2325-6095.

HAsHICORP. Introduction to Terraform TgXu [online]. [cit. 2020-15-01]. Available at:
https://wuw.terraform.io/intro/index.html.

HAsHICORP. Introduction to Terraform TgXu [online]. [cit. 2020-18-07]. Available at:
https://www.terraform.io/docs/state/index.html.

HasHICORP. Sign up for Terraform Cloud TpXu [online]. [cit. 2020-21-07]. Available
at: https://learn.hashicorp.com/terraform/cloud-getting-started/signup.

Joa, C. Cloud Native Applications — The Why, The What The How. TgXu [online].
[cit. 2020-16-07]. Available at: https://medium.com/velotio-perspectives/cloud-
native-applications-the-why-the-what-the-how-9b2d31897496.

33

http://www.runatlant
https://www.itworldcanada.com/article/want-to-be-more-
http://computerworld.com/article/3429365/aws-vs-azure-vs-google-whats-
http://www.thorntech.com/2018/04/15-infrastructure-as-code-tools/
http://www.terraf
http://www.terraf
http://hashicorp.com/terraf
https://medium.com/velotio-perspectives/cloud-

[13] JoHANN, S. Kief Morris on Infrastructure as Code. IEEE Software. IEEE. 2017,
vol. 34, no. 1, p. 117-120. ISSN 0740-7459.

[14] KODROFF, J. CI/CD for Infrastructure as Code with Terraform and Atlantis TEXu
[online]. [cit. 2020-22-07]. Available at: https://www.2ndwatch.com/blog/ci-cd-for-
infrastructure-as-code-with-terraform-and-atlantis/.

[15] LimoNCELLL, T. GitOps: a path to more self-service IT. Communications of the
ACM. ACM. 2018, vol. 61, no. 9, p. 38—42. ISSN 00010782.

[16] LWAKATARE, L. E., KiLamMo, T., KARVONEN, T., SAuvoLA, T., HEIKKILA, V. et al.

DevOps in practice: A multiple case study of five companies. Elsevier B.V. 2019,
vol. 114, p. 217-230. ISSN 0950-5849.

[17] NALLAMALA, N. The Top 7 Infrastructure As Code Tools For Automation TpXu
[online]. [cit. 2020-14-07]. Available at:

https://www.ibexlabs.com/top-7-infrastructure-as-code-tools/.

[18] SAacoLick, I. What is CI/CD? Continuous integration and continuous delivery
explained. InfoWorld.com. San Mateo: Infoworld Media Group. 2018.

[19] SPINELLIS, D. Git. IEEE Software. IEEE. 2012, vol. 29, no. 3, p. 100-101. ISSN
0740-7459.

[20] ToucH4IT. DevOps: co to je? TpXu [online]. [cit. 2020-15-01]. Available at:
https://touch4it.cz/blog/devops-co-to-je.

[21] WATSON, L. and MISHLER, C. From On-Premise Applications to the Cloud. Strategic
Finance. Montvale: Institute of Management Accountants. 2014, vol. 96, no. 2,
p- 80-81. Available at: http://search.proquest.com/docview/1552717174/. ISSN
1524833X.

[22] Younas, M., Jawawl, D. N., GHANI, L., Fries, T. and Kazwmr, R. Agile
development in the cloud computing environment: A systematic review. Information
and Software Technology. Elsevier B.V. 2018, vol. 103, p. 142-158. ISSN 1214-0716.

34

https://www.2ndwatch.com/blog/ci-cd-for-
http://ibexlabs.com/top-
http://InfoWorld.com
http://search.proquest.com/docview/1552717174/

Appendix A

Content of the storage medium

e /bp.pdf is the bachelor’s thesis
e /bp/src is the directory containing source files of the thesis
e /agent is the directory containing source files of the application

— Makefile contains commands to build and deploy the project

agent/ folder contains source files of the server-side part

client/ folder contains source files of the client-side

— agent-cloudbuild.yaml configuration for the automated trigger

README.md file that contains steps to successfully deploy the agent

35

