
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

INFRASTRUCTURE AS CODE IN AGILE SOFTWARE
DEVELOPMENT
INFRASTRUKTURA JAKO KÓD V AGILNÍM VÝVOJI SOFTWARE

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR VOJTĚCH HROMÁDKA
AUTOR PRÁCE

SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2019/2020

Bachelor's Thesis Specification |||||||||||||||||||||||||
23145

Student: Hromádka Vojtěch
Programme: Information Technology
Title: Infrastructure as Code in Agile Software Development
Category: Information Systems
Assignment:

1. Study Infrastructure as Code (laC) technologies (e.g., Terraform, Chef, Ansible, Cloud
Formation, Google Deployment Manager), evaluate and compare these technologies. Make
yourself familiar with Continuous Delivery and Continuous Integration (CI/CD) concepts,
technologies, and applications in agile software development.

2. Choose one laC technology and describe its utilisation and possible issues in CI/CD in agile
development using a Git code repository.

3. Design an agent which controls concurrent access to infrastructure resources in a cloud and
prevents collisions of concurrent laC deployments.

4. After consulting with the supervisor, implement the agent and demonstrate its usage in
appropriate examples.

5. Describe, evaluate and publish the results as an open source.
Recommended literature:

• Yevgeniy Brikman. Terraform: Up & Running: Writing Infrastructure as Code. 2nd ed.
O'Reilly Media, 2019. ISBN 1492046876.

• Gene Kim, Jez Humble, Patrick Debois, John Willis. The DevOps Handbook: How to Create
World-Class Agility, Reliability, and Security in Technology Organizations. IT Revolution,
2016. ISBN 194278807X.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Rychlý Marek, RNDr., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: July 31, 2020
Approval date: October 21, 2019

Bachelor's Thesis Specification/23145/2019/xhroma13 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
This thesis is focused on the usage of infrastructure as code i n agile software development.
Concepts such as continuous integration and delivery, DevOps are analyzed. Further cloud
environments are analyzed. In this work are compared different infrastructure as code tools.
For the prevention of possible issues i n using infrastructure as code software was designed.
The software purpose is to control concurrent access to infrastructure creation wi th a tool
called Terraform. The software was then is for experiments. The first experiment demon
strates that workflow wi th Terraform agent is behaving correctly. The second experiments
demonstrate control of concurrent access to infrastructure creation.

Abstrakt
Tato b a k a l á ř s k á p r á c e je z a m ě ř e n a na využ íván í infrastruktury jako k ó d u v ag i ln ím vývoji
software. R o z e b í r á da lš í obvyklé koncepty, k t e r é jsou použ ívány př i ag i ln ím vývoji mezi
k t e r é p a t ř í DevOps , kon t inuá ln í integrace a doručován í . Dá le je z a m ě ř e n a na využ i t í
cloudu a na p o r o v n á v á n í j edno t l i vých n á s t r o j ů využ ívaných v i n f r a s t r u k t u ř e jako kódu .
P ro prevenci m o ž n ý c h p r o b l é m ů př i využ íván í infrastruktury jako k ó d u b y l n a v r ž e n soft
ware, k t e r ý m á za účel kontrolovat souběžný p ř í s t u p k v y t v á ř e n í infrastruktury s n á s t r o j e m
Terraform. S t í m t o softwarem byly nás l edně provedeny dva experimenty. P r v n í experiment
demonstruje zdal i lze uplatnit n a v r h o v a n ý p racovn í postup se softwarem, d r u h ý experiment
demonstruje sp r ávnos t řešení př i s o u b ě ž n é m p ř í s t u p u .

Keywords
Infrastructure as code, Agi le development, Terraform, DevOps , C l o u d

Klíčová slova
Infrastruktura jako kód, Agi lní vývo j , Terraform, DevOps , C l o u d

Reference
H R O M Á D K A , Voj těch . Infrastructure as Code in Agile Software Development. Brno ,
2020. Bachelor's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology.
Supervisor R N D r . Marek Rychlý , P h . D .

Rozšířený abstrakt
Využívání agi lních metodik ve vývoj i software roste č ím dá l t í m více na p o p u l a r i t ě . Vývo-

já ř ské spo lečnos t i jsou schopni d íky t ě m t o m e t o d á m rychleji reagovat na p o ž a d a v k y od
zadavatele, a t í m p ř i způsob i t software dle nejnovějších p o t ř e b . Obvyk lou součás t í ag i ln ího
vývoje spoč ívá v př i je t í DevOps kultury, k t e r á v ý z n a m n ě p o m á h á urychli t proces doručován í
v p o d o b ě v y t v á ř e n í a u t o m a t i z o v a n ý c h p rocesů jako je kon t inuá ln í integrace a kon t inuá ln í
doručování .

Ned í lnou součás t í DevOps kul tury a agi ln ího vývoje je využ íván í n á s t r o j ů za úče lem
v y t v á ř e n í infrastruktury jako kódu . Infrastruktura jako kód umožňu je abstrakci s a m o t n é h o
hardware do formy k ó d u jako je tomu zvykem př i v y t v á ř e n í software. P r o vyvářen í infras
t ruktury jako k ó d u existuje několik ná s t ro jů , k t e r é p o d p o r u j í v y t v á ř e n í infrastruktury na
v i r tuá ln í ch s t roj ích nebo n á s t r o j e k t e r é zajišťují p r o s t ř e d k y od c loudových posky tova te lů .
T y t o n á s t r o j e se obvykle daj í zakomponovat do a u t i m a z i t o v a n ý c h ru t in jako je kon t inuá ln í
doručování .

Tato p r á c e se zaměřu je na uveden í č t e n á ř e do problematiky DevOps a p r a k t i c k ý c h
využ i t í metod, k t e r é zrychluj í vývoj a do ručován í softwaru ze jména z pohledu vy tvá ř en í
infrastruktury s p o m o c í infrastruktury jako kódu .

Cí lem t é t o p r á c e je prozkoumat možnos t i infrastruktury jako k ó d u a popsat m o ž n ý
výsky t p r o b l é m ů př i využ íván í d a n ý c h ná s t ro jů , p o t é navrhnout agenta, k t e r ý z a b r á n í
kolizím př i s o u b ě ž n é m v y t v á ř e n í infrastruktury v c loudovém p ros t ř ed í .

Hlavn í čás t í celé p r á c e je n á v r h a implementace serverového agenta, k t e r ý je in tegrovaný
do c loudové služby, tak aby by l schopný kontrolovat souběžný p ř í s t u p k z m ě n á m infrastruk
tury. P r o vy tvo řen í t akového agenta je n u t n é zvolit nad k t e r ý m n á s t r o j e m bude pracovat.
Prozkoumat jak d a n ý n á s t r o j pracuje, j a k ý je jeho obvyk lý p r aco v n í postup a ten potom
z a p o u z d ř i t a vylepši t o p o ž a d o v a n é funkce.

Pro účely t é t o p r á c e je vybrat Terraform, k t e r ý se jev í jako un iverzá ln í n á s t r o j in
frastruktury jako k ó d u . N á s l e d n ě jsou navrhnuty vylepšení p r acovn ího postupu s d a n ý m
n á s t r o j e m a to tak, že by měl i zlepšit t ý m o v o u spo luprác i . N a v r ž e n ý agent spolupracuje
s verzovacím s y s t é m e m G i t H u b tak, že p o k a ž d é př i v y t v á ř e n í nové verze infrastruktury,
agent zaj is t í aby byla v y t v o ř e n a nejnovější verze na zák ladě pos ledn ích z m ě n na G i t H u b u .

To všechno je na závěr p r á c e n a i m p l e m e n t o v á n o a agent je nasazený do cloudu. Urč i té
aspekty související s agentem jsou in tegrovány do c loudového p r o s t ř e d í pro s p r á v n o u funkcional
i tu celého programu. D r u h á i m p l e m e n t o v a n á čás t je k l i en t ská čás t programu, k t e r á je
s chopná komunikovat s agentem p o m o c í volání A P I .

Jako pos ledn í bod p r á c e jsou provedeny ná lež i té experimenty, k t e r é d e m o n s t r u j í funkčnost
softwaru a zároveň vysvět lu j í využ i t í v praxi . P r v n í experiment m á na starost zj iš tění zák
ladních p o ž a d a v k ů na software jako je n a v r ž e n é zlepšení t ý m o v é spo lup ráce . D r u h ý exper
iment zobrazuje funkčnost programu př i s o u b ě ž n é m pokusu o v y t v o ř e n í infrastrukturu.

Infrastructure as Code in Agi le Software Devel
opment

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of R N D r . Marek Rychlý, P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

Voj těch H r o m á d k a
Ju ly 30, 2020

Acknowledgements
Firs t I would like to thank my supervisor, R N D r . Marek Rychlý, P h . D . For his willingness
and his advice while creating this work. A l so , I would like to thank Ing. Peter M a l i n a from
F l o w U p that he helped me to put together the assignment of this thesis.

Contents

1 Introduction 2

2 Agi le development 3
2.1 DevOps 4
2.2 Continuous integration and delivery 5
2.3 Team collaboration 7
2.4 Containerizat ion 8
2.5 C l o u d vs on-premise 9
2.6 Cloud-native 9
2.7 C l o u d Providers 11

3 Infrastructure as a code 13
3.1 Ex i s t i ng Infrastructure as Code Tools 14
3.2 C l o u d specific IaC tools 15
3.3 Research on similar existing solutions 16

4 Design 18
4.1 Terraform workflow 18
4.2 Designing the agent 19

5 Implementation 23
5.1 Server Side 23
5.2 Client 26
5.3 Securing connection 26
5.4 C l o u d configuration and deployment 27

6 Experiments 28
6.1 Exper imment 1 28

6.2 Exper imment 2 30

7 Conclusion 32

Bibl iography 33

A Content of the storage medium 35

1

Chapter 1

Introduction

Software development methods are growing increasingly wi th a passion for agile develop
ment. The agile concept is focused on fast reaction to changes dur ing development and fast
delivery of new versions of the software even wi th smal l incremental changes.

Chapter 2 is about brief insight into agile and DevOps culture, about its u t i l iza t ion
and common practices that are adopted by these cultures and how cloud is taking place in
the current market and its benefits compared to on-premise solutions.

For agile development, proper tool ing must be chosen to be able to deliver fast, w i th
confidence and without errors. A Teams first steps to practising agile are usually ut i l is ing
continuous integration and continuous delivery tools to bui ld , test and deploy applications,
but it does not end there.

In the actual world where cloud computing is increasingly getting popular, enterprises
adapting tooling in form of infrastructure as code which allows abstract the physical layer
of infrastructure. Infrastructure as code allows creating mult iple environments of a project
without the challenge to manage them a l l manually. A closer look into infrastructure as
code practices is i n Chapter 3.

This thesis focuses on pract ical aspects of using infrastructure as code in agile devel
opment and cloud environment. In Chapter 4.2 is designed agent that should improve
team collaboration and allow control of concurrent access of creation infrastructure wi th
Terraform tool to prevent collisions.

The mot ivat ion behind creating software that can control concurrent access to the in
frastructure changes is to help enterprise teams to collaborate better without the need of
explicit communicat ion of new changes and also removing the urge of having dedicated
team members to manage this k ind of operations.

Chapter 5 focuses on the implementation of the Terraform concurrent agent and de
scribes the approach that is used to create the applicat ion and how it is integrated into
Google C loud .

Last Chapter 6 describes testing and experimenting wi th the final applicat ion i n the real
scenarios and shows how the Terraform concurrent agent could be ut i l ized i n the develop
ment of larger projects.

2

Chapter 2

Agile development

Agi le development is one of many development methodologies. This type of methodology
is bui l t on principles like simple design, continuous delivery, self-organizing teams and face-
to-face communication, fast response. These principles are derived from four core agile
values.

Composi t ion of four agile values:

• Individuals and interactions over processes and tools

• Working software over extensive documentation

• Col laboration with customer over contract negotiation

• Responding to change over following a p lan

In agile development value on the left side is more important than values on the right.
However, it does not mean that values on the right side are not important . Accord ing
to the set of these values twelve agile principles were proposed. These principles enhance
the importance of agili ty in software development.

Some principles derived from these values are improved by using a cloud environment for
development. Such as scalability, providing infrastructure (both hardware and software),
fast delivery mechanisms, lowering cost and increasing software quality. In the bigger
picture cloud computing affects agile software development w i t h increasing prominence [22].

Agi le software development has various methods and since general talk about it may
not give a clear idea of how agile development works, Scrum is stated as the most popular
agile framework.

Scrum

Scrum is defined as a flexible, holistic product, a development strategy where developers
work as a unit to reach a common goal. One development cycle is called Sprint. Sprints are
usually no long-term plans that have an elected amount of features that are implemented
in one development cycle. After every sprint, Sprint P lann ing is arranged to priorit ize
the features. Sprints are created from Sprint Backlogs which works as a to-do list.

In Scrum dai ly meetings are held. Each team member should be prepared and share
answers to three basic questions.

• W h a t d id the member yesterday do that contributed to sprint goal?

3

• W h a t does the member plans to do today?

• A r e there any difficulties that can prevent the member from contributing?

After each iteration, team members are part of a Retrospective meeting where they
share and identify lessons and improvements for the next sprints [22].

W i t h this simple example of how scrum works, it is safe to say that i n the modern
world agile development is a great way to work on projects for customers that are driven
by fast-changing demand on the market as agile offers solutions for certain problems.

2.1 DevOps
In the first place, DevOps is a culture, not a specific method on how to approach an issue.
However, there exist tactics that should help to create own methods which could shorten
operations of software design changes [1].

DevOps is a culture and a mindset of people practising i t . For most cases, that culture
is about trust, team empowerment and cooperation. It also means DevOps is open to
learning new things and finding solutions [16].

Wants to deliver newest
featuers

Developer

o

Wants to guarantee stability
o1 service

O

Operator

Figure 2.1: Misunderstanding is frequent event in divided teams

D i v i d i n g software development team into the development and operations team is a long-
lasting practice. B o t h teams have different needs and ideas. The development team would
like to release the newest features as soon as possible. O n the opposite hand, the operations
team would prefer the stabil i ty of software over releasing new versions.

The essential idea behind DevOps is quite simple. B u i l d a bridge between development
and operations team. The development team should know what needs to be done by
the operations team and vice versa. Ideally, operations should be part of the development
team, so that everyone has the same knowledge base.

Another approach of bui ld ing the bridge between those two teams is to merge them,
where both developers and operations could do the same work. Develop and deploy their
work later on without being dependent on the second team.

W i t h both of those approaches, development may concentrate on creating features to
product ion as fast as possible or delivering on t ime wi th good quali ty instead of b laming
the second team for their mistakes. B o t h approaches support the agile concept of fast
development.

4

W h y is DevOps important? In current I T market is dominated by the speed of releasing
products. Th is can be seen by the popular i ty of agile techniques to shorten development cy
cles. A n d when development cycles are fast enough, there is a bigger need to correctly create
space where that product can be placed and regularly updated. W i t h DevOps , it is safer
to make changes more often because of automated pipelines of the whole deployment [1].

DevOps in practise

DevOps work usually lays i n increasing automation and faster deployment process.
Fi rs t DevOps task is to create an automated deployment mechanism. Deployment strat

egy is mostly based on deployment scripts or some continuous delivery system, which is
triggered by the C I system. Strategies to deploy to different environments such as develop
ment or product ion may differ. W h i l e the development environment is usually automated.
Deployment to product ion often needs manual triggering.

Infrastructure as code, provisioning and configuring environments repeatedly and reli
ably is part of DevOps expertise and can be part of the C I / C D 1 pipeline. Tools such as
Terraform, Chef or Puppet are used for this purpose. Infrastructure as code is mentioned
in Chapter3

Developers and operators actively monitor applications and services that were devel
oped, both i n product ion or other environments. Moni to r ing is done for various purposes,
such as providing vis ibi l i ty over failures of deployment or quali ty of provided services. W i t h
proper monitor ing faster response to bugs and anomalies is achieved which leads to greater
customer satisfaction [16].

Figure 2.2: DevOps cycle [20]

2.2 Continuous integration and delivery

Continuous integration (CI) and continuous delivery (CD) embody a culture, set of operating
principles, and collection of practices that enable application development teams to deliver
code changes more frequently and reliably. The implementation is also known as the CI/CD
pipeline and is one of the best practices for DevOps teams to implement. [18]

To be able to create your C I / C D pipeline, proper tooling and technology must be chosen.
W h i l e implementing a C I / C D , teams have to decide which tools fit best i n their business
and technology stack.

1 Continuous integration/Continuous delivery

5

Continuous integration

Continuous integration is a philosophy that supports rapid software development. Operat
ing principles are based on that philosophy and they help to achieve delivering of new code
frequently and reliably. Us ing this method it is easier to detect bugs i n code sooner than in
large additions of code less often.

Teams that want to implement C I / C D to their business often start w i t h version control
systems. Code checking can be done frequently for smaller features but also for longer time
frames. Development teams are using different strategies for different cases and define how
code is merged into product ion environments.

There are many techniques like version-control branching, which is based on creating
a branch for each environment where software is running. One branch is development, for
the newest features. The second branch is created for testing, where the testing is done
and after a l l the needed steps are done, code is merged to the product ion branch which
represents the code used in the latest version of the product ion system.

The second strategy could be feature flags. Th is mechanism is buil t around turning on
or off features at run t ime. A product ion system is using master branch code to run. Newest
features are flagged and un t i l they are tested, they can not be flagged as production-ready
so neither be deployed.

Bu i ld ing the software as a whole is then automated by packaging a l l the code, database
and other components. Th i s packaging may differ depending on which languages are
used. [18]

Continuous delivery

Continuous delivery is part of C I / C D that delivers software to its desired environments.
Usually, teams have more environments such as development, testing and product ion. Each
of those environments should have same configurations but are for different purposes.

The objective of continuous integration is to gather code at one place to be handed to
continuous delivery. After everything is set up, a continuous delivery process could look
like this:

Firs t , the code is pulled from a version control system and starts a bu i ld of an applica
t ion. T h e n the infrastructure as code tool is executed to change required infrastructure in
a given environment. This step is more important for a cloud environment as they are more
mutable. Next step is moving a buil t applicat ion to the target environment and configuring
environment variables dependent on the environment that is being used. After everything
is set up, the appl icat ion is pushed to their appropriate services, such as web servers, A P I
services. Then an applicat ion is deployed, the last th ing to do is execute any steps required
to restart services that are needed for new code to take effect. A t the moment when is
application successfully deployed, continuous tests are executed, i f tests fail rollback w i l l be
applied.

More and different steps could be part of continuous delivery. Those which are men
tioned here should give a good understanding of a given problematic [18].

Testing in C I / C D

The vast part of C I / C D is testing. The opt imal case is to deliver new versions of software as
quickly as possible. Also , quali ty assurance is very important . Th is means that the C I / C D
pipeline should have included various types of tests to be executed in process of delivering

G

new versions, and in case tests w i l l find an error in code or delivery process, a rescue
plan should exist. Tha t rescue plan might be a rollback to the previous version.

However, the best practice in testing is before continuous delivery is executed. Before
releasing a new feature, developers should run unit tests, functional tests and regression
tests on their local environment. Th is leads to correct code in version control systems after
commit t ing a new port ion of code without breaking the working environment.

Testing code is the first part of the testing of the whole software. There are more like
performance testing, A P I testing, security testing, a l l these can be also automated. The key
to automating these tests is the abi l i ty to trigger them some easy way such as the command
line.

W h e n a l l testing is automated, it can be integrated into the C I / C D pipeline. R a w code
testing can be done i n C I while commit t ing or merging wi th the master branch. Other tests
like performance testing could be done only after deploying the new version to the target
environment and if those fails, rollback can be executed [18].

CI/CD

Plan Code Build Test Release Deploy Operate

Cont inuous In tegra t ion Cont inuous Delivery

Figure 2.3: C I / C D process [7]

2.3 Team collaboration

In today's world where is a big demand on speed and even more in agile development.
Teams have to choose the best way to collaborate. In software development, there are
a few points of view. F i rs t , that should come i n mind is how to effectively share code wi th
the team. In history, before 2005 teams used to share code wi th in version control systems
that were centralized and they usually stored each version of the software. They pr imar i ly
offered prevention of bad things happening, but they d id not help in developers dai ly life
very much. G i t changed that w i th its branching system and better control of code [19].

Git

B i r t h of G i t helped developers to create revisions, not only versions of the software. Software
development changed because there were many benefits to this approach. Instead of wr i t ing
a whole new version based on a previous one, teams could easily implement to their workflow
small incremental additions. G i t offers a branching system, where developers can create

7

a new branch from the latest version which gives them a complete copy of the software
repository and al lowing them to do their ind iv idua l needs such as new feature or bug fix.

G i t also keeps a graph which contains a complete history of commits and merging
branches. Tha t helps developers to identify problems wi th each version and can be easily
reverted or reviewed.

The big plus of git is that it is decentralized and allows great local development even
without internet access. Each ind iv idua l of a team can clone a repository to a local computer
and work wi th it on their computer. They can commit changes that are ready to be part
of the remote repository. Those pushed commits are usually reviewed by other members
and then integrated to a master branch which can be product ion code [19].

GitOps

G i t O p s uses git repository or another V C S 2 to improve the work of the operations or DevOps
team. W i t h G i t O p s practice configuration files of infrastructure, container-orchestration
and other important segments of the software are stored i n V C S . Configuration files of
infrastructure and other tools are wri t ten i n a declarative style. These source repositories
are becoming a source of t ru th for the whole project i n repositories.

Before G i t O p s , it was common to write a deployment ticket and wait un t i l an operator
successfully deploys the applicat ion. N o w it is more frequent to edit changes i n the repos
i tory and create a pu l l request (P R) . After that P R is reviewed by other team members,
automated pipeline (C D) is triggered and changes of infrastructure and other configurations
are executed.

The fact that G i t O p s is realized leads to easier testing different environments, reduces
„bus factor", reduces wait t ime before a new version is deployed and improves overview of
infrastructure logic which is handled by infrastructure as code (IaC). M a n u a l to i l is also
greatly reduced. Very important is that G i t O p s improves the abi l i ty to operate systems
safely because operators now do not need to spend so much time wi th t o i l 3 , they can spend
more t ime on improving C I / C D pipeline which leads to better automation [15].

2.4 Containerization

Containers improve the way the organizations deliver services to end-users. Containers im
prove agil i ty because applications are a faster and more flexible way than using monoli thic
architectures which make applications difficult to update. Containers can be shipped as
a whole to correct the place and replace the older version of service without noticeable im
pact. Tha t approach significantly helps to deliver changes sooner than before as it is easier
to write the code and create a container [3]. Containers offer light-weight vir tual isat ion,
faster than V i r t u a l Machines. Containers provide the abi l i ty to manage and migrate ap
plicat ion dependencies along wi th the applicat ion wi th omit t ing the underlying operating
system [8].

The most popular containerization engine is Docker. Docker creates containers w i t h
Docker files to create Docker images which are then deployed to the prepared infrastructure
manually, or i n C I / C D pipeline.

2 version control system
repetitive time-consuming activity

8

Virtual Y Virtual Y Virtual 1
machine machine machine

Hypervisor

Docker engine

Host OS

Infrastructure Infrastructure

Figure 2.4: Different type of v i r tua l iz ing applicat ion v i r tua l machines versus containeriza-
t ion

2.5 Cloud vs on-premise

Smal l and medium-sized enterprises (S M E) might want to keep their business smal l or
to grow it . W h e n they start to grow it may get harder to manage I T infrastructure.
W i t h a bigger company, more on-premise hardware is needed and it can grow gradually or
exponentially and takes usually a long time to return on investment [21].

W i t h cloud computing there is no need to take care of your infrastructure, it is provided
from a cloud provider in a form of Infrastructure as a service or P la t form as a service. C l o u d
often offers to pay as you go, which means it does not involve large in i t i a l investment [8] [21].

2.6 Cloud-native

Cloud-native is a well-known term but is not that often described more than „we are on
a c loud". There are many key ideas behind being Cloud-nat ive. One of them is specific de
sign patterns that became very successful while creating cloud applications. Mos t frequent
arguments of cloud-native ctre cts following.

• Cloud-native applications can operate on a global scale. The ordinary web applicat ion
can be accessed anywhere in the world through the internet. Cloud-native applicat ion
has replicas of servers and data centres around the whole world so that accessing
application results in min ima l latencies, for example, google sites can be reached from
Europe w i t h lowest latencies, even though Google is located in the Uni ted States of
Amer ica . Tha t is because they have replicas in many places i n Europe. This approach
creates very robust applications.

• Cloud-native applications have to scale well w i th many concurrent users. Assumpt ion
here that appl icat ion can horizontally scale automatically. Tha t approach requires
careful observation of synchronization and consistency i n distr ibuted systems.

9

• Appl ica t ions are buil t on assumption that infrastructure is unstable. Even though
one zone of servers w i l l crash down because of some natural disaster the applicat ion
w i l l s t i l l run i n a different place so the user does not realize that there is trouble.

• Upgrading or testing Cloud-nat ive applications do not affect end users.

• Security must not be forgotten, cloud-native applications are buil t of many small
components and these components can not hold sensitive data. Access control needs
to be managed at mult iple levels.

There are many cloud-native applications that the populat ion uses every day but maybe
does not know that it is a cloud-native applicat ion. For example, The Netfl ix movie stream
ing service is one. A l so other big players i n the current world such as Facebook, Twit ter .

A t first to become cloud-native, Infrastructure as a Service replaces on-premise infras
tructure wi th v i r tua l machines running i n the cloud. It was very difficult to engineer
scalabili ty and security at the same t ime wi th only on-premise solutions.

The first major design pattern for cloud-native applications was Microservice architec
ture. Th is architecture relies on d iv id ing applicat ion to smal l independent components and
it easy to scale and reliable. That each component is called microservice. A l l microservices
should be designed for constant failure and recovery.

It must be possible to encapsulate each microservice instance so that it can be easily
manipulated. Container izat ion is the solution.

W i t h a l l this, it is possible to create a well-developed cloud-native applicat ion based on
microservice architecture [8].

Figure 2.5: Basic principles of cloud-native development [12]

10

Full stack example of Cloud-Native application

Before creating a new cloud-native application, it is good practice to choose proper tooling,
there £ 1 1 * 6 c l lot of tools for different parts of the applicat ion.

O n the bo t tom of the whole applicat ion should lay a cloud environment. A t the moment
the cloud market offers many solutions, most popular are A m a z o n web services, Microsoft
Azure , Google cloud platform, V M w a r e etc.

After the selection of cloud provider, usage of provisioning infrastructure as code tool
is desirable to create resources for a project. After choosing the IaC provisioning tool such
as Terraform or Cloudformation. Next tool to uti l ize could be infrastructure configuration
tools like Chef, Puppet or Ansib le . W i t h these tools, infrastructure is prepared for serving
a given purpose.

To be able to deploy to the cloud, developers tend to use runtime environments in which
application runs. Those environments are usually created wi th Container Engines such as
Docker, which allows to enclose applicat ion wi th needed components.

Orchestration and Management is the next step of being cloud-native, tools like Kuber -
netes or Docker Swarm are used to manage container clusters for easy orchestration across
mult iple hosts. They provide load balancing, scheduling of containers etc.

M a n y languages support microservice architecture. The ideal one is chosen by the de
velopment team. The code is being shipped to runtime services wi th C I / C D tools such as
Jenkins, Travis C I and others.

The last step of cloud-native applicat ion is Moni to r ing , Logging and A u d i t i n g . Th is
is one of the key features to manage C l o u d Nat ive Infrastructure. A l l modern monitor ing
tools support moni tor ing of containers and microservices [12].

2.7 Cloud Providers

The current market of cloud providing is formed by many professionals. Th is Section w i l l
compare the largest providers which are A m a z o n Web Services, Microsoft Azure and Google
C l o u d Pla t form. Even though these platforms usually provide similar options for enterprise,
each has more specific advantages and differ a bit from others. Choice of cloud vendor is
on ind iv idua l customer consideration.

Nowadays, most of the cloud providers offer IaaS and P a a S B i g companies mentioned
before are no exception.

Amazon Web Services

A t the current state, A m a z o n Web Services is the largest and maintains 33% share of
the worldwide market since they offer a vast amount of services and tools to work wi th .
It offers more than 175 services at a moment across compute, storage, database, analytics,
networking, mobile, IoT and more. A W S has been the biggest IaaS provider for over 10
years, it is the most mature provider. However, A W S big weakness is the cost of resources.
A W S also focuses on a public cloud rather than a hybr id cloud or private cloud. This
implies that sometimes it is not the best choice for an enterprise customer [4].

infrastructure as a service
5 Platform as a service

11

Microsoft Azure

Microsoft Azure is a close competi tor to A W S wi th 18% of market share. Azure is popular
due to Microsoft is seen as a safe bet because most clients already have experience wi th
the company. Azure offers exceptional cloud infrastructure and believes that hybr id cloud
is important , so it is supportive of private data centres [4].

Google Cloud Platform

Google C l o u d P la t fo rm is not that big i n the competi t ion. Its main benefits compared to
other are expertise and industry-leading tools i n deep learning and artif icial intelligence,
machine learning and data analytics. Google has deep expertise around open source tech
nologies. Especial ly potential lays in containers since Google developed the Kubernetes
which is becoming an industry standard [4].

12

Chapter 3

Infrastructure as a code

Automat ion of infrastructure is a key DevOps practice. The philosophy behind this is that
infrastructure gets a new level of abstraction, infrastructure becomes part of code which
describes the desired infrastructure configuration in definition files. Tha t means we can
treat infrastructure as another part of the software.

W h y is infrastructure as code important? The answer is quite simple. It saves time.
It reduces the t ime spent on doing repetitive things such as patching infrastructure. I aC
allowed to create definition files of configuration and so it reduces propensity on errors.
Before checklists were made to make sure everything is set up correctly and even though
it has a predisposition for human error. Another plus of this that is IaC tools often create
snapshots on every version of infrastructure. Because of this, it is simpler to inspect changes
wi th each new infrastructure update.

IaC is improving automation of whole software deployment since infrastructure can be
created along wi th bui ld ing applicat ion. N o w there are a lot of tools that can be integrated
into C I / C D pipeline such as Ansible , Chef, Puppet etc.

W h e n infrastructure is automated, it is easier to test software i n a sandbox environment.
It is easy to spin up a new environment, test the new version of the applicat ion and then
tear down infrastructure in minutes.

In the „cloud age" it is even easier to run these configurations. Because there is no
need to buy physicals servers. It is easier to set up infrastructure on cloud servers which
are provided by many companies. O n the cloud, there is no need to be afraid of the local
server having enough memory because it can be easily added by requesting the provider for
more [13].

However, once the infrastructure is managed by IaC tool it might be troublesome to
manually debug problems. Tha t is because the IaC too l usually holds a current state which
is the last snapshot of applied infrastructure. W h e n is that infrastructure manual ly changed
it may corrupt given state and prevent the tool from working correctly [9].

13

Figure 3.1: IaC is also part of C I / C D pipeline

3.1 Exist ing Infrastructure as Code Tools
A s IaC is rapidly growing many tools are competing at the same time. Different tools are
used for different purposes. I aC tools can be divided into four general categories: ad hoc
scripts, configuration management tools, server templat ing tools and server provisioning
tools. Where ad hoc scripts are the most straightforward solutions which allow creating
infrastructure but without the option of managing it w i th ease [17] [6].

Terraform

Terraform is a server provisioning tool . Th is means it is responsible for server creation in
opposite to IaC tools that instal l and configure an existing server [6] .It is a universal IaC
tool that is cloud-agnostic and helps to manage large infrastructure for different k ind of
applications [5]. Its automation is often different. Some teams run Terraform local ly but
use the consistent working directory for Terraform to run in . Another approach could use
different orchestration tools such as Jenkins to run Terraform [17].

Terraform uses its domain-specific language. Infrastructure is described using high-level
configuration syntax. The infrastructure that Terraform can manage includes low-level
components such as compute instances, storage to high-level components such as SaaS 1 .

The core usage of Terraform is buil t on planning and applying configuration files. Before
creating or updat ing infrastructure Terraform informs the user about changes i n a p lan that
contains exact information about resource changes i n existing infrastructure to increase
safety and reduce human error. After inspecting changes, the p lan can be applied and
infrastructure is updated in a moment [9].

Terraform state

State file which Terraform uses is a mirror of configuration created wi th Terraform i n a text
file. Every resource that is stated in this file is currently being managed by Terraform.
Unfortunately, the state can not be created by reading actual infrastructure.

1 Software as a service

14

B y default, Terraform state is stored local ly i n file terraform.tfstate. This approach is
not ideal while working in a team. To remove this problem, the remote state is an option.
The remote state can be stored i n a remote data storage. Supported options for storing
the state are remote storage buckets, Terraform C l o u d and similar options provided by cloud
providers. Tha t strategy empowers team collaboration in infrastructure creation [10].

Chef

Chef is a popular IaC configuration management tool among C I / C D practitioners. Chef
handles instal lat ion and management of software on existing servers. Chef uses Ruby-based
D S L to create its recipies and cookbooks. It has versioning system that allows maintaining
a consistent configuration. E a c h cookbook should relate to a single task, but it can deliver
different server configurations based on resource definition. Chef uses a procedural approach
to its configuration, as describing procedure is necessary to get the desired state.

Thanks to its support for cloud provisioning A P I s , Chef works well w i th other IaC server
provisioning tools. Chef is cloud-agnostic and works wi th many cloud service providers [6] [17]

Puppet

Similar to Chef, Puppet is a popular configuration management tool that helps wi th con
tinuous delivery of software. It has Ruby-based D S L . Puppet which uses a declarative ap
proach to its configuration. Defining the desired state of your infrastructure causes Puppet
to automatical ly enforce the desired state and fixes any incorrect changes. This approach is
mainly directed toward system administrators. It can be integrated wi th the leading cloud
providers such as A W S , Azure , Google C l o u d and V M w a r e [5] [17] [6].

Ansible

Ansible is an open-source infrastructure configuration tool . Ans ib le forms infrastructure by
describing relations between system components as opposed to others which manage systems
independently. It describes its configurations i n Y A M L i n form of Ansible Playbooks,
because of that configurations are easy to understand and deploy. Its functionality can be
extended by wr i t ing new modules and plugins [5].

3.2 Cloud specific IaC tools

A few tools are dedicated to the specific cloud and in general, they provide similar options
for users but can not be used for mult i -c loud projects as they are integrated into a specific
cloud.

A W S CloudFormation

A W S CloudFormat ion is a similar IaC server provisioning tool to Terraform, but it is deeply
integrated into A W S Cloud . A W S CloudFormat ion does not have its D S L 2 instead it is
using J S O N or Y A M L templates or programming languages to describe infrastructure.

This tool allows rollbacking automatical ly if errors are detected. C loudFormat ion sup
ports deployment across mult iple A W S accounts and regions wi th in a single template [5] [17].

2 Domain specific language

15

Azure Resource Manager

A similar tool like A W S CloudFormat ion but this t ime for Microsofts cloud Azure . Azure
Resource Manager creates infrastructure declaratively described i n J S O N templates. W i t h
these templates, it is possible to organize dependent resources into groups which allow to
deploy or delete these groups i n a single action [5] [17].

Google Cloud Deployment Manager

A s the t i t le says, an IaC server provisioning tool created specifically for Google C l o u d
Pla t form. The tool configuration definition is created in Y A M L , J I N J A 2 or P y t h o n files.

Google C D M ' ^ supports previews. This approach allows to examine changes of infras
tructure rather than executing changes directly. H u m a n errors can be avoided, which helps
to stabilize infrastructure whole [5] [17].

3.3 Research on similar existing solutions

This Section is focused on exploring existing solutions which are controll ing concurrent
access to deploying or automating Terraform configuration.

Atlantis

Atlant is is an open-source tool that allows improved collaboration on projects where Ter
raform is used. Its review and applying system is done i n pu l l requests created i n version
control system. It allows automation of infrastructure creation. [2]. At lan t i s is deployed as
a single binary executable. A developer adds a G i t H u b or G i t L a b token for a repository
containing Terraform code. The instal lat ion itself adds hooks to given source repository
which allows operating during pu l l requests. It can run i n a container or v i r tua l machine.
Requirements are that At lant i s can communicate w i th V C S and infrastructure that is being
changed [14].

Figure 3.2 shows a workflow adopted by developers while using At lan t i s . Its workflow is
based around feature branches and creating P u l l Requests. Communica t ion wi th At lant i s is
defined wi th in comments on P u l l Requests, when P u l l Request is created, terraform plan is
created and At lant i s comments the output of p lan back to comment section. Developers
then can apply infrastructure by commenting atlantis apply on a pu l l request to apply
the planned infrastructure [2] [14].

At lant is is a good tool to add to the C I / C D pipeline while using Terraform. However,
it does not support control of concurrent access to infrastructure changes.

Terraform Cloud

Terraform C l o u d is a commercial product that offers an extension of Terraform workflow.
Work ing wi th Terraform C l o u d offers its servers to run and mainta in Terraform runs on
their servers.

W i t h Terraform C l o u d practicals it is possible to manage the whole infrastructure auto
matical ly or wi th in a nice G U I . Terraform C l o u d offers complete control over infrastructure
changes, automated planning, applying and storing remote states. Terraform C l o u d can

3 Cloud Deployment Manager
4 Graphic user interface

16

Developer! AWS

3 r p^sli

Creale Pull Request

Add comment
-'allantis plan'to Pull-

Request

Add comment
-'allantis apply' to Pull-

Request

Merge Pull Request

GilHuD API hook

git pull

Add terrafonn plan
(-output as comment t

Pull Request
Review and appose Pull Request (LGTM!)

GilHuD API hook

terraform plan

terratorm apply

Figure 3.2: Workflow wi th At lant i s automation tool [14]

be connected wi th popular V C S such as G i t H u b or G i t L a b . It improves team collabora
t ion wi th nice visible history and well-organized infrastructure operating i n a user-friendly
G U I [11].

Terraform C l o u d comes wi th improved locking of Terraform state. W h i l e a l l operations
run in a central location. It allows detecting attempts of creating a new plan while an exist
ing plan is wai t ing for approval. These operations can be queued. W i t h this, some control
over concurrent accessing to Terraform is implemented [10].

17

Chapter 4

Design

This Chapter focuses on designing an infrastructure provisioning agent that improves team
collaboration and controls concurrent access to infrastructure managing wi th IaC tool
Terraform. The Agent should improve the continuous delivery workflow of Terraform.
The workflow between ordinary use of Terraform and using an agent is stated.

4.1 Terraform workflow

terraform apply

Figure 4.1: Current ly adopted style of terraform workflow

Figure 4.1 shows currently recommended basic workflow wi th Terraform [9]. Its usage
is based on sharing Terraform configuration i n V C S and having dedicated team members
to manage its configuration and infrastructure while having state file in remote storage.

18

A s mentioned i n Chapter 3.1. Terraform configuration is based on planning and ap
ply ing infrastructure w i t h its C L I . Terraform files consist of resources configuration. After
running terraform plan command it displays required changes. E i the r it can be creation,
updating, replacement or destroying a resource. A user then reviews changes and can run
terraform apply to apply these changes. A l l these commands are executed from the Ter
raform directory on the user computer where Terraform configuration files are located.

Possible issues

Current terraform workflow brings possible issues to flawless development. Especial ly for
those who would like to add terraforming infrastructure to C I / C D pipeline and to larger
projects, where may occur mult iple concurrent changes at one t ime. A n d to who would like
to adopt more G i t O p s style, w i t h version control systems such as git to be the source of
t ru th without need of pul l ing code to the local computer.

• W h i l e working i n a larger team on a big project. E a c h developer may have different re
quirements for actual running infrastructure. Tha t implies that there may encounter
more infrastructure needs and changes. If for example, one developer wants to add
one infrastructure resource addi t ion such as database creation and at the same time
someone else is upgrading Kubernetes cluster which takes a long t ime to proceed.
A n issue can be caused and Terraform automatical ly locks terraform state from fur
ther edit ing to protect the state from corrupting. This may cause problems such as
inconsistent terraform state compared to actual infrastructure and further manual
steps are required, such as unlocking state file.

• Second issue is that terraform is being run from a local computer w i th pulled infras
tructure definition files. Th is approach is not significantly bad but it might cause
troubles. For example, a developer which currently want to change infrastructure
does not have the necessarily latest version of source repository and applies infras
tructure which is not suitable for a l l team members that are working on the project.
The goal is to make sure when somebody decides to update infrastructure, it w i l l be
the last possible version which is merged to the master branch.

4.2 Designing the agent

Terraform agent should meet several requirements.

• Agent should allow the concurrent deployment of infrastructure to reduce failures in
larger teams or projects.

• Inclusion of Terraform to C I / C D pipeline should be implemented, demand that Ter
raform should be more G i t O p s focused should be met.

• Team collaboration improve. Remove the need to have dedicated team members to
manage infrastructure.

19

Figure 4.2: Workflow wi th usage of Agent

Technology specification

Terraform agent is designed to work at Google C l o u d Pla t form, which was chosen because
of personal preferences and because the platform offers many important IaaS components
that are often used for smal l and larger projects. Choosing G C P 1 over other cloud providers
does not have an impact as the tools used are available at other providers too.

The agent uses for its functionality service called A p p Engine which is a fully managed
service by platform and offers compute power to run applications. A p p Engine is used for
the server part of the agent.

C l o u d B u i l d , which is google bui ld- in C I / C D platform is used for running automated
triggers to work wi th G i t H u b repository.

Server side

The server side of the agent is designed to create plans and apply the newest infrastructure
depending on the given source repository. Agent server should be able to use Terraform
to p lan infrastructure, send planned infrastructure changes and apply those changes after
users request.

1 Google Cloud Platform

20

Since agent needs requests from a user from client-side or C l o u d B u i l d C I / C D pipeline.
The proper interface must be chosen. The agent uses the A P I listener to create responses
to requests.

W h e n a successful attempt of infrastructure changes is achieved, the agent writes the last
changes of infrastructure back to the source repository. Changelogs should improve vis ibi l i ty
of how is infrastructure changed from last t ime. Tha t information may be valuable for every
developer that is involved i n the development.

Client side

The client-side is designed to make A P I calls on the agent server. M a i n purposes of the client
are to review infrastructure changes of actual plan which is sent to client from server and
applying that infrastructure p lan later on. Another functionality is cal l ing for new terraform
plan i f something fails on C I / C D pipeline. This should be used only as a backup plan.

A P I calls are made on a public domain, so some security is necessary. W i t h o u t security,
anyone could run changes on infrastructure without permission.

Terraform agent is designed to improve stated issues in Section 4.1. A s shown in F i g
ure 4.2, using agent should remove some manual to i l which has to be done by specialized
team members. W i t h Terraform agent, developer or operator could add a new configura
t ion and commit it to the source repository. After pushing these changes, an automatical
trigger would notice the agent, the agent creates a terraform plan then saves it i n local stor
age. The developer can then inspect changes by cal l ing client-side of the agent to review
changes which Terraform planned. W h e n everything seems correct developer can ca l l again
the client-side of agent and apply those changes. After applying, the agent w i l l commit
changelog of infrastructure to the Gi thub .

Improved team collaboration

Terraform agent is t ry ing to improve the workflow of working wi th Terraform as a team.
In a normal team, a dedicated person which is taking care of infrastructure is needed.

W i t h the agent, that holds credentials to access and manage infrastructure. There is
no more need for that person, now everyone can use the tool without having explicit rights
to the project by cal l ing from the client applicat ion.

The Agent uses the most recent mirror of the source repository. A s it is creating plans
from latest merged changes. This allows having always a prepared plan for the newest
infrastructure.

The important part here is also reviewing changes wi th the client-side applicat ion. That
part of infrastructure managing is crucial because interventions to infrastructure should be
double-checked, once during p u l l requests by team members to check i f the configuration
is correct. The second t ime when is infrastructure being applied. This approach should
significantly reduce the error rate in managing infrastructure and support the smoothness
of whole development.

Controling concurrent access

Larger projects may encounter inconvenience while working in bigger teams. Mul t ip l e
concurrent changes of infrastructure may be one of them. Usually, only one Terraform
configuration is created for each project on Google C l o u d Pla t form, that is because i f
there were mult iple terraform configurations it could cause a mess and harder view on

21

the whole infrastructure. T h i s approach is not best suitable for large projects. O n l y one
configuration means only one terraform state. A n d when mult iple concurrent changes are
made, big chance of locking the terraform state comes to play. W h e n is state locked, manual
intervention may be necessary.

To prevent these obstacles agent can create a queue of changes, which w i l l prevent
Terraform from locking the state. Since the approach of the agent is using actual G i t H u b
repository as a source of t ru th , not only it does prevent the state from locking by creating
a queue. It also uses a l l merged configurations after last planning to create a new plan wi th
al l latest merges to master branch.

22

Chapter 5

Implementation

This Chapter provides information about the implementat ion of Terraform agent. The im
plementation is d ivided into two code parts which consist of a server and client-side of
the applicat ion. Essential usage of cloud for correct behaviour of the whole appl icat ion is
also part of the implementation.

Due to requirements described i n 4.2 R E S T A P I is implemented to answer requests
from the client applicat ion and the automatic triggers from C l o u d B u i l d service.

5.1 Server Side

The server side of the appl icat ion is designed to create responses to A P I cal l ing from
client-side of applicat ion. Th is Section takes a closer look at the more important parts of
the implementation. App l i ca t i on is created i n the G o language.

A P I implementation

After is agent created and successfully deployed into cloud v i r tua l machine, copy of in
frastructure repository from G i t H u b is created. A n d starts listening for H T T P or H T T P S
requests.

A P I uses the H T T P Echo web framework for its implementation. The Echo responds
to three endpoints.

• /terraform /plan

• /terraform/show

• /terraform/apply

Each of these endpoints responses to A P I cal l ing and runs corresponding routine.

Plan

Cal l ing the /terraform/plan endpoint results i n pul l ing the latest changes of the source
repository, where Terraform configuration files lay. After having the latest configuration,
terraform init is called v i a executable of Terraform. terraform init initializes working
directory and creates the first part of Terraform state wi th in the current working directory.
Ini t ia l izat ion is important because it prepares Terraform to further callings. It downloads

23

al l provider plugins of providers which are mentioned i n Terraform configuration such as
Google, Kubernetes, etc. More importantly, it creates a connection to remote storage,
where Terraform state w i l l be stored.

After in i t ia l izat ion, routine calls terraform plan to create a p lan of infrastructure changes.
Text file w i th stated changes is stored i n v i r tua l machines file system. A t the same time,
plan, out is created. This file is i n binary format and contains the execution plan of what
needs to be done to create changes i n the desired cloud environment and waits in the work
ing directory un t i l terraform apply is called.

Show

Cal l ing /terraform/show results i n sending information about planned changes v ia H T T P
response. The response is filled w i t h information about future infrastructure changes which
was previously created by terraform plan.

This part is essential for developers or operators to be able to preview expected changes.
M a n y unwanted errors may be avoided just by double-checking this report.

A p p l y

W h e n /terraform/apply endpoint is hit , routine checks if any plan exists i n its working
directory and starts executing the Terraform plan created before. Since applying can take
a longer t ime to finish, H T T P streaming is implemented v ia G o r i l l a web sockets. F i r s t ,
a handshake is realized, and after that terraform apply is called to create resources on
the cloud. W h i l e execution is i n progress, the server sends information about resource
creation to the client.

After successful applying of new changes. L o g of last changes i n file infrastructure
changes is commit ted back to the source repository where the configuration is. The execu
t ion plan is destroyed, so it can not be reapplied.

G i t H u b A P I

G i t H u b G o l ibrary go-github is used for communicat ing wi th G i t H u b A P I where source
repository is located. The l ibrary is mainly used to communicate v i a Personal access token.

G i t H u b access is used to clone and p u l l repository which is essential for Terraform to
run commands. Another usage is for application, so it could create a log of changes in
the repository. This approach improves vis ibi l i ty over the whole infrastructure and better
t racking of errors.

Containerizing application

The server-side of the applicat ion is containerized wi th Docker. Container izat ion of the ap
plicat ion allows enclosing of necessary components such as Terraform and a l l used libraries
which are essential for the applicat ion to run.

Dockering the applicat ion is separated into two parts, the first part consists of bui lding
the server agent and creating an executable wi th G o image.

The Second part uses alpine image, to reduce applicat ion size at the min imum. Every
needed resource is added to make the agent run smoothly. Executable of Terraform is
added, so the agent can a l l Terraform commands inside the container. Also , a service
account which has access to Google C l o u d P la t form project is encapsulated, so the agent

24

does have the right to change running infrastructure. Th is service account is mounted as
an environment variable, which gives access to the whole container to access specific Google
C l o u d P la t form project.

Controlling concurrent access

API request

Put Terratorm plan in
queue

Figure 5.1: Agents decision tree for mult iple concurrent accesses

The goal of this work is to implement concurrent access control to infrastructure creation
on the cloud environment and solve or evade problems wi th state locking by controll ing it
appropriately.

Control l ing concurrent access is realized wi th l ibrary sync. After waitgroup is ini t ial ized.
A l l the endpoints share access to that synchronization variable.

W h e n endpoint /terraform/plan is called, check i f there is another running process which
is currently working wi th Terraform remote state is executed. If there is an existing process

25

such as applying or planning of state at the same moment. Terraform agent prevents to
run usual routine after cal l ing an endpoint. Instead, these requests are queued and merged.
This principle is derivated from the design itself.

Figure 5.1 shows how the agent responds to each A P I callings. H i t t i n g /terraform/plan
or /terraform/apply leads to creating lock which prevents other unwanted callings to be
processed.

Terraform plan and Terraform apply are operations that refresh the Terraform state.
This means that these two operations can not be called at the same time. In case i f
/terraform/plan endpoint is hit twice, it runs a Terraform plan for the first time, second
call ing is queued and ran after the first one finishes. This has to be done because two
separate callings were probably made by an automatic trigger which w i l l be discussed in
Section 5.4. A n d it means that two infrastructure changes have been made. This approach
guarantees that the latest configuration of infrastructure w i l l be applied.

W h e n is /terraform/apply hit , it first checks i f plan.out exists. This p lan is previously
created by Terraform plan. If a plan exists, it starts to execute i t . However, call ing
the second time for Terraform apply is prohibited, because applying locks agent from other
callings. If /terraform/plan is hit while applying is in progress, it does queue the request
and w i l l be processed later after applying is done.

5.2 Client

The client-side of applicat ion is created to ca l l A P I endpoints of the server. The client is
C L I 1 applicat ion. This part of the appl icat ion is very simple.

The client has three commands .Command plan which is used to ca l l for planning on
the server. Th is option is here as a backup if automatic planning fails for some reason, show
calls for information about the current plan and writes text i n the standard output. Th is
command should be bread and butter for a developers life as it helps to inspect changes
which leads to fewer errors. B o t h plan and show receive information in J S O N format. O n
the other hand, apply uses streaming for its data transmission as its response may last
a longer period.

5.3 Securing connection

Since the agent is d ivided into client and server and communicat ion is done v i a open A P I ,
some security is required so that everyone can not use that A P I to change infrastructure
on an unfamiliar project.

Each agent is integrated into a project which is an environment for future development.
Thanks to that, each agent has a different U R L which exposes the A P I to the internet.

A l l that is implemented is communicat ing v i a an access token, which is t ransmit ted
in the H T T P header. The access token is created when the client and server applicat ion
is bui l t . T h i s approach binds the client and the server without anyone be able to get
that token because a l l the communicat ion is done over H T T P S which is the default for
applications that run on A p p Engine.

1 command-line interface

26

5.4 Cloud configuration and deployment

A s the agent is designed to work i n Google C l o u d P la t form few configurations must be done
for it to work properly. There are two important parts are to deal wi th . B o t h are equally
important if the agent should work like is described i n 4.2.

A p p Engine deployment

The agent is deployed to A p p Engine. The applicat ion itself is deployed wi th a file called
app.yaml and running command gcloud app deploy app.yaml. This file contains a l l the con
figuration to successful deployment.

runtime: custom
service: agent
env: flex
automatic_scaling:

max_mim_instances: 1
resources:

cpu: 1
memory_gb: 0.5
disk_size_gb: 10

The configuration is t ry ing to achieve the cheapest configuration for the final v i r tua l
machine because it can significantly lower the price.

Cus tom runtime and the environment is chosen because default options are not viable
since the container needs to have encapsulated Terraform binary and other environment
settings to work properly.

Trigger configuration

Service C l o u d B u i l d is used to automatical ly trigger routine which hits the terraform/plan
endpoint of the agent and starts the planning of new infrastructure changes. This plan is
then stored i n the file system of the v i r tua l machine where the agent runs. Tha t step is cru
cial for the agent to run as intended because without it it would not be much improvement
for the workflow of the Terraform.

27

Chapter 6

Experiments

This Chapter is containing real-world scenarios where the agent possible could be used
and results are stated for each experiment. B o t h experiments are using G i t H u b repository
called BP-infratest and client-side applicat ion of the agent called tfagent. B o t h experiments
contain just a few resources that are managed by Terraform for easier demonstration.
The number of affected resources is not important as the agent should work the same way
wi th less or more of them.

6.1 Experimment 1
The first experiment was designed to demonstrate basic usage of the agent and how it is
used i n the real world.

After instal l ing the agent to the destination project. Source repository BP-infratest was
created on G i t H u b and connected to C l o u d B u i l d service where the trigger is created. That
trigger then uses configuration from the cloudbuild.yaml located i n the G i t H u b repository.

\clodubuild.yaml
\ i n i t . t f
\storage.tf

Terraform configuration files init.tf and storage.tf are also created. The init.tf con
tains the configuration of resource providers such as Google, Kubernetes etc. It also has
information about backed storage where is Terraform state stored. F i l e storage.tf holds
configuration of bucket storage. Creat ion of bucket was chosen just as a demonstration of
some non-complex resource which takes short t ime to create.

Now when the configuration is created only on the local computer, it has to be pushed on
G i t H u b or merged to master v ia branch merging to run the trigger which starts automatic
planning.

Figure 6.1 shows that the automatic trigger is executed and runs proper commands to
hit the terraform /plan to create the plan. After the trigger is done, the client applicat ion
runs command ./tfagent show. The agent responds wi th infrastructure changes and the user
can examine them.

28

file:///clodubuild
file:///init

EXECUTION DETAILS BUILD ARTIFACTS

Build Summary
1 Step

0: gcr.io/cloud-builders/cLirl
c curl -H "Authorization: Bearer THISISRANDOM...

Q Wrap lines Q Show newest entries first T A.

1 starting build "49c8^609-30fd-45f3-ab63-b0c967cc:^d6f,,

FETCHSOURCE
Fetching storage object: gs://39195566B559.cloudbLiild-source.googleusercoritent.ccm/bb74812
Copying gs://891955668559.cloudbuild-scurce.googleusercontent.com/bb748122bd5ba5b7ea98d0de
/ |8 f i l e s] | 8.0 B/ 1.6 KiB]
/ [1 f i l e s] [1.6 KiB/ 1.6 KiB]
Operation completed over 1 objects/1.6 KiB.
BUILD

gcr.io/cloud-builders/curl
Average Speed Tine Tine Time Current
Dload Upload Total Spent Left Speed

13 Already have image (with digest)
11 % Total it, Received % Xferd
12 I I I I I I I I

22 "planning succesfully finished, you can Take a look on planned changes with
23 PUSH

Figure 6.1: Successfully planned infrastructure w i t h trigger

Terraform w i l l perform the~following actions:

google_storage_bucket.auto-expire w i l l be created
+ resource "google_storage_bucket" "bucket-demonstration" {

+ bucket_policy_only = (known after apply)
+ force_destroy = true
+ i d = (known after apply)
+ location = "EU"
+ name = "demonstration-bucket"
+ project = "vojtah-sandbox"
+ s e l f _ l i n k = (known after apply)
+ storage_class = "STANDARD"
+ u r l = (known after apply)
}

}

Plan: 1 to add, 0 to change, 0 to destroy.

W h e n is the user satisfied wi th stated changes, it can be applied wi th client command
./tfagent apply. W h i c h w i l l create real-time communicat ion wi th server and output is
streamed.

Applying infrastructure plan
This might take a while...
connecting to server
google_storage_bucket.bucket-demonstration: Creation complete after Is

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.
Successfully finished logging on g i t
A n d at the same time, if the applying of the newest infrastructure is successful. Changelog

which has the same format as the output of ./tfagent show is pushed to G i t H u b .

29

The first experiment was successful and d id what was expected without any problems.

6.2 Experimment 2

The second experiment is designed to t ry out the concurrent access control feature. This
experiment w i l l test i f other requests are processed while Agent w i l l be applying the newest
changes.

The expected behaviour is that other requests to apply the infrastructure w i l l be denied
as the operation can run applying only once because of shared Terraform state. If a request
for planning appears the agent should queue the request and process it after applying is
done.

Before creating the second experiment Google Project was cleared from previous ex
periments. For this experiment, a resource which takes longer t ime to create is necessary.
For demonstration purpose resource which is using sleep is uti l ised because creating other
components such as Kubernetes cluster or database instance are paid and unnecessary for
demonstrating functionality.

Fi rs t w i l l be executed applying of the long creating resource and then experimenting i f
everything works correctly while creating new requests is done.

After executing the trigger by pushing to the master branch plan is created and then is
called ./tfagent show:

Terraform w i l l perform the~following actions:

null_resource.sleep w i l l be created
+ resource "null_resource" "sleep" {

+ i d = (known after apply)
}

Plan: 1 to add, 0 to change, 0 to destroy.

Then ./tfagent apply is executed and experimenting can be launched. null_reource.sleep
creation is configured to last for four minutes which should be enough to demonstrate
functionality.

Applying infrastructure plan
This might take a while...
connecting to server
null_resource.sleep: Provisioning with 'local-exec'...
null_resource.sleep (local-exec): Executing: ["/bin/sh" "-c" " sleep 240\n"]
null_resource.sleep: S t i l l creating... [10s elapsed]

null_resource.sleep: S t i l l creating... [230s elapsed]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.
Successfully finished logging on g i t

30

W h i l e the applying is in run following steps were done:

• A d d e d bucket storage resource i n Terraform configuration and pushed to the master
branch.

• A d d e d PubSub topic (Google C l o u d P la t form asynchronous messaging) and merged
to maser branch through the pu l l request.

• Ca l led for ./tfagent apply for second time.

A s the applying of the infrastructure was in the process, the planning was queued up
and waited to finish the current operation. After applying was done, bo th resources were
planned automatical ly and merged into one plan which is wanted behaviour. W h i l e t ry ing
to cal l second apply, the client got a response that applying is i n progress and exited.

The second experiment can be called success. Concurrent access to infrastructure
changes meet requirements stated at beginning of the experiment.

31

Chapter 7

Conclusion

The wor ld of agile development is based on fast and reliable development cycles. Continuous
integration and delivery is a big part of the process because it allows deploying almost
instantaneously when a new feature is created. Another big part of agile development is
the use of infrastructure as a code. Agi le development is often connected to DevOps culture
because it builds a bridge between developers and operations teams which provides better
team communicat ion start ing by developing to deploying the product.

Infrastructure as a code became popular because it allows to abstract infrastructure as
another part of the code stored i n version control systems. There are many existing tools
for managing infrastructure wi th IaC. This thesis compared popular tools and divided them
based on usage for different purposes.

C l o u d and cloud-native applications were mentioned as they are increasingly used in
modern agile development because they do not need in i t i a l capi tal and also provide a lot
of different solutions for various applications.

In the second part a Terraform concurrent agent was designed which works as a Ter-
raform workflow extension. It aimed to improve team collaboration and controll ing concur
rent access to Terraform state which is held by Terraform and used for its operations.The ap
plicat ion is realized as two parts. A server and a client. The server is A P I which reacts
to requests from the client-side of applicat ion. The server-side of the agent is running in
the Google C l o u d P la t form and takes advantages of diffrent services provided by the cloud
environment. The software is released under M I T license on G i t H u b . The repository can
be found here: https:/ /github.com/hromadkavojta/ terraform-concurrent-agent

Two experiments were performed to prove that the agent is working correctly. The first
experiment was done to see i f the agent is behaving as the proposed design and can im
prove team collaboration and supports the culture of G i t O p s . The second experiment had
to demonstrate control of concurrent access to Terraform state and that it prevents the state
from corrupting or locking. B o t h experiments successfully used Terraform to create the in
frastructure and the second experiment confirmed that the agent controls concurrent access
correctly.

However, the price of the v i r tua l machine where the server runs even i n the lowest
configuration can be a cr i t ica l aspect of choosing this type of solution over a different
solution. This cr i t ic ism is understandable because monthly it can become an expensive
matter i n terms of smaller projects. In future development, it would be beneficial to find a
solution that does not need to be running constantly to decrease the price of V M s .

32

https://github.com/hromadkavojta/terraform-concurrent-agent

Bibliography

[1] A R T A C , M., B O R O V S S A K , T . , D I N I T T O , E . , G U E R R I E R O , M. and T A M B U R R I , D . A .

DevOps : Introducing Infrastructure-as-Code. I E E E . 2017, p. 497-498.

[2] A T L A N T I S . What Is Atlantis? TgXu [online], [cit. 2020-21-07]. Available at:
https: / / www.runatlant is. io/guide/#gett ing- started.

[3] B A K E R , C . Want to be more agile? Get containers for your apps TfiXu [online], [cit.
2020-26-07]. Available at: https://www.itworldcanada.com/article/want-to-be-more-
agile-get-containers-for-your-apps/421733.

[4] C A R E Y , S. AWS VS Azure vs Google Cloud: What's the best cloud platform for
enterprise? TgXu [online], [cit. 2020-15-07]. Available at:
https: //www. computerworld.com/article/3429365/aws-vs-azure-vs-google-whats-
the-best-cloud-platform-for-enterprise.html.

[5] C H A N , M. 15 Infrastructure as Code tools you can use to automate your deployments
TfiXu [online], [cit. 2020-15-01]. Available at:
https: //www.thorntech.com/2018/04/15-infrastructure-as-code-tools/.

[6] D A N E K , B . Why Choose Terraform Over Chef Puppet, Ansible, SaltStack And
CloudFormation? TgXu [online], [cit. 2020-14-07]. Available at:
https: //selleo. com/blog/why-choose-terraform-over-chef-puppet-ansible-
saltstack-and-cloudformation.

[7] E N E H , T . Most popular CI/CD pipelines and tools TgXu [online], [cit. 2020-10-07].
Available at:
https: //medium, com/f aun/most-popular-ci-cd-pipelines-and-tools-ccf dce42986.

[8] G A N N O N , D . , B A R G A , R . and S U N D A R E S A N , N . Cloud-Nat ive Appl ica t ions . IEEE

Cloud Computing. I E E E . 2017, vol . 4, no. 5, p . 16-21. I S S N 2325-6095.

[9] H A S H I C O R P . Introduction to Terraform TfiXu [online], [cit. 2020-15-01]. Available at:
https: //www.terraf orm.io/intro/index.html.

[10] H A S H I C O R P . Introduction to Terraform TgKu [online], [cit. 2020-18-07]. Available at:
https: //www.terraf orm.io/docs/state/index.html.

[11] H A S H I C O R P . Sign up for Terraform Cloud TfiXu [online], [cit. 2020-21-07]. Available
at: https : //learn.hashicorp.com/terraf orm/cloud-getting-started/signup.

[12] J O G , C . Cloud Native Applications — The Why, The What The How. IfiXu [online],
[cit. 2020-16-07]. Available at: https://medium.com/velotio-perspectives/cloud-
native-applications-the-why-the-what-the-how-9b2d31897496.

33

http://www.runatlant
https://www.itworldcanada.com/article/want-to-be-more-
http://computerworld.com/article/3429365/aws-vs-azure-vs-google-whats-
http://www.thorntech.com/2018/04/15-infrastructure-as-code-tools/
http://www.terraf
http://www.terraf
http://hashicorp.com/terraf
https://medium.com/velotio-perspectives/cloud-

[13] J O H A N N , S. K i e f Mor r i s on Infrastructure as Code. IEEE Software. I E E E . 2017,
vol . 34, no. 1, p. 117-120. I S S N 0740-7459.

[14] K O D R O F F , J . CI/CD for Infrastructure as Code with Terraform and Atlantis IfiXu
[online], [cit. 2020-22-07]. Available at: ht tps: / /www.2ndwatch.com/blog/ci-cd-for-
i n f r a s t r u c t u r e - a s - c o d e - w i t h - t e r r a f o r m - a n d - a t l a n t i s / .

[15] L I M O N C E L L I , T . G i t O p s : a path to more self-service IT . Communications of the
ACM. A C M . 2018, vol . 61, no. 9, p. 38-42. I S S N 00010782.

[16] L W A K A T A R E , L . E . , K I L A M O , T . , K A R V O N E N , T . , S A U V O L A , T. , H E I K K I L A , V . et a l .

DevOps i n practice: A mult iple case study of five companies. Elsevier B . V . 2019,
vol . 114, p. 217-230. I S S N 0950-5849.

[17] N A L L A M A L A , N . The Top 7 Infrastructure As Code Tools For Automation TgXu
[online], [cit. 2020-14-07]. Available at:
h t tp s : //www. i bex l abs . com/ top -7 - in f r a s t ruc tu re - a s - code - too l s / .

[18] S A C O L I C K , I. W h a t is C I / C D ? Continuous integration and continuous delivery
explained. InfoWorld.com. San Mateo: Infoworld M e d i a Group . 2018.

[19] S P I N E L L I S , D . G i t . IEEE Software. I E E E . 2012, vol . 29, no. 3, p. 100-101. I S S N
0740-7459.

[20] T O U C H 4 I T . DevOps: co to je? TfiXu [online], [cit. 2020-15-01]. Available at:
h t tp s : / / t o u c h 4 i t . c z / b l o g / d e v o p s - c o - t o - j e .

[21] W A T S O N , L . and M I S H L E R , C . F r o m On-Premise Appl ica t ions to the C l o u d . Strategic
Finance. Montvale: Institute of Management Accountants. 2014, vol . 96, no. 2,
p. 80-81. Available at: http://search.proquest.com/docview/1552717174/. I S S N
1524833X.

[22] Y O U N A S , M . , J A W A W I , D . N . , G H A N I , I., F R I E S , T . and K A Z M I , R . Agi le

development i n the cloud computing environment: A systematic review. Information
and Software Technology. Elsevier B . V . 2018, vol . 103, p. 142-158. I S S N 1214-0716.

34

https://www.2ndwatch.com/blog/ci-cd-for-
http://ibexlabs.com/top-
http://InfoWorld.com
http://search.proquest.com/docview/1552717174/

Appendix A

Content of the storage medium

• / bp .pdf is the bachelor's thesis

• / bp / s r c is the directory containing source files of the thesis

• /agent is the directory containing source files of the appl icat ion

— Makefile contains commands to bu i ld and deploy the project

— agent/ folder contains source files of the server-side part

— cl ient / folder contains source files of the client-side

— agent-cloudbuild.yaml configuration for the automated trigger

— R E A D M E . m d file that contains steps to successfully deploy the agent

35

