
VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

D E P A R T M E N T O F C O M P U T E R G R A P H I C S A N D M U L T I M E D I A

GAME FOR TEACHING VERY BASIC PROGRAMMING

BAKALÁŘSKÁ PRÁCE
B A C H E L O R ' S THESIS

AUTOR PRÁCE MARTIN RONČKA
AUTHOR

B R N O 2015

VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

D E P A R T M E N T O F C O M P U T E R G R A P H I C S A N D M U L T I M E D I A

HRA PRO VÝUKU ÚPLNÝCH
ZÁKLADŮ PROGRAMOVÁNÍ
G A M E FOR TEACHING V E R Y BASIC P R O G R A M M I N G

BAKALÁŘSKÁ PRÁCE
B A C H E L O R ' S THESIS

AUTOR PRÁCE MARTIN RONČKA
AUTHOR

VEDOUCÍ PRÁCE doc. Ing. ADAM HEROUT, Ph.D.
S U P E R V I S O R

B R N O 2015

Abstrakt
H l a v n í m cí lem t é t o p r á c e je vy tvo řen í hry pro v ý u k u úp lných z á k l a d ů p r o g r a m o v á n í . P r v n í
čás t t é t o p r á c e se z a b ý v á studiem a ana lýzou současných her pro v ý u k u p r o g r a m o v a n í a
soudobých p r i n c i p ů už ívaných ve výukových h r á c h . N a toto navazuje n á v r h a implemen­
tace r o z h r a n í pro v izuální p r o g r a m o v á n í v U n i t y 3 d a n á s l e d n á integrace tohoto r o z h r a n í do
j e d n o d u c h é hry, k t e r á bude sp lňova t pr incipy s epsané v p r v n í čás t i t é t o p r áce . Výs ledek
p ráce je p o t é vyhodnocen jak z hlediska technického tak už iva te l ského , s c í lem zjistit efek­
t i v i t u rozh ran í pro v izuá ln í p r o g r a m o v á n í a hry s a m o t n é jako n á s t r o j e pro p ř e d s t a v e n í
p r o g r a m o v á n í .

Abstract
The main goal of this thesis is to create a game for teaching very basic programming. A n
analysis of current programming education games and education principles takes up the first
part of this thesis. Th is is followed by a design and implementat ion of visual programming
interface in U n i t y 3 d and later integration of this interface into a simple game supporting
the foundings from the first part of the thesis. Th is thesis is then being evaluated from the
technical and user perspective w i t h the goal to analyze the effectiveness of both the visual
programming interface and the game as a tool to introduce programming to non-coders.

Klíčová slova
hra, d idak t i cká hra, v izuáln í p r o g r a m o v á n í , V P L , rozh ran í , program, dě t i , výuka , mul t i -
player, soutěž ivos t , scratch, codespells, loď, uni ty3d

Keywords
game, game-based learning, visual programming, V P L , interface, code, kids, education,
multiplayer, competi t ion, scratch, codespells, spaceship, uni ty3d

Citace
M a r t i n Rončka : Game for Teaching Very Basic Programming, b a k a l á ř s k á p ráce , Brno , F I T
V U T v B r n ě , 2015

Game for Teaching Very Basic Programming

Prohlášení
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana doc.
Ing. A d a m a Herouta, P h . D .

M a r t i n R o n č k a
Ju ly 31, 2015

Poděkování
C h t ě l bych zde p o d ě k o v a t vedouc ímu své p r á c e panu doc. Ing. A d a m u Heroutovi , P h . D . za
jeho insp i r a t ivn í veden í a cenné konzultace př i t v o r b ě t é t o p ráce . Ch tě l bych t a k é p o d ě k o v a t
své r o d i n ě a své Lucince za jejich lásku a n e u s t á l o u podporu.

© M a r t i n Rončka , 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakultě in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Research in Programming Educat ion Games and Educat ion Principles 3
2.1 Popular Programming Educa t ion Games 3
2.2 Tools W i t h Educat ive Programming Interface 8
2.3 V i s u a l programming 10
2.4 Educa t ion Principles Used in M o d e r n Games 11
2.5 W h a t Makes Games G o o d and F u n 13

3 Vi sua l Programming Language, Interface and G a m e Design 15
3.1 V i s u a l Programming Language Design 15
3.2 Nests 16
3.3 Indicators 17
3.4 V i s u a l Programming Interface Design 17
3.5 Game Design 18

4 V i sua l Programming Language, Interface and G a m e Implementation 20
4.1 Selection of Tools 20
4.2 V i s u a l Programming Language Implementation 21
4.3 Game Implementation 21

5 Evaluat ion 29
5.1 H u m a n evaluation 29
5.2 Programming Cata log 31

5.3 Technical Eva lua t ion 31

6 Conclusion 33

A D V D Content 35

B Installation 36

C Posters 37

1

Chapter 1

Introduction

The main goal of this thesis is to create a game for teaching very basic programming. The
game should be entertaining a l l by itself but should also mainta in its abi l i ty to entertain
wi th the programming education aspects included.

In today's world, programming has becoming one of the most important skills for stu­
dents and professionals to have. A n d programming is not just for programmers, it is has
been widely used by designers and visual programming in some sort is widely common in
the vast amount of modern tools i n game development, 3d video productions, graphics tools
and even audio tools. Hav ing some programming basics is starting to be almost a min ima l
requirement and in some countries programming is already getting into the cur r icu lum for
elementary schools [3].

The following chapter 2 w i l l cover mult iple topics regarding existing programming games
and education principles used i n Game-based learning (GBL). Here I w i l l describe modern
programming education games and several visual programming interfaces and t ry to analyze
which of their key elements are an asset and where are their bottlenecks.

Chapter 3 describes the design of visual programming language (VPL). Add i t i ona l ly
this chapter contains a l l relevant information regarding the design of the game UI (User
Interface), UX (User Experience) and the design of the game itself.

In chapter 4 an implementat ion process of a l l previously mentioned elements w i l l be
described. This chapter w i l l also cover up a l l surplus content that has been added to the
game wi th the purpose of rounding off a l l the important aspects of the game.

Chapter 5 contains the test results and describe a l l relevant notes from the gameplay
and suggestions for improvements by the players. F i n a l l y I w i l l summarize what parts of
the thesis were successful, where it lags and why.

2

Chapter 2

Research in Programming
Education Games and Education
Principles

In this chapter I w i l l subsequently go through the existing programming education games
(section 2.1) following wi th the description of some powerful visual programming tools in
the section 2.2. I w i l l summarize wi th simple introduct ion to visual programming i n section
2.3. A n d finally, i n the last section 2.4, I w i l l go through educational principles that I have
encountered dur ing my research on Game-based learning to give this thesis some k ind of
leverage over other programming education games.

2.1 Popular Programming Education Games

Developments psychology research has shown the importance of play i n learning [8]. In
this subsection I w i l l analyze the Games, from the perspective of playabi l i ty and from
the perspective of programming education incorporated. Games from the perspective of
education are hierarchized into two pr imary categories.

Category 1 Games which primary task is to entertain

Category 2 Games with primary task to educate, often called serious

There is also a subcategory wi th in the serious games:

Subcategory 2.1 secondcategory Games which primary task is to entertain but but also
contain educational value

Subcategory 2.2 secondcategory Games which primary task is to educate, but have inci­
dental entertainment value

Programming education games are mostly wi th in the subcategory 2.2. The category
2.1 is less common wi th programming education games but i n following examples there
are games which incorporate very simple programming i n engaging way even though they
expose some of the programming basics (in form of V P L) . These games are very often
labeled as logical, but i n fact they are programming games since they have V P L interpreter
behind the scene. Games i n this category are often more entertaining than the ones in the
firsts category and thus more successful.

3

2.1.1 K a r e l

Very large por t ion of modern programming games derive from the old-school programming
language K a r e l 1 . K a r e l had been the starting point of many programmers out there, and
is s t i l l sometimes used at schools for introduct ion of the programming basics.

3 -iigfei
Soubor Uprav* Hledal Spualrl Loden Karel Plocha Nápověda

File Fdit Satincs Help ^ f X A
q,aa„n=„

0 | b | m | c j M "H»l»lel »IH"o|-lslt?l 1\S o|<h»M i líi — — a 1 " " — - — ™»
o ř í k a z KE ZDI

dokud není zeď
krok

konec i . g

 9 1
1 1 1 1 konec

nodmínka VLEIKLZEĎ i i _u_ • 1 1 | 1 1 _ |_
vleuo

"LElKLZEĎ-zeJ

konec""

X 1

j " _| l : s £ , s r ^ , * £ M . « _ , i r _ _ 1

1 1 ~T~I
funkce ZNflCKV 1 123 1 • i i

1 1 1 1 č í s l o j=0
dokud značka L • i _ 1 1 1 zuedni
j = j + l r n J _ i 1 1 1 1 1

konec,
opakuj j

konec
ZNflCKV-j

1 -J» i i 1 1 1 1 1
konec,
opakuj j

konec
ZNflCKV-j

1 9 I "oSr 1 1
1 1 1 1 1 l

konec
69:1 V

Figure 2.1: Czech Robot K A R E L 4.2 Figure 2.2: M o d e r n version of K a r e l

The concept is based on a figure (robot) i n a l imi ted space, w i th l imi ted set of commands
and almost infinite number of tasks. The goal of the player is to write such procedures that
w i l l help h i m to solve given task, using the l imi ted set of commands and subroutines the
player can write himself.

Pros:

• Hands on code

• W r i t i n g down and maintaining own code i n form of procedures

• Hav ing to rely on your own code

• Simple Hav ing to rely on your own code

• Large amount of extensions that focus on different programming paradigms

Cons:

• Out of date

• V i s u a l representation might not be as appealing as i n the old days

The main focus of K a r e l is to t ra in procedural th inking, experience testing, debugging
and use of subroutines []. These are one of the core elements of computer programming,
and K a r e l is a great way to demonstrate that programming is not just something abstract
code on a screen, but that it incorporates and deals w i th real devices and environment
around us.

l rThe concept of Karel has become the basis of several other games such as CodeCombat, Kodable,
Robozzle and many others.

4

2.1.2 C a r g o - B o t

Cargo-bot is an i O S game that teaches the basics of programming by controll ing a crane
and stacks of boxes. Considering the l imi ted amount of available commands and the need
to create own procedures, the Cargo-Bot is much like Robot K a r e l .

Figure 2.3: Stars for completing the Figure 2.4: Cargo-bot several examples for brain ex-
level ercise

The main difference between the concept of K a r e l an Cargo-Bot is i n the dramatic
change of the visual side. P rogramming is executed through dragging simple command
blocks to procedure slots which are then executed on play; level solution.

Cargo-Bot is a beautiful v isual experience, the programming is simple but a l l the more
fun and available for children. A great advantage of this game is it 's s implic i ty and sophis­
t icat ion. W i t h the l i t t le Cargo-Bot seems to offer, there are unreal amount of levels that
can exercise your bra in and give children some programming concept basics.

2.1.3 L i g h t b o t

Lightbot is p r imar i ly a mobile game wi th its predecessor available online. Lih j tbot too is
a programming puzzle game that allows to write procedures through similar interface like
Cargo-Bot . Player is again l imi ted w i th the commands he can execute but in every level is
given a specific amount of procedures he can write and use to solve the puzzle.

Figure 2.5: Lightbot dialoges and character Figure 2.6: Lightbot motivates the players
is made to attract children to write op t imal procedures

5

Lightbots focus is to captivate children through it 's graphics and simplici ty. Character
animation and dialogues are designed to attract children. Lightbot even offers version for
small kids, Lightbot j r . (4+) w i t h higher emphasis to the characters and guiding through
the levels. Considering this, Lightbot seems as one of the best programming education
games for children currently available on the market.

2.1.4 C o d e S p e l l s

CodeSpells is a modern game i n development that has been successfully funded on K i c k -
starter. The game is being developed by a smal l team of P h . D . students of computer
science. The game itself is sort of an M M O - R P G that allows the player (sorcerer) to write
down their own spells using V P L . Th is game uses specifically for the V P L an existing tool
called B l o c k l y (more at subsection 2.2.3).

Figure 2.7: Not your typ ica l coding game F i g u r e 2 g . CodeSpells uses B l o c k l y

Pros:

• Great and unique idea of how to use V P L

• Great visual aspect that can lure noncoders

• Freedom and fun wi th code

Cons:

• Development might tu rn out too difficult

• The game isn't focused for beginners yet

This game has a great potential and can become extremely popular among R P G players
who code, but also can lure non-coders to the world of programming thanks to its visuals
and freedom of creation.

6

2.1.5 C o d i n G a m e

Is the most notable coding games platform I have encountered. P rov id ing large amount
examples, using any given language, this platform is an ideal tool for development of
programming education games using classical text based programming. Since this plat­
form offers wide variety of tutorials it can be used to introduce text based programming to
children.

gure 2.9: C o d i n G a m e platform p i g u r e 2 1 Q . R u n n i n g g a m e w i t h c o d e e d i t o r

Figure 2.13: Leaderboards and contests are Figure 2.14: W i d e range of games to choose
well designed from

B u t I have found these games austere and boring in comparison to the previously men­
tioned games. I believe that this platform can offer great games for programmers who want
to start w i th a specific language or just to fool around wi th coding games.

7

Nevertheless, this platform is very well designed. It offers large amount of games to
choose from, both singleplayer and multiplayer. Very often the multiplayer games consist
of wr i t ing an A I script for specific task and then these A I ' s are being compared. This
platform also offers leaderboards and contests to keep people interested.

F ind ing out this platform and realizing that there is not much to add I have decided
to tu rn away from the text based programming game concept and focus more on the game
development and introducing simplified version of programming using V P L .

2.2 Tools With Educative Programming Interface

Following sections contains the description of several very important programming educa­
t ion tools that stood at the beginning of the programming education or are at it 's leading
posit ion now.

2.2.1 E t o y s

Etoys is child-friendly object oriented visual programming language for use in education.
It is based on Squeak which was buil t w i th the intention to develop an environment in
which they could bu i ld an educational software that could be used-and even programmed-
by nontechnical people, and by children []. Etoys is a product of that effort.

In development under the direction of A l a n K a y 2 the Squeak Etoys has evolved into a
media-rich authoring environment w i t h a simple powerful scripted object model for many
kinds of objects created by end-users. Etoys runs on mult iple platforms, and is free and
open source. It includes 2D and 3D graphics, images, text, presentations, videos and sound
etc. It also allows to share desktops wi th other E t o y users i n real-time, so many forms of
immersive mentoring and play can be done over the Internet [].

Test car on a's| color sees r oio,
Yes car one turn by 5
No

Test car on a's color sees • •-IT

Yes car one turn by -5 J
No

Test car on a'sj color sees • color

Yes car one forward by r 5 '
No

Figure 2.16: A car and a tile script which
Figure 2.15: EToys is very graphically ex- c o n t r o i s t ^ e car
pressive

Together w i t h S t a rLogo 3 it has become one of the foundation stones of modern visual
programming languages. These tools are a great way to introduce children to object oriented

2 Great influencer of V P L languages and the initiator of Squeak and Etoys.
3StarLogo is an agent-based simulation language developed in MIT Media Lab with education purpose,

predecessor of Etoys

8

programming. In this thesis, I would like to focus on the same goal. I believe that this
is the right approach to teaching programming, by showing that there are real objects
behind the code and it can destroy the barriers and make programming easier for children
to understand.

2.2.2 S c r a t c h

Scratch is another visual programming language developed i n M I T M e d i a L a b . Scratch has
been highly influenced by the EToys , it is too very child-friendly V P L . Scratch is the most
widely used modern V P L and can be accessed as a free desktop and online tool for creation
of games and animations.

Figure 2.17: Scratch used to create simple F i S u r e 2 - 1 8 : U c a n b e u s e d t o c r e a t e e v e n

animations complex games

Scratch brought the visual programming to a completely new level w i th simple and
beautiful drag and drop interface. A l l o w i n g children to create simple games in a matter of
minutes, Scratch is great progress from EToys . The visual interface of Scratch is something
I want to learn from when developing my own V P L i n this game.

2.2.3 B l o c k l y

B l o c k l y 4 is a l ibrary for bui ld ing visual programming editors developed by Google. It
is widely used among programming education platforms and even games, most notably
by CodeSpells (subsection 2.1.4). B l o c k l y offers example games and l imi ted amount of
examples on how to use their interface which speeds up development of visual programming
editor. B l o c k l y currently supports perfect interpretation of mult iple programming languages
including JavaScript , Py thon , P H P and Dart .

4https://code.google.com/p/blockly/

9

https://code.google.com/p/blockly/

Figure 2.20: W i t h B l o c k l y you can create
Figure 2.19: A n example game, solving puz- c o m p i e x c o d e
zle

F ind ing out this l ibrary too late in the development process, I have decided not to use it
but I would seriously consider the use of this l ibrary in future work regarding the education
of programming or s imply a development of visual programming interface.

2.2.4 S t e n c y l

Stencyl is a visual programming tool which originated wi th the M I T ' s Scratch that allows
to quickly create games using its integrated V P L . B u t Stencyl is considered more of a game
creation platform then education tool . More and more these visual programming tools are
just simplification of programming and an abstraction of code even for non-coders among
adults.

Figure 2.21: Stencyl offers wide range of F i S u r e 2 - 2 2 : St™cyl g a m e s a r e portable accross
blocks mult iple platforms

There are many other game creation tools w i th similar visual script ing features, includ­
ing GameMaker , Craf tStudio and even U n i t y offers a visual scripting extension i n form of
an asset called Playmaker .

2.3 Visual programming

In many of the mentioned games and tools there was been on very popular element. The
programming itself is often not represented directly but rather through visual izat ion rep­
resentation. General ly this visual representation of code is called Visual Programming

10

Language (VPL) often also called visual scripting or drag and drop scripting. Th is concept
has been popular since the beginning of computers but only recently (late 90s) it is getting
into the focus of educators.

2.3.1 D e v e l o p m e n t of v i sua l languages

V i s u a l programming is being vastly used among coders and non-coders to to get things
regarding programming done without touching the code, usually at very high level. For
example i n U n i t y 3 D there is an asset that enables developers to do the scripting entirely
using V P L (as shown i n figure 2.24). There are several plugins that allow designers to use
these blocks to program without wr i t ing any line of code.

A s we've seen in section 2.1 and section 2.2, a lot of education games and tools use some
sort of visual programming language to abstract the low level programming and make it
easily accessible for kids and even for developers to speed up their work.

» | u „ d . i . | - i . ™ . | . . » |

«,«„,„.„,., „* „.,„.,,.«, | ^ | , . . „

™ " ' F H Z - ' " " ' " - ! !

• 1 — \ 1 — . « , ™ p | l , . - « . N | - . « „ „ „ , | , | . ™ P , | W | „ . . „ „ „ « | |

, l l , , , . „ „ b ™ l „ l . . (. „ s l l .,... t.-„,.„„..„|
| Prim | Tear \|o blotk here. 11 setwiueor HI self .map | to|| component ,\-ap tenderer •» of|| cameobj«inonigi|Map | j

A \] 1 l-l 1

Pi il jlfc.. Hsideablotkwitrl D | WIÎ U | Valued • jlotklD ||

Figure 2.23: Craf tStudio is a game-making F i g u r e 2 . 2 4 : Even U n i t y allows visual script-
platform •

V i s u a l languages are very popular in mult imedia, simulations or automation. Usual ly
in form flowcharts representing finite state machines, system blocks etc. The ma in disad­
vantages might be that the users w i l l get use to the high level abstraction and w i l l not be
interested in getting into low level coding. B u t it is the ma in objective to teach children a
new set of reasoning and problem solving skills namely the creating (rather than following)
the rules of a game [11] and this is very powerful tool to express this creativity. .

Thus I have chosen to incorporate visual programming into the game instead of classical
wri t ten code. There are several advantages to this decision. Such U I system would be
applicable to touch devices which are not intended for long wri t ing and watching visual
feedback. This w i l l allow the game to be ported to several more platforms. A s Desktop
games are hardly playable on Mob i l e devices without major U I changes, the backwards
does not apply. If the interface w i l l be designed i n a good way, it w i l l be playable on touch
device as well as desktops.

2.4 Education Principles Used in Modern Games

A study conducted on educational games have come to a conclusion that students find
education games engaging, but un t i l they have provided clear goals w i th appropriate in -
game feedback, students were not incl ined to use the games for learning, or to pay much
attention during or after the game to learning objectives. O n the other hand, their results

11

indicate that ty ing game performance to learning objectives can improve student attitudes
and engagement, which are two major components of learning [1].

Other studies show how to improve the amount of engagement when playing games
and how to motivate children to play more. In this section I w i l l describe such suggested
improvements w i th according sources.

2.4.1 R e w a r d S y s t e m

One of the most important th ing when dealing w i t h education is the reward system. If the
student does not have the feeling of satisfaction, the education process can become du l l and
boring. The same goes wi th games, if there is no progress and no reward, the enjoyment
from game does not last.

Reward mechanisms in video games can enhance feelings of fun long before rewards are
actually given-that is, rewards can create a sense of anticipation among players who know
what is specifically required to earn them [5].

Achievements

Achievements give the player feeling of getting things done. Achievements are used in
games to extend their longevity. There are mainly two types of achievements. Standard
achievements are awarded to players for completing game, and going through the game to
captivate the player's attention and give them the feeling of accomplishment. Y o u can see
an example of such achievement in the figure 2.27.

The second type of achievements are secret which are awarded only to players for ac­
complishing secret tasks. These achievements are meant to give the player the feeling of
exclusiveness and rareness. Such achievements are sought by players who know the game
and love it.

Figure 2.25: A n example of achievement Figure 2.26: A n example of a leaderboard
awarded i n an A n d r o i d game used i n an android game

Once the player feels comfortable he can seek achievements and play i n a manner of
fulfilling his recommended tasks. This plays role i n Leaderboard. The Leaderboard consists
only of score points, but these are awarded through both gameplay and achievements.

Leaderboards

Leaderboards are a way to compare how well players are doing. Leaderboards are usually
structured i n two main categories: the overall leaderboard and local leaderboard containing

12

friends who are connected to the player through social networks.

Developable Avatar

B y providing developable avatar wi th in the reward systems, it can create a sense of progress.
Most of the games i n which players control such avatar (mostly R P G s) use experience points
for measurement. Player earns experience points dur ing the gameplay for specific tasks or
during for the gameplay itself, and levels up when specified goals are met. Experience
points themselves create a sort of reward system, since they enhance avatars abilities [4].

Figure 2.27: A n example of a Developable Figure 2.28: A sk i l l tree example from a M u l -
ship. tiplayer game

Rewards are often given in the form of new skills or increases i n attributes such as
strength, speed etc. Player levels affect gameplay in several ways, therefore almost a l l
players are influenced by them. Players cannot precede w i t h the game i f they do not
develop their avatars, and social-oriented players must gain sufficiently high levels i n order
to reach other players [], thus thus mot ivat ing the player to play (learn).

2.4.2 C o m p e t i t i o n i n E d u c a t i o n

B o t h multiplayer and ranking are competi t ion based elements. Compet i t ion is rooted deep
wi th in every one of us and by realizing it we have the power to offer children our own
platforms to compete in . Na tura l ly i n our lives this is accomplished by sports, hobbies etc.
Th is time, we are using competi t ion to teach programming.

Several studies regarding this topic have been conducted and the the result is that a
competi t ion in an learning environment can be beneficial i f it is designed following a number
of principles, such as having a symbolic or l i t t le value prize, a short duration, and a goal
clearly set into the (learning) process instead of into the results [2].

2.5 What Makes Games Good and Fun

M a r c Prensky defines 6 structured elements for the purpose of game-based learning [10]
that I would like to mention and hold upon:

1. Rules

2. Goals and Objectives

3. Outcomes & Feedback

13

4. Conf l i c t /Compe t i t i on /Cha l l enge /Oppos i t ion

5. Interaction

6. Representation or Story

Also as part of my research I have been watching children play several games which I
have presented to them and taking notes wi th the goal to understand what entertains them
and keeps them playing. W r i t i n g down their reactions and asking them a few questions I
have created a list of what I would like to focus on during the design and implementat ion
of this game:

• Reasonable challenge

• Appearance - first impression is most notable

• Var ia t ion - The game needs to be dynamic either i n appearance or i n given challenges

• Comfort zone - Ch i ld ren should get pushed out of their comfort zone slowly

A t the end of this thesis I would like to look back at how much does the game meet
these set requirements. There are also many more attributes that I would like to achieve,
such as novelty, intuitiveness and allure[12].

14

Chapter 3

Visual Programming Language,
Interface and Game Design

In this chapter I w i l l describe the design of V P L and the interface w i t h respect to the
matters discussed. Add i t iona l ly this chapter contains a l l relevant information regarding
the design of the game user interface, user experience and the design of the game itself. I
would like to focus this thesis i n the direction of a game from category 2.1 defined earlier
in section 2.1.

3.1 Visual Programming Language Design

I have wanted the language to be as simple as possible and yet containing the very basic
programming constructions, modern language stand on. I have decided to implement an
interface for programming using blocks. Similar to Scratch, my goal was to implement
a very simple interface wi th several code examples that could be thoroughly used i n the
game. Before the implementation, I have specified several implementat ion goals for the
block programming interface.

I have designed a very simple language that supports basic programming constructions
and that can be easy enough for a beginner to learn even without any previous experience.
The language itself is not anything new, but rather focuses to be the min ima l viable product
in the scope of visual programming languages.

The language hierarchy is an implementat ion of design pattern Composite w i th ICom-
mand being the Component, Statements containing other ICommands being Composites
and other being the Leaves. Th is w i l l allow easy l ink to the visual programming language.

15

Expression

Variable

lEvaluable

IsTrueO

IfStatement

I

I
« l n t e r f a c e »

ICommand

Execute()

I I

o - —

MethodCallStatement

Code Block

AssignemntStatement

Method

Figure 3.1: Object interpret class hierarchy

3.2 Nests

Nest are invisible grids that capture the OnPointerEnter event during the drag of any
programming block. W h e n a cursor or a touch enters the nest area, i f an i tem is selected,
a dummy instance is created and placed into the Nest. There are three main types of nest:

1. F i r s t - The dragged object w i l l be positioned as the first object of a container (If
blocks, loops, etc.)

2. Below - The dragged object w i l l be positioned below the block, the nest is w i th in (all
blocks, simulates lines of code)

3. Instead - The dragged object w i l l be positioned into the nest (parameters)

Each nest is placed wi th in the programming block on block to the place that we want
to capture for specific nest action. Nest is a main component of each Programming Block .

16

Y o u can see colorized Nest in figure 3.2 where red colored box is a Below nest and C y a n
colored box is a Nest of type Fi rs t .

3.3 Indicators

W h e n dragging a visual programming block an indicator is instanced once a nest is entered.
This indicator w i l l take a place inside the nest as the block would if placed inside. W h e n
outside of the nest, the indicator is par t ia l ly transparent. The transparency should provide
the feeling of nonexistence as you can see in figure 3.3.

Figure 3.2: Color ized nests Figure 3.3: Indicators to Figure 3.4: The t i l t adds to
show the area of influence of show the next or previous po- the dynamics of the block in-
blocks si t ion terface

The block that is currently being dragged is t i l ted by 5 degrees. The t i l t should invoke
the feeling of dynamic action as it is. Y o u can see the t i l t i n figure 3.4. Combin ing these
elements I hope to achieve solid U X when working wi th these blocks.

3.4 Visual Programming Interface Design

I would like to encapsulate the programming into a manipula t ion wi th real world devices
(in case of this game: ships system, weapons, shields etc.). The player w i l l be The player
w i l l be able to see the an objects interface, a l l objects wi th in it and methods the object
contains. Then the player w i l l be able to drag the blocks into a programmable procedure,
effectively wr i t ing a program.

17

A C T O N 2

• CI

• A.

• CI

I' isA tine
• Charge Al I Weapons!)

• AclivalBühieldQ
• ChargeAHWeaponsü

To program:
1. Drag actions form ships system

to the main function
3. When using if block, add a variable

as condition

Compilation status

Build Ship Undo Redo Compile Co

Shield System

1 ActivateShieldO

1 DeactivateShieldQ

Weapon System

1 IsCharged

D ShootAII Weapon s{)

Programming blocks

Figure 3.5: The ships systems can be seen at the right side panel

The player w i l l be also allowed to use programming construction blocks for condit ional
statements, loops etc. The interface itself w i l l also allow the player to undo and redo block
dragging actions. I presume that this w i l l come handy on touch based device where the
dragging might not be the fastest action. W h e n undoing a step, the block w i l l either take
its previous posit ion i n the procedure or w i l l be moved to trash i f it has been only just
instantiated.

3.5 Game Design

The game design has been very iterative process since the very beginning. The main goal
was to create game that would be i n fact a game implementing the V P L interface as a
bonus. F i n a l l y I have finished a very simple, yet powerful concept of a Space Shooter based
action game using programming to mobilize the ships systems. The player is i n the control
of a ship wi th several programmable action slots. Us ing these slots, the player can access
ships systems and program them to do anything the ship is capable of.

3.5 .1 A c h i e v e m e n t s

I have designed a very simple way of awarding achievements to players.
Firs t , the player w i l l be awarded for completing the game story line. F r o m first boss

taken out to bui ld ing the first blocks of ship. Then the achievements are directed more to
the programming a multiplayer to guide the player towards the competi t ion. For the first
working program or Complex program without a bug etc.

Example of designed achievements:

18

Achievement ti t le Achievement description
Novice
Journeyman
Thr i f ty

Ruthless
Team player

Hacker

Bra iner

Great job! Y o u have made your first program!
Y o u have reached the 3rd sector. Journeyman.
Y o u are Thr i f ty person. Y o u have collected more than #500
credits.
Y o u have destroyed another player i n a duel. W i t h o u t a mercy.
Y o u have helped one of your friend to get out of trouble. Thank
you!
Y o u monster! Y o u successfully sabotaged an enemy ship by
hacking their systems.
Y o u have successfully complied 1000 lines of code. Y o u got it!

3.5.2 M u l t i p l a y e r

One of my considerations was to move to the mobile platform. A n d based on the analysis
at chapter 2 I have decided to implement multiplayer element into the game game that w i l l
be touch based device specific.

Mul t ip layer requires either working networking or appropriate input management. W i t h
the concern for the scope of the thesis, I have decided to go w i t h so called Hotseat mul t i ­
player mode. Two players are engaged in the same game, competing or cooperating wi th
each other. Cooperative play strengthens the bond between the players and the games.

Figure 3.6: F i rs t multiplayer prototype

Once the player is engaged wi th the game and has competed wi th someone, he is mot i ­
vated to move further, exploring the game, its capabilities and behaviours. Th is the ideal
t ime to hit hard wi th some serious programming. That is, the basics. B o t h multiplayer
and ranking are competi t ion based elements. This is the key elements I hope to drive the
players to play more.

3.5.3 Input Scenarios

W h e n focusing on mult iple platforms, the input management too is very important , what
might work on desktop w i l l not work on tablet device. Th is is why I have created simple
finite state machine that w i l l handle the input actions. Furthermore to easy the input
handling, I w i l l unify the touch and mouse input into a encapsulating class specifically for
the need of this game. W h e n playing on a desktop, the player ship can be addit ional ly
controlled using keyboard.

19

Chapter 4

Visual Programming Language,
Interface and Game
Implementation

In this chapter I w i l l go through the selection of tools ideal for the game implementat ion
(section 4.1). Then I w i l l describe components used i n the implementat ion of V P L i n U n i t y
(section 4.2) A n d then I w i l l go through al l key interfaces of the game (section 4.3).

4.1 Selection of Tools

In this section I w i l l go through the the tools that I have t r ied at the beginning and that
came into consideration for development of this game. The in i t i a l goal was to create web
based game that would be playable i n the browser thus being fully portable without the
necessity of instal la t ion to the P C itself. These were the one of the core attributes that
would define the game later in the process. B u t my approach to the development itself
has changed. One of the possibilities would be creating a JavaScript based text editor
supporting syntax highlight and setting this as an overlay to the U n i t y game i n W e b G L .

4.1.1 T h r e e . j s

Three.js is a JavaScript W e b G L library. It allows high abstraction over the low level graphics
A P I , but allows the developer to access the low level stuff. Three.js is very powerful but it
lacks good development tools. I the first early days of this thesis I have created a simple
Three.js prototype but I have found it very slow for iterative game design which I was going
for.

4.1.2 U n r e a l E n g i n e

Unrea l engine is very similar to U n i t y and at the t ime of choosing d id not have a free com­
mercial license wi th full W e b G L Support . D u r i n g this years Games Developer Conference
they have announced a Unrea l Engine to be free but this was too late after I have started
to implement the game.

20

4.1.3 U n i t y 3 d

U n i t y 3 D is a great mult ipla t form game engine, thus enables reaching out to more players.
Since they have full W e b G l support without the need for embedded web player and it has
a wide range of great commercial assets, but it lacks great free assets. U n i t y does not have
any native text bui l t - in in-game editor for syntax highlight.

4.1.4 D e c i s i o n Process

A t first, Three.js seemed as an ideal tool to deploy onto the web platform. Focusing only
on one web implementat ion meant mul t ip la t form interface and game wi th the benefits of
modern web technologies. B u t w i th U n i t y 3 D coming free for indie developers 1 and the new
possibili ty of games deployment directly to web using W e b G L 2 without the need of web
player made cr i t ica l change.

4.2 Visual Programming Language Implementation

To start w i th I have implemented the class hierarchy as it is depicted i n figure 3.1. Us ing
this composite structure I have managed to create a text based interpret. The next step
was creating class ProgrammingBlock Tha t would pair up wi th the behavior of ICommand
in sense of Composi t ion . F r o m this class a l l other visual programming block classes inherit .
Every visual block has its l ink to an ICommand it is representing, and when the t ime of
compilat ion comes it is able to fill-up the I C o m m a n d structure associated wi th it , w i th
blocks that are nested wi th in it.

To allow complex blocks like i f blocks I have used spliced sprites and I have created
several textures that are being attached to each programming block. To nest the objects
I have severely used U n i t y components such as Horizontal Layout, V e r t i c a l Layout,

Content Size f i l t e r and Canvas Group.

4.3 Game Implementation

In this section I w i l l describe important parts of the game from the perspective of both U I
and U X design and game design itself.

4.3.1 G a m e Interface I m p l e m e n t a t i o n

The game itself also contains user interface. In this chapter I w i l l go through the parts
of the interface that w i l l be important for the player to get his hands onto the game.
For implementing the U I wi th in the game there have been also several possibilities. For
example, very popular U n i t y asset called N G U I could be used. I have decided to go wi th
the U n i t y default U I system for implementing the user interface. This w i l l give me strong
future compat ibi l i ty due to the U I system being introduced fairly recently and an advantage
of more tutorials available.

1 Video game developers who are not owned by any publisher
2OpenGL based JavaScript API for rendering 3D graphics in browser.

21

T h e Initial G a m e M e n u

The in i t i a l game menu composes of three different elements. In the figure 4 . 5 is depicted
the ma in game menu. This menu contains the option to change the game profile. Th is w i l l
be explained further i n the text. The option to engage i n multiplayer combat and the l ink
to high scores. To check ranking among other players.

POWERED BY

4̂ unity

Figure 4.1: Default uni ty loading screen on Figure 4.2: Connect ing to the Google P l ay
A n d r o i d Games service

Figure 4.3: In i t ia l game menu wi th single- Figure 4.4: Mul t ip layer game menu offers
player play action and program & bui ld competi t ion or cooperation play

Player H U D

This panel shows the player's stats, score and the sector of a game where he ended. This
panel is a direct l ink to developable avatar. The player can see experience progress on the
slider under the H U D (orange). Th is creates a feeling of getting back to where I left off
and immediately engages the player.

22

L E V E L E C R E D I T S
»ESO

S E C T O R
2

4) 4)
• : 3 C ^

•

Figure 4.5: The H U D displays sk i l l points, current level, amount of credits, current sector,
and amount of experience

Pause Controls

The game can be paused using the pause but ton. This but ton is also triggered and changes
state when clicked on the sk i l l but ton directly from the gameplay as depicted i n figure 4.10.

Figure 4.6: Game unpaused, the pause but- Figure 4.7: W h e n paused, the pause but ton
ton is hollow is filled

A c t i o n Buttons

A c t i o n buttons are programmable. Once A c t i o n but ton is activated, the code stored wi th in
w i l l be compiled into interpretable code which is subsequently executed.

If there is any part of the code that can't be executed from any reason, it get's either
skipped or the action stops based on the si tuation.

Figure 4.8: Dur ing singleplayer game, aciton Figure 4.9: In multiplayergame ech player
buttons are at the bo t tom has his action buttons at his side

23

4.3.2 M u l t i p l a t f o r m Input

I have created simple class for handling the input across mult iple platforms. U n i t i n g several
platform specific actions together as one under the InputAction class. This w i l l allow me
to change and modify actions at w i l l and give me the opportuni ty to reuse the class later.

4.3.3 S t o r i n g the P layer ' s D a t a

Firs t we need to store the player's data to persistent memory. Fol lowing data w i l l have to
be stored to keep the game synchronized over mult iple platforms:

• Ship blocks

• Player level

• Amoun t of experience (points)

• Amoun t of credits

• Sector where the player currently is

• Player skills (including free sk i l l points)

• Number of programmable slots

• Code for each of the action slots

For this we can use C # serializable notat ion. We mark our desired classes as Serializable
and if they meet certain specifications, they can be easily serialized and parsed back. One
of the conditions is for example that the class cannot inherit from MonoBehaviour which is
the default U n i t y class for components. Th is means that the classes for storing game data
and classes implementing the game logic w i l l have to be independent.

Skills

This menu allows the player to spend the sk i l l points gained by leveling up. Once the ski l l
is selected, the sk i l l name is replaced wi th a sk i l l icon and a description is shown. After
adding, the sk i l l w i l l be no longer addable and w i l l change it 's color from d i m gray to
variety of blue, thus dist inguishing from non added skills. If there skills i n the tree that are
dependent upon added ski l l , they are unlocked (become selectable) and change their color
from transparent gray to d i m gray.

r A U b b U

Good Pilot
You know how this ship works. The ship's speed is increased by 20%.

Figure 4.10: Basic sk i l l tree wi th one addable Figure 4.11: Selecting sk i l l shows a descrip-
ski l l t ion interface

24

•
Good Pilot 1

— 7 — 1 j ShieldDevice Master

Figure 4.12: After adding a Figure 4.13: The added sk i l l Figure 4.14: The sk i l l tree is
ski l l , others are unlocked is distinguished by its color scrollable

4.3.4 R e w a r d S y s t e m

To implement reward system as discussed in section 2.4.1 (e.g. achievements and leader-
board). I have decided to use Google play service which enables to define specific achieve­
ment and leaderboard data which are accessible through unified interface on many ported
platforms. The implementat ion itself means instal l ing the Google play games service asset
and using the A P I to:

• L o g in

• V i e w achievements,

• Unlock achievements at specific points i n the game

• V i e w H i g h score leaderboards

• C o m m i t H i g h score at the end of the game

Master Fox
Celé období *

. V

Hru Fox Den dosud nehrál nikdo z vašich kruhů.

Řekněte o této hre ostatním. Až si ji zahrají, budete moci
porovnávat skóre.

< O •

Figure 4.15: Achievements
displayed on Nexus 7 in
Port ra i t mode

Figure 4.16: E m p t y leader-
board encourages to share
the game

Figure 4.17: Overa l l leader-
board; highscores wi th in
social networks

25

c* whltíc * cÉif
Simple Block Cockpit Engine Weapon byčejný blok Kokpit

Figure 4.18: Cont ro l panel before is by de­
fault set to Engl i sh

Figure 4.19: Cont ro l panel is translated af­
ter cl icking the Czech flag

4.3.5 L o c a l i z a t i o n

In order to maximize the reach of the game I have decided to implement local izat ion. For
this reason I have searched out a very simple localizat ion system for U n i t y SmartLocal-
izaiton.

This asset enables to create dict ionary i n any language and enables to change the lan­
guage dynamical ly at runtime. After cl icking on the flag but ton at the top right corner, a l l
localized strings are replaced wi th their variat ion i n given language. A s you can see i n the
figure 4.18 and figure 4.19

4.3.6 Respons ive des ign

To support as many platforms as possible, responsive design is necessary. For this reason
U n i t y offers several tools. Us ing these tools I have designed a U I that is suitable for
recommended types of displays of various sizes and aspect ratios.

Fi rs t of the tools is anchors. Anchors are part of the U I Rect Transform (main U I
posit ioning component) and is available for each U I element. Anchors are parent of the U I
element and allow the U I element to stretch or mainta in its proport ional posit ion relative
to its parent.

Second tool is Canvas scaler which allows to set scaling mode based on the needs of
U I elements nested i n the specific canvas. Canvas scaler are used independently for each

26

canvas and thus allow clean separation of given U I elements.

Figure 4.20: Phone vert ical Figure 4.21: Phone vert ical Figure 4.22: Phone vertical

Figure 4.23: Phone; Landscape; Game Figure 4.24: Phone; Landscape;
Menu; P l a y button; Sound control Programming interface

27

Figure 4.25: Tablet; Landscape; In-game; Figure 4.26: Tablet; Landscape; Skills menu
A c t i o n buttons; Pause B u t t o n w i t h description

Figure 4.27: Tablet vert ical Figure 4.28: Tablet vert ical Figure 4.29: Tablet portrai t

28

Chapter 5

Evaluation

In this part I w i l l describe the results of test specification and player feedback on game
features and user interface. The evaluation is structured into two ma in sections. F i rs t ly , it
is the evaluation of game and user interface by humans. A n d secondly, it is the evaluation
from technical perspective, the frame rates per second (FPS) on specified platforms, the
dis tr ibut ion package and the file sizes of binaries for each platform.

5.1 Human evaluation

I have given the game to 5 people wi th several specified tasks. A l l the addi t ional testing
data, forms and photos can are stored on the dvd (more at the appendix A . Fol lowing tasks
have been given to the players:

Task 1 Get to the second sector.

Task 2 Build weapons and program the action button to:

• Shoot if the weapons are charged

• Charge if the weapons are not charged

Task 3 Add following behavior to the program:

• Deactivate shield before shooting

• Activate shield before charging weapons

Task 4 Optional tasks:

• When leveling up, choose skill good pilot and add it

• Build nice ship and send the picture

The following table shows how well have they done:

Task Success rate
1 100%
2 100%
3 80%
Opt iona l 1 60%
Opt iona l 2 60%

29

5 .1.1 Reac t ions

In this subsection there are listed answers to questionnaire which was distr ibuted wi th the
game. For full and original responses look at the appendix A for content of the D V D file.

D i d the G a m e R u n Fluent ly

• Yes, it d id . N o glitches.

• The Game run fluently.

• Yes.

• Yes.

• Yes.

did anything special happen during the gameplay

• I figured out how to be invincible. I kept pressing the 'space' but ton, which turned on
the shield and my enemies couldn't get to me. I observed their inevitable destruction
by meteors.

• Nope.

• I do not th ink so.

• Noth ing strange happened.

• I died 500 times.

D i d the programming blocks work as expected?

• Once I figured out how they work, they did .

• yes but the green ones were a bit of a breakneck.

• Yes, they functioned pretty well but once I could not immediately move it to the right
place, so I put it into trash and tr ied again.

• Sort of.. .

• Blocks worked well.

D i d you use undo and redo buttons, optionally trash?

• O n l y the ' trash' function. It didn' t work well at first, but then it was okay.

• I d id not use any of these.

• I used the action back and also the action trash.

• Yes.

• Trash yes, undo and redo no.

.'30

D i d you like the visual side of the programming interface?

• Yes, I th ink that this is creative way how to learn programming. I have already had
the orders i n action so I could not add it . I have just compiled. I like the possibil i ty
to buil t the ship i n various ways. The multiplayer is much fun :D .

• The visual side is nice, and possibil i ty of turning the ship is good.

• Yes, they were cute.

• I d id , but the U I needs more improvements, pictographs are not intuit ive, some of
the namings were misleading.

• Jop

5.2 Programming Catalog

Here I would like to summarize what programming concepts this game and the V P L created
during this thesis currently offers to practice:

• Object orientation

— Object abstraction

— Member variables

— Member methods

• Sequential programming

— Invoking member methods

— Execut ing Condi t iona l statements

These are not many concepts but the big advantage is that the V P L is wri t ten i general
way and so its is possible to be deployed as an uni ty asset and extended furthermore. Yet
the game could use i n future some more programming constructions, sadly I have not been
able to find a way to incorporate cycles.

5.3 Technical Evaluation

5.3 .1 D i s t r i b u t i o n

U n i t y allows quick deployment for mult iple platforms, I have successfully compiled binaries
for 5 different platforms for both 32 and 64 bit versions of the applicat ion. There has been
only one issue and that was during the compilat ion for Web using the new direct W e b G L
bui ld . This has been acknowledged by U n i t y development team as a B u g of current Unity
version 5.1.Of3.

Pla t form Binaries files size
Windows 18,4 MB

L i n u x 61,8 MB

M a c O S 69,4 MB

Web 6,70 MB - requires web player installed
A n d r o i d 30,1 MB

31

U n i t y also allows to split up the android .apk into extensions an .apk and extension in
form of .obb file. B u t the game assets are negligible i n comparison of today's hardware.

5.3.2 F r a m e Rates

I have wri t ten simple script to watch over the F P S wi th in the game. In the following table
i w i l l list the devices the game has been tested on and the average F P S the game ran at.

P la t form C P U G P U F P S
Windows 10 i5 3570k GeForce G T X 660 Stable 300
Windows 10 13-3217U H D Graphics 4000 Stable 80
Lap top Windows 8 i5-3210M GeForce 630m 40 Unstable

due deprecated
drivers

Lap top Windows 7 I7-4500u H D Graphics 4400 184
Windows 7 Enterprise S P 1 Intel R Core T M Mobi l e Intel(R) 70

Duo P8700 4 Series Express
Chipset Fami ly

L G V500 A n d r o i d 4.4.4 A R M Cor tex A 7 G H z Adreno 320 60
L G F60 A d r o i d 4.4.4 Qua lcomm Snap­ Adreno 306 60

dragon 410
Nexus 7 A n d r o i d 5.1 Qua lcomm Snap­ Adreno 320 60

dragon S4 P ro
Nexus 4 A n d r o i d 5.1 Qua lcomm Snap­ Adreno 320 60

dragon S4 P ro

This table clearly shows that the game is very well opt imized and is capable of running
at vast amount of devices. Considering the A n d r o i d platform, U n i t y allows compat ibi l i ty
up to A n d r o i d 2.3.1 Gingerbread. The android developer console shows 9252 o of supported
devices which is 92.4% of device types currently market devices.

32

Chapter 6

Conclusion

Play ing games in today's world is very common. If we managed to move from playing
regular games to playing programming education games for just a smal l port ion, I believe
that we would end up wi th kids having much more positive attitude towards programming.

I have conducted a research regarding existing serious programming education games
and from the analysis I took that the market is huge wi th a large amount of s imilar games.
Major i ty of these games are s t i l l focused more on the basic sequential programming. There
is also large por t ion of education tools using visual programming languages to that focus
on the object oriented programming.

I have studied large amount of User interfaces wi th focus on A n d r o i d platform and I
believe that I have managed to create a nice U I template for future use, considering future
improvements. I have managed to create simple but visually attractive visual scripting
language that can be used i n mult iple projects, and thanks to Uni ty , is available on every
supported platform. The interface was tested out on three platforms and behaves correctly
at a l l tested cases. A s one of the main lags of this thesis I consider the smal l amount of
experiments conducted due to the late implementat ion and higher focus to the uniqueness
and range of education elements embedded.

I have designed a game and associated interface w i t h regarding to modern mobile games.
I have implemented responsive user interface that has been tested out on mult iple platforms
and incorporated this user interface into the game. I have designed and implemented visual
programming language that represents the games educational value. The U I is simple but
sophisticated and allows for future work wi th in the field of visual programming. A n d finally
I have evaluated the game using human feedback and as the result I find the interface very
interesting as a concept, but w i t h more work needed to be done.

There are several opportunities for future work. B o t h the game and the programming
interface can be extended severely. For example the game could use online multiplayer
to engage players i n cooperation mode and to extend the competi t ion mode to motivate
them even without people around them. The amount of ship blocks that are offered is also
very l imi ted and could use an i teration. F i n a l l y the visual programming interface could be
extended further into an independent tool much like B l o c k l y and distr ibuted as a U n i t y
asset.

3 3

Bibliography

[1] Tiffany Barnes, Eve Powell , A m a n d a Chaffin, and Heather Lipford . Game21earn:
Improving the mot ivat ion of c s l students. In Proceedings of the 3rd International
Conference on Game Development in Computer Science Education, G D C S E '08,
pages 1-5, New York , N Y , U S A , 2008. A C M .

[2] Iván Cantador and José M . Conde. Effects of Compet i t ion in Educat ion: A Case
Study i n an E-Learn ing Environment . In Proceedings of I A DIS International
Conference e-Learning 2010 (E-Learning 2010), Fr iburg , Germany, Ju ly 2010.

[3] M a r k Durando. Compu t ing our future. European Schoolnet, October 2014. Available
at h t t p : / / w w w . e u n . o r g / c / d o c u m e n t _ l i b r a r y / g e t _ f i l e ? u u i d =
521cb928-6ec4-4a86-b522-9d8fd5cf60ce&groupld=43887 .

[4] Nea l Hal l ford and Jana Hal l ford. Swords and Circuitry: A Designer's Guide to
Computer Role-Playing Games. Premier Press, Incorporated, 2001.

[5] Wang Hao and Sun Chuen-Tsai . Game reward systems: G a m i n g experiences and
social meanings. In DiGRA ཇ - Proceedings of the 2011 DiGRA International
Conference: Think Design Play. D i G R A / U t r e c h t School of the A r t s , January 2011.

[6] D a n Ingalls, Ted Kaehler , John Maloney, Scott Wallace, and A l a n K a y . Back to the
future: The story of squeak, a pract ical Smalltalk wri t ten i n itself. SIGPLAN Not.,
32(10) :318-326, October 1997.

[7] A l a n K a y . Squeak etoys, children & learning. 2004. Avai l ib le at
h t t p : / / w w w . s q u e a k l a n d . o r g / c o n t e n t / a r t i c l e s / a t t a c h / e t o y s _ n _ l e a r n i n g . p d f .

[8] S. Vygo t sky Lev . P l a y and its role i n the mental development of the chi ld . Soviet
Psychology, 5(3):6-18, 1967.

[9] R icha rd E . Pat t i s . Karel The Robot: A Gentle Introduction to the Art of
Programming. John W i l e y & Sons, 1981. I S B N 0-471-59725-2.

[10] M a r c Prensky. Digital Game-Based Learning. M c G r a w - H i l l P u b . C o . , 2004.

[11] V i e r a K . P rou lx . Computer science i n elementary and secondary schools. In
Proceedings of the IFIP TC3/WG3.1/WG3.5 Open Conference on Informatics and
Changes in Learning, pages 95-101, Amsterdam, The Netherlands, The Netherlands,
1993. Nor th -Hol l and Publ i sh ing C o .

[12] F i l i p Š E L O N G . Game-based learning: P ř í k l a d y d o b r é praxe a n á v r h výukové
poč í t ačové hry [online], 2012 [cit. 2015-07-28].

34

http://www.eun.org/c/document_library/get_file?uuid=
http://www.squeakland.org/content/articles/attach/etoys_n_learning.pdf

Appendix A

DVD Content

D V D content is as follows:

• doc/ - Technical report, pdf version and latex source files w i th images

• src/ - Source files of the uni ty project including a l l assets and images.

• bin/ - B i n a r y files

— Android/ - A n d r o i d .apk file

— Windows/ - .exe file w i th data

— Web/ - .h tml file and U n i t y web player data

• testing/ - A l l files regarding testing

— Questionary/ Testing questionnaires w i th responses

— Notes/ Testing notes on further enhancement

— Images/ Images and screenshots from testing

3 5

Appendix B

Installation

The following binaries present on the D V D have been successfully tested:

• Windows .exe x86 and x86-x64

• A n d r o i d full .apk

• Web Onl ine .h tml

If you are interested in playing or testing the game, it is available online either through the
open a lpha/beta testing group or direct ly on the Google P l a y store. To jo in the a lpha/beta
testing go to the following l ink:

• h t tps : / /p lay.google .com/apps/ tes t ing/com.GamesDraf t .FoxDen

Confi rm by cl icking on „ B e c o m e a tester" but ton. Y o u can leave the testing group at
w i l l at any time.

36

https://play.google.com/apps/testing/com.GamesDraft.FoxDen

Appendix C

Posters

G A M E FOR TEACHING VERY BASIC
PROGRAMMING

Huf M A R T I N R O N C K A
A D A M H E R O U T

Game for teaching very basic programming using a visual programming
language. The game and the interface is designed with regards to the
modern game-based learning, UX and Ul principles using Unity3D.

Visual programming Understanding education

Visual programming language allows to control ships systems by
programming blocks of code. The ship can be upgraded within the ship
editor. The visual programming language is universal and can be used in
mult iple games

Mobi le friendly user interface
with responsive design

Compet i t ion based learning
strategy

Simple but stunning visuals, responsive design, extended reward systems, visua
programming

Figure C . l : Presentation poster

3 7

