
Czech University of Life Sciences Prague

Faculty of Economics and Management

Informatics

C'.U
Master's Thesis

Methods of AI in Classification of Antepartum Heart Rate
DeepNN CAD system

Mohamed Darwish

© 2023 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT

Be. Mohamed Darwish

Informatics

Thesis title

Methods of Al in Classification of Antepartum Heart Rate

Objectives of thesis

The main objective is to construct a classifier of antepartum heart rate using methods of artificial

intelligence.

To achieve this goal, fol lowing milestones have been set:

• write an overview of classification algorithms, where they can be applied, and how to implement them

using Python programming language,

• demonstrate the use of selected algorithm on a case study focusing on Antepartum Hearth Rate

classification,

• describe the services offered by cloud vendors that can help in provisioning such a model, such as cloud

computing and data storage, and propose a suitable architecture for a classifier application.

Methodology

The methodology of the thesis is based on analysis and study of the relevant technical and scientific sources

focusing on fundamental Al models that can be used for data classification, with specific attention paid to

models used for heart rate classification. Based on synthesis of gained knowledge a classification case study

focusing on antepartum heart rate will be implemented using standard methods of software engineering

and artificial intelligence. The paper will also focus on the infrastructure needed to implement the model,

and how to leverage the cloud services in order to have an end to end classification service that could be

potentially used by practitioners and doctors.

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdo

The proposed extent of the thesis

60-80 pages

Keywords

Machine learning, artificial intelligence, data classification, heart rate

Recommended information sources

ALARSAN, F.I., YOUNES, M . Analysis and classification of heart diseases using heartbeat features and

machine learning algorithms. J Big Data 6, 81 (2019). https://doi.org/10.1186/s40537-019-0244-x

AZIZ, S., AHMED, S. & ALOUINI, MS. ECG-based machine-learning algorithms for heartbeat classification.

Sci Rep 11,18738 (2021). https://doi.org/10.1038/s41598-021-97118-5

RUSSELL, Stuart J., Peter NORVIG a Ernest DAVIS. Artificial intelligence: a modern approach. 4th ed. Upper

Saddle River: Prentice Hall, 2020. ISBN 1292401133

TETTAMANZI, A.-TOMASSINI , M . Soft computing : integrating evolutionary, neural, and fuzzy systems.

Berlin: SPRINGER, 2001. ISBN 3-540-42204-8.

Expected date of thesis defence

2022/23 S S - F E M

The Diploma Thesis Supervisor

Ing. Petr Hanzlík, Ph.D.

Supervising department

Department of Information Engineering

Electronic approval: 13. 3. 2023

Ing. Martin Pelikan, Ph.D.

Head of department

Electronic approval: 13. 3. 2023

doc. Ing. Tomas Subrt, Ph.D.

Dean

Prague on 30. 03. 2023

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

https://doi.org/10.1186/s40537-019-0244-x
https://doi.org/10.1038/s41598-021-97118-5

I. Introduction 10

CTG 10

FIGO 12

Challenges 13

II. Objectives and Methodology 14

Methodology 14

Vision 14

Objectives 14

Data Collection and Review 14

Data Preprocessing 15

Data Modeling 15

Infrastructure 15

III. Literature Review 15

CTU-HUB 15

Umbilical Artery pH 16

Signal Processing 17

Continuous Wavelet Transform 19

Wavelets 20

Morlet Wavelet 21

Wavelet Scalogram 24

Convolutional Neural Network 24

Evaluation Metrics 27

Infrastructure and service architecture 28

Cloud Services and Cloud Computing 28

Cloud Computing 29

Cloud Storage 29

Cloud Data Streaming 30

ETL 31

OB TraceVue® 32

IV. Practical Part 34

Signal denoising 34

Continuous Wavelet Transform 37

Modeling 41

Cloud Architecture 47

Networking 47

Data Storage 50

Data Modeling and Computing 53

Security and Compliance 55

V. Results and Discussion 56

VI. Conclusion 58

VII. References 61

4

Declaration

I declare that I have worked on my master's thesis titled "Methods of AI in Classification

of Antepartum Heart Rate" by myself and I have used only the sources mentioned at the end of

the thesis. As the author of the master's thesis, I declare that the thesis does not break any

copyrights.

In Prague on date of submission

5

Acknowledgement

I would like to express my gratitude for whomever supported my journey through my masters
degree, including my supervisor, my professors, my classmates and my friends, also special
thanks to my family for their continuous support and guidance through my entire learning
journey.

6

Methods of AI in Classification of Antepartum Heart Rate

Abstracts

Continuous monitoring of the fetal heart rate (FHR) signal has been widely used to allow

obstetricians to obtain detailed physiological information about newborns. The objective of

this thesis is to examine a novel approach of analyzing FHR signals with the help of AI and

propose a framework that can help obstetricians make better decisions. This work is composed

of mainly two parts in which the first part showcases the use of a CNN model to help classify

the FHR signals into normal and pathological categories while the second part discusses the

potential of integrating the CNN model with the already existing medical infrastructure. We

proposed transforming the signals into 2D images using wavelet transformation and feeding it

into a deep CNN model. The model was able to achieve a specificity of 84% and sensitivity of

30%. We then discussed the potential of utilizing the model in the cloud to turn it into a

reliable CAD system.

Keywords: Machine learning, artificial intelligence, data classification, fetal heart rate,

hypoxia, signal processing, wavelet transformation, wavelet scalogram, convolution neural

network, cloud technologies.

7

Metody AI v klasifikaci předporodní srdeční frekvence

Abstrakt

Kontinuální monitorování signálu srdeční frekvence plodu (FHR) bylo široce používáno, aby

porodníci mohli získat podrobné fyziologické informace o novorozencích. Cílem této práce j e

prozkoumat nový přístup k analýze signálů FHR pomocí AI a navrhnout rámec, který může

porodníkům pomoci k lepšímu rozhodování. Tato práce se skládá převážně ze dvou částí, v

nichž první část představuje použití modelu CNN pro pomoc při klasifikaci signálů FHR do

normálních a patologických kategorií, zatímco druhá část pojednává o potenciálu integrace

modelu C N N s již existující lékařskou infrastrukturou. Navrhli jsme transformaci signálů do

2D obrazů pomocí vlnkové transformace a jejich zavedení do hlubokého modelu CNN. Model

byl schopen dosáhnout specificity 84 % a senzitivity 30 %. Poté jsme diskutovali o potenciálu

využití modelu v cloudu, abychom z něj udělali spolehlivý CAD systém.

Klíčová slova: Strojové učení, umělá inteligence, klasifikace dat, srdeční frekvence plodu,

hypoxie, zpracování signálu, vlnková transformace, vlnkový skalogram, konvoluční

neuronová síť, cloudové technologie.

8

I. Introduction

Fetal heart activity and fetal heart rate monitoring are crucial in ensuring the health and

wellbeing of a fetus during pregnancy. Cardiotocography (CTG) is a common method used to

monitor fetal heart activity and rate by measuring the electrical signals from the fetal heart and

the uterine contractions of the mother. CTG can provide important information about the

fetus's condition, including signs of fetal distress or acidosis.

Monitoring fetal heart rate (FHR) and uterine contractions (UC) allows obstetricians to

identify potential cases of fetal hypoxia, which can occur even in an otherwise uncomplicated

pregnancy. Although a fetus has its own inherent ability to manage insufficient oxygen levels

during delivery, prompt intervention may be necessary in certain situations to prevent negative

outcomes, in which hypoxia, with prevalence lying in the region of 0.6% to 3.5%, is one of

them and considered to be the third most common cause of newborn death [1],

CTG
Cardiotocography, commonly abbreviated as CTG, is a non-invasive diagnostic tool used in

obstetrics to monitor fetal wellbeing during pregnancy and labor. The procedure involves

simultaneously recording the fetal heart rate (FHR) and uterine contractions using an

electronic fetal monitor. CTG monitoring provides valuable information about fetal

oxygenation and fetal heart activity, helping obstetricians to identify potential signs of fetal

distress or hypoxia. The data obtained from CTG monitoring is used to inform decisions

regarding fetal management, such as the need for timely intervention or delivery.

CTG is typically performed by placing two sensors on the mother's abdomen: an ultrasound

sensor to measure fetal heart rate and a tocodynamometer to measure uterine contractions.

However, in some cases, a scalp electrode may be used to more accurately measure the fetal

heart rate. This involves attaching a small electrode to the fetal scalp, which transmits the fetal

heart rate to the CTG machine. The scalp electrode is inserted into the vagina during labor and

delivery, and the electrode is attached to the fetal scalp via a small puncture.

9

CTG is widely used by obstetricians especially during the last phases of labor and right before

baby delivery, however, according to a study held by Lavender et al. (2011) [2] in which

included over 8,000 women with low-risk pregnancies who were randomized to receive either

CTG monitoring or intermittent auscultation - a method widely used before CTG - during

labor found no significant differences in the incidence of adverse neonatal outcomes between

the two groups, suggesting that intermittent auscultation may be as effective as CTG

monitoring in low-risk pregnancies suggesting that there may not be significant improvements

in delivery outcomes with CTG monitoring compared to intermittent auscultation in low-risk

pregnancies. Other publications also like the one published by Alfirevic and Devane (2017)

which is a systematic review that evaluates the effectiveness of CTG monitoring for fetal

assessment in pregnancy and labor. The authors reviewed 133 randomized controlled trials

that compared CTG monitoring to intermittent auscultation or other forms of fetal monitoring.

The review found that CTG monitoring did not reduce the risk of perinatal death or cerebral

palsy compared to intermittent auscultation [3].Moreover, CTG is considered the main suspect

of the increased rate of cesarean sections for objective reasons [1], even though Lavender et

al. [2] suggested that this may be due to the increased detection of fetal heart rate abnormalities

with CTG monitoring, leading to more interventions, however, Alfirevic and Devane [3] found

that the use of CTG monitoring was associated with an increased risk of instrumental

deliveries, cesarean deliveries, and neonatal admissions to intensive care due to the detection

of fetal heart rate abnormalities that do not necessarily indicate fetal distress.

10

FIGO

Normal S Suspicious Pathological !

Baseline 110-160 bpm

Lacking at least one
characteristic of
normality, but with
no pathological
features

<100 bpm >10 mins

Variability 5-25 bpm Lacking at least one
characteristic of
normality, but with
no pathological
features

• Reduced variability < 5bpm for
>50 minutes.

• Increased variability >25bpm
for >50 minutes.

• Sinusoidal pattern for
>30minutes.

Decelerations
No repetitive*
decelerations

Lacking at least one
characteristic of
normality, but with
no pathological
features

Repetitive* late or prolonged
(>3minutes) decelerations for
>30minutes (or >20minutes if reduced
variability).
Isolated deceleration >5minutes

Interpretation No hypoxia/acidosis
Low probability of
hypoxia/acidosis

High probability of hypoxia/acidosis

Clinical
Management

No intervention
necessary to improve
fetal oxygenation state

Action to correct
reversible causes if
identified, close
monitoring or
adjunctive methods

Immediate action to correct reversible
causes, adjunctive methods, or if this is
not possible expedite delivery. In acute
situations immediate delivery should be
accomplished.

Table 1: Adapted from FIGO, 2015: CTG classification criteria and recommended
management

In 1986, FIGO developed guidelines (seen in Table 1) to improve the accuracy of

cardiotocography by examining the macroscopic morphological features of fetal heart rate

(FFIR) and their relationship with topographic measurements. Despite the availability of these

guidelines for more than two decades, interpreting CTG results remains a persistent challenge

[1]. Studies conducted by Blix et al. (2003) [4] and Ayres-de-Campos et al. (1997) [5] have

both explored the variability in CTG interpretation among different and even the same

observers. Blix et al. (2003) [4] recruited 58 obstetricians and midwives to assess 30 CTGs

and found significant variations in interpreting FFIR features. Meanwhile, Ayres-de-Campos et

al. (1997) [5] observed moderate to substantial differences in the interpretation of 20 CTGs by

24 experienced obstetricians over two weeks. The level of agreement between the same

observer was only moderate to substantial, and there was significant variability in the

interpretation of features such as baseline FFIR, variability, and decelerations among different

11

observers. These findings underline the need for more objective and standardized CTG

interpretation methods, including exploring the feasibility of automated FHR evaluation. This

paper aims to contribute to this discourse.

Challenges
The driving force behind this paper stemmed from an enduring sense of detachment between

scholarly works and real-world healthcare settings. Topol et al. (2020) [6] identified concerns

among clinicians and patients regarding the reliability and safety of AI systems used for FHR

analysis. One of these concerns is the lack of transparency and explainability of AI algorithms,

which can make it challenging for stakeholders to trust and rely on these systems. In addition,

the accuracy and reliability of AI algorithms can be affected by the quality and

representativeness of the data used to train them. Clinicians and patients may therefore be

skeptical of AI systems that have not been validated on diverse populations. Finally,

stakeholders may be concerned about the role of AI in clinical decision-making, particularly if

they believe it could replace the judgment and expertise of human clinicians or be used to

make decisions without adequate input or explanation from the clinician.

In their article, Sikdar andMukhopadhyay (2021)[7] explore the challenges associated with

incorporating AI into healthcare systems, specifically in the area of obstetrics and gynecology.

They emphasize that one major obstacle is the incompatibility of legacy systems with AI

applications, which can impede the integration of these technologies into clinical practice. The

authors stress the importance of overcoming these technical barriers in order to fully realize

the potential benefits of AI in this field. In addition to the technical challenges, [7] also

discusses other obstacles to the adoption of AI in clinical practice. One such obstacle is

resistance to change, particularly among healthcare providers who may be hesitant to adopt

new technologies that disrupt established workflows or pose unfamiliar risks. This reluctance

can slow the adoption of AI in the field of obstetrics and gynecology. The authors also

highlight the critical role of data quality and standardization. For AI algorithms to function

effectively, they require high-quality and standardized data. However, healthcare data is often

12

incomplete, inconsistent, and difficult to access, making it challenging to develop reliable and

accurate AI algorithms.

II. Objectives and Methodology

Methodology

As we mentioned earlier, implementing an AI solution to any area in the medical field is

challenging and filled with a lot of obstacles. Rather than focusing on a single AI model or a

certain algorithm we instead propose an entire framework or architecture that could be easily

implemented and integrated with the current medical infrastructure to help assist doctors and

obstetrician make a better decisions regarding data collected during first and second stage of

labor which makes them interpret FHR signals in a more robust and reliable way.

Vision
Our proposal aims to demonstrate the potential benefits of using a computer-aided decision

system to assist obstetricians in analyzing fetal heart rate (FHR) signals for early detection of

hypoxia or acidosis. The timely detection of these conditions is essential for preventing

adverse outcomes in newborns. The detection of hypoxia and fetal acidosis can vary from case

to case, with some instances being detected several hours or days before delivery, while in

others, it may be identified shortly before delivery. Therefore, it is imperative to have a

reliable system that analyzes the cardiotocography (CTG) signals obtained a few hours before

delivery, enabling prompt medical interventions when required. This paper will focus on the

different elements of creating such a CAD system rather than just exploring ML/deep learning

models.

Objectives

This paper aim to contribute toward different objectives;

Data Collection and Review

One aspect we will delve into is the data collection process and how we can bring together

data from various sources of CTG devices such as scalp electrodes and ultrasound sensors. We

13

will also explore the CTU-HUB database used to analyze the FHR signals. We also propose a

framework that aims to have a single, authoritative source of information that can serve as a

foundation for any future efforts to build a more dependable system.

Data Preprocessing

Creating a CAD system involves various complexities, particularly in the selection of

appropriate AI models and their corresponding preprocessing techniques. Each AI model has

unique requirements and preprocessing steps, and thus it is important to explore and discuss

various approaches to determine the advantages and disadvantages of each.

Data Modeling

Several attempts have been made to model FHR signals, which can be categorized into two

groups: researches that utilize deep learning and other researches that use traditional machine

learning methods after extracting multiple features from the signals. Our primary goal is to

develop a deep learning C N N model that is comparable to the clinical benchmark and can be

considered reliable. The model will be fed with 2D images produced from the continuous

wavelet transform of the ID FHR signals.

Infrastructure

Our plan is to present a practical implementation of the proposed CAD system and outline the

necessary steps to integrate it into the existing infrastructure of any Hospital. This will involve

proposing a roadmap for the successful deployment of the system. We will also discuss the

potential benefits that such a system can bring to the hospital and its patients.

III. Literature Review

CTU-HUB

In this paper, we utilized the CTUHUB database which contains 552 intrapartum fetal heart

rate (FHR) recordings. These recordings were acquired over a period of two years from April

2010 to August 2012 at the obstetrics ward of the University Hospital located in Brno, Czech

Republic. The OB TraceVue® system was used to store all recordings in electronic form.

Further information regarding the database used can be found in [8]. To summarize, the

14

authors selected the recordings from a pool of 14,492 deliveries that were monitored using

fetal monitors such as STAN S21 and S31 from Neoventa Medical and Avalon FM40 and

FM50 from Philips Healthcare. A l l CTG signals were stored electronically in a proprietary

format in the OB TraceVue® system by Philips and were later converted into a text format

using proprietary software also provided by Philips [8],

Out of those deliveries, authors of [8] slimmed down the dataset to fit certain criterias:

871 non-singleton pregnancies were excluded

7637 excluded for insufficient information (missing CTG records or pH values

4866 excluded for clinical reasons (ie: premature, maternal age < 18, etc.)

552 were chosen out of the remaining 1118

The decision to use the C T U H U B database was based on its suitability for various automated

approaches. The authors further filtered the recordings to only include those that had umbilical

artery pH data available. This specific selection was made as it served as the target variable for

the convolutional neural network (CNN) model training process. Each recording contains the

fetal heart rate (FHR) signals with a sampling rate of 4 Hz. The length of each signal may vary

for each case, but all signals cover a minimum period of 30 minutes before delivery.

Umbilical Artery pH
Multiple publications have shown that umbilical artery pH is a reliable measure of neonatal

respiratory hypoxia. For example, Ramanah et al. (2017) [9] discussed the use of umbilical

artery pH in fetal heart rate monitoring to assess fetal well-being during labor. The authors

highlighted that umbilical artery pH can be used to identify neonates at risk for

hypoxic-ischemic encephalopathy, a condition caused by inadequate oxygen supply to the

brain during labor and delivery. Another study by Kashanian et al. (2012) [10] investigated the

association between umbilical artery pH and neonatal morbidity and mortality in preterm

deliveries. The authors found that low umbilical artery pH values were significantly associated

with an increased risk of adverse neonatal outcomes, such as respiratory distress syndrome,

15

intraventricular hemorrhage, and neonatal death. Hence the decision was made that records

with pH < 7.15 are pathological [11].

Signal Processing

Signal processing is an essential part of preparing data for use in deep learning models. The

raw signals that are acquired often contain unwanted noise, artifacts, or missing values, which

can significantly impact the performance of a model. Various signal processing techniques

such as filtering, normalization, and interpolation are used to remove noise and artifacts, fill in

the missing values, and standardize the signal characteristics. By applying these preprocessing

steps, we can not only improve the quality of the data but also extract meaningful features

from the signal that are relevant to the task at hand. Consequently, processing the data before

using it in a deep learning model is critical to ensuring that the model is trained on

high-quality data and can learn and generalize well to new data.

Noise in a signal (seen in Figure 1) refers to the presence of unwanted or unpredictable

variations that are not related to the primary signal being measured. These fluctuations can

originate from various sources, including external interference, technical constraints of the

measuring devices, or problems with signal transmission.Normalization and interpolation

techniques are used to denoise the signal.

175

150

125

100

75

50

25

U

Total FHR signal of patient 1011, aprx 66 min long signal

2X0 4000 6000 K00 10000 12000 14000 16000

Figure 1: Noise appears as spontaneous spikes quite visible especially at the end of the signal

(few minutes before delivery) such noise is caused by the movement of the fetus and also

caused by the medical team to deliver the baby.

16

In contrast, artifacts are distortions or anomalies in the signal introduced by the measurement

process itself, including factors such as electrode placement or motion artifacts.We defined an

artifact as a signal loss for over than 15 seconds as seen in Figure 2

segment of FHR signal of patient 1011, 3min -> 16mln

V •p1

A \

i
0 500 1000 1500 2000 2500 3000

Figure 2: A Segment taken from the total signal to emphasize the presence of artifacts seen at

samples from 2000 until 2500.

Effective signal processing can mitigate the negative effects of both noise and artifacts, and

there are various techniques available to remove these unwanted components from the signal.

The choice of signal processing techniques depends on the specific characteristics of the signal

and the source of the unwanted components, as well as the desired characteristics of the final

processed signal. Zhao, Zhidong, et al [12] presented a novel approach for classifying FFfR

signals that involved the extraction of features from both the time and frequency domains. To

extract features from the frequency domain, the authors utilized the Discrete Wavelet

Transform (DWT), while statistical measures like mean, variance, skewness, and kurtosis were

used to extract features from the time domain. This approach allowed for a comprehensive and

multifaceted analysis of the FFfR signals, enabling the accurate classification of the signals for

improved diagnosis and patient management.

Zhao et al. (2019)'m [13] - which this paper is heavily inspired by - converted FFfR signals

into images using Continuous Wavelet Transform (CWT). The use of CWT allows for the

extraction of time-frequency information from the signal, which can be represented as images.

The resulting images were then processed using various image processing techniques to

improve the contrast and remove noise. The preprocessed images were then used to train a

convolutional neural network (CNN) to detect fetal hypoxia. By using CWT and image

17

processing techniques, this approach allowed for the extraction of more complex features from

the FHR signals, which improved the accuracy of the classification model. The authors

suggest that this approach has the potential for developing non-invasive methods for detecting

fetal hypoxia. In our paper, it is decided that the denoised signals are transformed into 2D

images obtained from the CWT of the original signal.

Continuous Wavelet Transform
FHR signals are inherently noisy and irregular which at the same time have a certain structure.

One way to characterize this phenomena mathematically and quantify the structure found in

the FHR signal is by transforming the signal from the time domain to the time-frequency

domain using CWT.

Continuous Wavelet Transform (CWT) is a powerful mathematical tool that enables the

analysis of signals with time-varying frequency components. It has found applications in

various fields such as engineering, physics, and biology. The CWT uses a wavelet function

that is scaled and shifted over the entire signal to obtain a time-frequency representation of the

signal. This transformation allows the identification of local features in the signal, including

the identification of transient events and the detection of changes in frequency content.

The CWT is a time-frequency analysis technique that is different from the traditional Fourier

transform, which provides only frequency domain information of a signal. The CWT can

provide more detailed information about the time-frequency content of a signal, making it a

valuable tool in the analysis of non-stationary signals, where the frequency content of the

signal changes over time. Moreover, the CWT can be used to extract features from signals that

are relevant to specific applications, such as the detection of anomalies, the identification of

patterns, and the classification of signals. Despite its usefulness, the CWT has some

limitations, such as its computational complexity and the selection of an appropriate wavelet

function for a given signal. Nevertheless, the CWT has become a standard tool for signal

analysis and has been applied in various fields such as speech recognition, image processing,

and biomedical signal processing. In this paper, CWT is used to represent the FHR signal from

the time domain to the time-frequency domain to extract frequencies contributing to the signal.

18

Wavelets

Representing a signal in the frequency domain through Fourier transform can present certain

challenges. While it allows access to information about the frequencies present in the signal, it

comes at the cost of losing temporal information. Fourier transform compresses the signal in

time to extract frequency components, as the Fourier function only considers frequency and

not the timing of frequency occurrence. This trade-off between time and frequency

information is highlighted by the Heisenberg uncertainty principle.

To address this limitation, wavelets offer an alternative approach that builds upon Fourier

transform while making necessary modifications. Unlike Fourier transform, which breaks the

signal down into a sum of sine and cosine functions, wavelet transformation involves

analyzing functions called wavelets that are temporally restrained. Wavelets are characterized

by their short-lived oscillations that are confined to a specific time period. Figure 3 depicts the

set of functions that meet two primary constraints.

Morlet Paul 2 derivative of gaussians (dog2) Haar Beylkyin

Figure 3: Different wavelets families and their representation

Admissibility: The wavelet must exhibit zero-mean behavior, meaning that it oscillates

between positive and negative values over time while maintaining a finite energy. This

property ensures that the wavelet can be reliably employed in signal analysis tasks. In other

19

words, the integral or area under the curve of the wavelet function should add up to zero, as

shown in equation (1). This condition can also be expressed as the wavelet function having no

zero-frequency component.

+00

/ no dt = 0 (i)
—00

Localization: Another key requirement for a function to be considered a wavelet is that it must

demonstrate localization properties in both time and frequency domains. Specifically, the

wavelet should be well-concentrated in time, implying that it has a short support or duration in

the time domain. Additionally, the wavelet should exhibit a band-limited frequency

representation, meaning that most of its energy is concentrated within a specific frequency

range. By satisfying these constraints, the wavelet can effectively capture local characteristics

of the signal in both the time and frequency domains. This localization property is particularly

useful in signal analysis, as it allows the wavelet to extract precise details from a signal at

different time scales. To put it simply the wavelet needs to have finite energy, where the energy

of the wavelet is defined as:

+00

/ \W(t)\2dt < OO (2)
—00

Morlet Wavelet
\ Real part
\ / \ Imaginary part

Figure 4: The Morlet wavelet representation in both the real and imaginary part of the function

Notice that the Morlet function satisfies both admissibility and localization constraints.

20

The Morlet function is a complex-valued wavelet that is well-suited for analyzing oscillatory

signals, such as those found in FHR signals. The Morlet wavelet has a Gaussian shape in the

time domain and is modulated by a complex sinusoid in the frequency domain. This allows it

to provide a high degree of localization in both domains, making it a valuable tool in

analyzing local features of FHR signals. The Morlet wavelet has been widely used in various

studies on FHR signal analysis, such as in detecting and classifying fetal distress and

predicting fetal acidemia. For example, in a study by Casas et al. (2018), the Morlet wavelet

was utilized in analyzing FHR signal features to identify patterns indicative of fetal acidemia

[14]. Similarly, in a study by Zhu and Liu (2021), the Morlet wavelet was employed in FHR

signal analysis to detect and classify fetal distress[15]. These studies demonstrate the utility of

the Morlet wavelet in FHR signal analysis. The decision on choosing the Morlet wavelet for

our analysis was based on the fact that the Morlet can produce a complex wavelet transform,

this complex wavelet transform can capture the amplitude and phase information of the signal,

which is particularly useful for analyzing signals that exhibit non-linear and non-stationary

properties. The real component of the Morlet function is defined as:
2

- t

^ (t) = k • cos(wt) • e 2 (3)

In which the basis function is a cosine wave with a certain frequency that corresponds to our

FHR signal frequency normalized with constant k and dampening it with the exponent factor.

Typically during Fourier transform, the time representation of the signal y(t) which is one

dimensional is transformed into its respective frequency domain representation y(f) which is

also one dimensional, the key difference that separates wavelets from fourier transform is that

the same one dimensional signal is now represented as two dimensional surface where one

axis representing frequency and the other axis representing time; where y(t) -> T(t, f). Hence

the value of T(t, f) represents the contribution of the frequency / at time t. The construction

of such function T is done by constructing daughter wavelets, seen in equation (4) by scaling

and translating the Morlet wavelet where a and b represent the scaling and translating factors

of the mother wavelet. It is also worth noting the existence of a relation between the scaling

21

factor and the frequency of the mother wavelet function, and since such relation exists, the

function T could be represented as a function of a and b.

V u = V (—) (4)

a,6 v a y w

That indicates that value of T(a, b) is equal to the contribution of vj;̂ to the original signal.

+00

Ha, b) = f y (t) • i | ; (t) d t (5)
— 00

It also reflects the similarity between the original signal and the newly constructed daughter

wavelet scaled and translated. The procedure of varying the values of the scaling factor and

calculating the integral is called convolution where the variation of the scaling factor will pull

out other frequency components that contributed at a specific time to the original signal and to

see which frequencies are more prominent at that time point. The value of the dot product in

the above formula indicates the similarity of the daughter wavelet vj;̂ with the original FHR

signal y(t), this value will be close to zero when the original FHR signal frequency is

significantly different than the daughter wavelet which is expected, however the value could

also be close to zero even if y(t) and \ \) a b have the same frequency but phase shifted due to

the translation factor, and since it is the objective of the wavelet transformation is to measure

the frequency as a function of time it is important to introduce the imaginary part of the Morlet

wavelet which make us redefine the Morlet wavelet as:

iw t —
V (t) = k • e • e (6)

The key concept is to calculate the convolution of the signal with both real and imaginary

parts, then our convolution function for a fixed wavelet scale will map the translation

parameter b to the point in the complex plane where the real component is the value of the

convolution at that time point with the real part of the wavelet and the imaginary component is

the value of the convolution with the imaginary part of the wavelet. The power of the

frequency or the intensity of its contribution at each point in time is given by the distance from

the resulting point to the origin which is also known as the absolute value of the complex

22

number. As before varying the scaling factor allows us to analyze the FHR signal at different

frequencies.

Wavelet Scalogram

The resulting complex function T(a, b) can be represented as a two dimensional image

known as the wavelet scalogram, seen in Figure 9. The image represents the values obtained

from the wavelet transformation of a signal. The time axis represents the location of the signal

in time, while the frequency axis represents the frequency content of the signal. The intensity

of the color at each point in the two dimensional plane corresponds to the power of the

wavelet frequency at that point.

Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a type of artificial neural network that is widely

used in image recognition and classification tasks. They work by processing input data

through a series of convolutional and pooling layers to extract features, followed by fully

connected layers for classification.In the context of analyzing fetal heart rate (FFfR) signals,

we can take the images produced from the scalogram of the wavelet transformation of the

signals and use them as inputs for a CNN. The C N N can then be trained to recognize patterns

in the images and make predictions about the underlying FFfR signals. The activation function

used in most CNNs is the Rectified Linear Unit (ReLU).

ReLU is a simple non-linear function that sets all negative values to zero and leaves all

positive values unchanged. It is computationally efficient and has been shown to improve the

performance of CNNs in many image recognition tasks. CNNs consist of multiple layers, each

with its own set of trainable parameters. The layers are typically connected in a feedforward

manner, meaning that the output of one layer is used as the input to the next layer.

The first layer in a CNN is a convolutional layer, which applies a set of filters to the input

image to extract features such as edges, corners, and textures. The filters are learned during the

23

training process, and their values are optimized to maximize the network's ability to recognize

patterns in the input data.

The next layer in a CNN is typically a max pooling layer, which reduces the spatial

dimensions of the feature maps produced by the convolutional layer. This reduces the

computational cost of the network and helps to prevent overfitting. The max pooling layer

works by dividing the feature map into non-overlapping regions and taking the maximum

value in each region.

Another important layer in a CNN is the dropout layer, which helps to prevent overfitting by

randomly dropping out a fraction of the neurons in the network during training. This forces the

network to learn more robust representations of the input data by preventing it from relying

too heavily on any one set of features.We propose a simple architecture consisting of seven

distinct layers:

Input Layer: In this paper, the continuous wavelet transform is used to convert the original

ID time series into a 2D image as the input layer of the CNN, the image is cropped and all

three channels are used as an input.

Convolution Layer: A Convolutional Neural Network (CNN) is a type of Deep Neural

Network (DNN) that uses a specialized convolutional structure to minimize memory

consumption and the number of parameters in the network. In the convolution layer, the

hidden layers are interconnected via a feature map, which extracts pixel-level abstracted

features through convolution operations using one or more convolution kernels (also known as

filters). Each convolution kernel scans the entire feature map using a sliding window

mechanism, gathering and fusing information from each small area to create a partial

representation of the input image's features.One of the key benefits of using a C N N is the

parameter sharing mechanism, which ensures the filter parameters used in each convolutional

layer remain consistent. This approach ensures that image content remains unaffected by

location, which can significantly reduce the number of optimization parameters. This

24

parameter sharing mechanism is a crucial and attractive aspect of the C N N algorithm, enabling

it to extract complex image features with minimal computational resources.

Pooling Layer: To enhance the effectiveness of the Convolutional Neural Network (CNN)

model, a pooling layer, also referred to as a sub-sampling layer, is usually incorporated

periodically between consecutive convolution layers.This layer exploits the fact that certain

image features that are valuable in one area may also be relevant in other areas. By grouping

semantically similar features, the pooling operation compresses the convolution output's

eigenvectors and the number of parameters, resulting in a less complex model with faster

computation times that is less prone to overfitting.The pooling operation is performed by

mapping features in each sub-region of the input feature map using a stride-based approach,

similar to the convolution layer. The most commonly used pooling methods are max pooling,

average pooling, and randomized pooling. In the current C N N model, max pooling is utilized

to calculate the maximum value of the image area as the pooled result. This approach results

in the selection of the most dominant features, leading to more effective feature extraction and

classification.

Fully-connected Layer: This layer produces high-level features of the input image that are

statistically analyzed using a classifier to calculate the probability of the corresponding class

label. Following several rounds of convolution and pooling, the input image information is

abstracted into more information-dense features. The convolution and pooling layers are

necessary for automatic image feature extraction, while the fully-connected layer is

responsible for the final classification task once the feature transformation is complete.By

utilizing the fully-connected layer, the model is able to leverage the extracted features to

accurately classify input images. As the final stage of the network, this layer takes advantage

of the higher-level features that have been extracted through the previous layers to perform the

classification task. Through this process, the C N N model is capable of effectively handling

complex image classification tasks.

Drop-out Layer: When it comes to classification tasks, preventing overfitting is of utmost

importance. Overfitting occurs when a model achieves high accuracy on the training data, but

25

fails to generalize well to new, unseen data. This phenomenon arises when the model

memorizes the noise in the training data instead of learning the underlying patterns. To tackle

this problem, various techniques have been proposed in the literature, and [16, 17] suggest

multiple solutions. The dropout layer is usually placed after the fully-connected layer. During

the training process, several neural units are randomly dropped from the network with a

certain probability. This technique enables the model to become more robust and less

dependent on specific neurons, leading to better generalization performance [13].

Classification Layer: Finally softmax max is used to separate the output classes.

Evaluation Metrics
The Confusion matrix is an evaluation matrix that is more suitable in classification problems,

as it provides a more insightful picture which is not only the performance of a predictive

model but also which classes are being predicted correctly.

A c t u a l Va lues

Q.

Yes No

Yes True Positive False Positive

No False Negative True Negative

Where:

• True Positive (TP): The model correctly predicts the positive class.

• False Positive (FP): The model incorrectly predicts the positive class.

• True Negative (TN): The model correctly predicts the negative class.

26

• False Negative (FN): The model incorrectly predicts the negative class.

We can extract insights from the confusion matrix like the sensitivity (also called the true

positive rate) which measures the proportion of positive cases that are correctly identified, as

well as the specificity (also called true negative rate) which measures the proportion of

negative cases that are correctly identified. It is vital to measure both sensitivity and

specificity of the model along with the accuracy to have a better picture regarding the

predictive performance and what to expect.

Infrastructure and service architecture

Cloud Services and Cloud Computing

As we mentioned in our objectives and methodology, our purpose in this paper is not only

providing a model to classify the FHR signals but also to propose a framework that utilizes the

model and turn it into an end to end service that can be integrated with the current medical

systems, and such we will be leveraging the cloud technologies to achieve that.

The cloud, in its simplest form, refers to a collection of remote servers that are accessed over

the internet. These servers can be used for a variety of purposes, including storage, computing,

and data management. Cloud computing is the process of utilizing the cloud servers to deliver

on-demand computing resources, while cloud storage is the ability to store data on the cloud

servers rather than on local devices. Cloud computing and storage have become increasingly

popular due to their scalability, accessibility, and cost-effectiveness. The cloud can provide a

powerful infrastructure to support computationally intensive tasks such as machine learning

algorithms, including CNNs. One of the most significant advantages of the cloud is its

scalability. Cloud resources can be easily scaled up or down to meet changing demands,

making it an ideal platform for handling large amounts of data or computing-intensive tasks.

This scalability is particularly beneficial for CNNs, as these models require large amounts of

computational power and data storage. Additionally, the cloud offers high availability and

reliability, which ensures that data and applications are accessible 24/7, from any location. The

27

cloud has numerous uses in the medical field, including but not limited to, patient data

management, telemedicine, and medical imaging.

The cloud can also be used to store and manage vast amounts of patient data securely, which

can be accessed by authorized medical personnel from any location.Medical imaging is

another area where the cloud can be utilized to store and manage large image data sets, which

can then be accessed and analyzed by healthcare professionals. Cloud-based medical imaging

solutions can help to improve patient outcomes by enabling more efficient diagnosis and

treatment.

Cloud Computing

When it comes to training a C N N to classify FHR signals, there are a number of challenges

that must be addressed. One of the main challenges is the large amount of data that must be

processed and analyzed. This can be a time-consuming process and requires a lot of

computational power. Another challenge is the need for specialized hardware and software to

train the C N N effectively. These challenges can be particularly daunting for smaller

organizations or research teams that may not have access to the necessary resources. However,

cloud computing can help overcome many of these challenges. By utilizing cloud-based

services for computing and storage, organizations can access virtually unlimited computational

resources and storage capacity. This can greatly reduce the time and cost associated with

training a CNN, as well as eliminate the need for specialized hardware and software.

Additionally, cloud computing can provide greater flexibility and scalability, allowing

organizations to easily increase or decrease resources as needed to meet their specific needs.

For example, the computing resources could be scaled both up and out during the training

process of the CNN model and then scaled back down when the model is trained, saving

money and ensuring availability of resources when needed.

Cloud Storage

When it comes to creating and saving scalogram images from FFfR signals, there are a number

of challenges that must be addressed. One of the main challenges is the large amount of data

that must be processed and stored. FFfR signals can be quite long and can produce a large

28

number of scalogram images, which can quickly consume significant amounts of storage

space. Additionally, these images must be stored in a way that allows for easy retrieval and

analysis, which can be a complex task. Again by utilizing cloud-based storage services,

organizations can store large amounts of data without having to invest in any hardware or

software.

Additionally, cloud storage services typically offer features such as redundancy, backup, and

recovery, which can help ensure that data is safe and accessible at all times. Furthermore,

cloud storage can provide greater flexibility and accessibility, allowing organizations to easily

access and share data from anywhere in the world. This can be particularly useful for research

teams or organizations with multiple locations or remote staff. Additionally, cloud storage

solutions often offer integration with other cloud-based services, such as computing and

analytics tools, which can further enhance the efficiency and effectiveness of data analysis.

Cloud Data Streaming

Data streaming is a technology that allows data to be transferred in real-time from one system

to another. With the advent of cloud computing, data streaming has become an increasingly

popular method for processing and analyzing large amounts of data. Cloud-based data

streaming systems, such as Amazon Kinesis, Google Cloud Dataflow, and Microsoft Azure

Stream Analytics, provide a scalable and cost-effective way to handle the massive volumes of

data generated by modern applications. These systems allow data to be ingested from a variety

of sources, including IoT devices, social media platforms, and enterprise systems, and

processed in real-time to generate insights and support decision-making.

The benefits of data streaming in the cloud are numerous, including real-time processing of

data, scalability, fault-tolerance, and cost-effectiveness. Real-time processing allows

organizations to gain insights and make decisions based on the most up-to-date data, while

scalability and fault-tolerance ensure that the system can handle fluctuations in data volume

and maintain high levels of availability. Additionally, cloud-based data streaming systems

often offer pay-as-you-go pricing models, which can significantly reduce the cost of data

processing compared to on-premise solutions. Which is extremely useful for our problem here

29

as monitoring FHR signals is a time sensitive activity and the room for making a decision

regarding those signals is usually small.

ETL

ETL stands for extract, transform, and load, and it refers to the process of moving data from

one or more sources, transforming it into a format that can be easily analyzed and loaded into

a target system. The main purpose of ETL is to ensure that the data is accurate, consistent, and

reliable.

The extract phase involves gathering data from different sources such as databases, flat files,

and APIs. The data can be structured or unstructured, and it can come from various types of

data sources. The data is then transformed into a format that is suitable for analysis. This

process involves data cleaning, data validation, data enrichment, and data aggregation. The

load phase involves loading the transformed data into the target system, such as a data

warehouse, a database, or a cloud storage service. The target system is optimized for data

analysis and can store large amounts of data for a long period of time.

ETL has become increasingly important in recent years as organizations have started to

accumulate vast amounts of data from multiple sources. ETL is crucial in enabling

organizations to harness the full potential of their data by ensuring that the data is accurate and

consistent. Amazon Lambda for instance is a powerful tool that can be used to help with the

ETL process, serverless compute service provided by cloud providers allows developers to run

code without provisioning or managing servers. When it comes to ETL, such solutions can be

used to transform, clean, and process data as it is being ingested into a database or data

warehouse. AWS Lambda functions for example can also be triggered by various events such

as data being uploaded to Amazon storage or data being ingested into Amazon data streaming

service. Once triggered, Lambda can perform ETL transformations on the data in real-time,

and store the processed data into a database such as Amazon Aurora.

30

OB TraceVue®

Before introducing the proposed architecture, it is important to provide an overview of the

architecture utilized to collect the data used in this study. As outlined in section III, the FHR

signals were obtained using the OB TraceVue® system, which was responsible for capturing

and storing the signals in its database. By understanding how the fetal heart rate monitoring

system operates and using the OB TraceVue® as a point of reference, we aim to propose

cloud-based solutions that can optimize and enhance the reliability of the system.

L&D 1 L&D 2 L&D 3 L&D 4

OB TraceVue
Internal Server

OB TraceVue
External Server

Figure 5: Example of the OB TraceVue® system installation, in which several monitors are

connected to multiple servers needed for the system to operate.

The system above in Figure 5 contains multiple components necessary for any other FFIR

systems. From a hardware perspective, the OB TraceVue system consists of bedside fetal

monitors, a central monitoring station, and three servers. The fetal monitors are connected to

the mother's abdomen using transducers that measure fetal heart rate (FFIR), uterine activity,

and maternal vital signs such as blood pressure and pulse. The monitors transmit the signals

31

wirelessly to the central monitoring station, where the data is displayed on a screen for review

by clinicians. The central monitoring station also includes a keyboard and mouse for user

input, as well as a printer for generating reports. The server component of the OB TraceVue

system stores all patient data and provides advanced features such as archiving, data retrieval,

and remote access. The server is typically installed in a dedicated server room or data center

and is connected to the central monitoring station and other workstations using a local area

network (LAN). The system also supports remote access, allowing authorized users to view

patient data from outside the hospital network. Based on the documentation provided publicly

by the OB TraceVue, the system includes three servers:

OB TraceVue internal server - This server is responsible for storing patient data and

providing advanced features such as archiving, data retrieval, and remote access. The

internal server is connected to the central monitoring station and other workstations

using a local area network (LAN).

OB TraceVue external server - This server is used to provide remote access to the OB

TraceVue system. Authorized users can connect to the external server from outside the

hospital network to view patient data and perform various tasks such as patient

admission, transfer, and discharge.

Port server host PC - This server is used to manage communication between the fetal

monitors and the internal server. The host PC acts as a bridge between the fetal

monitors and the internal server, allowing data to be transmitted wirelessly from the

monitors to the server.

In the upcoming sections, we will provide a detailed overview of the proposed CAD system.

This includes an explanation of how data will be streamed from the OB TraceVue database,

which is hosted on the internal server, as well as a description of how the C N N model will be

trained and utilized.

32

IV. Practical Part

Signal denoising

Total FHR signal of patient 1011, aprx 66 mln long signal

ft
If 1

0 2000 4000 6000 8000 10000 12000 14000 16000

Figure 6: Noisy Signal, artifact is present and highlighted by the red box along with some

visible noise also highlighted by the red arrow.

To ensure high-quality data for our CNN model, we applied a series of denoising methods to

the original signals obtained from the database. As suggested in [13], we utilized these

techniques to remove unwanted noise and artifacts that could negatively impact the

performance of our model. A gap(G) in the signal is defined as the period where the FFfR

reading is equal zero, long gaps where G>15 seen in Figure 2 were completely removed from

the signal as where gaps are < 15 were filled by using rolling mean and lastly cubic spline

interpolation is applied to replace the extreme (not physiological) values (< 50 bpm

and>200bpm)[13]. The rolling mean and spline interpolation were done using the SciPy

library in Python 3.10

segment of FHR signal of patient 1011, 3min -> 16min
175

150

125

100 i K
75

50

25

0
Ü 500 1000 1500 2000 2500 3000

33

Artifact removed: segment of FHR signal of patient 1011, 3min —> 16min

175

150

125

10C

75

50

25

0

175

150

125 h K 100

75

V
•<» r K

50

25

0
500 1000 1500 2000

segment of FHR signal of patient 1011, first 10 minutes

2500

53'] 1000 1500

200

175

150

125

100

75

50

25

200

175

150

125

100

75

50

25

0

Signal denoised: segment of FHR signal of patient 1011, first 10 minutes

a: 2CC J 2500

Signal denoised: segment of FHR signal of patient 1011, aprx 66 min long signal

Figure 7: Top to bottom; shows the preprocessing steps proposed in [13] starting by removing

the artifacts, signal denoising by interpolation, the final denoised signal is presented in the last

image.

NOTE: Those steps were implemented on the entire signal. The figures are just for illustrative

purposes to showcase the outcome of each preprocessing step individually.

Python was used to clean the data as described above along with its libraries like numpy.

34

def remove_long_gaps(signal, threshold, freq=FREQ):

Removing gaps i f they last for more than the threshold

A gap i s defined as a period where the s ignal is zero for a period of time

Args:
s ignal (numpy.ndarray): ID NumPy array containing the s ignal data.
threshold (in t) : Time in seconds; a gap longer than the threshold w i l l be removed

Returns:

numpy.ndarray: ID NumPy array of the signals with the gaps removed

threshold = threshold * freq
signal_cleaned = np.array(l i s t (cha in(* (I for k,g in groupby(s ignal)if len(l :=l ist (g))<threshold or k))))
return signal_cleaned

def f i l l_zeros_with_ro l l ing_mean(s igna l , window_size):

F i l l zero values in a s igna l with the r o l l i n g mean of the previous
non-zero values using a window of spec i f ied s ize .

Args:
s i gna l (numpy.ndarray): ID NumPy array containing the s igna l data.
window_size (i n t) : S ize of the ro l l i n g window to use.

Returns:

numpy.ndarray: ID NumPy array with zero values replaced by the r o l l i n g mean.

rolling_window = window_size
corrected_fhr = s ignal.copy() # Make a copy to avoid modifying input signal
zero_idxs = np.where(signal == 0)[0]
for i i n zero_idxs:

prev_vals = corrected_fhr[max(0, i - ro l l ing_window): i]
next_vals = corrected_fhr[i+l:min(i+rol l ing_window+l, len(s igna l))]
avg = np.mean(np.concatenate((prev_vals, next_vals)))
corrected_fhr[i] = avg

return corrected_fhr

def remove_artifacts(signal, window_size):

Replace data values less than 50 and greater than 200 in a signal with the ro l l ing mean of the previous
non-zero values that are between 50 and 200 using a window of specif ied s ize.

Args:
s ignal (numpy.ndarray): ID NumPy array containing the signal data.
window_size (in t) : Size of the ro l l ing window to use in seconds.

Returns:

numpy.ndarray: ID NumPy array with out-of-range values replaced by the ro l l ing mean.

rolling_window = window_size * FREQ
corrected_signal = signal.copy() # Make a copy to avoid modifying input signal
for i , va l in enumerate(corrected_signal):

i f va l < 50 or va l > 200:
prev_vals = [x for x in corrected_signal[max(0, i-roll ing_window):i] i f 50 <= x <= 200]
next_vals = [x for x in corrected_signal[i+l:min(i+rolling_window+l, len(s ignal))] i f 50 <= x <= 200]
i f prev_vals or next_vals:

avg = np.mean(prev_vals + next_vals)
corrected_signal[i] = int(avg)

return corrected_signal

Snippet 1: From top to bottom are three snippets representing the preprocessing steps needed

to clean the data

The code here is responsible for cleaning the entire FFfR signal and producing a clean signal

ready for scalogram as seen in the last image in Figure 7.

35

Continuous Wavelet Transform

As we mentioned before the one dimensional signal is then represented in the time-frequency

domain and transformed into a two dimensional image using the scalogram, as seen in Figure

9. After denoising and cleaning the signal, we utilize the PyWavelets library in python to

perform the continuous wavelet transformation.Pywavelets library is an open source wavelet

transform software for Python. It combines a simple high level interface with low level C and

Cython performance.lt allowed us to choose the mother wavelet we need, in our case it is the

Morlet wavelet, also it allowed us to define the scales of the mother wavelet.

0 1000 2000 3000 4000
time

Figure 8: Patient id 1011 (Normal) FHR signal (TOP), patient id 1017 FHR signal (BOTTOM)

36

http://performance.lt

Figure 9: The scalogram image of the CWT, the scales are ranging from 10 to 100 and the

power of the frequency and its contribution to the original signal is highlighted by the contrast

in the image.

Patient id 1011 (Normal) scalogram image (Left), patient id 1017 scalogram image (Right)

When analyzing FFfR signals with CNNs using wavelet transforms, the selection of

appropriate wavelet scales depends on a variety of factors. These include the frequency

content of the signal, the desired balance between accuracy and computational complexity, and

empirical observations. It is important to carefully consider these factors when choosing the

range of scales to use in order to achieve optimal performance in a given applications [5] the

authors used scales ranging from 2 to 32. They chose this range of scales because it allowed

them to capture both low and high frequency components of the FF£R signal, and because it

provided a good trade-off between accuracy and computational complexity. However authors

of [19] used scales ranging from 4 to 128. They chose this range because it allowed them to

capture a wide range of frequency components, and because it provided better performance

compared to using a smaller or larger range of scales. We are suggesting using scales ranging

from 10 to 100, this will allow us to capture a wide range and at the same time limit the

computational complexity.

37

def _cwt_image(signal, wavelet= 'morl ' , scales=np.arange(10, 100)):
coef, freqs = pywt.cwt(signal, scales, wavelet, sampling_period=l/4) #4Hz
power = (np.abs(coef)) * * 2
return power[:, : l en (s i gna l)] , freqs

Snippet 2: A python 3.10 function which uses the PyWavelets library to calculate the CWT of

the FHR signal

As described in section two, the Morlet wavelet contains both real and imaginary parts, thus

the coefficients of the wavelet transform are complex number where the absolute value of the

coefficient is called the magnitude and represents the strength of the contribution of the

corresponding wavelet at a given scale and location. Squaring the magnitude gives the power

of the wavelet contribution. Therefore, in Snippet 2, the line

power = (np.abs(coej)) ** 2

calculates the power of the wavelet coefficients obtained from the CWT of the input signal.

This power is a measure of the energy distribution of the signal in the time-frequency plane,

and it is commonly used to create scalogram images that visualize the signal's time-frequency

characteristics.Taking the absolute value of the coefficients before squaring ensures that the

power values are always positive. Additionally, the squaring operation amplifies the

magnitudes, which can help in highlighting the important features in the scalogram image.

38

def c r e a t e _ i m a g e (s i g n a l , p a t h) :
s i g n a l _ c f , _ = _cwt_ image s i g n a l |
img = I m a g e . f r o m a r r a y (s i g n a l _ c f)
i m g _ r e s i z e d = i m g . r e s i z e ! (6 4 , 6 4)) . c o n v e r t (' R G B ')
p i t . i m s h o w (i m g _ r e s i z e d)
i n g _ r e s i z e d . f o r m a t = ' J P E G '
i m g _ r e s i z e d . s a v e (p a t h , ' J P E G ')

def p l o t _ c w t _ i m g (s i g n a l , p a t h) :
s i g n a l _ c f , f r e q s = _ c w t _ i m a g e (s i g n a l)

Resize the image to 64x64 pixels using PIL
img = I m a g e . f r o m a r r a y (s i g n a l _ c f)
i m g _ r e s i z e d = i m g . r e s i z e ! (6 4 , 64))

Convert the PIL image back to a numpy array
s i g n a l _ r e s i z e d = n p . a s a r r a y (i m g _ r e s i z e d)

P l o t the resized image with the original colormap
f i g , ax = p i t . s u b p l o t s f f i g s i z e = (5 , 5))
a x . i m s h o w (s i g n a l _ r e s i z e d , c m a p = ' v i r i d i s ' , a s p e c t = ' a u t o ' , i n t e r p o l a t i o n s ' n o n e ')
a x . s e t _ x l a b e l (' T i m e (s) ')
a x . s e t _ y l a b e l (' F r e q u e n c y (H z) ')

p l t . a x i s t ' o f f)
p l t . s a v e f i g (p a t h , b b o x _ i n c h e s = ' t i g h t ' , pad_ inches = 0)

plt.showO
p l t . c l o s e t f i g)

Snippet 3: A python function used to create the scalogram image out of the coefficients

obtained from the CWT

The following step will be representing the power of the signal into scalogram images and

since the CNN model expects fixed shape of input, all images are resized into 64x64 and

saved locally to be used as the training and testing data for our proposed CNN model. It is

generally a good idea to resize the images produced from the scalogram, but it is important to

carefully consider the trade-offs between computational cost and model performance.

Resizing images can help reduce the computational cost and memory requirements of the

model, as well as provide a consistent input size to the model. In addition, resizing can help

reduce the effects of image distortions caused by differences in the input signal, such as

variations in signal amplitude or duration. On the other hand, resizing the images can also

result in the loss of important information and details in the image. This can lead to a decrease

in the model's ability to distinguish between normal and pathological signals, ultimately

reducing sensitivity. Additionally, resizing the images can also introduce unwanted artifacts or

distortions that can negatively impact the model's performance. However due to computation

limitations resizing the images was a must in our case.

39

count = 0
f o r f i l e i n os. Ustdir(DATA_PATH):

Looping through all signals
i f f i l e . e n d s w i t h t " . h e a ") :

Preprocessing of removing long gaps, rolling mean for short gaps, removing noise
s ignal_path = Pa th (f i l e) . s t em
s i g n a l , f i e l d s = wfdb.rdsamptf 'ctu-hub/{signal_path}',sampfrom=0, channels=[0])
signal_gap_removed = remove_long_gaps(signal, 15)
signal_rm = f i l l_zeros_with_rol l ing_mean(s ignal_gap_removed, 5)
s igna l_art i factes_removed = remove_art i facts (s igna l_rm, 10)
s i gna l = s i gna l_a r t i f a c te s_ removed . f l a t ten !)
Creating images and saving them into training and testing directories
i f d f _ p a t i e n t s . l o c [i n t (s i g n a l _ p a t h)] [' t a r g e t '] :

i f i n t (s i gna l_path) in t ra in ing_pos_ ids :
p lot_cwt_img(s ignal , PATH_output_training+f"/{s ignal_path}_{l}.jpg")

e l s e :
plot_cwt_img(s ignal , PATH_output_testing+f"/{signal_path}_{l}. jpg")

e l s e :
i f i n t (s i gna l_path) in t ra in ing_neg_ ids :

p lot_cwt_img(s ignal , PATH_output_training+f"/{signal_path}_{0}.jpg")
e l s e :

plot_cwt_img(s ignal , PATH_output_testing+f"/{signal_path}_{0}. j pg")
count += 1
p r i n t (f ' f i l e {signal_path}: Transformation completed, length = { l en (s i gna l) } ')
p r i n t (f ' { coun t } f i l e s completed')

Snippet 4: A for loop iterating over all signals, cleaning and preprocessing it and then

converting it into a 64x64 image.

Modeling

The images are split into training and testing sets, where the testing set consists of 20% of the

entire dataset. The entire dataset is split in a way so that both training and testing sets contain

the same percentage of positive to negative classes. Shuffling the training data before feeding

it into a Convolutional Neural Network (CNN) model is a crucial step in preventing the model

from relying on any patterns or sequences that may exist in the data due to its order. Failure to

shuffle the data could result in the model learning to recognize specific patterns or sequences

in the data instead of learning the essential underlying patterns relevant to the task at hand.

This overfitting can lead to poor performance on new, unseen data. Shuffling the data removes

any potential biases resulting from the order of the examples. It randomly mixes up the data,

so the model sees a diverse range of examples during training. Consequently, the model can

learn the underlying patterns relevant to the task, without being biased by the order of the data.

Overall, shuffling the training data helps the C N N model to better generalize its learned

patterns to new and unseen data, thus improving its generalization performance. This is why

40

shuffling training data before passing it to a CNN model is an essential and common practice

in machine learning.

Shuffling the data
idx = np.random.permutat ion(len(X_tra in))
X _ t r a i n = X _ t r a i n [i d x]
y _ t r a i n = y _ t r a i n [i d x]

p r i n t (f X _ t r a i n shape: {X_t ra in . shape} ')
p r i n t (f y _ t r a i n shape: { y_ t ra in . shape} ')
p r i n t (f ' X _ t e s t shape : {X_test .shape} 1)
p r i n t (f y _ t e s t shape : {y_test . shape} ')

X _ t r a i n shape: (373, 32, 32, 3)
y _ t r a i n shape: (373, 2)
X_test shape : (179, 32, 32, 3)
y_tes t shape : (179, 2)

Snippet 5: Shuffling the training data, while also printing out the shape of the labels and
images set.

As we discussed in section III the CNN model consists of multiple layers and those layers are

defined using python libraries Keras. Keras is a powerful library that is capable of doing

complex computations running on top of Tensorflow, which is another deep learning

library. Both libraries are used to create the model seen in Snippet 6.

41

Define model
model = m o d e l s . S e q u e n t i a l ^)
m o d e l . a d d (l a y e r s . B a t c h N o r m a l i z a t i o n (m o m e n t u m = 0 . 7 5 , e p s i l o n = l e - 3))

Add convolution layer
m o d e l , a d d d a y e r s . Conv2D(15, (5 , 5) , s t r i d e s = (l , l) , p a d d i n g = ' v a l i d 1))
m o d e l . a d d (l a y e r s . R e L U ())

Add normalization layer
m o d e l . a d d (l a y e r s . B a t c h N o r m a l i z a t i o n (m o m e n t u m = 0 . 7 5 , e p s i l o n = l e - 3))

Add convolution layer
m o d e l . a d d d a y e r s . Conv2D(8, (3 , 3) , s t r i d e s = (l , l) , p a d d i n g = ' v a l i d '))
m o d e l . a d d (l a y e r s . R e L U ())

Add normalization layer
m o d e l . a d d (l a y e r s . B a t c h N o r m a l i z a t i o n (m o m e n t u m = 0 . 7 5 , e p s i l o n = l e - 3))

Add pooling layer
m o d e l . a d d d a y e r s . M a x P o o l i n g 2 D ((2 , 2) , s t r i d e s = (2 , 2) , p a d d i n g = ' v a l i d '))

Add fully-connected layer
m o d e l . a d d (l a y e r s . F l a t t e n ())
Add dropout layer
m o d e l . a d d (l a y e r s . D r o p o u t (0 . 5))
Add classification layer
m o d e l . a d d d a y e r s . D e n s e (2 , a c t i v a t i o n = " s o f t m a x "))

I
Snippet 6: The C N N is defined using Keras, the model consists of multiple layers and the
output layer uses softmax activation to decide on the output class.

The code defines a convolutional neural network (CNN) model that consists of several layers.

The first layer is a BatchNormalization layer, which normalizes the input data, helping to

improve the training and generalization performance of the model.Next, the model has two

consecutive Conv2D layers with ReLU activation functions. The ReLU activation function is

added after each Conv2D layer, which helps to introduce non-linearity into the model. This

nonlinearity is essential because FHR data is often non-linear in nature, and non-linear

activation functions allow the model to better capture these nonlinear relationships.

The first Conv2D layer has 15 filters of size (5, 5), while the second Conv2D layer has 8

filters of size (3, 3). These layers learn and extract features from the input data using

convolutional operations. The use of multiple Conv2D layers allows the model to learn more

complex and abstract representations of the input data, this is because each layer can learn to

recognize different features at different levels of abstraction, building on the previous layer's

42

learned representations.After the second Conv2D layer, another BatchNormalization layer is

added to normalize the output of the previous layer.

Normalizing the activations of the model's layers helps to prevent vanishing or exploding

gradients, which can slow down or prevent the model from learning.Next, a MaxPooling2D

layer is added, which reduces the spatial size of the data by selecting the maximum value from

a local pool of pixels. This helps to reduce the number of parameters in the model and make it

less prone to overfitting.Following the pooling layer, the data is flattened into a

one-dimensional array and passed through a Dropout layer.

Dropout is a regularization technique that randomly drops out a fraction of the activations

during training, helping to prevent overfitting by forcing the model to learn more robust

features.Finally, a Dense layer with a softmax activation function is added for classification

purposes. This layer outputs a probability distribution over the two possible classes in the

model.

metrics = [keras.metrics.AUC()]
metr i c s = [' a c cu r a c y ']
opt = opt imizer s .SGD(learn ing_rate=0.01, momentum=0.9)
l o s s = 1 b i n a r y _ c r o s s e n t r o p y 1

Compile model
mode l .compi le (opt imizer=opt , lo s s= lo s s , metr ics=metr ics)

batchsize = 25
epochs = 150
Create data generators
train_datagen = ImageDataGeneratorf)
test_datagen = ImageDataGeneratort)

train_generator = t ra in_datagen.f low(X_tra in, y _ t r a i n , batch_size=batchsize)
test_generator = test_datagen.flow(X_test, y_test , batch_size=batchsize)

Train model
hi s tory = model . f i t (t ra in_generator ,

steps_per_epoch=len(X_train) // batchs ize,
epochs=epochs,
val idation_data=test_generator,
val idation_steps=len(X_test) // batchsize)

Snippet 7: Defining the metrics and the optimizing algorithm (TOP), and setting up the
batchsize and the epochs of the model and fitting the model (BOTTOM).

43

Due to time and computation constraints of training such a model, a few hyperparameters

were decided on after a few experiments.The Batch size and the number of epochs are two

important hyperparameters used in training Convolutional Neural Networks (CNNs).Batch

size refers to the number of training samples processed in a single forward/backward pass

during training. In other words, the training data is divided into multiple batches, and the

model is trained on each batch sequentially.

The batch size determines the amount of memory required to train the model and can also

affect the accuracy of the model. Larger batch sizes can provide faster training times, but may

cause the model to generalize poorly on the validation data. On the other hand, the number of

epochs refers to the number of times the entire training dataset is passed through the network

during training. Increasing the number of epochs allows the model to learn from the data more

times, which can improve its accuracy. However, training for too many epochs can lead to

overfitting, where the model memorizes the training data instead of learning the underlying

patterns. Choosing the optimal batch size and number of epochs is a crucial step in training

CNNs, as it can have a significant impact on the model's performance. It is important to strike

a balance between the two hyperparameters, as the batch size and number of epochs can have

an inverse relationship with each other. In general, a smaller batch size requires more epochs

to achieve the same level of accuracy as a larger batch size. The model in Snippet 7 compiles a

Convolutional Neural Network (CNN) model using the Stochastic Gradient Descent (SGD)

optimizer with a learning rate of 0.01 and momentum of 0.9 [13].

SGD is an iterative optimization algorithm that aims to minimize the loss function of a

machine learning model. It works by taking small steps in the direction of the negative

gradient of the loss function with respect to the model parameters. This process is repeated

many times until the model reaches a minimum point in the loss function space.In image

classification tasks, the goal is to train a model that can accurately classify images into their

respective categories. The loss function used in these tasks is typically a categorical

cross-entropy loss, which measures the difference between the predicted probabilities and the

actual labels of the images.There are many optimization algorithms available for training deep

neural networks in python, such as Adam, Adagrad, and RMSprop. However, SGD is a

44

popular choice due to its simplicity and effectiveness in many scenarios. SGD is

computationally efficient, requires little memory, and has been shown to work well in practice

for many image classification tasks. One advantage of SGD over other optimization

algorithms like Adam is that it can help prevent overfitting, which occurs when a model

becomes too complex and memorizes the training data instead of generalizing to new data.

SGD achieves this by updating the model parameters based on a randomly selected subset of

the training data, rather than the full dataset used by Adam. This random sampling of the data

helps prevent the model from memorizing the training data and encourages it to learn more

generalized patterns.

We mentioned that SGD minimizes a certain loss function, in this paper we propose using the

binary cross-entropy loss function. In this loss function, the predicted output values are

compared to the true output values, and the difference between them is quantified as the

cross-entropy loss. The goal of the optimization algorithm, in this case, SGD, is to minimize

this loss function to improve the model's performance.One advantage of using binary

cross-entropy loss over other loss functions is that it is a simple and effective way to measure

the difference between the predicted and true output values. The loss function is

mathematically well-defined and has desirable properties that make it easy to optimize using

algorithms like SGD. Another advantage of binary cross-entropy loss is that it is well-suited

for probabilistic output models, such as logistic regression and neural networks, which are

commonly used in image classification tasks. The loss function allows the model to output

probabilities, which can be thresholded to make binary classifications.Finally, the compile

method is called on the C N N model object, with the optimizer, loss, and metrics parameters

specified. This method in Snippet 7 configures the model for training by specifying the

optimizer to use, the loss function to minimize during training, and the evaluation metric to

monitor during training.

45

t e s t _ l o s s , t e s t _ a c c = m o d e l . e v a l u a t e (X _ t e s t , y _ t e s t)

6/6 [==============================] - 0s 4 m s / s t e p - l o s s : 1 .3769 - a c c u r a c y : 0 . 7486

y_pred = mode l .p red i c t (X_ te s t)

Compute confusion matrix
y_pred_classes = np.argmax(y_pred, ax i s= l)
con f jna t = con fu s i on_mat r i x (y _ t e s t [: , 1] , y_pred_classes)

Get sensitivity and specificity
t n , f p , f n , tp = conf_mat. rave l ()
se = tp / (tp + fn)
sp = tn / (tn + fp)

p r i n t (' S e n s i t i v i t y : 1 , se)
p r i n t (' S p e c i f i c i t y : 1 , sp)

S e n s i t i v i t y : 0.3
S p e c i f i c i t y : 0.8389261744966443

Snippet 8: Calculating both the accuracy (TOP) and the confusion matrix (BOTTOM) of the

model.

After training the model using a portion of the available data, the remaining testing data was

used to evaluate the performance of the model. The accuracy and confusion matrix were

calculated to assess the model's ability to correctly classify the testing data. The results

indicate that the model achieved an accuracy of 75%, with a sensitivity of 0.3 and specificity

of 0.84. These findings demonstrate that the model's performance is comparable to the clinical

benchmark, which has a sensitivity of 0.49 and specificity of 0.78 [20]. Furthermore, the

potential for further exploration and modifications, including fine-tuning, presents an

opportunity for improved results. Overall, this approach shows promise in achieving effective

classification of the tested data.

Cloud Architecture

Networking

The first step of implementing the infrastructure for our CAD system is to set up the

networking components so our system can communicate with each other. Multiple cloud

providers provide multiple abstractions for networking. One of the main components of our

46

infrastructure is the VPC.A Virtual Private Cloud (VPC) is a secure and isolated virtual

network within a cloud environment that allows users to deploy their resources in a private,

customizable space. VPCs offer a high level of control and flexibility over network

configuration, enabling users to define their own IP address ranges, subnets, and routing

tables. This way, organizations can create their own virtual data center in the cloud, which can

be accessed securely from anywhere, making it easier to manage and scale their resources. The

security of VPCs is reinforced through advanced features like network access control lists,

security groups, and V P N connections, providing additional layers of protection against cyber

attacks.

It is really important to identify how to architect our network, there are multiple design

patterns and the one we are proposing in this paper is the hub-spoke design pattern. Hub and

spoke architecture is a popular design pattern that is widely used to create a scalable and

flexible network infrastructure in cloud computing environments. This architecture involves

the centralization of core resources, referred to as the hub, while distributing the remaining

resources or spokes to peripheral locations. In this way, the hub acts as a central point of

control, and the spokes serve as satellite locations where users and applications can access the

services provided by the hub. This approach simplifies network management, improves

security, and enhances overall performance by reducing the number of connections that need

to be managed.

When it comes to implementing machine learning models and monitoring them, the hub and

spoke architecture can be a valuable tool. By centralizing machine learning resources in the

hub, such as the data lake, model training tools, and monitoring tools, organizations can ensure

consistency and reliability in their machine learning workflows. The spokes can be used to

deploy the machine learning models to the edge, enabling users to access the models from any

location, while ensuring that the data stays secure and is compliant with relevant regulations.

Furthermore, the hub and spoke architecture can improve the monitoring and management of

machine learning models by providing a central location for data collection and analysis.

Monitoring tools can be deployed in the hub, allowing for the collection of data on model

47

performance, data quality, and other metrics. This data can then be analyzed to identify trends,

anomalies, and other insights, allowing organizations to optimize their machine learning

models and workflows. In summary, implementing a hub and spoke architecture in AWS can

provide a scalable, secure, and efficient infrastructure for deploying and monitoring machine

learning models.

Hospital
1

1 @ V P N

V P C

sagemaksr
endpon:

Hospital
specific
Apps

HUB V P C

Hospital
2

(ja)v™
V P C

sagemak
endpon

Hospital
specific

®
Shared Services:
- Monitoring Service
- Security Services
- Computing Services

Hospital
3

91 J V P N

V P C

sagernak
endpon 1

Hospital
specific
Apps

Figure 10: Proposed network architecture of the CAD system in which multiple hospitals

could benefit from hosting the model on the cloud

As seen in Figure 10, the hub and spoke architecture can help us decouple our system

components on the cloud in which we specify a VPC for each hospital that wishes to use the

CAD system. Hospitals will be able to use the model to classify the FHR signals while giving

the freedom to their R&D departments to design specific applications for their needs without

affecting other hospitals or departments. In Figure 10, each hospital on premise systems will

48

be integrated to the cloud using a VPN, this ensures that sensitive data related to the patients

are sent in a secure and encrypted way. Each VPC assigned to a hospital will have a

sagemaker endpoint, we later in this paper introduce sagemaker and its capabilities but to put

it simply, the sagemaker endpoint is just an api endpoint that will call our model to predict

given an input. Finally, all VPCs will be connected to the main HUB VPC which allows us to

monitor and secure the entire architecture using AWS managed services or the hospitals' IT

services.

Data Storage

In this section, we introduce the CAD system and its various components, discussing how

each component can be implemented. To illustrate the proposed solutions, we will use AWS as

our cloud provider, though it is worth noting that most cloud providers offer similar services.

The first part of our system is the data storage. RDS or Amazon relational database service is

proposed here. RDS on AWS offers numerous advantages over the storage server used in OB

TraceVue. One of the primary benefits is that RDS is a fully managed database service,

meaning that AWS takes care of much of the underlying infrastructure, such as server

maintenance, backups, and software updates. This allows healthcare providers to focus on

patient care rather than IT management. Additionally, RDS supports a range of relational

databases, including MySQL, PostgreSQL, and Oracle, providing greater flexibility in terms

of data storage options. Another key advantage of RDS is its scalability. With RDS, healthcare

providers can easily scale their databases up or down as needed, depending on changing

patient volumes or other factors. Finally, RDS provides strong security features, including

encryption at rest and in transit, network isolation, and role-based access control. Setting up

RDS is as simple as clicking a few buttons on the AWS portal. There are important things to

keep in mind while creating an RDS for FHR signals like the database engine and the size of

the database. For FHR signals, a suitable choice could be Amazon Aurora or MySQL, as they

are both well-suited for storing large amounts of time-series data and can scale easily to

accommodate growth in the dataset. Additionally, they both support high write volumes and

provide robust data consistency and durability guarantees. Amazon Aurora, in particular, is a

highly available and durable database engine that is designed for high-performance workloads.

49

It uses a distributed storage architecture that provides automatic failover and supports up to 15

read replicas, making it a good choice for applications that require high availability and low

latency. It also supports storage autoscaling, which automatically increases storage capacity as

needed, making it well-suited for use cases where the size of the FHR signals data may be

unpredictable. The database will be responsible for storing the patient data as well as the FHR

signals related to the patient.

In conventional FHR monitoring systems such as OB TraceVue, the FHR signal is typically

acquired and stored in a dedicated database located on an internal server. To utilize the

cloud-based RDS effectively, it is necessary to enable the real-time transfer of the FHR signal

from the internal server to the cloud RDS, this could be simply made using Amazon Kinesis.

Amazon Aurora is used to store the FHR signal data, however Amazon Kinesis will be used

for streaming the data from OB TraceVue to Aurora. Kinesis can also help with real-time

processing of the data as it's being streamed, allowing us to run analysis and machine learning

models in real-time. Additionally, Kinesis allows for easy integration with other AWS

services, such as Lambda functions or Amazon SageMaker for model training and

deployment.

Amazon Kinesis can be used to ingest data from various sources, including FHR signals

obtained from multiple servers in a medical environment. Kinesis data streams are used to

collect and store this data in shards, which are the basic units of stream throughput, and enable

parallel data processing. Kinesis client applications can be developed to consume the data

from these streams and process it using AWS Lambda, Amazon Kinesis Client Library (KCL),

or other custom applications. Kinesis also provides built-in integrations with other AWS

services such as Amazon S3, Amazon Redshift, and AWS Lambda for easy processing,

transformation, and storage of the streaming data. With Kinesis, healthcare professionals can

easily and efficiently collect and process FHR data in real-time, enabling them to make

informed decisions about patient care or to prepare them for modeling.

First, we would need to create a Kinesis data stream in AWS and configure it to receive data

from the OB TraceVue system. This could involve setting up a Kinesis agent on the OB

50

TraceVue network to send the data to the Kinesis stream. Once the data is streaming into the

Kinesis data stream, we could use AWS Lambda functions to process and transform the data

as needed, and then load it into an RDS database in AWS. The Lambda functions can be

triggered by events in the Kinesis data stream, such as the arrival of new FHR data. To ensure

data security and compliance, we would also need to consider the encryption and access

controls for the data both during transmission and storage. AWS provides various security

features, such as encryption at rest and in transit, I A M policies, and VPCs, to help secure your

data.

On Premis

internal DB

VPC

ETL Lambda
Formatting

Kinesis
sevice

ETL Lambda
Cleaning

S3 bLckets Database
Migration
Service

ETL Lambda
Scalogram transformation

Aurora db
Clean signals

S3 bucket
Images

Figure 11: Infrastructure diagram to show the data streaming components proposed, which is

responsible for streaming the FHR signals using Kinesis, transforming it, and loading to

multiple S3 buckets to prep it for the model.

As seen in Figure 11, the Kinesis agent is installed on the on premise network and connected

to the internal database where all the FHR signals are stored. The Kinesis service is

responsible for streaming the data from on premise to the cloud. Different companies use

different technologies to obtain the FHR signals and saves them into records in proprietary

format, thus it is essential to format the signals into the needed format so we can use the fact

that Kinesis service could be integrated with Lambda function and invoke a Lambda function

to format the FHR signals. The S3 bucket will serve as a placeholder for all raw FHR signals

in which we perform more ETL processes. The second Lambda function will be responsible

51

for cleaning the data, the function will be triggered as soon as the data is streamed to the S3

bucket and it will be coded in a similar way to Snippet 1.

The Lambda function will encapsulate the preprocessing steps described before and could be

scaled when needed. The output of this function will be loaded into an S3 bucket. This S3

bucket will contain the clean FHR data which will serve as a single, authoritative source of

information that can serve as a foundation for any future efforts to build a more dependable

system. Researchers and doctors could now easily access those clean FHR data to expand their

research without worrying about collecting the data. In this scenario, all FHR signals will be

easily accessible and available.

We then use the AWS database migration which is a fully managed service, that allows us to

easily migrate data from one source to another, in our case, the migration of denoised FHR

signals takes place from the S3 buckets to the aurora database and to other S3 buckets

specifically for images storage.

Data Modeling and Computing

MLOps is an emerging discipline that seeks to apply DevOps practices to machine learning

workflows. By automating the entire machine learning lifecycle, MLOps can help to reduce

the time, cost, and complexity of building, training, and deploying machine learning models.

One of the key benefits of MLOps is its ability to enable the scaling of machine learning

models to meet the needs of modern enterprise applications. In particular, Convolutional

Neural Networks (CNNs) have been widely used for image classification tasks, leveraging the

power of deep learning algorithms to identify and classify images. To leverage the benefits of

CNNs on the cloud, AWS SageMaker can be used to train, test, and deploy the model to

classify images obtained from scalogram of FHR signals stored in the S3 bucket.

AWS SageMaker is a fully-managed service that provides a comprehensive platform for

building, training, and deploying machine learning models at scale. With SageMaker, users

can quickly and easily build and train machine learning models using a variety of built-in

52

algorithms or custom code. The service automates the process of training and tuning models,

enabling developers and researchers to focus on developing the best algorithms for their

specific use case. SageMaker also includes capabilities for deploying and managing machine

learning models in a scalable and cost-effective manner, allowing organizations to easily

integrate machine learning into their applications.

By using AWS SageMaker to train, test, and deploy the C N N model to classify images

obtained from scalogram of FHR signals stored in an S3 bucket, organizations can realize

several benefits. Firstly, the cloud-based approach enables the processing of large datasets in a

scalable and cost-effective manner. Secondly, SageMaker simplifies the development, training,

and deployment of machine learning models, enabling organizations to rapidly iterate and

optimize their models for accuracy and performance. Finally, by leveraging AWS storage

services such as S3, organizations and clinics can benefit from highly available, secure, and

durable end to end solutions, ensuring that the service is always accessible, protected and

reliable.

•
C i e - t

Subnet

Public subnet

N o t e b o o ^ T ^
Internet

gateway

Public subnet

IM

Training Container

ft
AWS managed

services

Sca logram
images

53

Figure 12: Showing the MLOPS architecture of the model deployed on AWS, a subnet

containing an instance of the machine learning model, while another subnet contains

computing containers that scale to train the model. This subnet will be placed in the hub VPC

Security and Compliance

The use of MLOps and AWS SageMaker for image classification tasks has significant

implications for security and compliance. With the increasing importance of data privacy and

security, organizations need to ensure that their machine learning models do not compromise

sensitive information. By building, training, and deploying machine learning models on the

cloud, organizations can leverage the security and compliance features of AWS, including

encryption, access control, and audit trails.

AWS provides a range of security features that are designed to help customers meet their

compliance requirements. These include robust identity and access management capabilities,

network security controls, and data protection features. AWS also provides compliance

programs, such as PCI DSS, FflPAA, and SOC 2, which enable customers to meet their

regulatory obligations. Additionally, AWS offers a range of services that can help customers

manage their security and compliance requirements, such as AWS Config, AWS CloudTrail,

and AWS Security Hub.

With MLOps and SageMaker, organizations can ensure that their machine learning models are

built, trained, and deployed in a secure and compliant manner. By leveraging the security and

compliance features of AWS, organizations can build and deploy models that are protected

from unauthorized access and ensure that data privacy is maintained. Additionally, the use of

MLOps practices enables organizations to manage the entire machine learning lifecycle,

including testing, deployment, and monitoring, in a secure and compliant manner.

54

V. Results and Discussion

In the modeling part in section IV, we fitted a C N N model on the training images created from

the scalogram and we were able to obtain relatively satisfactory results close to the clinical

benchmark with specificity even surpassing the benchmark, however we believe that there is

room for improvements. The first observation of our model is that the model is struggling to

identify the pathological signals thus the low sensitivity. One possible reason for the low

sensitivity could be the imbalanced dataset. If the number of normal cases in the dataset is

much higher than the number of pathological cases, the model may not be able to learn enough

information about the pathological cases, leading to poor performance on these cases. In such

cases, using data augmentation techniques or oversampling the pathological cases may help to

balance the dataset and improve the model's sensitivity.

One common technique is to duplicate existing samples from the minority class to match the

number of samples in the majority class. However, this may lead to overfitting, where the

model learns to simply memorize the duplicated samples. Another approach is to generate

synthetic samples using techniques such as Synthetic Minority Over-sampling Technique

(SMOTE), where new samples are created by interpolating between existing samples in the

minority class. This can help to provide new information to the model and improve its

performance on the minority class.

Data augmentation techniques can also help to improve model performance by generating new

training samples from existing ones. For image data, this can include techniques such as

rotation, scaling, and flipping. In the context of scalogram images, additional techniques such

as adding noise, blurring, or changing the color map could be used. These techniques can help

to simulate variations in the data and provide the model with more diverse examples to learn

from. We propose for future implementation to include one of those techniques to help

increase the sensitivity of the model.

Another novel and creative technique used to treat imbalanced data is creating Generative

Adversarial Networks as described in [21]. Generative Adversarial Networks (GANs) are a

55

type of deep learning algorithm that involves two neural networks, a generator and a

discriminator, that work together to generate new data samples that are similar to a given

dataset.

The generator network learns to generate synthetic data samples that are similar to the real

data, while the discriminator network learns to distinguish between the real and synthetic

samples. The two networks are trained in a feedback loop, where the generator tries to produce

more realistic samples to fool the discriminator, while the discriminator tries to identify the

synthetic samples.

GANs can be used to treat imbalanced data by generating synthetic data samples for the

underrepresented class, thus increasing the size of the minority class and balancing the dataset.

This can improve the performance of classification models by providing more training

examples for the minority class, which can be important in many real-world applications

where the cost of misclassification is high for the minority class. However, it's important to

note that the synthetic samples generated by GANs may not always accurately reflect the

underlying distribution of the data, so their usefulness for imbalanced data depends on the

specific application and the quality of the generated samples. Puspitasari, Riskyana Dewi, et

al [21] were able to showcase this approach in their paper and successfully were able to

increase the performance of multiple different models.

Another reason could be the feature engineering and by feature engineering here we imply all

the steps taken to produce the training data for our model, including the preprocessing steps.

One vital observation worth mentioning is that even after denoising the signal, we might have

not cleaned the signal entirely, as removing the artifacts could have introduced new artifacts,

some are even visible in Figure 8. We can see in that figure that we removed most of the noise,

however we notice visible spikes in the FHR which might have hindered the CNN model

performance, so we suggest also interpolating the values in the FHR signals that causes this

spikes and after careful reviewing we found out that [13] also mentioned this problem in his

paper and how it is treated.

56

In addition to that we believe the scalogram transformation might not be enough. While the

scalogram images may provide useful features for classification, it is possible that there are

other features in the data that could help to improve the model's performance. For example,

extracting time-domain features such as mean and standard deviation of the signal may

provide additional information that the model can use to improve its sensitivity. Since this

paper focused entirely on letting the model choose its own features without implicitly

extracting the important features, this idea was discarded, however some publications were

able to benefit from both approaches by creating an ensemble model that combines both

machine learning model fed with time domain extracted features and a deep learning model.

The choice of wavelet function for generating the scalogram can also affect the sensitivity of

the CNN model. In our case, we used the Morlet wavelet to generate the scalogram images

from the FFIR signals. However, different wavelet functions may have different frequency

responses and resolutions, which can impact the representation of the signal in the image and,

in turn, affect the performance of the model. For example, if the Morlet function has poor

resolution at the frequency range where the pathological signals are concentrated, the resulting

scalogram images may not contain enough information to enable the model to accurately

classify these signals. In contrast, choosing a wavelet function that has better resolution in the

relevant frequency range may result in more informative images, and potentially lead to higher

sensitivity. So experimenting with different wavelets could lead to better sensitivity however

the choice of the Morlet function was taken due to the reasons described in section III.

Finally, the model architecture may also play a role in the low sensitivity. Different

architectures have different strengths and weaknesses. Experimenting with different

architectures, such as adding more layers or changing the activation functions, may help to

improve the model's sensitivity.

VI. Conclusion

To conclude this paper, we start by summarizing the problem that obstetricians face.

Obstetricians face the challenge of accurately interpreting FHR signals and identifying any

57

abnormalities that may indicate hypoxia, a condition where the fetus is not receiving sufficient

oxygen supply. It is critical to analyze FHR signals promptly and interpret them correctly to

ensure the well-being of both the fetus and the mother. By detecting abnormalities early,

doctors can make informed decisions regarding the delivery process, potentially reducing the

number of unnecessary cesarean operations resulting from misinterpretation of FHR signals

and false concerns about fetal health. The accurate and timely analysis of FHR signals is

crucial in ensuring a safe and healthy delivery process.

We then proposed a CAD system that utilizes deep learning to help doctors classify and

analyze FHR signals and discussed the challenges and benefits of creating such a system. We

explained the main components of the system which includes the data, the model and the

infrastructure

Each component was examined starting with the data in which we discussed multiple

preprocessing steps that are necessary for signal denoising and cleaning and then explained the

different techniques researchers used to transform FHR signals into more meaningful

representations. We explored wavelet transformations and pointed out its advantages as well as

its limitations and proceeded with transforming the signals into 2D images. Those images

were then fed to a C N N model to be trained and then tested the model on a completely

different subset of the data than the one used for training to classify the images into normal

and abnormal. Even though the specificity of the model (84%) was higher than the clinical

benchmark, we observed low sensitivity (30%) which made us investigate more on why that

happened and concluded with multiple reasoning behind that, in which the occurrence of

imbalance data was the main culprit.

We finally proposed the framework of deploying the model to the cloud for it to be used and

integrated with the existing infrastructure. We explained why deploying to the cloud will be

beneficial and can help us overcome a lot of the challenges that can occur from deploying an

AI system to an existing environment. We mentioned the security benefits as well as the

scalability, availability and reliability of such systems.

58

In the end, this paper is aimed to reduce the gap between academic research and real-world

healthcare settings while showcasing the advantages of closing this gap. By demonstrating the

practical benefits of such a system, this paper aims to accelerate the integration of AI solutions

in medical care and highlight the potential for these technologies to enhance patient outcomes.

Ultimately, the hope is that this work can help facilitate a more seamless integration of AI in

medical settings and advance the field of obstetrics by improving the accuracy and efficiency

of FHR signal analysis.

59

VII. References

[1] Chudáček, V, et al. "Automatic Evaluation of Intrapartum Fetal Heart Rate Recordings: A
Comprehensive Analysis of Useful Features. " Physiological Measurement, vol. 32, no. 8, July
2011, pp. 1347-60, https://doi.Org/10.1088/0967-3334/32/8/022. Accessed 30Mar. 2023.
[2] Lavender, Tina, et al. "Effect of Different Partogram Action Lines on Birth Outcomes. "
Obstetrics & Gynecology, vol. 108, no. 2, Aug. 2006, pp. 295-302,
https://doi.org/10.1097/01.aog.0000226862.78768.5c. Accessed 3May 2022.
[3]Alfirevic, Zarko, et al. "Continuous Cardiotocography (CTG) as a Form of Electronic
Fetal Monitoring (EFM) for Fetal Assessment during Labour." Cochrane Database of
Systematic Reviews, vol. 2, no. 2, 3 Feb. 2017,
[4] Blix, Ellen, et al. "Inter-Observer Variation in Assessment of 845 Labor Admission Tests:
Comparison between Midwives and Obstetricians in the Clinical Setting and Two Experts. "
Obstetrical & Gynecological Survey vol. 58, no. 6, June 2003, pp. 371-373,
https://doi.org/10.1097/01.ogx.0000070123.68903.le. Accessed 13Dec. 2021.
[5] Ayres-de-Campos, D., Spong, C. Y., Chandraharan, E., & FIGO Intrapartum Fetal
Monitoring Expert Consensus Panel. (2015). FIGO consensus guidelines on intrapartum fetal
monitoring: cardiotocography. International Journal of Gynecology & Obstetrics, 131(1),
13-24.
[6] Topol, Eric J. "High-Performance Medicine: The Convergence of Human and Artificial
Intelligence." Nature Medicine, vol. 25, no. 1, Jan. 2019, pp. 44-56,
https://doi. org/10.1038/s41591-018-0300-7.
[7] Kumar, Pranjal, et al. "Artificial Intelligence in Healthcare: Review, Ethics, Trust
Challenges & Future Research Directions." Engineering Applications of Artificial
Intelligence, vol. 120, Apr. 2023, p. 105894, https://doi.Org/10.1016/j.engappai.2023.105894.
Accessed 30 Jan. 2023.
[8] Chudáček, Václav, et al. "Open Access Intrapartum CTG Database. " BMC Pregnancy
and Childbirth, vol. 14, no. 1, 13 Jan. 2014, https://doi.org/10.1186/1471-2393-14-16.
Accessed 1 Apr. 2020.
[9] Ramanah, Rajeev, et al. "Predicting Umbilical Artery PH during Labour: Development
and Validation of a Nomogram Using Fetal Heart Rate Patterns. " European Journal of
Obstetrics & Gynecology and Reproductive Biology, vol. 225, June 2018, pp. 166-171,
https://doi.org/10.1016/j.ejogrb.2018.04.008. Accessed 30 Mar. 2023.
[10] Kashanian, M., et al. "Pregnancy Outcome Following a Previous Spontaneous Abortion
(Miscarriage). " Gynecologic and Obstetric Investigation, vol. 61, no. 3, 2006, pp. 167-170,
https://doi.org/10.1159/000091074. Accessed 12 Apr. 2021.
f 11 J Goudar, Shivaprasad S., et al. "Stillbirth and Newborn Mortality in India after Helping
Babies Breathe Training." Pediatrics, vol. 131, no. 2, 1 Feb. 2013, pp. e344-e352,
https://doi.org/10.1542/peds.2012-2112. Accessed 31 Mar. 2023.

60

https://doi.Org/10.1088/0967-3334/32/8/022
https://doi.org/10.1097/01.aog
https://doi.org/10.1097/01.ogx.0000070123.68903.le
https://doi
https://doi.Org/10.1016/j.engappai.2023.105894
https://doi.org/10.1186/1471-2393-14-16
https://doi.org/10.1016/j.ejogrb.2018.04.008
https://doi.org/10.1159/000091074
https://doi.org/10.1542/peds.2012-2112

[12] Zhao, Zhidong, et al. "A Comprehensive Feature Analysis of the Fetal Heart Rate Signal
for the Intelligent Assessment of Fetal State. " Journal of Clinical Medicine, vol. 7, no. 8, 20
Aug. 2018, p. 223, www.ncbi.nlm.nih.gov/pmc/articles/PMC6111566/,
https://doi.org/10.3390/jcm7080223. Accessed 8 Oct. 2021.
[13] Zhao, Zhidong, et al. "DeepFHR: Intelligent Prediction of Fetal Acidemia Using Fetal
Heart Rate Signals Based on Convolutional Neural Network. " BMC Medical Informatics and
Decision Making, vol. 19, no. 1, Dec. 2019, https://doi.org/10.1186/sl2911-019-1007-5.
Accessed 31 Mar. 2023.
[14] Casas, O., et al. 'Fetal acidemia prediction using fetal heart rate signal analysis and
support vector machine." IEEE Transactions on Biomedical Engineering, vol. 65, no. 3, 2018,
pp. 521-530.
[15] Zhu, Mengni, and Liping Liu. "Fetal Heart Rate Extraction Based on Wavelet Transform
to Prevent Fetal Distress in Utero. " Journal of Healthcare Engineering, vol. 2021, 29 Sept.
2021, pp. 1-7, https://doi.org/10.1155/2021/7608785. Accessed 5 Feb. 2023.
[16] Srivastava, N, Hinton, G., Krizhevsky, A., Sutskever, I, & Salakhutdinov, R. (2014).
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15(1), 1929-1958
[17] Zhao, Y., Gao, X., Li, M., Wang, S., & Zhang, D. (2019). DeepFHR: intelligent prediction
of fetal acidemia using fetal heart rate signals based on convolutional neural network. BMC
Medical Informatics and Decision Making, 19(Suppl 7), 270.
[18] Ozturk, Ibrahim, et al. 'Fetal Heart Rate Classification using Deep Neural Networks and
Wavelet Transform." Expert Systems with Applications, vol. 160, 2020, p. 113698.
ScienceDirect
[19] Ponsiglione, Alfonso Maria, et al. "A Comprehensive Review of Techniques for
Processing and Analyzing Fetal Heart Rate Signals. " BioMed Research International, vol.
2017, 2017, pp. 1-15, doi:10.1155/2017/7906284.
[20] Abry, P., Spilka, J., Leonarduzzi, R., Chudáček, V, Pustelnik, N, & Doret, M. (2018).
Sparse learning for intrapartum fetal heart rate analysis. Physiological Measurement, 39(5),
054002. doi: 10.1088/1361-6579/aababb
[21] Puspitasari, Riskyana Dewi, et al. "Generative Adversarial Networks for Unbalanced
Fetal Heart Rate Signal Classification." ICT Express, vol. 8, no. 2, 2022, pp. 239-243.,
https://doi.Org/10.1016/j.icte.2021.06.007.

61

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111566/
https://doi.org/10.3390/jcm7080223
https://doi.org/10.1186/sl2911-019-1007-5
https://doi.org/10.1155/2021/7608785
https://doi.Org/10.1016/j.icte.2021

