
BRNO UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Intelligent Systems

Mgr. Be. Hana Pluháčková

Appl icat ion of Genetic Algori thms and Data
M i n i n g in Noise-Based Testing of Concurrent

Software

Využit í genetických algoritmů a dolování z dat v testování
paralelních programů s využi t ím šumu

E X T E N D E D A B S T R A C T OF A P H D THESIS

Supervisor: Prof. Ing. Tomáš Vojnar, Ph.D.

Key Words
Testing, concurrent programs, data mining, genetic algorithms, Ada-
Boost, lasso algorithm, noise injection.

Klíčová slova
Testování, paralelní programy, dolování z dat, genetické algoritmy,
AdaBoost, lasso algoritmus, vkládání šumu.

The original of the thesis is available in the library of Faculty of Infor­
mation Technology, Brno University of Technology, Czech Republic.

Contents
1 Introduction 5

1.1 Analysis and Verification of Programs 5
1.2 Verification of Concurrent Programs 7
1.3 Goals of the Thesis 8

2 Preliminaires 9
2.1 Noise Injection 9

2.1.1 Noise Seeding Heuristics 10
2.1.2 Noise Placement Heuristics 11

2.2 Methods Used in Thesis 12

3 An application of Genetic Algorithms in Noise-based
Testing 15
3.1 Experimental evaluation 16

4 Using Data Mining in Testing of Concurrent Programs 21
4.1 Analysis of Knowledge Hidden in Obtained Classifiers . 22
4.2 Fully-Automated Noise-based Testing

with AdaBoost 25

5 Prediction Coverage of Expensive Metrics from Chea­
per Ones 29
5.1 Using Correlations of Metrics to Optimize

Noise-based Testing 31

6 Conclusion 38

Bibliography 42

Curriculum Vitae 45

Abstract 46

4

1 Introduction
Since programming is demanding and programmers always make mis­
takes, it is important to verify programs as carefully as possible. How­
ever, program verification is not easy, and some errors are very difficult
to find. On the other hand, when a program fails, the consequences
can be very expensive.

An example of such an expensive failure is the software failure that
interrupted the New York Mercantile Exchange and telephone service
to several East Coast cities in February 1998. Overall, estimates of
the economic costs of faulty software in the U.S. range in tens of billions
of dollars per year and they present approximately just under 1 percent
of the nation's gross domestic product [Tas02].

Hence, proper methods for finding errors in computer programs
and/or for verifying their correctness are highly needed, and a lot of
research effort is invested into developing new approaches for analysis,
verification, and testing.

1.1 Analysis and Verification of Programs
There are various approaches how to analyze and verify programs
and how to detect errors in the programs. From a high-level point
of view, these methods can be divided to (1) methods of testing and
dynamic analysis, and (2) methods of static analysis ranging from
light-weight approaches (error patterns) to heavier-weight approaches
(such as model checking, abstract interpretation, or theorem proving).
Some of the latter approaches can be considered as formal verifica­
tion approaches that can prove correctness of a system with respect to
a specification (not just find errors).

A n ideal verification tool would be a tool that has the following fea­
tures: full automation (no human help is needed), soundness (a pro­
gram found correct is indeed correct, i.e., no false negatives), com-

•5

pleteness (reported errors are real; no false alarms), and termination
(meaning that verification always terminates). However, due to un-
decidability and state explosion, the ideal is usually not achievable.
Many verification methods do not guarantee termination and/or can
cause false alarms, are not fully automatic, or do not scale well. In
the following paragraphs, the basic types of analysis and verification
methods are introduced in some more detail.

Program Testing. In program testing, a programmer writes a test
or the test is generated from a high-level specification. An error in
the program or in the test case is detected if the expected output
is not achieved or if the program fails before producing the output.
Program testing checks the code along the execution trace of the test
case only. This method is the most common way of finding errors in
programs nowadays.

Dynamic Analysis. This technique also detects errors along exe­
cution traces. However, instead of checking outputs of a test, dynamic
analysis automatically gathers information about the execution (the or­
der of locking, the order of accessing shared memory locations, etc.)
and analyses the gathered information with an intention to discover
abnormal execution conditions. Usually, some kind of instrumenta­
tion that injects some additional code into the original code is used to
gather the information. The information can be analyzed on-the-fly,
during the execution, or post-mortem, after the end of the execution.
Although the analysis gathers information concerning a single or se­
veral executions, sometimes, if some approximation is performed, it
can discover even errors that are not directly on the witnessed exe­
cution traces. In the best-case scenario, a dynamic analysis is sound
and complete with respect to the examined execution traces, but it is
usually unsound with respect to all possible execution traces.

Static Analysis. Static analysis is based on a compile-time analy­
sis. Some static analyses require for the code to be compilable only, al­
though some heavy-weight static analysis approaches need the code to

6

be runnable, too. These methods usually infer abstraction of the pro­
gram behaviour from the code and try to find errors in this abstrac­
tion. Due to the over-approximation used, the methods often suffer
from false positives. The code coverage may be total; sometimes static
analysis even analyzes dead code that is never used along any possible
execution trace (this is also a source of incompleteness) [Sch06]. Static
analysis includes various techniques, such as model checking, which
is an example of the heavy-weight approaches that need a runnable
code, theorem proving, a deductive verification method, often simi­
lar to the traditional mathematical theorem proving beginning with
axioms, or abstract interpretation, a general approach that evaluates
the program over suitable abstract domains, ignoring some details of
the concrete semantics.

1.2 Verification of Concurrent Programs

Concurrent programs belong among those where there is a very high
chance of programmers making mistakes but which are also very dif­
ficult to verify. These programs have often very large state space due
to many possible interleavings of the threads, and errors often hide in
some rare, corner-case interleavings that involve some tricky interplay
of the threads that the programmers did not think of.

Heavier-weight formal methods of verification, such as model check­
ing [ECP99], aim at precise program verification. Unfortunately, these
precise approaches do not scale well for complex concurrent software.
This is one of the main reasons why heuristic approaches such as light­
weight static analysis, testing, and dynamic analysis are very popular
in this area. While light-weight static analysis may scale, it often pro­
duces many false alarms (or it must be heavily fine-tuned for the given
verification scenario — often for the price of suppressing some real er­
rors together with the false ones).

7

When dealing with concurrent programs, testing and dynamic ana­
lysis that rely on executing the system under test (SUT) and evaluating
the witnessed run are complicated by having to deal with the non-
deterministic scheduling of program threads. Due to this problem,
a single execution of a program is insufficient to find errors in the pro­
gram even for the particular input data used in the execution. More­
over, even if the program has been executed many times with the given
input without spotting any failure, it is still possible that its future exe­
cution with exactly the same input will produce an incorrect result.
A problem is that repeated testing in the same environment usually
does not explore schedules that are too different.

One approach that is commonly accepted as a way to significantly
improve on the above problem is the so-called noise injection. The noi­
se injection approach [SHH03] is based on heuristically disturbing the
scheduling of program threads in hope of observing scheduling sce­
narios unseen so far. Although this approach cannot prove correct­
ness of a program even under some bounds on its behaviour, it was
demonstrated in [SHH03, KLV12, RDV17] that it can rapidly increase
the probability of spotting concurrency errors without introducing any
false alarms. The noise injection approach is described in more detail
in Section 2.1.

1.3 Goals of the Thesis
The thesis is focused on concurrent software testing based on noise
injection. As we have already sketched above and as we will discuss in
more detail later on, this type of testing can stress programs in such
a way that there manifest uncommon behaviours and interleavings
of threads. This can be used to reveal rare errors that are otherwise
extremely difficult to find. On the other hand, noise injection has many
parameters that need to be suitably set (together with parameters of
the programs under test themselves), and finding the right setting is

8

difficult.
The main goal of the thesis is hence to improve the efficiency of

the current methods of testing concurrent programs using noise injec­
tion by simplifying the process of finding the right settings of noise and
test parameters. In the work, various approaches for finding suitable
values of parameters of tests and noise are studied. In particular, those
include data mining techniques, genetic algorithms and their combina­
tion, as well as further heuristics, such as exploitation of dependencies
among testing under metrics of different cost.

2 Preliminaires

2.1 Noise Injection

As we have already said, noise injection disturbs the common schedu­
ling of concurrently executing threads in order to allow for testing
less common (but legal) schedules. In Figure 1, we illustrate two of
the possible effects that noise injection can have. Figure 1(a) illus­
trates a scenario in which the usual order in which two threads exe­
cute some events is swapped by noise injection (e.g., by an inserted
delay). This can uncover a bug that happens only if the events happen
in the swapped order. Note that if the swapped order can happen with
noise injection, then the programmer did not exclude it using any syn­
chronization means, and it can happen even without noise injection. If
there was some synchronization in place, noise injection could not over­
come it. This is, no new behaviour is introduced; just without noise
injection, the probability of the events happening in the swapped order
may be very low. Figure 1(b) then shows a situation where noise in­
jection prolongs the time spend by a thread in a critical section, which
can lead to another thread executing its critical section in parallel with
the first one, possibly causing some concurrency error. As before, if

9

such an error happens, it is a real error since the programmer did not
prevent the situation by using any synchronization means, which noise
injection would not be able to overcome. Thus, the situation can hap­
pen even without noise injection, though perhaps with a much lower
probability.

time Threadl Thread2 Threadl Thread2

read(v)

write(v)

a)
read(

write(v)

time Threadl Thread2 Threadl Thread2

b)

Figure 1: Two examples of the effect of noise injection: (a) reordering
of the common order of two events in a concurrent program execution
and (b) prolongation of the time spent by a thread in a critical section,
leading to an overlapped execution of two critical sections.

2.1.1 Noise Seeding Heuristics

The basic noise seeding heuristics are: yield, sleep, wait, busy Wait,
synchYield, and mixed. The yield and sleep heuristics inject calls of
the yield () and sleep () methods, respectively. In the case of the wait
heuristic, the concerned threads must first obtain a special shared mo­
nitor, then call the wait() method, and finally release the monitor.
The synchYield heuristic combines the yield heuristic with obtaining
the monitor as in the case of the wait heuristic. The busy Wait heuris­
tic inserts a busy-waiting loop that is executed for some time. Finally,

10

the mixed heuristic randomly chooses one of the five other basic heuris­
tics at each noise injection location.

The additional noise seeding heuristics are: haltOneThread and
timeoutTamper. The haltOneThread technique occasionally stops one
thread until any other thread cannot run. The timeoutTamper heuris­
tic randomly reduces the time-outs used when calling sleep() in the
tested program (to test that programmers do not try to synchronize
their threads by explicitly delaying some events).

A l l the above mentioned seeding techniques are parameterised by
the so-called strength of noise. In the case of the sleep and wait heuris­
tics, the strength gives the time to wait. In the case of the yield heuris­
tic, the strength says how many times the yield () method should be
called.

2.1.2 Noise Placement Heuristics

The noise placement heuristics are: the random heuristic, the shared-
VarNoise heuristic, and the coverage-based heuristic. The random
heuristic injects noise with some probability before every concurrency-
related event in the program execution. The sharedVarNoise heuristic
allows one to focus noise primarily at accesses to shared variables.
There are two versions of this heuristic: sharedVarNoise-all which tar­
gets all accesses to shared variables and sharedVarNoise-one which
targets accesses to a single randomly chosen shared variable in each
test execution. Moreover, for both of these heuristics, one can de­
cide whether the noise should be inserted solely when accessing shared
variables or also at synchronisation operations such as locking (the so-
called nonVariableNoise heuristic).

The coverage-based heuristic is based on collecting information a-
bout pairs of subsequent accesses to a shared variable from different
threads and on inserting noise before further executions of the program
instruction by which the given variable was accessed first (or before

11

acquiring the shared lock that guards the given access provided there
is such a lock). This is motivated by trying to reverse the ordering in
which threads access variables.

As we have mentioned already above, the noise placement heuris­
tics inject noise at the selected points of program executions with some
probability. This probability is determined by the noise frequency
parameter. The values of this parameter range from never inserting
a noise to always inserting it. Additionally, the coverage-based heuristic
can be extended by another heuristic (denoted as the coverage-based-
frequency heuristic that monitors the frequency with which a program
location is visited during testing and injects noise at the given pro­
gram location with a probability adjusted according to this frequency—
the more often a program location is executed the lower probability is
used.

2.2 Methods Used in Thesis

Statistical methods are mainly used in the evaluation of tests, e.g. to
compare the results of different approaches by the Student's t-value
(statistical hypothesis about whether two approaches are significantly
different or not) or standard numerical characteristics, such as average,
variation, median or standard deviation. These methods were used in
the experimental parts of the thesis for an evaluation of the tests we
performed.

Data mining methods are next approaches used in this work. Data
mining allows us to answer a number of problems in different ways.
There are four basic methods in data mining: (1) classification, (2)
regression, (3) association rules, and (4) clustering [Lanl3]. Only two
of them, namely classification and regression, are introduced, as those
have been used in the methods proposed in this work.

Classification. As mentioned in the previous text, the classifica-

12

tion task consists of assigning variables from a given data set, described
by a set of discrete- or continuous-valued attributes, to a set of classes,
which can be considered values of a selected discrete target attribute.
There are two main methods of classification: binary and multiclass.
Classification approaches include decision trees, boosted trees, Na'iev
Bayes, and K-Nearest Neighbour.

For our purposes, the test and noise parameters are marked as
variables and we want to assign a specific combination of the variables
to the one of the two possible classes depending on the given goal of
program testing. Here, the classes mean whether the given setting of
the test has a higher probability of meeting the given goal. In Chapter
4, an approach based on boosted decision trees called AdaBoost is used
for classifying of program testing.

Regression. The regression task consists of assignment of a nu­
merical value to variables from a given data set, described by a set of
discrete- or continuous-valued attributes. This assignment is supposed
to approximate some target function, generally unknown, except for
a subset of the data set-training sample. This training sample can be
used to create the regression model that makes prediction of unknown
target function values for any possible variable from the same data
set feasible. In practical applications, the target function represents
an interesting property of variables from the data set that either is
difficult and costly to determine, or (more typically) becomes known
later than is needed. Among the regression approaches, there are linear
regression or regression trees.

For our purposes, we have variables such as coverage metrics, where
we count the number of tasks visible during the test execution of con­
current programs and our goal is to increase the coverage. In Section 5,
three different regression algorithms are compared that could combine
more metrics for prediction of the coverage of the metrics which are
more time consuming to collect.

13

The last approaches used in this thesis are genetic and evolutionary
algorithms. These algorithms generally produce high-quality models.
On the downside, they are very time-consuming. The following para­
graphs introduce the basics of the genetic algorithms that will be used
as an optimization method in the process of noise-based testing and
dynamic analysis of concurrent programs.

The evolutionary algorithm (EA) tries to find the best solution
possible from a search space of candidate solutions with respect to se­
lected criteria. E A is suitable for problems with a huge search space,
for which finding the best solution by the brute force approach is not
feasible. In the context of EA, candidate solutions are called individ­
uals and the set of all candidates solution is referred to as individual
space. The individual space is mapped into the set of parameters asso­
ciated with candidate solutions that is called decision space. The spe­
cific values of parameters from this decision space for particular indi­
viduals are called decision vector. The decision vector corresponds to
a genome in biology and a single parameter from the vector corresponds
to a gene. Individuals are evaluated by objective functions resulting
in an objective vector of specific values for particular objectives. Each
such objective is related to a criterion applied on a candidate solution.
The evaluation of the objective can be based on a single gene, how­
ever, it can be influenced by the whole genome as well. To compare
candidate solutions in order to determine which of them is the best
one, so-called fitness function combining the evaluation of all desired
criteria into a single number is needed [Zit99]. On the other hand,
there is also another possibility where the fitness function focuses on
evaluation of the given desired criteria separately — this type of fitness
function is discussed in detail in Chapter 3.

A rather successful meta-heuristic search technique for complex
optimization problems is the genetic algorithm (GA) [Tal09], which is
inspired by the process of natural selection. G A tries to find the best

14

solutions by biased sampling of the solution search space, starting with
an initial set (called a generation) of candidate solutions (also referred
to as individuals). Each individual in the current population is evalu­
ated and assigned a value called fitness, representing the suitability of
the particular solution. The next generation of individuals is obtained
from the current generation, typically by using stochastic recombi­
nation (called a crossover) of individuals selected according to their
fitness and mutation of the new individual's attributes (called genes)
in order for the search to not get stuck in the local extreme.

3 A n application of Genetic Algorithms
in Noise-based Testing

Testing of multi-threaded programs is a demanding work due to the
many possible thread interleavings one should examine. The noise in­
jection technique helps to increase the number of thread interleavings
examined during repeated test executions provided that a suitable set­
ting of noise injection heuristics is used. The problem of finding such
a setting, i.e., the so called test and noise configuration search prob­
lem (TNCS problem), is not easy to solve according to previous work
[DKLV12]. In this section, we show how to apply a multi-objective
genetic algorithm (MOGA) to the TNCS problem. In particular, we
focus on generation of TNCS solutions that are suitable for regres­
sion testing where tests are executed repeatedly. Consequently, we are
searching for TNCS candidate solutions that cover a high number of
distinct interleavings (especially those which are rare) and provide sta­
ble results in the same time. To achieve this goal, we study suitable
metrics and ways how to suppress effects of non-deterministic thread
scheduling on the proposed MOGA-based approach. We also discuss
a choice of a M O G A and its parameters suitable for our setting. F i ­
nally, we show on a set of benchmark programs that our approach

15

provides better results when compared to the commonly used random
approach as well as to the sooner proposed use of a single-objective
genetic approach (SOGA).

3.1 Experimental evaluation

The section presents results of four experiments comparing the pro­
posed MOGA-based approach with the SOGA-based approach and
both approaches with the random approach. First, we show difference
between degeneration of the search process identified in the SOGA-
based approach in [DKLV12] and in our MOGA-based approach which
does not suffer from degeneration. Then, we show that the proposed
penalization does indeed lead to a higher coverage of uncommon be­
haviour. Finally, we focus on a comparison of the M O G A , SOGA, and
random approaches with respect to their efficiency and stability.

The experiments presented below were conducted on a set of eight
concurrent benchmarks — Airlines, Animator, Crawler, Elevator, Mol-
Dyn, MonteCarlo, Raytracer, and Rover.

In the experiments, we used the following settings of the M O G A —
each candidate solution is evaluated 10 times, the achieved coverage is
penalized, and the median values for the selected metrics are computed.
Size of the population is 20, number of generations is 50, the crossover
type is two, and the mutation probability is 0.5. As the SOGA-based
approach uses time as one of the objectives in the fitness function,
we added the execution time of tests variable to the M O G A fitness
function for optimization of tests with small resource requirements.
The objectives in the M O G A approach selected for following experi­
ments are GoldiLockSC*, GoodLock*, WConcurPairs, and Time.

For SOGA-based approach, we use the following parameters taken
from [DKLV12]: size of population 20, number of generations 50, two
different selection operators (tournament among four individuals and

16

fitness proportional1), the any-point crossover with probability 0.25,
a low mutation probability (0.01), and two elites (that is 10% of
the population). However, to make the comparison more fair, we built
the fitness function of the SOGA-based approach from the objectives
selected above2:

WConcur Pairs GoodLock* GoldiLockSC* timemax — time
W Concur Pairs max GoodLockmax GoldiLockSCmax timemax

The maximal values of objectives were estimated as 1.5 times the max­
imal accumulated numbers we got in 10 executions of the particular
test cases. As proposed in [DKLV12], the SOGA-based approach uses
cumulation of results obtained from multiple test runs without any
penalization of frequent behaviours.

A l l results presented in this section were tested by the statistical
t-test with the significance level a = 0.05, which specifies whether
the achieved results for Random, M O G A , and SOGA are significantly
different. In a vast majority of cases, the test confirmed a statistically
significant difference among the approaches.

Degeneration of the Search Process. Degeneration, i.e. a lack
of variability in population, is a common problem of population-based
search algorithms. Figure 2 shows average variability of the M O G A -
based and the SOGA-based approaches computed from the search pro­
cesses on eight considered test cases. The x-axis represents generations.
The y-axis shows numbers of distinct individuals in the generations
(max. 20). The higher value the search process achieves, the higher
variability; therefore, low degeneration was achieved. The Figure 2
clearly shows that our MOGA-based approach does not suffer from
the degeneration problem unlike the SOGA-based approach.

experiments presented in [DKLV12] showed that using these two selection operators is benefi­
cial. Therefore, we used them again. On the other hand, for M O G A , the mating schema provides
better results.

2 In the experiments performed in [DKLV12], the fitness function was sensitive on weight. There­
fore, we removed the weight from our new fitness function for SOGA.

17

20-

15-

w
CO

5-

Legend
— MOGA
— SOGA

c) 10 20 30 40 50

Generations

Figure 2: Degeneration of MOGA-based and SOGA-based search pro­
cesses.

Degeneration of the SOGA-based approach and, subsequently, its
tendency to get caught in a local maximum (often optimizing strongly
towards a highly positive value of a single objective, e.g. minimum
test time, but almost no coverage) can in theory be resolved by in­
creasing the amount of randomness in the approach. However, then
it basically shifts towards random testing. An interesting observation
(probably leading to the good results presented in [DKLV12]) is that
even a degenerated population can provide a high coverage if the re­
peatedly generated candidate solutions suffer from low stability, which
allows them to test different behaviours in different executions.

Effect of Penalization. The goal of the penalization scheme
proposed above is to increase the number of tested uncommon be­
haviours. An illustration of the fact that this goal has indeed been
achieved is provided in Table 1. The table particularly compares
the results collected from 10 runs of the final generations of 20 in-

18

dividuals obtained through the MOGA-based and the SOGA-based
approaches with the results obtained from 200 randomly generated
individuals. Each value in the table gives the average percentage of
uncommon behaviours spot by less than 50 % of candidate solutions,
i.e. by less than 10 individuals. Number 60 therefore means that,
on average, the collected coverage consists of 40 % of behaviours that
occur often (i.e. in more than 50 % of the runs) while 60 % are rare.

Test M O G A SOGA Random
Airlines 59.66 60.61 19.14
Animator 70.1 74.31 44.73
Crawler 70.73 66.32 61.19
Elevator 89.26 83.96 65.69
Moldyn 68.32 44.25 39.73
Montecarlo 40.13 54.52 28.25
Raytracer 73.08 60.49 54.68
Rover 53.87 41.45 30.62
Average 65.52 60.73 43.00

In most cases, if some ap- Table 1: Impact of penalization built
proach achieved the highest into M O G A approach.
percentage of uncommon be­
haviours under one of the co­
verage metrics, it achieved
the highest numbers under
the other metrics as well. Ta­
ble 1 shows that our M O G A -
based approach is able to pro­
vide a higher coverage of un­
common behaviours (where errors are more likely to be hidden) than
the other considered approaches.

Efficiency of the Testing. Next, we focus on the efficiency of
the generated test settings, i.e. on their ability to provide a high co­
verage in a short time. We again consider 10 testing runs of the 20
individuals from the last generations of the MOGA-based and the SO­
GA-based approaches and 200 test runs under random generated test
and noise settings. Table 2 compares the efficiency of these tests. To
express the efficiency, we use two metrics: namely, C/Time shows how
many coverage tasks of the GoldiLockcSC* and GoodLock* metrics got
covered on average per a time unit (milisecond). S/Time indicates
how many coverage tasks of the general purpose WConcurPairs cov­
erage metric got covered on average per a time unit. Higher values
in the table therefore represent higher average efficiency of the testing

19

Table 2: Efficiency of the considered ap­
proaches.

runs under the test set­
tings obtained in one of
the considered ways. The
last row provides the av­
erage improvement (Avg.
impr.) of the genetic ap­
proaches against random
testing. Both genetic ap­
proaches are significantly
better than the random ap­
proach. In some cases,
the MOGA-based approach
had a better evaluation,
while the results were bet­
ter for SOGA in some other
cases. However, note that
the MOGA-based approach is more likely to cover rare tasks (as ex­
plained in the previous paragraph). So even if it covers a comparable
number of tasks with the SOGA-based approach, it is still likely to
have more advantages from the practical point of view.

Case Metrics M O G A SOGA Random
Airlines C/Time 0.06 0.06 0.04

S/Time 3.73 3.29 2.98
Animator C/Time 0.07 0.29 0.19

S/Time 0.33 1.01 0.65
Crawler C/Time 0.21 0.22 0.12

S/Time 4.15 3.84 2.05
Elevator C/Time 0.03 0.04 0.02

S/Time 2.69 3.64 1.28
Moldyn C/Time 0.01 0.01 0.01

S/Time 11.73 16.83 2.56
Montecarlo C/Time 0.01 0.01 0.01

S/Time 9.52 9.66 0.01
Ray tracer C/Time 0.01 0.01 0.01

S/Time 7.16 5.13 0.69
Rover C/Time 0.11 0.10 0.08

S/Time 5.17 2.49 2.18
Avg. impr. 2.01 2.11

Table 3: Stability of testing. Stability of Testing. Finally,
we show that candidate solutions
found by the MOGA-based approach
provide more stable results than
the SOGA-based and the random ap­
proaches. For the MOGA-based and
the SOGA-based approaches, Table 3
provides the average values of varia­
tion coefficients of the coverage un­
der each of the three considered coverage criteria for each of the 20
candidate solutions from the last obtained generations across 10 test
runs. For the case of random testing, the variation coefficients were

Case M O G A SOGA Random
Airlines 0.06 0.17 0.29
Animator 0.02 0.11 0.12
Crawler 0.38 0.38 0.26
Elevator 0.50 0.48 0.58
Moldyn 0.11 0.20 0.70
Montecarlo 0.13 0.11 0.89
Raytracer 0.16 0.46 0.76
Rover 0.08 0.10 0.32
Average 0.18 0.25 0.49

20

calculated from 200 runs generated randomly. The last row of the ta­
ble shows the average variation coefficient across all the case studies.
The table clearly shows that our MOGA-based approach provides more
stable results when compared to the other approaches.

4 Using Data Mining in Testing of Con­
current Programs

In this section, we propose a novel application of data mining allowing
one to exploit information present in data obtained from a sample of
test runs of a concurrent program to optimize the process of noise-based
testing of the given program. To be more precise, our method employs
a data mining method based on classification by means of decision
trees and the AdaBoost algorithm. The approach is, in particular,
intended to find out which parameters of the available tests and which
parameters of the noise injection system are the most influential and
which of their values (or ranges of values) are the most promising for
a particular testing goal for the given program.

In order to show that the proposed approach can indeed be use­
ful, we apply it for optimizing the process of noise-based testing for
two particular testing goals on a set of several benchmark programs.
Namely, we consider the testing goals of reproducing known errors and
covering rare interleavings which are likely to hide so far unknown
bugs. Our experimental results confirm that the proposed approach
can discover useful knowledge about the influence and suitable val­
ues of test and noise parameters, which we show in two ways: (1) We
manually analyze information hidden in the classifiers, compare it with
our long-term experience from the field, and use knowledge found as
important across multiple case studies to derive some new recommen­
dations for noise-based testing (which are, of course, to be validated
in the future on more case studies). (2) We show that the obtained

21

classifiers can be used—in a fully automated way—to significantly im­
prove efficiency of noise-based testing using a random selection of test
and noise parameters.

4.1 Analysis of Knowledge Hidden in Obtained
Classifiers

In order to interpret the obtained rules, we first focus on rules with
the highest weights (corresponding to parameters with the biggest in­
fluence). Then we look at the parameters which are present in rules
across the test cases (and hence seem to be important in general) and
parameters that are specific for particular test cases only. Next, we
pinpoint parameters that do not appear in any of the rules and there­
fore seem to be of a low relevance in general.

Table 4: Inferred rules for the error manifestation property with
the most influential intervals marked out.

Airlines
Rules x i < 275 X 3 < 0.5 or 3.5 < xz x% < 1.5 2.5 < xio 73.5 < x\2

Weights 0.16 0.50 0.04 0.18 0.12
Animator

Rules 705 < xi 2.5 < x3 < 3.5 XQ < 0.5
Weights 0.19 0.55 0.26

Crawler
Rules x i < 215 15 < x 2 1.5 < x 3 < 3.5 0.5 < x 4 x 5 < 0.5 XQ < 1.5

or 4.5 < X 3

Weights 0.32 0.1 0.38 0.05 0.08 0.07
Elevator

Rules x i < 5 x 3 < 0.5 or 3.5 < x 3 < 4.5 x 7 < 0.5 8.5 < x io
Weights 0.93 0.04 0.01 0.02

Rover
Rules 515 < x i 2.5 < x 3 < 3.5 0.5 < X4 x 6 < 0.5

Weights 0.21 0.48 0.08 0.23

As for the error manifestation property (i.e., Table 4), the most in­
fluential parameters are £ 3 in four of the test cases and x\ in the Craw­
ler test case. This indicates that the selection of a suitable noise type

22

(x%) or noise frequency (xi) is the most important decision to be done
when testing these programs with the aim of reproducing the errors
present in them. Another important parameter is XQ controlling the use
of the sharedVarNoise heuristic. Moreover, the parameters x\, £ 3 , and
XQ are considered important in all of the rules, which suggests that,
for reproducing the considered kind of errors, they are of a general
importance.

In two cases, namely, Crawler and Rover, the haltOneThread heu­
ristic (#4) turns out to be relevant. In these test cases, the hal­
tOneThread heuristic should be enabled in order to detect an error.
This behaviour fits into our previous results [KLV12] in which we show
that, in some cases, this unique heuristic (the only heuristic which al­
lows one to exercise thread interleavings which are normally far away
from each other) considerably contributes to the detection of an error.
Finally, the presence of the xio and xu parameters in the rules derived
for the Airlines test case indicates that the number of threads (xio)
and the number of cycles executed during the test (#12) pays an impor­
tant role in the noise-based testing of this particular test case. The XIQ
parameter (i.e., the number of threads) turns out to be important for
the Elevator test case too, indicating that the number of threads is of
a more general importance.

Finally, we can see that the xg, xg, and x\\ parameters are not
present in any of the derived rules. This indicates that the coverage-
based noise placement heuristics are of a low importance in general,
and the x\\ parameter specific for Airlines is not really important for
finding errors in this test case.

Next, for the case of classifying according to the rare behaviours
property, the obtained rules are shown in Table 5. The highest weights
can again be found in rules based on the £ 3 parameter (Animator,
Crawler, Rover, Cache^j, HEDC, Montecarlo, Sor, TSP) and on the x\
parameter (Airlines). However, in the case of Elevator and Raytracer,
the most contributing parameter is now the number of threads used

23

Table 5: Rules inferred for the rare behaviours property.

Airlines
Rules

Weights
x i < 295 or 745 < xi < 925

0.52
X2 < 35

0.06
0.5 < x5

0.1
61.5 < x12 < 91.5

0.32
Animator

Rules
Weights

0.5 < x 3 < 3.5 or 4.5 < x 3

0.80
0.5 < x6 < 1.5

0.20
Crawler

Rules
Weights

0.5 < x 3 < 3.5 or 4.5 < x3

0.46
0.5 < x 4

0.08
0.5 < x5

0.20
0.5 < x 6 < 1.5

0.26
Elevator

Rules

Weights

0.5 < x 3 < 3.5
or 4.5 < X 3

0.22

0.5 < X4

0.05

0.5 < x 5

0.20

1.5 < XQ

0.06

1.5 < xio < 4.5
or 7.5 < x io

0.47
Rover

Rules
Weights

2.5 < x 3 < 3.5 or 4.5 < x3

0.46
x4 < 0.5

0.26
x6 < 0.5

0.16
0.5 < x 7

0.12
Cache4j

Rules
Weights

x 3 < 0.5 or 3.5 < x3 < 4.5
0.92

x5 < 0.5
0.02

1.5 < Xg

0.05
Xg < 0.5

0.01
H E D C

Rules x i < 279 49.5 < x2 x 3 < 0.5 or 3.5 < x3 < 4.5 1.5 < xg
Weights 0.03 0.02 0.89 0.06

Montecarlo
Rules x i < 548.5 x 3 < 0.5

or 3.5 < x3

X 5 < 0.5 0.5 < x 6 x 9 < 0.5 3.5 < x io < 5.5

Weights 0.09 0.30 0.05 0.18 0.09 0.29
Raytracer

Rules 20.5 < X 2 < 53.5 0.5 < x 5 x 6 < 0.5 0.5 < x 7 xio < 1-5
or 75.5 < X 2 or 4.5 < xio

Weights 0.29 0.09 0.15 0.06 0.41
Sor

Rules X l < 144.5 x3 < 1.5 or 3.5 < X 3 0.5 < x 6 x 7 < 0.5 x io < 13
Weights 0.26 0.32 0.07 0.07 0.28

T S P - p a r t i
Rules x i < 691 x 2 < 26 x 3 < 0.5 or 3.5 < x 3 < 4.5 x 5 < 0.5

Weights 0.07 0.11 0.48 0.06
T S P - part2

Rules 0.5 < x 6 0.5 < x 8 x 9 < 0.5 x io < 18.5
Weights 0.06 0.06 0.07 0.09

by the test (xio). Moreover, the xio parameter is also important in
the Montecarlo, Sor, and TSP test cases. This suggests that choosing
the right number of threads is quite important to maximize the chances
to spot rare behaviours, and that it is not necessarily the case that
the higher number of threads is used the better. Further, the generated
sets of rules often contain the £ 3 parameter controlling the type of noise

24

(all test cases except for Airlines and Raytracer) and the XQ parameter
which controls the sharedVarNoise heuristic. These parameters thus
appear to be of a general importance for the rare behaviours property.

The parameter xu, i-e., the number of test cycles, does again turn
out to be important in the Airlines test case. Finally, the x% parameter
is shown only in one test case (TSP), xg shows up in the rules gene­
rated for two test cases (Cache^j and TSP), and the x\\ parameter
does not show up in any of the rules, and hence seem to be of a low
importance in general for finding rare behaviours (which is the same
as for reproduction of known errors).

Overall, the obtained results confirmed some of the facts we discov­
ered during our previous experimentation such as that different goals
and different test cases may require a different setting of noise heuris­
tics [KLV12, DKL+14, DKLV12] and that the haltOneThread noise
injection heuristics (#4) provides in some cases a dramatic increase
in the probability of spotting an error [KLV12]. More importantly,
the analysis revealed (in an automated way) some new knowledge as
well. Mainly, the type of noise (x%) and the setting of the shared-
VarNoise heuristic (XQ) as well as the frequency of noise (xi) are often
the most important parameters (although the importance of x\ seems
to be a bit lower). Further, it appears to be important to suitably
adjust the number of threads {x\§) whenever that is possible.

4.2 Ful ly-Automated Noise-based Testing
wi th AdaBoost

We now present experimental results showing usefulness of the ways
of applying AdaBoost in fully-automated noise-based testing. We con­
sider both the combination of AdaBoost and random noise injection
as well as the combination of AdaBoost and genetic algorithms. We
start by considering the case of repeated reproduction of a known con-

25

currency error and then proceed to the case of coverage of rare tasks.
Repeated Error Manifestation. Within our experiments aimed

at repeated reproduction of known concurrency-related errors, we com­
pare noise-based testing under test and noise configurations generated
in the following ways — purely random generation (Random), genera­
tion based on genetic algorithms (SOGA and M O G A) , random gener­
ation filtered through the classic AdaBoost approach, random gener­
ation restricted to the AdaBoost-recognised most influential values of
parameters (AdaBoost2), and combination of genetic algorithms and
AdaBoost2 approach (SOGA2 and MOGA2).

Table 6: An experimental comparison of various fully-automated ap­
proaches to noise-based testing in the context of reproducing a known
error. The best results are highlighted in bold.

Random SOGA MOGA AdaBoost
CaseStudies error/ % error / % error/ % error/ %
Airlines
Animator
Crawler
Elevator
Rover

132.93/33.23
106.75/26.69

0.00/0.00
59.25/14.81

17.00/4.25

313.25/78.31
220.20/55.05

0.50/0.13
133.25/33.31

143.00/35.75

272.25/68.06
131.00/32.75

0.50/0.13
116.75/29.19
88.25/22.06

323.50/80.88
144.80/36.20

0.80/0.20
80.40/20.10
57.40/14.35

Average
ASD

/15.80
/6.01

/40.51
/5.50

/30.44
/7.91

/19.11
/7.44

AdaBoost2 SOGA2 MOGA2
CaseStudies error/ % error/ % error/ %
Airlines
Animator
Crawler
Elevator
Rover

351.80/87.95
252.40/63.10

1.00/0.25
36.60/9.15
48.4/12.65

371.80/92.95
350.30/87.58

2.40/0.60
105.00/26.25

324.80/81.20

332.7/83.13
241.25/60.31

0.80/0.20
86.80/21.70

203.30/50.83
Average
ASD

/34.62
/4.91

/57.72
/4.89

/43.24
/2.58

26

We run 5000 executions in the learning phase of those approaches
that need some training. To compare capabilities of the obtained test
and noise configurations in repeatadly finding the known errors, we
then run 20 executions for 20 best configurations obtained through
each of the approaches (apart from the random approach where we
simply run 400 executions).

Table 6 compares results obtained using the above described ap­
proaches. In particular, the table presents numbers and percentages
of the executions that managed to find an error in those of our bench­
mark programs that contain a known error. As we can see, the single-
objective genetic algorithm restricted to the AdaBoost-selected most
influential parameter values (i.e., SOGA2) has achieved the best results
on average. However, random generation of test and noise parameter
values restricted to the AdaBoost-selected most influential parameter
values (AdaBoost2) and the combination of the multi-objective genetic
algorithm and AdaBoost (MOGA2) have also achieved very good re­
sults.

It must be noted that 14 generations were used for the SOGA and
MOGA experiments, and 7 generations were used for the SOGA2 and
MOGA2 experiments, which are very small numbers only. The rea­
son for using such small numbers of generations is that we wanted to
compare the different approaches while giving them the same time for
the learning phase. The MOGA2 approach had the lowest standard
deviation on average. This means that the MOGA2 approach gives
good results with a high probability.

Coverage of Rare Concurrent Behaviours. In the second part
of our experiments, we concentrate on increasing coverage of rare con­
current behaviours. Compared with the experiments of the previous
section, we consider all of our benchmark programs since we do not
need them to contain an error.

For the random approach, we executed 1000 test runs with ran­
domly generated test and noise configurations. For the other ap-

27

Table 7: A comparison of average cumulative numbers of rare tasks
over the time needed to cover them.

Rand. S O G A M O G A AdaBoost
CaseStudies rareTasks/ % rareTasks/ % rareTasks/ % rareTasks/ %
Airlines 0.6566/ 41.4 1.2950/ 81.6 1.5462/ 97.4 0.4768/ 30.0
Animator 7.0193/ 4.6 145.8694/ 95.3 153.0821/ 100.0 87.3576/ 57.1
Cache4j 0.0165/ 38.9 0.0167/ 39.4 0.0413/ 97.4 0.0292/ 68.9
Crawler 3.0415/ 51.1 4.7546/ 79.9 3.1230/ 52.5 3.6581/ 61.5
Elevator 9.0015/ 48.1 13.5446/ 72.4 16.9801/ 90.8 17.4073/ 93.1
H E D C 0.3605/ 22.1 0.9909/ 60.7 0.7595/ 46.5 0.9754/ 59.7
Montecarlo 0.1469/ 59.9 0.2158/ 88.0 0.2453/ 100.0 0.1482/ 60.4
Raytracer 0.0009/ 7.7 0.0003/ 2.6 0.0003/ 2.6 0.0006/ 5.1
Rover 1.1532/ 42.1 1.7713/ 64.6 1.5623/ 57.0 1.4008/ 51.1
Sor 0.0497/ 25.4 0.0742/ 37.9 0.0860/ 44.0 0.1088/ 55.6
TSP 0.0381/ 36.9 0.0659/ 63.9 0.0971/ 94.1 0.0520/ 50.4
Average / 34.4 / 62.4 / 71.1 / 55.6
ASD / 17.6 / 26.9 / 32.5 / 20.7

AdaBoost2 SOGA2 M O G A 2
CaseStudies rareTasks/ % rareTasks/ % rareTasks/ %
Airlines 0.9298/ 58.6 1.5876/ 100.0 1.1216/ 70.6
Animator 136.5519/ 89.2 114.9578/ 75.1 110.4470/ 72.1
Cache4j 0.0194/ 45.8 0.0389/ 91.7 0.0424/ 100.0
Crawler 5.8669/ 98.6 4.1439/ 69.6 5.9502/ 100.0
Elevator 18.7019/ 100.0 14.9516/ 79.9 17.1540/ 91.7
H E D C 1.1568/ 70.8 1.3836/ 84.7 1.6334/ 100.0
Montecarlo 0.1780/ 72.5 0.1664/ 67.8 0.1823/ 74.3
Raytracer 0.0052/ 44.4 0.0117/ 100.0 0.0104/ 88.9
Rover 1.3018/ 47.5 1.9877/ 72.5 2.7411/ 100.0
Sor 0.1154/ 59.0 0.1855/ 94.8 0.1956/ 100.0
TSP 0.0642/ 62.2 0.0867/ 84.0 0.1032/ 100.0
Average / 67.7 / 83.6 / 90.7
ASD / 20.5 / 11.8 / 12.4

proaches, we used the same number of test runs, which we divided
into 500 runs to train the approaches and the remaining 500 runs to
execute the test cases with the configurations obtained from the train­
ing phase. When training the AdaBoost-based approaches, we took as
positive (i.e., suitable for testing) 50 configurations with the highest

28

results of cumulative coverage obtained from five runs and the other
configurations as negative. For the approaches based purely on ge­
netic algorithms, i.e., SOGA and MOGA, we used five generations in
the training phase. For the combination of AdaBoost and genetic al­
gorithms, i.e., SOGA2 and MOGA2, we used 250 runs for training
AdaBoost and three generations for the subsequent training of the ge­
netic algorithms. For each case study, we repeated each experiment
ten times.

In Table 7, we present results of the above experiments (which took
in total approximately 6,939 core hours, i.e., 289 core days). In partic­
ular, the entries of the table contain—for the different programs and
different approaches—the obtained coverage of rare tasks over the ti­
me needed to obtain the coverage. We divide the obtained coverage by
the needed time in order to better see which of the approaches is better
to quickly obtain a high coverage of rare tasks. Moreover, the obtained
coverage over the testing time is followed by its interpretation in per
cent. Namely, the approach with one hundred per cent is the winning
one, and, for the others, the percentage shows how far they are from
the winning approach in terms of the achieved coverage over time. As
we can see, the combinations of AdaBoost with the genetic approaches
(i.e., MOGA2 and SOGA2) have the best results on average, and they
are also more stable than the other methods.

5 Prediction Coverage of Expensive Met­
rics from Cheaper Ones

To maximize coverage under a chosen concurrency coverage metric (or
a combinations of such metrics), the space of possible thread schedules
has to be properly examined. If the TNCS problem is not solved
properly, the usage of noise can even decrease the obtained coverage
[FDK +15]. However, solving the TNCS problem is not an easy task.

29

Sometimes, its solution is not even attempted, and purely random
noise generation is used. Alternatively, one can use genetic algorithms
or data mining [DKLV12, D K L + 1 4 , ADK + 14] . These approaches can
outperform the purely random approach, but finding suitable test and
noise settings this way can be quite costly. The aim of this chapter is
to make the cost of this process cheaper.

The approach which we propose builds on the facts that (1) maxi­
mizing coverage under different metrics may have different costs, and
that (2) one can find correlations between test and noise settings that
are suitable for maximizing coverage under different metrics. More­
over, such correlations may link even metrics for which the process
of maximizing coverage is expensive but which are highly informative
for steering the testing process and metrics for which the process of
maximizing coverage is cheaper but which are less efficient when used
for steering the testing process. We confirm all these facts through
a set of our experiments. In particular, we identify the correlations by
building a predictive model between several expensive metrics (under
which one may want to simultaneously maximize coverage) and several
cheap metrics.

Using the above facts, we suggest to optimize the testing process in
the following way. Given some expensive but informative metrics, one
may find suitable values of test and noise parameters for maximizing
coverage under these metrics by experimenting with coverage under
some cheap metric (or a combination of such metrics) and then use
this setting for testing with the expensive metrics. We show on a set
of experiments that this approach can indeed increase the efficiency of
noise-based testing.

Our contribution is thus threefold: (1) An experimental categori­
sation of various concurrency-related metrics to cheap and expensive
ones according to the price of maximizing coverage under these met­
rics. (2) The observation and experimental confirmation of correlations
between test and noise settings suitable for testing under metrics of

30

different cost. (3) The idea of exploiting the above facts for more effi­
cient noise-based testing of concurrent programs and its experimental
evaluation.

5.1 Using Correlations of Metr ics to Optimize
Noise-based Testing

Once the predictive model is created and we know which set of cheaper
metrics can be used to predict coverage under a given (set of) expen­
sive metrics, this knowledge can be used to optimize the noise based
testing process. In particular, we can try to find suitable test and
noise settings for the given expensive metrics by experimenting with
the cheap ones. The experiments can be controlled using a genetic
algorithm [DKLV12, DKL + 14] , or data mining on the test results can
be used [ADK +14], all the time evaluating the performed experiments
via the chosen cheap metrics, or, more precisely, through the predictive
model built. In the simplest case, one can perform just a number of
random experiments with different test and noise settings and choose
the settings that performed the best in these experiments wrt the pre­
dictive model. This is the approach we follow below to show that our
approach can indeed improve the noise-based testing process.

We randomly generated 100 test and noise configurations and exe­
cuted 5 test runs with each of them for each of our case studies while
collecting coverage under the selected cheap metrics (leading to 500
executions for each case study). We cumulated results within the 5
executions of one configuration and then worked with the obtained cu­
mulative value. We chose 20 configurations with the best results wrt
the derived predictive model. These 20 configurations were used for
further test runs under the three considered expensive metrics. Each of
the chosen 20 configurations was executed 200 times, leading to 4000
test executions under the three expensive metrics for each case study.

31

Finally, to compare the efficiency of this approach with the purely ran­
dom one, we also performed 4500 test runs with random test and noise
settings while directly collecting coverage under the expensive metrics
for each of the case studies. Hence, both of the approaches were given
the same number of test runs.

Table 8: A comparison of random and prediction-optimized noise-
based testing.

GoldiLockSC* WEraser* Datarace
CaseStudies Random Predict Random Predict Random Predict

Airlines 9.46 22.42 74.92 182.59 0.28 0.72
Animator 817.82 1451.35 233.20 291.42 0.35 0.46
Caclie4j 0.93 2.62 4.14 10.98 0.03 0.10
Crawler 54.93 88.69 351.85 547.41 1.90 2.86
Elevator 297.09 286.30 756.72 733.91 2.31 2.23
H E D C 27.50 19.93 67.37 48.73 0.50 0.36
Montecarlo 4.24 5.19 9.03 11.35 0.02 0.03
Rover 37.62 62.89 174.14 292.18 0.08 0.08
Sor 3.19 7.16 4.93 12.69 0.00 0.00
TSP 1.86 1.40 15.36 11.74 1.14 0.86

Average Impr. 1.62 1.59 1.46

In Table 8, we compare the random approach with our prediction-
based approach. In particular, we aim at checking whether the pro­
posed approach can help to increase the obtained coverage of the ex­
pensive metrics when weighted by the consumed testing time. From
the table, we can see that this is indeed the case: the coverage over time
increased in most of the cases. The average improvement of the ob­
tained cumulative coverage over the testing time across all our case
studies ranges from 46 % to 62 %.

Finally, Figure 4 (left) compares how the obtained cumulative co­
verage, averaged over all of our case studies, increases when increasing
the number of performed test runs under the purely random noise-
based approach and under our optimized approach. Our approach
wins despite it has some initial penalty due to using some number of

32

Time of experiments Cumulative coverage

Figure 3: Cumulative coverage (left) and testing time (right) for an
increasing number of test runs.

test runs to find suitable test and noise parameters via cheap metrics.
The right part of the figure then compares the average time needed
by the two approaches over all the case studies. Again, the optimized
approach is winning.

Discovering Ideal Number of Cheap Metrics to Increase
Performance. In the next experiments, we want to predict some
given three different metrics, not only expensive, by cheap metrics. In
the genetic algorithm, there is often to use some given fitness function
for generating better results. There are three experiments where we try
to predict given fitness function by two, three and four cheap metrics
and we compare the results. Such experiments show us ideal number
of cheap metrics to predict some other metrics.

As in the case of three expensive metrics, we randomly generated
100 test and noise configurations and executed 5 test runs with each of
them for each of our case studies while collecting coverage under the se­
lected cheap metrics (leading to 500 executions for each case study).
We cumulated results within the 5 executions of one configuration and
then worked with the obtained cumulative value. We chose 20 config­
urations with the best results wrt the derived predictive model. These

33

20 configurations were used for further test runs under the three con­
sidered expensive metrics. Each of the chosen 20 configurations was
executed 200 times, leading to 4000 test executions under the three ex­
pensive metrics for each case study. Finally, to compare the efficiency
of this approach with the purely random one, we also performed 4500
test runs with random test and noise settings while directly collect­
ing coverage under the expensive metrics for each of the case studies.
Hence, both of the approaches were given the same number of test
runs.

In Table 9, we compare the random approach with three prediction-
based approaches. From the previous experiment with three expensive
metrics, we know that the prediction optimization works relatively
good. Now, we want to find how many cheap metrics must be used
for prediction to have the best results. From the table, we can see
that the results between modell, model2 and model3 are not so much
different but the improvement is the highest in the prediction with two
cheap metrics. The average improvement of the obtained cumulative
coverage over the testing time across all our case studies is more than
50% in the case of modell.

Finally, Figure 4 (right) compares how the obtained cumulative cov­
erage, averaged over all of our case studies, increases when increasing
the number of performed test runs under the purely random noise-
based approach and under our optimized approach. Our approach
wins despite it has some initial penalty due to using some number of
test runs to find suitable test and noise parameters via cheap metrics.
The right part of the figure then compares the average time needed
by the two approaches over all the case studies. Again, the optimized
approach is winning.

Combination of Prediction Given Metrics and Genetic A l ­
gorithms. In the following section, we want to use previous results in

34

Table 9: A comparison of random and three prediction-optimized
noise-based testing.

GoldiLockSC*
CaseStudies Rand. mo dell model2 model3

Airlines 0.36 1.01 0.60 0.59
Cache4j 0.43 0.95 0.62 0.65
Crawler 32.15 73.52 76.94 75.59
Elevator 31.65 36.59 36.44 35.63
HEDC 55.65 38.00 53.77 58.68
Rover 35.61 61.24 48.24 47.51

Average Impr. 1.74 1.48 1.48

WConcurpairs
CaseStudies Rand. mo dell model2 model3

Airlines 0.0010 0.0020 0.0012 0.0012
Cache4j 0.0000 0.0001 0.0000 0.0000
Crawler 0.0130 0.0265 0.0281 0.0272
Elevator 0.0101 0.0102 0.0100 0.0100
HEDC 0.0006 0.0004 0.0006 0.0007
Rover 0.0021 0.0036 0.0028 0.0029

Average Impr. 1.54 1.37 1.39

HBPair*
CaseStudies Rand. mo dell model2 model3

Airlines 0.0038 0.0078 0.0044 0.0049
Cache4j 0.0003 0.0006 0.0004 0.0004
Crawler 0.0726 0.1683 0.1757 0.1731
Elevator 0.1004 0.0937 0.0906 0.0901
HEDC 0.0130 0.0095 0.0131 0.0141
Rover 0.0272 0.0371 0.0306 0.0325

Average Impr. 1.55 1.35 1.38

the genetic algorithms where the goal is increase the performance of
G A which are commonly very time consuming. Idea is that firstly, we

35

Time of experiments Cumulative coverage

Run Run

Figure 4: Testing time (left) and cumulative coverage (right) for an
increasing number of test runs.

apply G A with a fitness function based on the cheap metrics and we
run some number of generations. Then we use the results from the first
application of G A as the input generation of another application of G A
but this time with a fitness function based on expensive metrics and
we run next generations.

We compare this approach with the classic execution of GA, i.e,
that G A algorithm executes all generations with only one fitness func­
tion based on the given expensive metrics. We assume that experi­
ments will show acceleration of the optimization process using genetic
algorithms.

In the experiments, we used 50 generations of the populations for
classic used G A with fitness classic and division of this number of gen­
erations into two sub-generations where the first set of generations uses
fitnesscheap and the next generations use fitnessciassic. In our case, we

36

tried to use extrem division where 49 generations were generated with
the fitnesscheap and the last one was executed with the fitnessciassic.

Table 10 shows results of the experiments with the coverage of
the expensive metrics weighted by the total consumed testing time.

Table 10: A comparison of the types G A for coverage metrics over
the total testing time.

GoldiLockSC* WConcurPairs
CaseStudies classic GA. predict G A classic GA. predict G A

Airlines 0.0094 0.0060 1.2045 0.8229
Crawler 0.0409 0.0511 12.1012 11.1557
Elevator 0.0305 0.0391 9.0522 10.1673
HEDC 0.0209 0.01496 23.3262 15.7001
Rover 0.2469 1.0443 24.6319 34.3079

Average Impr. 1.6234 0.9588

HBPair*
CaseStudies classic GA. predict G A

Airlines 0.0028 0.0020
Crawler 0.0172 0.0197
Elevator 0.0047 0.0055
HEDC 0.0012 0.0008
Rover 0.0239 0.0952

Average Impr. 1.5412

Average improvement of the cumulative metric coverage over the ti­
me in the new approach case is in the two metrics better than 50%.
Only in WConcurPairs metric case, the result of coverage decreased
a little in average.

To sum up the results, the time needed for the experiments was in
average about 15% worse in the prediction methods than in the clas­
sic using of G A over the all benchmarks. On the other hand, sum of
coverage for individual metrics over the all benchmarks was increased.

37

The improvement is between 3% and 21%. Some next way how to
increase the results is to find the ideal ratio between number of gen­
erations executed under the fitness function with cheap metrics and
number of generations with the fitness function based on the expen­
sive metrics.

6 Conclusion
The goal of this PhD thesis was to propose new approaches to analyze
and verify real-life multi-threaded programs, i.e., programs that can
be large and that can use many different features, focusing especially
on rarely manifesting synchronization errors. It is very difficult to find
such errors due to their appearance in very specific interleavings of
the threads only.

There exist various ways how to increase the chance of finding such
errors during testing. In particular, we used the noise-injection tech­
nique for this purpose. This technique can "stress" running programs
so that during their execution, less common thread interleavings are
executed. Noise-injection based testing is quite light-weight compared
with other approaches, and so it scales well and can cope with many
different programs features. However, it comes with some problems
too. One of the problems is a large number of combinations how to set
up the test and noise parameters for analyzing programs among which
it is difficult to find the right ones. This problem is the one that we
worked on this thesis.

Previously, genetic algorithms were proposed as a way of finding
the best solution of setting the test and noise parameters (instead
of choosing them randomly, which is also often used). In particular,
the single-objective genetic algorithm (SOGA) was used in the pre­
vious work. In this work, we proposed usage of the multi-objective
genetic algorithm (MOGA) instead and shown how it can be used

38

in the given domain. We have then shown that M O G A can indeed
deliver better results than both the random approach and the single-
objective genetic algorithm. One of the major reasons for that is that,
in the M O G A case, the individuals do not degenerate during the gener­
ation process, i.e., the generation of individuals do not loose diversity.
For the SOGA, it is difficult to combine the different objectives that
are typically present in the TNCS problem and whose wrong setting
can lead to degeneration. Moreover, we have also proposed a penaliza­
tion scheme to increase the number of tested uncommon behaviours.
Apart from that the experiments showed that M O G A has more stable
results than SOGA and random approaches.

Next, for the same goal, we proposed a use of data mining, in
particular, the AdaBoost algorithm. Using this data mining method
enabled us to find which parameters and their specific values the most
affect testing of parallel programs using noise injection for a particular
testing goal. On the other hand, it gives us also information about
which setting of parameters has not any effect on the testing. We
also tried to combine both approaches—AdaBoost and genetic algo­
rithms. In our comparisons of random, AdaBoost, genetic algorithms,
and a combination of the approaches, the best solution was produced
by the AdaBoost and its combination with genetic algorithms.

In the further part of the thesis, our work focused on the time
needed for finding suitable test and noise settings by experiments with
different coverage metrics which are focused on synchronization in con­
current programs. We found that some metrics used for controlling
the testing process need a large number of experiments to find right
test and noise parameter setting for maximizing coverage under them
while other metrics are cheaper. We found some correlation between
these expensive and cheap metrics and we proposed a way of how
these correlations can be used. In particular, we showed that one can
an avoid costly experiments with testing under expensive metrics to
find suitable test settings by performing the experiments with cheaper

39

metrics and then using the discovered settings for final testing under
the expensive metrics. We used the same principle for the case of test­
ing under multiple metrics at the same time. We realized that the ideal
number of cheap metrics which predict a given combination of more
expensive metrics is two. The discovered knowledge has been useful
also when using genetic algorithms to find the right noise settings.

Future research directions. One of the most promising direc­
tions of the future research would be an as efficient as possible combi­
nation of static and dynamic analyzes. Following this direction which
is still in progress, we implemented new heuristics which could be more
precise in injecting noise into program execution. In particular, they
allow one to choose concrete points in the program or concrete types of
points (such as usage of some concrete variables, classes, etc.) where
to put noise. Such places could be identified via static analysis as
the first step of program verification. The second step would then
be dynamic analysis focusing the noise on concrete places, classes, or
variables which are identified by the static analysis.

In the process of implementation of the new heuristics, we also
tried to replace the I B M ConTest tool by some other technology in
the testing process supported by SearchBestie. The reason is that
the development of the I B M ConTest tool was stopped some time ago,
and the tool is not even maintained any more. For this purpose, we
chose RoadRunner which is an open source tool, and it is still being
developed.

RoadRunner is a tool which was developed at University of Cali­
fornia at Santa Cruz and Williams College as an efficient solution for
concurrent program testing. As it was written in [CF10], the goal
of RoadRunner is to provide a robust and flexible framework that
substantially reduces the overhead of implementing dynamic analyses.
RoadRunner manages the messy, low-level details of dynamic analysis
and provides a clean API for communicating an event stream to back-
end analysis tools. Each event describes some operation of interest

40

performed by the target program, such as accessing memory, acquiring
a lock, forking a new thread, etc. This separation of concerns allows
the developer to focus on the essential algorithmic issues of a particular
analysis, rather than on orthogonal infrastructure complexities.

The cooperation of the RoadRunner and SearchBestie was descri­
bed in the bachelor's thesis written by David Kozák [Koz 17], where
the author of this thesis helped with supervision and follow-up re­
search. Unfortunately, this research is not further developed due to
a loss of the collaborating MSc student.

Publication Related to this Thesis. The results presented in
this thesis were originally published in the following papers. The re­
search focused on M O G A was published as a technical report [DKL +13]
in cooperation with ORT Braude College in Karmiel, Israel within the
Kontakt II project. The second publication is focusing on the compari­
son of two genetic approaches M O G A and SOGA and it was presented
as a conference paper [DKL +14] at the SSBSE'14 conference. The Ad-
aBoost approach was presented as conference a paper [ADK +14] at the
MEMICS'14 conference. The modification of the AdaBoost approach
was presented as a student poster at the AERFAI / INIT 2015 Sum­
mer School on Machine Learning in Benicassim and the results were
also published as a journal paper [ADK +17] in the Concurrency and
Computation: Practice and Experience journal. We were also invited
to the European Conference about Data Analysis (ECDA'18), where
the combination of the AdaBoost approach and genetic algorithms was
presented. The main idea is to try to identify dependencies between
parameter settings suitable for testing under metrics of different costs
and then use testing under a cheaper metric to find setting suitable for
a more expensive metric. Alternatively testing under several cheaper
metrics can be used for this purpose too. The main idea about identifi­
cation of dependencies between parameter settings suitable for testing
under metrics of different costs and then use testing under a cheaper
metric to find setting suitable for more expensive metrics was presented

41

at the EUROCAST'17 conference and published as a conference pa­
per [KPV18].

Bibliography
[ADK +14] Renata Avros, Vendula Dudka, Bohuslav Křena, Zdeněk

Letko, Hana Pluháčková, Shmuel Ur, Tomáš Vojnar, and
Zeev Volkovich. Boosted decision trees for behaviour min­
ing of concurrent programs. In Proceedings of MEMICS7147

pages 15-27. NOVPRESS s.r.o., 2014.

Renata Avros, Vendula Dudka, Bohuslav Křena, Zdeněk
Letko, Hana Pluháčková, Shmuel Ur, Tomáš Vojnar, and
Zeev Volkovich. Boosted decision trees for behaviour min­
ing of concurrent programs. Concurrency and Computa­
tion: Practice and Experience, 2017.

[CF10] S. N . Freund. C. Flanagan. The roadrunner dynamic anal­
ysis framework for concurrent programs. In PASTE TO.
Toronto, Ontario, Canada, A C M , 2010.

[DKL +13] Vendula Dudka, Bohuslav Křena, Zdeněk Letko, Hana
Pluháčková, and Tomáš Vojnar. Testing concurrent pro­
grams using multi-objective genetic algorithms, 2013.

[DKL +14] Vendula Dudka, Bohuslav Křena, Zdeněk Letko, Hana
Pluháčková, and Tomáš Vojnar. Multi-objective genetic
optimization for noise-based testing of concurrent software.
In SSBSE'14, LNCS 8636, pages 107-122. Springer Verlag,
2014.

[DKLV12] Vendula Dudka, Bohuslav Křena, Zdeněk Letko, and
Shmuel Ur Tomáš Vojnar. Testing of concurrent programs

[ADK+17]

42

[ECP99]

using genetic algorithms. In SSBSE'12, LNCS 7515, pages
152-167. Springer Verlag, 2012.

O. Grumberg E. Clarke and D. Peled. Model checking.
1999.

[FDK +15] Jan Fiedor, Vendula Dudka, Bohuslav Křena, Zdeněk
Letko, Shmuel Ur, and T. Vojnar. Advances in noise-based
testing of concurrent software. In Software Testing, Verifi­
cation and Reliability, pages 272-309. Elsevier, 2015.

[KLV12] Bohuslav Křena, Zdeněk Letko, and Tomáš Vojnar. Influ­
ence of noise injection heuristics on concurrency coverage.
LNCS 7119, pages 123-131. Springer Verlag, 2012. In Proc.
of MEMICS'll,.

[Koz 17] D. Kozák. Přesné heuristiky pro vkládání šumu v nástroji
searchbestie. University of Technology, Faculty of Infor-
matic science, Brno, 2017. Bachelor's thesis.

[KPV18] Bohuslav Křena, Hana Pluháčková, and Shmuel Ur Tomáš
Vojnar. Prediction of coverage of expensive concurrency
metrics using cheaper metrics, pages 99-108. Springer Ver­
lag, 2018. In Proc. of EUROCAST'17,.

[Lanl3] B. Lantz. Machine learning with r. Birmingham Packt
Publishing, 2013. In Proc. of EUROCAST'17,.

[RDV17] J. Fiedor J. Lourengo A. Smrčka D.G. Sousa R. Dias,
C. Ferreira and T. Vojnar. Verifying concurrent programs
using contracts. In Proc. of ICST'17. IEEE CS, 2017.

[Sch06] M . I. Schwartzbach. Lecture notes on static analysis.
BRICS, Department of Computer Science, University of
Aarhus, Denmark,, 2006.

43

[SHH03] S. Park M . K im S. Hong, J. Ahn and M . J. Harrold. Frame­
work for testing multi-threaded Java programs, pages 15(3-
5). John Wiley k Sons, Ltd., 2003.

[Tal09] E.-G. Talbi. Metaheuristics: From design to implementa­
tion. Wiley Publishing, 2009.

[Tas02] G. Tassey. The economic impacts of inadequate infrastruc­
ture for software testing. 2002.

[Zit99] E. Zitzler. Evolutionary algorithms for multiobjective op­
timization: Methods and applications. 1999. PhD thesis.

44

Curriculum Vitae
Personal Data
Name: Hana Pluhäckovä
Born: September 27, 1988, Brno, Czech Republic
E-mail: ipluhackova@fit.vutbr.cz
Telephone: +420 776 010 677

Education

2013 now

2011 - 2013

2008

2008

- 2012

2011

2000 2008

Experience

PhD. (ongoing)—Faculty of Information Technol­
ogy, Brno University of Technology. Research
theme: Application of genetic algorithms and data
mining in noise-based testing of concurrent soft­
ware.
Master's degree (Mgr.)—Faculty of Science, Brno
Masaryk University. Master thesis: Non-
parametric estimates of ROC curves.
Bachelor's degree (Be.)—Faculty of Science, Brno
Masaryk University. Bachelor thesis: Free groups.
Bachelor's degree (Be.)—Faculty of Arts, Brno
Masaryk University. Bachelor thesis: F. G. I. Eck­
stein and paintings above the stairs of Landhouse in
Brno.
Secondary education—Gymnázium, Brno,
Vídeňská 47.

2016 - now Security data analyst in Mavenir, s.r.o, Brno, CZ.

Language skills

Czech, English, French.

45

mailto:ipluhackova@fit.vutbr.cz

Abstract
Tato práce navrhuje zlepšení výkonu testování programů použitím
technik dolování z dat a genetických algoritmů při testování paralelních
programů. Paralelní programování se v posledních letech stává velmi
populárním i přesto, že toto programování je mnohem náročnější než
jednodušší sekvenční a proto jeho zvýšené používání vede k podstatně
vyššímu počtu chyb. Tyto chyby se vyskytují v důsledku chyb v syn­
chronizaci jednotlivých procesů programu. Nalezení takových chyb
tradičním způsobem je složité a navíc opakované spouštění těchto testů
ve stejném prostředí typicky vede pouze k prohledávání stejných prok­
ládání. V práci se využívá metody vkládání šumu, která vystresuje
program tak, že se mohou objevit některá nová chování. Pro účinnost
této metody je nutné zvolit vhodné heuristiky a též i hodnoty jejich
parametrů, což není snadné. V práci se využívá metod dolování z dat,
genetických algoritmů a jejich kombinace pro nalezení těchto heuris­
tik a hodnot parametrů. V práci je vedle výsledků výzkumu uveden
stručný přehled dalších technik testování paralelních programů.

46

