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ABSTRACT 
Through recent years, neural networks have been used more and more extensively across 
many science fields. Neural networks based upon the WaveNet architecture and recurrent 
neural networks are nowadays used in human speech synthesis and other various tasks 
such as black box model l ing systems for acoust ic signals alteration (modulat ion effects, 
non-linear distort ion units, etc.). Th is academic work provides a brief introduct ion to the 
neural network terminology and common practice, elaborates on several types of neural 
network types with neural network audio signal model l ing feasibil ity in mind. Furthermore 
describes and compares results of experimental implementat ion of WaveNet-s ty le neural 
network and other types of neural network in black box audio signal model l ing tasks. 

KEYWORDS 
model ing, black box, WaveNet , deep learning, neural networks, recurrent neural net­
works, feedforward neural networks, non-linear distort ion, modulat ion effects 

ABSTRAKT 
Neuronové sítě jsou v průběhu posledních let používány stále více, a to víceméně přes 
celé spektrum vědních oborů. Neuronové sítě založené na architektuře WaveNet a sítě 
využívající rekurentních vrstev se v současné době používají v celé řadě využit í , zahrnující 
například syntézu lidské řeči, nebo třeba při metodě black box modelování akustických 
systémů, které upravují zvukový signál (modulační efekty, nelineární zkreslovače, apod.) . 
Tato akademická práce si dává za cíl poskytnout úvod do problematiky neuronových sítí, 
vysvětl i t základní pojmy a mechanismy té to problematiky. Popsat využi t í neuronových sítí 
v modelování akustických systémů a využít těchto poznatků k implementaci neuronových 
sítí za cílem modelování l ibovolného efektu nebo zařízení pro úpravu zvukového signálu. 

KLÍČOVÁ SLOVA 
modelování, black box, WaveNet , hluboké učení, neuronové sítě, rekurentní neuronové 
sítě, dopředně neuronové sítě, nelineární zkreslení, modulační efekty 
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ROZŠÍŘENÝ ABSTRAKT 
Neuronové sítě jsou v p r ů b ě h u posledních let používány stále více, a to víceméně přes 

celé spektrum vědních oborů. Neuronové sítě založené na a rch i tek tuře WaveNet a 

sítě využívající rekurentních vrstev se v současné době používají v celé řadě využit í , 

zahrnující např ík lad syntézu lidské řeči, nebo t ř e b a při modelování akust ických 

systémů, k te ré upravuj í zvukový signál (modulační efekty, nel ineární zkreslovače, 

apod.). Tato akademická práce si dává za cíl poskytnout úvod do problematiky 

neuronových sítí, vysvětl i t základní pojmy a mechanismy t é to problematiky. Pop­

sat využi t í neuronových sítí při modelování akust ických sys témů metodou black box 

a využí t t ěch to p o z n a t k ů k implementaci neuronových sítí za cílem modelování l i ­

bovolného efektu nebo zařízení pro úp ravu zvukového signálu. 

K modelování akust ických sys témů byly v t é to práci zvoleny dvě architektury 

neuronových sítí. P r v n í architektura pracuje na principu vícevrstvé dopředné neu­

ronové sítě. D r u h á architektura stylu WaveNet, je dopřednou variantou neuronové 

sítě založené na algoritmu WaveNet. Tento druh sítí se též někdy nazývá temporální 

konvoluční sítě (TCN). Dopředné neuronové sítě neobsahují žádné rekuren tn í vrstvy, 

spojení ani zpě tné vazby. Směr prostupu neuronovou sítí je pevně daný ve směru 

od vstupu k výs tupu sítě. 

Jakož to akust ické sys témy k modelování byly zvoleny t ř i kytarové podlahové 

efekty t y p ů distortion, overdrive a delay a jeden ky ta rový elektronkový zesilovač. 

Úkolem neuronových sítí bylo nauči t se charakter is t ické nelinearity výše zmíněných 

zařízení, a t í m je tedy modelovat. 

Trénovací data, k t e rá neuronové sítě užívaly v p r ů b ě h u trénovací fáze, byla 

vy tvořena pomocí reamplifikace nahraných ky ta rových signálů výše zmíněnými efekty. 

Validační data pro kontrolu t rénovacího výkonu sítí byla vy tvořena obdobně . Vzh­

ledem k tomu, že při reamplifikaci signálů vznikala latence zefektovaného signálu 

vůči nezefektovanému, bylo po skončení reamplifikace n u t n é provést kompenzaci 

dané latence. Toho se dosáhlo pomocí vzájemné korelace daných dvou signálů a 

nás ledného posunu t í signálu o počet r ámců výsledku vzájemné korelace. T í m t o 

způsobem se zajistila časová koherence nezefektovaného a zefektovaného signálu, 

k t e rá je důleži tou podmínkou pro korektně nas tavený učicí proces, kdy je n u t n é aby 

dva signály sobě odpovída ly v časové doméně s přesnost í jednoho rámce . Latence 

byla do signálu p r o m í t n u t a v p o d o b ě reamplifikačního řetězce ( D A / A D převodníky, 

reamplifikační box, reamplifikovaný efekt, kabeláž , popř . mikrofon). Kompenzace 

latence byla provedena u efektů distortion, overdrive a elektronkového zesilovače. V 

př ípadě efektu delay by kompenzace latence naopak znemožni la modelaci daného 

efektu, jelikož záměrné zpoždění daného efektu by bylo kompenzováno, což by bylo 

pro tento druh efektu nežádoucí . 

V rámci učení je neuronovým sí t ím předložen pá r odpovídajících signálů - neze-



fektovaný a zefektovaný. Cílem sítě je po t é nauči t se nel ineární závislosti mezi 

danými signály. J e d n á se o metodu učení s učitelem. Celý dataset obsahuje zhruba 

62 minut záznamu kytarového mono signálu v bitové hloubce 32 b i tů a vzorkovací 

frekvenci 44100 Hz, ve k t e r ém jsou zastoupeny samos ta tně zahrané noty i delší sou­

vislé úseky (akordy, kousky skladeb). Zastoupeno je několik odlišných technik hry 

na kytaru. Celý dataset byl rozdělen v p o m ě r u 80:20 s převahou trénovací sady. 

Dataset byl rozdělen způsobem, k te rý zamezoval převaze urči tých d ruhů interpre­

tac í a technik hry v jedné ze sad. Nedodržení t é to p o d m í n k y by mohlo negat ivně 

ovlivnit t rénovací proces. 

K e kontrole úspěšnost i t rénovacího procesu slouží validační sada (kterou síť do té 

doby neměla možnost pozorovat), kdy již na t rénované síti je na její vstup předložen 

pouze nezefektovaný signál a síť by již už na základě naučených zkušenost í s danou 

nel ineární závislostí měla být schopna predikovat zefektovaný signál. Jak úspěšná 

v tomto úkolu je se hodno t í po rovnán ím predikce sítě a zefektovaným signálem z 

validační sady. Tato hodnota se vypoč í t á pomocí kr i tér ia z t rá tové funkce. P la t í , že 

čím nižších hodnot z t rá tová funkce nabývá, t í m úspěšnější síť je ve svých predikcích. 

V t é t o práci byly použi ty dvě kr i tér ia z t rá tové funkce, a to Mean Squared Error 

(MSE) v p ř ípadě vícevrstvé dopředné sítě a Error to Signál Ratio (ESR) v p ř ípadě 

sítě stylu WaveNet. 

Neuronové sítě byly implementovány v jazyce Py thon a pomocí knihovny Py-

torch. Tato knihovna je specializovaná na strojové učení s využ i t ím dedikovaných 

grafických karet pro akceleraci procesu. Učení neuronových sítí probíhalo nesou­

visle na grafických ka r t ách Nvidia RTX 2080 Ti a Nvidia RTX 2060 Super. V 

rámci úspory výpoče tn í kapacity při ladění t rénovacího procesu byly obě neuronové 

sítě nejdříve na t rénovány na jednom audio efektu (efektu distortion). Použi té nas­

tavení neuronových sítí [hyperparametry], k teré poskytovaly uspokojivé výsledky 

ve smyslu zvukové věrnost i zvukového modelu a výpoče tn í náročnos t i byly po t é 

použi ty i př i t rénování mode lů zbývajících zvukových efektů. Vícevrstvá dopředná 

síť byla na t r énována celkem se 26 sadami h y p e r p a r a m e t r ů , síť stylu WaveNet s 28 

sadami. Z těch po t é byla pro každou neuronovou síť a každý zvukový model vyb rána 

konfigurace s nejnižší hodnotou z t rá tové funkce. Tyto modely byly zhodnoceny ve 

výsledcích a predikce těchto mode lů byly použi ty v poslechovém testu 1 . 

Pro rozdílnost uži tých kri téri í z t rá tových funkcí př ímé porovnán í hodnot obou 

neuronových sítí sice nebylo možné, n icméně bylo možné kvan t i t a t ivně porovná­

vat vlnové p růběhy nebo hodnoty absolu tn í chyby mezi predikovaným s ignálem a 

původn ím zefektovaným signálem. Stejně tak bylo v rámci poslechového testu možné 

kval i ta t ivně hodnotit zvukovou podobnost predikovaného signálu z neuronových sítí 

1Poslechový test byl do práce zařazen nad rámec zadání jakožto doplňková metrika. 



s p ů v o d n í m zefektovaným signálem. K tomu byl použi t test používající metodologii 

M U S H R A 2 test, k te rý byl d is t r ibuován skrze webové rozhraní w e b M U S H R A . Vzh­

ledem k restr ikcím, k teré sebou přinesla pandemie Covid-19 nebylo možné uspořá­

dat poslechový test prezenčně. Do výsledků poslechového testu se tento fakt mohl 

negat ivně p romí tnou t v p o d o b ě zkreslení výsledků, jelikož nemohly být zaručeny 

kons tan tn í p o d m í n k y pro všechny posluchače. 

V rámci výsledků t é t o diplomové práce vykazovala vícevrstvá dopředná neu­

ronová síť lehce lepších výsledků než neuronová síť stylu WaveNet, a to předevš ím z 

kvan t i t a t ivn ího hlediska, přestože predikce obou sítí byly občas navzá jem poměrně 

blízko. Pa radoxně , některé kvan t i t a t ivně lépe hodnocené modely nebyly ohodnoceny 

jako kval i ta t ivně lepší. Tak se např ík lad stalo v p ř ípadě mode lů efektu overdrive a 

elektronkového zesilovače. P ře s to je n u t n é na výsledky poslechového testu nahlížet s 

u rč i tým odstupem, a to kvůli výše zmíněným l imitacím a s p ř ih lédnu t ím k menš ímu 

p o č t u r e sponden tů (8). 

Nejlepší zvukové modely obou neuronových sítí byly svými zvukovými predikcemi 

vzdálené state-of-the-art s imulacím daných zvukových efektů. P ře s to s p ř ih lédnut ím 

k výpoče tn ím a časovým dispozicím se jednalo o uspokojivé výsledky odpovídající 

zaměření a rozsahu t é t o práce. 

2Vícestimulový test se skrytou referencí a kotvou 
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Introduction 
Digit ization of music production has been a constant trend throughout the recent 

years and so is the demand for faithful digital emulations of analog audio effects. 

Many popular guitar amplifiers and distortion effects are based on analog circuitry. 

Such circuits utilize nonlinear components, such as vacuum tubes, diodes, or transis­

tors to achieve the desired distortion. Digi ta l emulations of analog systems and the 

adjacent field of audio signal modelling (sometimes called vir tual analog modelling 

as well) has therefore been on rise. Once heavy, fragile and often very costly analog 

equipment can nowadays be, ideally, replaced by software plugins that can be run 

on any capable modern computer. 

Several different approaches in audio signal modelling have been used over the 

past years. One of the most recent one, audio signal modelling using neural networks 

(sometimes also referred to as deep learning audio modelling, end-to-end learning 

for audio modelling etc.), seems especially feasible when combined wi th a black box 

modelling technique. This way, the modelled sound device is presented as a black 

box, when the inner circuitry of the given device is unknown and the only information 

utilized by the neural network is the input-output audio signal correlation. 

A s proved in [1], [2] or [3], results of this approach can be more than satisfactory, 

yet fairly subjective, since the quality of reproduction and "likeness" of audio device 

simulation or model and the reference target are a subject to a long going dispute 

among musicians, sounds engineers, technicians and many more. 

The goal of this master's thesis is to provide an insight into the field of audio 

modelling, sum up the information concerning neural networks in relation to audio 

modelling and experimentally implement several neural network architectures that 

are capable of audio signal modelling. Dataset of guitar audio signals is used in the 

creation of a training database that can be used during the neural networks' training 

processes. Evaluation and comparison of the actual outcomes wi th the results of the 

latest attempts in the field of neural network audio modelling has been carried out. 

Listening test for evaluation of subjective quality of the audio models has been 

created as well. 

15 



1 Audio Signal Modelling 
Audio effects modelling is the process of emulating an audio effect unit and often 

seeks to recreate the sound of an analog reference device. Correspondingly, an audio 

effect unit is an analog or digital signal processing system that transforms certain 

characteristics of the sound source. These transformations can be linear or nonlinear, 

wi th memory or memory-less. Most common audio effects' transformations are 

based on dynamics, such as compression; tone such as distortion; frequency such 

as equalisation (EQ) or pitch shifters; and time such as artificial reverberation or 

chorus [2, 4]. 

1.1 Nonlinear Audio Effects 

These effects are widely used by musicians and sound engineers and can be classified 

into two main types of effects: dynamic processors such as compressors or limiters; 

and distortion effects such as tube amplifiers [5]. 

Distortion effects are mainly used for aesthetic reasons and are usually applied 

to electric musical instruments such as electric guitar, bass guitar, electric piano or 

synthesizers [5]. 

The main sonic characteristic of these effects is due to their non-linearity and the 

most common processors are overdrive, distortion pedals and tube amplifiers [5]. 

Dynamic range processors are nonlinear time-invariant audio effects with long 

temporal dependencies, and their main purpose is to alter the variation in volume 

of the incoming audio. This is achieved with a varying amplification gain factor, 

which depends on an envelope follower 1 along wi th a wave-shaping non-linearity. 

These effects tend to introduce a low amount of harmonic distortion, while for tube 

amplifiers a strong distortion is desired [5]. 

Furthermore, distortion effects and dynamic range processors are based on the 

alteration of the waveform which leads to various degrees of amplitude and harmonic 

distortion [5]. 

The nonlinear behaviour of certain components of the effects' circuit performs 

this alteration, which can be seen as a wave-shaping non-linearity applied to the 

amplitude of the incoming audio signal in order to add harmonic and inharmonic 

overtones. For example, a wave-shaping transformation depends on the amplitude 

of the input signal and consists in using a nonlinear function, such as an hyperbolic 

tangent, to distort the shape of the incoming waveform [3, 6]. 

1 Envelope follower (or detector) is a utility that follows (or detects) changes in the amplitude 
of the input signal and recreates these changes into a control signal. 
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1.2 Modulation Based Audio Effects 

Modulat ion based or time-varying audio effects involve audio processors that include 

a modulation signal within their analog or digital implementation [7]. These modu­

lation signals are in the low frequency range (usually below 20 Hz) . Their waveforms 

are based on common periodic signals such as sinusoidal, squarewave or sawtooth 

oscillators and are often referred to as a Low Frequency Oscillator ( L F O ) . The L F O 

periodically modulates certain parameters of the audio processors, altering the t im­

bre, frequency, loudness or spatialization characteristics of the audio. Based on how 

the L F O is employed and the underlying signal processing techniques used when 

designing the effect units, we can classify modulation based audio effects into time-

varying filters such as phaser or wah-wah; delay-line based effects such as Sanger or 

chorus; and amplitude modulation effects such as tremolo or ring modulator [3, 5]. 

1.3 Audio Effects Modelling 

Modell ing the above mentioned types of effect units or analog circuits has been heav­

ily researched and remains an active field of research [8]. V i r tua l analog methods for 

modelling nonlinear and time-varying audio effects mainly involve circuit modelling 

and optimization for specific analog components such as vacuum-tubes, operational 

amplifiers or transistors. This often requires models that are too specific for a cer­

tain circuit or making certain assumptions when modelling specific non-linearities. 

Therefore such models are not easily transferable to different effects units since 

expert knowledge of the type of circuit being modelled is always required. Also, 

musicians tend to prefer analog counterparts because their digital implementations 

may lack the broad behaviour of the analog reference devices [3]. 

In terms of audio modelling methods, several different approaches are nowadays 

used such as white box, black box and grey box modelling. 

White Box Modell ing 

White box modelling has been based on methods such as circuit simulation, where 

a complete study of the internal circuit is carried out. Whi te box approach is often 

used in modelling of dynamic range processors, such as compressors [3]. 

Black Box Modell ing 

Black box [9] methods, such as system identification techniques, where a model is 

structured using only the measurements of the input and output signals. Therefore, 

the knowledge of the inner circuitry is omitted [3]. 
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Grey Box Modell ing 

Grey box [10] technique is a combination of white and black box modelling, since 

some information about the circuit is known and used together with the black box 

approach of input-output signal relation [3]. 

A s mentioned in [3], modelling of general purpose dynamic range compressors 

wi th black box and grey box approach has been investigated v ia input-output mea­

surements and optimization routines. 

1.3.1 Modelling of Nonlinear Audio Effects 

Since a nonlinear system cannot be fully characterised by its impulse response, 

frequency response or transfer function [4], digital emulation of distortion effects 

have been extensively researched [8]. Different methods have been proposed such 

as memory-less static wave-shaping [11], where system-identification methods are 

used to approximate the non-linearity. Dynamic nonlinear filters, where the wave-

shaping curve changes its shape as a function of the input signal or system-state 

variables. Circuit simulation techniques, where a complete study of the analog 

circuitry is performed and nonlinear filters are derived from the differential equations 

that describe the circuit. 

Analyt ica l methods, where the nonlinearity is modelled v ia Volterra series theory 

[12] or nonlinear black box approaches such as Wiener and Hammerstein models 

[3, 9, 13]. 

Generalization among different audio effect units is usually difficult since these 

methods are often either simplified or optimized to a very specific circuit. This lack 

of generalization is accentuated when we consider that each audio processor is also 

composed of components other than the non-linearity. These components also need 

to be modelled and often involve filtering before and after the non-linearity, as well 

as short and long temporal dependencies such as hysteresis or attack and release 

gates [3]. 

1.3.2 Modelling of Time-Varying Audio Effects 

Most research for modelling time-varying audio effects has been explored v ia white 

box methods. In order to model the various analog components that characterize the 

circuitry of this type of effects, circuit simulation approaches are based on diodes, 

transistors, operational transconductance amplifiers (OTAs) or integrated circuits. 

Common methods for circuit simulation include the nodal DK-method [14] and Wave 

Digi ta l Filters ( W D F ) [15]. B y assuming linear behaviour or by omitt ing certain 

nonlinear circuit components, most of these effects can be implemented directly in 
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the digital domain through the use of digital filters and delay lines. Henceforth, 

based on all-pass filters and multiple measurements of impulse responses, a grey 

box modelling method for linear time-varying audio effects is proposed [3]. 

Recently, deep learning architectures have been explored for black box modelling 

of audio effects. 

1.3.3 Deep Learning for Audio Effects Modelling 

Deep learning architectures for audio processing tasks, such as audio effects mod­

elling, have been investigated as end-to-end methods or as parameter estimators of 

audio processors. End-to-end deep learning architectures, where raw audio is both 

the input and the output of the system, follow black box modelling approaches where 

an entire problem can be taken as a single indivisible task which must be learned 

from input to output. The desired output is obtained by learning and processing 

directly from the incoming raw audio, thus reducing the amount of required prior 

knowledge and minimizing the engineering effort [3]. 
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2 Neural Networks 
Artif icial neural networks 1 are designed in a way to mimic the style of processing of 

a human brain [16]. Analyt ica l ly speaking of the neural network, abstraction of an 

optimized nonlinear function 

f(x) = y (2.1) 

can be used, where the output y is an optimized function / of the input x. 

In terms of hierarchy, A N N can be described as a stack of units (neurons) ar­

ranged into multiple layers. The key concept of neural network, an artificial linear 

neuron called Perceptron, was first introduced by Frank Rosenblatt in his work [17] 

in 1958. Since Perceptron's linear nature allowed only binary operations, use of an 

optimized non-linearity called activation function was proposed. 

Neural network is powerful enough to solve a variety of problems that are proved 

to be difficult wi th conventional digital computational methods. The human think­

ing system is in parallel which means it operates wi th numerous of our neurons 

connected together. In contrast to conventional mathematical logic, the main char­

acteristics of the human thinking process is imprecise, fuzzy, but adaptive. It learns 

by examples, experience and it exhibits strong adaptation to external changes. Neu­

ral networks are designed in a way to mimic most of these characteristics [16]. 

2.1 Artificial Neuron 

Neuron is a fundamental abstract unit of a neural network. Theoretically, it can 

have an infinite number of inputs, but a finite number of outputs - strictly one. 

y 

Fig . 2.1: Schematic representation of a neuron in a neural network. Neuron inputs 

Xq, ..., xn of corresponding weights w0,..., wn are being summed up. Bias b and 

activation function ip are being applied. 

1 Artificial Neural Network (ANN) or Neural Network (NN). These terms are interchangeable. 
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In an artificial neural network, weights are real numbers that tell us what im­

portance a neuron's input has for the output. In equation: 

n 

y = ip • (b + J2 xiwi) (2.2) 
i=l 

n 
where inputs x0,..., xn of weights w0,..., wn create a weighted sum J2 x i w i which 

is then multiplied by an activation function ip. This yields the true neuron's output 

y. Bias 1 of weight b - which can be also described as an additional neuron of input 

1 - can alter the output accordingly to its weight. 

2.1.1 Activation Functions 

Activat ion (or transfer) function is used to transform the activation level of a unit 

(neuron) into an output signal. There are number of common activation functions 

in use wi th artificial neural networks [18], like Sigmoid, Tanh, ReLU or Leaky ReLU. 

It projects real valued input into a (0,1) range. In practice, large negative numbers 

are rendered almost 0 and large positive numbers are rendered almost 1. Historically, 

sigmoid function was heavily used because of its close resemblance to the biological 

neuron's firing characteristic (returns 0 or 1, "fires" or "does not fire"). 

M a i n disadvantages of sigmoid function are outputs that are not zero-centred 

and regional gradients that are almost zero. When the neuron's activation saturates 

at either tai l of 0 or 1, the gradient at these regions is almost zero. If the local 

gradient is very small, it wi l l influence the global gradient in a way that almost no 

signal wi l l flow through the neuron to its weights and to its data as well. E x t r a cau­

tion is required when initialising the weights of neurons utilising sigmoid to prevent 

saturation. Reason behind this is if the ini t ial weights are too large, most neurons 

would become saturated and the network wi l l essentially not be able to learn [19]. 

Previously mentioned lack of zero-centred outputs is less severe in terms of con­

sequences than the close to zero gradients problem. St i l l , it is problematic since 

the later layers of a neural network would receive data that is not zero-centred and 

therefore could introduce undesirable zig-zagging dynamics in the gradient updates 

i=l 

Sigmoid 

Sigmoid is a nonlinear function which is described by the equation 

(2.3) 
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for the weights, since the gradient on weights w during back-propagation 2 wi l l be­

come either all positive or all negative [19]. Recently, the usage of sigmoid function 

has seen a decline since its drawbacks render it less desirable in comparison to other 

activation functions. 

Tanh 

Tanh (pictured pink in F ig . 2.2) non-linearity is similar to sigmoid non-linearity. 

M a i n differences are that tanh outputs are in the range (—1,1) and are zero-centred 

[18]. Like the sigmoid neuron, its activation saturates [19], but in practice is gener­

ally preferred over sigmoid. 

R e L U 

Rectified Linear Uni t - R e L U (pictured magenta in F ig . 2.2), has become popular 

in recent years. For input x < 0 the output y is set to 0, but for every positive 

number as input it offers non-saturated linear output. M a i n advantage of the R e L U 

activation function over sigmoid or tanh is its speed. It was found to greatly ac­

celerate the convergence of stochastic gradient descent [19, 20]. Major drawback 

of R e L U units is the so-called "dying R e L U " phenomenon. For example, a large 

gradient flowing through a R e L U neuron could cause the weights to update in such 

a way that the neuron wi l l never activate on any data point again. If this happens, 

then the gradient flowing through the unit wi l l forever be zero from that point on 

[19]. This results in a "dead" neuron 3 that cannot be used anymore in the training 

process. In search of a solution to this issue Leaky ReLU was introduced. 

Leaky R e L U 

Leaky R e L U (dotted orange in F ig . 2.2) is the result of one of many attempts to fix 

ReLU's main drawback. Proposed solution was to introduce a small negative slope 

instead of zero for inputs x < 0 [19]. 

2see 2.1.2 
3 Applies to a saturated sigmoid neuron as well. 
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F ig . 2.2: Plot ted activation functions. 

2.1.2 Backpropagation 

Backpropagation method is used to compute the gradient of an objective function 

wi th respect to the weights of a mult i layer stack of neurons. It incorporates a 

practical application of the chain rule for derivatives (shown in equations 2.4). The 

key insight is that the derivative (or gradient) of the objective with respect to the 

input of a neuron can be computed by working backwards from the gradient wi th 

respect to the output of that neuron (or the input of the subsequent neuron). The 

backpropagation equation can be applied repeatedly to propagate gradients through 

all neurons, starting from the output at the top (where the network produces its 

prediction) all the way to the bot tom (where the external input is fed). Once these 

gradients have been computed, it is straightforward to compute the gradients wi th 

respect to the weights of each neuron [21]. 
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In equations 2.4 the chain rule of derivatives tells us how two small effects (that 

of a small change of x on y, and that of y on z) are composed. A small change A x 

in x gets transformed first into a small change Ay in y by getting multiplied by a 

partial derivation of y wi th respect to x. Similarly, the change Ay creates a change 

Az in z. Substituting one equation into the other gives the chain rule of derivatives 

- how A x gets turned into Az through multiplication by the product of dy/dx and 

dz/dx. Taken from [21]. 

2.1.3 Loss Function 

Loss function, also called cost function or error function, tells us how well the model 

is performing at approximation of y(x) for all training inputs x [22]. The worse the 

approximation, the higher the loss function. 

In machine learning there are many optimization techniques such as Stochas­

tic Gradient Descent (SGD), AdaGrad, RMSProp and many combinations of these 

techniques such as Adam optimizer, which is closely described in [23]. 

2.1.4 Optimization 

Optimizat ion is an important part of the machine learning process. If backpropa-

gation tells us what gradient our model has, the optimizer's job is to decide how to 

treat this information to minimize the loss function. 

2.1.5 Regularization 

Overfitting is one of the major issues in the machine learning and neural network 

field. It occurs when a model performs well on train data, but fails to generalize 4 on 

test data [22]. In neural network and machine learning terminology, regularization 

is a process of preventing the neural network from overfitting. Mul t ip le regulariza­

tion techniques were proposed such as L1;L2 regularization, noise injection, error 

regularization, weight decay, optimized approximation algorithm, early stopping [24] 

and dropout [25]. 

Early Stopping 

Among a number of methods to avoid overfitting the early stopping using cross-

validation set, the noise injection and the weight decay have been known for about 

two decades, however only the first one is frequently applied in practice [24]. To use 

an early stopping approach, apart from the training data set and the testing set, the 

4the ability to perform well on previously unobserved data [22] 
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validation set is required to define stopping criteria of the learning algorithm. The 

A N N learning terminates when error increases for validation data, although it often 

continues to decrease for training data sets. When error calculated for validation 

data increases, while calculated for training data decreases, it is considered as fitting 

to the noise present in the data, instead of signal, which is a sign of overfitting [24]. 

Since immediate stopping upon the first error spike on validation data was not found 

feasible [24], a "cool-down" period called patience is often used. Patience stands for 

a number of epochs of the training process after which there is no significant change 

in error on validation data. 

Dropout 

Dropout regularization was first introduced in [25] as a technique that addresses 

overfitting problems in deep neural networks. The key idea is to randomly tem­

porarily drop units (along with their connections) from the neural network during 

training. This prevents units from co-adapting too much. During training, dropout 

samples from an exponential number of different "thinned" networks. A t test time, 

it is easy to approximate the effect of averaging the predictions of all these thinned 

networks by simply using a single unthinned network that has smaller weights. This 

significantly reduces overfitting and gives major improvements over other regular­

ization methods [25]. 

without dropout after dropout 

F ig . 2.3: Dropout technique depiction. Dropout has been applied to striped units 

in one training step. 
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2.2 Neural Networks Architecture 

Neural networks are modelled as collections of neurons that are connected in an 

acyclic 5 graph. In other words, the outputs of some neurons can become inputs to 

other neurons. Cycles are not allowed since that would imply an infinite loop in the 

forward pass of a network. Neural network models are often organised into distinct 

layers of neurons. 

2.2.1 Fully-connected Feedforward Neural Network 

For regular neural networks, the most common layer type is the fully-connected 

layer in which neurons between two adjacent layers are fully pairwise connected, 

but neurons wi thin a single layer share no connections [19]. 

The leftmost layer in this network is called the input layer, and the neurons within 

the layer are called input neurons. The rightmost or output layer contains the output 

neurons, or, as in this case, a single output neuron. The layer or layers in between 

are called hidden layers, since the training data does not show the desired output for 

each of these layers [22]. Number of layer corresponds to the term depth, meaning the 

more layers are used, the deeper the neural network is (eg. Deep Neural Networks). 

Networks where output from one layer is used as input to the next layer are called 

feedforward [26]. If we extend such a network to include feedback connections, it 

becomes a recurrent neural network [22]. 

Input Hidden Hidden Output 

layer layer 1 layer 2 layer 

F ig . 2.4: A fully-connected feedforward neural network wi th two hidden layers. 

5Exclusions apply, see 2.2.3. 
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2.2.2 Convolutional Networks 

Convolutional networks are a specialised kind of neural network for processing data 

that has a known grid-like topology. Examples include time-series data, which can 

be thought of as a 1-D grid taking samples at regular time intervals, and image data, 

which can be thought of as a 2-D grid of pixels [22]. Lately, it proved itself capable 

in fields of speech recognition and generation(eg. WaveNet in 3). To explain the 

principle of operation, the input neurons are organised into a filter (eg. TV x N). 

Each neuron represents a pixel in the input data. 

Convolutional Layer 

From the input picture, a small region (eg. 5 x 5) is selected and connected to the 

single neuron in the first hidden layer. That region in the input image is called the 

local receptive field for the hidden neuron [26]. This region is then moved by a fixed 

step (stride) across the input picture. Every hidden neuron has its assigned local 

receptive field with a bias and weights. A n activation function is used over every 

local receptive field. The same bias and weights are used for all hidden neurons in the 

same layer. This means that al l the neurons in the first hidden layer detect exactly 

the same feature, just at different locations in the input image. The map from the 

input layer to the hidden layer is called a feature map [26]. Different feature maps 

are often stacked in the convolution layer to detect different features. The bigger 

the stack, the "deeper" the layer (term deep in this case has no connection wi th the 

number of hidden layers in a feedforward neural network). 

Pooling Layer 

Convolutional layer is very often followed by a pooling layer, although there are 

architectures that choose to omit the use of them. Essentially, the pooling layer 

simplifies the information in the output from the convolutional layer [26]. It works 

in a similar manner to the convolutional layer. Every unit in the pooling layer is 

assigned to a small section of units from the previous layer. In detail, a pooling 

layer takes each feature map output from the convolutional layer and prepares a 

condensed feature map [26]. A s there are usually multiple feature maps, pooling is 

applied to every single one. 

We can think of pooling as a way for the network to ask whether a given feature 

is found anywhere in a region of the image. It then throws away the exact positional 

information. The intuition is that once a feature has been found, its exact location 

is not as important as its rough location relative to other features. A big benefit is 

that there are many fewer pooled features, and so this helps reduce the number of 
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parameters needed in later layers [26]. This process is also known as dimensionality 

reduction. 

input data feature maps feature maps 

• 

hidden 

layer 
output 

Convolution Pooling Fully-connected layers 

F ig . 2.5: Convolutional neural network wi th three convolution layers, three pooling 

layers and one fully-connected layer. 

2.2.3 Recurrent Neural Networks 

Much as a convolutional network is a neural network that is specialised for pro­

cessing a grid of values such as an image, a recurrent neural network is a neural 

network that is specialised for processing a sequence of values. Just as convolutional 

networks can readily scale to images wi th large width and height, and some convo­

lutional networks can process images of variable size, recurrent networks can scale 

to much longer sequences than would be practical for networks without sequence-

based specialisation. Most recurrent networks can also process sequences of variable 

length [22]. 

Recurrent neural networks process an input sequence one sample at a time, 

maintaining in their hidden units a state vector that implici t ly contains information 

about the history of all the past elements of the sequence. R N N s are powerful 

dynamic systems (yet often slow) and training them has proved to be problematic 

because the back-propagated gradients either grow or shrink at each time step, so 

over many time steps they typically explode or vanish [21]. 

Even if we assume that the parameters are such that the recurrent network is 

stable (can store memories, wi th gradients not exploding), the difficulty with long-

term dependencies arises from the exponentially smaller weights given to long-term 

interactions compared to short-term ones [21]. 

In search of solution of the long term dependencies in R N N s , several approaches 

were proposed, such as use of leaky units, long short-term memory neural networks, 
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gated recurrent neural networks, attention networks or transformers. 

Leaky Units 

Leaky unit is a type of a hidden unit that has a linear self-connection wi th weight 

near one on this connection. The use of a linear self-connection wi th a weight near 

one is a different way of ensuring that the unit can access values from the past 

[22]. Leaky units allow the neural network to remember the input data over a long 

duration. 

Long Short-Term Memory Network 

Long Short-Term Memory ( L S T M ) [27] recurrent networks use LSTM cells, visual­

ized in F ig . 2.6, that have an internal recurrence (a self-loop), in addition to the 

outer recurrence of the R N N . 

Memory cell is a special unit that acts like an accumulator or a gated leaky unit 

[21] (eg. it is able to remember and intentionally forget data, when it is not useful 

anymore). It has a connection to itself at the next time step that has a weight of 

one, so it copies its own real-valued state and accumulates the external signal, but 

this self-connection is multiplicatively gated by another unit that learns to decide 

when to clear the content of the memory [21]. Each cell has the same inputs and 

outputs as an ordinary recurrent network, but also has more parameters and a 

system of gating 6 units that controls the flow of information [22]. L S T M networks 

have subsequently proved to be more effective than conventional R N N s , especially 

when they have several layers for each time step [21]. 

6gated unit can be controlled by another unit 
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output gate 

state output 

F ig . 2.6: L S T M neural network cell block diagram. Cells are recurrently connected 

to each other. A regular artificial neuron unit is used for computation of an input 

feature. Its value can be accumulated into the state if the sigmoidal input gate 

allows it [22]. The state unit has a linear self-loop whose weight is controlled by 

the forget gate. The output of the cell can be shut off by the output gate. A l l 

the gating units have a sigmoid nonlinearity, while the input unit can have any 

squashing nonlinearity. The state unit can also be used as an extra input to the 

gating units. The black square indicates a delay of a single time step [22]. 

Gated Recurrent Neural Network 

Leaky units [28] allow the network to accumulate information (such as evidence for 

a particular feature or category) over a long duration. Once that information has 

been used, however, it might be useful for the neural network to forget the old state. 

For example, if a sequence is made of subsequences and we want a leaky unit to 

accumulate evidence inside each sub-subsequence, we need a mechanism to forget 

the old state by setting it to zero. Instead of manually deciding when to clear the 

state, we want the neural network to learn to decide when to do it [22]. This method 

is called a gated recurrent neural network 7 . 

2.3 Neural Network Training 

Machine learning algorithms can be broadly categorized as unsupervised, semi-

supervised or supervised by what k ind of data is available to the network during 

7often referred to as G R U network 
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the learning 8 process [22]. Supervised learning utilizes labeled data, unsupervised 

learning utilizes data without labels, semi-supervised learning can utilize both. The 

learning process is carried out on a collection of data called dataset. Dataset is often 

divided into training data and test 9data. Training data is used for the network to 

train on. Test data is not accessible to the model during the training. To find out 

how good the model is performing, test data is utilized. Since test data is one of 

the major pointers telling us the model succession rate, it is necessary that there is 

no cross contamination (leak) between training data and test data. Semi-supervised 

learning is a combination of both methods mentioned above. 

In machine learning there are several approaches in data modelling. These mod­

els can be roughly divided into using generative and discriminative approaches. 

Generative approach learns the joint probability model, p(x, y), of input x and class 

label y, and make their predictions to compute p(y\x), and then taking the most 

probable label y [29]. 

Discriminative approach models posterior class probabilities p{y\x) for all classes 

directly and learn mapping from x to y [29]. 

2.3.1 Supervised Learning 

Supervised learning algorithms experience a dataset containing features, but each 

example is also associated wi th a label or target. Supervised learning is about learn­

ing to predict y from x (usually by estimating p(y\x)), after the algorithm is shown 

several examples of x and an associated value y [22]. This form of learning is used 

furthermore in thesis. 

2.3.2 Semi-supervised Learning 

Semi-supervised learning is a proposed idea to find the conjunction of benefits of 

supervised and unsupervised learning. It uses a large amount of unlabeled data, to­

gether with labeled data, to improve the learning process. Semi-supervised learning 

might require less human effort in creating labeled data (features/label pairs) [30]. 

2.3.3 Unsupervised Learning 

Unsupervised learning algorithms experience a dataset containing many features, 

then learn useful properties of the structure of this dataset. In the context of deep 

8 Term "training" is often used as well in the academic works or industry. They are interchange­
able. 

9There is sometimes a confusion on terminology when speaking of test data, since it is often 
referred to as "validation" data. In this work test and validation data are the same data. 
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learning, we usually want to learn the entire probability distribution that generated 

a dataset, whether explicitly, as in density estimation, or implicitly, for tasks like 

synthesis or denoising. Some other unsupervised learning algorithms perform other 

roles, like clustering, which consists of dividing the dataset into clusters of similar 

examples [22]. 

Essentially, unsupervised learning is a process when a neural network is shown a 

random sample x from the dataset and its goal is to implici t ly or explicitly learn the 

probability distribution p(x) [22]. Generative Adversarial Networks, Autoencoders 

or Restricted Bol tzmann Machines ( R B M ) all utilize unsupervised learning. 
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3 Wave Net 
Wavenet is a deep generative model of audio data that operates directly at the 

waveform level. It was first proposed in [31] in 2016 and is based on the P i x e l C N N 

[32] architecture. Al though WaveNet's primary goal was text-to-speech modelling, 

when trained to model music, it was found out that it generates novel and often 

highly realistic musical fragments [31]. 

WaveNet's autoregressive model operates directly on the raw audio waveform. 

It uses previous time step samples to predict future samples. The joint probability 

of a waveform x = {xi,..., xt}, as described in equation: 

is factored as a product of conditional probabilities as denoted in [31]. Each audio 

sample xt is therefore conditioned on the samples at all previous time steps [31]. The 

conditional probability distribution is modelled by a stack of convolutional layers. 

Against the common convention in C N N , WaveNet does not utilize any pooling 

layers. The output of the model is a categorical distribution over the next valute xt 

with a softmax layer and has the same time dimensionality as the input [31]. 

Dilated causal convolution is a combination of causal convolution and dilated con­

volution. 

3.1.1 Causal Convolution 

The key ingredient in WaveNet's operation are causal convolutions, depicted in F ig . 

3.1. The use of causal convolutions ensures the proper ordering in which the model 

models data. The prediction p(xt+i\xi,... ,xt) made by the model at time step t 

can not depend on any of the future steps xt+i,xt+2, • • • ,%t- A t training time, the 

conditional predictions for al l time steps can be made in parallel because all time 

steps of ground truth x are known. When generating wi th the model, the predictions 

are sequential. After each sample is predicted, it is fed back into the network to 

predict the next sample [31]. Because models with causal convolutions do not have 

recurrent connections, they are typically faster to train than R N N s , especially when 

applied to very long sequences. One of the problems of causal convolutions is that 

they require many layers, or large filters to increase the receptive field. A s a proposed 

solution, the use of dilated convolutions was introduced. It provides an increase in 

T 

t=l 

3.1 Dilated Causal Convolution 
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receptive field by orders of magnitude wi th a fraction increment of computational 

cost [31]. 

Output o o o o o o o o o o o o o o o 
i * 

I / I / l / l / l / l / l , 1 / I / I / I / I / I / 1 / I 
1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /

 1 / I 

Hidden Layer # # # 0 6 6 # # 6 6 6 # # 6 0 
i / i / i / i / i / i / i / i / i / i / i / i / i / l / l 
i / i / i / i / i / i / i / i / i / i / i / i / ' / l / l 
• / • / • / • / • / • / i / i / i / i / i / i / i / 1 / I 

Hidden Layer O O O O O O O O O O O O O O O 
1 / ' / ' / ' / • / • / ' / ' / ' / ' / ' / ' / l / l / 
i / • / • / • / • / • / i / i / i / i / i / ' / l / l / 

Hidden Layer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
T ' T ' T ' T ' T ' T ' T ' T ' T ' T ' T /t" 7X 7X T* 

• / i , ' i / i / i / i / i / i / i / i / \i y \l 
Input 6 6 6 6 6 6 6 6 6 6 6 O O O O 

Fig . 3.1: A stack of causal convolutional layers depicted. 

3.1.2 Dilated Convolution 

Also called a trous or convolution with holes is a type of convolution where the filter 

is applied over an area larger than its length by skipping input values wi th a certain 

step. It is equivalent to a convolution wi th a larger filter derived from the original 

filter by dilating it wi th zeros, but it has proven to be significantly more efficient. B y 

using dilated convolution, the network is effectively allowed to operate on a coarser 

scale than it would be possible wi th a normal convolution in use. This method is 

similar to pooling or convolution wi th stride, but in the case of dilated convolution 

there is no reduction in dimensionality. The output of dilated convolution has the 

same size as its input. In a special case when dilated convolution is utilized wi th 

dilation 1, it yields the standard convolution [31]. 

Layers of dilated convolutions can be arranged into stacks. Stacked dilated convo­

lutions, as pictured in F ig . 3.2, enable networks to have very large receptive fields 

wi th just a few layers, while preserving the input resolution throughout the network 

as well as computational efficiency [31]. 
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Fig . 3.2: A stack of dilated causal convolutional layers depicted. 

3.2 Gated Activation Units 

WaveNet utilizes the same activation function units as firstly proposed in P i x e l C N N 

architecture [32]. In equation: 

where W is a learnable convolution filter, k denotes the layer index, / and g stand 

for filter and gate, respectively. Convolution operator denoted by *, element-wise 

multiplication operator denoted © and a as a sigmoid activation function. This 

activation function was proved to be better performing for audio modelling than the 

R e L U activation function [31]. 

To speed up convergence, both residual and parameterised skip-connect ions (Fig. 

3.3) are utilized throughout the network. This also enables training of much deeper 

models [31]. Residual connections were proposed in [33] to solve the accuracy degra­

dation issue in deep neural networks. A s the depth increases, accuracy saturates and 

then starts to degrade rapidly. Residual connections, similarly to skip-connect ions, 

help to retain the information during the pass through the network by skipping one 

or several layers of the network [33]. 

z = tanh(W/ !fe * x) © cr(Wgjk * x) (3.2) 

3.3 Residual and Skip Connections 

35 



Softmax Output 

| Causal | 

F ig . 3.3: Graphic depiction of the stacked residual blocks and the output processing 

cascade uti l izing skip-connections. Used from [31]. 

3.4 Use in Audio Modelling 

In [34], a feedforward, discriminative version of WaveNet architecture was proposed. 

This model retains WaveNet's powerful acoustic modelling capabilities, while sig­

nificantly reducing its time-complexity by eliminating its autoregressive nature. A l ­

though originally proposed as a speech denoising architecture, later on, this model 

was adapted and used in works [35] and [1] for black box neural network audio 

modelling. 
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4 Implementation 
A s proposed, two types of neural networks were implemented. First type, a feed­

forward type of neural network, which is an upscaled version of network that was 

used in the semestral thesis now serves as a baseline in comparison to the other 

framework - a WaveNet-style neural network. Second network, a WaveNet-style 

feedforward network. A l l frameworks were written in Py thon 3.6., using the Py torch 1 

1.8. library. Experimentation was at first executed on hardware uti l izing a Nvid ia 

R T X 2080 T i , Ryzen 3900X 12-core C P U , 32 G B of R A M and a Samsung N V M e 

SSD storage. Due to technical difficulties later on the experimentation had to be 

moved on to a different host uti l izing a Nvid ia R T X 2060 Super G P U , Ryzen 5 3600 

6-core C P U , 48 G B of R A M and a Samsung N V M e SSD storage. TensorFlow's 

Tensorboard 2 package was used for the training process monitoring. 

4.1 Data 

Training and testing data for each sound effect consist of a set of coupled guitar 

audio mono signals of 32-bit float depth sampled at 44100 Hz. Fraunhofer's [36] 

I D M T - S M T - G u i t a r 3 dataset was used as a dry audio signal. This dataset consists 

of four subsets of which the second subset was used as it was deemed to be the best 

fit for the task. The chosen subset contains multiple playing techniques (plucking 

styles: finger-style, muted, picked; expression styles: normal, bending, slide, vibrato, 

harmonics, dead-notes). It has been recorded using three different guitars and con­

sists of about 4700 note events wi th monophonic and polyphonic structure. Apar t 

from the note events, the recorded files also contain realistic guitar licks ranging 

from monophonic to polyphonic instrument tracks [36]. The whole dataset (consist­

ing of the Fraunhofer's second subset) is —62 minutes long and it is split wi th an 

80:20 ratio into a training and validation set. The splitting of the whole dataset was 

done in a manner so the recorded files would be consistently distributed across the 

training and validation set to avoid possible bias of spoken sets for particular types 

of data (e.g. playing technique). 

For the creation of the target^ audio signal re-amplification method was utilised 

as follows. D r y audio signal was sent from the D A W 5 to the reamping device 6 

which ensures the line the external D A converter provides is impedance matched 

xhttps://github.com/pytorch/pytorch  
2https://github.com/tensorflow/tensorboard 
3https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/guitar.html 
4 term wet is sometimes used in this work, they are interchangeable 
5 Digi ta l Audio Workstation 
6 Radial Engineering P r o R M P Studio Reamper 
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and sufficiently levelled. Signal is then passed through the sound effect device and 

finally recorded via the mic/ l ine input of the external A D converter 7 into the D A W . 

Three sound effect pedals were re-amped using this method. For re-amplification of 

a tube combo amplifier Sennheiser E 906 dynamic microphone was added into the 

signal chain. 

4.1.1 Data Preprocessing 

The introduced latency of the whole re-amplification chain in target audio signal had 

to be compensated so it would align properly with the dry audio signal. Min ima l 

possible time shift in both signals is mandatory for the training process. 

To find out whether there is a delay or lag between two signals, cross-correlation 

proves to be a robust and effective algorithm. Cross-correlation consists of the 

displaced dot product between two signals. It is often used to quantify the degree 

of similarity or interdependence between two signals[37]. 

Suppose that we have two real signal sequences x(n) and y(n). The cross-

correlation sequences rxy(l) may be then expressed as: 

N-\k\-l 

r*v(l)= E x(n)y(n-l)), (4.1) 
n=i 

where i — I, k — 0, for I > 0 and i — 0, k — I for I < 0 [37]. The algorithm shifts the 

y(n) one sample per one step, moving it along the x-axis. According to the condition 

where rxy(l) stands for cross-correlation sequence of signals x and y, Ex and Ey are 

the energies of x(n) and y(n), respectively: 

rxy(l)<^/(Ex)(Ey), (4.2) 

which means that the auto-correlation sequence of a signal attains its maximum 

value at zero lag. This backs the notion that a signal matches perfectly wi th itself 

at zero shift. In the case of cross-correlation sequence, the upper bound on its values 

is provided in E q . 4.2. Accordingly, when two signals align wi th each other at zero 

shift, the cross-correlation attains its maximum value. 

In our case, the introduced lag between target signal y(n) and dry signal x(n) 

should be as low as 0 samples after the cross-correlation is computed and the lag 

is compensated, shifting the y signal accordingly to the value of lag. This is done 

during the preprocessing phase of data preparation by obtaining the result of both 

signals' cross-correlation, and compensating the lag on a sample level. 

7 Zoom T A C - 2 R Thunderbolt Audio Converter 
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4.1.2 Modelled Devices 

A l l used audio devices feature several user adjustable controls. These controls differ 

in each effect, although some are common for most devices such as Volume or Gain. 

Individual settings of every effect are depicted in the text below. 

W e m Clubman M K 8 5 W 1x10 

A s a device for the reference tube preamp tone, a Clubman M K 8 amplifier combo 

made by Watkins Electric Music was used. It features the type E C C 8 3 vacuum 

tube in the pre-amplifier stage. E C C 8 3 tubes have been a popular choice for audio 

amplifiers since the introduction in 1947 [38]. In the further experiments code-named 

wem. Interface is depicted in the F ig . 4.1, used controls settings are shown in Tab. 

4.1. 

F ig . 4.1: W e m Clubman M K 8 5 W 1x10 Interface 

Control Low Mids Treble 

Value 10 o'clock 12 o'clock 10 o'clock 

Tab. 4.1: Wem Clubman M K 8 5 W 1x10 Controls Settings 

Electro-Harmonix Green Russian Big Muff Pi 

Firs t ly introduced in 1969, Electro-Harmonix B i g Muff P i has been one of the most 

well-known distortion pedals in the guitar and bass player's community throughout 

history. Even though E H X is an American company, the Green Russian (re-issued) 

version of the B i g Muff P i pedal is being manufactured by its sister company, Sovtek, 
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based in Russia. In the further experiments code-named muff. Interface is depicted 

in the F ig . 4.2, used controls settings are shown in Tab. 4.2. 

F ig . 4.2: Electro-Harmonix B i g Muff P i Interface 

Control Volume Sustain Tone 

Value 2 o'clock 1 o'clock 2 o'clock 

Tab. 4.2: B i g Muff P i Controls Settings 

Vox Ice 9 Overdrive 

Vox Ice 9 Overdrive is a Joe Satriani signature overdrive pedal. It features two modes 

of overdrive. In the further experiments code-named ice. Interface is depicted in the 

F ig . 4.3, used controls settings are shown in Tab. 4.3. 

F ig . 4.3: Vox Ice 9 Overdrive Interface 

Control Gain Tone Vintage/Modern Bass Volume 

Value 12 o'clock 1 o'clock Vintage 4 o'clock 12 o'clock 

Tab. 4.3: Vox Ice 9 Overdrive Controls Settings 
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T C Electronic Flashback Triple Delay 

T C Electronic Flashback Triple Delay combines three delay modules into one effect 

pedal. In the further experiments code-named x4- Interface is depicted in the F ig . 

4.4, used controls settings are shown in Tab. 4.4. 

F ig . 4.4: T C Electronic Flashback Triple Delay Interface 

Control Mode Time Delay 1/2/3 Repeats Mix Serial/Parallel Subdiv 
Value Analog 11 o'clock Delay 3 11 o'clock 10 o'clock Serial 3 o'clock 

Tab. 4.4: T C Electronic Flashback Triple Delay Controls Settings 

4.2 Models Structure 

Two types of neural networks were used for the audio signal modelling. 

4.2.1 Feedforward Network 

Proposed model, abstractly depicted in F ig . 4.5, is a fully-connected autoregressive 

feedforward neural network that utilizes tank nonlinearities. 

The model makes prediction p(yt\xt_i,..., xt-n) where yt denotes an output sam­

ple at time t. xt denotes an input sample at time t and n denotes the context length. 

Context length is the number of samples we allow the net to see before it makes a 

prediction. One output sample y is predicted from n input samples x. This network 

works natively wi th bit depth of 32 bits and at sampling frequency of 44.1 kHz . 
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Input Hidden Layers Output 

F ig . 4.5: Abstract ion of the model architecture. Model consists of tanh acti­

vated input neurons x0,Xi,... ,xn,xn+i, n hidden layers of tanh activated neurons 

h0, hi,..., hn, hn+i and an output neuron y wi th tanh nonlinearity activation. 

4.2.2 WaveNet-style Network 

WaveNet-style networks, sometimes also referred to as Temporal Convolutional Net­

works ( T C N ) , are derived from the original WaveNet algorithm. A WaveNet-style 

network called Peda lNe tRT 8 is a neural network based on a feedforward [34] varia­

tion of the WaveNet. PedalNetRT utilizes multiple features of the original WaveNet 

such as dilated convolutions and gated activation units. Where it differs is audio 

quantization of the audio signal. The original WaveNet algorithm quantizes 16-bit 

audio time samples into 256 bins, and the model is trained to produce a probability 

distribution over these 256 possible values. In order to reduce the size of the model 

and increase its inference speed, the 256 channel discrete output is replaced wi th a 

single continuous output. This is done by performing a 1 x 1 convolution on the 

concatenation of each layer's output [42], as introduced in [1] and depicted in Figure 

4.6. 
8https://github.com/GuitarML/PedalNetRT 
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n z2 n 
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L I N E A R M I X E R 

Output signal y[n] 

Fig . 4.6: Abstract ion of the WaveNet-style neural network architecture. 

The input waveform x[n] is given as an input to the first convolutional layer. 

Inside the convolutional layer the input signal is first processed by the dilated causal 

F I R filter Hk(zdk). A s k is the index of the layer, dk states the value of the dilation 

factor of the filter. A s the convolutional layers generally utilize multiple channels. 

the filtering is performed as a multiple-input and multiple-output convolution wi th a 

kernel Hk- This way a filter is learned for each pair of input and output channels[l]. 

Next the nonlinear activation function is applied to the convolution output, which 

yields the layer output: 

zk\n\ f[(Hk*xk)[n] +bk (4.3) 

where /(•) is a nonlinear activation function, * denotes the convolution operator, 

and bk is the learned bias term. 

Convolutional layer also utilizes the residual connection that provides the input 

for the next layer as defined: 

xk+i[n] = Wkzk[n\ + xk[n], (4.4) 

where Wk is a 1 x 1 convolutional kernel controlling the summation of the convolution 

layer input Xk and the layer output Zk before it is given as an input to the next layer. 

Block diagram of a single convolution layer is shown in the Figure 4.7. 

xk[n Xk+i[n] 

Fig . 4.7: Block diagram of a single convolutional layer. 
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4.3 Training 

A s mentioned earlier, two architectures of neural networks were implemented and 

put through the training process - a multilayer feedforward network and the WaveNet-

style PedalNetRT network. The training process can be modified by several user 

adjustable arguments. These arguments are batch size in the case of the WaveNet-

style network, and in the case of the feedforward network, effective batch size, context 

length, number of neurons per layer and number of layers. 

Learning rate is fixed and further maintained through the training process by the 

A d a m [23] optimizer. 

Batch size parameter is the number of pairs {dry and target samples) which the 

network sees in each optimization step. 

Gradient accumulation step parameter adjusts the optimizer's behaviour, prevent­

ing it from making an optimization step by accumulating the gradients for a given 

number of steps. In our case this yields more smoothed out gradients, as it mitigates 

the excessive zig-zagging of the optimizer when trying to figure out the optimal path 

through the neural network manifold towards the minimum. 

Effective batch size parameter is the batch size times the gradient accumulation step. 

Number of epochs denotes the number of complete passes through the data. 

Context length parameter, first described in 4.2.1, specifies how many samples the 

network sees to make a prediction of one sample. It also specifies the number of 

neurons in the input layer of the network. 

Number of layers defines the depth of the neural network. 

The key to the ablation process is finding an optional state between computation 

difficulty and satisfactory results. Sets of hyperparameters provided below were cho­

sen following the ablation guidelines as defined. Due to the time and computational 

resources restrictions, ablation was done using the Electro-Harmonix B i g Muff P i 

distortion pedal (later referred to as muff) data and these sets of hyperparameters 

then used in the training process of the rest of the sound effects. This approach is 

sometimes referred to as transfer learning. 

4.3.1 Feedforward Model 

The feedforward model utilizes several settings (see Tab. 4.5) of the arguments 

mentioned above. These sets were picked after experimentation wi th the goal of 

finding the optimal sweet spot of feasible results in respect to the computational 

difficulty and the sound quality. The feedforward neural network was trained for 10 

epochs per each model. 
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Mean Squared Error 

In neural network training several criterions can be used in evaluation of the nets' 

learning performance stating the loss value. In theory (omitting overfitting scenar­

ios) the lower the loss value, the better learning performance. This value is computed 

via several formulas, all providing the insight into the learning process. A s for this 

thesis, the Mean Squared Error (MSE) criterion was used for loss value computation 

of the feedforward neural network. A s defined in: 

1 n 

MSE=-J£(yi-Vi)2 (4-5) 

Where n denotes the number of samples, yi is the target value, xji value predicted 

by the network. 

Effect Code-name Best Val ida t ion Loss ( M S E ) Input Context Network Structure Total Trained Parameters 

ice 0.00011 2048 2048-1024-512-256-1 2754561 
muff 0.00735 2048 2048-1024-512-256-1 2754561 
wem 0.00001 2048 2048-1024-512-256-1 2754561 
x4 0.00040 1024 1024-512-512-256-1 919041 

Tab. 4.5: List of the best settings used in the training of the feedforward network 

providing the lowest validation loss. For the full list of tried out settings, see A . 

Description of the header in the table 4.5 goes as: 

"Network Structure" - describes the structure of the network in terms of layers of 

neurons (e.g. 2048-512-512-1 denotes a feedforward network wi th the input layer of 

2048 neurons, first hidden layer of 512 neurons, second hidden layer of 512 neurons 

and the output layer consisting of 1 neuron). 

"Total Trained Parameters" - number of parameters used by the network in the 

training process. 

A s visible from the contents of the Table 4.5, a single combination of settings 

showed the best results in the training of the ice, muff, and wem effects. The only 

exception was the x4 model that favoured smaller network structure to achieve the 

best results. 

Notable exception in the term of the loss function values was the wem model that 

reported several magnitudes smaller numbers. This might support the notion that 

learning of the spoken target signal was a fairly easy task for the feedforward network. 

4.3.2 WaveNet-style Model 

The excerpt of settings used for the training of the WaveNet-style PedalNetRT best 

performing models can be seen in the Table 4.6. These sets were picked following 
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the same ablation process as for the feedforward network. The WaveNet-style neural 

network was trained for 150 epochs per each model. 

Error to Signal Ratio (ESR) 

Error to Signal Ratio (ESR) loss criterion is similar to the Mean Squared Error 

(MSE). The denominator in the ESR is used to normalize the loss value wi th regards 

to the energy of the target signal, preventing the loss from being over influenced by 

the segments of signal with higher energy [1]. Denoted as: 

n 

E(yi-yi)2 

ESR = ^ - ^ (4.6) 
E l / , 2 

i=l 

Where n denotes the number of samples, yi is the target value, xji value predicted 

by the network. 
Effect Code-name Best Val ida t ion Loss ( E S R ) Input Context Network Structure Total Trained Parameters 

ice 0.16888 4410 WaveNet-12-10-1-3 10585 
muff 0.81137 4410 WaveNet-12-10-1-3 10585 
wem 0.30842 13230 WaveNet-12-10-1-3 10585 
x4 0.72024 4410 WaveNet-12-10-1-3 10585 

Tab. 4.6: List of the best settings used in the training of the WaveNet-style network 

providing the lowest validation loss. For the full list of tried out settings, see A . 

Description of the header in the Table 4.6 goes as: 

"Network Structure" - describes the inner architecture of the convolution layer. 

E.g . settings 12-10-1-3 denotes the network that utilizes 12 channels per convolution 

layer, dilation factor of 10 repeated once, and kernel of size 3. These were default 

settings supplied wi th the PedalNetRT proven to yield the best results in comparison 

to the computational load, as provided by [42]. 

"Total Trained Parameters" - number of parameters used by the network in the 

training process. 
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5 Results 
Concerning audio signal modelling, how sound is perceived by the human ear is 

fairly crucial in the task. Ideally, the simulation model of the audio device should 

be indistinguishable from the modelled audio device. How likely for an audio model 

this is to be achieved and whether this is even achievable is a subject of long going 

dispute. A t this point the quantitative (or objective) and qualitative (or subjective) 

terms should be introduced. This chapter can be then divided into two subchapters, 

quantitative results and qualitative results, that are more or less interconnected. 

In qualitative subchapter plots are evaluated and discussed, qualitative subchapter 

yields results and conclusion on the listening test. 

5.1 Quantitative Results 

Quantitative results provided via loss functions, waveform, and spectrogram plots. 

It provides us an insight into how successful the network was in modeling an audio 

device, how similar (or different) the waveforms are to each other, etc. Predictions 

from the both neural networks are compared per each effect. 

5.1.1 Electro-Harmonix Green Russian Big Muff Pi 

The muff model was modelled after the only distortion effect in the pool, the Electro-

Harmonix Green Russian B i g Muff P i . It has proved to be the most tricky one since 

the distortion is fairly extensive and both networks struggled similarly to model its 

features faithfully. Even though difference spectrograms in F ig . 5.1 shows roughly 

similar outcome, the waveform plots and absolute error comparisons of the target 

and predicted signals (Fig. 5.2, 5.3), and detailed plots F ig . 5.4, 5.5 respectively, 

provide an insight into the performance of waveform prediction of both networks, 

making the feedforward network model a better performing one. St i l l both networks 

provided a fair take on the heavy distortion, as is further discussed in 5.2. 
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Fig . 5.1: Difference spectrograms of the muff models provided by the feedforward 

network (a) and the WaveNet-style network (b). 
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Fig . 5.2: Waveform and absolute error plots of the feedforward muff model. 
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Fig . 5.3: Waveform and absolute error plots of the WaveNet-style muff model. 
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Fig . 5.4: Detailed waveform and absolute error plots of the feedforward muff model. 
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Fig . 5.5: Detailed waveform and absolute error plots of the WaveNet-style muff 

model. 

5.1.2 Vox Ice 9 Overdrive 

Both networks seemed more successful in modelling of the Vox Ice 9 Overdrive pedal 

effect. The reasoning behind this might be the nonlinearity introduced into the sig­

nal was not as major as it was in the distortion pedal. Evaluation of the difference 

spectrograms in F ig . 5.6 shows similar features in both spectra. Waveform compar­

isons of the target and predicted signals (Fig. 5.7, 5.8) and the detailed comparisons 

of the waveforms (Fig. 5.9, 5.10) show similar outcomes of both networks standing 

quite closely to each other wi th their predictions. 
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Fig . 5.6: Difference spectrograms of the ice models provided by the feedforward 

network (a) and the WaveNet-style network (b). 
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Fig . 5.7: Waveform and absolute error plots of the feedforward ice model. 
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Fig . 5.8: Waveform and absolute error plots of the WaveNet-style ice model. 
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Fig . 5.9: Detailed waveform and absolute error plots of the feedforward zee model. 
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Fig . 5.10: Detailed waveform and absolute error plots of the WaveNet-style ice 

model. 

5.1.3 Wem Clubman MK8 5W 1x10 

This audio device was expected to be one of the easier ones in terms of modelling 

since no (intentional) distortion or overdrive was involved. The question in theory 

was how likely is the neural network to reproduce the tone of a tube preamplifier. 

The models are not only modelling the sound device itself, but also the used mi­

crophone and its characteristic and the impulse response of the space where the 

reamplification has taken place. The predictions of the feedforward model (Fig. 

5.12, 5.14) were almost spot on, especially when compared to the WaveNet-style 

network model (Fig. 5.13, 5.15) that was surprisingly struggling wi th this type 

of an audio effect and having trouble modelling faithfully this relatively common 

waveform. Difference spectrograms of the both models are provided in F ig . 5.11. 
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Fig . 5.11: Difference spectrograms of the wem models provided by the feedforward 

network (a) and the WaveNet-style network (b). 
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Fig . 5.12: Waveform and absolute error plots of the feedforward wem model. 
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Fig . 5.14: Detailed waveform and absolute error plots of the feedforward wem model. 
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Fig . 5.15: Detailed waveform and absolute error plots of the WaveNet-style wem 

model. 

5.1.4 TC Electronic Flashback Triple Delay 

The T C Electronic Flashback Triple Delay was the only delay sound effect in the 

effect pool. The results have proved that the models are capable of recreation of 

the audio device fairly successfully (see F ig . 5.17 for the waveforms comparison, 

and 5.19 for the detailed waveforms comparison), including a faithful delay features 

of the simulated effect. The performance of the feedforward network surpassed the 

WaveNet-style network, since there are quite a major imprecisions in the WaveNet-

style model predictions, as visible in F ig . 5.18, 5.20 respectively. Difference spec­

trograms available in the F ig . 5.16. 
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Fig . 5.16: Difference spectrograms of the x4 models provided by the feedforward 

network (a) and the WaveNet-style network (b). 
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Fig . 5.17: Waveform and absolute error plots of the feedforward x4 model. 

57 



Wav File Comparison 

Time (s) 

abs(predicted-target) 

Time (s) 

Fig . 5.18: Waveform and absolute error plots of the WaveNet-style x4 model. 
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Fig . 5.19: Detailed waveform and absolute error plots of the feedforward x4 model. 
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5.2 Qualitative Results 

This chapter contains the qualitative results obtained from the M U S H R A listening 

test (Fig. 5.22), which is done as an extension of the mandatory master thesis 

assignment. 

5.2.1 Listening Test 

A listening test for the subjective quality evaluation was created. The test is inspired 

by the M U S H R A 1 methodology. Network predictions are presented to the test 

participants as conditions (stimuli). A s a reference an audio file excerpt from the 

original target validation set per effect is used. Same applies to hidden reference. 

A s an anchor, a reference sample that is intentionally degraded in quality is used. 

This method should ensure that the evaluation scale is calibrated. 

Participants mark the conditions on a 1-100 scale. The test interface along with the 

mark scale can be seen in the F ig . 5.21. 

1 Mul t ip le Stimuli with Hidden Reference and Anchor 
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When the condition is marked 100 (Excellent) it means that it is vir tually indis­

tinguishable from the provided reference and it sounds identically to the participant. 

Alternatively conditions marked 0 (Bad) doesn't sound like the reference at all . 

Testing was carried out via internet questionnaire that uses the web audio A P I 

based experiment software w e b M U S H R A 2 as introduced in [41]. 

Limitations 

When deploying a listening test, one strives for as constant conditions as possible. 

Normally, this is achieved by e.g. using one type of earphones, D A C ' s for all partici­

pants. Because of the Covid-19 pandemic situation in the Czech Republic as of May, 

2021, this requirement could not be satisfied. Such limitations should be taken into 

account as a another factor influencing the test participants and possibly degrading 

the results of the listening test in a way. 

2https://github.com/audiolabs/webMUSHRA 
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Conclusion 
The goal of this work was to sum up and organize knowledge and information con­

cerning the topic of audio signal modelling using neural networks. In Chapter 1, 

types of audio effects were introduced along wi th different audio modelling tech­

niques, including audio modelling using neural networks. 

Chapter 2 mapped historical roots of artificial neural networks, explained basics 

of the neural network and machine learning field. Several neural network architec­

ture types were described, considering the frequency of use of such architectures 

in the audio modelling field. Concluding this chapter, strategies of neural network 

training were discussed. 

M a i n focus of Chapter 3 was the original WaveNet algorithm, which is a rela­

tively recent attempt in the audio modelling field, capable of modelling audio signals 

directly at the waveform level. M a i n mechanics of this architecture were described. 

In Chapter 4 the used audio effects were introduced, data and its preprocessing 

were described. Model structures in question were introduced and described as well, 

same as the training process of the neural network models. 

In Chapter 5 results of the experimentation wi th the best implemented models, 

that were cautiously picked from over 50 experimental network settings, were dis­

played and discussed. The chapter is divided into two blocks, evaluating the results 

of each modelled effect from the both quantitative and qualitative standpoint. 

Both used neural networks are far from providing the perfectly performing mod­

els, let aside the state-of-the-art black box simulations. St i l l , in the scope of this 

thesis the results are feasible, especially when taken in account the l imit ing factors of 

time and computational resources. Some models provide a faithful simulation wi th 

a strong resemblance of the original audio device. This notion was backed up by 

the results of the online listening test. Even though some models performed better 

from the quantitative point of view they were not picked as the better sounding ones 

by the participants of the listening test as it was the case of ice or wem models. 

Previously mentioned limitations of the listening test should also be considered. 

Direct comparison of the feedforward neural network and the WaveNet-style neu­

ral network cannot be conducted because of the different loss function criterion used 

per each network. Even though their predictions mostly stand quite closely to each 

other and the feedforward network maintained overall higher scores in the listening 

test. The fact that the feedforward network operated wi th a substantially larger 

number of trainable parameters (see Appendix A . l ) than the WaveNet-style one, 

might be a possible explanation for its better performance. Real time implementa­

tion capability of the feedforward network was examined no further than a rough 

estimation of the modelling performance, as this was not the scope of this work. 
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While the original WaveNet algorithm and its variants are considered a powerful 

model for the human speech synthesis, music synthesis etc., a notion whether it 

might be both overpowered and yet unnecessarily computationally costly for the 

task of black box modelling might be raised. A l l that despite the fact the used Ped-

a lNetRT variant of the WaveNet is already considered to be streamlined in terms of 

computational cost and with black box modelling of audio signals in mind. 

A s a further extension of this work several improvements might be proposed such 

as upscaled network structures, more hyperparameters used, usage of the same loss 

function criterion, more neural network architectures, and effects used, etc. 
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Symbols and abbreviations 
N N Neural Network 

A N N Art i f ic ia l Neural Network 

R e L U Rectified Linear Uni t 

R N N Recurrent Neural Network 

L S T M Long Short-Term Memory 

G R U Gated Recurrent Uni t 

R B M Restricted Bol tzmann Machines 

C N N Convolutional Neural Network 

Softmax Softmax non-linearity 

D A W Digi ta l Audio Workstation 

M S E Mean Squared Error 

E S R Error to Signal Rat io 

T C N Temporal Convolutional Network 

M U S H R A M U l t i p l e Stimuli with Hidden Reference and Anchor 

70 



A Appendix 

Architecture Effect Code-name Best Validation Loss (MSE) Effective Batch Size Input Context Network Structure Total Trained Parameters 
F F mull 0.00996 1500000 1024 1024-128-1 131329 
F F mull 0.00983 1500000 1024 1024-256-1 262657 
F F mull 0.00956 2250000 1024 1024-256-256-1 328449 
F F mull 0.00874 1500000 1024 1024-512-256-1 656385 
F F mull 0.00903 1500000 1024 1024-256-256-1 328449 
F F mull 0.00827 1500000 1024 1024-512-512-256-1 919041 
F F mull 0.00763 750000 1024 1024-512-512-256-1 919041 
F F mull 0.00743 450000 1024 1024-512-512-256-1 919041 
F F mull 0.00741 150000 1024 1024-512-512-256-1 919041 
F F ice 0.00033 1500000 1024 1024-512-512-256-1 919041 
F F ice 0.00014 750000 1024 1024-512-512-256-1 919041 

F F ice 0.00011 750000 2048 2048-1024-512-256-1 2754561 
F F wem2 1.88060e-05 1500000 1024 1024-512-512-256-1 919041 
F F wem2 1.70302e-05 750000 1024 1024-512-512-256-1 919041 
F F \vein2 1.40679e-05 750000 2048 2048-1024-512-256-1 2754561 
F F x4 0.00040 1500000 1024 1024-512-512-256-1 919041 
F F x4 0.00042 750000 1024 1024-512-512-256-1 919041 
F F x4 0.00043 750000 2048 2048-1024-512-256-1 2754561 
F F mull 0.00946 3000000 2048 2048-256-256-1 590593 
F F mull 0.00853 1500000 2048 2048-256-256-1 590593 
F F mull 0.00915 3000000 2048 2048-512-256-1 1180673 
F F mull 0.00840 1500000 2048 2048-512-256-1 1180673 
F F mull' 0.00793 750000 2048 2048-512-256-1 1180673 
F F mull' 0.00766 1500000 2048 2048-1024-512-256-1 2754561 
F F muff 0.00735 750000 2048 2048-1024-512-256-1 2754561 
F F mull' 0.00747 150000 2048 2048-1024-512-256-1 2754561 

Tab. A . l : Fu l l list of the settings used in the training of the feedforward neural 

network. 

Architecture Effect Code-name Best Validation Loss (ESR) Effective Batch Size Input Context Network Structure Total Trained Parameters 

P N ice 0.17587 64 13230 WaveNet-12-10-1-3 10585 
P N ice 0.17193 64 8820 WaveNet-12-10-1-3 10585 
P N ice 0.16888 64 4410 WaveNet-12-10-1-3 10585 

P N ice 0.33128 256 4410 WaveNet-12-10-1-3 10585 
P N ice 0.38486 128 13230 WaveNet-12-10-1-3 10585 
P N ice 0.28278 128 8820 WaveNet-12-10-1-3 10585 
P N ice 0.19245 128 4410 WaveNet-12-10-1-3 10585 
P N wem 0.30842 64 13230 WaveNet-12-10-1-3 10585 
P N wem 0.31608 64 8820 WaveNet-12-10-1-3 10585 
P N wem 0.32677 64 4410 WaveNet-12-10-1-3 10585 
P N wem 0.39240 256 4410 WaveNet-12-10-1-3 10585 
P N wem 0.32899 128 13230 WaveNet-12-10-1-3 10585 
P N wem 0.34606 128 8820 WaveNet-12-10-1-3 10585 
P N wem 0.36496 128 4410 WaveNet-12-10-1-3 10585 
P N x4 0.83214 64 13230 WaveNet-12-10-1-3 10585 
P N x4 0.75176 64 8820 WaveNet-12-10-1-3 10585 
P N x4 0.72024 64 4410 WaveNet-12-10-1-3 10585 
P N x4 0.91977 256 4410 WaveNet-12-10-1-3 10585 
P N x4 0.91161 128 13230 WaveNet-12-10-1-3 10585 
P N x4 0.88955 128 8820 WaveNet-12-10-1-3 10585 
P N x4 0.79665 128 4410 WaveNet-12-10-1-3 10585 
P N mull' 0.85871 64 13230 WaveNet-12-10-1-3 10585 
P N mull' 0.88910 64 8820 WaveNet-12-10-1-3 10585 
P N mull' 0.81137 64 4410 WaveNet-12-10-1-3 10585 
P N mull' 0.86202 256 4410 WaveNet-12-10-1-3 10585 
P N mull' 0.86890 128 13230 WaveNet-12-10-1-3 10585 
P N mull' 0.88865 128 8820 WaveNet-12-10-1-3 10585 
P N muff 0.84217 128 4410 WaveNet-12-10-1-3 10585 

Tab. A . 2 : Ful l list of the settings used in the training of the WaveNet-style neural 

network. 

71 

file:///vein2

