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Abstract 

Since the advent of techniques capable of rapid acquisition of genomic data, it is one of the key 
challenges for researchers to interpret the results of such experiments in meaningful biological 
terms. In this work, we aim to exploit knowledge hidden in well-characterised transcriptomic 
and epigenomic data from publicly available sources to aid this interpretation. An integrated 
resource of chromatin accessibility data (from DNase-seq and ATAC-seq experiments) was 
created and pre-processed for downstream analyses, complemented by collections of public 
gene expression (RNA-seq) profiles. These datasets were used for training machine learn
ing classifiers with two primary purposes. Firstly, for augmenting sample annotations by pre
dicting undefined metadata labels in the training datasets. Secondly, for annotation of poorly 
characterised, unseen data to examine generalisation ability of the constructed models. We 
demonstrated that biologically relevant information was captured by the trained classifiers while 
technical artefacts were minimised. Thus, we validated that the proposed supervised machine 
learning approach can contribute to clarifying contents of cryptic transcriptomic and epigenomic 
datasets, particularly from the field of cancer research. 

Keywords: machine learning, chromatin accessibility, gene expression, metadata, classifica
tion, cancer 



Rozšírený abstrakt 

Rapídny vývoj v oblasti sekvenácie nukleových kyselín umožnil štúdium bunkových procesov 
na molekulárnej úrovni. Mnohé experimentálne protokoly pre akvizíciu genomických, transkrip-
tomických, epigenomických a ďalších príbuzných dát založené na vysokovýkonnom sekveno-
vaní sú v súčasnosti vykonávané na rutinnej báze. Veľké množstvo a komplexnosť dát gen
erovaných týmito metódami so sebou prináša výzvy pri interpretácii výsledkov v zmysluplnom 
biologickom kontexte, pričom bez vhodnej počítačovej analýzy je vyvodenie správnych záverov 
z experimentálnych údajov väčšinou nemožné. Táto práca sa preto venuje vývoju metód pre 
charakterizáciu ľudských bunkových vzoriek na základe informácií o ich "molekulárnom pro
grame" so zameraním na identifikáciu rakovinových buniek. 

Základným konceptom práce je využitie modelov strojového učenia pre extrakciu štruktúr 
a súvislostí ukrytých v rozsiahlych súboroch verejne dostupných a dobre anotovaných dát. 
Informácie získané z týchto trénovacích údajov je následne možné využiť pre popis nových 
vzoriek, o ktorých vieme z biologického hľadiska veľmi málo. To je častým prípadom práve v 
onkologickom výskume, kde skúmané bunky podliehajú rozsiahlym morfologickým a funkčným 
zmenám a ich charakterizácia preto môže byť obzvlášť problematická. Predmetom záujmu sú 
pritom dva hlavné dátové typy - výsledky transkriptomických experimentov (v rámci ktorých sa 
kvantifikuje génová expresia) a metód pre hodnotenie chromatínovej dostupnosti, jedného z 
významných epigenomických faktorov regulujúcich transkripciu génov (jedná sa o mieru kon
denzácie molekúl DNA do vyšších štruktúr). 

Prvým krokom praktickej časti práce bolo zostavenie trénovacích súborov integrujúcich rele
vantné dáta z rozličných verejne prístupných zdrojov. Z metód pre kvantifikáciu chromatínovej 
dostupnosti boli zvolené dve konkrétne techniky - DNase-seq a ATAC-seq, ktoré pre dosiahnu
tie kvalitatívne porovnateľných výsledkov využívajú odlišný technologický princíp. Pre účely 
práce bolo potrebné zozbierať profily generované týmito metódami, ktoré kvantifikujú chro-
matínovú dostupnosť naprieč celým ľudským genómom. Nasledovala agregácia primárnych 
dát vzhľadom na definovaný súbor regulačných elementov, t.j. nekódujúcich úsekov DNA, ktoré 
sa zúčastňujú na regulácii génovej expresie (jedná sa napr. o väzobné miesta transkripčných 
faktorov alebo inhibítorov). Chromatínová dostupnosť regulačných elementov je z biologického 
hľadiska obzvlášť zaujímavá, pretože vyjadruje mieru ich aktivity, ktorá je výrazne špecifická 
pre rozličné bunkové typy, vývojové štádiá či fyziologické a patologické stavy. Nakoľko neexis
tuje jednotný, všeobecne prijatý zoznam regulačných elementov v ľudskom genóme, agregácia 
bola vykonaná s použitím troch odlišných súborov genomických regiónov s rozličnou mierou 
komplexnosti. Keďže majú celogenómové profily zvyčajne značný dátový objem, bol vyvinutý 
nástroj pre ich paralelné stiahnutie z online lokalít a následnú agregáciu, čo prinieslo významné 



urýchlenie zberu dát. Čo sa týka kvantifikácie génovej expresie, metódou záujmu bola technika 
RNA-seq založená na extrakcii a následnej rapídnej sekvenácii molekúl mediátorovej RNA v 
bunkách. V porovnaní s chromatínovou dostupnosťou sú celogenómové profily génovej ex
presie dostupnejšie v oveľa väčších množstvách, navyše sú väčšinou aj agregované (v tomto 
prípade vzhľadom na kódujúce úseky DNA - gény), čo značne uľahčilo zber dát. Okrem použi
tia zostavených dátových súborov pre účely tejto práce je možné ich priebežné rozširovanie (v 
prípade dostupnosti nových dát) a využitie pre zodpovedanie ďalších vedeckých otázok - bol 
tak vytvorený užitočný nástroj pre bioinformatický výskum. 

Keďže zozbierané dáta pochádzajú z množstva rozličných zdrojov a boli získané pri rozdiel
nych experimentálnych podmienkach, prirodzene obsahujú značné množstvo technickej vari
ability, ktorá môže zakryť hľadané biologické rozdiely medzi vzorkami. Tento problém bol 
adresovaný aplikáciou normalizačných techník pre redukciu technického šumu. Základnou 
použitou metódou bola "kvantilová normalizácia" (quantile normalisation), ktorá zabezpečí, že 
všetky numerické vektory pre jednotlivé vzorky majú rovnaké štatistické rozloženie. Ide o 
štandardnú techniku pre normalizáciu genomických dát. Následná štandardizácia príznakov 
(t.j. odčítanie priemeru a podelenie hodnôt smerodajnou odchýlkou) je efektívnym spôsobom 
prevedenia heterogénnych údajov do porovnateľného číselného rozsahu. Pre overenie účinku 
normalizácie bola potrebná vizualizácia dátových súborov. Zobrazenie mnohorozmerných dát 
je možné s využitím metód pre redukciu príznakov - okrem analýzy hlavných komponentov, 
jednej z najstarších a najrozšírenejších techník z tejto kategórie, boli aplikované aj moderné 
nelineárne prístupy, konkrétne t-SNE (t-distributed stochastic neighbor embedding) a UMAP 
(uniform manifold approximation and projection). Výstupy týchto metód, ktoré sú schopné pre
mietnuť zložité vysokorozmerné štruktúry do 2-D vizualizácií, potvrdili, že normalizácia priniesla 
požadovaný efekt zmiernenia technickej variability, zatiaľ čo biologické rozdiely v dátach ostali 
rozoznateľné. 

Okrem primárnych kvantitatívnych dát boli pre potreby trénovania modelov strojového uče
nia nevyhnutné aj kvalitné metadata, t.j. anotácie charakterizujúce jednotlivé biologické vzorky 
(najčastejšie sa jedná o atribúty popisujúce bunkové typy, vývojové štádiá, typ ochorenia, de
taily experimentálneho protokolu a pod.). Jednotlivé verejné databázy majú odlišné nároky na 
štruktúru a jednotnosť anotácií a tak po zozbieraní metadát z mnohých zdrojov bol výsled
kom značne heterogénny súbor údajov, veľmi ťažko použiteľný pre automatizovanú počítačovú 
analýzu. Prvým krokom k riešeniu tejto komplikácie bolo vyvinutie poloautomatického nástroja, 
ktorého úlohou je zlepšiť konzistenciu anotácií s využitím metód pre spracovanie textu, em
piricky definovaných pravidiel a s možnosťou manuálnej korekcie užívateľom. Základnými op
eráciami v rámci tohto postupu bolo zjednocovanie atribútov s podobným obsahom či náhrada 
významovo ekvivalentných anotácií jednotnými údajmi pomocou regulárnych výrazov. 

Aj napriek popísanému "prečisteniu" anotácií boli dostupné metadata stále značne nekom
pletné, t.j. mnohé biologické vzorky boli charakterizované len malým množstvom atribútov. 
Za účelom zlepšenia tohto stavu bola vyvinutá a implementovaná stratégia pre augmentá-
ciu metadát pomocou modelov strojového učenia s učiteľom. Pre jednotlivé anotácie boli 



zostavené binárne klasifikátory s cieľom identifikácie vzoriek patriacich do danej kategórie, na
trénované a otestované na dostupných dátach. Testovacou stratégiou bola fc-násobná krížová 
validácia, ktorá umožnila kvantitatívne hodnotenie kvality klasifikátorov pomocou výpočtu štan
dardných metrík pre evaluáciu úspešnosti klasifikácie - presnosti (accuracy), senzitivity (re
call) a pozitívnej prediktívnej hodnoty (precision). Na základe extenzívneho testovania bol zv
olený vhodný typ klasifikačného modelu - support vector machine s RBF (radial basis func
tion) jadrom - a optimalizované jeho parametre pre danú úlohu. Súhrnné výsledky testovania 
veľkého množstva binárnych klasifikátorov (vytvorených osobitne pre každú unikátnu anotá
ciu) umožnili formuláciu pravidiel pre selekciu najkvalitnejších modelov vhodných na samotnú 
augmentáciu metadát, t.j. predikciu nedefinovaných anotácií. 

V poslednej fáze projektu boli klasifikátory natrénované v predchádzajúcom kroku použité pre 
charakterizáciu nových vzoriek, nepoužitých počas trénovania či testovania. Jednalo sa najmä 
o biologicky málo popísané dáta, ako napr. výsledky tzv. "single-cell" experimentov, v ktorých je 
pre meranie génovej expresie či chromatínovej dostupnosti použitý biologický materiál z jedinej 
bunky. Analýza výstupov týchto metód môže byť obzvlášť problematická, pretože jednotlivé 
bunky zvyčajne pochádzajú z heterogénneho tkaniva a ich vlastnosti sú tak pred experimentom 
neznáme. Aplikáciou natrénovaných modelov na profily génovej expresie alebo chromatínovej 
dostupnosti buniek bola kvantifikovaná ich príslušnosť k jednotlivým triedam (anotáciám), čím 
bol uskutočnený "preklad" komplexných experimentálnych dát do zrozumiteľných, biologicky 
informatívnych výrazov. 

Pomocou manuálnej revízie a vizualizácie výsledkov klasifikácie nových testovacích dát bolo 
napokon overené, že natrénované modely poskytujú zmysluplné výsledky a že sú schopné 
zachytiť biologicky relevantné informácie. Prínos klasifikátorov z hľadiska charakterizácie 
neznámych bunkových vzoriek je limitovaný najmä obsahom anotácií prislúchajúcich k tréno-
vacím dátam, ktoré definujú výsledné klasifikačné triedy. V súčasnosti je informačný obsah 
metadát obmedzený predovšetkým na deskriptívne atribúty, ako napr. typy tkanív, buniek či 
ochorení. Pre získanie hlbšieho náhľadu do bunkových procesov je potrebné rozšírenie ex
istujúcich anotácií o ďalšie biologicky relevantné informácie. Potom je možné využiť postupy 
vyvinuté a otestované v tejto práci pre lepšie pochopenie zložitých molekulárnych znakov, ktoré 
sa významne premietajú do funkcie a fenotypu buniek, a tak prispieť k riešeniu jednej zo zák
ladných výziev onkologického výskumu - nájdeniu špecificky cielenej biologickej liečby pre čo 
najviac typov nádorových ochorení. 
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1 Introduction 

Decoding genetic information and uncovering molecular mechanisms which enable this infor
mation to be stored, utilised and passed down to the next generations of cells is undoubtedly 
one of the greatest feats of molecular biology. These processes represent the very essence of 
physiological functions in cells and their disruption may lead to the rise of pathological states. 
Understanding cellular functions on a molecular level has therefore become of utmost impor
tance not only for answering scientific questions but also for developing diagnostic and thera
peutic procedures in the clinical environment. However, information obtained when assaying 
biomolecular activity is often difficult to correctly interpret in meaningful biological terms. This 
work therefore aspires to contribute towards a better understanding of complex data produced 
during experiments in the field of molecular biology, with particular focus on transcriptomic and 
epigenomic data in cancer research. 

In this chapter, we first introduce gene expression and its molecular determinants in cells 
before describing experimental methods to survey transcriptome and epigenome in biologi
cal specimens. We continue by providing a short overview of commonly used computational 
approaches for analysing data generated by these techniques. The chapter is concluded by 
defining the key aims of the thesis and reviewing related previous works. 

1.1 Gene expression 

Proteins are the most versatile macromolecules in organisms. They are incorporated in cellular 
structures as simple building blocks, function as receptors or signalling agents and fulfil indis
pensable roles in immune response and many other physiological processes. Their structure is 
fully determined by the order of amino acids in the polypeptide chain, which is in turn encoded 
in the order of nucleotides in deoxyribonucleic acid (DNA). The information in DNA is first trans
ferred into a complementary molecule of ribonucleic acid (RNA) in the process of transcription. 
Specific cellular organelles - ribosomes - then ensure translation of RNA into a sequence of 
amino acids which constitute a protein. This standard flow of information in biological systems 
was first described and published in 1958 by Francis Crick [1] and is commonly known as the 
central dogma of molecular biology. 

Molecular mechanisms described in the central dogma facilitate gene expression, i.e. transfer 
of genetic information from the parts of DNA that encode proteins (or other functional molecules, 
e.g. various types of RNA) and its utilisation for the synthesis of these molecules. Given 
the importance of gene products for the metabolism of cells, it is unsurprising that precise 
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spatiotemporal regulation of gene expression is necessary to ensure cell viability and function. 
Moreover, gene expression patterns are strongly reflected in cellular phenotype and therefore 
facilitate cell differentiation and development in multicellular organisms [2]. 

In single-celled prokaryotes, which do not have a cell nucleus, DNA floats freely in the cy
toplasm. Transcription and translation occur almost simultaneously and the resultant proteins 
undergo very few (if any) additional modifications. As a result, regulation of transcription is 
a dominant way of prokaryotic gene regulation. In eukaryotic cells, genes are transcribed in 
the nucleus (where most of the cellular DNA is stored) and RNA transcripts are subsequently 
transported through the nuclear membrane into the cytoplasm to be translated at ribosomes 
(however, not all RNAs undergo translation and may exert function without coding any proteins). 
This procedure allows for more complex control over gene expression - apart from modification 
of transcriptional activity, there are other regulatory mechanisms available. For instance, most 
RNA transcripts in eukaryotes are subject to post-transcriptional modifications, which ensure 
their chemical stability during transportation and splicing of non-coding sequences (introns). 
The intensity of translation can be altered as well and the resultant proteins usually undergo 
post-translational changes to acquire their final, biologically active form [3]. The contents of this 
thesis, however, concern primarily the processes involved in eukaryotic transcription regulation, 
which will therefore be covered more thoroughly in the following chapters. 

1.2 Regulation of transcription 

The central role in the process of transcription is played by an enzyme which catalyses the 
synthesis of RNA strand based on DNA template - RNA polymerase. More precisely, there 
are multiple types of RNA polymerase in eukaryotes, each facilitating transcription of specific 
RNAs. For the sake of simplicity, however, we will refer to all these enzymes collectively in fur
ther text. For transcription to start, RNA polymerase must bind to the DNA molecule upstream 
of the gene to be transcribed. This process is facilitated through specialised proteins - tran
scription factors - which bind to DNA near the transcription start site, form so-called initiation 
complex and enable RNA polymerase to commence its activity [3]. While some transcription 
factors need to be present practically during any transcription (these will be referred to as gen
eral transcription factors), specific genes may require recruitment of additional proteins to be 
successfully transcribed. The following sections are meant to provide a concise overview of 
transcriptional regulatory mechanisms in eukaryotic cells, focusing on those which are relevant 
in the context of this work. 

1.2.1 Regulatory elements 

The term regulatory element (RE) in the context of genetics refers to a genomic region impli
cated in the regulation of transcription. Two classes of REs may be distinguished: c/'s- and 
trans-REs. C/s-REs are portions of non-coding DNA which can influence the transcription of 
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Figure 1: Transcription initiation complex, which consists of RNA polymerase and transcription factors 
bound to the gene promoter. Its function can be further modulated by the regulatory proteins 
(activators) associated with distal control elements of the enhancer sequence. Enhancers 
are brought close to the initiation complex thanks to DNA looping mediated by DNA bending 
proteins (Source: [3]) 

genes present in the very same DNA molecule. From the functional point of view, they most 
commonly serve as binding sites for transcription factors or other regulatory proteins. Trans-
REs, on the contrary, are coding DNA sequences that encode molecules (proteins or RNA) 
capable of modulating transcription of genes, located possibly within a different DNA molecule 
than the one in which the trans-RE is present. The most common examples of trans-REs are 
genes for transcription factors, which can then interact with c/s-REs and mediate intermolecular 
regulation of transcription [4]. In the remainder of this thesis, the term RE will be used to refer 
to c/s-REs only. 

A very important and commonly studied class of REs are promoters. These are non-coding 
sequences located upstream of the corresponding gene, usually directly adjacent or very close 
to the transcription start site. They contain binding sites for RNA polymerase and other proteins 
of the transcription initiation complex (see figure 1). Although the length and structure of pro
moters are gene-specific, several core structural sequences have been identified that can be 
found in most of the eukaryotic promoters (e.g. so-called TATA box, which acts as a binding site 
for specific transcription factors) [3]. 

Formation of the initiation complex and the activity of RNA polymerase can be additionally 
influenced by REs located further away (sometimes more than 10 kilobase pairs) from the 
transcription start site. The most prominent of these REs are called enhancers because their 
activity stimulates (enhances) or even enables the transcription of certain genes. Enhancers 
share many features with other classes of c/s-REs, especially promoters, but it is their ability 
to activate transcription over long genomic distances that sets them apart [5]. Enhancers may 
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be located upstream or downstream of promoters and they are usually composed of multiple 
distinct functional sequences (called distal control elements), which act as binding sites for reg
ulatory proteins (activators) interacting with molecules of the initiation complex and stimulating 
the activity of RNA polymerase. These interactions are enabled by DNA looping (often facili
tated by yet another group of specialised proteins) that brings the enhancer sequence close to 
the transcribed gene (see figure 1). [6] 

Some REs have the opposite effect on transcription compared to enhancers, i.e. they inhibit 
(silence) gene expression and are therefore called silencers. However, the mechanism behind 
the regulatory influence of these REs is often very similar in principle to enhancers. Silencers 
contain binding sites for gene repressors - regulatory proteins which interfere with transcrip
tional machinery in various ways (see chapter 1.2.2) and disrupt its function. 

Regardless of the type of effect which REs impose on transcription, their coordinated activity 
is an essential part of regulatory programs that lead to cell development and differentiation. 
Consequently, disruptions of these processes may often trigger the rise of severe pathology. It 
has therefore become of great scientific interest to map the activity of REs across the whole 
genome (particularly in human) in order to understand the molecular basis of gene regulation, 
cell development and disease. Indeed, vast integrative studies of the human genome focused 
on characterising REs (such as [7], [8]) have experimentally established that the activity of REs 
is highly specific for different cell types, developmental stages and physiological or pathological 
states. 

1.2.2 Transcriptional regulatory proteins 

The key part of transcription regulation is executed via interactions between molecules of the 
transcriptional machinery (RNA polymerase, general transcription factors) and specific regula
tory proteins. As has been mentioned in chapter 1.2.1, the activity of these proteins is tightly 
connected with REs in the genome to which they specifically bind. The group of proteins that 
can stimulate transcription is called transcriptional activators. Their structure is usually modular, 
composed of DNA-binding and activation domains. The DNA-binding domain binds specifically 
to regulatory DNA sequences (such as promoters or enhancers) while the activation domain 
interacts with the components of transcriptional machinery. Interestingly, DNA-binding and ac
tivation domains may be interchanged between proteins to ensure a large variety of specific 
regulatory effects. Moreover, multiple activators may interact simultaneously with different com
ponents of the transcriptional machinery to ensure synergistic stimulation. One of the proto
types of eukaryotic activators is factor Sp1 (specificity protein 1), which stimulates expression 
of genes only in the presence of specific promoters. [6] 

Transcriptional repressors, on the contrary, inhibit the process of transcription. In higher 
organisms (such as mammals), the function of repressors can in principle be described as pas
sive or active. Passive repressors do not have intrinsic inhibitory activity and so their effect is 
achieved via blocking the function of RNA polymerase, general transcription factors ortranscrip-
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tional activators. They may compete with these molecules for DNA binding sites or bind directly 
to the regulatory proteins, rendering them inactive [9]. For instance, some passive repressors 
contain the same DNA-binding domains as activator proteins but lack activation domains [6]. 
An example of a passive repressor is protein ICER (inducible cAMP early repressor), which 
is encoded by one of the splice variants of cAMP-responsive element modulator (CREM) gene 
[10]. In contrast, the function of active repressors is not dependent on interaction with activators 
but it is based on mediating chromatin structure alterations. The most prominent members of 
this group are proteins which recruit histone deacetylases (histone acetylation is necessary to 
relax tight nucleosome structure, see chapter 1.2.3), their activity being often coupled with DNA 
methylation [9]. For example, RE-1-silencing transcription factor (REST) functions as an active 
repressor of neuronal genes in non-neuronal cell types [11]. 

1.2.3 Chromatin structure and DNA methylation 

In all eukaryotic cells, DNA is present in the cellular nucleus not as a naked molecule but asso
ciated with specialised proteins in so-called chromatin structures. The basic unit of these struc
tures is the nucleosome, i.e. the complex of double-stranded DNA helix and small, positively 
charged proteins - histones. A high percentage of positively charged amino acids (arginine, 
lysine) in histones ensures affinity to negative charges of DNA phosphates [12]. Each nucleo
some consists of a DNA strand wrapped around a histone octamer, which contains 2 molecules 
from each of 4 different histone types (H2A, H2B, H3, and H4). In most nuclei, there is also 1 
molecule of histone H1 (linker histone) bound to the DNA as it enters the nucleosome core. This 
histone promotes the folding of nucleosomes into chromatin fibres, which then form tightly com
pressed loops and coils and are finally condensed into chromosomes [13]. The whole process 
is schematically illustrated in figure 2. 

The way DNA molecules are packaged into chromatin influences the expression of genes. 
Association of DNA with histone proteins and its further condensation creates a physical barrier 
for molecular interactions, i.e. the more condensed DNA is, the less accessible it is to the tran
scriptional machinery. The positioning of nucleosomes and the level of packaging of DNA into 
higher-order structures is referred to as chromatin accessibility and represents a very important 
regulatory mechanism of practically all DNA-dependent processes, including gene transcription 
[14]. Chromatin accessibility is one of the key concepts in the context of this thesis. 

For a gene to be actively transcribed, multiple conditions related to chromatin structure need 
to be satisfied. The DNA molecule has to be in a decondensed state at the gene locus, cor
responding to the 11 nm chromatin fibre in figure 2. However, the DNA is still associated with 
histones, which poses an obstacle for transcription initiation. This inhibitory effect is eliminated 
by histone acetylation and the binding of two nonhistone chromosomal proteins (HMG-14 and 
HMG-17) to nucleosomes of actively transcribed genes. Additional regulatory proteins - nucle
osome remodelling factors - may facilitate the binding of transcription factors to DNA through 
changing nucleosome structure. [6] 
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Figure 2: Chromatin is composed of nucleosomes, i.e complexes of double-stranded DNA with struc
tural histone proteins. Nucleosomes are further organised by folding and looping into more 
condensed fibres. (Source: [12]) 

Another general mechanism of transcription regulation in eukaryotes, strongly related to chro
matin structure, is DNA methylation. Through the activity of DNA methyltransferase enzyme, a 
methyl group is added to cytosine bases of DNA strand, which are usually followed by guanine 
residues (forming so-called CpG dinucleotides). This chemical modification modulates gene 
expression via regulatory proteins that bind specifically to methylated DNA [6]. Through the 
silencing of specific genes, DNA methylation is involved in many important cellular processes, 
such as X-chromosome inactivation or genomic imprinting (the phenomenon of gene expres
sion being dependent on whether it comes from maternal or paternal allele) [15]. 

1.2.4 Regulatory disruptions in cancer 

Molecular mechanisms of cellular regulation are inseparably connected with cancer for it is the 
breakdown of these processes that causes abnormal growth and proliferation of cells. The 
distinguishing characteristic of cancer cells is their malignancy, i.e. the ability to invade neigh
bouring tissues and spread throughout the organism (metastasise), as opposed to the locally 
confined growth of benign tumours [16]. A cell can undergo malignant transformation after 
acquiring disruptions in regulatory pathways that control important cellular processes. These 
errors occur as a result of genetic mutations - a change of protein-coding DNA sequence may 
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render the gene or its product inactive/hyperactive, it can result in the production of proteins 
with aberrant function or it may cause the protein to be expressed in inappropriate amounts. 
Mutations of certain genes, particularly those involved in the regulation of cell cycle, have a 
high potential to induce cancer - these genes are referred to as proto-oncogenes. Some proto-
oncogenes encode proteins which normally act to push cells through distinct stages of the cell 
cycle upon receiving appropriate signals, such as cyclin D1 (CCND1) and cyclin E1 (CCNE1). 
Mutation or inappropriate expression of these genes may result in malignant transformation [17]. 
Usually, multiple such mutations need to be accumulated by the cell so it can obtain all the nec
essary traits that lead to malignancy - apart from the unlimited proliferation ability, these include 
the resistance against signalling from other cells or extracellular matrix, decreased adhesion to 
surrounding structures or the ability to escape apoptosis and immune system supervision [16]. 

Based on what has already been said about REs (see chapter 1.2.1), it is clear that not 
only mutations of genes themselves but also alterations of non-coding regulatory sequences 
may cause dysregulation of gene expression [18]. Moreover, the expression of genes can be 
efficiently modulated by epigenetic factors (i.e. without changing the coding DNA sequence), 
such as methylation or the packaging of DNA into chromatin structures (see chapter 1.2.3). 
Indeed, it is now firmly established that epigenetic regulation plays an important role in cancer 
development [19]. Consequently, mapping gene expression and the activity of REs provides a 
valuable insight into molecular background of physiological as well as pathological cell states, 
especially in the context of oncological diseases. 

1.3 Transcriptomic and epigenomic assays 

The study of cellular processes on a molecular level has only been made possible by sophis
ticated experimental techniques. In genetics, methods for the sequencing of nucleic acids 
brought a breakthrough as they enabled researchers to uncover how exactly genetic information 
is stored and expressed. However, the sheer amounts of data to be experimentally obtained 
and then processed had long posed a severe limitation of these techniques, which urged for the 
development of more and more efficient sequencing approaches. 

A common way of quantifying the expression of genes is to assay cellular transcriptome, i.e. 
the collection of all RNA transcripts in a cell. For global gene expression profiling, microarrays 
have been used for more than 20 years [20, 21]. This technique employs short nucleic acid 
probes, covalently bound to a glass substrate, which are hybridised with fluorescently labelled 
target sequences. The array is then scanned (e.g. with a laser-scanning microscope) and 
the intensity of fluorescence corresponds to the amount of hybridised RNA. In recent years, 
however, microarrays have been gradually replaced by methods utilising next-generation se
quencing (NGS) thanks to their greater flexibility and accuracy and eventually lower costs [22]. 
These high-throughput techniques, which enable parallel sequencing of large amounts of nu
cleic acid fragments, have revolutionised genomic, transcriptomic and epigenomic studies. The 
following chapters describe two types of NGS-based methods, which are critical to the topic 
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of this thesis. It is worth noting that the principles to be introduced apply generally to the pro
cessing of biological material from a large number of cells (so-called "bulk analysis"). However, 
recent technological advances enabled all of the described methods to be implemented also in 
single-cell versions, in which nucleic acids from individual cells are extracted and analysed [23]. 

1.3.1 RNA-seq 

For global transcriptome profiling, RNA-seq is nowadays a standard experimental approach. 
Thanks to the immense progress in NGS technologies, RNA-seq can provide genome-wide 
expression profiles with single-base resolution and low levels of background noise, requiring 
only a small amount of RNA [24]. Moreover, RNA-seq is not dependent on a priori knowledge 
of target sequences (which is needed to design specific probes for microarray hybridisation) 
and is therefore a suitable method for exploring unannotated transcription regions or novel 
RNA splice variants [25]. 

The first step of the experimental protocol in RNA-seq is the isolation of RNA molecules 
from cells. As the majority (more than 90 %) of cellular RNA consists of ribosomal RNA (rRNA), 
which is not informative in terms of gene expression, it is usually desirable to filter RNA samples 
before further processing. Today, there are multiple techniques available either for selective 
messenger RNA (mRNA) enrichment (usually utilising the presence of polyadenylated tails on 
most mRNA molecules) or selective depletion of rRNA in samples [26]. The next phase is 
reverse transcription of RNA needed to create double-stranded molecules of complementary 
DNA (cDNA), which are suitable for subsequent amplification and sequencing. Unlike small 
RNAs (such as microRNAs, Piwi-interacting RNAs, small interfering RNAs and others), which 
can be sequenced as a whole, larger molecules need to be broken into shorter fragments 
(most commonly via enzymatic digestion or ultrasound application) to be sequenced by N G S 
methods. After fragmentation, the sample is purified to keep only the fragments of appropriate 
length (this parameter depends on the specific NGS technique used but is commonly in the 
order of a few hundreds of base pairs) [24]. 

Following sample preparation, N G S takes place, simultaneously processing a large num
ber of cDNA fragments. Although the basic principle of most available NGS procedures is 
somewhat similar, there are substantial differences regarding experimental implementations of 
individual manufacturers. However, it is out of the scope of this work to discuss these technical 
nuances. 

Once the "laboratory" phase of RNA-seq has been completed and the sequences of cDNA 
fragments (so-called "reads") have been obtained, appropriate data processing must be em
ployed in order to transform this raw information into a meaningful and interpretable form [22]. 
Frequently, the first step is filtering out low-quality reads, for example based on their length or 
the content of unidentified nucleotides. Next, individual reads need to be matched to the ref
erence genome of the organism from which the processed sample originated (there are also 
possibilities to assemble transcriptomes de novo if the reference genome is unknown, although 
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this is now less common). The sheer volume of data from sequencing methods had long made 
this step difficult in terms of computational requirements and the task is further complicated 
by the problematic alignment of repetitive sequences (which constitute almost 50 % of the hu
man genome) [26]. However, the development of effective bioinformatic algorithms, as well as 
improved availability of computational power in recent years, have helped overcome these ob
stacles. Finally, raw read counts for individual genome positions are usually transformed (by 
aggregation with respect to known gene coordinates) and normalised in order to obtain more 
interpretable quantification of gene expression. 

1.3.2 DNase-seq and ATAC-seq 

Similarly to transcriptome profiling, NGS has remarkably broadened the possibilities in epige-
nomic assaying as well. Among these assays belong methods for quantification of chromatin 
accessibility, which are in principle based either on enzymatic methylation (e.g. NOMe-seq) or 
cleavage of DNA molecules (e.g. DNase-seq) [27]. In this chapter, two such techniques will be 
introduced that play a central role in the context of this thesis. 

Nucleosome-free genomic regions are more susceptible to enzymatic cleavage by 
deoxyribonuclease I (DNase) [28]. These DNase hypersensitive sites (DHSs) had been shown 
to correspond mainly to REs of the genome long before the advent of NGS [29]. However, it 
was massively parallel sequencing that finally allowed for studying DHSs (and therefore chro
matin accessibility) genome-wide [28, 30]. These were some of the first performed DNase-seq 
experiments, in which NGS was utilised to sequence short DNA fragments produced by cleav
age via DNase. DNA is cut predominantly in the regions of open chromatin which can therefore 
be identified as the positions with increased read counts after mapping sequence reads to the 
reference genome. 

More recently, a technique for quantification of chromatin accessibility called assay for 
transposase-accessible chromatin using sequencing (ATAC-seq) was introduced in [31]. Its 
experimental protocol is in a simplified form illustrated in figure 3. Conceptually similar to 
DNase-seq, ATAC-seq utilises a different molecule for which access to DNA is interrogated 
- hyperactive Tn5 transposase. This enzyme can cleave double-stranded DNA while simulta
neously adding short sequencing adaptors (tags) to the ends of the produced fragments. The 
process is much more likely to occur in the regions of open (i.e. nucleosome-depleted) chro
matin. Specific tags are used for purification and P C R amplification of DNA fragments, which 
are subsequently sequenced and mapped to the reference genome. Peaks in the resultant 
profiles denote the regions of accessible chromatin. 

Very quick adoption of ATAC-seq in the scientific community was caused primarily by a con
siderably faster and easier-to-perform experimental protocol compared to DNase-seq, as well 
as lower requirements for the amount of genetic material [27]. Moreover, ATAC-seq accessibility 
measurements are highly consistent with the results of DNase-seq experiments, both in terms 
of data quality and capturing regulatory information [31], [33]. Consequently, chromatin ac-
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cessibility profiles generated by ATAC-seq and DNase-seq may serve as suitable and mutually 
comparable proxies for evaluation of the activity of genomic regions, particularly REs. 

Tightly packed 
(closed) chromatin 

Loosely packed 
(open) chromatin 

Hyperactive Tn5 
transposase 

Adaptor 
DNA 

Simultaneous fragmentation 
and tagging of accessible DNA 

Purification and PCR amplification 
of DNA fragments 

Next-generation 
sequencing 

Number of 
reads A . jiIIIIIIIIL 

Sequencing peaks 
corresponding to 
open chromatin 

Genomic position 

Figure 3: A schematic illustration of ATAC-seq experimental protocol. Hyperactive Tn5 transposase is 
used to cleave DNA and tag the ends of fragments with sequencing adaptors. After purifica
tion and amplification, DNA fragments are rapidly sequenced and mapped to the reference 
genome. Genomic positions with increased read counts correspond to the regions of accessi
ble chromatin. (Adapted from: [32]) 
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1.4 Analytical methods 

As introduced in the previous chapters, N G S technologies produce vast amounts of data. In 
this section, we review selected general-purpose and bespoke techniques for the analysis of 
high-dimensional biological datasets. 

1.4.1 Standardisation and normalisation 

When comparing high-dimensional data, one of the biggest challenges is the elimination of 
technical variation. This term denotes all the variation in data that is caused by differences in 
experimental setup and conditions and which can obscure the biological variability of interest. 
Numerous general-purpose and data-type-specific normalisation techniques have been devel
oped to address this problem [34, 35, 36]. It has been shown that the application of these 
procedures may critically influence the outcome of downstream analyses of high-throughput 
data [37, 38] and therefore particular attention should be paid to the choice of suitable normali
sation technique. 

A common approach to tackle inconsistent range and scaling of data values is to compute 
the corresponding standard scores (also called z-scores). Each original value x is converted 
into a standard score z through 

based on the mean n and standard deviation a of the values to be transformed. For the sake of 
simplicity, this operation will be hereafter referred to as standardisation (although in statistics, 
the term standardisation may cover several different scaling methods). Standardisation can 
be performed on the whole dataset or it can be applied either on individual sample vectors 
or feature-wise (e.g. separately for each gene in gene expression profiles). Although a very 
simple technique, standardisation is regularly used as a part of pre-processing pipeline for 
many advanced analyses (particularly in machine learning). 

The specific character of outputs provided by high-throughput genomic, transcriptomic and 
epigenomic assays has urged for the development of specialised normalisation methods, e.g. 
quantile normalisation (QN). Although QN was originally introduced for gene expression mi-
croarrays [34, 39, 40], it has since been successfully used to remove technical variation in 
sequencing data as well [41]. The basic principle of QN is illustrated in figure 4. In the first 
step, original data values for individual samples are sorted and assigned ranks. Subsequently, 
values from a pre-defined reference distribution are used to replace the original values with the 
corresponding rank. This operation forces each sample vector to have the same (reference) 
distribution. Such a strong assumption about statistical properties of processed data may be 
justified in some biomedical applications, e.g. for gene expression studies where only a minority 
of targeted genes is expected to be differentially expressed between samples [41]. 
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Raw data Assigning ranks 

SI S2 S3 SI S2 S3 

F l 12 4 3 F l IV III 1 

F2 2.1 1 4.2 » F2 1 1 II 

F3 3 4 6 F3 II III III 

F4 4.5 2 8.7 F4 III II IV 

Rank Value 
1 2 
II 3 
III 6 
IV 7 

Normalised data 

Reference 
distribution 

SI S2 S3 

F l 7 6.5 2 

F2 2 2 3 

F3 3 6.5 6 

F4 6 3 7 

Figure 4: A schematic depiction of quantile normalisation principle. Columns of the data matrix (S1-
S2) represent samples, rows F1-F4 represent features. First, each sample vector is sorted 
and based on the order, raw data values are assigned ranks (here, ascending order is used). 
Normalisation is then performed by replacing the original values with values which have the 
corresponding rank in the defined reference distribution. 

From the practical point of view, the construction of reference distribution for QN is an impor
tant issue. It can either be created based on already existing and validated data from similar 
studies or it may be derived directly from the analysed dataset. In the latter case, reference is 
usually calculated as the mean of corresponding quantiles across all samples. In figure 4, this 
would simply require computing the mean of each row of the data matrix after value sorting -
resultant numbers would then constitute the reference distribution. Another important technical 
detail concerns how the normalisation of the same values in sample vectors is treated (particu
larly for datasets with a high content of identical numbers, usually zeros). An example of such 
tied ranks can be seen in figure 4, where sample S2 has the same value (and therefore the 
same rank) defined for features F1 and F3. These values could be both replaced by the 3 r d 

entry in the reference (i.e. 6) or by the mean of the 3 r d and the 4 t h entry (as it is done in the 
toy example). Other metrics (such as median) come into consideration as well, the final choice 
should be made based on data specifications. 

1.4.2 Dimensionality reduction 

The primary output of methods for assaying transcriptome or chromatin structure are numeric 
vectors for individual samples, where the numbers represent the levels of gene expression or 
chromatin accessibility, respectively. For genome-scale studies, these levels are usually deter
mined for a large amount of genomic regions (i.e. features), ranging from tens of thousands 
of genes (e.g. for RNA-seq) up to several millions of REs (for chromatin accessibility assays). 
The analysis of such high-dimensional data is often problematic as they cannot be visualised 
straightforwardly and because advanced analyses may become computationally infeasible for 
a large number of features. Dimensionality reduction techniques offer solutions to tackle these 
problems. 
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Principal component analysis 

Being one of the first and most commonly employed feature reduction methods, principal com
ponent analysis (PCA) owes its success to relatively simple mathematical formulation and in
terpretation yet high efficiency in many applications. Through PCA, a dataset that contains 
mutually correlated variables (features) is transformed into a different coordinate system, in 
which a new set of uncorrelated variables, called principal components (PCs), is defined so 
that they capture most of the variation present in the original features [42]. 

Let matrix X of dimensions M x N (M rows, iV columns) represent a dataset with M ob
servations described by N features. To derive PCs, which are in fact linear combinations of the 
original features, N x N covariance matrix C first needs to be computed as 

C = — YJY, (2) 

where Y is the matrix of centred data in which the mean of each feature (i.e. column of X) was 
subtracted from all the respective feature values. If the data are additionally scaled by being 
divided by the standard deviations of features (that is, standardisation is performed feature-
wise as described in chapter 1.4.1), the matrix computed according to equation 2 is called the 
correlation matrix R (which is de facto a normalised version of C). Both matrices can be used 
for further computations with slight differences in interpretation of the result, correlation being 
a common default in many P C A implementations [43]. In the remainder of this chapter, the 
usage of the correlation matrix will be assumed with practically all the principles being easily 
transferable to the case of using the covariance matrix. 

P C s are found through eigendecomposition of the correlation matrix. This operation is de
fined for square matrices and results in obtaining eigenvalues and eigenvectors of the matrix. 
An eigenvector o\ N x N matrix R is defined as each non-zero vector v that satisfies the con
dition 

Rv = Xv, (3) 

where A is the scalar eigenvalue corresponding to eigenvector v. This can be rewritten as 

(R - XI)v = 0, (4) 

with J being N x N identity matrix and 0 the zero vector. Equation 4 has a non-zero solution v 

only if the determinant of matrix (R - XI) is zero: 

\R-XI\ = 0. (5) 
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The N roots of this so-called characteristic equation are the eigenvalues A n of matrix R, each 
of them associated with eigenvector vn. Strictly speaking, there is an infinite amount of eigen
vectors corresponding to each eigenvalue as any scalar multiple of vn satisfies equation 4 and 
is therefore an eigenvector as well. However, the requirement of unit length is usually imposed 
on eigenvectors so that 

vJv = 1, (6) 

which ensures unambiguity. Moreover, all pairs of eigenvectors with different associated eigen
values are orthogonal (i.e. their dot product is zero). [44] 

Special characteristics of correlation matrices (they are symmetric and contain only real pos
itive numbers) ensure that their eigendecomposition always exists with real eigenvectors and 
real positive eigenvalues [44]. These properties become important when interpreting the mean
ing of eigenvalues and eigenvectors in the context of PCA. Individual PCs are effectively de
fined by the corresponding eigenvectors, whose elements represent the coefficients (also called 
loadings) of the linear combination used to transform original features into PCs. Thus, they also 
determine the contribution of individual original features to each PC. It is worth noting the mutual 
orthogonality of eigenvectors ensures that each PC is uncorrelated with all the other PCs. 

The sum of all N eigenvalues represents the total variance contained in the transformed data 
with each eigenvalue expressing the proportion of this total variance captured (explained) by the 
corresponding PC. Usually, a high percentage of overall variance is covered by the first K PCs 
(when ordered according to the eigenvalues from the highest to the lowest), where K « N. 
This makes it possible to choose only the K most important PCs to represent the original 
features, achieving the desired dimensionality reduction [42]. There are various approaches to 
determining the optimal number of retained PCs, for example keeping the PCs which explain a 
certain percentage of the total variance. 

The last step of PCA is data transformation itself, which is performed as matrix multiplication. 
The K chosen eigenvectors usually constitute the columns of the transformation matrix V (also 
called the loading matrix), which is then used to multiply the original data matrix X: 

XV = X'. (7) 

The transformed data matrix X' contains M observations described by the new set of K vari
ables - the values of these new artificial features are referred to as scores (or factor scores). 
Geometrically, PCA performs a coordinate system transformation where factor scores may be 
interpreted as the projections of original data points onto a new set of axes - principal compo
nents [43]. 
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t-distributed stochastic neighbor embedding 

For complex datasets which contain an underlying non-linear structure in low-dimensional rep
resentation, linear feature reduction techniques such as PCA may not be able to faithfully cap
ture the relationships between data points. In these cases, usage of a non-linear transformation 
may be beneficial for dimensionality reduction and visualisation of data. One of such methods is 
t-distributed stochastic neighbor embedding (t-SNE) [45], which can be used to visualise high-
dimensional data in two- or three-dimensional space by converting the original data points into 
a matrix of their pairwise similarities. 

The central idea behind t-SNE is derived from stochastic neighbor embedding (SNE) algo
rithm [46], in which similarities between data points are represented by conditional probabilities 
that two points would be chosen as neighbours, provided that the probability of such selec
tion is proportional to a Gaussian probability density function centred at one of the data points. 
These probabilities are computed across all pairs of data points as well as the pairs of their re
spective low-dimensional representations (so-called map points). The model represents high-
dimensional relationships correctly if the distributions of conditional probabilities for individual 
data points are equal to such distributions for the corresponding map points. To measure the 
similarity between these distributions, Kullback-Leibler divergence [47] is employed as a met
ric. At the same time, it constitutes the cost function to be optimised (i.e. minimised) during 
data transformation. One of the critical parameters of the algorithm to be set by users is called 
perplexity, which may be interpreted as a number of effective nearest neighbours of each data 
point (i.e. those neighbours which will significantly contribute to the computation of conditional 
probability distributions) [45]. 

In t-SNE, multiple alterations are introduced compared to S N E algorithm which address 
some of its major shortcomings, both in terms of visualisation quality and computational ef
ficiency. The most prominent difference is perhaps the replacement of Gaussian with Stu
dent's ^-distribution to compute similarities between points in low-dimensional space (hence 
t-distributed SNE). However, for a detailed description of all the implemented changes, which 
is beyond the scope of this introductory chapter, please refer to the source articles [45] and 
[46], where precise mathematical formulations of the presented problems can be found. Here, 
we will conclude by stating that t-SNE has been shown to excel (with appropriate parameter 
settings) at capturing the local structure of high-dimensional data while also preserving global 
patterns. Hence, it has become a standard visualisation technique employed with particular 
success in exploratory, unsupervised analyses of high-throughput sequencing data [48]. 

Uniform manifold approximation and projection 

More recently, uniform manifold approximation and projection (UMAP) was introduced as an
other non-linear technique for dimensionality reduction [49]. It belongs to the class of manifold 
learning algorithms, which aim to uncover the intrinsic low-dimensional geometric structure hid
den in high-dimensional observations. Thus, the assumption is that these data points lie on 
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or near a low-dimensional manifold, reflecting the process of data generation which often has 
relatively few degrees of freedom compared to the number of features that describe the data 
[50]. 

In UMAP, manifold approximations are utilised to construct topological representations of both 
the high-dimensional data and their low-dimensional embedding. The layout of the represen
tation in the low-dimensional space is then optimised in order to minimise the cross-entropy 
between the two topological representations [49]. For detailed theoretical foundations and 
mathematical formulations of the problem, see [49]. Although UMAP is quite a novel method, 
its usage in this work is justified by quickly acquired popularity and widespread use within (not 
only) bioinformatic data analyses, such as [51 ] or [52]. In these and other similar studies, UMAP 
has been proven to yield comparable visualisation results as t-SNE, possibly being even supe
rior in preserving global data structure. It also comes with the benefit of faster computations of 
the outputs than t-SNE and is not restricted in terms of embedding dimensions (t-SNE is only 
able to provide 2-D or 3-D representations) [49]. 

1.4.3 Machine learning models for classification 

Experiments in molecular biology, particularly in the studies of genetic information, often pro
duce highly complex datasets where relationships between data points or innate data structures 
are inconceivable by the human mind. In these cases, machine learning (ML) algorithms may 
come into play as they are capable of uncovering these hidden patterns, providing the human 
expert with outputs that can be more easily interpreted [53]. The model is said to be trained on 
the data (so-called training dataset) so that the information extracted during this process can be 
generalised when making predictions about new (unseen) samples. Importantly, ML algorithms 
are not explicitly programmed to make decisions according to a fixed set of rules or parameters, 
they are automatically adjusted based on the contents of the training dataset (i.e. they "learn" 
from the data). 

Formally, ML models try to approximate an unknown transformation function / , which con
verts input data X (usually, but not necessarily, a vector or matrix of numeric features) into the 
corresponding output Y: 

Y = f(X). (8) 

The output Y can be expressed in various forms as well (a matrix, a vector, a single number, 
alternatively a category label etc.), depending on the task at hand. One of the main challenges 
in ML is to train models which are not only able to transform the training data correctly but also 
react adequately when presented with new inputs, not used during the training phase. This 
generalisation ability is the key characteristic of ML models. 

In principle, there are two basic approaches to training models in ML. In supervised learning, 
each data point from the training dataset has the corresponding desired (real) output defined. 
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Iteratively, the model is adapted to improve the approximation of transformation function / so 
that the predicted outputs are getting closer to the desired outputs. This configuration also 
allows for a relatively straightforward assessment of model's generalisation ability by using so-
called testing data. Ideally, the testing dataset is independent of the training data (e.g. obtained 
from a different source) but more commonly, as such data are often unavailable, it is created as 
a part of the original input dataset. The testing data are not used during training so they can be 
presented to the already trained model as new, unseen samples. The quality of the resultant 
predictions is then evaluated through various performance metrics, chosen according to the 
output type. Typical applications of supervised ML are classification and regression tasks. 

In unsupervised learning, the desired outputs are unknown. Therefore, the model is trained 
solely on the input dataset in order to extract its intrinsic structures and relationships between 
data points. Performance evaluation of such models is complicated by the fact that there is no 
reference with which the obtained results could be compared. Unsupervised learning is com
monly used for data clustering. However, the application domain of ML methods has expanded 
rapidly in recent years with a large amount of novel approaches emerging in the process. There
fore, in the remainder of the chapter, only the techniques utilised in this thesis are introduced in 
more detail. They belong to the category of supervised ML classifiers. 

Logistic regression 

Logistic regression is a linear model used primarily for the purpose of binary classification. As 
stated previously, supervised ML models are tasked with estimating an unknown transformation 
function / between the input and output variables. The approximation of this function is com
monly referred to as the hypothesis and will be denoted h in further text. For linear regression 
models, the hypothesis is a linear function of the inputs. Formally, if each training example is 
represented by a vector x of n elements, the hypothesis hw{x) has the form 

n 
hw(x) = wo + wixi + ... + wnxn = wo + ^WiXi, (9) 

i=l 

where w is the vector of n + 1 weights and the term wo is called the intercept. If an artificial 
input feature x0 = 1 is defined, the hypothesis can be written simply as the dot product of the 
weights and the input vector: 

hw(x) W • X WiXi. (10) 

The equation hw(x) = 0 then defines a line in 2-D feature space (i.e. when n = 2), a plane 
in 3-D space and a hyperplane in the general case of n > 3 dimensions. It is the aim of binary 
classification to find such a set of weights w that the corresponding hyperplane constitutes a 
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Figure 5: Figure a) shows an example of linearly separable dataset in 2-D space, where each observa
tion is described by features x\ and x2- The dataset consists of data points from two classes 
(blue and red dots) and the dashed line represents one of possible decision boundaries which 
can separate these classes. For the dataset in figure b), no such linear separator can be found 
and the data are therefore linearly inseparable. 

decision boundary which separates the two classes of data points. If such linear separator 
exists, the data are referred to as linearly separable [54]. See figure 5 for the illustration of 
linear separability. 

However, the output of the hypothesis defined in equation 10 is not suitable for direct use in 
classification as it can be any real number. For binary classification tasks, the required output 
is usually the assignment of label 1 or 0 expressing whether the example belongs or does not 
belong to the positive (i.e. labelled as 1) class. In the simplest case, this can be achieved by 
thresholding the hypothesis: 

1 if w • x > 0 
(11) 

0 otherwise. 

Geometrically, the thresholding can be interpreted as assigning a binary label to the example 
by determining on which side of the decision boundary it lies in the feature space. However, two 
main problems arise with such an approach. Firstly, the hypothesis becomes a discontinuous 
(and therefore not differentiable) function, which complicates the learning of the model (i.e. the 
process of finding optimal weights w based on the training examples). Secondly, the predic
tions are always completely confident, even for the samples that lie very close to the boundary 
(consequently, the reliability of predictions cannot be assessed). Logistic regression resolves 
these shortcomings by "softening" the hard threshold [54]. For this purpose, the logistic function 
is utilised to construct the hypothesis, which is then defined as 
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Figure 6: The logistic function is used to define hypothesis hw(x) for logistic regression. 

hw(x) 
1 + e-

(12) 

As can be seen in figure 6, the logistic function always outputs values in the range from 0 
to 1. If the input data point lies exactly on the decision boundary (i.e. when w • x = 0), the 
output is 0.5 and approaches 0 or 1 as w • x decreases or increases when moving away from 
the boundary. Thanks to these properties, a prediction made by logistic regression may be 
interpreted as the probability with which the example belongs to the positive class. If desired, 
the probability estimate may be thresholded to obtain binary output. 

Estimating the set of weights for logistic regression based on the training examples is an 
optimisation task, which is usually solved by using some of the well-established algorithms with 
efficient implementations, such as the method of least squares, (stochastic) gradient descent or 
maximum likelihood estimation [55]. Mathematical foundations of these techniques, however, 
are not of central importance in the context of this thesis. 

Support vector machines 

The basic concept of classification through the support vector machine (SVM) framework is 
constructing a maximum margin separator. The idea is illustrated in figure 7 on a toy, linearly 
separable 2-D dataset. Figure 7a depicts two different decision boundaries, each of them cor
rectly separating all of the training examples. However, one can intuitively assess that boundary 
1 is not as good as boundary 2 because it lies too close to some of the training data points. In 
such case, the new examples may fall on the wrong side of the boundary (i.e. be misclassified) 
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Figure 7: The concept of maximum margin separator. Placing the decision boundary as far away from all 
the training data points as possible is ensured by maximisation of the margin. Such separator 
is then expected to have a lower generalisation error when presented with new examples, 
compared to other possible separators (such as boundary 1 in figure a)). The training data 
points with the lowest distance to the separating hyperplane are called support vectors and 
are marked with green colour in figure b). 

much more easily than when the separator is as far away from all the training examples as pos
sible. SVMs formalise this intuition by defining the margin, which is twice the distance between 
the separating hyperplane (in a general case of n-dimensional feature space) and the nearest 
training example [54]. In figure 7b, the margin is the width of the lane delimited by the two 
dashed lines with the decision boundary lying in its centre. By maximising the margin, SVMs 
are able to decrease generalisation error, i.e. improve the accuracy when classifying unseen 
samples. 

Using a similar notation as in the previous section about logistic regression, the separator 
(i.e. a hyperplane) can be defined as 

where x is the feature vector and w is the vector of weights. The only difference compared 
to the previous notation is that the intercept is now not included in w but stands separately as 
the term b. If the training data are centred and standardised (see chapter 1.4.1), which is a 
common pre-processing step before training ML models, the hyperplanes delimiting the margin 
(see the dashed lines in figure 7b for an example) are defined as 

w • x + b = 0 (13) 

w • x + b = l,w • x + 6 = —1. (14) 
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The distance between these hyperplanes (i.e. the margin) is then T A j . Thus, it is evident that 
in order to maximise the margin it is necessary to minimise the magnitude of vector w, i.e. the 
squared sum of the weights. At the same time, additional constraints have to be applied during 
optimisation so that none of the m training examples is allowed to lie within the margin: 

yi(w • Xi + b) > l ,Vz = 1,2, ...,m. (15) 

Here, xt are the training vectors with the corresponding binary class labels = 1 or y{ = 
- 1 . Due to practical benefits, the stated optimisation problem is usually solved by utilising its 
dual representation, which will not be introduced here for the sake of brevity. Importantly, the 
optimised cost function is convex and therefore has a single global optimum, which corresponds 
to the parameters (w, b) of the maximum margin separator. Such separator is fully determined 
by the support vectors, i.e. the data points closest to the separating hyperplane. [54] 

If the data are not linearly separable (see figure 5b for an example of such data), a maximum 
margin classifier as described above will not work because it does not allow any misclassifi-
cations of the training examples. However, as the real data can hardly ever be perfectly sep
arated due to the presence of noise, it is usually beneficial to accept some amount of errors 
during training to obtain generally more robust predictions. This is achieved by removing the 
constraint in equation 15 and adding a special term into the cost function that penalises misclas-
sified samples proportionally to their distance from the separating hyperplane. Such a model is 
then referred to as a soft margin classifier. [55] 

Besides, the S V M framework can be adjusted to learn non-linear decision boundaries through 
the utilisation of so-called kernels. In fact, the aforementioned support vector classifiers are 
often referred to as SVMs with linear kernel. The idea behind non-linear SVMs is the transfor
mation of data from their original feature domain (where they are linearly inseparable) into a 
high-dimensional space in which a separating hyperplane can be found. When mapped back 
to the feature space of a lower dimension, this hyperplane will become a non-linear decision 
boundary. 

The data transformation itself is performed by utilising kernel functions. Each kernel func
tion corresponds to a particular feature space into which it maps the input data. However, 
not every function can be used as a kernel - the group of acceptable functions is defined by 
Mercer's theorem [54]. From the computational point of view, it is an important feature of non
linear SVMs that individual training data points do not actually have to be transformed into a 
high-dimensional domain. This is because the optimisation task is based on computing dot 
products of the pairs of input vectors and these dot products can be mapped directly to the 
high-dimensional space without prior transformation of individual vectors. A kernel function is 
simply evaluated for each pair of input vectors to achieve such mapping. This so-called kernel 
trick brings a remarkable improvement of computational efficiency for non-linear SVMs [55]. 

Finally, one of the most useful kernel functions will be introduced which maps the data into a 
space with the infinite number of dimensions (therefore, it would not even be possible to perform 
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the mapping without the kernel trick). For a pair of input vectors xit Xj and a positive constant 
7, the function 

K(xi,Xj) = e - ^ X i ~ x ^ 2 (16) 

is called the radial basis function (RBF) kernel or the Gaussian kernel. It can be seen that if the 
Euclidean distance between input vectors in the feature space is large, the output of the RBF 
kernel becomes a very small number and vice versa. This ensures local behaviour of the kernel 
because the predictions for new samples are primarily influenced by the training examples from 
a certain neighbourhood of this sample [55]. The size of the neighbourhood is controlled by 
adjusting parameter 7. 

1.5 Aims of the thesis 

This work aims to contribute towards better understanding and interpretation of complex data 
produced by the experimental techniques that query cellular functions on a molecular level. 
Specifically, two distinct data sources will be considered - gene expression and chromatin ac
cessibility profiling experiments, in which large amounts of data have been generated and made 
publicly available. The goal is to extract patterns from these data so they can be subsequently 
applied to provide an insight into the biology (and pathology) of newly examined cells, with 
particular focus on cancer development. 

For chromatin accessibility, a comprehensive data source first needs to be created which 
integrates information scattered across studies and databases. For gene expression profiles, 
multiple integrated resources are already available. Due to the inherent heterogeneity of the 
collected data, it is necessary to employ pre-processing steps aimed at reducing technical vari
ation contained in the datasets. Subsequently, unsupervised analysis comprising mainly feature 
reduction methods will be performed to visualise the data and assess the effects of normalisa
tion. Moreover, good quality annotations (i.e. labels) need to be defined for individual samples 
as these are essential for the training of supervised ML models. To this end, a semi-automated 
framework will be used to refine sample metadata, both in terms of completeness and con
sistency. The assembly of an integrated and well-annotated chromatin accessibility dataset is 
important not only for the purposes of this work but should provide a re-usable resource also 
for further research as, to the very best of our knowledge, there is no comprehensive collection 
of public chromatin accessibility data available so far. 

Once the quantitative data and the corresponding annotations have been prepared, ML mod
els will be trained to extract relationships between samples based on similarities of their gene 
expression patterns or chromatin accessibility landscapes. Supervised ML classifiers will be 
used for this task and their performance will be evaluated through standard metrics and testing 
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strategy. Finally, the constructed models can be applied for classification of new (unseen) sam
ples and help to uncover biological relationships which may not have been obvious at first sight. 
This translation of experimental results into interpretable terms is necessary in every scientific 
study and becomes especially important when working with data from molecular assays due 
to their immense complexity. The analysis of single-cell data (produced by methods assaying 
biological material from individual cells) may be particularly problematic as the examined cells 
usually come from a heterogeneous tissue and therefore their properties are unknown before 
the experiment. A tool that helps to characterise such samples would therefore simplify data 
analysis and improve the usability of experimental results. 

1.6 Related work 

Applying ML methods to process vast collections of genomic data is an area of active scientific 
interest. Ellis et al. used RNA-seq profiles from large public repositories - Genotype-Tissue 
Expression Project, The Cancer Genome Atlas (TCGA) and the Sequence Read Archive - to 
train supervised linear predictors of chosen technical and biological sample attributes - sex, 
sample source (cell line or tissue), sequencing strategy (single or paired-end) and tissue type 
[56]. Linear ML models have also been employed to predict sensitivity and identify genomic 
markers of anticancer drugs based on genome-wide gene expression profiles complemented by 
additional information (such as chromosomal copy number measurements or pharmacological 
profiles of investigated drugs) [57, 58]. In these studies, elastic net regression - a method akin 
to logistic regression with a modified cost function - was utilised to reveal associations between 
specific genes and pharmaceutics. 

The performance of simple linear predictors and more complex, non-linear ML techniques 
was compared by Stetson et al., who trained random forest and S V M models on multi-omic 
data (comprising microarray gene expression profiles, copy number variation and mutational 
status) to predict anticancer therapeutic response [59]. Tumour drug sensitivity prediction was 
also the subject of other supervised ML approaches, including deep neural networks trained on 
gene expression and mutation profiles [60] and multitask learning, in which models for individual 
drugs are not trained independently but information is shared between tasks during training to 
achieve improved performance [61]. 

In recent years, many researchers have employed unsupervised ML methods to process 
public omics data, with deep learning architectures being particularly popular. For instance, 
biologically informative features were extracted from gene expression profiles of breast cancer 
cells by denoising autoencoders [62]. Similar models were used to improve the results of gene 
clustering based on gene expression data [63], with prior biological information incorporated 
into the clustering process (in the form of a network-based metric) by Cui et al. [64]. Variational 
autoencoders have been employed to extract a biologically relevant latent space from pan-
cancer RNA-seq data publicly available in T C G A [65] and to predict the response of cancer cells 
to chemotherapeutic drugs based on gene expression profiles [66, 67]. Moreover, to overcome 
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an insufficient number of training examples for unsupervised ML techniques, a transfer learning 
framework for transcriptomic data was introduced [68]. The authors show that ML models can 
be trained using large, public gene expression compendia and then transferred to much smaller 
datasets of rare disease samples. 

As can be seen, processing and analysing gene expression data is a frequent subject of 
scientific research and a plethora of relevant data sources are publicly accessible. On the con
trary, the chromatin accessibility landscape of cells is a much less explored area, with a lower 
amount of experimental data available. A shortage of training examples also limits the choice 
of ML models suitable for the analysis of these data, with many methods (particularly from the 
category of deep learning) relying on large training datasets. In this work, we bring chromatin 
accessibility to the centre of interest, trying to gather as much relevant data as possible and to 
exploit it using customised technical means. 
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2 Methods 

This chapter contains a description of methodological steps of the project, starting with the 
assembly and pre-processing of a comprehensive chromatin accessibility dataset. Next, we 
will describe the metadata augmentation procedure, which results in a collection of ML clas
sifiers subsequently used to classify new samples. We will conclude with information about 
data and code availability. If not stated otherwise, all methods were implemented in Python 1 

programming language, version 3.7.4. 

2.1 Integrated chromatin accessibility dataset 

As explained in chapter 1.3.2, measuring chromatin accessibility makes it possible to assess the 
activity of REs. However, the results of such experiments are scattered across many different 
databases or separate publications, which makes the collection and uniform processing of these 
data a necessary first step before they can be utilised for further computational analyses. Here, 
we were looking for data generated by two different methods with comparable outputs - DNase-
seq and ATAC-seq (see chapter 1.3.2) - performed on human cell samples. The primary input 
for creating the integrated dataset were genomic coverage tracks (or profiles), which quantify 
chromatin accessibility across the entire genome. Due to experimental limitations, however, 
the whole genome is never fully covered. Nevertheless, coverage tracks can be very large, 
therefore they are usually stored in binary bigWig format in order to reduce the file size. 

2.1.1 Data aggregation and filtration 

Genome-wide chromatin accessibility profiles do not directly provide quantification of the activity 
of REs. To achieve such representation, they need to be aggregated with respect to pre-defined 
catalogues of REs. First, a list of REs in the human genome is established, identifying each 
element unambiguously by specifying the chromosome number and start/end coordinates of 
the region. Such a catalogue can be conveniently stored in a BED (Browser Extensible Data) 
file. Based on this set of genomic regions, the process of aggregation can be performed by 
calculating the mean of numbers in chromatin accessibility coverage tracks over each RE (see 
figure 8 for illustration). After aggregation, every element is assigned a single numeric value, 
which expresses its overall accessibility (and therefore activity) in the examined cell sample. 

1 https://www.python.org/ [September 11 2020] 
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Genomic 
coordinates 

chr 1 chr 2 Genomic 
coordinates 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 
Chromatin 

accessibility profile 0.5 0.2 0.5 0.4 0.5 0.5 0.9 0.1 0 0.2 0.5 0.2 0.6 0.4 0.5 0.5 0.9 0.1 0 0.2 

Catalogue of REs chr 1: 1-3 chr 1:7-8 chr2: 3-8 

The activity of REs 0.4 0.5 0.5 

Figure 8: A schematic depiction of the aggregation procedure. The chromatin accessibility profile con
tains numeric values for (ideally all) genomic positions, which are identified by the chromosome 
number (e.g. ch r l , chr2) and the corresponding index in the DNA sequence. Analogically, a 
RE is defined as a range of such positions. During aggregation, each RE is assigned the 
mean of the numbers from the genome-wide profile which correspond to its range. In this toy 
example, three REs (marked with green colour) are defined within chromosomes 1 and 2. 

Defining a catalogue of REs in the human genome is not a trivial task as these sequences 
are highly dynamic and diverse and there is no single universally accepted set of REs, which 
could be used as a reference. We have therefore decided to use three publicly available sets of 
regions identified within different projects/studies to cover a broad range of complexity: 

• FANTOM5 enhancers - an atlas of approx. 65,000 active enhancers retrieved by applying 
Cap Analysis of Gene Expression on samples covering many human tissues and cell 
types [69] 

• The Ensembl Regulatory Build - a set of more than 610,000 genomic segments identified 
using machine learning and classified according to their function [70] 

• Annotated Regulatory Index - a deep reference map of DNase I hypersensitive sites from 
733 human cell samples, containing approx. 3.6 million REs [71] 

To simplify notation, these catalogues will be hereafter referred to as FANTOM5, E N S E M B L 
and INDEX references of REs, respectively. 

Before performing aggregation, (in)compatibility of reference genome assemblies had to be 
addressed. Genomic coordinates are defined with respect to a certain version of the genome 
assembly, e.g. the reference genome used to align raw sequence reads (these are produced 
directly by NGS during ATAC-seq or DNase-seq). To obtain correct results, both chromatin 
accessibility coverage tracks and lists of REs have to be transferred into the same coordinate 
system before aggregation if that is not the case by default. In practice, we encountered two 
versions of the reference human genome - GRCh37 (hg19) and GRCh38 (hg38). To create 
a homogeneous dataset, we have decided to convert all collected data with hg19 reference 
to the latest hg38 assembly. We used HftOver2 to perform this operation, which is a Linux 
command-line tool developed by the Genomics Institute of University of California Santa Cruz 

2 Available from (for 64-bit Linux system): http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/ [September 11 
2020] 
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(UCSC). After coordinate conversion, every chromatin accessibility track could be aggregated 
with respect to each of the aforementioned sets of REs. For the aggregation operation itself, 
we utilised another UCSC's command-line utility: bigWigAverageOverBed 2. 

One more technical issue emerged in connection with the aggregation procedure. As op
posed to the toy example in figure 8, not each RE has full coverage in the chromatin acces
sibility profile. In fact, for many samples, the accessibility levels corresponding to some of the 
REs are fully or partly missing. In the case when only a certain portion of the RE is covered in 
the genome-wide profile, there are two options on how to calculate the overall accessibility of 
such region. The sum of defined values from the chromatin accessibility track corresponding 
to the RE can be divided either by the full length of the region or by the number of genomic 
positions (nucleotides) covered. The results obtained in the latter case will be referred to as 
effective mean values of chromatin accessibility. As the effect of this technical difference on 
further analyses was not clear during dataset assembly, both mean and effective mean values 
were computed and kept in separate data files until unsupervised analysis was performed. 

Finally, after aggregation and before being added to the integrated chromatin accessibility 
dataset, each sample undergoes a simple "quality control" step: sample vectors containing too 
many zeros are filtered out. The rejection threshold was defined as a maximum acceptable 
percentage of zero values for a sample and was set to 90 % (see chapter 3.1.1). This filtration 
procedure is justified by the assumption that the sparsity of sample vectors is caused primarily 
by the low coverage of the corresponding genome-wide profiles and that such samples bring 
little to no information usable for downstream analyses. 

2.1.2 Metadata refinement 

Apart from the primary quantitative data (i.e. chromatin accessibility levels), high-quality an
notations were needed for individual samples. The information contained in these metadata 
are crucial for training supervised ML models as they determine what the training examples 
actually are - annotations may comprise descriptions of cell types, developmental stages, dis
eases, experimental conditions and many other attributes. However, as the chromatin acces
sibility dataset integrates data from various sources, the metadata suffered from a great level 
of inconsistency and incompleteness. To remedy this problem, a semi-automatic refinement 
procedure was developed to make the annotations more usable for automatised computational 
processing. For the sake of clarity, the terms metadata attribute and value should be carefully 
distinguished. An attribute can be perceived as a certain category of annotations (e.g. "tissue 
type"), whereas an attribute value is a concrete label assigned to a sample in this category (e.g. 
"kidney"). 

Metadata refinement was performed in several stages. First, simple adjustments of individual 
annotations were made to improve their consistency, such as setting all values to lowercase 
or replacing various equivalents of undefined entries (e.g. "unknown", "not reported" etc.) with 
a single uniform label. Subsequently, metadata attributes were refined based on their names 
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Sample tissue tissue type Sample tissue 

1 liver N/A 1 liver 

2 N/A liver, left lobe > 2 liver, left lobe 

3 N/A N/A 3 N/A 

4 brain brain, cortex 4 brain, cortex 

Figure 9: A simplified example of attribute merging during metadata refinement. Two attributes with 
similar contents - "tissue" and "tissue type" - are merged into a single attribute "tissue". For 
each sample, the new attribute acquires the defined value from one of the original attributes, if 
such value is available. If the sample has labels defined for both original attributes (sample 4 
in this figure), the more specific annotation is kept. 

or contents. This phase includes two main operations - deletion or merging of attributes. For 
example, an attribute is deleted if it contains no valid entries or has no informative value (e.g. 
various types of identifiers). Similarly, two attributes are merged if they describe the same or 
similar sample properties (e.g. "tissue" and "tissue type"). Merging thus results in the cre
ation of a single attribute (see figure 9) which summarises the information from both original 
attributes. If a value collision occurs (i.e. the sample has a label defined for both attributes to 
be merged), we keep the value from the attribute which has more unique entries, assuming that 
such attribute contains more detailed information about the sample. It is important that each 
refinement operation can be revised by the user before execution and rejected or adjusted if 
necessary. 

The second round of value refinement was implemented through user-defined substitutions 
based on utilising simple regular expressions. The substitutions are defined in a dedicated tab-
separated values (TSV) file as "pattern" / "replacement" pairs in the form of regular expressions. 
The file is then loaded during the refinement procedure and the substitutions are executed 
by looking for the patterns in individual metadata entries and replacing any matches with the 
defined character strings. In addition, more complex substitution rules may be constructed 
(taking into account for example the number of words in metadata entries) by defining separate 
Python functions. 

Finally, the attributes were refined once more by merging. This time, however, their similarity 
was assessed not according to their names but by comparing the values they contain. For 
this purpose, so-called "overlap ratios" were computed for each pair of attributes. We defined 
this metric as the ratio between the number of unique values which the two attributes have in 
common and the total number of their unique values. The attributes are then merged if their 
overlap ratio is above a chosen threshold (set to 25 % in this work). The procedure is performed 
iteratively until overlap ratios for all pairs of attributes are below the threshold. Again, the user 
can manually override any proposed change in each iteration. 
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2.1.3 Data normalisation and standardisation 

The next step in the processing of quantitative chromatin accessibility data is their normal
isation and standardisation in order to diminish the effects of technical variation. First, QN 
was performed for each sample as described in chapter 1.4.1. The construction of reference 
distribution for QN is discussed in the corresponding results section, chapter 3.1.3. QN was im
plemented using function n o r m a l i z e . q u a n t i t i e s . t a r g e t from preprocessCore 3 package 
for R 4 , which by default replaces tied value ranks with the median of respective values from the 
reference distribution (see chapter 1.4.1). For the data at hand, this behaviour may cause zero 
values in the original distribution to be replaced by non-zero numbers after normalisation. The 
unwanted offset is eliminated by subtracting the minimum from all the values in the normalised 
distribution, therefore keeping original zero entries unchanged. 

As a preparation for further analyses (in particular for training ML models), the nor
malised data were additionally standardised (see chapter 1.4.1). After this step, each fea
ture (i.e. RE) contains values with zero mean and unit standard deviation. Due to the 
large volumes of processed data, it may not always be possible to load the whole dataset 
into computer memory at once. Therefore, we implemented standardisation as an "online" 
computation - data are loaded into memory incrementally in smaller batches and parame
ters (mean and standard deviation) are updated with each processed batch. In this work, 
s k i e a r n . p r e p r o c e s s i n g , s t a n d a r d s c a i e r class of scikit-learn5 package for Python was 
utilised (with default settings), which provides incremental implementation of the algorithm intro
duced in [72]. Moreover, this implementation yields a data object which contains the computed 
parameters and which can be stored in a binary file. When new data are to be added to the 
chromatin accessibility dataset, the object can be loaded from this file and its parameters are 
updated after processing the new data. This way, re-processing of the whole dataset is avoided. 

2.1.4 Unsupervised analysis 

For the purposes of data visualisation, dimensionality reduction was employed (see chapter 
1.4.2). First, PCA was performed using the normalised and standardised data. Similarly to 
standardisation, PCA was implemented in a way which allows to load the data in batches 
of defined size (i.e. containing a certain number of samples) and to incrementally compute 
PCA loadings. After the whole dataset is processed, the loadings can be used to transform 
the original data into a new feature space of PCs (i.e. PCA scores are computed). Here, 
s k i e a r n . d e c o m p o s i t i o n . i n c r e m e n t a i P C A class from scikit-learn was utilised to achieve 
this result. We used the default parameter settings, changing only the number of retained PCs 
to 100. As the chosen PCA implementation requires that the number of extracted PCs must be 
equal or lower than the number of samples in each data batch to be processed, we were limited 

3https://www.rdocumentation.org/packages/preprocessCore/versions/1.34.0 [September 11 2020] 
4https://www.r-project.org/ [September 11 2020] 
5https://scikit-learn.org/ [September 11 2020] 
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while setting this parameter by the maximum size of data batch that could be safely loaded into 
memory (the limiting factor was the dataset for INDEX reference as it contains the most features 
and therefore the largest sample vectors). The computed PCA parameters can be stored in a 
binary file for later use in the same way as described in the previous chapter. 

P C A scores may be used not only for visualisation (by plotting chosen pairs of PCs against 
each other, usually the 1 s t and the 2 n d component) but also as an input for more complex an
alytical methods for which it would be computationally infeasible to process the original, high-
dimensional data. Indeed, obtained PCA scores were fed into other algorithms for dimension
ality reduction and visualisation - namely t-SNE and UMAP (see chapter 1.4.2). t-SNE was 
used to embed PCA scores into 2-D space, utilising s k i e a r n . m a n i f o i d . T S N E class from 
scikit-learn for implementation. The default settings from documentation were kept except for 
the perplexity parameter, which was set to 50 based on the results of empirical testing. Sim
ilarly, two-dimensional UMAP embedding was performed using U M A P class from umap-learn 6 

Python package. Here, testing was done to examine the effects of njneighbors and min_dist 
parameters on visualisation results, leading to the choice of following values: njneighbors = 15, 
min_dist = 0.5. Specifically, we wanted to achieve visible clustering of samples with individual 
clusters being as far as possible from each other to ensure good separation. 

2.2 Metadata augmentation 

Although the usability of sample metadata for computational processing was improved through 
the refinement procedure, the incompleteness of annotations still posed a severe issue. To ad
dress this problem, we developed a strategy for metadata augmentation, in which ML models 
(classifiers) are trained using known annotations and subsequently used to predict undefined 
metadata labels. Such an approach should not only improve metadata quality for further util
isation but also lead to the construction of ML models capable of distinguishing various cell 
types and characteristics based on their gene expression profiles or chromatin accessibility 
landscapes. 

2.2.1 Classifier testing and selection 

The basic strategy for metadata augmentation was to build a separate binary classifier for each 
metadata label. This approach is schematically illustrated in figure 10. The training set of 
each binary classifier comprises all the samples which have the annotations defined for the 
corresponding metadata attribute. Subsequently, the samples with a particular label (for which 
the classifier is constructed) represent the positive training examples (i.e. samples belonging 
to the class in question) and all the other training examples represent the negative class. Each 
classifier is therefore trained to recognise samples characterised by a specific annotation. 

6Available from: https://github.com/lmcinnes/umap [September 11 2020] 
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Sample Training examples for al 
metadata " t issue" classifiers 

Sample tissue 

1 liver Sample tissue 

2 N/A 1 liver 

3 N/A brain 3 N/A 4 brain 

4 brain 5 brain 

5 brain 6 heart 

6 heart 

Sample 
Class 
label 

1 1 
4 ° J 

o 1 
6 | 0 

Sample 
Class 
label 

1 ° I 
4 1 
5 1 
6 0 

Training 
examples for 

"t issue (liver)" 
classifier 

Training 
examples for 

"t issue (brain)' 
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Figure 10: This figure illustrates the strategy used to construct classifiers for metadata augmentation. For 
each metadata attribute (such as "tissue" in this example), the samples with defined labels 
(marked with green colour) constitute the training set for all the classifiers corresponding to 
that attribute. A separate binary classifier is then built for each attribute value (e.g. "liver", 
"brain" etc.) - the training samples labelled with that value represent the positive class (label 
1, marked with blue colour) and all the other training examples constitute the negative class 
(label 0, marked with red colour). 

To evaluate the performance of classifiers, stratified fc-fold cross-validation was chosen as 
the testing strategy. For each classifier, the training set is partitioned into k subsets (folds) of 
equal size (or almost equal in case the number of training examples is not the multiple of k). The 
partitioning is random with a single condition imposed - the ratio between the number of positive 
and negative training examples should be approximately equal in each fold (hence stratified 
cross-validation). Training of the model is then performed using k — 1 folds, the remaining 
fold serves as the testing set on which classification performance is assessed. The procedure 
is repeated k times with a different fold being used as the testing set in each round and the 
evaluation of performance can be averaged across all iterations. 

Various types of classifiers were tested for the purpose of metadata augmentation. From the 
category of linear models, logistic regression or S V M with linear kernel (see chapter 1.4.3) were 
implemented through scikit-learn's s k i e a r n . i i n e a r _ m o d e i . S G D C i a s s i f i e r class, which 
utilises stochastic gradient descent (SGD) for model training. Perhaps the main advantage 
of linear classifiers is their simplicity and therefore very high computational efficiency, which 
makes it possible to use them also for large data volumes. Moreover, the assessment of feature 
importance is straightforward - the models assign coefficients to individual features (in our case 
genes or REs) and these are proportional to the contribution of the features to classification 
results. 
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Figure 11: General confusion matrix summarising the results of binary classification with positive (P) 
and negative (N) class. The number of correctly classified samples is the sum of true positive 
(TP) and true negative (TN) classifications. If the predicted class does not correspond to 
the actual (real) class, it may be the case of either false positive (FP) or false negative (FN) 
classification. 

As for non-linear classifiers, S V M with RBF kernel was tested using s k i e a r n . svm. s v c 
class from scikit-learn for implementation. Due to much higher complexity of computations 
incorporated in the model, it was not feasible to apply it on the original datasets but only on 
their PCA-transformed versions, in which the number of features was reduced to 100 PCs. 
Besides, there is no possibility of directly evaluating feature importances with this model - the 
decision boundary is non-linear in the original feature space and therefore cannot be easily 
expressed as a linear combination of features (see chapter 1.4.3). 

All implemented ML models can output not only binary class labels (0 or 1) for each classified 
sample but also the probability (a number between 0 and 1) with which the sample belongs 
to the positive or negative class. This is an important feature as it enables us to continuously 
quantify the similarity between samples and classes. By tweaking threshold P(P > 0.5), we can 
also increase the reliability of predictions by accepting the sample into a certain class only if the 
probability estimate is higher than P. The effects of this probability thresholding on classification 
performance, as well as the results of testing the classifiers with various parameters and on 
different datasets, are described in chapter 3.3.1. 

Finally, an important question is how to objectively assess the performance of classifiers. For 
binary classification, the standard metrics are derived from quantities introduced in figure 11. 
A basic performance score is accuracy, which is the percentage of correctly classified samples 
from all the samples classified. Using the terms from the confusion matrix in figure 11, it can be 
calculated as 

TP + TN 
a C C U r a C V = TP + TN + FP + FN • 0 7 ) 

However, accuracy may not be very informative in case of imbalanced datasets, in which one 
of the classes is represented by much more examples than the other. In such a situation, the 
classifier may label all the samples as belonging to the dominant class, therefore showing good 
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accuracy. However, it failed to recognise those few training examples from the opposite class, 
which is usually a problem. Thus, to obtain a more complete picture of classifier performance, 
additional metrics must be employed. In this work, we have decided to use precision (also 
known as positive predictive value) and recall (also sensitivity or true positive rate), two further 
scores commonly used for classifier evaluation. They are computed as follows: 

TP 
precision TP + FP 

(18) 

recall 
TP 

TP + FN 
(19) 

Accuracy, precision and recall together provide a complex assessment of classification per
formance and can therefore be used as metrics for selection of classifiers suitable for final 
prediction of metadata labels and classification of new samples. The selection itself was per
formed by imposing conditions (thresholds) on performance scores yielded by classifier testing. 
The process of determining these conditions is described in chapter 3.3.1. 

2.2.2 Iterative training and prediction 

Metadata augmentation itself was implemented as an iterative procedure of classifier training, 
prediction, evaluation and selection. An overview of the whole process can be seen in figure 12. 
The testing and selection phase described in the previous chapter yields the list of classifiers 
accepted for the prediction of metadata labels. These classifiers are first re-trained with all 
available training examples, as opposed to the testing phase, during which only a part of the 
data was used for training (due to cross-validation). 

The unknown annotations may subsequently be predicted by presenting the corresponding 
sample vectors to the trained classifiers and computing the probabilities with which the samples 
belong to particular classes. Here, probability thresholding as described in chapter 2.2.1 takes 

Classifiers selected 
based on the testing 

results 

Re-training the 
selected classifiers 
with all available 
metadata labels 

Selecting a new set 
of classifiers based 

on performance 
scores 

Evaluating the 
performance of 

classifiers 

Testing the 
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augmented 
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Figure 12: A flowchart illustrating the iterative procedure of predicting metadata labels. 
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place - the label is assigned only to the samples for which the probability estimate is higher than 
the chosen threshold Pp (p stands for "prediction"). It may happen that for a certain sample, two 
different values of the same metadata attribute are to be assigned (for example, the sample may 
be classified as positive by both "tissue (liver)" and "tissue (brain)" classifier). In such cases, 
only one of the labels can be chosen - naturally the one with the higher probability estimate. 
Moreover, for chromatin accessibility data, there are three training sets available with the same 
sample metadata, one for each catalogue of REs. Therefore, some metadata labels may have 
multiple corresponding classifiers trained (provided they were accepted during the selection 
step). The predictions for these classes can be made more reliable by averaging the probability 
estimates from all available classifiers. 

After prediction of new annotations, the augmented metadata are used for re-evaluation of 
classifiers. The procedure is the same as described in the previous chapter - stratified fc-fold 
cross-validation is performed, followed by calculation of performance scores (accuracy, preci
sion and recall). Probability thresholding occurs also during this phase to select the samples 
which should contribute to computing the scores. However, the chosen threshold Pe (e for 
"evaluation") is practically unrelated to the prediction threshold Pp and may be selected inde
pendently. Based on the performance metrics, some of the classifiers may be rejected and then 
a new set of classifiers enters into the next iteration of training, prediction and evaluation. The 
whole process is repeated until no new metadata labels are predicted. 

All classifiers trained in the course of the described procedure are stored in the form of binary 
files so they can be later loaded and used for classification of new samples (not included in the 
training datasets). For the classifiers that were rejected during re-evaluation steps, the last 
accepted version is kept. 

2.3 Classification of new samples 

The goal of this work is to construct ML models which could provide biologically meaningful 
information about cell samples based on their gene expression or chromatin accessibility pro
files. This is achieved by using the classifiers trained during metadata augmentation to classify 
unseen samples. In this chapter, we discuss methodological measures which are necessary 
for such classification to be successful. 

Firstly, the input sample vectors must have the same structure as the training data - only then 
can they be processed in the same way. For transcriptomic data, this means that each sample 
vector has to contain expression levels for all of the genes from the reference list described in 
chapter 3.2. At the same time, each gene must be unambiguously identified by either a gene 
name according to HUGO Gene Nomenclature Committee (HGNC) or an Ensembl ID (in the 
format " E N S G " + numeric code). The expression levels for the genes that are included in the 
reference list but not in the classified sample vector are set to zero. We consider this a reason
able compromise as it can be expected that if a certain gene is not listed in a transcriptomic 
profile, it was probably not expressed in the sample. 
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For chromatin accessibility data, an input to the processing pipeline are genome-wide cov
erage tracks, preferably in bigWig format. Each such profile is then aggregated with respect 
to FANTOM5, E N S E M B L and INDEX reference of REs (see chapter 2.1.1). This ensures that 
the aggregated sample vector has chromatin accessibility levels defined for the same genomic 
regions as in the respective training datasets. Once the sample vectors are ready (either for 
gene expression or chromatin accessibility data), they are fed into the pre-processing pipeline 
consisting of QN, standardisation and PCA-transformation. The parameters of individual op
erations (i.e. the reference distribution for QN, feature means and standard deviations, PCA 
loadings) were obtained during the processing of the training data and are re-used at this point. 
Finally, the trained ML classifiers are loaded from binary files and upon being presented with 
the pre-processed sample vectors, they yield the probability with which these samples belong 
to a particular class. 

2.4 Data availability 

Source code for all implemented methods is stored on internal servers of St. Anna Children's 
Cancer Research Institute (CCRI) and in the private GitHub repository at https://github.com/ 
cancerbits. Binary files containing the trained models as well as the integrated gene expression 
and chromatin accessibility datasets (in the form of compressed text files) are stored solely on 
the CCRI servers due to their considerable size (more than 30 GB in total). The access permis
sions may be granted on an individual basis upon request sent to florian.halbritter@ccri.at. 

35 

https://github.com/
mailto:florian.halbritter@ccri.at


3 Results and Discussion 

The outcomes of procedures implemented within individual phases of the project are presented 
in this section, following a similar structure as in chapter 2. At the end of each major subsection, 
an additional chapter is included to offer discussion and interpretation of the achieved results. 

3.1 Integrated chromatin accessibility dataset 

As publicly available data from chromatin accessibility experiments are still relatively scarce 
(compared to gene expression datasets), an extensive search of suitable data sources was 
performed. The collected quantitative data were then subjected to a uniform pre-processing 
pipeline including aggregation, filtration, normalisation and feature reduction, with the effects of 
these steps being examined by appropriate visualisation techniques. Moreover, sample anno
tations were computationally collected, summarised and curated to be made usable for further 
analyses. 

3.1.1 Data collection, aggregation and filtration 

For the purposes of this work, we were looking for genome-wide chromatin accessibility tracks 
(in bigWig format) from DNase-seq or ATAC-seq experiments performed on human cells. An 
important requirement was that all the data had to be publicly accessible without any restrictions 
so that also the integrated dataset could be made available to the public upon completion. The 
collected samples originate from the following primary data sources: 

• ChlP-Atlas 1 [73] - a database of mostly ChlP-seq data acquired from large public reposi
tories and re-processed in a uniform way. For the purposes of this work, we were able to 
retrieve 1,632 DNase-seq profiles of human cells from ChlP-Atlas. 

• Encyclopedia of DNA Elements (ENCODE) 2 [8, 74] - a public repository of data from 
various molecular assays created by the E N C O D E Consortium, which aims to identify 
functional elements in the human genome. This resource yielded 994 DNase-seq and 63 
ATAC-seq samples suitable for our purposes. 

• The chromatin accessibility landscape of primary human cancers 3 [75] (for the sake of 
brevity, this source is referred to as the "Landscape" dataset in further text) - in this study, 

1 https://chip-atlas.org/ [September 11 2020] 
2https://www.encodeproject.org/ [September 11 2020] 
3Data available from: https://gdc.cancer.gov/about-data/publications/ATACseq-AWG [September 11 2020] 
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the chromatin accessibility landscape was determined for 410 tumour samples from 23 
cancer types. As technical replicates were available for most of the samples, we could 
retrieve 796 ATAC-seq profiles in total. 

• Gene Expression Omnibus (GEO) 4 [76] - arguably the largest repository of genomic data 
up to date, G E O was a reasonable place to search for the data not covered by the previous 
sources. Indeed, through the use of GEO's advanced search functionality combined with 
a manual revision of pre-selected datasets, we acquired another 981 ATAC-seq samples 
from 32 different G E O series (commonly, a series contains data from a single study or 
project). 

Due to the amount of retrieved data, it was not feasible to include a complete list of identifiers 
of downloaded samples/datasets in this work (such catalogue is available upon request, see 
chapter 2.4). Through the manual revision of sample identifiers, we also checked for duplicity 
as some samples could potentially be included in multiple data sources. Indeed, it turned out 
that the majority of DNase-seq experiments from ChlP-Atlas were contained in G E O ; there 
were also some overlaps between G E O and E N C O D E databases. All discovered duplicates 
were removed from the integrated dataset, which therefore contains 4,466 unique samples. 

As chromatin accessibility coverage tracks can have a considerable file size (commonly in the 
order of hundreds of megabytes up to several gigabytes), the collection of large batches of such 
profiles proved to be a time-consuming procedure. Moreover, the download speed for some of 
the source databases was very low, probably due to insufficient power or high occupancy of 
servers. Therefore, we implemented a parallelised framework in which multiple data files could 
be downloaded and processed simultaneously within separate computational threads. Upon 
being downloaded from an online source, each coverage track was aggregated with respect to 
FANTOM5, ENSEMBL and INDEX catalogues of REs. As described in chapter 2.1.1, version 
of the reference genome assembly had to be taken into account during aggregation as it was 
not consistent across the collected data. However, rather than converting each coverage track 
to the latest coordinate system (hg38) individually, we created two corresponding versions of 
each RE list (for hg19 and hg38 reference), which was a one-time procedure, and used for 
aggregation always the version which matched the genome reference of the particular sample. 
This approach resulted in the loss of some regions from RE catalogues (24, 2,991 and 15,335 
regions for FANTOM5, E N S E M B L and INDEX references, respectively) but, together with par
allel data download and aggregation, greatly reduced (at least 10-fold) time frame in which the 
whole integrated dataset was assembled. 

The filtration step was implemented by rejecting all sample vectors which contained more 
than 90 % of zero values. Rejection threshold was determined based on visual assessment of 
distributions of zero-value percentages across all samples. An example of such distribution (for 
FANTOM5 reference) can be seen in figure 13. It is evident that there is a considerable number 
of sample vectors with only zero values - such vectors contain no information about chromatin 

4https://www.ncbi.nlm.nih.gov/geo/ [September 11 2020] 
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Figure 13: Distribution of percentages of zero values in sample vectors after aggregation with respect to 
FANTOM5 reference. Bin size is 0.5 %. 

accessibility landscape of cells. By looking directly at the original bigWig coverage tracks of 
these samples, we found out that the main reason of such aggregation outcome was very low 
coverage of the genome-wide profiles - chromatin accessibility levels were simply not defined 
in the regions corresponding to REs. In summary, the filtration procedure resulted in rejecting 
269, 249 and 297 samples for FANTOM5, E N S E M B L and INDEX references, respectively. 

It is worth noting that through the aggregation procedure, the original data (i.e. bigWig pro
files) were "compressed" as the number of genomic regions defined in the catalogues of REs 
is in general much smaller than in genome-wide coverage tracks. Thus, hundreds of gigabytes 
of source data were aggregated into compressed text files with sizes of approx. 393 MB, 3.4 
GB and 18.4 G B for FANTOM5, E N S E M B L and INDEX references, respectively. We stored 
the data in plain text to make them both human-readable and compatible with all common data 
processing frameworks for further analyses. 

3.1.2 Metadata collection and refinement 

In addition to chromatin accessibility profiles, the corresponding sample metadata had to be re
trieved from data sources listed in the previous chapter. For samples from ChlP-Atlas, E N C O D E 
and "Landscape", this was a straightforward procedure as annotations could be downloaded 
collectively for all chosen samples in a single text, TSV or Microsoft® Excel® file. The retrieved 
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files were then manually merged into a joint metadata table, removing some uninformative or 
redundant attributes and merging attributes with identical contents in the process. 

In G E O , however, metadata are stored separately for individual G E O series (labelled by 
GSExxx accession numbers) in Simple Omnibus Format in Text (SOFT) family files. These 
structured text files contain (among others) annotations to all samples from a particular series. 
As the collected samples were scattered across multiple series, it was necessary to access 
G E O programmatically to retrieve the metadata. We utilised FTP directory structure of the 
database and developed a simple framework which, given the list of G S E accessions, auto
matically downloads the corresponding SOFT family files, parses them to extract metadata and 
adds new annotations to an already existing file. A basic curation of specific metadata attributes 
is performed at this step as well. Moreover, as most of the samples from ChlP-Atlas are stored 
also in G E O , we decided to retrieve additional annotations for these samples. To do so, we 
first had to match sample identifiers used in ChlP-Atlas with the corresponding G E O IDs, utilis
ing G E O s E-Util programs (specifically, eSearch and eSummary). Subsequently, the metadata 
could be retrieved in the same way as described above. 

The collection step resulted in creating a joint metadata table which contained 288 different 
attributes describing all 4,466 samples. However, from the total number of potential metadata 
labels only around 12 % were defined. Annotations then underwent the refinement proce
dure described in chapter 2.1.2. The first round of attribute refinement reduced the number 
of attributes to 73 and then automated curation of metadata values was performed (based on 
user-defined regular expression patterns) to improve the consistency of labels. Finally, 19 pairs 
of attributes were merged in an iterative process due to the similarity of their values, leaving the 
final number of metadata categories after refinement at 54. The threshold imposed on over
lap ratios during iterative merging was set to 25 %. Note that the refinement procedure can 
be controlled by the user at most of the steps - in this case, several manual corrections were 
necessary to avoid undesirable changes (for example, merging of some attribute pairs was pro
hibited despite the high overlap of their values - this concerned mainly attributes with numeric 
values, such as "age" and "replicate number"). 

3.1.3 Data normalisation and standardisation 

Collected chromatin accessibility profiles were quantile normalised in order to reduce technical 
variation in the data. The reference distribution for QN was computed as the mean of approxi
mately 950 DNase-seq samples from E N C O D E database (the exact number of sample vectors 
was slightly different for each set of REs due to the filtration step in which different samples 
could be rejected). We chose "read-depth normalised signals" (as named in ENCODE) to cal
culate the reference distribution because they were the results of a uniform processing pipeline 
developed by E N C O D E for DNase-seq experiments. Moreover, these samples cover a wide 
range of cell types, developmental stages, treatments etc. and therefore their mean can be 
expected to provide a good representation of a standard chromatin accessibility profile. 
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Figure 14: Reference value distributions for Q N . In figure a), the distribution is computed by simply av
eraging values of the selected samples from E N C O D E database. In figure b), individual 
sample vectors were "capped" (using the threshold indicated by a red dashed line in a)) and 
logarithmically transformed in order to reduce range and skewness of the distribution (note 
the change in the scale of x-axis). The presented data were aggregated with respect to 
FANTOM5 reference, bin size is 0.01. 

Before averaging, individual sample vectors were "capped" at threshold T, i.e. all values 
higher than this threshold were replaced by T. The purpose of this operation was to elimi
nate large values which are usually present with low frequencies and can be assumed to be 
the artefacts of experimental procedure or data processing and which could damage the av
eraged reference distribution in its upper portion. Threshold T was computed as the 99 t h per-
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centile of all values in the chosen E N C O D E samples: TFANTOM5 = 3.547, TENSEMBL = 0.997, 

TINDEX = 1.441. In addition, each value x of individual distributions was transformed by com
puting log 2 ( x + 1) to counteract skewness of the distribution and limit its range. Addition of 1 is 
necessary to handle zero values (which stay unchanged after this transformation) and to avoid 
negative values in the resulting distribution. A comparison between the reference distribution 
computed from the original values retrieved from E N C O D E and after applying the presented 
adjustments can be seen in figure 14. After QN, the data were standardised feature-wise - for 
each RE, the mean of values across all samples became 0 and standard deviation became 1. 

3.1.4 Unsupervised analysis 

The first step towards the analysis of the chromatin accessibility dataset was performing PCA 
for data aggregated with each of the lists of REs and for both mean and effective mean values of 
chromatin accessibility levels (see chapter 2.1.1). We extracted the first 100 PCs and processed 
the data in batches of 4,500, 500 and 100 samples for FANTOM5, E N S E M B L and INDEX 
references, respectively (note that for FANTOM5, the whole dataset could be transformed at 
once). By plotting the first two PCs against each other we could now visualise the data in 
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Figure 15: A comparison between the visualisation of the chromatin accessibility dataset before and af
ter QN using t -SNE. Samples are visibly grouped according to a technical attribute (source 
database in this example) before normalisation whereas such grouping is much less pro
nounced after the data were normalised. This indicates that technical variation in the dataset 
was reduced by Q N . The data were aggregated with respect to FANTOM5 reference. 
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Figure 16: A comparison between the visualisation of the chromatin accessibility dataset before and 
after Q N using t -SNE. Before Q N , the samples are visibly grouped according to a biological 
attribute (cancer type in this example). Although the size, shape and orientation of clusters 
are different after QN (which is caused partly by t -SNE itself as it is a stochastic algorithm), the 
grouping of biologically similar samples is still present. This indicates that biological variation 
in the dataset is retained. The data were aggregated with respect to FANT0M5 reference, 
note that only a subset from the whole dataset is visualised here (for the remaining samples, 
cancer type was not defined). 
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2-D space. We first wanted to examine the effect of using mean or effective mean values 
for the computations. By visually comparing the corresponding pairs of PCA plots for each 
RE reference we came to the conclusion that there is little to no difference in the overall data 
structure between the two cases. Plots that support this claim can be found in figure 23 in the 
appendix. We therefore decided to use only effective mean values for all further analyses as 
computing effective mean during aggregation does not distort chromatin accessibility levels for 
regions with low coverage. 

The next goal was to confirm that QN had the desired effect, i.e. reduced technical varia
tion in the data. To capture finer data structures, we utilised t-SNE and UMAP for visualisation 
purposes and compared the plots of embeddings of the data before and after normalisation. 
Figures 15 and 16 containing t-SNE plots demonstrate that while technical variation was suc
cessfully diminished by QN, biological differences were preserved. This is supported not only 
by the visualisations presented here but we observed similar results using a different dimen
sionality reduction technique (i.e. UMAP), each of the RE references and multiple technical and 
biological metadata attributes. It was not feasible to include all results in this work but several 
additional visualisations can be found in the appendix (figures 24 and 25). 

3.1.5 Discussion 

We assembled a comprehensive resource of chromatin accessibility data from publicly avail
able repositories. The heterogeneity that was inherently present in the created dataset was 
addressed on two levels. Firstly, sample metadata were curated by automatic, text-processing-
based operations combined with manual interventions to improve the consistency of annota
tions. Secondly, primary quantitative data (i.e. chromatin accessibility levels) were aggregated 
with respect to predefined sets of REs and made more comparable through normalisation and 
standardisation procedures. Unsupervised analysis aimed at dimensionality reduction and sub
sequent visualisation revealed that these pre-processing steps succeeded in reducing technical 
variation in the data while keeping biologically relevant features distinguishable. This is an im
portant finding which opens the way for downstream analyses performed on the dataset. 

A simple storage format (plain or compressed text files) makes it possible to process the col
lected data with practically any programming language or framework and supports re-usability 
for other purposes. Moreover, the developed pipelines for automatic data download, aggrega
tion and pre-processing allow for a straightforward extension of the dataset in case new data 
become available. Considering that no immediately re-usable chromatin accessibility dataset 
of comparable proportions currently exists, the assembled collection has sufficient quality and 
comprehensiveness to be a valuable tool for bioinformatic research. 
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3.2 Gene expression datasets 

In this chapter, the assembly of comprehensive datasets containing gene expression profiles 
generated by RNA-seq is covered briefly. The primary contribution towards this task was de
livered by Katja Nettermann, a member of the research group of Developmental Cancer Ge
nomics at CCRI . The results of her work were re-used for the purposes of this thesis. Specifi
cally, two distinct gene expression datasets were utilised: 

• Tissue and Cancer Dataset (TCD) - contains expression levels of 52,685 genes in 29,618 
human cell samples. It comprises healthy tissue samples retrieved from GTEx Portal 5 

and samples from various types of cancers, made publicly available by the Treehouse 
Childhood Cancer Initiative6. 

• Stem Cell Differentiation Dataset (SCDD) - contains expression levels of 42,653 genes in 
49,072 samples, which are mostly human stem cells in various differentiation stages. The 
data were acquired from refine.bio7, a public repository of transcriptomic data. 

As can be seen, each of the datasets contains a different set of features (genes). However, 
for the purposes of training ML classifiers, it was necessary to create a unified feature set, which 
would then have to be defined also for each new sample to be classified. This was achieved by 
determining an intersection between gene lists for TCD and SCDD. Some complications during 
the procedure arose from the fact that genes in each dataset are labelled with different types of 
identifiers. For TCD, gene names according to HGNC are used whereas in SCDD, Ensembl IDs 
are defined. The conversion between these two systems is possible but the correspondence 
is not one-to-one, i.e. multiple gene names may be assigned to a single ID or vice versa. In 
our case, among all the genes common between the two datasets, there were 19 HGNC gene 
names which had 2 different Ensembl IDs assigned. To avoid ambiguity, we decided to remove 
all these genes from the final reference gene list. This left us with 21,741 genes identified 
uniquely by both HGNC names and Ensembl IDs. It is worth noting that the majority of removed 
genes belong to classes that are of little interest for our purposes (e.g. genes encoding rRNAs 
or small regulatory RNAs) while most protein-coding genes were retained. 

Keeping only genes in the reference list, pre-processing of gene expression datasets was 
performed similarly as for the chromatin accessibility data. Sample vectors were quantile nor
malised, standardised and PCA scores were computed, keeping the first 100 PCs. The refer
ence distribution for QN was calculated as the mean of 17,382 sample vectors from GTEx Portal 
and therefore summarises gene expression profiles of cells from healthy tissues. Before aver
aging, individual sample vectors were capped (see chapter 3.1.3) at the 99 t h percentile of all 
values in GTEx samples, i.e. a t T = 11.526. However, the data had already been logarithmically 
transformed by default so this operation could be skipped. 

5https://www.gtexportal.org/ [September 11 2020] 
6https://treehousegenomics.soe.ucsc.edu/[September 11 2020] 
7https://www.refine.bio/ [September 11 2020] 
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In addition, sample metadata were curated, separately for TCD and SCDD. The refinement 
procedure was analogical to the one used for the chromatin accessibility dataset and described 
in chapter 2.1.2, with additional manual pre-selection of metadata attributes aimed primarily at 
eliminating large amounts of uninformative annotations (such as redundant identifiers, empty 
attributes, dates etc.). After refinement, 27 metadata attributes were left for TCD and 17 at
tributes for SCDD. 

3.3 Metadata augmentation 

As mentioned in chapter 3.1.2, only over 12 % of all annotations for the chromatin accessibility 
dataset were defined directly after the collection of metadata from source databases. This im
proved to 27.8 % after the refinement procedure as several very specific and therefore sparsely 
defined attributes were eliminated. For gene expression datasets, the situation was somewhat 
better with 40.3 % of defined labels for TCD and 42.8 % for SCDD as the data came from 
fewer larger sources. Such high level of incompleteness motivated us to attempt metadata 
augmentation through ML approaches. 

3.3.1 Classifier testing and selection 

We tested various types of ML classifiers using all available chromatin accessibility datasets 
(for FANTOM5, E N S E M B L and INDEX references of REs) and their PCA-transformed versions, 
trying to find optimal parameters of these models as well as a suitable probability threshold P 
(see chapter 2.2.1). We always changed a single parameter at a time when comparing the 
models so we could assess its impact on classification performance. This strategy does not 
necessarily lead to finding optimal parameters as specific combinations of settings may yield 
improved results. However, due to a considerable amount of variables that could influence 
classification, it was not feasible to exhaustively search the entire parameter space. 

Classification results were summarised per metadata attributes - for each attribute (e.g. "tis
sue"), a separate results table was generated containing the performance scores of all corre
sponding classifiers (i.e. binary classifiers for all attribute values, such as "liver" or "brain"). Due 
to the considerable extent of these tables, only an example was included in this work and can be 
found in the appendix (table 5). As fc-fold stratified cross-validation was employed as the testing 
strategy, all performance scores - accuracy, recall, precision - were calculated as the means of 
k values obtained from individual testing rounds, with range of the computed metrics being in
cluded in results tables as well. This information was further complemented by processing time 
needed to train the classifiers and generate performance scores to examine how certain ML 
models or settings influence computational demands. A classifier was constructed and tested 
for all metadata values with at least k = 5 entries available because to evaluate performance, 
both positive and negative class must be represented in each of the cross-validation folds. 
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Figure 17: Summary plots showing the comparison between the performance of two different ML clas
sifier types - logistic regression and S V M with RBF kernel - applied on the same training 
data (PCA-transformed chromatin accessibility dataset aggregated with respect to INDEX 
reference of REs) and with the same probability threshold (P = 0.9). Mean performance 
scores are plotted on the y-axes, labels of x-axes are the 10 most frequent values of "biosam-
ple_term_name" attribute (a binary classifier was constructed for each of these metadata 
labels). It can be seen that for this particular attribute, S V M yields consistently higher accu
racy and precision than logistic regression, while recall is comparable for most of the binary 
classifiers. 
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To compare classification performance between different model types, datasets and parame
ter settings, we summarised generated results tables into plots for better readability. An exam
ple of such visualisation can be seen in figure 17, where the performance of two ML models is 
compared. We assessed classifier results per individual metadata attributes (such as "biosam-
ple_term_name" in figure 17), each time plotting the scores of at most 10 binary classifiers 
corresponding to attribute values with the highest frequency. This restriction was imposed for 
the sake of readability - for attributes with many unique values (sometimes in the order of 
hundreds), it would be infeasible to include the scores of all classifiers into a single plot in a 
sensible manner. The restriction is also justified by the fact that for the majority of attributes, 
only their most frequent values are of interest for training ML models as other values do not 
have enough positive training examples available. By visually comparing accuracy, precision 
and recall of individual binary classifiers, we could decide whether a certain combination of ML 
model, chromatin accessibility dataset and specific settings provided superior results. 

For the example illustrated in figure 17, it is relatively straightforward to conclude that one set 
of classifier settings outperforms the other as it yields higher performance scores for the vast 
majority of trained classifiers. However, the situation was often much less clear - comparing a 
pair of parameter sets, it could happen that the number of classifiers with better performance 
was comparable between the two cases. Sometimes, it was even problematic to assess which 
of the two compared binary classifiers performs better, for example if one yielded higher preci
sion and the other one higher recall etc. In these situations, we turned to a more detailed way of 
classifier evaluation - confusion matrices. The structure of these matrices with the explanation 
of their contents can be found in table 1. In some cases, the confusion matrix may reveal that 
a classifier, although having poor performance scores, in fact confuses closely related classes 
and its real performance is therefore better than original assessment indicated (classifier for 
"digestive tract" in table 1b is an example of such case). Also, a "cleaner" confusion matrix 
(i.e. with mostly zero values outside the main diagonal) indicates a good separation between 
classes as confusions occur infrequently. 

Using the introduced evaluation tools, we tried to select the best-performing ML model and 
the corresponding settings, both in terms of classification quality and computational efficiency. 
Moreover, it was assessed how the choice of testing dataset influences the results. In gen
eral, we observed that for all models, the classification performance is comparable when the 
classifier is tested with different versions of the chromatin accessibility dataset (i.e. aggregated 
with respect to FANTOM5, ENSEMBL and INDEX references of REs) - each of the datasets 
is therefore suitable for further use. For linear models, it was computationally feasible to pro
cess the aggregated data directly so we could compare performance with the same classifiers 
applied on PCA-transformed data (see figure 26 in the appendix for an example of such com
parison). As there was no discernible difference in classification quality, we concluded that the 
first 100 extracted PCs cover a sufficient portion of data variation and can therefore be used for 
further analyses instead of the original data, which greatly reduces computational demands. 

As for the choice of probability threshold P, various values were tested ranging from P = 0.5 
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Table 1: Excerpts from confusion matrices generated for classifiers predicting "tissue" attribute, tested 
on PCA-transformed chromatin accessibility dataset aggregated with respect to E N S E M B L ref
erence of REs with probability threshold P = 0.9. Individual cells of the matrix contain percent
ages expressing how many of the test samples classified as belonging to a particular class (i.e. 
predicted class, stated in rows of the matrix) are labelled with individual annotations taken from 
the metadata (i.e. actual class, corresponding to the matrix columns). For example, in matrix a), 
70.63 % of samples classified as "blood" were really blood samples, 0.22 % were samples from 
colon, 0.86 % from breast etc. Therefore, percentages on the main diagonal represent preci
sions of individual classifiers, numbers in each row sum up to 100 % (not necessarily in these 
examples as the matrices are not complete). It can be seen that for logistic regression (table 
a)), there is a considerable confusion between classes with precisions of some classifiers being 
very low. On the contrary, S V M with RBF kernel is able to distinguish classes more clearly (ta
ble b)) with significant misclassifications occurring mainly for biologically similar or overlapping 
classes (notice confusion rates between "colon" and "digestive tract"). 

(a) E N S E M B L P C A , P = 0.9, logistic regression 

Percentage of all predicted 
labels [%] 

ACTUAL CLASS 
Percentage of all predicted 

labels [%] blood colon kidney breast 
kidney/ 
bile duct 

digestive 
tract 

PREDICTED 
CLASS 

blood 70.63 0.22 0 0.86 0.65 0.22 

PREDICTED 
CLASS 

colon 10.87 16.42 0 14.5 18.34 0.85 

PREDICTED 
CLASS 

kidney 14.81 1.37 17.31 0 22.32 0.46 PREDICTED 
CLASS breast 3.73 1.37 0.2 20 18.63 0.2 

PREDICTED 
CLASS 

kidney / bile duct 3.94 1.87 0.41 21.78 19.71 0.21 

PREDICTED 
CLASS 

digestive tract 3.89 17.12 0.19 18.68 16.34 8.95 

(b) E N S E M B L P C A , P = 0.9, SVM with RBF kernel 

Percentage of all predicted 
labels [%] 

ACTUAL CLASS 
Percentage of all predicted 

labels [%] blood colon kidney breast 
kidney / 
bile duct 

digestive 
tract 

PREDICTED 
CLASS 

blood 97.55 0.31 0 0 0 0.31 

PREDICTED 
CLASS 

colon 3.12 87.5 0 0 0 4.69 

PREDICTED 
CLASS 

kidney 1.03 0 93.81 0 0 0 PREDICTED 
CLASS breast 0 0 0 100 0 0 

PREDICTED 
CLASS 

kidney / bile duct 0 0 0 0 100 0 

PREDICTED 
CLASS 

digestive tract 0 53.57 0 0 0 44.05 
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(i.e. no thresholding) up to P = 0.9. Generally, a slight decrease in overall classifier per
formance was observed with decreasing threshold. This is demonstrated in figure 27 in the 
appendix for the chosen model type and metadata attribute. We arrived at the final threshold 
P = 0.8 as a compromise between improving classification performance and increasing the 
number of predicted labels (as with larger P, fewer predictions are accepted and the computed 
scores are therefore less reliable). 

In the category of linear classifiers, logistic regression ended up to be the best-performing 
model, slightly outperforming linear S V M (usually in the order of percents for individual per
formance scores). Processing time was comparable for both models, ranging usually from 
5 to 7 seconds for constructing a single binary classifier. However, applying S V M with RBF 
kernel (a non-linear model) on the PCA-transformed datasets brought an overall classification 
improvement, yielding higher performance scores for the majority of binary classifiers - across 
all attributes, more than 70 % of computed performance scores were equal or higher for the 
non-linear S V M than for logistic regression. In particular, there was an increase in prediction 
precision for most models while recall was often comparable or slightly lower. This outcome was 
further supported by manually examining the corresponding confusion matrices, which showed 
a more favourable structure for the non-linear S V M (e.g. as demonstrated in table 1). Moreover, 
computation time was slightly reduced compared to logistic regression (usually up to 1 second 
per classifier). 

Based on these results, we chose S V M with RBF kernel as the ML model best suitable for 
our purposes, despite the general shortcomings of non-linear classifiers described in chapter 
2.2.1. After further parameter optimisation, we arrived at the following configuration of the 
implemented model to be used for subsequent analyses: 

sklearn.svm.SVC(C = 1000, p r o b a b i l i t y = True, c a c h e _ s i z e = 1000, 
c l a s s _ w e i g h t = 'balanced') 

All the other settings of s k l e a r n . svm. s vc class were kept at their default values as per scikit-
learn's documentation 8, the probability threshold was set to P = 0.8 as mentioned previously. 
The key parameter of SVMs to be determined is positive constant C, which weights the regu-
larisation term of the model. In the utilised implementation, lower C corresponds to stronger 
regularisation (i.e. the model has higher bias and lower variance and is therefore less prone 
to overfitting) and vice versa. We assessed classification performance for various values of C, 
ranging from numbers nearing zero up to tens of thousands (i.e. practically no regularisation). 
We observed improvement in performance with increasing value up to approximately C = 1000, 
above which the effect on classification results was no longer discernible (besides, high C val
ues had a negative impact on computational time). Although classifier testing was performed 
only with the chromatin accessibility datasets, this configuration was re-used also for the gene 
expression data. Naturally, a more suitable set of parameters (or even a different ML model) 
could probably be found to better address the characteristics of a different data type. However, 

8Available from: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC [September 11 2020] 
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Figure 18: Distribution of the range of accuracy as yielded by 5-fold stratified cross-validation of all classi
fiers tested on the chromatin accessibility datasets. In total, there were 1611 binary classifiers 
tested using chromatin accessibility data aggregated with respect to FANTOM5, E N S E M B L 
and INDEX references of REs. Note that some of these classifiers were constructed for iden
tical metadata labels but tested with different training data. Bin size is 0.5 %. 

the limited time frame and scope of the thesis did not allow for extensive testing in case of the 
gene expression datasets. 

With the classification model established, the next step was to select binary classifiers that 
performed "sufficiently well" to be used for metadata augmentation. This was not a straight
forward task as it can be difficult to determine which classifiers are good enough for further 
use. Nonetheless, using the computed performance scores, we needed to define unambigu
ous rules based on which such selection could be made. First, we imposed thresholds on the 
range of performance scores yielded during individual cross-validation rounds. This initial step 
excludes classifiers which performed inconsistently during testing and ensures that the mean 
scores are not biased by potential outliers. To set appropriate values of thresholds for individual 
performance scores, we plotted distributions of scores' range across all tested classifiers. An 
example of such distribution for accuracy range can be seen in figure 18. Based on these visu
alisations, we could make data-driven decisions regarding the choice of filtering parameters. 

Having examined the corresponding distributions, we set rejection thresholds for the range of 
individual performance scores as follows: 
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1. accuracy: Ra = 15 % 

2. precision: i ? p = 30 % 

3. recall: Rr = 35 % 

These are maximum allowed ranges of performance scores - for a classifier to be accepted, all 
of the conditions must be satisfied. In the next filtration round, we imposed thresholds on the 
means of performance metrics as the minimum values required to accept a classifier: 

1. accuracy: Ma = 95 % 

2. precision: Mp = 90 % 

3. recall: Mr = 25 % 

Again, the thresholds were determined based on inspection of corresponding distributions of 
mean performance scores across all tested classifiers. All mean scores must be equal or higher 
than these thresholds for a classifier to be accepted. Note that the threshold for mean recall is 
much lower than for the other two metrics - this is because we can accept for our purposes a 
classifier with relatively poor recall provided it has good precision (such classifier would probably 
miss many samples that actually belong to the predicted class but it can be expected that the 
samples it detects would be classified correctly, which is preferred to making no predictions at 
all). All thresholds are identical also for the gene expression datasets except for Ra, which was 
set to 5 % for TCD and 10 % for SCDD. 

The last filtering condition is based on the composition of training sets for the classifiers. 
A classifier was rejected if the proportion of positive training examples in its training set was 
higher than P. This step is supposed to eliminate models which could be biased because of 
imbalanced training data. In such a case, classifiers tend to assign the dominant positive class 
(mostly incorrectly) to the majority of newly classified samples. Finally, for the classifiers that 
were rejected only due to low mean precision, the confusion matrices were manually checked 
to find out whether this was not caused by the confusion of similar classes. In such cases, 
the classifier could be additionally accepted. Assessment of class similarity was performed 
manually, based on the limited knowledge of biology, and therefore we accepted the classifier 
only when the relationship between confused classes was very clear. 

Summary results of the described selection procedure are given in table 2, where numbers 
of accepted and rejected classifiers (after imposing all aforementioned conditions) for individual 
training datasets are stated. Note that for most of the metadata labels it was not possible to 
test the classifier due to the low amount of training examples. Specifically, the model was not 
constructed if there were not enough samples to represent both the positive and the negative 
class in each of the 5 cross-validation folds. This happened most commonly when there were 
less than 5 samples labelled with a particular attribute value present in a dataset. 
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Table 2: The summary of classifier selection step. FANTOM5, E N S E M B L and INDEX labels refer to the 
chromatin accessibility dataset aggregated with respective catalogues of REs. Classifiers with 
insufficient amount of training examples were not tested. 

Dataset 
number of classifiers 

Dataset 
accepted rejected not tested 

FANTOM5 171 363 1849 

ENSEMBL 182 359 1867 

INDEX 175 361 1801 

TCD 150 337 222 

SCDD 73 893 1287 

3.3.2 Iterative training and prediction 

Taking the set of ML classifiers selected in the previous step, we could proceed to the pre
diction of undefined metadata labels through the iterative workflow described in chapter 2.2.2. 
The prediction was performed separately for the chromatin accessibility dataset and the two 
gene expression datasets, using the classifiers trained on the corresponding data. The results 
of metadata augmentation for the chromatin accessibility dataset are summarised in table 3. 
For each iteration, the following information is given: probability thresholds for prediction Pp 

and evaluation Pe (their meaning is explained in chapter 2.2.2), the number of newly predicted 
metadata labels, the number of value conflicts (occurring when a single sample is assigned 
more values of a particular attribute, see chapter 2.2.2), the number of classifiers rejected after 
being tested with augmented metadata and the number of remaining accepted classifiers. Note 
that while Pe is kept constant throughout all iterations, the probability threshold for prediction is 
incrementally increased to ensure convergence of the whole procedure. 

Results tables for the gene expression datasets are included in the appendix (table 6 for TCD 
and table 7 for SCDD). In total, more than 22,000 new metadata labels were predicted across 
all datasets with only a small number of conflicting predictions. 

3.3.3 Discussion 

We developed a strategy for improving the completeness of sample metadata corresponding to 
the assembled integrated datasets, utilising ML classifiers trained with existing annotations to 
predict undefined metadata entries. Based on an extensive testing phase, we identified models 
best suitable for our purposes and determined appropriate parameter settings. Using standard 
metrics for assessment of classification performance, we empirically defined rules for selecting 
best-performing classifiers to be used for prediction of annotations. The implemented iterative 
procedure of metadata augmentation helped to increase the number of newly predicted labels 
and fully exploit the potential of constructed classifiers. The cumulation of prediction errors 
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Table 3: Summary results of metadata augmentation for the chromatin accessibility dataset. For each 
version of the dataset (aggregated with FANTOM5, E N S E M B L and INDEX references of REs), 
a separate set of classifiers was tested and selected. Re-evaluation of these classifiers during 
metadata augmentation was performed separately as well and therefore in each iteration, a 
different group of classifiers could be rejected for individual dataset versions. Prediction of 
metadata labels was stopped in the 9 t h iteration as no new annotations were predicted. 

PREDICTION EVALUATION 

number 
of 

predicted 
labels 

FANTOM5 ENSEMBL INDEX 

Iteration Pe 
number 

of 
predicted 

labels 

number 
of value 
conflicts 

number of 
rejected 

classifiers 

number of 
accepted 
classifiers 

number of number of 
rejected accepted 

classifiers classifiers 

number of 
rejected 

classifiers 

number of 
accepted 
classifiers 

1 0.8 0.8 3135 8 16 153 24 158 11 163 

2 0.85 0.8 1030 0 8 144 12 145 6 157 

3 0.9 0.8 689 0 2 142 1 144 3 154 

4 0.95 0.8 391 0 1 141 1 142 3 151 

5 0.96 0.8 279 0 1 140 2 140 2 149 

6 0.97 0.8 229 0 2 138 3 137 1 148 

7 0.98 0.8 149 0 0 138 0 137 1 147 

8 0.99 0.8 46 0 0 138 1 136 1 146 

9 1 0.8 0 0 / / / / / / 
TOTAL / / 5948 8 30 / 44 / 28 / 

during the procedure was counteracted by increasing reliability of predictions in each itera
tion. Moreover, the developed method is a generally applicable strategy for improving quality of 
metadata needed for any supervised ML approach. 

Apart from enhancing the quality of annotations, a valuable outcome of metadata augmen
tation step are the trained ML models. These were stored (in separate binary files) to be later 
used for classification of new samples. In the next chapter, it will be discussed how they can be 
exploited to capture biologically relevant information and aid interpretation of cryptic biomedical 
datasets. 
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3.4 Classification of new samples 

In the final phase of the project, we used ML models trained during metadata augmentation to 
classify cell samples that were not included in the training data. We collected several datasets 
of gene expression and chromatin accessibility profiles to which the classifiers were applied. An 
overview of these testing datasets is given in table 4. It can be seen that the data comprise bulk 
and single-cell RNA-seq and single-cell ATAC-seq experiments from various studies, from both 
publicly available sources and internal data generated at CCRI . To comprehensively validate 
the classifiers, we tried to cover in these datasets a variety of cell types in terms of biological 
properties, such as tissue, disease or developmental stage. 

Since it would be out of the scope of this work to comprehensively describe classification 
results achieved for each of the testing datasets, in the following sections only representative 
examples are introduced to demonstrate the validity of our approach. The most straightfor-

Table 4: An overview of testing datasets on which the trained ML classifiers were applied. C O P D = 
Chronic Obstructive Pulmonary Disease, BCP-ALL = B Cell Precursor Acute Lymphoblastic 
Leukemia, M N C = Mono-Nuclear Cell , LCH = Langerhans Cell Histiocytosis. 

GENE 
EXPRESSION 

bulk 
RNA-seq 

public 
source 

Fagerberg et al. 
(2014) [77] 

samples from 27 different 
tissues of healthy donors 

GENE 
EXPRESSION 

bulk 
RNA-seq 

public 
source 

Kim et al. 
(2015) [78] 

lung tissue from C O P D 
subjects and healthy controls 

GENE 
EXPRESSION 

bulk 
RNA-seq 

public 
source 

Varley et al. 
(2014) [79] 

breast cancer cell lines and 
primary tumours 

GENE 
EXPRESSION 

bulk 
RNA-seq 

CCRI 

Střehl lab 
leukemic cells from various 

types of BCP-ALL 

GENE 
EXPRESSION 

bulk 
RNA-seq 

CCRI Taschner-
Mandl 

lab 

sorted neuroblastoma cells, 
bone marrow infiltrates, MNCs 

and healthy controls 

GENE 
EXPRESSION 

single-cell 
RNA-seq 

public 
source 

Hay, Ferch en et 

al. (2018) [80] 
bone marrow samples from 

the Human Cell Atlas 

GENE 
EXPRESSION 

single-cell 
RNA-seq 

public 
source 

Pellin et al. 

(2019) [81] 
human hematopoietic 

progenitors 

GENE 
EXPRESSION 

single-cell 
RNA-seq 

public 
source 

Olsen et al. 
(2020) [82] 

neuroblastoma biopsies 

GENE 
EXPRESSION 

single-cell 
RNA-seq 

CCRI Hutter lab LCH biopsies 

CHROMATIN 
ACCESSIBILITY 

single-cell 
ATAC-seq 

public 
source 

Sathpaty et al. 
(2019) [83] 

peripheral blood and bone 
marrow cells of healthy donors 

and a carcinoma patient 
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ML classifiers (n = 223) 

Figure 19: A visualisation of classification results for bulk RNA-seq data of healthy tissue samples from 
[77]. Columns of the heatmap represent the applied ML classifiers (i.e. the classes for which 
classification of samples was performed), rows correspond to individual cell samples, grouped 
by tissue type (each horizontal lane of the heatmap, delimited by empty rows, contains sam
ples from the same tissue) and colour coding reflects the computed probability estimates. 
The labels of samples and classifiers were not included here for better readability. Note that 
some classifiers produce high estimates across most of the samples (regardless of tissue 
type) whereas others yield high probabilities only for a particular sample group. As shown 
later, these patterns reflect biologically relevant information. 

ward way to v isual ise the outcomes of the classif icat ion procedure is through a heatmap. A n 

example of such visual isat ion for bulk R N A - s e q dataset compr is ing cell samp les from various 

healthy t issues (data from [77]) can be s e e n in figure 19. Genera l patterns that we observed in 

the heatmap indicated that the classi f iers captured biologically relevant information which was 

available for the samp les (i.e. t issue type in this case) . However, to validate this c la im, we 

needed to examine the classi f icat ion results in more detail . 

In figure 20, a detai led excerpt taken from the previous heatmap is shown. It se rves as a 

demonstrat ion that individual M L models we trained produce meaningful ou tcomes when com

pared to the limited amount of metadata available for the testing datasets. Moreover, these 

results provide a validation that the constructed classi f iers are able to restore biologically rel

evant information not only in the training data but a lso in unseen samp les - the models show 

good general isat ion ability. 

Moreover, the performed classi f icat ion may be perceived as a mapping of the original feature 

space (with features being genes for gene express ion data and R E s for chromatin accessibi l i ty 

data) to a new domain , in which each feature cor responds to a particular predicted c lass and 

the probability est imates are new feature va lues. Hereafter, we will refer to this domain as the 

"functional s p a c e " as it helps us descr ibe cell samp les in comprehens ib le biological terms. Im

portantly, we can v isual ise datasets in the "functional s p a c e " similarly as in the original domain , 

i.e. using already establ ished techniques such as t - S N E or U M A R 
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skin_6a_runl 
skin_6a_run2 
skin_5f_runl 
skin_5f_run2 
skin_5e_runl 
skin 5e run2 

Figure 20: An excerpt from the heatmap in figure 19 showing probability estimates computed for a group 
of 6 skin samples. It can be seen that higher probabilities are given by the classifiers related 
to skin cells - either directly predicting tissue type (e.g. "tissue_or_organ_of_origin (skin)") 
or a disease ("diagnosis (squamous cell carcinoma)"). Note that there are 3 different biolog
ical samples in the heatmap, each with 2 technical replicates ("run1" and "run2"). For the 
first and the last biological sample, the probability estimates are practically identical for the 
corresponding technical replicates, as would be expected. The second replicate of sample 
"skin_5f", however, is not detected by the relevant classifiers and has different probabilities 
computed than the first replicate - this may be indicative of a low-quality or damaged sample 
(however, we do not have the necessary metadata available to support this hypothesis). 

First, we wanted to validate that the col lect ion of trained M L classi f iers recapitulates biolog

ical dif ferences between samp les in the training data. Therefore, we transformed probability 

est imates calculated for the training datasets into 2-dimensional s p a c e using t - S N E and plot

ted the obtained embedd ings - the results of this procedure for one of the gene express ion 

training datasets are presented in figure 21. The clustering of samp les visible in the plots corre

sponds to their labell ing based on biological metadata attributes, which supports our hypothesis 

that biologically relevant information in the training data is restored by the trained classi f icat ion 

models. 

The next step was to create similar v isual isat ions for the testing datasets. With these, the 

interpretation and assessmen t of classif icat ion results may be more compl icated as the data 

are not wel l -character ised (from a biological perspective) and the amount of corresponding 

metadata is limited. Single-cel l datasets are particularly chal lenging in this respect - samp les 

are extracted from heterogeneous t issues and therefore the type and function of individual cel ls 
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t S N E _ l t S N E _ l 

(a) Grouping attribute: "tissue or organ of origin" (b) Grouping attribute: "disease" 

Figure 21: A visualisation of Tissue and Cancer Dataset in the "functional space" using t-SNE. The sam
ples are colour-coded according to two different biological attributes - tissue (figure a)) and 
disease (figure b)). The labels of individual groups were not included due to their considerable 
amount and because they are not necessary to demonstrate that biological differences were 
restored in the "functional space" as can be deduced from the visible clustering of identically 
labelled samples. 

are usually unknown. Here, we decided to present results for the single-cell RNA-seq dataset 
from [82], which contains gene expression profiles of more than 60,000 cells from 17 different 
neuroblastoma biopsies. Figure 22 contains UMAP plots which show how these cells cluster 
based on their single-cell gene expression profiles and how the clustering is restored (at least 
partially) in the "functional space". 

3.4.1 Discussion 

We applied ML models constructed during augmentation of metadata for the training gene 
expression and chromatin accessibility datasets to classify new samples which were not used 
in the training phase. Before this classification could be performed, several technical issues 
had to be addressed concerning the format of input data - we needed to achieve identical 
structure and apply the same pre-processing steps as for the training datasets (see chapter 
2.3). Subsequently, we could proceed to classify samples from a varied collection of testing 
datasets gathered from publicly available and internal sources. 

Through visualisation, we demonstrated that the set of trained ML classifiers can recapitulate 
the overall data structure in both training and testing datasets. In particular, biologically relevant 
information was captured by the models which is of utmost importance if these are to be used 
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UMAP 1 UMAP_1 

"gene expression space" "functional space" 

• "B_ce l l " • "Monocy te" • "Smooth_muscle_cel ls" 

• "Endothel ia l_cel ls" • "NK_cel l " • "T_cel ls" 

• "Hepatocy tes" • "Neurons" • "Tissue_stem_cel ls" 

Figure 22: A comparison between U M A P visualisation of the single-cell RNA-seq dataset from [82] in 
the original (gene expression) domain and in the "functional space". Note that the sample 
labels are not real annotations (as such metadata were not available) but predicted cell types 
generated in a previous analysis conducted at CCRI , based on the clustering of cells accord
ing to their RNA-seq profiles. It can be seen that this clustering is to some extent restored in 
the "functional space" as well. However, to aid further interpretation of such data, there would 
need to be a better separation of sample groups visible. 

for providing interpretations of poorly annotated data. By carefully examining the outputs of 
individual classifiers and comparing them with metadata available for the testing datasets, we 
verified that the majority of trained models produce meaningful predictions and are therefore 
able to generalise patterns learned from the training data. 

The reliability of predictions for single-cell data, however, was less convincing. Most of the 
classifiers yielded very low probability estimates for the majority of classified profiles, showing 
also a systematic bias towards the prediction of certain classes (i.e. some models produced 
consistently high probabilities for practically all single-cell samples across different datasets). 
See figure 28 in the appendix for the example of visualisations that support this finding. In 
a way, such an outcome is not surprising considering that exclusively bulk data were used 
for the training of classifiers. Single-cell profiles are commonly very sparse (they contain zero 
values for most genes and other genomic regions) and therefore it can be expected that models 
trained on bulk data are not able to distinguish single-cell samples well based on relatively subtle 
changes of gene expression/chromatin accessibility between individual cells. 
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Finally, the extent of biological insight provided by the classifiers is limited by the contents 
of annotations for the training data. This is a property inherent to the supervised approach we 
employed - the models can predict only those classes that are defined in the metadata (and 
have enough training examples to represent them). Metadata quality is in turn determined by 
the submission requirements of individual data sources, which are in general very inconsistent. 
Although we attempted to address this issue (through the developed refinement and augmen
tation procedures), more work will need to be invested into improving the informational value 
of sample annotations beyond descriptive biological properties, for example through exploiting 
ontologies of biomedical terms (see chapter 4). 
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4 Conclusion 

In this work, we aimed to exploit well-characterised public data yielded by transcriptomic and 
epigenomic assays to aid interpretation of newly generated datasets in comprehensible biolog
ical terms. To do so, we first assembled an integrated resource of chromatin accessibility data 
from publicly available sources, collecting results of DNase-seq and ATAC-seq experiments per
formed on human cells. To this end, we developed an automated framework for parallel down
loading and aggregation of genome-wide chromatin accessibility profiles. Through aggregation, 
we achieved that chromatin accessibility was evaluated for the same set of genomic regions in 
all collected samples - this unification was necessary for further computational processing and 
also significantly reduced volume of the original data. 

To diminish technical variation inherently present in the chromatin accessibility dataset due to 
heterogeneity of the collected samples, we employed normalisation and standardisation meth
ods commonly used for processing of genomic data. By doing so, we were able to make quan
titative data more comparable and therefore suitable for downstream analyses. The desired 
effect of these pre-processing steps was verified by numerous visualisations of the dataset, 
enabled by advanced dimensionality reduction techniques. 

Apart from primary quantitative data, we programmatically collected and unified the annota
tions corresponding to the gathered cell samples. We again faced the problem of heterogeneity 
in the metadata, which we addressed by developing a semi-automated procedure for the refine
ment of annotations. Using mainly text processing, we were able to improve the consistency 
of metadata to make them more usable for computational analysis. Storing all the collected 
data in standard, easily accessible formats and creating a framework for straightforward addi
tion of new data, we aimed to support re-usability of the dataset. Such resource has therefore 
potential to be exploited not only for the purposes of this work but also for further bioinformatic 
studies, considering increasing popularity and importance of assaying chromatin accessibility 
in molecular biology research. 

As the sample metadata were still vastly incomplete after collection and refinement, we devel
oped an augmentation strategy in which we used supervised ML classifiers trained on existing 
annotations to predict undefined metadata labels. Based on extensive testing, we identified 
models and parameter settings suitable for this purpose. Subsequently, standard performance 
metrics were utilised to assess classification quality and choose the best-performing models 
for metadata augmentation. This approach was applied also on gene expression datasets of 
RNA-seq profiles, assembled previously within a different research project at CCRI . Although 
the number of added annotations was relatively low compared to the total amount of undefined 
metadata entries, we argue that the informational value of metadata was improved by predicting 
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biologically relevant labels. 
In the last phase of the project, trained ML models constructed during metadata augmen

tation were utilised to classify new, poorly annotated samples from RNA-seq and ATAC-seq 
experiments. Using these testing datasets, we verified the generalisation ability of classifiers 
- they were able to extract biologically relevant information from the training data and transfer 
the learnt patterns during the classification of unseen samples. While the models performed 
reasonably well for bulk transcriptomic data, the reliability of results for single-cell samples will 
have to be further investigated. As the training data consisted of exclusively bulk samples, it is 
also possible that the classifiers are not at all suitable for processing single-cell profiles. More
over, the choice of analytical methods and the corresponding parameters was conditioned by 
optimising performance on the specific collection of training data - more suitable settings could 
probably be found for the classification of each newly analysed dataset. 

Novel biological insight brought by the classification procedure, which could aid the interpre
tation of cryptic biomedical datasets, is currently limited by the contents of sample annotations 
available for the training data. Therefore, the classifiers presented in this work are able to pre
dict mostly descriptive biological attributes (such as tissue or disease types), which are usually 
known for the examined samples. One way to overcome this limitation would be to turn to an 
unsupervised ML approach, which does not rely on the labelling of training examples but rather 
extracts structures inherently present in the processed dataset. Subsequently, further analyses 
would have to be performed to match such patterns to biologically meaningful interpretations 
(e.g. through examining the expression of genes or the activity of REs associated with certain 
cellular processes or regulatory pathways). 

Another possible direction for future work is further enrichment of metadata with more intri
cate information, for example by using publicly available ontologies which associate standard
ised biomedical terms with various regulatory pathways or the expression of certain genes. 
If the contents of annotations were enhanced in such a way, our supervised strategy could 
yield more informative results. Taken together, this thesis provides evidence that the devel
oped approach is able to transfer knowledge hidden in large collections of public data to poorly 
characterised datasets. Therefore, we believe that, with additional work, it holds promise in 
helping to understand complex data produced during transcriptomic and epigenomic studies, 
particularly in the area of cancer research. 
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A Appendix: Supplementary figures 

1. PC (77.33 % variance explained) l . pc (76.77 % variance explained) 

(c) ENSEMBL, mean values (d) ENSEMBL, effective mean values 

Figure 23: Plots of the PCA-transformed chromatin accessibility dataset - each figure shows the second 
P C plotted against the first one. Figures in the upper row represent data aggregated with re
spect to FANTOM5 reference - in figure a), mean values were computed during aggregation, 
effective mean values were used for figure b). As can be seen, there are very little changes in 
the overall data structure as well as in the variance explained by P C s between the two cases. 
A similar conclusion can be drawn for data aggregated with E N S E M B L reference (figures c) 
and d)) and INDEX reference (plots for INDEX were not included for the sake of brevity). 
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Before normal isa t ion Af ter normal isa t ion 

Figure 24: A comparison between visualisation of the chromatin accessibility dataset before and after 
QN using UMAP. Q N normalisation reduced the clustering of samples according to a technical 
parameter - assay used to measure chromatin accessibility. The data were aggregated with 
respect to E N S E M B L reference. 
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Figure 25: A comparison between visualisation of the chromatin accessibility dataset before and after 
QN using UMAP. The clustering of samples according to their biological similarity - cancer 
type - remains visible after normalisation. The data were aggregated with respect to IN
DEX reference, only a subset of the whole dataset (for which cancer type was defined) is 
visualised. 
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Figure 26: Summary plots showing the comparison between performance of logistic regression classi
fier applied on the aggregated and PCA-transformed chromatin accessibility dataset with the 
uniform probability threshold P = 0.9. The data were aggregated with respect to E N S E M B L 
reference of REs, the first 100 PCs were extracted during P C A . Mean performance scores 
are plotted on the y-axes, labels of x-axes are the 10 most frequent values of "tissue" at
tribute. It can be seen that the performance of linear classifiers is comparable when applied 
to the original and PCA-transformed data (i.e. neither of the classifiers outperforms the other 
consistently). Similar results were obtained also for other metadata attributes. 
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Figure 27: Summary plots showing the comparison between performance of S V M s with RBF kernel 
applied on the PCA-transformed chromatin accessibility dataset aggregated with respect to 
INDEX reference of REs with different values of probability threshold P used. Mean perfor
mance scores are plotted on the y-axes, labels of x-axes are the 10 most frequent values of 
"tissue" attribute. It can be seen that with increasing threshold P, there is an improvement in 
accuracy and precision for the majority of classifiers while recall is mostly comparable. 
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(a) Class: "tissue or organ of origin (colon)" 

1 1 1 1 0.0 
U M A P l 

(b) Class: "refinebio cell line (hues2)" 

Figure 28: Visualisation of classification results for single-cell RNA-seq data from [80]. U M A P embed-
dings of gene expression profiles are colour-coded according to the probability estimates 
assigned to each sample by a particular classifier. In a), classification results for "tissue or 
organ of origin (colon)" classifier are shown. Note that all samples were assigned very low 
probabilities - a similar situation was observed for most other classifiers as well. On the 
contrary, certain models yielded high probability estimates for some of the samples. In b), 
outputs of one of such classifiers ("refinebio cell line (hues2)") are visualised. To a certain 
extent, classification results correspond to the clustering of samples in U M A P coordinates. 
However, similar patterns were observed for this particular classifier also when applied to 
other (unrelated) datasets - it is therefore probable that the classifier does not produce reli
able predictions. 
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B Appendix: Supplementary tables 

Table 5: An example of the results table from the testing of ML classifiers. A similar table was created 
for each metadata attribute, the presented results are for the attribute "disease". Each attribute 
value corresponds to a single binary classifier whose performance was evaluated. As the testing 
was performed through fc-fold cross validation (here, k = 5), performance scores were averaged 
across all testing rounds with the mean and range of the values stated in the table. Apart from 
classification performance, computational times for model training (fitting) and evaluation are 
given. Note that if there were less than k positive training examples available for a metadata 
value, the classifier was not constructed and the testing could not be performed. 
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Table 6: Summary results of metadata augmentation for Tissue and Cancer Dataset. 

PREDICTION EVALUATION 

Iteration PP Pe 
number of number of number of number of 

r predicted value rejected accepted 
labels conflicts classifiers classifiers 

1 0.9 0.8 2951 5 15 135 

2 0.92 0.8 2220 0 3 132 

3 0.94 0.8 266 0 0 132 

4 0.95 0.8 325 0 1 131 

5 0.96 0.8 389 0 0 131 

6 0.97 0.8 209 0 0 131 

7 0.98 0.8 64 0 0 131 

8 0.99 0.8 0 0 / / 

TOTAL / / 6424 5 19 / 

Table 7: Summary results of metadata augmentation for Stem Cell Differentiation Dataset. 

Iteration PP 
Pe 

PREDICTION EVALUATION 

Iteration PP 
Pe 

number of 
predicted 

labels 

number of 
value 

conflicts 

number of 
rejected 

classifiers 

number of 
accepted 
classifiers 

1 0.8 0.8 2854 5 12 61 
2 0.85 0.8 2186 0 4 57 

3 0.9 0.8 1627 0 0 57 

4 0.95 0.8 1120 0 0 57 

5 0.96 0.8 841 0 0 57 

6 0.97 0.8 844 0 1 56 

7 0.98 0.8 669 0 3 53 
8 0.99 0.8 21 0 0 53 

9 1 0.8 0 0 / / 
TOTAL / / 10162 5 20 / 
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