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Abstrakt

Jednou z moznosti korekce sférické vady v elektronové mikroskopii je hexapoélovy korektor.
Ackoliv samotny princip korekce je pomérné dobie v literature popsan, jen relativné malo
je vénovano samotnému setizeni hexapodlového korektoru, jez je stézejni pro spravnou
funkcnost. Préce je vénovana analytickému rozboru vad sefizeni a jejich vlivu na rozliseni
roli v parazitickych aberaci hraji vychylky a ndklon hexapdli. V zavéru je pak popsano,
jakym zpusobem je tfeba hexapdlovy korektor seridit pro odstranéni parazitickych vad.

Klicova slova
Elektronova mikroskopie, Aberace, Hexapdlovy korektor

Summary

One of the option of spherical aberration correction in electron microscopy is the hexapole
corrector. Although the principle of the corrector is described in literature quite elabo-
rately the adjustment of the corrector, which is crucial for its functionality, is studied
just briefly. The thesis is dedicated to the analytic analysis of parasitic aberrations and
its influence on resolution of an image by the Eikonal method and aberration integrals.
It is shown that off-axial shifts and tilts play the major role in parasitic aberrations. In
the end the procedure of adjustment of the hexapole corrector for elimination of parasitic
aberrations is described.
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Introduction

This year, 2017, Samsung started a 10 nm technology of a semiconductor manufacturing
process. This is about 100 times an atom. The requirement to have atomic resolution
is therefore highly needed and not just in semiconductor industry. With high resolution
techniques we can understand nature more deeply. Thanks to our ability to observe more
precisely the matter, we can design new materials with higher strength, durability, lighter,
more flexible. We can create new promising drugs, we have more efficient way of produc-
ing energy.

There are several techniques to measure atoms but not as versatile as electron mi-
croscopy. To achieve atomic resolution in the electron microscope one way is to increase
the energy of the accelerated electrons to shorten their wavelength. This approach was
often used in the past and 1 MV microscopes were built. That, however, is quite im-
practical because such a microscope needs a special room and is very expensive, but,
above all, it creates radiation damage thus a broad spectrum of materials, such as organic
materials, cannot be analysed. The current tendency is quite opposite — to use a low
voltage microscope to increase interactions with electronic structure. To achieve atomic
resolution at 100 keV and even lower it is necessary to use correctors.

In light optics we can deal with aberrations and dispersion by using different materials
of lenses with an adequate dispersion relation and optical properties. In electron optics it
is not the way how to do it. Any electromagnetic rotational symmetric lens is converging
thus we cannot eliminate chromatic aberration by just a combination of those. Further-
more, since 1936 it has been known that spherical aberration of a rotational symmetric
lens is always positive (derived by O. Scherzer 7). The way to obtain negative spheri-
cal aberration and to correct chromatic aberration is either an electron mirror, which is
used in Low-energy electron microscopy ¥, or multipoles!®. To reach atomic resolution
we have first to deal with the spherical aberration. The chromatic aberration becomes
mainly dominant if the energy of the electron is in the order of tens of electron volts. The
common strategy of dealing with a polychromatic beam is to use a monochromator ' or
a corrector of chromatic aberration/?. The chromatic aberration corrector has the advan-
tage that a higher electron current can be used, which is especially useful, for example in
Energy-dispersive X-ray spectroscopy. On the other hand the use of a monochromator is
more adequate when we do high resolution spectroscopy measurements. Monochromators
are presently used more often because they are cheaper and easier to construct.

The first attempt on an electrostatic multipole corrector of spherical aberration was
made by R. Seeliger in 1951 based on the proposition of O. Scherzer. The design consisted
of a combination of octupoles, stigmators and electrostatic cylinders. It was experimen-
tally proved that negative spherical aberration can be achieved but at that time the cor-
rector did not improve resolution. It was mainly because of instabilities of the mechanical
parts. Later it was found that resolution of a microscope is determined by two factors
— coherent aberrations caused by misalignments together with mechanical imperfections
of lenses and incoherent effects of electromagnetic noise with vibrations (and nowadays a
thermal noise of the used magnetic materialsi?”!). Throughout the next forty years multi-
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ple attempts of building correctors were made but all were destined to a failure because of
technological difficulties. In 1988 a group of experts declared at a meeting in the United
States that the successful realization of aberration correction was unthinkablel!3,

It must be said that all of the previous designs of correctors were based on some
combination of quadrupole and octupole fields. A hexapole field produces in the first
approximation three-fold astigmatism thus at the beginning it was not considered for
correction of spherical aberration. In the second approximation the hexapole field has
the same aberration coefficients as the radial symmetric field. If we manage to cancel
the three-fold astigmatism we can use it as a corrector of spherical aberration. Such a
concept was first studied by H. Rose in 1981 [ It is the same design as is studied in
this thesis — consists of two hexapoles with a lens doublet in-between. After 1990 M.
Haider noticed that a hexapole corrector requires less stability tolerances than previous
quadrupole/octupole correctors and together with H. Rose they built one. In 1995 it was
demonstrated that the corrector works satisfactorily but the problem was with residual
aberrations due to misalignments®. It was later solved by using a computer aid to au-
tomatically calculate these aberration coefficients and to minimize them. In 1998 the
reduction of the point resolution from 0.24 nm to 0.14 nm was finally reached by the
hexapole corrector of spherical aberration!®.

In 1996 an idea of the quadrupole/octupole corrector was revived by Ondrej L. Krivanek!?.
Nowadays there are two main manufacturers of the correctors — CEOS founded by J. Zach
and M. Haider with its hexapole corrector and the Nion company of O.L Krivanek with
its quadrupole/octupole corrector. The CEOS-like corrector was also adopted by JEOL
and FEL

The topic of this thesis is on the residual aberrations. It brings an analytical study
of aberration coefficients which gives a deep insight to the origin of parasitic aberrations
and what is the best solution how to eliminate them.



1. Multipole Expansion of Field

We start with a theoretical background. At first we derive the multipole expansion of
an electrostatic and magnetostatic field in vacuum. The multipole expansion is derived
along an optical axis in the tangential plane and provide an useful form of the field which
can be used for simplified calculation.

1.1 Maxwell’s Equations

We start with the Maxwell’s equations in vacuum:

V-B = VxE+28 =

0
V-E = % VXB—NOEO%—f = foJ

Now we assume that any charge and current is not present in the investigated area.* We
also assume that the fields are static thus they are not functions of time. Using these

assumptions we get:
V-B=0 VxFE=0
V-E=0 VxB=0

We can solve the second pair of equations by introducing an electric potential & and a
magnetic potential W such that:

E=-Vo (1.1)
B=-VW

We can find the solutions of the potentials by solving Laplace equations:

A® =0 (1.2)
AW =0

1.2 Vector Potential
We also need a magnetic vector potential which is defined as:
B=VxA (1.3)
Let us derive its link to the magnetostatic potential W. We compare 1.3 with 1.1:
VxA=-VW (1.4)

The vector potential is not fully determined by this equation. In fact we can choose one
of its component freely. We chose it in a way such as the A, component (it does not

*That assumption is not correct because we are dealing with an electron beam which consists of more
than one electron. But if the beam current is low than we can use the assumption.
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matter which one due to the symmetry) is equal to the function f(z,y, z). Then we can
evaluate z and y component of A from the first two equations 1.4:

A, = / (—%—V; + g—D dz + g(x,y) (1.5)

ow 0
Ay:/(%—{—a—;) dz + h(z,y)

Where ¢,h are any functions of z and y. Now we put these components to the last

equation:
04, 0A, ow

_ - _ 1.6
Ox dy 0z (16)
We obtain:
PwW 0w 092 0? oh 0 ow
/ (OW L OF OS Ng,  Oh O9_ OW (1.7)
ox? oy?  Oydxr  0Oxdy ox Oy 0z
If f is a smooth function and % — g—Z = 0 (it is natural to choose g =0, h = 0) we get:
Pw  0*W ow
= —— 1.8
/(8x2+8y2>dz 0z (18)
And differentiating with respect to z:
oW oW 9*W
+ + =0 (1.9)

0x? oy? 0722

Which is the required Laplace equation of W. In this text I will choose A, = 0 . Then
x, y-components are calculated from W by:

A, = / (—%—V;) dz (1.10)

1.3 Solution of Laplace Equation

We now derive the solution of the Laplace equation:
A® =0 (1.11)
in the form of power series. In cylindrical coordinates it looks like:

or2  ror r?00? 0722
We find the solution in the form:

—=0 (1.12)

b = R(r,2)S(0) (1.13)

TP. W. Hawkes¥ uses A, = W instead
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Putting it into 1.12, dividing by R, S and multiplying by r? we get:

rOR roR rO°R_ 5"
RO?2 ROr RO2 S

(1.14)

Because R is only a function of r,z and S is only a function of # the both sides of the
equation have to be equal to a constant. At first we solve the equation:

S//

—5 = A (1.15)

S has to be 2m-periodic thus A is equal to a positive number. Further more the solution
looks like:

S = e (1.16)

where k is an integer (due to 27w-periodicity). \ is thus equal to k2.
Let us find the solution of the function R(r, z). We are looking for the solution in the
form of power series:

e e}

R(r,z) = Z g (2)r" e (1.17)

n=0

Where s is an integer. The sum starts from zero because we require finiteness of the
solution on the optical axis. By putting the power of series into the equation 1.14:

,O’R OR 0’R
82+7‘8—+7’W—k2R:0 (1.18)

We get:

Za"k (n+s)(n+s— "+S+Zank (n 4 s)r"*s + (1.19)
+ Z g (2) P52 Z an ik (2)K* "5 =0
n=0 n=0

We shift the index of the third sum and simplify it:
aoi(s” — B +ayy, (14 8°) — k) r*tt + (1.20)
+Z [ans (R +5)° = K) +al_y, ] "™ =0
To fulfil the equation for all r each coefficient of different power of r has to be equal to

Zero:

aor(s* — k) = 0 (1.21)
arp ((1+ %) — k)
ang (R +38)> — k) +all_ o = 0 for n>2

|
o
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From the first equation we get s = |k| t. Thus a1 is zero and also all coefficients with
odd n because we can get the recursive formula for n > 2:

"

’ n(n + 2|k|)
The recursive formula can be also rewritten to the explicit form (n is replaced by 2n):
2n)
(=1)"agy |k

Pnitn )] (123)

Qon, |k =

Bringing it all together we get the final multipole expansion of the electrostatics potential
d:

— |k|' (2n) 2n+|k| ik
Z; Z 22"71' (et ] 1Op(2)r e (1.24)

Where ag, was replaced by ¢;. Similarly, the multipole expansion of the magnetic po-
tential W is:

o |k|' (2n) 2n+|k| ik
— n ! 1.25
W32 3 s 12

1.4 Potential in Different Coordinates

Potentials in formula 1.24 and 1.25 are in cylindrical coordinates. Since 6 is not defined
on the optical axis it is better to use different coordinate system. The best option, due
to the potential term, seems to be the 'circular polarization’ coordinates (z,w, w), where
transition between cylindrical and circular polarization coordinates is defined by:

z = z (1.26)
w = re?
w = re ¥

We notice that ¢, and ¢_j are complex conjugates (due to the real potential). The
potential than looks like:

0= 3% s w0 (et + 6 ) (127

n=0 k=0

Where ¢, are the same as in the formula 1.24 with only exception of ¢ which is only half
of the ¢ from the original 1.24. The formula of the magnetic potential is similar:

W =33 o I k4 g ) (1.28)

#We can also solve that by s = —|k| or ag . = 0 but since k is an integer it does not matter - we would
only get the solution corresponding to different k.



2. Trajectory Equation

We will derive the trajectory equation based on the variational formalisms. We start with
a Lagrangian of a relativistic charged particle in a static electromagnetic field:

2
L:m62<1— 1—Z—z>+q(—<1>+’v-A) (2.1)

Where m is the rest mass of the particle, ¢ its charge, ¢ speed of light, v its speed, ®(x)
an electric potential and A(x) a magnetic vector potential. The corresponding canonical
momentum and the Hamiltonian are:

p = 2 44A (2.2)

H = mc| —-1] +q®

V2

c2

The field is static thus the Hamiltonian is a constant of motion (Fy). We can evaluate
the formula of the absolute value of the velocity and kinetic momentum g = muv~y:

mc? 2
= 1— 2.3
! C\/ (E0+m62—q<1>> (2:3)

Eo—q(b
= 2m(Ey — q®) | 1 + ——
I \/m(o q)(+ 2m62>

Now derive the trajectory equation. The action for the realized trajectory has to be
extremal:

S = /L dt = extr. (2.4)

We have a static system where the Hamiltonian H = p - v — L is conserved and thus its
contribution to the action is a constant*. We can extremalise modified action instead:

S = /p v dt = extr. (2.5)

This action is invariant with respect to the parametrization (due to v = %) Thus we can
re-parametrize it by using the optical axis coordinate z:

S = /(g +qA)-r'(2)dz (2.6)

The absolute value of kinetic momentum is determined by the equation 2.4 and its direc-
tion is always tangential to the trajectory. Thus we can write:

= / (g 1+ 2?4+ y? + q(A2’ + Ayy' + Az)> dz (2.7)

*If we assume that the strat and end time are fixed then [ Hdt = Eo(tena — tstart)

7
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If the action is extremal, the integrand (M) has to satisfy Lagrange equations of the
second kind:

oM\ oM

T 2.
(8:5’) Ox 0 (2:8)
oMy o
oy’ oy

By evaluating it, we would get the exact solution of the trajectory in Cartesian coordi-
nates. But we will do more simplifications. First of all we replace the magnetic vector
potential by the scalar potential. We use A, = 0 and the equations 1.11:

oW oW
2 2 _ / /
14274y +q({ /8y dz]x%—{/ o dz}y) (2.9)

Now we go to circular polarization coordinates (z, w, w):

M:g\/1+w’w’+q(— {i G_W_G_Wdz] (w +w>+

ow ow 2
[ OW  OW w —w
+ |:1 %—I—%dz] ( 22, )) (2.10)
Where we used:
0 0 0
o _,9 .90
8y ~ ow ow
,  w
TS T
, o w =
y = 7y

The magnetic term can be further simplified into the formula:

M = gV1+ww +iq (@' 8—1{/ dz| —w' ow dz (2.12)
ow ow

The trajectory can be found by applying the Lagrange equations with respect to the
circular polarization coordinates.

oM\ oM
_ oM 2.1
(8w’) ow 0 (2.13)
oM\ oM
ow' ow



2. TRAJECTORY EQUATION

2.1 Paraxial Approximation

The paraxial approximation of the trajectory equation is an useful tool for deriving the
behaviour of the electron/ion optical system. The main assumption is that the beam
trajectory is close to the optical axis. Thus the coordinates z,y (or w,w) are small. We
can linearize the trajectory equations. In the Lagrangian it means to find the terms up
to the quadratic.

We will start with expansion of the electric term of the Lagrangian. The square root
term can be simplified to:

1
Vi+waw =1+ 510’1?/ (2.14)

q®
g = \/—qu<I> (1 — chz) (2.15)

Where we already involve initial energy into the scalar potential®. It can be quadratised
by splitting the potential into the constant part and the part dependent on w and w:

and the kinetic momentum:

d = ¢y + ¢y, (2.16)

Then the kinetic momentum is:

o= %\/ 1+ So (1 220D (217)

2mc?

Where ¢, is a relativistically corrected potential on the optical axis:

by = oo (1 4o ) (2.18)

2mc?

The Taylor series of kinetic momentum up to the second order of ¢, is then:

g =/ —2mqo, (1 +3 5 §¢Tg) (2.19)

Where ~q is y-factor on the optical axis:

qPo
=1-— 2.20
Yo me2 ( )

Bringing it all together we get the following estimation of the Lagrangian:

2
M = \/¢, (1 + %%f" - é%) (1 + %w’w') +

i [ [ [ 2 a) oo

fIf the potential change by constant, the electric field remain the same.

9



2. TRAJECTORY EQUATION

Where we divided the original the Lagrangian by a constant /—2mg. The parameter n
equals to:

q
— = 92.92
n 5 (2.22)

The next thing to do is to insert the electric and magnetic potential in the form of power
series of w and w up to the second term. From equations 1.27 and 1.28 we have:

1 _ _
b~ ¢0 — ZQ%/UHD + ¢11U + ¢1ﬂ) + ¢2w2 + gbng (223)
1 _ _
W =~ 7,00 — Z%/WD + ¢1w + ¢1QD + ¢2w2 + ¢2@2
Where the terms with index zero are half of the original (they are the same as in the

equation 1.24 and 1.25) We put it into 2.21 and take only terms up to the second order
of w,w,w and w':

M = ¢T+%f;_w+%f;_w+in {/1&1} w' —in {/%] '

1 Yoo 1¢%> ) <1%¢2 1¢%> ., < 1 Y00, 1¢1¢1> .
Tl g3 |Wt|lzg—T s || 7= |ww
<2 o7 B¢ 2 g2 8y 8 gz 4 g2

+ 2in { / ¢2] ww' — 2in { / ¢2] ww' + iin%(ww’ —ww') + % o'W’ (2.24)

Since the trajectory equations does not change if we add the total derivative of z to
the Lagrangian we can simplify it to:

o (1 ) (o)

1 102 . 1y 162 . -
+<—%?2——¢%+177¢2> w2+<—%?2——¢%—177¢2> @’
1
2

1oy 11
+1 -3 i T 3
8 g7 4 g2

We now assume two sets of condition. The first are Wien’s condition:

(% f;_ + imbl) — 0 (2.26)

which link the electric dipole to the magnetic dipole. And the second the stigmatic
conditions:
1 1 ¢?
<_'70?2 4 o1 i77¢2> =0 (2.27)

2 b 8yl

which link quadrupole terms of potentials. Thus the Lagrangian reduces to:

~ 1vey 1¢19 1 1
M = /¢ + ——%?0 — _¢1Z§1 ww + ~iny(ww’ — ww') + =y/g.w'w’ (2.28)
Sor tor 4 2

10



2. TRAJECTORY EQUATION

We can now introduce the co-rotating coordinates (w,w):
w=we , W= we Y
where 6 is dependent on z according to the equation:

g — 1%
2v/¢;

Then the Lagrangian looks like:

8

~ 1 2,112 i 2 s 1
M:@——(nw —1—%%—1— ¢1;bl>ww+§ o) @

oF  oF 42

And the trajectory equations are:

/ 2,112 Vi n
(%\/(ﬁjw’) +é<77¢ +70¢o+2¢1¢1)@:0

1 1 3
or or or

11

(2.29)

(2.30)

(2.31)

(2.32)



3. Aberrations

Design of an optical system require also calculation of aberrations. The method which
is used in this thesis to calculate them is called the Eikonal method®). We assume that
Lagrangian can be written in perturbation series:

N
M=) NMO (3.1)
j=0

Where |A\| < 1*. We are looking for the solution also in perturbation series:
N
q(z) =) NgqY (3.2)
=0

We are looking for the trajectory which minimize the action S. The variation of the action
S can be evaluated by two different ways. At first we can vary the total Lagrangian:

S OM . OM

Where it is integrated from the object position z, to the image position z;. We use
summing nomenclature — aa—{féqi means summing over all coordinates (either x, y or w, w).
By integrating by parts we get:

s (OM  d oM
55 / ((aqi 2 aqg)aqz) az+ [poa]” (3.4)

Where p; is canonical momentum defined:

oM
Pi="aq

(3.5)

The first part of the variation of the action is zero due to the Lagrange equation. Thus
we get the formula for the variation:

65 = o] (3.6)
Now the p; and ¢; can be expressed in form of the perturbation series:
N
g(z) =Y Ng7(2) (3.7)
§=0
N
€)= Ng(2)
§=0
N
p(z) = N (2)
§=0

*In our case it will not be true (A = 1) but the M;;; will be already much smaller than M; though
we can use the model.

12



3. ABERRATIONS

The variation of the action is then:

05 =

Q

+

+

ZZ)\k[ (k=j) 5

k=0 j=0

[pz@ 5%@}

A[p§1)5q§ +pdq] }

\? [pﬁz)éqgo) +piMag!

W]

N p%8g” + pP oV

+ " oq;?

Zo

D+ pog|
]

(3.8)

On the other hand we can first decompose Lagrangian in the power of series of \. We do

it only to the third order:

Z)\jM(j) (Z )\Jql ’Z Ngq /(J >

M© + ) (M(l) + D(l)M(O))

M =

Q

+ A2 (M(2) + DDA L p@ g 4 % (D(l))2 M(O))

+ 023 (M(3) + DO L p@ar® L pB pro)

L pWp@ o 4 L (D) M(m)
6

(D(1>)2M(1>+

DN | —

The Lagrangian M M® M®) are express by zeroth order of the trajectory:

MO = MO pi”)
MO = MO p”)
M® = M@, p”)
M® = MO @, p”)

And the differential operators DM, D@ are defined as:

0 0

pw — M /(1)
Y ou "t o
0 0

D@ — @ "(2)
& 8%’ T dq;
0 0

DB — B /(3)
& 8%’ T dq;

13
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3. ABERRATIONS

We can now compute first terms of the action S = S© + ASM 4 X253 4 \356).
SO = / MOdz (3.12)
S0 — / " (MO £ DO g

5@ _ / ( M® 4 pW a0 - p@ a0 1 L (puy? M(m) &
2 2

(D(1>)2M(1>+

N | —

@) / (M<3>+ PO L D@ 4 pB O 4
DO PO é (D) M(m) &s

Which can be further simplified. We notice than for any set of parameters (; and realized
trajectories ¢; the equation:

[ (G Sat) s = [oc)] 19

is satisfied. We substitute (; = %(1) and expand it into power series of \. Comparing zero,
first and second order terms of A\ we get:

/ DOMO 4z = [ )qf”} (3.14)

/ DM 4 (DO MOdz = [pPg]”

/Zi DY@ 4 (D(l))2M(1) + DWW D@0 4 % (D(l))?’M(O)dZ _ [ (2)%(1)}

Similarly, substituting ; = ql@

/ DOMO 4y = [ © fﬂ (3.15)

/ DOMW 4 DO DMz = [pVg*]”

we get equation:

And (; = qZ

/ DOMO dz = [p"] (3.16)

Zo

14



3. ABERRATIONS

Thus we can rewrite 3.12 as:
z;

SO = M®dz

g _ / (M(l)) dz + [pz('O)qi(l):| i

Zo

SO = / (M(Q) -5 (D(”)QM(O)) dz + [ + ")

Zi

2 Zo
o3 _ / (M<3> _ L poy? ym 4 Ly yo Da)D(z)M(m) &
. 2 3

+ [pﬁ-o)qu) +p g + pﬁz)qgl)} Z

Zo

For further calculation we name integrals as ST, ST/, S

st = /i(M(l))dz

S = / (M(2>_
ST / (M(3>_

(D(1>)2M<o>) dz

N~ N~

( D<1>)2 MO — pOp@ M(m) dz

(3.17)

(3.18)

Which are now only function of initial coordinates and momentums. Furthermore, the

term (D(l))3 MO is zero since there are only quadratic terms of ¢;, ¢/ in M(?). For further

calculation of aberrations we define vectors:
i q
Q(J) — /2(j

Operator:

VO — aq2,o

Matrix I':

o O O
o O = O

And projector matrix II:

o OO =
o O = O
o O OO
o O OO

15
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3. ABERRATIONS

3.1 Zeroth Order Perturbation

We can now finally obtain differential equations for calculating the perturbation terms of
trajectory. We compare variation of actions from 3.17 with 3.8. From zeroth order we
get:

[pﬁ%qﬂ = / MOy (3.23)
Which can be rewrite to the form of Lagrange equations of paraxial solution:
#oMO 4 oM©
0= - — 0g; d 3.24
/zo(a%' dz 8q;)q : (3:24)

3.2 First Order Perturbation

If we compare linear term of A\ we get:

o050+ o8] = g7 1 a[pl00] " 529
Which after further simplification is:
65" = [p"ag” — pq"| (3.26)

We now assume that the initial position and momentum of the perturbed trajectory is
the same as the paraxial trajectory. Thus:

0=q"(20) =" (20) (3.27)
And:

65" = p" (284" (z) = 3p” (21}, (=)
From which we have set of differential equations of first order perturbation:

05" 9d” ol ol 1oy

= + — — 3.28
8ql,o h &]1,0 b2 &]1,0 N 8ql,o & &]1,0 ( )
0 0 0 0
05" _ dg,” +p(1>3qf§) g op o opy”
8(]2,0 ! 8(]2,0 2 8(]2,0 ! 8(]2,0 2 8(]2,0
0 0 0 0
0st _ OV dg” Jrpa)ang) g opl” m opy)
ogi, "t oq, T oq, ' odq, T odq,
05" _ dg\” N p(l)aqéo) e op” e opy”
Oy, ' Odh, 0 Db, T Odh, O,
This can be written in more compact form:
VoSt =v,QY.-T.-QW (3.29)
With solution:
QY = (VoQY -T) 1. v,S! (3.30)

16



3. ABERRATIONS

3.3 Second Order Perturbation

The second order perturbations can be derived using the same procedure. We compare
quadratic terms of A from 3.17 and 3.8:

P00 + 50+ 00002 " =68" + 6|0 + "] (3.31)

Simplifying and using:
0= (20) =" (20) (3.32)
We get:
68" = pi(20)00,” (20) = 4 (209" (%) = 4 (20)0p}" (=) (3.33)
From which we get differential equations of second order perturbations:
VoS =v,Q®.T-Q® +v,QW.I.1I- QW (3.34)
With solution:

Q2 = (VoQ® - T) (VoS —VoQW - T-1I- QW) (3.35)

3.4 Third Order Perturbation

Finally we calculate third order perturbation:

730 + pPag(" + p1ag® + p0g | =

Zo

65"+ [p? + pP” +pg®| " (3.30)

A A
%o

With same simplification as before:
0= g () = i (2) (3.37)
We get:

0S™ = PP ()66 (1) — ¢ (2)op” (1) (3.38)
+ —qu)(zi)dpgl)(zi) — qz'(l)(zi)(SPz@)(Zi)

From which we get differential equations of second order perturbations:
VoS =voQ© . T-Q® +veQY - T-11- Q¥ +v,Q®? .T-11- QW (3.39)
With solution:

Q¥ = (VoQV . TV Y(VySH — v, QW . T-11- Q¥ —v,Q? . T -11- QW)

17



3. ABERRATIONS

3.5 Stigmatic System

In case of the system described by Lagrangian 2.31 we can write the solution in form:

w?(2) = wog(2) + wyh(2) (3.40)
00 (2) = wog(z) + wWhHh(z)
With corresponding momentums:
Voér .
p(z) = 5 (W0 (2) + Wl (2)) (3.41)
_ Vor
PO() = Y (wog(2) + whh'(2)
We can calculate matrix (VoQ® - I')~
2h 23
0 v 0
(Vo -I)7t=| Vo ver (3.42)
o0 -4 0
0o n 0 —q'
Finally we once again sum up the equation of aberrations:
(3.43)

Q(l) _ (VOQ(O) ) F)—l . VOSI
QY = (VoQU .1)" YV, —v,QW . .T-11-QW)
QY = (VoQ 1) (VoS = voQW T 11- Q¥ — voQ® . T - 11- Q)

With eikonals:
(3.44)

st = /i(M(l))dz

gl — / (M<2> _

1
>

g _ / (M<3> _ L (pwy? y _ perpo M(m) &
Zo 2

3.5.1 Alternative Formulation
There is certain freedom in actions 3.12. Sometimes it is more useful to use alternative

actions and solutions:

QY = (VoQ 1)1V,
1
QY = (VoQO . -1) Y(VysH — 5VOQ(l) T-QW)

(3.45)

1 1
Q¥ = (VoQU .T) (Vs — 5VOQ(U .T-Q¥% - 5VOQ@) .T-QW)

18
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3. ABERRATIONS

J o

/.
/.

(M@-+ D“Aﬂ1>dz

(M@+ DmMm+1DmMm)d
2

19
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4. Calculation of Aberrations for
Different Fields

4.1 Magnetic Monopole

We will derive the aberration coefficients of third order of magnetic monopole. First we
will start with the field. Our approximation of the field is:
1 1
W = b — ~gwi + —" (wo)’ (4.1)
4 64
® = ¢

By expanding equation 2.12 (divided by \/—2mgq) into the second and forth order we get
the lagrangian M = My + M, (the zeroth order - constant - of Lagrangian is omitted):

1 1
M, = 3 o'’ + Zz’mﬁé (ww' — ww') (4.2)
1 1
My = —2V/or (w'a')” — =51 wi (wa' — ww) (4.3)
Going to co-rotating coordinates (w,w) 2.29, 2.30 the Lagrangian is then:
1 1 2,1,12
My = SV/oudl - gn\/@% Wi (4.4)
1 1
My = =L (ww)® — §L2w@w’a/ (4.5)
1

—ZLg (Wa')? — %Pw@ (W' — ow")
‘ 1
—% W (W' — ww) + TR (Wi - ww')”

Where the functions of M, arel® *:

1 4./.14
o= e (TR - i) (4.6)
L0y
L2 = =
8 Vor
1
L3 = 5 ¢r
2,/,13
n (n*g "
p = L —
16( o %)
1
Q = 177%
R o~ L7C

8 Vor

*Because we solve only magnetic monopole, not general electro-magnetic, /¢, is constant and thus
we can bring it directly into terms P and @

20



4. CALCULATION OF ABERRATIONS FOR DIFFERENT FIELDS

Because the Lagrangian is separable the basis of the paraxial solution is the same for w
and w. We choose the basis as two functions h, g which in object plane satisfy conditions:

9(z0) =1 g'(2) =0 (4.7)

The general solution is then:

wO(2) = wog(2) +wyh(2) (4.8)
0O (2) = Dog(2) +Wyh(2)

Where (w,,w,) and (w!,@!) are constants which correspond to the position and slope in
the object plane. Now we calculate the first order perturbation by eikonal method. We
calculate M by putting 4.8 into My:

MW = | == (Lih* + 2Loh% 02 + Lyh™) | wiag (4.9)
—= (L1gh® + LaohH (gh' + hg') + L3g'h™®) + % (Ph* + Qh’z)] DowEi)

—= (L1gh® + LohK (gh' + hg') + L3g'h'®) — = (Ph* + Qh’z)] Wowp@

i
2
—= (L1g°h* + 2Laghg'h + Lsg?h" — R) + % (Pgh + Qg’h’) oW

—= (2L1g°h* + La(gh' + hg')? + 2L3¢”h"* + R)] Wolowpiy

— = (L1g?h? + La2ghg'h’ + Lsg?W* — R) — = (Pgh + Q4'l) | wiof
—= (L1g°h + Lagg'(gh' + hg') + L3g”h) +

—= (L1g°h + Lagg'(gh + hg') + L3g”h’) —

+
.JAIH l\DIH l\DlH .JAlH l\DIH .JAIH l\DIH l\DIH .-lle

—= (L1g"* + 2L2g°g" + Lsg™) | wiw)
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4. CALCULATION OF ABERRATIONS FOR DIFFERENT FIELDS

Where we simplified
C pr—

K =

d:

terms by Wronskian gh’ — hg' = 1. We write:

1
NG / (Lih* + 2Loh°h" + Lyh'*) dz (4.10)

1

Vor
1

Vor
1

Vor
1
NG / (L1g’h + Lagg' (gh' + hg') + Lsgh') dz

1
Vor

e 2 2
\/E/(Ph + Qh )dz
2 /(Pgh+Qg'h') dz

Vor
/ (Pg2 + lez) dz

/ (Ligh® + Lahl (gh' + hg') + Lsg'h"®) dz

/ (L1g°h* + 2Laghg'R + L3g?h™® — R) dz

/ (2L1g°h* + La(gh' + hg')* + 2L3¢g”h” + R) d=

/ (Lig* 4 2L29%¢” + L3g™) dz

1
Vor

Eikonal ST then looks like:

SI

In image plane h(z,)
are:

1 1 1
1 N~ 21 1 . ’ -2
—§(K — ik)wowy W — §(K + ik)wowywg

1 1
_Z(A —ia)ojwl — Z(A + ia) Wiy

1 1
—§(D — id)wowawy — §(D + id)wgw0w6>
By using equation 3.28 we get aberrations in general plane:
= | Cg —(K—ik)h | wiw
+ [ (K—ik)g —(A—ia)h ] @owf
+ [ 2(K +ik)g —Fh | wow(@y (4.12)
+ Fg —2(D—id)h | wolow) '
+ [ (A+ia)g (D +id)h | wiw)
+ [ (D+id)yg —Eh | wiwg
=0, and g(z,) = M where M is magnification. Thus the aberrations
1)
“’W = Cwo, (4.13)
+ 2(K + ik)wowpwh + (K — ik)wowf
+ (A +ia)wiwg
+ FWO(D()CUé
+ (D +id)wiio

22



4. CALCULATION OF ABERRATIONS FOR DIFFERENT FIELDS

4.2 Magnetic Hexapole
As in chapter with monopole we start with electromagnetic field:

W = ¢3w3+z@3w3 (414)
o = o

And Lagrangian series up to forth order :

Mg = % gbrw'w' (415)
M; = in (¢3w3 - &3@3) (4.16)
Mg:-% b (w'w')” (4.17)

Where M; was simplified by adding total derivative of z of in(w? [ 13 —w?* [ 13). Unlike
in monopole, there is not rotation of image in hexapole field thus we remain in standard
coordinates. As before we choose two paraxial function g,h with condition 4.7. The
general solution is:

w(2) = wog(z) + wh(z) (4.18)
50(2) = mog(2) + ()

We get MM by substituting 4.18 into Mj:

MY = +ip (¢3h3w + 3sh*guowf + 3v3hg® wOwO + 5g°w ) (4.19)
—1n (¢3h3w0 + 3¢3h29w0w0 + 313hg? wowo + 3g® 0)
We write:
6 _ _
- L / Ysh’dz b = o0 / Psh®dz (4.20)
Psgh’dz /¢ gh*dz
\/@ / ’ hi= \/ﬁ ’
= L [ gygPhdz U =—/¢g2hdz
\/E / ’ Ve )
6 _ 6 _
= [ gtz = [ gtz

The first aberrations are then:

+ 22(901 — hUg)lD(ﬂDé
+ Z(QUQ - hUg)ﬂ)g
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4. CALCULATION OF ABERRATIONS FOR DIFFERENT FIELDS

To calculate second order aberration we first evaluate:
M® 4 lpmyo - (4.22)

2
Y ] ugag

32—77 (301 + sU1)h* — (¥3Uo + h3Uo)gh®) — W

+ |30 (¢3Ush® — (Y301 — P3U1)gh® — 3Uog*h) — \/a /hlg] oot

w wo wo

[ 7y 3 " 7 2 72 \/_ 11,13 ! 12

+ |30 (Y3U2h® — (¥3Uy — ¢p3Uy)gh® — p3Uog”h) — g'h | wowywg
E P - . . Vo, i

+ |5 (Va0 = vsUgh? + dsUigh — alig®) — %’g’zh’?] wjuwg

+ |60 (4302 + b3Uz)gh” — ($3U1 + 3U1)g°h) — @glzhlz]

wolﬂowéu_}é

L ) ) )
+ |2 (hsUsh® — sl gh? + sUrg%h — v3Uog®) —

\/a /2 h/2:| —12
2

’LU’LU
8 00

Vér

1 . /3h] wowEwy

\/<b_

- /3h] WAy

+ |31 (¥3Usgh* — (Y301 — 3U2)g*h — P3Usg°) —

+ |31 (¥3Usgh® — (P3Ur — ¥302)g*h — ¥3Usg°) —
- \/@ 14 2 -2
) - TQ ]

+ 2 (303 + ¥3U3)g°h — (Y307 + 13Uy g

5 WoWq
We write:
c - L / ( Pt — 6y (60 + BsU? — (0T + %Uo)ghg)) dz - (423)
Vor 2
K = \/1¢_T/ (\/;b_rg/hlg — 61 (P3Uah® — (P3Uy — v3U1)gh® — ¢30092h)> dz
A = ¢1¢7 / (ﬁb_ﬁq’?h’2 — 61 (Y3Ush® — P3U1gh” + ¢3U19°h — w30093)> dz
F = \/1¢—T / <\/¢_rg/2h/2 — 12 (302 + ¥3U2)gh* — (Y307 + 7;3U1)92h)) dz
D = \/1¢_T/ (@glgh’ 6n (P3Usgh® — (YsUr — 13U2)g*h — ¢30193)> dz
E = %/ (@9/4 61 ((¢¥3Us + ¥3U3)g*h — (3071 + 153U1)93)> dz

And get second order eikonal S'/:
1 1
S = /¢, (——C 2wy — §Fw0w0w6w6 4Ew0w0 (4.24)
_ 1
—§Kw0w62w6 — §Kw0w6w62
1 1
—ZAwgwgz - ZAwgwgz
1 = -2,/ 1 2, = =/
—§Dw0w0w0 — §Dw0w0w0
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4. CALCULATION OF ABERRATIONS FOR DIFFERENT FIELDS

And using equations 3.43 we get second order perturbations:

w® [(C+ UoUs — Ui Uy)g — (K + UyUy — UpUs) k] wtag (4.25)
[(K + U1Uy — UgUs)g — (A+ U1 Uy — UOU3)h:| @01062

(2K + 205Uy — 201U )g — (F + 2U,Uy — 2U1Us) h| wowyw)

[(F + 205U, — 2UUs)g — (2D + 2UsUy — 2U,Us)h] wowowy,
[(A + UsUy — U1 Uy)g — (D + UsUy — U1Uz)h} wywy,
[(D + UsUy — UyUs)g — (E + UsUy — U1U3)h} wh W

+ o+ 4+ 4+
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5. Misalignments of Multipole Field

In this section we will derive the situation when the multipole element is shifted off axis
or tilted. We will see that other multipole fields are in that case generated.
We define multipole function ®; ; of k-th order of function f as:

= (=D)"k! \mo kg (2n)
Opp=Y ————(wm)"w* f*" 1
k.f 2 4nn!(n+k)!(ww) w” f (5.1)

And similarly complex conjugate:

Oy = Z AM, n+ k ww)" ok 2 (5.2)

5.1 Shift of Multipole Field

The situation when multipole field with component ¢ on central is shifted off optical axis
by —4¢ is described by substitution of coordinates w — w + ¢ and w — w + 9:

nk.| B B .
oy = va oy (0 9@ +8)" (w6 (5.3)
By expanding the formula up to second order we get:

* _\\T 2n
Phoe = Z4nn|n—l—/€ (w)" w6} (5.4)

nk.] )
5 n—1+k,—n ;(2n)
* Z4”n'n—1—l—k)w WPk

n/f' )
5 n+k —n—1 ,(2n)
* Z4nn—1 k)l 0

+ 5_2 (_ ) k! w" 2+k n¢(2n
2 4 4"n!(n—2+k)!
+ 66 Z L"H w1 g2
4n(n — 1 (n—14k)! F
P p— —1)"k! n
+ = ( ) wn—i—kwn—Q I(f )

2 £ 4m(n —2)/(n + k)!
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5. MISALIGNMENTS OF MULTIPOLE FIELD

Where we assume that k£ > 2. By shifting indices it can be rewritten to more compact

form:
Proe = Pran
- 1
0k®_ —— /
+ k—1,¢ Ak + 1) k+1,6/
52 -1 52

1

*

+ —k'(k' - 1)(I>k—2,¢k - 561®k’¢g + =

5.2 Tilt of Multipole Field

o
2 16(k + 1)(k+2) k+290”

(5.5)

Next case is when the multipole field is tilted off axis by small angle ~. In that case the

coordinates transform as:

wt = w—1z (5.6)
Wt o= w—9%
* 1
2= 2t (w+w)
The transformed field has form:
nk-l . 1 (2n)
Prg = Z Tl (n 4 R (w —52)"™ (W —72)" Pr(z + 5 (yw + Jw)) (5.7)
Which expanding to the second order of ~ gives:
* — (2n
+ Z n + k — 1) w™ 1+k n( m ¢(2n 1) ¢(2n )
. i (U kD) o 20k DI 4 20
= 4"n'n+k—|—1) (k+1)
2 n
’y k:' mn —4 —MN n— n— n
+ ?Z4nn'n+k_2)w+k 20 (4(712—71) (2 2+4nz¢(2 1) ¢(2 >
> (=1)"k! — (4(kn + nz)gb,(f") + (4n + 2k)z ,(f"’q ¢(2"+2 >
+ 7y Z —w"“%ﬁ"
= 4"n I(n+ k)! 4

(DM E+2D s
— 4n(n)!(n + k + 2)!

7
2

= OM8

4n+k+1)(n+k+2) Cr2) 4 dz(n+ k +2)

X

7 N3

160k + 1)(k + 2)
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5. MISALIGNMENTS OF MULTIPOLE FIELD

For simplification we will need the following formulas:

N = nftml 4 zp (5.9)
(22)™ = n(n—1) 0D 4 42z f0D 4 220

We can now rewrite potential as:

O, = B, (5.10)

1
— Yk®p_q., | ——-® L) /
YELR-1.2¢, +7 L(k i 1) k+1,(21) +2k¢k:|

[\

Y
+ k(k —1) [(Dk—z,(z%k)—(zm)(—w—¢§;2> + Z(Dk—z,as,i‘”}

7 1

5.3 Ellipticity of Rotational Symmetrical Field

The last special case we derive is the elasticity effect on rotational symmetric field. We
will consider just the paraxial part (without constant) of the monopole field:

Oy = %%’ (5.11)

The ellipticity is equivalent to change of coordinate x — z(1 +¢€), y — y(1 —¢) (if we
assume the main axis in z,y direction). Then the field changes as:

w + ew)(w + ew w? 4+ w?
o),

@; = W (5.12)

Where the second term is additional quadrupole field.
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6. Hexapole Corrector

In this chapter we will introduce main topic of the thesis — hexapole corrector. The
first part introduces the ideal hexapole corrector and its working principle without any
misalignments. The parasitic aberration caused by misalignments are calculated in the
second part.

6.1 Ideal Case

We start with idealized corrector in STEM set-up. The corrector consist of two hexapoles
with same fields and two lenses, with fields of different signs to eliminate rotation, which
create double symmetry (lens doublet). For proper working in STEM mode we have
one transfer lens before and one after the corrector. The second transfer lens image the
specimen plane in the centre of the corrector and focal plane of the objective lens in the
centre of the hexapoles to transfer the coma free plane from the objective and minimize
spherical aberration of the fifth order. The set-up with paraxial rays ¢, h with the
parametrization in the specimen plane g(z;) = 1,¢'(z;) = 0,h(z) = 0,h'(z;) =0 * | is
shown in the figure 6.1.

spec.
"""""""""""""""""""""""""""""""""""" plane

i N N N N N i
1 . H 1
1 H . 1
| : 9(z) ' i
1 H H 1
1 ' H 1
1 H 1
L : pd /h(z) ~_ [ P |
] ' H |
] L N /l
I / \ I
1 H : 1
] : : 1
1 : ' 1
1 : H 1
1 L 4 ' L 4 L 4 H L 4 v |

transfer :hexapole A A lens doublet B hexapole B: transfer objective

lens T v mannle corractar o TTRTEREEEnEes lens lens

hexapole corrector

Figure 6.1: STEM set-up of hexapole corrector with paraxial rays g, h

The arrangement is in such way that the object focal plane of the first lens is in the
centre of the first hexapole and the image focal plane of the second lens in the middle of
the second hexapole. The image focal plane of the first lens and the object focal plane of
the second lens coincide in the centre of the corrector. In this ideal case we will assume
that there are thin lenses without any aberrations.

The plots in this section are done with several assumptions. We assume that the
hexapole field is constant in the hexapole and zero outside. For calculation of the field of
the lens we use the ¢y, in the form:

Bmam

Yo(z) = W

(6.1)

*In previous chapters we used the parametrization in the object plane.
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6. HEXAPOLE CORRECTOR

with width of the field a small — thin lens approximation. For better visualization we
have unrealistic objective lens — thin lens with specimen plane far away and low (only
around 3x) magnification. The paraxial rays are thus more visible on plots. However,
the formulas are written without any approximation.

The double symmetry of the corrector is crucial to eliminates all of the second aber-
rations. All of the integrals which has impact on the aberrations of the second order are
zero outside the corrector:

67 3
Uy=—= h>d 6.2
0 \/QTT/¢3 z (6.2)
U, = j% / Wagh?dz
U = %/@ﬁggzhdz

6n 3
Uy = —— d
3 o / P3g°dz

Integrals U; and Us are zero over one hexapole due to symmetry of ¢3, h? and antisym-
metry g or ¢g3. The integrals Uy, U, are zero after propagation through both hexapoles
due to change of sign of h or h? (figure 6.2)

spec.
plane
E : 2, 2, : 2, S
1 H ' 1
1 H ' 1
1 : . I
1 ' H 1
! : Ui(2) \ | I
1 . : I
1 H /\ ' 1
1 : . 1
1 ' H 1
I : N : I
1 . 1
1 : Uo(2) :
1 H
1 : U,(2) 1
1 ' H 1
1 v ' v v H v v 1
transfer :hexapole A A lens doublet B hexapole B: transfer objective
lens T [ ST TR TR s maannes lens lens

hexapole corrector

Figure 6.2: Functions Uy, U1, Uz, Us in hexapole corrector with t3(z) = 1 inside hexapole

On the other hand the aberrations of third order are not zero. The aberrations in
the image plane are summation of the hexapole and monopole aberrations which has the
form:

w? = Cw?w, + Koaw? + 2K ww), (6.3)

+  Fwywaw, + Awiw] + Dw?w;

The most important is the spherical aberration:
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6. HEXAPOLE CORRECTOR

1

'y A2 m 17721% 2 /2)
f/(sw( K W) o)

_\/CT / ((sUr + 3Un)h° — (43U + 903U0) gh?) dz

The first row is non-negligible only in the objective lens. In the area further to the left h’
is smaller then 1/M where M is magnification of the objective lens. The integral is in the
order of 1/M* thus very small. Second term is the summation of the spherical aberration
of the lenses and is always positive. The last term can be further simplified in the form:

Cy = - / (U4T, — U, + DU, — DoY) d= (6.5)
And using integration by part:
Cy = —2/(U1U5+U1U5) dz (6.6)

Let’s choose orientation of the 13 as a real than the sign U; is always the same as the
sign of U] in the corrector and thus the spherical aberration of hexapole field is negative.
The same would be valid for any orientation of 3.

Spherical aberration through the hexapole corrector is shown in the figure 6.3

spec.
plane

H
'
' H ' ' ' ' /N
H
H

C(2) , /

: T
v ' v v H v L 4

transfer :hexapole A A lens doublet B hexapole B transfer objective
lens ~ MtTmmtmmmmmmmmmmmmmmmsmssssmsessesnsesnsssssssssssssmssResnees lens lens

hexapole corrector

Figure 6.3: Spherical aberration in hexapole corrector. The strength of hexapoles is set in
such a way that the spherical aberration in the specimen plane is zero

The next coefficient, which than play role in the axial aberration of the third order of
misaligned corrector is coma:

K = \/_ / Vor gh*dz (6.7)
IR

4¢ 2 .1 ///) 3 - / / / )
+\/a / (_677 (77;3U2h3 - (1;3(]1 - ¢3U1)gh2 — ¢3Uogzh)) dz
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6. HEXAPOLE CORRECTOR

we can simplify hexapole term:

KH = —/ (UQUO/ - UllUl + U{Ul - UéUo> dz (68)

Which due to symmetry is zero outside of the corrector:

6.1.1 Evaluation of Spherical Aberration

It is useful to evaluate integral 6.6 with optical parameters. In set-up described in figure
6.1 g, h trajectories in first hexapole are:

 fr

ho=Ar (6.9)
_ M,

97 T

where fr focal length of the second transfer lens just before objective, M, magnification of
objective lens. We also assume local coordinate system: z is zero in the middle of hexapole,
in the second hexapole the situation is similar with just different signs of functions g, h.
Now we assume that the hexapole field is constant inside hexapole with length L and zero
outside. In that case spherical aberration of two hexapole is:

N 24772|¢3|2 fr ! 3
CH——T (E) L (6.10)

If we have high magnification of the objective lens the spherical aberration of objective
is the most significant. To have a image without spherical aberration of the third order
the spherical aberration of hexapoles should be comparable (higher) to the spherical
aberration of the objective we also evaluate the integral Uy over one hexapole:

3
Upa = 0143 (L—T) L (6.11)

By evaluating absolute value of Uy as a function of Cy we get:

3Cu fr

R T

(6.12)

This value is quite big in-between the hexapoles. In fact the first hexapole create very
distorted beam and the second hexapole improve it back.

6.1.2 Symmetry in Corrector

In this part we introduce the symmetry concept in hexapole corrector. Generally, we can
split any function in the symmetric and asymmetric part with respect to a plane. In
hexapole corrector we have two sets of planes — the centre of entire corrector and centres
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6. HEXAPOLE CORRECTOR

of hexapoles. If we mark symmetric part of the function by S and asymmetric by A we
can define algebra with following operations of addition:

A+A = A (6.13)
S+S§ =S
multiplication:
A-A =S (6.14)
A-S = A
S-A = A
S5 =5
derivative and integration:
A =8 (6.15)
S = A

[a=s

/S = A+Sconst.

In Table 6.1, there is a list of symmetry of the most important functions in ideal
hexapole corrector.

Table 6.1: Symmetry of functions in ideal hexapole corrector

function centre of corrector centres of hexapoles

9.9 S A
h,h A S
0 S 0
v A 0
V3 S S
UO> U2 S A + Sconst.
Ui, Us A S
C A + Sconst. A + S
K S A+ S

6.2 Parasitic Aberrations

In reality hexapole corrector is never ideal. Quite opposite, it is very sensitive to all
misalignments since we require to correct third order aberrations. In this section we will
cover all major misalignments and its induced aberrations in image.

Every element in corrector can be shifted and tilted off axis, hexapoles can be also
rotated around z. Also it can be shifted in z-axis and have imperfect poles. In this text
we will at first focus on axial misalignments - we will see that the most important is
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6. HEXAPOLE CORRECTOR

the mis-rotation of the two hexapoles. Than we will deal with off-axial misalignments.
Generally we can distinguish between the shifts and tilts and errors of the pole pieces of
the hexapoles and lenses. However, the errors has exactly the same behaviour as the shift
and tilt (in case of hexapole) so it will be treated implicitly. For the lens we will assume
additional quadrupole field due to the ellipticity.

6.2.1 Axial Misalignments

Let us look at the different rotation of the hexapoles. If the hexapole fields are misaligned
with angle # around z-axis we can write:

3 = 34 = P3pe” (6.16)
In this case integrals Uy, Us are still zero but not Uy, Us:
Uy = 0 (1 ) / wshddz (6.17)
Vor A
6n —if / 2
Uy, = 1—e" Y395 hadz
2 = g U [ e

Where integral the double symmetry is already used for simplification and it is integrated
just over A hexapole. We can eliminate this by asymmetric excitation of the lenses which
produces rotation angle 6/3. This, however, results in magnification of the rays g, h and
we need to modify strength of hexapoles as we will see further.

The similar effect is the z-position of elements and rotation of the hexapoles. The
ideal focus length of lenses is defined such as there is the common focal plane in between
of lenses. This, however, means that the centres of the hexapoles do not have to be in
the focal plane of the lenses. If it is the case integrals Uy, Us, Us do not necessary vanish.
The trajectories of g, h with image rotation # are shown in figure 6.4

H <~ N

s I

8 \

: - )

: A hiz) ——

. // - \
A 4 A 4

hexapole A A lens doublet B hexapole B

hexapole corrector

Figure 6.4: Correction of different orientation of hexapoles - g, h rays and image rotation 6

We have two degrees of freedom - two excitations of the lens doublets. They are used
in such way that the rotation around z-axis is 6/3 and that they have common central
focal plane in-between. In that case the ray h in two hexapoles is:

hg = Mhae®? (6.18)
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6. HEXAPOLE CORRECTOR

Where h 4 is trajectory h in the first hexapole, hp in the second and M is the magnification
of the doublet:

_ B 2 (6.19)

where fp, fa are focal lengths of lenses, A is the difference and f is an average of fg, fa.
As a consequence ¢ ray is not necessary antisymmetric and we get residual non-vanishing
Uy, Uy, Us. We still would like to eliminate Uy:

Uy = j% ( /A P3ahPdz — M3 /B ¢3Be—“’h3dz> (6.20)

To do so we set excitations 134,13 such as:

|Yp] = [tsal/M° (6.21)

6.2.2 Monopole Off-axial Misalignments

Now we will explore off-axis misalignments. We will start with misalignments of lenses.
Both shift and tilt will induce additional dipole field as we saw from section 5. We will
assume that 0 and vz ~ 2vf are smaller than w, w of realized trajectories in lenses. In
that case we will just use first expansion of the modified monopole field and neglect the
terms of second and higher order of § and v. We Thus get additional dipole fields:

1.

Vs = =70 (6.22)
1 1

iy = 1’7(2’100) f

The lens can also be elliptic so we have additional dipole field t,; which can be
split into symmetric and antisymmetric part with respect to the centre of the corrector
-2 = Yoy + P2,

The important feature is also symmetry of the misalignments. We define off axial
shift of first and second lens as d4, dp and tilt v4,vg. In that case we can split dipole and
quadrupole generated fields to symmetric and antisymmetric parts (Table 6.2).

tEvery time we write this, we mean local coordinates in optical element - 2ty means (z — 24)tPga in
lens A and (z — zg)Yop where z4, zp are z-coordinates of centre of the lens A, B
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6. HEXAPOLE CORRECTOR

Table 6.2: Symmetry of misalignments of lens doublet

function centre of corrector centres of hexapoles
V15— = (04 + 6B)1 /2 A 0
U5 = (04 = 08) (Y54 — Yip)/2 S 0
Y15- = (a4 — v8)(2%0)"/2 A 0
15+ = (va +78)((2¢04)" — (2¢08)") /2 S 0
Yar— A 0
VoL S 0

6.2.3 Hexapole Off-axial Misalignments

In case of hexapole we get additional quadrupole and octupole field. Also now we cannot
neglect dipole field term:

Y2 = 3673 (6.23)
Pas = 3015
1 <o
¢45 = _T65¢3
P2 = 37727 W
¢27 = 372¢3

1 1 /
Yyy = —1—6’7 ((Z¢3) +6¢3)

Similarly as with misalignments of lens we can split it into symmetric and antisym-
metric parts (Table 6.3).

6.2.4 Lagrangians

The Lagrangian for hexapole corrector then looks like:

M2 = —\/;_Tw'w' (624)

v (wa — wu)
My, = ine (1w — ¢y w) (6.25)

Ms = in (Ysw’® — sw’) (6.26)
+Z77€ (¢2w2 - &2@2)
+i77€2 (¢1w — 7,;1@)

Tt is true just for the first expansion term v;w, but we will not need more
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6. HEXAPOLE CORRECTOR

Table 6.3: Symmetry of misalignments of hexapoles

function centre of corrector centres of hexapoles

Uiy = 3/2(0% + 55)¢s S S
Ui = 3/2(0% — 0%) (V34 — Y3) A S
Uiy = 3/2(V4 +75) %P3 S S
Y- = 3/2(74 —75) 7 (Y34 — Y3n) A S
Uosy =3/2(04 + 0B)¥s S S
Vo5 = 3/2(64 — 0B) (V34 — V) A S
Vos4 = 3/2(va — 1B) Y3 S A
Yoy— = 3/2(va + v8)2(Y34 — V3B) A A
Vasy = —1/32(04 + 0p) V5 S S
Uas- = —1/32(0a — 08) (V54 — ¥sB)" A S
Paye = —1/32(74 — 78) ((213)" + 61%) S A
Yay— = —1/32(3a + V) ((2%)” + G%)A—B A A

M, = —@w%’? (6.27)

8

+;—Z%"ww (ww' — ww')

e (2w (' — 0, ) — (41,00 - D))

M; = ine (Yo' — ¢y0?) (6.28)
ot (4w (V! — Po*w) - (vho'e! - dhu'e'))
+%e (Bww (Yhww' — Yhww') — (Yyw'w® — Yhw'w®))

Where in My there is paraxial solution including just lenses. Msy, is correction of
paraxial solution due to shift and tilt of the lenses. M3 includes hexapole field and it’s
quadrupole and dipole field due to shift and tilt (we do not higher expansion term of
dipole field in higher order Lagrangians because it is very weak) and also quadrupole field
of the ellipticity of the lenses. In M, are aberrations of the lenses and it’s dipole field.
Finally in Mj there higher order terms of hexapole field - hexapole and weak octupole
with quadrupole. We use factor € to deal with weak fields (at the end of calculation we
will put € = 1).

6.2.5 Paraxial Solution

Let’s define paraxial equation of magnetic lens:

2,112
n g

— = 6.29
4¢Tcu 0 ( )
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6. HEXAPOLE CORRECTOR

with solutions §, » which satisfy the conditions in the specimen plane:

iz)=1 §z)=0 (6.30)
ﬁ():o (z) =1

Then solutions of Lagrangian Mj:

Vor ., i

M, = - 5 W = o (W' — ww') (6.31)
are:
w® = w;g + wih (6.32)
@ = ;g + wlh
where g, h, g, h are rotated solutions:
g = ge* (6.33)
g = ge"
h = he?
h = he™
and rotation of image 6 is defined as:
nYo
= (6.34)
2vo,
6.2.6 Correction of Paraxial Solution
The Lagrangian of paraxial correction is:
My, = ine (V1w — Y1,0) (6.35)

and calculated correction trajectory:

_ineg ineh [ - _
o(2) 2\/E/¢1Lhdz 2\/%/1&1“] dz (6.36)

Then:
w® = w;g + wlh+o (6.37)
w® = w;g + wih + 0

is exact solution of corrected paraxial equation of Lagrangian My + Mo,
Let’s look at the correction in details we express the dipole field as the shift and tilt
of the first and second lenses in the image plane:

o(z;) = 4\2/7;_( 5A/¢6’hdz—53/¢ hdz+%4/(z%)”hdz+73/B(z¢0)”hdz)



6. HEXAPOLE CORRECTOR

Due to symmetry of the corrector we can write:

o(z) = 4% (—(6A 1 6s) /A YR dz + (14— 75) /A (2t0)'R dz) (6.38)

Further more integrating paraxial equation we can get formula:

z

2\2/77% /ﬁ%’w dz = {w' + \;%%w] ) (6.39)

Which gives for h:

i o7 el ey M
2\/%/¢Ohdz—{h+\/ar¢oh} = (=) — () = (6.40)

where M = h'(z;)/h/(2,) is the magnification of the transfer and objective lens. We can
simplify 6.38 as:

20

M—164+0p in(ya—B)
M 2 NS

The meaning of this is obvious - there can be only seen the relative shift of the
two lenses and it’s sum of tilts in the image plane. The shift of the image due to the
misalignments of lenses can be compensated by deflection system. The pure shift does
not influence resolution but the misalignments produce additional aberrations of higher
order and thus it is desirable to correct it.

/(z¢0)"h dz
A

o(zi) =

6.2.7 First Order Aberrations

We put paraxial solution to the Lagrangian Ms and calculate eikonal S!. We define
functions:

Uy = %/%hgdz (6.41)
U, = j% / Wagh?dz

Uy = %/¢392hd2’

Us = j%/%ggdz
vy = 1 / (6150 + 20b5) h2d2 (6.42)
Vor
Vi = \/%/(6¢30+2¢2)9hd2
Vo = =L [ (oo 2040
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Eikonal ST then looks like:

Or
2

sl =

l
+

2

3

Wor o

HEXAPOLE CORRECTOR

\/7;7 / (61h50% + 41po0 + 20y ) hdz
T [ (60 + 0 +201) g0

j% / (¢30° + 120> + h10) dz

Us
( 3 + Ulwo wz + UQwOw + _w
Oy

3

€ (%w62 + Viwyw; + Vzw?)

€ (wywy + Wiw;)

2
+c.c.

And the first order aberrations looks like:

w(

D= (gUO hUO)
+ 1 (2gU1 — 2hU2) wowZ
+ i (gUs — hUs) wg
+ 1 (29% th) wo
+ 1 (g Vy — thz) w;
+ i (gw; — hWh)

(6.43)

(6.44)

(6.45)

(6.46)

In the image plane all first three row with just dependence on hexapole field integrals

vanish due to symmetry as was

written before, the rest is:

w(z) = 2iVyw) + iViw; + iw;

Monopole Astigmatism

(6.47)

Second thing what we have to consider is ellipticity of the lenses. Let’s define common
quadrupole field of lenses 15, we can split it in the symmetric and antisymmetric part
with respect to centre of the corrector vor = ¥or+ + 1or—. In that case we can write for

Vb> Vl,wii
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6. HEXAPOLE CORRECTOR

4
Ww = %/A¢2L+h2dz (6.48)

‘/1:

Wy = \/% / Worohdz

And aberrations in image plane:

w(z) = (j% /A ¢2L+h2dz) @, (6.49)
+ (j% /A ¢2L_ghdz) @

(o)

We start with evaluating the misalignments of hexapole and it’s influence on first order
aberrations. Let’s look at the integral Vj over corrector, the function o is zero in the first
hexapole and o(z) linear in the second. The integration with symmetric function tsh?
with respect to the centre of hexapole gives:

Hexapole Misalignments

Vo = %\/%:B)/szghzder%/%thz (6.50)
Where o(zpyp) is calculated in the middle of the second hexapole:
zeh (zuB)
o(zup) = — 2@ /¢1Lg dz (6.51)
For simplicity we will write just op = o(zyB) and oy = 0'(zyB). By expanding

quadrupole term 5 = 3093 + 3yz13 with using local coordinate systems of optical ele-
ments with z = 0 in the centre:

_ Onos / bsh?dz (6.52)

(5A / Psh*dz + 6p / Psh®dz + va / 2psh?dz + g / z¢3h2dz>
M A B A B

The integrals [ z1)3h*dz are zero due to the symmetry and integrals [, ¥sh*dz, [, ¥sh*dz
are same, thus:

+

Vo = (op+06a+0p) \% /A Ush?dz (6.53)
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We can obtain similar results for Vi:
Vi = (dg+794+7B) 6—n/z¢3ghdz (6.54)
B V ¢r A

To expand integral w; we substitute dipole field as well 1, = 35%3 + 372213 and use
symmetry:

_ Gnop

12 ,
+ \/_gbir (oBéB/szghdz+oB%9/Bz2¢3hdz)

+ Sl (5?4 / Pshdz + 0% / Pshdz + 74 / 22Pshdz + 5 / z2¢3hdz)
\/QTT A B A B
Which gives:
W, = o (6%-—(03—%5Bfﬁt/m¢3hdz (6.56)
Vor A

6 ,
+\/% (v — (o5 +78)%) /A@Dgzzhdz

Putting it all together and using equality z = h = h,g = g = 1 in first hexapole:

WP () = ((OB+5A+5B) % /A ¢3h2dz) al (6.57)
+ ((0/B+7A+'YB)\6/L£ / zwgghdz) w;
+ (6% — (68 +68)%) @ / Yshdz
© (- 0+ S / $52?hd

The last term is already in the second order of parasitic aberrations (¢2) and does not
influence resolution. It is not negligible when comparing with spherical aberration, so
we written it down, however any higher aberration which are order €2 or higher will be
smaller thus we neglect it.

To graphically interpret the equation above we can look in Figure 6.5. If we have
asymmetric shifts of hexapole fields and ellipticity of doublet we get zero V; at the end of
corrector. We can use it to correct V; in the image induced by lenses (figure 6.6).
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N N
Vo(2)
A 4 A 4
hexapole A A lens doublet B hexapole B

hexapole corrector

Figure 6.5: The function V{, V7 through hexapole corrector with §4 = —dg, 0 = 0, v4 = 0,
v =0 and ¥ =0

N
- ———— ey
ﬁ Volens(2)
N e e e e ——— )
. Vo(2)
N
hexapole A A lens doublet B hexapole B

hexapole corrector

Figure 6.6: V| of lens doublet and it’s correction by hexapole shifts 4 = dp

6.2.8 Second Order Aberrations

The second order aberrations are becoming more complicated. We start with calculation
of integral of Mjy:

M, = —%w%’? (6.58)

+;—Z%"ww (ww' — ww')

+%€ (2ww (¢ ' — ¢ a") — (Y 0'w® — P w'd?))
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The eikonal S*! has form:

C F E
S = /o, ( —wPwf + Ewowowéwg + —wpwy (6.59)

4 i 4
K
+§w0w62w6 + Ewowéwéz

A, ., A
+ngw62 + leigwéz
D — 2 —1 D -2/
+§w0w0w0 + 5 Wl
B, _ 2 _ _
—Vore ( 771061062 - Tfuowéwg - 7
B A C! D E F
+—21D6w62 + —2w0w6w6 + —Qwow{f + —ngwg + —Qwowowé + fwmu%)

Co Dy o > 2 4
7100100 + = WoWy + 71001001[)0 + ?wowo

2 2 2 2 2

Where the coefficients are sum of free field, monopole, dipole, hexapole and quadrupole-
hexapole coupling coefficients defined in the appendix. The general second order trajec-
tory is complicated (see appendix). It simplify in the image plane as:

wiz) = Colw'l+ Kwgw's + 2Kwowhw'o + Fwgbgw'y + Awiw), + Dwi, (6.60)
+ € (ng/g + 232@610/0 + Agwowlo + Agwowlo + 202100@6 + Dgwg + E2w0w0>

We will now focus on error axial coefficients Bs. It consists of four integrals:

Bop = / %h’zh’o’dz (6.61)
Boy = # (hh2d — 2hhl'o + B3 0) " d2

By — 4% (onhR — R2H) iz

Boy = —% Ugghotps — Uyhhosdz

By = — ! 2Unghabs — 2Unhhaby + 6Vongh*ys — 3Vinhh*ysdz

Vor

We simplify last hexapole-quadrupole coupling integral. We split quadrupole field to
hexapole and monopole part 15 = Yo + 121, as well as integration limits:

Byg = —\;(;—T( 2/HU()gh¢2HdZ+2/LUogh¢2LdZ (662)
— 2/ UlhhlbngZ—Q/UlhhlbngZ
H L
b o[ Veghtide -3 [ Vlhh%gdz)
H H

where index H means integration over both hexapoles HA, HB first and second hexapole
respectively and L integration over lenses. U; is zero in lens area, Up is constant, also in
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6. HEXAPOLE CORRECTOR

hexapoles g = g and h = h. Thus we can write:

7 ([ )
hhabyrdz 6.63
Vo \J, e (663
_ 1- _
H

By = —Uoa

6
+ Z /H (Ungh — Uyh2) opsdz
and integrating by parts:
B Upp 2 (/h¢ d) (6.64)
= —Upa g z .
2Q 0 \/QTT . 2L
L 1. _ _ _
+ /H ULy + 01Vg = UoV{ = 5ToVidz - UOA\;;_T /Lghgbngz

+\% /H (Uogh — Urh?) otbsd

Since gh is antisymmetric with respect to the centre of corrector the non-vanishing term is
ar,—. We can split V{/, V/ to part only dependant on quadrupole field and the dependence
on shift of the optical axis in second hexapole 0. We can write:

2 _ _
By + Boy = _UOA\/%/th@bQL—dZ_UOA%/LE”L@@L—dZ (6.65)
2n
Vor Ju
67
+—
\/a HB

Uih? and Uygh are antisymmetric with respect to centre of corrector thus only non-zero
addition of g is ¥y_. Thus:

_ 1. _ _
+ Uripoh? + Uiihoh? — Ugihagh — §U0¢2§hdz

_ 1- - _
U1¢3Oh2 + U1¢36h2 — U0¢30gh — §U0¢35§hd2

2 _ _
Byg+ Bog = —Ujpa 7 hgar—dz — UOAL ghor_dz (6.66)
Vv ¢r L Vv ¢r L

61(0s — o — o
+ /’7( A \/af B) /I;A U1¢3h2 _ U(]??bgghdz

677((5,4—(53—03)/ T T
+ 75 " Urpsh 2U0¢39hd2

6 + v + 0
+ /’7(714 \/g B) /HA Ulz¢3h2 _ U()Z?,bgghdz

+677(% + 5 + 0)

Vor

The last two rows can be further simplified using symmetry with respect to hexapole field
and we get final formula of Bs:

_ 1- - -
/ Ulz¢3h2 - —Uoz¢3§hdz
HA 2
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6. HEXAPOLE CORRECTOR

By, = / %h’zh’o’_ dz (6.67)
%Lja (hh20" — 2hhh'o_ + h*ho_) 1" dz
in Sor 2o\ T
2hhh' — h*h d
+4\/a/( >¢1L— <

2 _ _
_UOA% /L hgiar—dz — UOA% /Lgh“ﬁzL—dZ
| 91004 = 9 = 0p) / Urhsh? — Ugthsghdz

HA

Vo
+677(5A ?/;Z—f —0p) /HA 0 sh? — %Umﬁgghdz
_3n(ya T/ZTB %)y, /H asghds
_ 30 ;—\/%4— 629)(70/4 /HA 2p3ghdz
B2(2)
hexapole A e lens doublet B hexapole B

...................................................................................................

hexapole corrector

Figure 6.7: The function By through hexapole corrector with 4 = dp, 0 =0, 74 =0, vy =0,
and o1, =0
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E N N i

; B>(2) E

E v N i

i...hexapoleA . A eenenesa s doublet ] B s hexapole B _.:

hexapole corrector

Figure 6.8: The function By through hexapole corrector with v4 = —yg, 0 = 0, d4 = 0,
6p =0, and 19, =0

E N N i

: A

: b ————— ] ~—————— :
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5 ) ittt bt :

: B2(2) J :

E v A 4 .

i_ hexapole A A lens doublet B ___t\_e_)se_ip_o_l_e_f; _____

hexapole corrector

Figure 6.9: Correcting doublet By using d4 = —dp
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6. HEXAPOLE CORRECTOR

6.2.9 Third Order Aberrations

At third we evaluate derivative of the third order eikonal ST/ = f My + %D(l)M4 +
1 DO Msdz:
2

dSIU 1(0),,,/(1) =/(0) ,7,/(1)
— - \/cz?(——“’ 8“’ O 8“’ w'(0)2> (6.68)
+é_z 200w ® (' @w® — g0y ©)

+ (@O + @ Dep®) w©?

W@y — 59
+% (w(m?w(z)% ERRORE (2%)

in 3 4 in , L .
+7g (4000 OO = 7 Ou0) oy - T (40000 W - 20w ®) G

€ {“7 (4w(0) O™ L 2pW (@ )2 _ 900, (D) _ w’<1)w<0>2> o

16
;7(75 (4w(0) W@ 4 Qw(O)Qw( ) — 95 @ Wy © _ 7(0 W' > ¢ .
+in (w ( ey — 7(2)122)
_;_;Z (3w(0)w/(0)w(0)2 B w’(o)w(0)3> Wy — % (3w’(0)w( )2w(0) _ w(o)sw,(0)> @Zé

i (W' — 00", )|

We will be now interested in the axial aberrations in the image plane. In that case
we have to just consider derivative of eikonal with respect to wj and wj. Furthermore we
will use trajectories w®, w®, w® in the form:

WO — (2l + o(2)e (6.69)
w = Co(2)wf + Ep (2)ew)
w? = Cy(2)wPw) + Ex(2)ew + Fy(2)ew)w,

Where Co2(2), Eni(z), Ca1(2), Ex(z), E11(2) are function to corresponding coefficient de-
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6. HEXAPOLE CORRECTOR

fined as:
Coa(2) = igUy — ihl, (6.70)
Eop(z) = 129V —ihV;

Cg— Kh+ UUy (—939 + 3°7) + UgUr (=3°H + gg'h)

+U1Us (ggh’ + gg'h — 2gg'h) + UrUy (—ghh' + 2ghh’ — g'hh)

+UsUy (—ghh + g'h?) + UsUy (hhE — W2R)

3
S
~~
N
SN—
I

_ - R 1

Es(2) = Bag— Coh + UgVy (—g99 + 3°7) + UsVa ( ggh’ + 599 'h — gg h)
+UoVa (—gﬁh' + 57%2) + U Vo (—9 N+ g9 h)

_ 1 o 1 _ _ o

+Th Vi (—Eghh’ + ghh' — §g’hh) + UL Vs (hhi — h21)

Ei(z) = —Ash+2Byg+ UV, (—2939 + 25°7") + UoVi (—g°h' + gg'h)
+U Vp (2g§h/ +2gg'h — 4§§7L) + U (—ghh’ + 2ghh’ — g/hﬁ)
+UsVp (—2ghh’ +2g'h*) + UsVy (hhR — h*1/)

We define integrals:

¢7‘ I / 1 li / n
Ly \/_ WO oo BPh 4 = ( —ClohR? 4 200hhh — Cph2h ) W, (6.71)
—3C h2y + = (h4h’ 4hh3h’) 7z
- 477 { ¢r AN, ¢T 7127
Sg = \/E 2 002h h'o —|— 477 E()lh h
116 ( C!,hh6 + Cophhd + Coghh's — Coahh! *) W,
1
+32 ( Eothh? + 2Eq hih! — Emh?h’) W,
- - =1 ’ =~ 77 1. —9-y 1- s\
+7 (Cog’hh + Cooh'ls — Coghh ) W1y, — 20 s + (—§hh2h + 6h3h> 7,
+ (——hh%’ — ghhzh 0+ 5h3h’o) 'y — 6Cy1honps — 3E11h*)sdz
16/’7 ¢T I 1 I / ///
4 = - LR + = (~Chah?o — Cuh®0' + 2Cor o)

- 1 N\ - 1- 1_.,— _
+ (gqufﬂ — Zcoghhf) O+ (gh‘*o' — §h3h'o) N
—3E20?L27E3 - 2h4ﬁ4d2’
Then eikonal looks like:

1.
QI _ o ( T w’éw 0— 4L4w’0w'3> (6.72)
+2€\/E ( Z 7/4 Sg 7/311)/0 + %Sgwlowlg + 11614311)/3)
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6. HEXAPOLE CORRECTOR

The canonical momentums are in the image plane just linear combination of positions:

/
i) = VO i

2 (6.73)
Thus any vector:
VoQUTQW (6.74)
is zero. Thus the third order axial aberrations are in the image plane:
w®(z) = —zf4w’é + 42’L41D’3w'0 + z'Agew'g + 32'53611/310’0 — 2'5'3610’3 (6.75)

Now we use symmetry with respect to centre of the corrector. Cyy is symmetric, Cyy
antisymmetric with constant symmetric part (only from term Cg). Symmetric parts of
Eo1, Ego, Eqy are:

Eore = i2gVoy — ihVi_ (6.76)
>, ~ 7 7 =2 77 I S
Esy = Borg—Co h+UgVo_ (=999’ + 5°7) + UsVis (gggh + 599 h—gg h)
+UoVa— (—ghh' + G h*) + UiVo- (=g°h + gg'h)
_ 1 1 _ _ -
+U Viy (—§ghh/ + ghh' — 5g’hh) + Ui Voo (bR — B*R)
Eny = —Ay h+2By, g+ UV (—29579/ + 2§2§/) + UpVi (‘f]zﬁ/ + gglh)
+UVo- (290 + 299'h — 4gg'h) + Ui Viy (—ghh' + 2ghh’ — g'hh)
+UsVo- (—2ghh + 2g'h*) + UsViy (hhh/ — h2R')

The antisymmetric parts are with opposite signs. We can now write non-vanishing parts
of L4, S5, A3 outside corrector:

Ly = \1/? / Cgh*ipsdz =CU, =0 (6.77)
Sy = — \j‘% %cggh’ 54!+ i\if_rElo'Qh’
+% (~Ciahho + Coshhoy' + Conhl'o. — Coahl o ) '
+3i2 (—Em_hh? 2By hhl — Em_h?h’) W,
% (cog'hh + Cooh'h — coghh’> W'y — 209 haby + (—%hh%’ + éh%’) Wy
+ (_%hh%; — Sh*H, + %h3h’0+) 'y — 6C1hov — 3E1 h20sdz
Ay = — 3/(;% %C{)thzo’+ + 31—2 (—C{]JLQ% — Coah?d, + 2Cosz/OjL> LU

1,0 1 - 1oy, 1oar \ =
+ (gCOQhQ - ZCoghh) Q,b 1L+ + (§h40+ - §h3h O+) Qﬁ 3

—3E20+ ;Lzlzg - 2%4&44_ dz
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6. HEXAPOLE CORRECTOR

N N
S3(2)
As(2)
A 4 A 4
hexapole A A lens doublet B hexapole B

hexapole corrector

Figure 6.10: The function Ag, S3 through hexapole corrector with 4 = —dg, 0 =0, y4 = 0,
v = 0, and 17, = 0 (S5 is very small after corrector but not zero)

N N
As(2)
S3(2)
N N
hexapole A A lens doublet B hexapole B

hexapole corrector

Figure 6.11: The function As, S3 through hexapole corrector with y4 = vg, 0 = 0, d4 = 0,
6p =0, and 19, =0

6.3 Chromatic Aberration

In previous part we dealt with geometrical aberrations of the hexapole corrector. However,
due to the lens doublet the hexapole corrector gives to the contribution to the first order
chromatic aberration as well. To calculate chromatic aberration we expand the Relativistic
potential in Lagrangian. The addition to the paraxial Lagrangian has form:

1 AFE
My, = =/ ¢, w0’ — (6.78)
4 E
Where A—EE is relative dispersion of the beam. The derivative of eikonal is:
ds¢c AFE _ _
dz = E\/ er (wilﬁiglgl + w;u?ih'g' + wiwi'g'h' + wgwi'h'h') (679)
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6. HEXAPOLE CORRECTOR

And addition to the trajectory:

w® = AL h/h’g’dz -7 / R'hdz ) w] (6.80)
2F
AE T /= — 17/
+ ﬁ(h/ggdz—g/ghdz w;
We define coefficient of chromatic aberration as:

C, = %/h’h’dz (6.81)

This can be using rotated coordinates and using integration by parts rewritten in the
form:

C, = /hh( m )de (6.82)
2V,
For thin/weak lens approximation (A is constant inside lens) we get solution:
ro\ 2 2
. = |h|2/ (”—%> dz = M° (6.83)
2Vor

Where f is the focal length of the lens.
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7. Resolution

7.1 Intensity in Image Plane

To calculate resolution of the hexapole corrector system we start with diffraction integral
9] to calculate wave function in the image point g;:

vlg) o< | (g i, (7.1)

where S is eikonal and it is integrated over the coordinates q, in the object plane. If we
have system with an aperture than the diffraction integral changes as:

¢(ql) OC/ ( ¢(q0)6_%S(QO7Qa)qu) 6—%S(Qa7qi)dqa (72)
A R2

where it is additionally integrated over aperture A. We would like to know point spread
function. Thus we use 1(q,) = d(q,) and simplify equation to:

»(g;) o / e~ i (5(@a)tSaa) g, (7.3)
A

Object plane Aperture Image plane

Figure 7.1: Trajectories in system with aperture. Blue — paraxial trajectory, green — trajectory
from g, to examined point g;

Generally S(qo,q.) + S(qa,q:)! = S(qo,q;), however, we are interested only in the
close surrounding around the image point g, (Figure 7.1). In that case we can assume
that g; — gy is small * and we can use Taylor expansion and write:

S(40:qa) + S(qa-a:) ~ S(qo,qa) + S(qu-qy) + (g — qyp) (7.4)
= S(q0,qr) +Prlqi — qy)

*On the other hand we still have to satisfy the condition for WKB approximation such as the size
|gi — qy| is bigger than wave length of the electron: |g; — qf| > Aei.
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7. RESOLUTION

Where there is q(q,) is given by trajectory equation. We can now re-parametrize eikonal
by Legendre transformation gy — py:

S(q0,qy) +Pr(q;i — qr) = Pra; — S(qo, Py) + Pr(@i — @) = —S(qo, Pf) +Prq; (7.5)

And we can calculate relative intensity as:
ZU(CIZ) o / eég(qo,pf)e—%wqidpf (7.6)
A,ang.
The canonical momentum py and direction of the ray q} are related by formula:

Pr=9q;+ A (7.7)

Where g = /—2mq¢, is kinetic momentum for magnetic system. A gives just phase shift
to the wave function and does not contribute to the intensity and therefore we can write:

vlg) o [ eiSmae g (738)
A,ang.
We define wave number of electron:
g 27
k=2 ="_ 7.9
Y (7.9)
and function of wave deviation y as :
S
X=— (7.10)
g
We can calculate intensity as:
2
I(g)) / ! ) dgg (7.11)
,ang.

In case of radial symmetric x we evaluate 7.11 for q; = ¢;e, in polar coordinates and
integrate partly over angle:

2

I(q;) o (7.12)

/ ehx(d0:4p) / ¢~ haids Siwdcbq;qu}
A,ang. —

2

o0 / eikx(qo,q})Jo(kqiq})q}dq}
A,ang.

where J, is Bessel function.

To calculate chromatic aberration which is present due to the energy dispersion of the
beam we can assume that the electrons with different energy are in-coherent. In that case
we can calculate the intensity of polychromatic beam as the convolution of the intensities
as a function of defocus with the Gaussian distribution of standard deviation equal to:

AFE

0 =—C.x 7.13

NOTETa (7-13)

where AFE is FWHM of the dispersion of the beam with energy F, C. is chromatic
aberration and « is maximal aperture angle.
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7. RESOLUTION

7.2 Axial Aberrations of Hexapole Corrector

In the STEM set-up of hexapole corrector we are interested just in axial aberrations
g, = 0. Up to third order the wave deviation has the form:

F Ve Ve
X = ——whwy+ (%) w — (%) Wy (7.14)
() () (2) - (2)
_ %wgw/g o (%) @/4 + (%) w/4 _ (%) w/w/?) + (Z%) w/?)w/

Where F, C' are main aberrations — defocus and spherical aberration and rest is due to the
misalignments. The probe intensity in image plane for different aberrations are in figures
7.2 and 7.3

Table 7.1: Aberration notation

Aberration coefficient  Used the thesis Uhlemann and Haider?!  Krivanek!

Two-fold astigmatism AT Ay Ci
Defocus F Ch Cro
Three-fold astigmatism iUy A, Cas
Axial coma By By 5Ca1
Four-fold astigmatism - %Ag As Cs4
Axial star aberration - %Sg S3 %03,2
Spherical aberration C Cs Cs

To describe the resolution we can use the width of the peak in half of its intensity
— FWHM. This has the advantage that it can be easily calculated even for aberrations
with large support, however, it may gives us misleading information if the intensity peak
is not sharp. In that case it is better to use parameter dsy, which is the diameter of the
circle at which there is 50% of the intensity. That is also equivalent to the beam current
as we will show. The current in image plane j is defined as:

. qh - — q
§ = (V0 — 9) - Liya (7.15)
mi m
where 9 is the wave function in the image plane:

b= \/pe* (7.16)

with probability density p and Hamilton’s principal function S. If we expand 7.15 and
calculate z-component we get:

. oS ’
Jz = ip (— - qu) = pqg (7.17)
m 0z m

95



7. RESOLUTION

% 0.04 nm ;E: 1.4 bm
-1.0 -0.5 0.0 0.5 10 -10 -0.5 0.0 0.5 1.0
r (nm) r (nm)
(a) Diffraction on 50 mrad aperture (b) Defocus F' = 17 nm

Pralann
-

-1.0 —(I).5 0.0

I (rel.)
I (rel.)

o
wn
=

0 -10 -0.5 0.0 0.5 1.0
r (nm) r (nm)
(c) Two fold astigmatism V = 5 nm (d) Third order axial coma By = 0.2 um

Figure 7.2: Probe intensity and radial averaged intensity for different aberrations with aperture
maximum angles 50 mrad for 100keV electron (part 1.)
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% Md\}ﬂ_nn&/\’\'\“‘—__‘ %: 0.15 nm
-1.0 -05 0.0 0.5 10 -10 -05 0.0 0.5 1.0
r (nm) r (nm)
(a) Three fold astigmatism Uy = 1 ym (b) Spherical aberration C' = 50 ym

s MMH\AM— s
-1.0 0.5 0.0 05 1.0 -1.0 -0.5 0.0 0.5 1.0
r (nm) r (nm)
(c) Star aberration S35 = 10 ym (d) Four fould astigmatism C' = 50 pm

Figure 7.3: Probe intensity and radial averaged intensity for different aberrations with aperture
maximum angles 50 mrad for 100 keV electron (part 2.)
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7. RESOLUTION

For small angles we can say that ¢, is constant and thus the current is proportional
to the intensity (probability density).

7.2.1 Resolution without Corrector

The system without corrector is limited mainly by spherical aberration of the third order.
In Figure 7.4. There is a calculation of the spherical aberration of the third order with
chromatic aberration within the optimal defocus as a function of the aperture angle.
If the spherical aberration is present than the additional increase due to the chromatic
aberration is negligible. If we apply the hexapole corrector we can zero the spherical
aberration and in that case the resolution is limited by the chromatic aberration.

—-=—~- Diffraction
—— Spherical
—— Chromatic
10° .
€
[=
3
el
0t T ——— L
0 5 10 15 20 25

Ap. angle (mrad)

Figure 7.4: Dependence of the resolution on aperture angle in optimal defocus for spherical
aberration C' = 2.5 mm and for chromatic aberration C, = 2.5 mm (100 keV electrons) If we
combine spherical aberration and chromatic aberration the result is almost indistinguishable
from the spherical resolution alone

As we see we can get the maximal resolution (dso = 0.27 nm) for apertures angles
8.4 mrad. In Figure 7.5 there is a radial distribution of the intensity for different defocus
if we are limited by diffraction, in optimal aperture or limited by spherical aberration.
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2.0

1.5

r (nm)
=
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0.5

0.0 T
-400 —-200 0 200 400
F (nm)

(a) 6 mrad, d = 0.32nm, fo; = —44nm

r{nm)

-400 —-200 0 200 400
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(b) optimal 8.4 mrad, d = 0.27 nm, fo; = —83 nm

2.0

1.5

r (nm)
=
=

0.5

0.0 T
-400 —-200 0 200 400
F (nm)

(c) 10 mrad, d = 0.57 nm, f,; = —134 nm

Figure 7.5: Radial probe intensity through focus for 100 keV at different maximal angles of
aperture with spherical aberration C' = 2.5 mm
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7.2.2 Resolution with Corrector

Now we would like to add hexapole corrector to eliminate all axial aberrations up to third
order. As we saw it is now limited by chromatic aberration. Furthermore the hexapole
corrector increases the chromatic aberration due to the lens doublet and transfer lens. We
can estimate the additional chromatic aberration by the transfer lens using the formula

6.83:
hul® | hul® Ji ( th)
L TR A 1V A G 7 (718)
where |hy| = ]{;—t is the value of the h ray in the hexapole f; is focal lens of the doublet

lens, f; the focal Olength of the transfer lens before the objective lens and M, magnification
of the objective lens. For values fr = fp = 40 mm, |M,| = 20 is additional chromatic
aberration C gy = 0.3 mm. In Figure 7.4 we already increased the chromatic aberration.
The real value for the objective alone is about 2 mm.

To further proceed we will assume that our system with hexapole corrector is only
limited by chromatic aberration C. = 2.5 mm. We choose the aperture angles 18.3 mrad
(see Figure 7.4) to get the best resolution. We will now estimate what the maximal
allowed residual aberrations to keep resolution under 0.16 nm. The results will be similar
to the published in [6). The limiting values for each coefficients were made by calculation
of the dsy of probe intensity (Figure 7.6).

We omit defocus effect since it can be modified with any lens and just gives required
precision on electrical source of the excitation. The hexapole field in the corrector is
strong so we consider only the leading terms of aberration dependent on hexapole field.
The astigmatism caused by hexapoles is:

VO = (OB+5A+5B)%/4¢3h2dZ (719)

Using the approximation of constant hexapole field, we get the absolute value of astigma-
tism as a function of spherical aberration of the objective C, and optical parameters:

3C,
2L

|OB +04 + 5B|
|hr|

14 Upa| = |op + 64 + 05| (7.20)

Where hp = % is h ray in the hexapole L is length of the hexapole fr is focal length of
the transfer lens just before the objective lens and M, is magnification of the objective.
For parameters L = 40mm, C, = 2.5mm, |V{ jimit| = 2nm (Figure 7.6) we get requirement

for logp + 4 + 5|

2L
3C,

This, however, is not critical, because the astigmatism can be additionally eliminated by
stigmator.

log + 04+ 08| < |Voiimit] ~ 7nm (7.21)

Aberration of Second Order

We have additional three-fold astigmatism U, due to axial mis-rotation of the hexapole
correctors. For small values of mis-rotation and |Up jimi| = 350nm, fr = 40mm,|M,| = 20
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we get the requirement as:

|UO limit| |UO limit | |Mo| 2L
0| < : = : ~ 1 d 7.22
1< T fro Vao T (7:22)

In case of axial coma Bs we have the leading terms:

B, = 91004 \/%B o) /H ) Uyihsh? — Uytbsghdz (7.23)
+677(5A — 53 — 53)

Vor
3n(va + B + 0p)

— U, / zpzghdz
Voér TR

3n(7a + 78 + 0p) - / e
— Uoa zp3ghdz
2\/ ¢r ‘ HA ’

Assuming all components real we can get two evaluate |By| due to the shifts:

1.
/ Oy — 20y daghd:
» 5

3C,M,
|Ba| = 1[04 —dp — op] (7.24)
8fr
And due to the tilts:
3C, M,
B = A ity 7.25
| By| |74 + B + 0p] 3277 (7.25)
For limiting value |By ;| = 150 nm:
8fr
04— O0p — < |Bajiml—— =~ 320 7.26
|64 — dp — 0Bl | Ba,i |3CoMo nm (7.26)
32
V4 + v+ 0] < |Bz,um|ﬁ ~ 0.03 mrad

Of course in reality we do not have to eliminate both tilt and shift but just a linear
combination of these two.
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7. RESOLUTION
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Figure 7.6: Sensitivity of resolution on aberration coefficients for maximal aperture angle
30 mrad and 100 keV electron
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7. RESOLUTION

Aberration of Third Order

To keep the resolution under limit we need to control the spherical aberration with pre-
cision:

|C| < 35 pm (7.27)

Which gives the request on electronics of the hexapole excitation.
We now consider only the leading term which are third power of the hexapole field:

4i oy

Sy = __\MZT —2C51hapy — 6C1hovs — 3By h*sdz (7.28)
16i L

Az = il —3E50+h*3dz

Vor

In hexapoles functions Cyy, Eoyy, E114 can be written as:
Cy = (C—=UUy+ Uily)g — (K — U,Uy + Ul (7.29)
By, = (Bay + %UOVH —U1Voo)g — (Coe + UgVo — U1 Vig )R
Eny = (2Boy — Uiy +2U1Vo-)g — (As — Ui Vig + 20U Vo )k
In this situation we will not provide exact calculation and just estimate scaling:

5
T3
where ¢ is some combination of shifts of hexapoles and v some combination of tilts. for o
and v we have limitations in order of:

S, Ag o (6 +yL)C32 L2 (7.30)

0] 8 pm (7.31)
lv] ~ 0.2mrad

Q

which is in the same order or better as consideration for B,.

7.2.3 Summary

If we would like to achieve better efficiency of the corrector as well as minimize additional
aberration By, Az, S3 it is needed to maximize h ray in the hexapole. On the other hand
this negatively influence three-fold astigmatism due to mis-rotation of the hexapoles.
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8. Adjustment of Corrector

As we saw in previous chapter to eliminate parasitic aberration it is crucial to be able
to control tilt and shift of the hexapoles. The shift, tilt and ellipticity of the doublet
influence the residual aberrations as well, however, their effect is much smaller than of
the strong hexapole field. Therefore we can align the corrector by just using two double
deflector systems [7l. The standard placement of the deflectors is in Figure 8.1. By using
the first (blue) deflector we create symmetrical shift 64 = dp and anti-symmetrical tilt
Y4 = —7p. By linear combination with the second (green) deflector we can produce also
the anti-symmetrical shift and symmetrical tilt.

spec.
plane

N X: lm m | l

double deflector :hexapole A A double deflector B hexapole B! transfer objective

.....................................................................
hexapole corrector lens lens

Figure 8.1: Placement of two double deflectors in the hexapole corrector

To compensate the residual aberration it is necessary to be able to measure it. It is
usually done by two approaches - by Zemlin tableau®! or by using Ronchigram ['?. The
measurement and calculation of the aberration coefficients is rather complicated and is
not subject of this thesis. Once we know the coefficient of the aberration we can start a
procedure to eliminate them.

8.1 Three-fold Astigmatism

Probably the first step is to eliminate the three-fold astigmatism produced by mis-rotation
of the hexapoles. The procedure of its elimination is already described in section 6.2.1.
The main idea is to change excitation of the lens doublet to generate image rotation which
minimize the absolute value of Uy than we change the relative strength of the hexapoles
such to again minimize the Uy, we should be able to get it to zero, if not we can repeat the
process with lens rotation and strength of the hexapoles to get the coma under desired
limit.

Now we can focus on eliminated aberrations, mainly caused by misalignments of the
hexapoles.
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8. ADJUSTMENT OF CORRECTOR

8.2 Astigmatism of Hexapoles

We start with aberrations of the first order. The defocus is obviously eliminated by
changing of excitation of a lens. The astigmatisms is also well known in standard electron
microscopy and it can be eliminated by stigmator. However, it is useful to eliminate
the astigmatisms produced by the hexapoles because it negatively influences the star
aberration and four-fold aberration. At first we align the lenses of the corrector and
zero its astigmatism with hexapoles switched off. Than we switch off the hexapoles
and eliminate the produced astigmatism by changing d, = dp since the astigmatism is
dependant on the value:

VO = (OB+5A+5B)%/4¢3h2dZ (81)

In that case we can say that d4 + 0 + op is zero and therefore minimize the star
aberration and four-fold aberration.

8.3 Axial Coma

The axial coma is generally dependant on 64 — dg and v4 — vg. We can use change of
both to eliminate it, however, it is better to use just 04 = —dp since the coma is more
sensitive on shifts than on tilts.

610 ?/(;—f ) /HA Uﬂﬁgh2 — Uptpzghdz (8.2)

+677(5A — 53 — 53)
Vér

3n(va + 7B + 0p) /
— U, zpzghdz
Vv ¢r o4 HA ’

= = —
_3n(Ya + 78 + 0p) o / 2bsghdz
2V, HA
We also noticed that there is certain combination of 4 — dg and v4 + 5 for which the
coma does not change. We can use this combination to eliminate the aberration of higher
order. Theoretically, the needed combination can be calculated from the formula above
separating it to the imaginary and real part. Nevertheless, in practice it might be easier
to directly measure the combinations of 4 — dp and 4 + v which does not influence Bs.

By

1
/ Oyl — 20ghd=
a 2
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8. ADJUSTMENT OF CORRECTOR

8.4 Aberration of Third Order

The last two aberrations, we eliminate, are four-fold astigmatism and star aberration.
The dependence on hexapole tilt and shift is through the formulas:

din

Sg = _ﬁ —2621;“,;2 — 6@21%5@23 — 3E11+B2&3d2 (83)
162 _ -
Ay = bin —3Ey0 h*sdz

Vo

The four-fold astigmatism depends through the function Esy, only on d4 + 65 and
¥4 — vg. On the other hand the function Cy; has symmetric as well as antisymmetric
part with respect to the centre of the corrector thus the star aberration depends on any
of (04 +65),(04 — dB),(va +7VB):,(va — VB)-

The correct solution is thus to use v4 = —vp to eliminate the four-fold astigmatism
and the linear combination of 64 — dp and v4 + v which does not change B, to eliminate
the star aberration.

Another possibility would be to use 4, = g and y4 = —7p to eliminate both A3 and
S3 and use additional quadrupole stigmator to get rid of two-fold astigmatism.

The procedure above is based on the assumption that we do not change the hexapole
strength to change spherical aberration. To change it, it is needed to do the aligning
procedure with dependency on the hexapole strenght or to use additional weak lens before
objective to be able to change the spherical aberration.
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Conclusion

The thesis provide a deep insight into the origin of the parasitic aberration and gives a
proposition on how to improve the alignment procedure for the system with the hexapole
corrector. The formalism used in the thesis for calculation of the aberrations can be
also used as an example for calculation of similar problems. The eikonal method, which
has been used, can be easily applied on harder problems and the use of symmetry of
the system is more straightforward. Also the transition to quantum mechanics and wave
optics is quite direct.

The parasitic aberrations of the hexapole corrector due to misalignments and me-
chanical imperfections has been studied. The exact analytical expressions of the axial
aberration coefficients up to the third order have been found. It was proved that two-
fold astigmatism is mainly dependant on the symmetrical off-axial shift of the hexapoles
(04 = dp). The another of its source comes from the ellipticity of the lenses.

The second order axial aberrations are: three-fold astigmatism and axial coma. The
residual three-fold astigmatism originates from the uneven orientation of the multipoles
and it can be corrected by the excitation of the doublet lenses which produce the adequate
image rotation. The axial coma originates from the anti-symmetrical shift of the hexapoles
(04 = —0p) or their symmetrical tilt (y4 = vg). Additionally the aberrations are also
influenced by the misalignments of the doublet but this effect is much weaker than the
effect of hexapoles.

The expression of the third order residual axial aberrations — four-fold astigmatism and
star aberration — has been derived as well, however, those are quite complicated. The star
aberration depends on any combination of shifts and tilts of the hexapoles, the four-fold
astigmatism depends just on the symmetrical shift (64 = dp) and the anti-symmetrical
tilt (va = —vB).

The theoretical resolution of a standard system with the hexapole corrector limited
by chromatic aberration has been estimated as 0.14 nm at energy 100 keV. The maximal
limitation on the residual aberration which does not deteriorate the resolution has been
found. At the end the general idea about the alignment procedure has been presented.
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A. Second Order Aberrations of
Misaligned Corrector

A.1 Aberration Coefficients

The aberration coefficients of third order consist of three parts - free field propagation,
aberrations of lenses and aberrations of misalignments of lenses. We start with free field
aberration. We define integrals:

1-
Cr = / §h’2h’2dz (A1)
1 -
KF:/§g/h/2h/dZ
sz/g'g’h'h’dz
1 12712
Ap = 59 h'=dz
1 _
Dp = /§g'glzh'dz

1
EF = /lezglzdz

1-
Bop = /§h’2h'0’dz (A.2)
Aop = /g’h’h'o’dz
1 1712 /1
Cor = §gh odz
17/2 /BN
Dop = 59 h'o'dz
Egpz/g’g’h’oldz
17/2 /BN
Fop = 59 godz

For monopole part we have:
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Cy = 16% (—2h2RB' + 2hB%H') 4" (A.3)
Ky = # (—2ghhl + gh2H + ') " dz

Fy = 162—\7}@ / (—2gghh’ + 2gghh’ — 295 hh + 2gg'hh) "' dz

Ay = 16% (—2¢°hh' + 2g9'h?) 1" d=

Dy = oo [ (o' — g+ 20mgh) "

By = 1 6% (—29°99' +299°9") 10" dz

Boy = # (hh20' — 2hhlo + h2Ho) " dz (A4)
Aoyt = 16% (2ghho’ — 2ghio + 2gho — 25'hho) 4" d=

Cory = %j% (gh% — 2ghh'o+ g'h%0) " dz

Doy = 16% (g°ho’ + g°h'o — 2gg'ho) 1y""d 2

Ew = 16@ / (2ggho’ — 2ggh’o — 2gg'ho + 2G4 ho) 1" d=
ST \/% (990" — 2937’0 + 5°g'0) 10" dz

And dipole part:

Byp =
Agp =
Cop =
Dyp =
Esp =

Fop =

4% / (2hhh hzh’>v,E1Ldz (A.5)
4% / (Qghh —2ghh'+2g'hh)¢1Ldz

4% / (zghh g'h2)¢1Ldz

4% / ( 7N + 249 h) w 1.dz

4375 (zggh’ +299'h — 29'R) @',z

7 \/E / (2999 — 3°¢') ¥'1,dz

The next part in eikonal is [ DX M©. We can split that into pure hexapole field and
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coupling of hexapole with quadrupole field, hexapole integrals look like:

Ch
Ky
Fy
Ap

Dy

6n

——— [ Upgh®*s — Uih*haps + Uggh®hs — Uy hh*isdz

NS

6 _ o
—% / Uogghibs — Urghliabs + Uy gh* s — Ushh?sdz

6 B o o
1 / 2Usgghits — 2Waghhibs + 20 0ghiss — 2sghiidads
Vor
6 B N
\/:;—T / U092§¢3 — Ur1g*hps + U2gh2¢3 — Ushh*ysdz
6n

e U1g*gtbs — Usg®hips + Usgghips — Usghhabsd

6 _ _ - _
% / UG5 — Usg®bs + Uiy — Dy hiiad

Boy = —% Uoghots — Uyhhoysdz
Aoy = —j% 2U, ghows — 2Ushhotsdz
Con = —% | Ussgos, — Uighovud:
Doy = —j% Usghotps — Ushhosdz
Eoy = —% / 2U, ggo)s — 2Usghotpsdz
Fop = —%/U2990¢3—U3930¢3d2

and coupling of quadrupole with hexapole field:

(A.6)

1 _ o o
= / 2Uonghapy — 2Urnhhaps + 6Vongh*ys — 3Vinhh*psdz  (A.8)

1 _ o L
= oV /4U177§h¢2 — 4Usnhhpy + 12Vongghips — 6Vinghhisdz

1 _ _ o _ o
— / 2Wonggin — 20 mghibs + SVinghbs — 6Vanhh2iyds

1 B B B _ _
- = / QUsnghiss — 2Wsnhls + 6Vangg bs — SVingthiisd

1
Vor

1 _ _ _ _ _
\/7 / 2Usmqggabe — 2Usnghaby + 3Vingg?s — 6Vanghabsdz
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A.2 Trajectory

The second order aberrations are:

w® =[Cg— Kh+ UyUs (—9399 + 3°7) + UoUy (—g*K + gg'h)
+U Uy (9gh’ + gg'h — 2gg'h) + UyUy (—ghh! + 2ghh’ — g'hh)
+Us Ty (—ghh' + §'h%) + UsU, (hhl — h*1')] wyu's

+ [-Ah+ Kg+ UiUs (999 + 3°7') + UnUs (=g°h + gg'h)
+UsUs (ggh’ + gg'h — 2gg'h) + UsUy (—ghh' + 2ghh’ — g'hh)
+U3T, (—ghl' + §'h%) + UsUy (hhB — h*H')] wow';

+ [~ Fh+2Kg+ UgUs (2999’ +25°7) + UoUs (—25°h' + 2g4'h)
—|—U2(71 (—QQFth + 2§/B2) + UQUQ (2hhh/ — 2B2FL/):| wowéwlo

+ [-2Dh + Fg+ UiUs (2939 + 26°3") + UrUs (—23°h' + 2gg'h)
+UsUs (299’ + 299'h — 4gg'h) + UsUs (—2ghh’ + 4ghh' — 2g'hh)
+UgUl (—QQFth + QQ/BQ) + UgUg (Qhﬁh/ — QBQB/)} wowowlo
+ [Ag — Dh+ UpUs (—g399' + 5°9') + UsUs (—g°h' + gg'h)

Uy (ggh' + gg'h — 25g'h) + UsUs (—ghl! + 2ghl' — g'hih)
Uy (—ghh! + gh2) + Uyls (hhk — R2R)] wia,

+ [Dg — Eh + UiUs (—gg9' + 3°§') + UnUs (—g*h + gg'h)
+UsUs (ggh’ + gg'h — 2gg'h) + UsUs (—ghh' + 2ghh’ — g'hh)
+U302 (—gﬁh/ + glhz) + UgUg (hﬁh/ - FLQFL/)} wgﬂ)o

_ o _ 1 1 - _
+ {329 — Coh + UgVo (—99d’ + 3°9') + UsVa (§ggh’ + 599% — gg’h)

+UoVa (—ghh + g'h?) + U\ Vo (=R + gg'h)

_ 1 1 _ _ L
+Uh Vi (—§ghh’ + ghh! — §g’hh) + UVy (hbl! — h%’)] ew's
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+ [=Ash + 2B2g + UpVp (2999 +23°7) + UoVi (—g°h' + gg'h)
+U1 Vo (2990 + 299'h — 4gg'h) + UiVi (—ghh' + 2ghh’ — g'hh)
+UsVo (—2ghh’ + 2g'h*) + UsVy (RhA — BPR')] ewjuw’o

+ [A2g — Exh + Ui Vo (—2959 + 26°g) + UiVi (9g9h' + gg'h — 2g4'h)
+ U4 Vy (—2ghH + 2g'h2) + UyVy (—25°H + 2g4'h)
+Ug‘/1 (—ghh/ + 2§B;L/ — g/hﬁ) + UQVQ (2hhh/ — 2B2B/):| Ewowlo

+ [A2g — 2Dk + Ui Vg (—2949' + 25°9) + Ui Vi (—5°R' + gg'h)
+UsVo (290" + 29g'h — 4gg'h) + UsVi (—ghh' + 2ghh’ — g'hh)
—|—U3‘70 (—QQFth + QQ/BQ) + U3V1 (hhh/ — BQB/)} Ewowlo

+[2Cog — Exh + UgVi (—999' + 3°9") + UoVa (—25°h' + 294'h)

+U Vi (ggh’ + gg'h — 2gg'h) + Ui Vs (—2ghh + 4ghh' — 2¢'hh)
+UsVi (—ghh + g'h?) + UsVa (2hhh — 217R)| ewowy,

_ _ _ 1 1 _ _
+ {ng — Boh+UsVo (999’ +3°7) + UaV4 (gggh’ - 599% - gg’h)
+Us Vs (—ghh' + g'h?) + UsVy (=g’ + gg'h)

_ 1 1 _ _ .
+UsV; (—gghh’ + ghh/ — §g’hh) + U3Vs (hhh' — hzh’)] ewp

+ [Eag — 2F5h + Ui Vi (—g39' + 3°9') + UnVa (—29°H' + 2g4'h)
+UVi (9gh + gg'h — 2GG'h) + UsVa (—2ghh’ 4 4ghh’ — 2¢'hh)
+U3Vi (—ghh' + g'h?) + UsVa (2hhh' — 2R%R)] ewotg
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