

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECHNOLOGIE

FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MANUFACTURING TECHNOLOGY

SYSTÉM PRO VYHODNOCENÍ PĚCHOVACÍ ZKOUŠKY

SYSTEM FOR EVALUATION OF UPSETTING TEST

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR DOMINIK JANEČKA

VEDOUCÍ PRÁCE SUPERVISOR Ing. JAN ŘIHÁČEK

BRNO 2015

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Ústav strojírenské technologie Akademický rok: 2014/2015

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

student(ka): Dominik Janečka

který/která studuje v bakalářském studijním programu

obor: Strojírenská technologie (2303R002)

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma bakalářské práce:

Systém pro vyhodnocení pěchovací zkoušky

v anglickém jazyce:

System for evaluation of upsetting test

Stručná charakteristika problematiky úkolu:

Pěchovací zkouška je jednou ze základních metod sloužících ke zjišťování mechanických charakteristik materiálů. Experimentální vyhodnocení pěchovací zkoušky spočívá především ve snímání tvářecí síly a dráhy lisovníku. Současným řešením je výstup těchto měření na souřadnicový zapisovač a jejich odečet. Tato metodika je již zastaralá, proto byla zakoupena a zprovozněna měřící aparatura s výstupem do PC. Dále je nutné v příslušném software Dewesoft vytvořit ovládací a vyhodnocovací rozhraní a ověřit jeho funkčnost.

Cíle bakalářské práce:

Cílem práce bude návrh a realizace systému pro vyhodnocení pěchovací zkoušky v příslušném software. Požaduje se průběžné měření a zaznamenávání hodnot tvářecí síly, dráhy lisovníku a teploty s následným zpracováním naměřených údajů. V práci bude též zahrnuto ověřovací měření, které srovnáním s klasickým postupem prokáže účinnost a správnost vyhodnocení zkoušky pomocí software. Seznam odborné literatury:

- 1. DVOŘÁK, Milan, František GAJDOŠ a Karel NOVOTNÝ. Technologie tváření: plošné a objemové tváření. 2. vyd. Brno: CERM, 2007. 169 s. ISBN 978-80-214-3425-7.
- 2. FOREJT, Milan a Miroslav PÍŠKA. Teorie obrábění, tváření a nástroje. 1. vyd. Brno: Akademické nakladatelství CERM, 2006, 225 s. ISBN 80-214-2374-9.
- 3. MORRIS, Alan S. Measurement and instrumentation principles. Boston: Butterworth-Heinemann, 2001, 475 p. ISBN 0750650818.
- 4. SAMEK, Radko. Analýza mezního stavu plastičnosti a technologické tvařitelnosti. 1. vyd.Brno:VA, 1988. 88 s.
- 5. ZEHNULA, Karel. Měření neelektrických veličin. 2. vyd. Praha: SNTL, 1983, 371 s.

Vedoucí bakalářské práce: Ing. Jan Řiháček

Termín odevzdání bakalářské práce je stanoven časovým plánem akademického roku 2014/2015. V Brně, dne 11.11.2014

L.S.

prof. Ing. Miroslav Píška, CSc. Ředitel ústavu doc. Ing. Jaroslav Katolický, Ph.D. Děkan fakulty

ABSTRAKT

JANEČKA Dominik: Systém pro vyhodnocení pěchovací zkoušky.

Práce se zabývá návrhem měřícího systému pro vyhodnocení pěchovací zkoušky. Veličiny potřebné pro vyhodnocení zkoušky jsou získávány pomocí snímačů měřící aparatury. Potřebné veličiny jsou síla, dráha a teplota. Za tímto účelem byly použity snímače HBM R6C, HBM W50 a termočlánek typu K. Signály snímačů jsou zesilovány měřícími moduly Dewetron a převedeny do PC pomocí měřící karty NI USB-6009. Zde jsou dále zpracovávány vyhodnocovacím programem Dewesoft 6.5. V závěru práce jsou provedena ověřovací měření pro posouzení funkčnosti systému.

Klíčová slova: Pěchovací zkouška, Dewesoft, přetvárný odpor, měření síly, tenzometry

ABSTRACT

JANEČKA Dominik: System for evaluation of upsetting test.

The thesis deals with the proposal of measurement system for evaluating upsetting test. The variables for evaluating the test are obtained by using sensors of measuring devices. The necessary magnitudes are force, track and temperature. For this purpose they were used sensors HBM R6C, HBM W50 and thermocouple type K. The sensor signals are amplified by measuring modules Dewetron and transferred to a PC by measuring card NI USB-6009. There are further processed by evaluation program DEWESoft 6.5. In a final part are performed a verification measurements to assess system function.

Keywords: Upsetting, Dewesoft, deformation resistance, force measurement, strain gauges

BIBLIOGRAFICKÁ CITACE

JANEČKA Dominik: *Systém pro vyhodnocení pěchovací zkoušky*. Brno, 2015. 39s, 9 příloh, CD. FSI VUT v Brně, Ústav strojírenské technologie, Odbor technologie tváření kovů a plastů. Vedoucí práce Ing. Jan Řiháček

ČESTNÉ PROHLÁŠENÍ

Tímto prohlašuji, že předkládanou bakalářskou práci jsem vypracoval samostatně, s využitím uvedené literatury a podkladů, na základě konzultací a pod vedením vedoucího bakalářské práce.

V Brně dne 25. 5. 2015

.....

Podpis

PODĚKOVÁNÍ

Tímto děkuji panu Ing. Janu Řiháčkovi za cenné připomínky a rady týkající se zpracování bakalářské práce a panu Vojtěchu Řiháčkovi za pomoc při provedení zadaného experimentu.

OBSAH

Zadání	
Abstrakt	
Bibliografická citace	
Čestné prohlášení	
Poděkování	
Obsah	
	Str.
ÚVOD	9
1. ROZBOR SOUČASNÉHO STAVU	
2. PĚCHOVACÍ ZKOUŠKA	
2.1. Tvary zkušebních těles	
$\mathbf{O} \mathbf{O} \mathbf{D}^{Y} + \mathbf{I} = \mathbf{I}$	15

2.2. Pretvarny odpor	
2.3. Vyhodnocování pěchovací zkoušky	15
3. NÁVRH MĚŘÍCÍHO SYSTÉMU	
3.1. Měření síly	
3.2. Měření dráhy	22
3.3. Měření teploty	23
3.4. Zesilovač	25
3.5. Měřící karta	
3.6. Výsledný měřící systém	26
3.7. Program Dewesoft	27
3.7.1. Nastavení programu	27
3.7.2. Měření dat	
3.7.3. Analýza dat	29
4. OVĚŘOVACÍ MĚŘENÍ	30
4.1. Měření klasickým postupem	
4.2. Měření nově navrhovaným systémem	
4.3. Porovnání výsledků	37
5. ZÁVĚRY	
Seznam použitých zdrojů	
Seznam použitých symbolů a zkratek	

Seznam příloh

ÚVOD [4], [16], [17], [18], [23]

V technické praxi je využíváno mnoho různých konstrukčních materiálů, jak kovových tak i nekovových. Tyto materiály mají své typické vlastnosti, které jsou odrazem jejich chemického složení a struktury. Mezi tyto vlastnosti patří pružnost, pevnost, tvrdost a tvárnost, které souhrnně nazýváme mechanickými vlastnostmi. Mechanické vlastnosti mají vliv na chování materiálu při působení vnějších sil. Pro zjišťování těchto vlastností používáme nejčastěji zkoušky, které odpovídají samotným tvářecím postupům. Tyto zkoušky ukazují vlastnosti materiálu a slouží k objektivnímu vyhodnocení tvářitelnosti materiálu. Nejčastěji se používají zkoušky jako je tahová (obr. 1a), ohybová (obr. 1b), krutová (obr. 1c) a v neposlední řadě tlaková (obr. 1d).

U tahové zkoušky dochází k deformaci zkušební tyče, která se prodlužuje až do přetržení. Z této zkoušky získáváme základní napěťové a deformační charakteristiky. Při krutové zkoušce je vzorek přiměřeně namáhán, až do úplného překroucení. Ohybová se používá pro hodnocení křehkých materiálu, svarů a pájených spojů. A u tlakové se vzorek postupně stlačuje a deformuje. Je využívána k výpočtu skutečného napětí při kování, lisovaní a válcování.

a) Tahová

b) Ohybová

c) Krutová
 d) Tlaková
 Obr. 1 Jednotlivé mechanické zkoušky [16], [17], [18]

1 ROZBOR SOUČASNÉHO STAVU [5], [11], [19], [23]

Pěchovací jinými slovy tlaková zkouška se provádí na vzorku, který je vložen mezi rovnoběžnými deskami a je postupně zatěžován tlakovou silou, která u vzorku zapříčiní změnu výšky výchozího vzorku a zvětšení jeho příčného průřezu. Cílem této zkoušky je zjišťování důležitých charakteristik materiálu z hlediska jeho chování při procesu tváření. Mezi charakteristiky patří deformační odpor, měrná přetvárná práce apod., které závisí na chemickém složení, teplotě a rychlosti deformace.

V současné době se na Ústavu strojírenské technologie, odboru technologie tváření kovů a plastů provádí pěchovací zkouška pomocí měřící soustavy znázorněné na obrázku 2.

Při zkoušce je vzorek (1) stlačován na hydraulickém lise CZR 600 (2), který má maximální sílu 600kN. Tvářecí síla se měří pomoci tenzometrického dynamometru typu RA/Mp (3) o jmenovité síle 1000 kN a dráha beranu je snímána pomocí indukčnostního snímače dráhy W50 (4). Tyto snímače jsou zapojeny do dynamického měřícího zesilovače KWS/6A-5 (5) od firmy Hottinger s výstupem na souřadnicový zapisovač BAK 4T (6). Ze zapisovače XY je získán záznam průběhu tvářecí síly v závislosti na spěchování vzorku. Grafickým výstupem z liniového zapisovače je pracovní diagram tlakové zkoušky, který se vykreslí na milimetrový papír, jenž slouží k dalšímu zpracovávání.

Výhodou této sestavy je již v praxi zavedený a prověřený způsob měření. Jednou z největších nevýhod při zpracování vykreslených hodnot je pracnost a možnost vnesení chyb při odměřování jednotlivých bodů. Proto je důležité, zvolit si optimální měřítko vykreslování křivky. Jelikož při zvolení menšího měřítka, je složitější odečítání jednotlivých hodnot. Dále pak je nutné tyto hodnoty vložit do počítačové podoby např. do programu Excel, aby bylo možné dále s nimi pracovat při získání materiálového modelu. Proto by bylo výhodnější získat veškeré naměřené hodnoty rovnou do digitální podoby a tím by se i vyloučily vnesené chyby, a ušetřil by se čas.

2 PĚCHOVACÍ ZKOUŠKA [1], [7], [10], [22]

U této zkoušky se uplatňuje vliv prostorové napjatosti, který se mění v průběhu pěchování. Prostorový stav napjatosti souvisí s nestejnorodostí deformace ve vzorku. Tato nestejnorodost je vyvolána účinky tření na čelních plochách válečku a je značně ovlivněna tímto třením. Předpokládáme při pěchování dva stavy deformace (obr. 3). První je stav ideální, kde vniká stejnorodá deformace, u které se zanedbává působení tření mezi stykovou plochou nástroje a zkušebního vzorku, které má vliv na průběh napětí působící pouze v jedné ose. Toto platí pouze u ideálního stavu, kde se zanedbává tření, ale v praxi to není úplně možné a proto se uvádí spíše, jako modelový příklad. Druhý stav je ovlivněn třením, a zásadně ovlivňuje průběh deformace, nazýváme ho stavem reálným. U reálného stavu nastává nehomogenní deformace působící v celém objemu.

Obr. 3 Schéma deformace při pěchování [10]

Stejný vliv má i poměr průměru a výšky válečku. Při tlakovém namáhaní delších tyčí se projevuje nestabilita, při které nastává k vybočení tyče a důsledkem toho ohybová namáhání.

Obr. 4 Průběh vláken [22]

Oblasti s odlišnými stupni deformace a lze je rozdělit do tří jednoduchých oblastí, které se nalézají na jednotlivých místech tělesa (obr. 5). První oblast se vytváří uprostřed pod tlačnou plochou nástroje a má kuželovitý tvar I, a nevzniká zde k deformaci. Ve střední části přilne materiál k ploše nástroje a při stlačení zůstává v klidu (pásmo přilnutí). Ve střední části II dochází k intenzivní deformaci a na styčné ploše mezi nástrojem a vzorkem nastává skluz (pásmo skluzu). V poslední

Důsledkem toho se musí volit vzorky dostatečně krátké, projeví se účinek smykového napětí na čelních plochách v celém vzorku. Na vnější ploše se projeví známý soudečkovitý tvar. V objemu vzorku se utváří oblasti ztížené a intenzivní plastické deformace. Na obrázku 4 jde dobře vidět nerovnoměrný průběh vláken, které zlepšují mechanické vlastnosti materiálu.

oblasti III se objem deformuje s postupujícím rozšiřováním obvodu a nastává v této oblasti střední tahové napětí. Prostorová napjatost je značně odlišná v jednotlivých částech objemu tělesa.

2.1 Tvary zkušebních těles [4], [6], [7], [9], [20]

V nejčastějším případě se při zkouškách používají tělesa válcového průřezu (obr. 6) s počátečním průměrem d_0 a výškou h_0 . Mezi výškou h_0 a průměrem d_0 nespěchovaného vzorku je předepsaný pěchovací poměr D_r . Tento poměr je důležitý pro správné provedení

zkoušky. Poměr D_r by neměl přesáhnout hodnotu 2,5, jelikož by mohlo dojít k přeložení vzorku při stlačení a tím by se i znehodnotila zkouška.

$$D_r = \frac{h_0}{d_0} [-]$$
 (1.1)

Základní výpočty při pěchovací zkoušce jsou výpočet soudečkovitosti B_s (1.2), poměrného přetvoření ε dle výrazu (1.3) a logaritmického přetvoření φ dle výrazu (1.4).

$$B_S = \frac{d_1}{d_2} \ [-] \tag{1.2}$$

Kde: d1 ... průměr válcové časti [mm],

d2 ... průměr soudečkovitého tělesa [mm].

$$\varepsilon = \frac{h_0 - h}{h_0} [-] \tag{1.3}$$

kde: h ... výška vzorku po spěchování [mm].

$$\varphi = \ln \frac{h_0}{h} \left[- \right] \tag{1.4}$$

U bežných vzorků válcového typu se pro snížení tření mezi stykovou plochou s nástrojem používají běžná maziva, ale tyto maziva nejsou dostatečně učinná, kvůli vysokým měrným tlakům. Proto existuje několik úprav, jimiž je možné podstatně snižit účinky a díky

Obr. 6 Válcový vzorek [9]

Obr. 7 Vzorek s vybráním [9]

tomu lze mnohem lépe a přesněji vyhodnotit pěchovací zkoušku. Jedna z nejstarších metod je úprava stykových ploch podle Siebla a Pompa. Na čele se vytvoří kuželové zahloubení, jak je naznačeno na obr. 7. Předpokládá se, že tření bude eliminováno, jestliže úhel α bude roven třecímu úhlu tg $\alpha = \mu$. Toto by platilo jen v případě, kdyby smykové napětí bylo rozloženo v celé ploše vzorku. Smykové napětí je ve skutečnosti závislé na poloměru. Čelo by muselo mít tvar obecné rotační plochy, jejíž tvar by byl závislý na okamžitých rozměrech tělesa, aby se odstranilo tření. Úprava je obtížná nejen z důvodu tohoto nedostatku, ale také výrobně. Kuželové plochy musí být velmi přesně souosé a i značná přesnost musí být dodržena u úhlu α . Výsledky zkoušek jsou značně závislé na preciznosti výroby a ustavení mezi kovadla. Úprava tedy nemůže být používána všeobecně.

K dalšímu vylepšení při pěchování válcových vzorku je přidání podložek podle Šofmana. Který navrhl použití tenkých podložek, které mají podstatně menší mez kluzu, než zkoušený materiál. Při samotné zkoušce se projevý tři fáze deformace, které jsou znázorněny na obrázku 8. V první fázi se nejdříve deformuji podložky jejích tření o materiál způsobuje nerovnoměrnou deformaci. V této fázi ma vzorek tvar hyperboloidu. V druhé fázi se v jistém rozsahu deformují podložky i vzorek rovnoměrně do přibližně válcového tvaru a v poslední třetí fázi se pěchuje více vzorek než podložky, čímž se projevý tření ve stykových plochach jako u běžné zkoušky a nastáva bežný soudečkový tvar.

Obr. 8 Tři fáze pěchování s podložkami [7]

Hlavním problémem je však volba materiálu, podložek a jejich tloušťky. I při vhodné volbě těchto veličin je použitelnost této metody značně omezená.

Nejlepší metodou pro odstranění tření je úprava podle Rastěgajeva. Na čelech vzorku se vytvoří válcové vybrání (obr. 9), které se vyplní viskózním médiem. Tlak při pěchování se z nástroje přenáší pomocí média na materiál, tím se vytváří rovnoměrný tlak na celou plochu. K vyplnění je nejvhodnější kyselina palmitová. U tlakové zkoušky s vybráním nastává rovnoměrná deformace a ve vzorku vzniká homogenní jednoosá napjatost. Úprava je vhodná také z hlediska výrobního i provozního. A díky tomu se řadí k základní úpravě vzorku pro určení přetvárného odporu.

Obr. 9 Vzorek s vybráním [9]

Existují také tělesa upravená, které specifikuje úprava pomocí podelného nebo příčného vrubu. V praxi se častějí užívají podelné. Při pěchování má nezanedbatelny vliv vrub vytvořený na tělese, jelikož se napětí koncentruje v okolí vrubu. Působením vysokého napětí vzniká ve vrubu trhlina, která slouží k posouzení materiálu k tváření. V praxi je známo několik typů vrubů, které se liší podle autorů. Na obrázku můžeme dobře rozlišit rozdíli provedení vrubů podle Kuda (obr. 10) a českého autora Žídka (obr. 11).

Obr. 10 Vzorek podle Kuda [6]

Obr. 11 Vzorek podle Žídka [4]

V praxi se nemusí používat jen válcová tělesa a jejích modifikace, ale také vzorky tvaru hranolu, ať už čtvercového nebo obdélníkového průřezu (obr. 12). V technické praxi jsou méně využívané jako předešlé vzorky. Při pěchování hranolu vzniká soudkovité vyboulení bočních stěn ve svislém směru a zakřivení hran ve vodorovných řezech. Oba tyto jevy jsou zapříčiněny nerovnoměrností deformace. Na svislých hranách se částice materiálu rovnoměrně deformují, vytváří se rohy. V bočních stěnách pro pohyb částic platí zákon

nejmenšího odporu, vytváří se obrys elipsy, který přechází při velkém stupni deformace v kruh. Stejně jako u vzorků válcového tvaru je i u tvaru hranolu považováno přetvoření zkušebního měřítkem vzorku spěchovatelnosti. Vypočítá se pomocí poměrného stlačení (1.3) a logaritmické stlačení (1.4), tyto stejné vztahy isou jako u válcového vzorku. Jako další parametr zhodnotí směrv se maximálního minimálního а přemístění materiálu.

Obr. 12 Průřez hranolu před a po zkoušce [20]

Vztahy pro vypočet maximálního (1.5) a minimálního (1.6) přemístění materiálu po pěchování.

$$\varepsilon_{max} = \frac{\frac{a_1 - a_2}{2} - a_0}{a_0} \ [-] \tag{1.5}$$

kde: a₁,a₂ ... šířka po stlačení [mm],

a₀počáteční šířka vzorku [mm],

$$\varepsilon_{min} = \frac{\frac{u_1 - u_2}{2} - u_0}{u_0} \ [-]$$

kde: u1,u2 ... úhlopříčka po stlačení [mm],

u₀počateční úhlopříčka [mm].

Poslední zmíněný vzorek má tvar plochého kvádru. Poměr mezi délkou a výškou by měl být alespoň šestinásobný. Do ploché tyče se vtlačují úzká kovadla proti sobě, jak je na obr. 13. Při zkoušení za tepla, nebo za studena se musí stykové plochy dobře mazat. Zjištěný přetvárný odpor je patrně větší než u těles válcového tvaru.

(1.6)

Obr. 13 Plochý vzorek [4]

2.2 Přetvárný odpor [1], [4], [10],

Odpor kovů proti plastickým deformacím je jednou z důležitých mechanických vlastností.

Při tváření kovů je třeba tento odpor překonat, aby došlo k požadované změně tvaru tvářeného tělesa. Tento odpor, označovaný jako přirozený přetvárný odpor σ_p , je možno vyjádřit velikostí napětí vyvolaných vnějšími silami, která jsou potřebná k tomu, aby v kovu vznikly nevratné tzv. plastické deformace. Za stanovených podmínek si lze tuto vlastnost představit jako odpor, který vvjadřuje fyzikální povahu materiálu. Mezi činiteli ovlivňující velikost odporu materiálu patří například teplota, rychlost přetvoření, chemické složení a v neposlední řadě vnější tření. Na obrázku 14 je uveden příklad křivky přetvárného odporu pro určitý materiál, teplotu a rychlost přetvoření, v závislosti na logaritmickém přetvoření.

2.3 Vyhodnocování pěchovací zkoušky [1], [4], [5], [9], [11],

Samotné vyhodnocení můžeme rozdělit, dle požadavků na základní a komplexní. U prvního se určuje soudečkovitost B_s , dle vztahu (1.2), poměrné přetvoření (1.3) a logaritmické přetvoření (1.4), které se používají i u komplexního. Druhý způsob vyhodnocení je složitější a určuje se zde přetvárný odpor, jednotková měrná práce, absolutní práce a rychlost přetvoření, popřípadě jejich závislosti na přetvoření.

Při určování přetvárného odporu se vychází z přetvárné síly, která je definována na čelní ploše v dotyku s nástrojem, který stlačuje vzorek (obr. 15) vztahem:

$$F = \sigma_p \cdot S[N] \tag{1.7}$$

kde: $\sigma_p \dots$ přetvárný odpor [MPa],

S ... průřez vzorku $[mm^2]$.

Jelikož se průřez v jednotlivých úsecích stlačení jen těžko určuje, musí se tedy vycházet z předpokladu stálosti objemu,

a proto se využívá zákon o zachování objemu. Objem zkušebního tělesa je konstantní a konečný vztah pro průřez je určen dle vzorce:

$$S = \frac{V}{h} [mm^2] \tag{1.8}$$

kde: V ... objem tělesa [mm²].

Dosazením vzorce (1.8) do rovnice (1.7) pro přetvárnou sílu a po úpravě obdržíme vzorec pro určení okamžitého přetvárného odporu:

$$\sigma_p = F \cdot \frac{h_0 - h}{V} \cong \frac{4 \cdot F}{\pi \cdot D^2} [MPa]$$
(1.9)

Takto, lze jednoduše určit přetvárné odpory, a to na základě závislosti mezi silou "F" na dráze "z", kterou určí měření (obr. 16). Může se určit průběh základního přetvárného odporu během stlačování.

Další zkoumanou veličinou je přetvárná práce "A", kterou vykoná síla "F" na celkové dráze z (obr. 15), má následující tvar:

$$A = \int_{0}^{z} \sigma_{p} \cdot \frac{V}{h} \cdot dz \ [J]$$
 (1.10)

Kde po dosazení "dø" a úpravě dostaneme konečný tvar:

$$A = \int_{0}^{\varphi} \sigma_{p} \cdot d\varphi \ [J] \tag{1.11}$$

Obr. 16 Pracovní diagram [4]

Měrná přetvárná práce A_i je vztažena na jednotku objemu a představuje plochu pod křivkou zpevnění (obr. 17):

$$A_j = \frac{A}{V} = \int_0^{\varphi} \sigma_p \cdot d\varphi \left[J \cdot mm^{-3} \right].$$
(1.12)

Tento vzorec pro měrnou přetvárnou práci, lze zjednodušit na následující tvar:

$$A_{j} = \frac{1}{1000} \cdot \sum_{i=1}^{n} (\varphi_{n} - \varphi_{n-1}) \cdot \left(\frac{\sigma_{n} - \sigma_{n-1}}{2}\right) \left[J \cdot mm^{-3}\right]$$
(1.13)

kde: φ_n...aktuální logaritmické přetvoření [-],

σ_n...aktuální přetvárný odpor [MPa],

 $\varphi_{n-1}...$ předchozí log. přetvoření [-],

 σ_{n-1} ... předchozí přetvárný odpor [MPa].

Vzhledem k tomu, že se veličiny určované výše uvedenými vztahy mění při různé rychlosti deformace vzorku, je nezbytné určit i tzv. střední rychlost deformace.

Za předpokladu, že rychlost hydraulického lisu v = konstantní, tak lze střední rychlostdeformace určit pomocí následujícího vztahu:

$$\dot{\varphi}_{st\check{r}} = \frac{\nu \cdot \ln \frac{h_0}{h}}{h_0 - h} \, [s^{-1}] \tag{1.14}$$

kde: v... rychlost posuvu beranu lisu $[mm \cdot s^{-1}]$.

Rychlost posuvu beranu lisu je ve vzorci (1.14) určena následovně:

$$v = \frac{h_o - h}{t} \ [mm \cdot s^{-1}] \tag{1.15}$$

kde: t ... celkový čas [s].

Pomocí výše uvedených výpočtů, lze vytvořit graf závislosti přetvárného odporu a měrné přetvárné práce na skutečné deformaci. Na obrázku 17 je uvedený přiklad grafu pro ocel 17 248.4 při 300°C.

Obr. 17 Příklad grafu pro materiál 17 248.4 při 300°C [11]

3 NÁVRH MĚŘÍCÍHO SYSTÉMU [11], [23]

Jak už bylo v první kapitole naznačeno současný systém pro vyhodnocení, skrývá určité nedostatky. Proto na Ústavu strojírenské technologie, odboru technologie tváření kovů a plastů, bylo rozhodnuto zakoupit měřící systém s přímým výstupem do PC. Pro měření určité veličiny, musí naměřený signál projít obvody upravujícími jeho vlastnosti tak, aby jej bylo možné zobrazit na zařízení (PC). Jinak tomu není ani v případě měření síly, dráhy a teploty. Soubor zařízení pro detekci signálu a následné zobrazení, nazýváme měřicí řetězec.

Obr. 18 Schéma navrhované měřící sestavy

Z obrázku 18 je patrné, že měřící řetězec je složen z osmi částí. Stlačení vzorku (1), bude probíhat na hydraulickém lise (2). V jeho dutině jsou vloženy jednotlivé senzory pro detekci silového zatížení (3), dráhy (4) a teploty (5). Ty současně slouží pro převod na napětí. Napětí získané ze snímačů je přiváděno do zesilovače (6), který zesiluje toto nízké napětí. Signál ze zesilovače je vyveden do měřící karty (7), která převádí analogový signál na digitální. Převedený signál je pomocí USB portů posílán do PC. Jak lze vidět i zesilovač je spojen s PC pomocí USB rozhraní, které slouží k nastavení zesilovače. V neposlední řadě je v počítači naistalovány software k finálnímu zpracování signálu a jeho zobrazení.

V dalším textu budou jednotlivé komponenty zkušebního zařízení podrobněji rozebrány, včetně popisu jejich funkcí.

3.1 Měření síly [3], [4], [15], [18], [26], [28], [29],

Pro určení tvářecí sily se používají snímače tlakové síly nebo-li dynamometry. Jedná se o zařízení, které se umístí do dutiny zkušebního lisu. Většinou se skládá z deformačního (zatíženého) členu a měřícího systému. Podle způsobu měření deformace, se dají rozdělit na:

- Mechanické
- Elektrické:
 - > piezoelektrické jsou založeny na nepřímém piezoelektrickém jevu,
 - > indukční využívají elektromagnetické indukce napětí v cívce,
 - > kapacitní princip geometrické změně rozměrů kondenzátorů,
 - ➢ tenzometrické.

Dle potřeby při měření a vybavenosti dílny bude použit tenzometrický dynamometr, využívající odporových tenzometrů. Viz příloha 1.

Odporové tenzometry jsou založeny na principu, že při deformaci elektrického vodiče se mění jeho elektrický odpor. Způsobená změna odporu se snímá a následně je pomocí ní vyhodnocena deformace měřeného objektu. Při prodlužování či smršťování v elastické oblasti deformační křivky tedy platí Hookův zákon pružné deformace.

Pro odpor válcového vodiče (obr. 19) o průřezu S, s měrným odporem materiálu ρ a délce *l* platí, že R bude rovno:

$$R = \rho \frac{l}{S} \tag{1.16}$$

Při prodloužení vodiče, se jeho délka l se zvětšuje, plocha průřezu S se změnšuje a vodič vykáže větší odpor. Na základě toho lze stanovit diferenciální vztah ve tvaru:

$$dR = \frac{\rho \cdot S \cdot dl + l \cdot S \cdot d\rho - l \cdot \rho \cdot dS}{S^2}$$

(1.17)

(1.18)

Po dosazení a úpravách diferenciálního vztahu je získán konečný tvar pro relativní změnu odporu, který má tvar:

$$\frac{\Delta R}{R} = \varepsilon \cdot \left(\frac{d\rho}{\rho} \cdot \frac{l}{\varepsilon} + 1 + 2 \cdot \mu\right)$$

kde: µ ... Poissonovo číslo

ε ... poměrná deformace

Pro poměrnou deformaci ε (obr. 20), platí vztah:

$$\varepsilon = \frac{\Delta l}{l_0} \tag{1.19}$$

Kde: Δl ... prodloužení vodiče [mm]

lo ... počáteční délka vodiče [m]

Hodnota v závorce ve vztahu (1.18) lze _____ nahradit součinitelem deformační citlivosti k(k-faktor), jelikož u pružného přetvoření je to konstanta závislá na změně délky. Platí tedy vztah:

$$\frac{\Delta R}{R} = \varepsilon \cdot k \tag{1.20}$$

Velikost k-faktoru je nejvíce závislá na použitém materiálu a jeho hodnota je v řádu jednotek až stovek. Obecně tedy platí, že čím vyšší k-faktor tím je lepší citlivost snímače.

Tudíž jak vyplývá ze vztahu (1.19), že poměrná deformace vodiče je přímo úměrná změně odporu. Jedná se tedy o lineární závislost mezi neelektrickou a elektrickou veličinou. Při měření bývá poměrná změna odporu pružné deformace velice malá, a proto je nutné ji zesílit v nejčastějším případě pomocí zapojení např. Wheastonův můstek.

Obr. 20 Poměrná deformace [3]

Odporové tenzometry se rozdělit podle konstrukce:

- Kovové:
 - a) příložné uchycení pomoci soustavu držáků,

drátkové,

- b) lepené připevnění pomocí lepící hmoty,
 - drátkové,
 - foliové.

Obr. 21 Foliový tenzometr [28]

• Polovodičové.

Wheastonův můstek slouží pro měření změny odporu snímačů elektrickými přistroji, proto je nutné je převest na změnu elektrického napětí nebo proudu. Jak je patrné z obrázku 22, budou-li napětí mezi uzly A a B nulové, most bude vyvážen. I malá změna hodnoty odporů způsobí změnu na výstupním napětí.

Obr. 22 Celý Wheastonův můstek [3]

Uvažuje-li se, že odpor měřící soustavy je na výstupu nekonečně velký, tak proud I₅ bude nulový. Napětí na výstupu U_m je pak vyjádřením rozdílů na dvou napěťových děličích. Pak lze napětí na děliči vyjadřit pomocí vztahu k napájecímu napětí U_n :

$$U_2 = \frac{R_2}{R_1 + R_2} \cdot U_n \tag{1.21}$$

$$U_3 = \frac{R_3}{R_3 + R_4} \cdot U_n \tag{1.22}$$

$$U_m = U_3 - U_3 \tag{1.23}$$

Po dosazení vztahů (1.21) a (1.22) do rovnice (1.23) a úpravou této rovnice získame konečný tvar pro výstupní napětí:

$$U_m = \frac{R_1 R_3 - R_2 R_4}{(R_1 + R_2)(R_3 + R_4)} \cdot U_n \tag{1.24}$$

Zapojení pro tah-tlak se používá pro měření napětí v tahu nebo v tlaku. Jak je vidět obrázku na 23. většínou využívá se shodných zapojení čtyř aktivních tenzometrů do celého mostu a dosáhne se tak maximální citlivosti.

Obr. 23 Namáhání tlak-tah [3]

Nosník je zatěžován tlakem. Tato zátěž způsobí deformaci, díky které se zvýší hodnota odporu tenzometrů. Ohybová síla je nulová, ale v tomto případě je parazitní, tudíž je nežádoucí a je ji nutné kompenzovat. Na tenzometry 2 a 4 působí síla v příčném směru a ta vyvolá změnu odporu $-\mu$ · ΔR_h . Jelikož jsou snímače umístěny na jednom tělese, předpokládá se, že teplotní vliv u všech tenzometrů bude stejný a nastane změna odporu o ΔR_t . Parazitní namahaní ohybem vyvolá změnu odporu o ΔR_o . Jednotlivé rovnice pro stanovení hodnoty odporů budou mít tvar:

$$R_{1} = R + \Delta R_{h} + \Delta R_{o} + R_{t}$$

$$R_{2} = R - \mu \cdot \Delta R_{h} + \Delta R_{t}$$

$$R_{3} = R + \Delta R_{h} - \Delta R_{o} + R_{t}$$

$$R_{4} = R - \Delta R_{h} + R_{t}$$
(1.25)

Tyto rovnice se poté dosadí do vztahu (1.24) a po úpravě získame vztah:

$$\frac{U_m}{U_n} \cong \frac{1+\mu}{2} \cdot \frac{\Delta R_h}{R} \tag{1.26}$$

Tento vztah jde také napsat pomocí (1.20) jako:

$$\frac{U_m}{U_n} = \frac{1+\mu}{2} k \cdot \varepsilon \tag{1.27}$$

Platí tedy, že ohybové členy se v konečném vztahu nevyskytují, jelikož jsou tímto

zapojením vyloučeny a měří se pouze tah. Samozřejmě se počítáno i s plnou kompenzací teploty. Tímto zapojením se dosahuje u ocelového tělesa asi 2,6 krát větší citlivost než u jednoho měřícího tenzometru.

Toto zapojení je nejčastěji používáno při výrobě tahových a tlakových snímačů. Konstrukce měrného členu je závislá na velikosti síly, požadovyných rozměrech a přesnosti snímače. Měrný člen se vyrábí z jednoho kusu materiálu, aby bylo zaručeno rovnoměrné rozložení síly.

Ve vetšině případů se používá měrný člen (obr. 24) kruhového průřezu, nebo-li prstencového (1), kde měřící tenzometry (2) jsou zapojeny do plného mostu

a umístěny pomocí lepící hmoty uprostřed jeho výšky. Pro kruhový člen o průměru D, bude platit Hookův zákon a lze sepsat vztahy:

$$\sigma = \frac{F}{S} [MPa]$$
(1.28)
$$S = \frac{\pi \cdot D^2}{4} [mm^2]$$
(1.29)

Pro konečný vztah dosadíme rovnice (1.28) a (1.29) do (1.27) a získáme vztah:

$$\frac{U_m}{U_n} = \frac{2 \cdot k \cdot F \cdot (1+\mu)}{\pi \cdot E \cdot D^2}$$
(1.30)

Obr. 25 Snímač tlaku [26]

Příkladem moderního snímače tlakových sil, kde měrný člen má tvar válcového prstence je snímač řady C6 od firmy HBM (obr. 25). Na vnějším povrchu prstence jsou nalepeny tenzometry a korekční prvky. Tyto jsou patřičně zapojeny a vývody jsou umístěny v boxu na krytu měrného členu. Funkční část je nerozebíratelná. Výhodou těchto snímačů je možnost měření bez pevného upnutí do měřícího řetězce.

Obr. 24 Prstencový měrný člen [4]

3.2 Měření dráhy [3], [24]

Dráhu nástroje můžeme rozdělit na dva úseky – dráhu volnou, kdy se nástroj blíží k tvářenému materiálu, a dráhu činnou, kde sledujeme dráhu od počátku do konce deformace zkušebního vzorku. Snímače lze, obecně rozdělit např. podle fyzikálních vlastností na mechanické a elektrické, které se dělí na:

- Aktivní:
 - > indukční využívají elektromagnetické indukce napětí v cívce,
 - > piezoelektrické jsou založeny na nepřímém piezoelektrickém jevu,
 - termoelektrické převod tepelné energie na elektrickou.
- Pasivní:
 - odporové na změně odporu,
 - kapacitní princip geometrické změně rozměrů kondenzátorů,
 - magnetické využívají změny permeability feromagnetika,
 - ionizační na ionizaci okolního plynu,
 - indukčnostní pracují na principu změny indukčnosti.

S ohledem na požadavky při měření a vybavenosti pracoviště bude při měření použit indukčnostní senzor W50 technické parametry viz. příloha 2.

Indukčnostní snímače (obr. 26) tvoří rozsáhlou skupinu pasivních snímačů, které musí být

zapojeny obvodu s pomocným do střídavým napětím. měření je Při neelektrická veličina převedena indukčnosti. snímačem změnu na Nejčastěji to bývají obvody můstkové nebo rezonanční. Snímače jsou tvořeny které cívkou s jádrem, může být feromagnetické nebo pouze elektricky vodivé. Vlivem neelektrické veličiny dochází k vzájemnému posunutí těchto částí nebo ke změně jejich elektrických

Obr. 26 Provedení snímače [24]

vlastností. Cívka je charakterizována indukčností, jejíž velikost závisí na počtu závitů, elektrických a magnetických vlastnostech jádra a na geometrických rozměrech cívky a jádra. Uvedené veličiny jsou poté ovlivňovány měřenou vstupní veličinou, a tím se mění indukčnost cívky.

Princip dotykového snímače pro delší dráhy je uveden na obr. 27. Je tvořen dvěma

Obr. 27 Konstrukce snímače [3]

je uveden na obr. 27. Je tvořen dvěma hlavními částmi. V duté části se nachází dvojice cívek kryté pláštěm. Vnitřní jádro je posuvné a mění magnetickou vodivost tím, že mění svoji polohu a tedy i indukčnost. Změna je v obou cívkách totožná, liší se pouze ve znaménkách. Tím se symetricky mění dvě sousední větve a citlivost je dvojnásobná než u jedné cívky. Toto zapojení se nazývá diferenciální a pro zapojení do mostu je nejlepší. Posuvné jádro je spojeno s táhlem, které je připojeno na měřený objekt. Díky tomuto uspořádaní nedochází ke zkreslení pohybu setrvačnou hmotou jádra a má tudíž univerzální využití.

Před vlastním měřením je nutno provést kalibraci. Byla provedena zjednodušená kalibrace, jelikož se dráha měří jen při posuvu beranu dolů. V tab. 1 jsou uvedeny naměřene hodnoty a byla vytvořena kalibrační křivka (obr. 28).

Mikrometrický šroub [mm] 0 2 4 6 8 10 12 14 16	8 10 12 14 16 18 20	8	6	4	2	0	[mm]	Mikrometrický šroub
Indukčnostní snímač [mm] 0 1,985 4,011 5,987 8,004 10,04 12,07 14,09 16,1 18	8,004 10,04 12,07 14,09 16,1 18,13 20,11	8,00	5,987	4,011	1,985	0	[mm]	Indukčnostní snímač
mV/V [mV/V] 0 3,078 6,217 9,279 12,44 15,56 18,71 21,85 24,95 28	12,44 15,56 18,71 21,85 24,95 28,11 31,17	12,4	9,279	6,217	3,078	0	[mV/V]	mV/V

Tab. 1 Naměřené hodnoty při kalibraci

Obr. 28 Kalibrační křivka

3.3 Měření teploty [3], [27],

Teplotu lze indikovat pomocí snímače (senzoru), který převede měřenou teplotu na jinou vhodnou fyzikální veličinu, např. na elektrické napětí. Obecně se snímače teploty dají dělit podle nejrůznějších hledisek. Například podle literatury [3], jdou rozdělit dle styku s měřeným prostředím:

- Dotykové měření:
 - a) dilatační teplota se indikuje pomocí změny objemu,
 - ➤ tyčové,
 - ➢ bimetalické,
 - tlakové princip relativní změny objemu,
 - b) elektrické změn teploty projeví změnou elektrické veličiny,
 - odporové,
 - termistory,
 - ➤ foliové,
 - termoelektrické princip převodu tepelné energie na elektrickou,

- c) speciální
 - ➤ tekuté krystaly,
 - teploměrné tužky, atd.
- Bezdotykové měření:
 - a) pyrometry,
 - b) zobrazovací,
 - c) termovize.

Vzhledem k požadavku měření teploty na povrchu vzorku a vybavenosti dílny, bude použit termočlánek, který patří do skupiny dotykových termoelektrických senzorů (obr. 29).

Tyto senzory jsou založeny na Seebeckově jevu, tj. na jevu převodu tepelné energie na elektrickou. Termočlánek je tvořený dvojicí vodivých drátu o různém chemickém složení. Je-li jeden konec drátu (teplý konec) zahřát na vyšší teplotu, než je na opačném konci (studený konec) vzniká termočlánkové napětí. Zapojení termočlánku včetně popisu je znázorněno na obrázku 30. Termoelektrické napětí v mV, jehož hodnota je závislá na rozdílu teploty v místě měřícího spoje a teploty v místě srovnávacích spojů se přivádí kompenzačním vedením a měděným vedením do indikačního přístroje. Kompenzační vedení slouží k přenesení termočlánkového napětí k srovnávacímu místu, aby nenastalo ovlivnění teplotou v prostředí. Tyto snímače teploty mají velký rozsah teplot použití od -250 až do

Obr. 29 Termočlánek [27]

2600 stupňů. Termočlánky jsou k dispozici v různých kombinacích kovů. Díky tomu se odlišují jejich teplotní rozsahy použití. V tabulce 2 jsou napsány nejpoužívanější druhy termočlánku.

IEC značení	Druh termočlánku	rozsah teplot [°C]
Т	Cu-Konstantan	-200400
J	Fe-Konstantan	-200800
Е	Chromel- Konstantan	01000
K	Chromel-Alumel	01300
Ν	NiCrSi-NiSi	01200
С	WRe5-WRe26	02320
R	PtRh13-Pt	01700
S	PtRh10-Pt	01700
В	PtRh30-PtRh6	01700

3.4 Zesilovač [14], [21],

Získané signály z uvedených měřících snímačů bývají v řádu milivoltů. Proto je důležité je zesílit, k tomu se používají přístrojové zesilovače. Při měření je použit zesilovač od firmy Dewetron DEWE-30-4, který disponuje třemi sloty pro zpracování měřených signálů.

Do předního panelu (obr. 31) isou vsunuty jednotlivé moduly pro měření. V prvním je umístěn modul DAQP-BRIDGE-A, který umožňuje široké pásmo rozsahu měření přes 0,5 mV/V do 1000 mV/V. Na modul je tento připojen dynamometr pro měření síly, jenž je zapojen do plného Wheastonova měřícího mostu. V druhém je vložen DAOP-CFB modul, se šířkou rozsahu měření přes 0,1mV/V do 1,000 mV/V. Při měření je na tento zesilovač připojen indukčnostní snímač, pomocí zapojení do polovičního Wheastonova mostu. Ve třetím slotu je vsunut modul

Obr. 31 Přední panel [14]

1

DAQN-THERM, do kterého lze zapojit termočlánky. Při samotné zkoušce bude modul osazen typem K. V přílohách 3, až 5 jsou uvedeny podrobnější informace k jednotlivým modulům.

V zadním panelu zesilovače Dewetron DEWE-30-4 (obr. 32), jsou umístěny čtyři analogové výstupy na vysokofrekvenční BNC konektory (1). Dále je tu konektor pro přívod

steinosměrného napájecího zdroje (2) do zesilovače. Další konektor řadě, v umožňuje analogový vstup a výstup (3). Při bude měření tento konektor použit pro analogový výstup, kde vycházející signál bude přijímat měřící karta. která je dále zapojena do počítače. V neposlední řade je zde PC COM port (4), který je propojen s počítačem USB rozhraním. Tento port slouží pro komunikaci s PC a nastavení zesilovače.

²⁵

3.5 Měřící karta [13], [14],

Během samotné zkoušky je nutné získaný analogový signál převést na digitální, k tomu

slouží měřící karta. Jelikož je možné zpracovat a přenést data pouze v digitální podobě. Při měření bude použitý typ NI USB 6009 (obr. 33). Jedná se o speciální měřící kartu DAQ (Data Acquisition), která dokáže pracovat jak s digitálním tak i s analogovým signálem. Pomocí rozhraní vysokorychlostního USB je realizováno propojení s počítačem a také napájení a proto není nutné použít externí zdroj. Hlavním řídícím prvkem zpracovaní dat je USB mikrokontroler. Karta disponuje osmi analogovými vstupy, dvěma analogovými výstupy, dvanácti obousměrnými digitálními linkami a jedním 32bitovým čítačem. Analogové vstupy lze zapojit buď jako osm nesymetrických kanálů nebo jako čtyři symetrické kanály (diferenciálně).

Obr. 33 NI USB-6009 [13]

Pomocí této karty je možné i na výstupních kanálech a slotech odebírat napětí mezi +2,5V a 5V, které je realizováno pomocí USB kabelu. Díky tomu je dosažena co největší univerzálnost. Pro nastavení a měření pomocí multifunkční karty NI USB-6009 je možné použít hned několik programů obsažených v ovládacím softwaru dodávanému spolu se zařízením. Podrobnější technické údaje viz. příloha 6.

3.6 Výsledný měřící systém

Za použití všech přístrojů a komponentů, které byly popsány výše. Byl vytvořen výsledný měřící systém, který koresponduje se schématem, uvedeným na obr. 18. Jedna z hlavních předností navrhovaného měřícího systému je okamžitá možnost vyhodnocování výsledků.

Výsledné řešení je znázorněno na obrázku 34. Shrnutí jednotlivých komponent je následující: pěchované těleso (vzorek) je vloženo do pěchovacího nástroj (1), který je umístěny v dutině lisu. Síla stlačení bude měřena tlakovým dynamometrem (2) a dráha posunu beranu je snímána indukčnostním senzorem (3). Napětí ze senzorů je dále posíláno do zesilovače (4). Zesílený analogový signál je pomocí měřící karty (5), převeden na signál

digitální. Odtud je již naměřené napětí přenášeno rozhraním USB do notebooku (6). Zde probíhá vyhodnocování naměřených veličin.

Obr. 34 Konečný systém pro vyhodnocení pěchovací zkoušky

Tento navrhovaný měřící řetězec je v souhrnu jen hardware celkového měřícího systému. Dále je tedy nutné se zaměřit na software, jenž je součástí na obrázku 34 zobrazeného notebooku, tedy programovou část, zaznamenávající a vyhodnocující jednotlivé údaje ze senzorů.

3.7 Program Dewesoft [21], [7],

Měřící a testovací software Dewesoft 6.5.1 (obr. 35) je vyvinutý společností Dewetron. Umožňuje získávání dat z několika zdrojů do jednoho záznamu. Poté, lze tento záznam ukládat, následně tisknout, anebo exportovat např. do jiných programů pro další vyhodnocení.

Obr. 35 Uživatelské rozhraní programu

Program obsahuje konfiguraci celého systému, různé typy zobrazování měřených dat a následný export. Umožňuje sériovou komunikaci, která se používá pro řízení jednotlivých modulů. Systém dále umožňuje použití různých karet např. od firmy National Instruments, a jejich samotnou konfiguraci. U samotných modulů, lze nastavit vstupní citlivosti a frekvenční rozsah, změnit názvy kanálů, měřené fyzikální veličiny, kalibrační přepočet a možnost volby zobrazení střední, efektivní, minimální a maximální hodnoty. Dále konfigurovat volbu vzorkovací rychlosti, která je závislá na použité kartě a aktivaci spouštění záznamu dat při výskytu nastavených příznaků. Zobrazovat měřená data ve formě digitálních ukazatelů, osciloskopické obrazovky a zapisovače v různé časové oblasti nebo v souřadnicích X-Y. Všechny typy ukazatelů, lze v případě potřeby rozmístit na pozadí obrazovky pro přehledné měření. Zobrazená měřená data se můžou ukládat na disk. Další skupina funkcí provádí analýzu zaznamenaných dat. V záložce analýzy, lze data exportovat v různých formátech do dalších programů, např. Microsoft Excel popř. do textového souboru.

3.7.1 Nastavení programu

Pro vyhodnocení pěchovací zkoušky jsou použity tři analogové kanály. Při správném propojení všech komponentů a zapnutí programu Dewesoft, je nejprve nutné nastavit jednotlivé kanály. To se provede najetím na záložku "Nastavení" (obr. 36). Po kliknutí, se otevře příslušné okno (obr. 37) pro nastavení jednotlivých kanálů. Zde program ukáže uživateli všechny rozpoznané moduly.

Obr. 36 Nastavení

Dále zde lze přepsat názvy (1) a v neposlední řadě samotné nastavení vybraných kanálů. Po rozkliknuti tlačítka (2) se objeví okno (obr. 37) pro nastavení vybraného kanálu.

Tady je potřeba zvolit potřebný typ modulu (1). V první řadě je v kanálu 0, který byl

pojmenován jako "Síla" rozpoznán DAQNmodul BRIDGE. tento typ bude použit pro měření síly. Zvolený rozsah byl zvolen 20 mV/V se navolí pomocí okna (2), napájecí napětí se nastaví na 5V (3). Dále je nutné zvolit zapojení můstku.

U tenzometrického dynamometru je použito zapojení do plného mostu - kanál AIO. Kanál AI1 je pojmenován jako dráha. Typ modulu je DAQP-CFB u kterého je navolený rozsah na 200 mV/V a zapojení

Obr. 38 Nastavení kanálu

můstku pro snímač dráhy je zapojeno do polovičního mostu. Poslední kanál DAQN-THERM-4 je použit pro měření teploty. U všech zmíněných kanálů lze navolit škálování (4).

3.7.2 Měření dat

Po nastavení všech důležitých parametrů je možné začít samotné měření. Před měřením se nastaví uživatelské rozhraní pro zobrazení naměřených hodnot. Pro nastavení je nutné najed na horní liště na záložku "Zapisovač" (obr. 39). Po rozkliknutí se objeví okno (obr. 40), zde je možné pomocí tlačítka (1) vybrat několik

Obr. 39 Měření dat

druhů zapisovačů (2) jako např. digitálních ukazatel, osciloskopická obrazovka a zapisovače v různé časové oblasti nebo v souřadnicích XY.

Při měření bude pro sílu a drahu použit XY zapisovač a bude doplněny digitalními ukazately těchto hodnot a k tomu digitalní ukazatel pro teplotu.

Obr. 40 Navolení zapisovače

U zapisovače lze zvolit potřebné jednotky jednoduchým dvojklikem na určenou osu. Zaznamenávání dat začne v okamžiku, kdy uživatel klikne na tlačítko "Ukládaní", ale předtím je nutné nadefinovat název a adresář kam se měřená data mají uložit. Pro ukončení ukládání dat se zmáčkne tlačítko "Stop". Se získanými hodnotami, lze dále pracovat pomocí dalších funkcí.

3.7.3 Analýza dat

Naměřená data se budou ukládat do zvoleného Po adresáře. zastavení nahrávání dat, lze tyto data exportovat do různých typů souborů. Provádí se to tak, že se najede na horní liště na záložku "Export". Otevře se okno (obr. 41), zde klikne na tlačítko (1) pro export do souborů. Zvolí se požadovaný typ souboru (2) a adresář, kde bude uložen (3). Poté, už stačí, zmáčknou tlačítko ,,Export dat" (4). Takto jednoduše získáme data např. v souboru Excel.

≽ DEWESoft - Datový soubor: Tes	t16231-3_03.dsd	
<u>S</u> oubor Ú <u>p</u> ravy <u>D</u> ata <u>Z</u> obrazer	ní Systém <u>N</u> ápověda	
Měření Analýza Nastavení	Přehled Osciloskop Zapisovač	C) 💭 🔁
Data export	Evenent de edlién/ab fe	-
 Reálná data Redukovaně 	Export do oalisnych to	ormatu
🗆 Min 🗖 Max	Test16231-3_03	
🗖 RMS 🔽 Průměr 🖕		
Časová osa	Flexpro (*.fpd)	
relativní 💽	EXCel (-Xis) DIAdem (*.dat) Matlab (*.mat) FAMOS (*.dat) NSoft time series (*.dac) ==	2
Flexpro (ActiveX)	Text (* txt) RPCIII (* rsp) ATI (* -st) Technical Data Management (* tdm) Construct Data File (* d-1)	
	Vave (*.wav)	
Expert de souberu	🖃 d: [data] 💽 💌	
	🗁 D:\	2
Clipboard	p Data	3
Content of the second		
Export data	4	

Obr. 41 Export dat

4 OVĚŘOVACÍ MĚŘENÍ [12]

Samotné ověřovací měření, bude srovnáním nově navrhovaného měřícího systému s klasickým postupem, tedy s XY zapisovačem a prověří se účinnost a správnost vyhodnocení zkoušky pomocí softwaru. V obou případech budou stlačovány hladké vzorky, které jsou opatřeny mazivem DELTA 144 s přísadou kysličníku kademnatého. Použitý materiál vzorků je ČSN 16231.3 (DIN 19CrNi8, AISI SAE J1249). Chemické složení použitého materiálu je uvedeno v tab. 3.

Tab.3 Chemické složení oceli 16231.3 v hm. % [12]

С	Mn	Si	Cr	Ni	Р	S
0,19-0,24	0,70-1,00	0,17-0,37	0,8-1,10	1,30-1,60	max 0,035	max 0,035

Materiál má běžnou odolnost proti korozi. Je vhodný pro velmi namáhané strojní součásti s cementovaným povrchem a s vysokou pevnosti a dobrou houževnatosti v jádře, jako např.

Tab.4 Mech. vlastnosti oceli 16231.3 [12]

Mez kluzu	R _{p0,2}	[MPa]	735
Mez pevnosti	Rm	[MPa]	981
Tažnost	A_5	[%]	9

ozubena kola velkých modulů, kladky, pístní čepy, pastorky, talířová kola, kardanové kříže, apod. Základní mechanické vlastnosti jsou uvedeny v tab.4. Kompletní materiálový list je uveden v příloze 7.

4.1 Měření klasickým postupem

Při klasickém postupu je použitá měřící soustava uvedena v kapitole 1. Tedy válcové vzorky budou stlačovány na lisu CZR 600 (obr. 42). K měření síly je použit tlakový dynamometr firmy HBM. Délka stlačení je zjišťována pomocí snímače dráhy. Zesílení signálu od dynamometru a snímače dráhy provádí zesilovač (obr. 43) od firmy HBM. Průběh síly "F" na dráze " Δ h" je zaznamenáván pomocí XY zapisovače (obr. 44). Grafickým výstupem zkoušky je pracovní diagram, který je vykreslován na milimetrový papír.

Obr. 42 Lis CZR 600

Obr. 44 XY zapisovač

Ze všech tří vzorků byly naměřené hodnoty zprůměrovány a následně tyto rozměry budou dále použité pro komplexnější vyhodnocení pěchovací zkoušky. Na obrázku 45 jsou tyto hodnoty uvedeny, následují výpočty střední hodnoty.

Obr. 45 Vzorek před a po stlačení

Výpočet průměrných rozměrů vzorku před stlačením:

$$d_0 = \frac{15,10 + 15,10 + 15,10}{3} = 15,10 \ mm$$
$$h_0 = \frac{24,07 + 24,12 + 24,09}{3} = 24,10 \ mm$$

Výpočet průměrných rozměrů vzorku po stlačení:

$$d_1 = \frac{20,94 + 21,93 + 21,94}{3} = 21,60 \text{ mm}$$
$$h_1 = \frac{13,46 + 12,20 + 12,18}{3} = 12,61 \text{ mm}$$

Pro všechny hodnoty byly provedeny základní výpočty, jako konečné poměrné přetvoření dle výrazu (1.3) a celkové logaritmické přetvoření dle výrazu (1.4):

$$\varepsilon = \frac{h_0 - h}{h_0} = \frac{24,10 - 12,61}{24,10} = 0,477$$
$$\varphi = \ln \frac{h_0}{h} = \ln \frac{24,10}{12,61} = 0,647$$

Všechny naměřené a vypočítané hodnoty jsou pro větší přehlednost zaznamenány v tab.5. Tab. 5 Naměřené a vypočítané hodnoty

Vzerelz	Průměr [mm]		Výška [mm]		Poměrné přetvoření	Logaritmické
V ZOIEK	Před	Ро	Před	Ро	ε[-]	přetvoření φ [-]
1.	15,10	20,94	24,07	13,46	0,441	0,582
2.	15,10	21,93	24,12	12,20	0,494	0,682
3.	15,10	21,94	24,09	12,18	0,494	0,682
Průměr	15,10	21,60	24,10	12,61	0,477	0,647

Po ukončení stlačování vzorku byl vykreslen pracovní diagram na milimetrovém papíru, z kterého bylo nutné jednotlivé hodnoty odečíst a vložit je do programu Excel, ve kterém byl následně vykreslen graf (obr. 46). Na všech vzorcích nevznikly žádné trhliny.

Jak je patrné z grafu, vzorek 1 má odlišnou křivku než ostatní vzorky, toto mohlo být způsobeno špatnou kalibrací při nastavování zapisovače. Proto byl zvolen medián a následně byl vykreslen graf (obr. 47), který dále bude sloužit k samotnému srovnání a komplexnímu vyhodnocení pěchovací zkoušky.

Obr. 47 Medián ze tří křivek vytvořených zapisovačem

Je vidno, že materiál vykazoval pružné chování do zatížení okolo 80 kN. Poté začíná fáze plastického přetvoření.

Pro vytvoření křivek zpevnění a měrnou práci, byly použity výpočtové vztahy (1.9) a (1.12). Při výpočtech jednotlivých křivek se vycházelo z objemu pěchovaného vzorku, který činí V=4 324 mm³. Tabulka s měřenými hodnotami a výpočty je k nahlédnutí v příloze 8. Následně byl z těchto hodnot vytvořen graf závislosti přetvárného odporu a měrné přetvárné práce na skutečné deformaci (obr. 48).

Obr. 48 Křivka zpevnění

Z grafu, lze určit hodnotu zpevnění a měrné práce při určitém přetvoření. Například při deformaci 0,2 se materiál zpevňuje přibližně na hodnotu kolem 720 MPa. A měrná práce dosahuje hodnoty 0,116 J·mm⁻³. Jelikož křivky zpevnění daného materiálu lze vykreslit pouze pro oblast plastického přetvoření, první hodnota grafu odpovídá mezi kluzu v tlaku, tedy přibližně 320 MPa.

Jelikož nebyl při zkoušce měřen čas stlačování, nemohla být vypočítána střední rychlost deformace.

4.2 Měření nově navrhovaným systémem

Při tomto experimentu bude použito nového systému pro získávání měřených veličin. Zkušební vzorky budou stlačovány na stejném lise jako u předchozího měření, tedy CZR 600. Ze všech tří vzorku byly naměřené hodnoty zprůměrovány a následně tyto rozměry budou dále použité pro komplexnější vyhodnocení pěchovací zkoušky.

Obr. 48 Vzorek před a po stlačení

Jako v předchozím měření, byly změřeny průměry a výšky před a po stlačení. Dále, pak byly provedeny základní výpočty, jako celkové poměrné přetvoření dle výrazu (1.3) a konečné logaritmické přetvoření dle výrazu (1.4).

Výpočet průměrných rozměrů vzorku před stlačením:

$$d_0 = \frac{15,10 + 15,08 + 15,07}{3} = 15,09 mm$$
$$h_0 = \frac{24,11 + 24,10 + 24,11}{3} = 24,11 mm$$

Výpočet průměrných rozměrů vzorku po stlačení:

$$d_1 = \frac{23,58 + 23,99 + 23,90}{3} = 23,82 \text{ mm}$$
$$h_1 = \frac{10,59 + 10,18 + 10,23}{3} = 10,33 \text{ mm}$$

Výpočet poměrného přetvoření a logaritmického přetvoření pro průměrné hodnoty:

$$\varepsilon = \frac{h_0 - h}{h_0} = \frac{24,11 - 10,33}{24,11} = 0,571$$
$$\varphi = \ln \frac{h_0}{h} = \ln \frac{24,11}{10,33} = 0,847$$

Jako v předchozím případě byly naměřené a vypočítané hodnoty vloženy do tabulky 6. Tab. 6 Naměřené a vypočítané hodnoty

Vzoralz	Průměr [mm]		Výška [mm]		Poměrné	Logaritmické
VZOIEK	Před	Ро	Před	Ро	přetvoření ε [-]	přetvoření φ [-]
1.	15,10	23,58	24,11	10,59	0,561	0,823
2.	15,08	23,99	24,10	10,18	0,578	0,862
3.	15,07	23,90	24,11	10,23	0,576	0,857
Průměr	15,09	23,82	24,11	10,33	0,571	0,847

Po ukončení zkoušky byly data uloženy a exportovány do programu Excel, kde byl následně vytvořen pracovní diagram pěchovací zkoušky (obr. 49).

V tomto případě všechny tři zkušební vzorky mají stejný průběh. Dále byla vytvořena z těchto tří křivek střední hodnota (obr. 50), která bude sloužit k samotnému srovnání a komplexnímu vyhodnocení pěchovací zkoušky.

Z tohoto pracovního diagramu je viditelné pružné chování, které trvalo až do 80 kN, což je totožné jak u vyhodnocení pomocí liniového XY zapisovače.

Jako v předchozím měření budou pro vytvoření křivek pro zpevnění a měrnou práci, použity výpočtové vztahy (1.9) a (1.12). Tabulka s měřenými hodnotami a výpočty je

k nahlédnutí v příloze 9. Následně byl z těchto hodnot vytvořen graf závislosti přetvárného odporu a měrné přetvárné práce na skutečné deformaci (obr. 51).

Z grafu je patrné, že při deformaci 0,2 se materiál zpevňuje přibližně na hodnotu kolem 720MPa, což odpovídá hodnotě, která byla naměřena u předchozího experimentu. A měrná práce odpovídala přibližně hodnotě 0,116 J·mm⁻³. Což je stejné jako u předchozího měření.

Díky použití softwaru Dewesoft, který automaticky zaznamenává čas měření, je možné vypočítat střední rychlost přetvoření. Za použití hydraulického lisu, u kterého lze předpokládat konstantní rychlost posuvu beranu bylo možné určit výpočtem střední rychlost deformace pomocí vztahů (1.14) a (1.15):

$$v = \frac{h_o - h}{t} = \frac{24,11 - 10,33}{102,3} = 0,135 \ mm \cdot s^{-1}$$
$$\dot{\phi}_{str} = \frac{v \cdot \ln \frac{h_0}{h}}{h_0 - h} = \frac{0,135 \cdot \ln \frac{24,11}{10,33}}{24,11 - 10,33} = 8,3035 \cdot 10^{-3} \ s^{-1}$$

Z výpočtu plyne, že beran lisu se pohyboval konstantní rychlostí v=0,135 mm·s⁻¹ a střední rychlost deformace pro materiál 16231.3 má hodnotu 8,3035·10⁻³s⁻¹.

4.3 Porovnání výsledků

Po skončení všech měření a provedení potřebných výpočtů byly jednotlivé křivky převzaty a pro lepší přehlednost byly tyto křivky vloženy do samostatných grafů.

Z grafu (obr. 52) je patrné, že průběhy křivek pracovních diagramů jsou si velmi podobné. Liší se pouze nepatrně. Nejvíce se křivky liší při náběhu, což je z největší pravděpodobností způsobeno odlišným najetím beranu na stlačovaný vzorek a mírně se rozdělují v průběhu. Z toho vyplívá, že by bylo možné XY zapisovač účinně nahradit programem Dewesoft.

Obr. 53 Křivky zpevnění

Křivky přetvárných odporů na obrázku 53 jsou téměř totožné. U zapisovače bylo vyhodnocováno v rámci odečtu z milimetrového papíru méně bodu. Toto by mohlo zapříčinit odlišnost výsledků.

Jak je patrné z grafu (obr. 54), křivky se jen nepatrně odlišují. Například při hodnotě log. přetvoření 0,4 je hodnota měrne přetvárné práce u programu Dewesoft přibližně rovna hodnotě 0,2762 J·mm⁻³ a u liniového XY zapisovače 0,292 J·mm⁻³. Z toho vyplývá, že rozdíl je přibližně 0,015 J·mm⁻³.

ZÁVĚRY

Cílem práce bylo navrhnout a uvést do chodu nově zakoupený měřící systém od firmy Dewetron. Za použití snímače síly HBM C6R, snímače dráhy HBM W50 a termočlánku typu K je možné získat v průběhu měření požadované veličiny. Byl navržen měřící řetězec, který kromě zmíněných snímačů obsahuje zesilovač DEWE-30-4 a měřící kartu NI USB-6009, která převádí signál do PC. Zde je dále zpracováván pomocí programu Dewesoft 6.5.

Pomocí ověřovacího měření byla ověřena správnost a funkčnost tohoto systému. Ověřovací měření probíhalo na klasickém zapisovači XY a softwaru Dewesoft. Získané hodnoty byly vyhodnoceny a posloužily pro srovnání.

V první části ověřovacího měření se stlačovali tři vzorky z oceli 16231.3 na hydraulickém lise CZR 600. Data byla zaznamenána XY zapisovačem. Z těchto tří vzorku byl vytvořen medián a ten následně posloužil pro komplexní vyhodnocení.

V druhé části experimentu byl použit k zaznamenávání hodnot nově navrhovaný systém. Byly použity vzorky ze stejné oceli jako u prvního měření. Po zapojení jednotlivých komponent a nastavení programu, byla data zaznamenávána a uložena do počítače. Poté byly exportovány do programu Excel, kde byly vykresleny grafy, které znázorňují proces pěchování.

Z porovnání získaných hodnot z obou měření lze konstatovat, že zapisovač se dá účinně nahradit měřícím programem. Jednou z výhod programu je, že odpadá zdlouhavé odměřování z milimetrového papíru. I přes to má navrhovaný způsob pro měření hodnot své nedostatky, především zdlouhavé nastavování jednotlivých kanálů, padání programu a také se vyznačuje citlivostí na rušivé vlivy např. od lisu, což zapříčiňuje v některých případech nepřípustné kolísání měřených hodnot. Další nevýhodou je, že program slouží jen pro získávání dat, ale ne pro samotné vyhodnocení. Proto by bylo v dalším kroku vhodné vytvořit vyhodnocovací program, který by umožňoval přímé získání potřebných výsledků např. ve vývojovém prostředí LabVIEW.

Seznam použitých zdrojů [2]

- 1. BABOR, Karel. *Objemové tváření oceli*. Praha: SNTL Nakladatelství technické literatury, 1967, 329 s.
- 2. CITACE PRO. Generátor citací [online]. 2013 [cit. 2015-05-18]. Dostupné z: http://citace.kunda.lib.vutbr.cz/info
- ČECH, Jaroslav, Jiří PERNIKÁŘ a Kamil PODANÝ. Strojírenská metrologie I. Vyd.
 5., V Akademickém nakl. CERM vyd. 3. Brno: Akademické nakladatelství CERM,
 2009, 183 s. Učební texty vysokých škol (Vysoké učení technické v Brně). ISBN 978-80-214-4010-4.
- 4. DRASTÍK, František. *Plastometry a tvařitelnost kovů*. 1. vyd. Praha: SNTL, 1977, 386 s.
- 5. ELFMARK, Jiří. *Tváření kovů*. Vyd. 1. Praha: SNTL Nakladatelství technické literatury, 1992, 524 s. Technický průvodce. ISBN 80-030-0651-1.
- 6. FABÍK, Richard. Studijní text: Tváření kovu. *VŠB-TUO* [online]. 2012 [cit. 2015-05-25]. Dostupné z: http://www.person.vsb.cz/archivcd/FMMI/TVKB/Tvareni%20kovu.pdf
- 7. FARLÍK, Alois. Teorie dynamického tváření. 1. vyd. Praha: SNTL, 1968, 314 s.
- 8. FOREJT, Milan. *Teorie tváření*. 1. vyd. Brno: CERM, 2004, 167 s. ISBN 80-214-2764-7.
- 9. FOREJT, Milan, Anton HUMÁR, Miroslav PÍŠKA a Libor JANÍČEK. Podklady pro cvičení: Experimentální metody. VUT FSI: Odbor technologie tváření kovů a plastů [online]. 2003 [cit. 2015-05-25]. Dostupné z: http://ust.fme.vutbr.cz/tvareni/cviceni_soubory/experimentalni_metody__cviceni_for ejt_piska_humar_janicek.pdf
- 10. FOREJT, Milan a Miroslav PÍŠKA. *Teorie obrábění, tváření a nástroje*. Vyd. 1. Brno: Akademické nakladatelství CERM, 2006, 225 s. ISBN 80-214-2374-9.
- FOREJT, Milan. Podklady pro cvičení: Teorie tváření. VUT FSI: Odbor technologie tváření kovů a plastů [online]. 2004 [cit. 2015-05-25]. Dostupné z: http://ust.fme.vutbr.cz/tvareni/cviceni_soubory/teorie_tvareni_navody_do_cviceni_f orejt.pdf
- 12. Materiálový list. České normy [online]. 2015 [cit. 2015-05-25]. Dostupné z: http://www.ceske-normy.cz/
- 13. Měřící karta: Produkty. *National instruments* [online]. 2015 [cit. 2015-05-25]. Dostupné z: http://sine.ni.com/nips/cds/view/p/lang/cs/nid/201987
- 14. Měřící moduly. *Dewetron: Support* [online]. 2015 [cit. 2015-05-25]. Dostupné z: http://www.dewetron.com/
- 15. NĚMEC, Jindřich. *Odporové tenzometry v praxi*. Vyd. 1. Praha: SNTL Nakladatelství technické literatury, 1967, 174 s. Řada teoretické literatury.
- 16. Testovací stroje. *Instrom: Produkty* [online]. 2015 [cit. 2015-05-25]. Dostupné z: http://www.instron.com/
- 17. Testovací stroj. *Directindustry: Product* [online]. 2015 [cit. 2015-05-25]. Dostupné z: http://www.directindustry.com/

- 18. Extensometers for Tensile Testing of Plastics and Rubbers. Intertek Plastics [online].
 2015 [cit. 2015-05-25]. Dostupné z: http://www.ptli.com/testlopedia/tests/Tensile-Extensometers.asp
- 19. POČTA, Bohumil. *Základy teorie tváření kovů*. Vyd. 1. Praha: SNTL Nakladatelství technické literatury, 1966, 510 s. Teoretická knižnice inženýra.
- 20. PODANÝ, Kamil. Podklady pro cvičení: Technologie tváření. *VUT FSI: Odbor technologie tváření kovů a plastů* [online]. 2007 [cit. 2015-05-25]. Dostupné z: http://ust.fme.vutbr.cz/tvareni/cviceni_soubory/ctt_technologie_tvareni_cviceni_1__podany.pdf
- 21. Program dewesoft. *Dewesoft: Support* [online]. 2015 [cit. 2015-05-25]. Dostupné z: http://www.dewesoft.com/
- 22. *ScienceDirect* [online]. 2015 [cit. 2015-05-25]. Dostupné z: http://www.sciencedirect.com/
- 23. SKÁLOVÁ, Jana, Rudolf KOVAŘÍK a Vladimír BENEDIKT. Základní zkoušky kovových materiálů. 4. vyd. Plzeň: Západočeská univerzita, 2005, 175 s. ISBN 80-704-3417-1.
- 24. Snímače: Indukčnostní snímače posunutí. *Burster* [online]. © 2012- [cit. 2015-05-25]. Dostupné z: http://www.burster.com/cz/produkty/snimace/c/displacement/g/inductive-displacement-sensors/p/dcdc-displacement-transducermodel-87350/v/
- 25. Snímače dráhy: Produkty. *Hottinger Baldwin Messtechnik* [online]. 2015 [cit. 2015-05-25]. Dostupné z: http://www.hbm.cz/
- 26. Snímače zatížení. *Hottinger Baldwin Messtechnik* [online]. 2011 [cit. 2015-05-25]. Dostupné z: http://www.hbm.cz/
- 27. Termočlanky. *Omegaeng: Produkty* [online]. 2011 [cit. 2015-05-31]. Dostupné z: http://www.omegaeng.cz/ppt/pptsc_lg.asp?ref=sa1xl&Nav=
- 28. *TENMEX* [online]. 2015 [cit. 2015-05-25]. Dostupné z: http://www.kreocen.pl/img/z/0/p/1651424/1/TENMEX-Czujnik-tensometr-foliowy-Temppracy-40200C-8x19x006mm-TEN-TFS10120-W.jpg
- 29. ZEHNULA, Karel. Měření neelektrických veličin. 2. vyd. Praha: SNTL, 1983, 371 s.

Označení	Legenda	Jednotka
A	Přetvárná práce	[J]
Ai	Měrná přetvárná práce	[J·mm⁻³]
A ₅	Tažnost	[%]
a	Vzdálenost od okraje	[mm]
\mathbf{a}_0	Šířka před stlačením	[mm]
ai	Šířka po stlačení	[mm]
Bs	Soudečkovitost	[-]
b	Hloubka vybrání	[mm]
D	Průměr	[mm]
D _r	Pěchovací poměr	[-]
do	Průměr před stlačením	[mm]
d;	Průměr po stlačení	[mm]
F	Síla	[N]
ho	Výška před stlačením	[mm]
h_0	Výška po stlačení	[mm]
I:	Proud	[A]
h k	K-faktor	[_]
K lo	Počáteční délka	[mm]
10 R:	Rezistivita	[ohm]
	Mez pevnosti	[MPa]
	Mez kluzu	[MPa]
S		$[mm^2]$
S	Vzdálenost	[mm]
з Т	Tenlota	[°C]
t	Čas	[s]
t TI:	Nanětí	[5] [V]
	Počáteční úhlopříčka vzorku	[mm]
u ₀	Úblopříčka po stlačení	[mm]
V	Obiem	$[\text{mm}^{-3}]$
V	Rychlost	$[mm \cdot s^{-1}]$
7	Stlačení	[mm]
L	Stateon	[]
Δh	Stlačení	[mm]
Δl	Prodloužení vodiče	[mm]
З	Poměrné přetvoření	[-]
ε _{max}	Maximální poměrná deformace průřezu	[-]
ε _{min}	Minimální poměrná deformace průřezu	[-]
μ	Poissovo číslo	[-]
π	Ludolfovo číslo	[-]
σ _p	Přirozený přetvárný odpor	[MPa]
σι	Napětí v ose x	[MPa]
σ2	Napětí v ose v	[MPa]
σ3	Napětí v ose v	[MPa]
Φ1	Deformace v ose x	[-]
Φ2	Deformace v ose v	[-]
Φ3	Deformace v ose z	[-]
0	Logaritmické přetvoření	[-]
$\dot{\phi}_{str}$	Střední rychlost přetvoření	[s ⁻¹]

Seznam použitých symbolů a zkratek

Zkratky	Legenda
BNC	Bayonet Nut Coupler
ČSN	Česka státní norma
DAQ	Data Acquisition
DIN	Deutsche Industrie-Norm
NI	National Instruments
PC	Personal Computer
PORT	Serial Port
SAE	Norma pro automobilový průmysl
USB	Universal Serial Bus

SEZNAM PŘÍLOH

Příloha 1 – Technické údaje tenzometrického dynamometru

- Příloha 2 Technické údaje indukčnostního snímače
- Příloha 3 Technické údaje DAQP-BRIDGE-A
- Příloha 4 Technické údaje DAQP-CFB
- Příloha 5 Technické údaje DAQP-THERM
- Příloha 6 Technické údaje karty NI-USB 6009
- Příloha 7 Materiálový list oceli 16 231
- Příloha 8 Tabulka vypočítaných hodnot XY zapisovač
- Příloha 9 Tabulka vypočítaných hodnot z programu Dewesoft

PŘÍLOHA 1 [26] Technické údaje tenzometrického dynamometru

C6A

Force Transducer

Special features

- Compressive force transducer
- Nominal forces 200 kN ... 5 MN
- Continuous inner bore for nominal forces from 200 kN to 2 MN
- Rust-resistant version for 200 kN and 500 kN nominal forces
- Extensive mounting accessories

B0635-2.2 en

Data Sheet

PŘÍLOHA 2 [25] Technické údaje indukčnostního snímače

Dimensions (in mm; 1 mm= 0.0397 inches) Plunger \sim re in zero position Displacement probe Core length B ¹ in zero position (plunger, displacement probe extended) initial strates appears 0.5mm Displacement 1 Dimensional variation to DIN 7168-coarse Fitted PVC cable, Ø6, optional length and termination į Probe pin extension 20 mm to optional attachment Diep Plunger ement probe Measuring range В С D G ØH J А E A F 0...2 mn 75.5 40 69 35.5 1.2 15 2 14 130 0...10 mm 10 66 40 69 26 ± 0.5 3.7 16 10 14 130 90 97 55 9.4 32 ± 0.5 37 16 20 24 170 0...50 mm 50 117 85 114 32 ± 0.5 3.7 16 50 54 280 0...100 mm 100 180 134 181.6 8.7 16 100 104 372.6 46 ± 10 0...200 mm 200 280 234 281.6 46±10 3.7 16 0...300 mm 300 380 334 381.6 8.7 16 46±10 0...500 mm 500 580 534 581.8 46±10 3.7 16

B0553-8.4 en

PŘÍLOHA 2 [25] Technické údaje indukčnostního snímače

Specifications

Туре		WA2	WA10	WA20	WA50	WA100	WA200	WA300	WA	
Nominal displacement	mm	02	010	020	050	0100	0200	0300	00	
Nominal penaitivity	1							•		
Nominal output signal at nominal displacement with output unloaded	mV/V	80								
Characteristic tolerance										
Deviation of sensitivity from nominal sensitivity	%					±1				
Zero point tolerance										
with core in zero position	mV/V	±1				±8				
Linearity deviation										
Greatest deviation between start and end point										
(including hysteresis by reference to nominal sensitivity)	95				< ±0.2	tn < ±0				
	~				5 10.2	10 S ± 0.				
Nominal temperature range	-0[1]				-21					
Operating temperature range	0.0.000									
Variant for high temperature	20 PF				-20+80	[=18+1.)[=18+3	691 021			
Variant for low temperature	°C ["F]			-	40+12	5 [-40+2	67]			
Effect of temperature on zero signal in nominal										
temp. range per 10 K, by refer. to nominal sensitivity	%				<	± 0.1				
Effect of temperature on output signal in nominal										
temp. nange per 10 K, by refer, to actual value	* *				<	± 0.1				
input reavance	5.2	100 ± 10 %				300±101	76			
Output registance	Ω	570 +				680,+10	%			
		10 %					~			
Nominal excitation voltage	Vms					2.5				
Operating range of the excitation voltage	Vme				0.3	510				
Carrier frequency,										
Nominal range	kHz				4.8	±1%				
Operating range	kHz				4.8	±8%				
Weight									<u> </u>	
of transducer body	9	54	56	07	68	104	147	190	2	
of plunger	9	4	6	7	9	13	20	28	- 4	
Impact registance, test severity level to										
Number of impacts (per direction)	-				1	000				
Impact acceleration	m/s ²					650				
Impact duration	ms					3				
Impact form	_				Halfs	ine wave				
Vibration registance, test severity level to										
DIN IEC 68, Part 2-6, IEC 68-2-6-1982										
Frequency range	Hz				5	to 65				
Vibration acceleration	m/s ²					150				
Stress duration (per direction)	h					0.5				
Max. permissible plunger acceleration	m/s ²				2	500				
Bandan Markatha	m/s ²		Pr	obe vera	non		Unfixed	t plunger	vere	
service ine, typically			10 mi	ion stres	s cycles			-		
apring constant	N/mm		0.1	116		0.063		-		
spring torce in zero position (for 1mm initial atroke) approx.	N		2			2		-		
Spring force in final position (nom. displ.) apprx.	N	2.7	3.6	4.7	8.2	8.3		-		
Max. permissible probe tip acceleration	m/s ²	10	70	140	95	45	-			
Probe up out-off frequency for 1 mm stroke appr.	Hz	6	0	- 65	45	30	-			
Probe tip cut-off frequency at nominal displacement	Hz	1	8	10	5	3		-		
Degree of protection acc. to EN 60 529	İ					•				
for transitions duct and core channel	-	IP67 (depending on connection piece)								
for dansdocer doct and core channel		350								
Max. permissible pressure (increasing load)	bar									
Max. permissible pressure (increasing load) Overload limit (to VD(VDE 2600, Sheet 4)	bar bar					450				

2

PŘÍLOHA 3 [14] Technické údaje DAQP-BRIDGE-A

DAQP-BRIDGE-A

Isolated strain gage amplifier

1	Protection:	Fully isolated (input and excitation)
1	Input sensitivity:	0.5 mV/V to 1000 mV/V
1	Ranges and filter:	Button or software selection
	Bridge offset:	Automatic bridge offset adjustment (approx. ±200 % of range)
1	Bridge completion:	Internal completion for $\%$ and $\%$ bridge (120 and 350 Ohm)
	Shunt calibration:	Two internal shunts or external shunt calibration possible
1	Custom range:	Programmable range for sensitivity, excitation and offset

Signal connection: 9-pin SUB-D or 8-pin LEMO connector

Module specifications

	DAQP-BRIDGE-A
Gain:	20 to 1000
In put ranges:	±5, ±10, ±25, ±50, ±100, ±250 mV
@ 5 Vpc excitation:	±1, ±2, ±5, ±10, ±20, ±50 mV/V
Range selection:	Push button or software
In put impedance:	> 100 MOhm
DC accurator:	±0.1 %
Gain linearity:	±0.05 %
Excitation voltage:	0.25, 0.5, 1, 2.5, 5 and 10 V _{DC} software programmable (5 V _{DC} = default setting)
Accuracy:	0.05 % ±1 mV
Drift:	typ. 20 ppm (max. 40 ppm)
Protection:	Continuous short to ground
Bridge types:	Full bridge
	1/2 bridge with internal completion (software programmable)
	1/2 bridge with internal resistor for 120 and 350 Ohm (software programmable)
Brid ge resistance:	120 Ohm to 10 kOhm (down to 87 Ohm on request)
Shunt calibration:	Two internal shunt resistors or external resistor for shunt calibration (175k & 59k88)
Zero adjust:	Full automatic, ±200 % of F.S. (via push button or software)
Bandwidth (-3dB):	20 kHz (±1.5 dB (Q f ₀)
Filters (lowpass):	10 Hz, 100 Hz, 1 kHz, 5 kHz, 20 kHz (±1.5 dB @ fa)
Filter selection:	Push button or software
Filter characteristics:	Bessel or Butterworth (software programmable)
	40 dB / decade (12 dB / octave)
Typ. SNR @ max. bandwidth:	71 dB @ Gain 1000
	79 dB @ Gain 20
Typical CMRR:	73 dB @ 0 Hz
	71 dB @ 400 Hz
	70 dB @ 1 kHz
Overvoltage protection:	±10 V _{DC}
Isolation:	350 V _{DC} (for input and excitation)
Outouit voltage:	±5 V
Output resistance:	< 10 Ohm
Output aurrent:	Max. 5 mA
Output protection:	Continuous short to ground
RS-485 interface:	Yes
TEDS support:	No
MS support:	Manually support of MSI-BR-TH-x a dapter
Power supply voltage:	±9 V ₀₀ (±1 %)
Power consumption:	Typ. 1.44 W @ 350 Ohm, 1.83 W @ 120 Ohm (both full bridge @ 5 Vpc excitation)
	Max: 3 W (depending on sensor)*

* WARNING: Older DEWE-RACK-16 systems supplies only 18 W!

DE-M061103E • DEWE-Modules Technical Reference Manual • Printing version 2.2.3 • May 15, 2009

PŘÍLOHA 4 [14] Technické údaje DAQP-CFB

DAQP-CFB

Carrier frequency amplifier

0	amer nequency a	ampriner
2	Sensors:	Strain gage, inductive full and half bridge, LVDT
2	Input sensitivity:	0.1 mV/V to 1000 mV/V
1	Bandwidth, filter:	2.3 kHz, 5 selectable lowpass filters (10 Hz to 1000 Hz)
	Bridge offset:	Automatic balancing up to 400% of range
1	Bridge completion:	Internal completion for ½ and ¼ bridge (120 and 350 Ohm)
1	Shunt calibration:	Two internal shunts or external shunt calibration possible
	Gain linearity:	0.02 %

Module specifications

	DAOP-CFB
Input ranges:	0.1mV/V to 1000 mV/V
Inductive input ranges:	5 mV/V to 1000 mV/V (Inductiv range is limited from 20 mV _{RMS} to 1000 mV _{RMS} input voltage)
Input votage ranges:	0.2 mV _{RMS} to 1000 mV _{RMB}
Bridge resistance:	60 - 1,000 Ohm depending on excitation votage
Excitation voltage level:	1, 2, 5 V _{RMS}
Excitation voltage frequency:	5 kHz sine wave ±20 Hz
Maximum excitation current:	30 mA _{RMS} short circuit protected
Excitation voltage synchronisation:	Internal or External
Excitation votage accuracy:	5 V _{RMS} ±5 mV _{RMS} 2 V _{RMS} ±2.5 mV _{RMS} 2 V _{RMS} ±2.5 mV _{RMS}
Excitation voltage drift:	typically 50 ppm/°K
Excitation frequency drift:	typically 20 ppm/"K
Noninearty:	±0.02 % FS
Accuracy:	±0.2 % of reading ±0.1 % of range
Offset diff t	±0.003 µ/V/K±40 ppm of Range/"K
Gain diff:	within ±30 ppm/°K
Balance adjusting range:	±400 % of Range (±200 % at 1 Vexistation)
Capacitive imbalance compensation:	atorox. 1000 pF
Phase adjustment range	±40° (induktiv made only)
Balance adjusting accuracy:	wthin±0.1 % F8
Supported sensors:	ful bridge
	half bridge
	quarter bridge 120 Ohm
	quarter bridge 350 Ohm
	inductive full tridge
	inductive half bridge (typically LVTD Sensors)
Shurt calibration:	Internal 50 kOhm and 100 kOhm Shunt
Completion and shunt resistor accuracy:	±0.05 %
-3dB Bandwidth:	DC - 2.3kHz
Filters (lowess):	10. 30. 100. 300. 1 kHz
Filter characteristics:	2nd order Bessel. 2nd order Butterworth (40 dB/ decade)
Typ. SNR (g 1000 Hz [100 Hz] and 2Vers excitation:	78 dB [85 dB] @ 1 mV/v
Ouerusitees entertion	2008 [8/ 08/[8] 100 mww
Output voltage protections	1 N V +5 V
Outourset	+5 må
Output Protection:	continuous short to ground
Power consumption:	max 1.5W
Supported TEDS chips*:	D82406, D82430, D82432, D82433, D82431
Weight	within 250 (±30) a
* ² TEDS support only with revision 2.0 or higher	

DE-M061103E • DEWE-Modules Technical Reference Manual • Printing version 2.2.3 • May 15, 2009

PŘÍLOHA 5 [14] Technické údaje DAQP-THERM

DAQN-THERM

Thermocouple isolation amplifier Isolated

Input protection:

= Thermocouple types: K or J

- Temperature ranges: Depending on module (see table below)
- Cold junction comp.: Internal
- Signal connection: Standard miniature thermocouple connector according to TC type

Module specifications

	DAQN-THERM
Thermocouple types:	K or J (available ranges on next page)
CJC:	Internal
Linearisation:	Through software according to sensor type
Overall accuracy:	±0.5 % of span
Stability vs. ambient temp.:	
Gain:	±50 ppm of reading / °C
Input resistance:	> 1 MOhm
Bandwidth (-3 dB):	4 Hz (±1.5 dB @ f ₀), up to 300 Hz on request
Isolation:	1 kV _{RMS} , input to output
CMRR:	> 130 dB @ 50 Hz
Open input response:	Upscale
Output voltage	±5 V (non linearized)
Output resistance:	< 10 Ohm
Output protection:	Continuous short to ground
RS-485 interface:	No
Power supply voltage:	±9 V _{DC} (±10 %)
Power consumption:	Typical 0.6 W

Module and range overview:

Nedulations	TC turns	Temperature range		Appropria	Connector color	
module type	TO type	lower end	higher end	lowerend	higher end	Competer color
DAQN-THERM-1	K (NCr-N)	-30 °C	170 °C	-1.156 mV	6.939 mV	yellow
		-22 °F	338 ° F			
DAQN-THERM-2	K (NICr-NI)	-30 °C	370 °C	-1.156 mV	15.132 mV	yellow
		-22 °F	698 ° F			-
DAQN-THERM-3	K (NICr-NI)	0 °C	1000 °C	Vm 0	41.269 mV	yellow
		32 °F	1832 °F			
DAQN-THERM-4	K (NICI-NI)	-100 °C	1350 °C	-3.553 mV	54.125 mV	yellow
		-148 °F	2462 °F			_
DAON-THERM-5	J (Fe-CuNi)	-100 °C	760 ° C	-4.632 mV	42.922 mV	black
		-148 °F	1400 °F			

Conversion formulas:

Conversion °C to °F:

Temperature[°F]=Temperature[°C]×1.8+32

Conversion °C to °F: Temperature[°C]= 1.8

DE-M061103E • DEWE-Modules Technical Reference Manual • Printing version 2.2.3 • May 15, 2009

NI USB-6009

14-Bit, 48 kS/s Low-Cost Multifunction DAQ

- 8 analog inputs (14-bit, 48 kS/s)
- 2 analog outputs (12-bit, 150 S/s); 12 digital I/O; 32-bit counter
- · Bus-powered for high mobility; built-in signal connectivity
- · OEM version available
- Compatible with LabVIEW, LabWindows™/CVI, and Measurement Studio for Visual Studio .NET

Technical Sales

Česká Republika

800 267 267 ni.czech@ni.com

Overview

The NI USB-6009 provides basic DAQ functionality for applications such as simple data logging, portable measurements, and academic lab experiments. It is affordable for student use and powerful enough for more sophisticated measurement applications. For Mac OS X and Linux users, download the NI-DAQmx Base driver software and program the USB-6009 with NI LabVIEW or C. To supplement simulation, measurement, and automation theory courses with practical experiments, NI developed a USB-6009 Student KI that includes

a copy of LabVIEW Student Edition. These kits are exclusively for students, giving them a powerful, low-cost, hands-on learning tool. See the Resources tab for more details.

For faster sampling, more accurate measurements, calibration support, and higher channel court, consider the NI USB-6210 and NI USB-6211 high-performance USB DAQ devices.

USB DAQ modules are compatible with the following versions (or later) of Ni application software: LabVIEW 7.x, LabWindows/CVI 7.x, or Measurement Studio 7.x. USB DAQ modules are also compatible with Visual Studio .NET, C/C++, and Visual Basic 6.0. The mark LabWindows is used under a license from Nicrosoft Corporation. Windows is a registered trademark of Nicrosoft Corporation in the United

States and other countries.

Specifications

Constituent Descente

Specifications Documents		
Specifications (2) Data Sheet		
Specifications Summary		
General		
Product Name	USB-6009	
Product Family	Multifunction Data Acquisition	
Form Factor	USB	
Part Number	779026-01	

PŘÍLOHA 6 [13] Technické údaje karty NI-USB 6009

Operating System/Target	Windows , Linux , Mac OS , Pocket PC
DAQ Product Family	B Series
Measurement Type	Voltage
Isolation Type	None
RoHS Compliant	Yes
USB Power	Bus-Powered
Analog Input	
Channels	4.8
Single-Ended Channels	8
Differential Channels	4
Resolution	14 bits
Sample Rate	48 kS/s
Throughput (All Channels)	48 kS/s
Max Voltage	10 V
Maximum Voltage Range	-10 V , 10 V
Maximum Voltage Range Accuracy	7.73 mV
Minimum Voltage Range	-1V, 1V
Minimum Voltage Range Accuracy	1.53 mV
Number of Ranges	8
Simultaneous Sampling	No
On-Board Memory	512 B
Analog Output	
Channels	2
Resolution	12 bits
Max Voltage	5 V
Maximum Voltage Range	0 V , 5 V
Maximum Voltage Range Accuracy	7 mV
Minimum Voltage Range	0 V , 5 V
Minimum Voltage Range Accuracy	7 mV

PŘÍLOHA 6 [13] Technické údaje karty NI-USB 6009

Update Rate	150 S/s
Current Drive Single	5 mA
Current Drive All	10 mA
Digital VO	
Bidirectional Channels	12
Input-Only Channels	0
Output-Only Channels	0
Timing	Software
Logic Levels	TTL
Input Current Flow	Sinking , Sourcing
Output Current Flow	Sinking , Sourcing
Programmable Input Filters	No
Supports Programmable Power-Up States?	No
Current Drive Single	8.5 mA
Current Drive All	102 mA
Watchdog Timer	No
Supports Handshaking VO?	No
Supports Pattern I/O?	No
Maximum Input Range	0 V , 5 V
Maximum Output Range	0 V , 5 V
Counter/Timers	
Counters	1
Buffered Operations	No
Debouncing/Glitch Removal	No
GPS Synchronization	No
Maximum Range	0 V , 5 V
Max Source Frequency	5 MHz
Pulse Generation	No
Resolution	32 bits

PŘÍLOHA 6 [13] Technické údaje karty NI-USB 6009

Timebase Stability		50 ppm	
Logic Levels		TTL	
Physical Specifications			
Longth		8.51 cm	
Width		8.18 cm	
Height		2.31 cm	
VO Connector		Screw terminals	
Timing/Triggering/Synchronizat	tion		
Triggering		Digital	
Synchronization Bus (RTSI)		No	
Pricing			
NI USB-6009 Comple	ete Package		
Each NI USB-6009 r	equires:		
Roll over icons above to learn v	why you need each item in the pac	kage.	
NI USB-6009		Software	
NI USB-6009 and Ac	ccessories		
NI USB-6009 - 779026-01	Qty		Kč 6 870 each
Recommended Accessories			
Connectivity Accessory - USB 6008/09 Accessory Kit - 779371-01	Qty		Kč 835 each
Optional Accessories			
USB 6000 Series Prototyping Accessory - 779511-01	Qty		Kč 860 each
Hardware Subtotal: Kč 7 705 Software			
Note : You should only purchas	te this device without software if yo	ou already own compatible applica	tion software. [View Full List]

LabVIEW Base Qty Development System for Windows (English) , 1 year SSP - 776671-35 Kč 23 900 each

PŘÍLOHA 7 [12] Materiálový list oceli 16 231

CSN 41 6231		N	Ni–Cr ocel k cementování				0	OCEL		
STN 41 62	31						1	6 23 [.]	1	
Chemické	složení (hm	. %]								
С	Mn	Si		Cr	1	Ni	Р		S	
0,19-0,24	0,70–1,00	0,17–0	,37	0,80-1,10	1	,30–1,60	max 0,035		max 0,035	
Polotovary	1									
[1] předvalky[2] tyče válco[3] tyče kovar	válcované za tep vané za tepla 1é	la		[4] [5]	výkovi tyče ta	¢y žené za stud	lena			
Mechanick	é vlastnost	i								
Polotovar				[2] [3] [4]			[5	5]		
Rozměr t, d [mr	m]			-			_	-		
Stav			.3	.4		1	2		.3	
Mez kluzu R _e ne	ebo R _p 0,2 [MPa]	min		735			_	-		
Mez pevnosti R	_m [MPa] min			981						
Tažnost A ₅ [%]	Tažnost A ₅ [%] min podíl			9			-			
Kontrakce Z [%] min	_	30							
Vrubová houžev	natost KCU 2 (J.c	:m-2] min	49		-					
Tvrdost HB	Tvrdost HB			max 217 min 300 max			241		max 200	
Modul pružnos	ti E [GPa]		190							
Modul pruznos	ti ve smyku G [G	Paj				(/				
Fyzikální v	lastnosti									
Hustota	Měrna	á tepelná	Teplotní součini		el Tepelr		ná	K	Conduktivita	
fl	ka	pacita		roztažnosti		vodivost) [MC m-1]		
ρ [kg.m ^{-s}]	C _p [J.	Kg=1.K=1]		α [K ⁻¹]		λ _t [W . Π ⁻¹ . Κ ⁻¹]		λ	e[MS.M⁻']	
7 850		-		11,4.10°					-	
Odolnost p Odolnost pr běžná	oti degrad	ačním (proc	esům						
Technologi	ické údaje									
TEPELNÉ ZPRACOVÁNÍ normalizační žihání žihání na měkko cementování v plynu v solné lázni v prášku kalení popouštění teploty přeměn tvrdost cementační vrstvy			80-92 80-72 00-93 90-91 60-88 90-88 50-20 c1~72 2 HRC	20 °C 20 °C 30 °C 30 °C 30 °C 30 °C 30 °C 30 °C 25 °C	pomalu ochlazovat na vzduchu pomalu ochlazovat v peci ochlazovat v ochlazovací jednotce ochlazovat na vzduchu ochlazovat v cementační krabici nebo na ochlazovat v oleji nebo v lázni 150–170 ochlazovat na vzduchu A _{c3} ~785 °C M _s ~ 360 °C			ebo na vzduchu D–170 °C 60 °C		
prokalitelnost		d	do 75 mm (voda) do 50 m			mm (olej)				

PŘÍLOHA 8			
Tabulka naměřených a	a vypočítaných	hodnot z XY	zapisovače

SÍLA	ΔH	Průměr D	$\sigma_{\rm p}$	φ	A_j
[kN]	[mm]	[mm]	[MPa]		[J⋅mm ⁻³]
0	0	0	260,654598	0	0
58,1	0,238119	15,1751653	321,3953689	0,003113161	0,001070247
66,4	0,312279	15,19880506	366,1672791	0,009891776	0,003698053
74,7	0,472959	15,25040588	409,1552614	0,018063508	0,007212194
83	0,665219	15,31284447	450,9170868	0,02935984	0,012529119
91,3	0,928419	15,39957867	490,437244	0,038343345	0,017113738
99,6	1,135619	15,46890535	530,2375954	0,051353856	0,024251541
107,9	1,432419	15,56986255	566,9989187	0,066289957	0,032978412
116,2	1,768419	15,68657434	601,5617962	0,089120916	0,047037074
124,5	2,272419	15,86667009	629,9819575	0,11248533	0,062065583
132,8	2,776419	16,05311473	656,4623136	0,137754735	0,078952484
141,1	3,308419	16,2572278	680,0868455	0,165616353	0,098182472
149,4	3,879619	16,48528899	700,3059418	0,191714402	0,11671829
157,7	4,400419	16,70181558	720,1694071	0,220558226	0,137726531
166	4,960419	16,94443299	736,5196698	0,247248721	0,157604242
174,3	5,464419	17,17207625	752,9776995	0,277765062	0,180767713
182,6	6,024419	17,43609985	765,125051	0,302866884	0,200161373
190,9	6,472419	17,65631786	780,0743434	0,331880709	0,222948647
199,2	6,976419	17,91432343	790,7129576	0,361761554	0,246705782
207,5	7,480419	18,18398037	799,4117667	0,389093248	0,268685718
215,8	7,928419	18,4341856	808,9727115	0,417193004	0,291527759
224,1	8,376419	18,69501166	816,809385	0,446105243	0,315231908
232,4	8,824419	18,96723186	822,9217873	0,472107872	0,336727722
240,7	9,216419	19,21544084	830,43516	0,498804731	0,358977885
249	9,608419	19,47365634	836,4397953	0,524249533	0,38033938
257,3	9,972419	19,72299071	842,6060811	0,553016708	0,402971696

SÍLA	ΔΗ	Průměr D	σр	φ	Aj
[kN]	[mm]	[mm]	[MPa]		[J·mm-3]
0	0		170,241	0	0
75,79322064	1,372123567	15,30399515	412,2408892	0,029845701	0,006151809
106,195173	1,742778467	15,53408692	560,6136371	0,046282047	0,014146896
115,970403	1,966397167	15,66227475	602,2375533	0,056330468	0,019989305
120,4315063	2,083627733	15,74116333	619,1513318	0,061638904	0,023231137
122,396793	2,192413333	15,7829993	625,9235721	0,066590271	0,026313549
124,0996196	2,327704767	15,82212142	631,4971107	0,07278245	0,030206636
127,0819563	2,430673467	15,87118403	642,6811765	0,077521074	0,033225562
128,4959096	2,507202667	15,90883241	646,7598221	0,081057556	0,035505604
129,5257663	2,587974567	15,93698794	649,6418969	0,084803712	0,037933865
131,091753	2,652407367	15,96686713	655,0376931	0,087802164	0,039889876
132,0615963	2,7190865	15,99082304	657,9081276	0,090914648	0,041933137
132,768973	2,780518233	16,015728	659,3766598	0,093790791	0,043827486
133,942863	2,843981767	16,03877633	663,2961235	0,096770772	0,045798256
134,896703	2,9169817	16,06269176	666,0318953	0,100209561	0,048083895
135,977773	2,980467033	16,09033362	669,0647807	0,103209792	0,050086695
137,021223	3,045297167	16,11448909	672,1792488	0,106282894	0,052147584
137,9126463	3,109581633	16,13926886	674,4763439	0,109339484	0,054205671
138,933703	3,179746933	16,16395328	677,3962392	0,112686393	0,056467969
139,8211163	3,2385936	16,19102557	679,4451311	0,115502063	0,058378178
140,5332963	3,312392567	16,21383592	680,9857575	0,119044407	0,060787734
141,5823563	3,376637933	16,24257885	683,6432207	0,122138428	0,06289883
142,5906096	3,438654767	16,26772574	686,3846855	0,125134233	0,064950998
143,610063	3,501366633	16,29211147	689,2241245	0,128172766	0,067040915
144,420663	3,570564633	16,31688234	691,0115618	0,131536316	0,069362161
145,508933	3,6333801	16,34434675	693,8807899	0,134599454	0,071483219
146,0554696	3,703671633	16,36939843	694,3568588	0,138038317	0,073870198
147,0821196	3,771672267	16,3975687	696,8371649	0,141376394	0,076192155
147,9487396	3,835561467	16,42495973	698,607086	0,144522831	0,078387493
148,820953	3,895015867	16,45082011	700,5180301	0,147459781	0,080442074
149,733983	3,963271467	16,47499547	702,7487996	0,150842166	0,082815268
150,6718063	4,033750233	16,50288144	704,7624863	0,154346766	0,08528165

		· ·	A	8	
SÍLA	ΔH	Průměr D	$\sigma_{ m p}$	φ	A_j
[kN]	[mm]	[mm]	[MPa]		[J⋅mm ⁻³]
151,663263	4,100957733	16,53182479	706,9181806	0,15770018	0,087648625
152,5210796	4,168434933	16,55956707	708,5365482	0,161078403	0,090039486
153,1228263	4,226460167	16,58756165	708,9329788	0,16399257	0,092104857
154,1158763	4,287157533	16,61174874	711,4543126	0,167050054	0,094276263
154,7728296	4,3609341	16,63716323	712,3058491	0,170779002	0,096930827
155,7018596	4,426036333	16,66821173	713,9143737	0,174081105	0,09928559
156,526063	4,4861422	16,69575454	715,3274698	0,177139494	0,101471179
157,2862596	4,562750033	16,72130513	716,6065681	0,181051167	0,104271807
158,0904596	4,6281268	16,75404127	717,4585969	0,184401514	0,106674115
159,021083	4,691551867	16,78213071	719,2681859	0,187662605	0,109016764
159,6044296	4,756214	16,80951706	719,5563518	0,190998286	0,111416494
160,447843	4,824365633	16,83757605	720,9498998	0,194526063	0,113957386
161,061593	4,8894504	16,86730186	721,1591183	0,197906745	0,116395042
162,1610696	4,949974267	16,89583746	723,6315567	0,20106081	0,118673524
162,794823	5,016826667	16,92250377	724,1719417	0,204556275	0,121203897
163,9255096	5,087116567	16,95210564	726,6572077	0,208244698	0,123879533
164,725713	5,148397	16,98339776	727,5160471	0,211471493	0,126225692
165,612333	5,2126203	17,01082084	729,0754543	0,21486446	0,128696776
166,2052696	5,277766433	17,03970391	729,207362	0,218317982	0,131214882
167,2135263	5,346841667	17,06915283	731,1017362	0,221992868	0,133898117
167,9865163	5,410432033	17,10054526	731,7872704	0,225387934	0,136381419
168,7570996	5,478558733	17,12959864	732,6524756	0,229038027	0,139054089
169,6493196	5,535891067	17,1608895	733,8425263	0,232120137	0,141314039
170,4167263	5,614665533	17,18735577	734,8935372	0,236370501	0,14443537
171,7250463	5,679958533	17,22392086	737,3945824	0,239907201	0,147038891
172,4412196	5,745106533	17,25440574	737,8556662	0,243448558	0,149651085
173,5686996	5,803134133	17,28498481	740,0545767	0,246613455	0,151989802
174,313683	5,880064167	17,31235906	740,8824729	0,250824816	0,155108182
175,314733	5,942899233	17,34885176	742,0057754	0,254277787	0,157668367
176,2925796	6,000718267	17,37883017	743,5724618	0,257465681	0,1600363
177,1431996	6,070671567	17,40655319	744,7821592	0,261336241	0,162916683
178,025813	6,137099767	17,44027237	745,6015371	0,265025676	0,16566602
179,191703	6,205733167	17,47247443	747,7207156	0,268851938	0,168522941

SÍLA	ΔH	Průměr D	σp	φ	Aj
[kN]	[mm]	[mm]	[MPa]		[J·mm-3]
180,1647396	6,268525633	17,50593357	748,909931	0,272365444	0,171152152
181,048953	6,3301222	17,53671419	749,9458611	0,27582407	0,173744143
181,547493	6,399319833	17,5670669	749,4144949	0,279723815	0,176667704
182,767783	6,460873467	17,60135385	751,5153212	0,283205597	0,179280659
183,8192463	6,528436533	17,63202258	753,2117004	0,28704131	0,182166509
184,7050696	6,594987433	17,66587072	753,9439548	0,290833999	0,185024595
185,9325696	6,655784467	17,69940308	756,0814364	0,294311396	0,187650075
186,6943596	6,7225118	17,73020378	756,5438174	0,298141959	0,190547178
188,012293	6,794735767	17,76419465	758,9716306	0,302304666	0,193701502
188,8196863	6,8552575	17,80120672	759,0645822	0,305806296	0,196359302
189,6887096	6,923237967	17,83240064	759,8925728	0,309754146	0,199357609
191,0850496	6,989013767	17,86763522	762,4702404	0,313588857	0,20227652
191,901253	7,0510096	17,90192669	762,7963476	0,317216708	0,20504324
192,7638696	7,115435233	17,93442892	763,450484	0,321000742	0,207930925
194,020183	7,183019633	17,96839329	765,5239162	0,324985756	0,210977417
194,8219896	7,253349233	18,00423113	765,6303807	0,329149567	0,214165136
195,642983	7,3173219	18,04175329	765,6620813	0,332952138	0,217076559
196,7472596	7,377912233	18,07608844	767,0613854	0,336567042	0,219846884
197,9211463	7,4431219	18,10878965	768,8536721	0,340472198	0,222845878
198,786963	7,503227567	18,14418302	769,207316	0,344085252	0,225624427
199,773603	7,570599567	18,1769906	770,2371834	0,348150675	0,228753673
200,9570996	7,635977233	18,21397675	771,6567177	0,352111619	0,231807351
202,093383	7,7011469	18,25008477	772,9522492	0,356075637	0,23486878
203,031223	7,761087567	18,28629247	773,4671097	0,35973552	0,237698637
204,0090696	7,834572567	18,31978595	774,3530769	0,364240754	0,241185282
205,1229396	7,8981229	18,36109992	775,0811714	0,368153344	0,244216433
206,2888263	7,9691499	18,39705481	776,4427579	0,372544442	0,24762288
207,513933	8,026380233	18,43749082	777,6317259	0,37609667	0,250383094
208,5061763	8,096082567	18,47026701	778,5794199	0,380440136	0,253762768
209,690473	8,160242233	18,51042308	779,6081169	0,384454957	0,25689069
210,8259563	8,222723567	18,54761841	780,6891028	0,388380308	0,259953048
211,9942463	8,291632567	18,58405712	781,939863	0,392727417	0,263349507
212,9960863	8,350689567	18,62449451	782,2273166	0,396468111	0,266275043

SÍLA	ΔH	Průměr D	σp	φ	Aj
[kN]	[mm]	[mm]	[MPa]		[J·mm-3]
214,368433	214,368433 8,417787567		784,3278293	0,400735176	0,269617339
215,5039263	8,480099567	18,69921423	785,1250171	0,40471425	0,272739823
216,4897596	8,5514199	18,73645404	785,584484	0,409288089	0,276331909
217,9629263	8,617575567	18,77935184	787,3208923	0,413549497	0,279683305
219,039193	8,6774509	18,81940774	787,8440703	0,417422077	0,282733281
220,101853	8,743604233	18,85588286	788,6064027	0,421718211	0,286119603
221,3661663	8,806381567	18,8964301	789,7362192	0,425812241	0,289350493
222,6480863	8,871001567	18,93515099	791,0642618	0,430044019	0,292695292
223,7667596	8,9410369	18,97525809	791,6815662	0,434650746	0,296340931
224,9078563	9,0009569	19,01901538	792,0615116	0,43860903	0,299475383
226,252183	9,0654059	19,05669398	793,6481373	0,44288406	0,302864861
227,5677163	9,132085233	19,09747152	794,8574564	0,447326352	0,306393164
228,758403	9,196412233	19,13993694	795,4747417	0,451630711	0,309815845
229,7442563	9,258344233	19,18117388	795,4715313	0,455792391	0,313126349
231,3334496	9,328400567	19,22112839	797,647518	0,460520979	0,316892951
232,2224663	9,3886289	19,26662654	796,935582	0,464604158	0,320148435
233,7300463	9,4501019	19,30600127	798,8407812	0,468788983	0,323487458
235,0695696	9,5124739	19,34643968	800,063851	0,473052983	0,326896322
236,4459196	9,580493233	19,38773029	801,3241436	0,477723878	0,330636279
237,5829996	9,6461889	19,43306223	801,4256201	0,482256012	0,334268219
239,0505663	9,7063049	19,47714879	802,7297456	0,486421299	0,337609102
239,9203863	9,772396567	19,51775501	802,3018074	0,491020736	0,341300222
241,5903896	9,839595567	19,562692	804,1790645	0,495719025	0,345074078
242,7514896	9,9086499	19,60870161	804,2564845	0,500570138	0,34897543
244,151833	9,9727269	19,65632136	804,9813984	0,505092739	0,3526144
245,7586263	10,03661657	19,7008205	806,622786	0,509622574	0,35626455
247,152573	10,09060557	19,7454918	807,5316799	0,513466504	0,359366899
248,134423	10,1612549	19,78347844	807,6292736	0,518519046	0,363447233
249,8868596	10,22751557	19,83352005	809,2340784	0,52328104	0,36729698
251,130363	10,28852457	19,88079987	809,3975036	0,527685753	0,370861784
252,5755296	10,3503939	19,92463273	810,4775064	0,532172482	0,374495754
254,130313	10,41123857	19,96938112	811,8159941	0,536604624	0,378090872
255,3417996	10,4797259	20,01368375	812,0788359	0,541617099	0,382160737

	<u> </u>	· ·		0	
SÍLA	ΔH	Průměr D	$\sigma_{\rm p}$	φ	Aj
[kN]	[mm]	[mm]	[MPa]		[J·mm ⁻³]
256,8589996	10,54178123	20,0639057	812,8196124	0,546180624	0,38586837
258,4353796	10,6074769	20,10973905	814,0844162	0,551034661	0,389816896
259,7356963	10,66623923	20,15860503	814,2186241	0,55539647	0,39336807
261,3176963	10,7337629	20,202617	815,6125563	0,560432221	0,397471781
262,9020763	10,80685257	20,25354876	816,4359124	0,565911803	0,401943253
264,550493	10,86150023	20,30911533	817,0655629	0,570028483	0,405305554
265,6075696	10,92945957	20,35096145	816,9602537	0,575171704	0,409507632
267,692073	10,99003123	20,40336355	819,1478926	0,579778222	0,413276014
269,177243	11,06061623	20,45041195	819,90694	0,585173172	0,417697323
270,6143996	11,12114823	20,50565088	819,8494832	0,589823047	0,421509654
272,1739896	11,17537523	20,55338071	820,7491268	0,594007033	0,424941775
273,562333	11,24079523	20,59642324	821,4914105	0,599078045	0,429105686
275,1651363	11,30386057	20,64871186	822,124939	0,603991002	0,433143194
276,877553	11,37100857	20,69949732	823,1869813	0,609248676	0,437468451
278,562773	11,4381459	20,75398452	823,8543578	0,614533299	0,441820447
280,0391296	11,49879957	20,80889552	823,8554198	0,6193317	0,445773633
281,621133	11,5621849	20,85888017	824,5435642	0,624370932	0,449926966
283,6336363	11,62703457	20,91150281	826,2616326	0,629552998	0,454204256
284,970763	11,69001557	20,96575545	825,8660565	0,634611575	0,458382964
286,996063	11,7496369	21,01885102	827,5387486	0,639424001	0,462361409
288,5252563	11,8110029	21,06948776	827,9540304	0,644401556	0,466481561
290,523343	11,87377057	21,12199033	829,5483376	0,649518565	0,470722289
291,954893	11,94181857	21,17610023	829,3810989	0,655095784	0,475348395
293,880983	12,00390557	21,23523451	830,2095102	0,66021172	0,479593575
295,5461996	12,07215323	21,2896231	830,6532654	0,665865655	0,48428878
297,2409963	12,13324257	21,34989331	830,706547	0,670953819	0,488515415
299,0750696	12,2021409	21,40427834	831,5902256	0,676723636	0,493310989
300,892323	12,2608979	21,46611688	831,8297927	0,681670617	0,497425443
302,7559896	12,31784623	21,51927884	832,8516704	0,686488787	0,501435802
304,5740363	12,38576323	21,57118311	833,8257279	0,69226549	0,506249752
306,7889763	12,45137457	21,63357834	835,0517151	0,697877955	0,51093301
308,5302096	12,52009957	21,69437244	835,0910977	0,70379074	0,515870608
310,2682563	12,57918223	21,75860443	834,8445469	0,708902041	0,52013838

PŘÍLOHA 9				
Tabulka naměřených a	vypočítaných	hodnot z	programu	Dewesoft

SÍLA	ΔH	Průměr D	$\sigma_{\rm p}$	φ	Aj
[kN]	[mm]	[mm]	[MPa]	[-]	[J⋅mm⁻³]
312,36476	12,650334	21,814283	836,20064	0,7150923	0,5253105
314,30685	12,706701	21,881906	836,20721	0,7200237	0,5294341
316,21611	12,764138	21,935926	837,14829	0,7250738	0,5336594
318,16459	12,83174	21,991386	838,06364	0,7310505	0,5386656
320,23234	12,890188	22,057202	838,48384	0,7362468	0,5430215
322,24562	12,954749	22,114584	839,3823	0,7420182	0,5478633
324,47417	13,01481	22,178492	840,32336	0,7474174	0,5523979
326,25702	13,078086	22,238447	840,39083	0,7531373	0,5572046
328,26712	13,149138	22,302139	840,74578	0,7595994	0,5626364
330,67411	13,205545	22,374314	841,45536	0,7647594	0,5669765
332,72583	13,269207	22,432114	842,3187	0,7706152	0,5719065
334,91357	13,328369	22,49789	842,9067	0,7760881	0,576518
336,88846	13,395155	22,559538	843,24943	0,7823025	0,5817572
339,32907	13,461668	22,629744	844,09655	0,78853	0,5870112
341,5296	13,519336	22,700318	844,29617	0,793961	0,591596
343,85338	13,586041	22,762044	845,43673	0,80028	0,5969347
345,92271	13,645663	22,834075	845,1671	0,8059621	0,6017378
348,24328	13,705349	22,89904	846,01596	0,8116828	0,6065752
350,47903	13,770821	22,964633	846,59048	0,817996	0,611918
352,87642	13,834494	23,037237	847,01717	0,8241741	0,6171497
355,13859	13,897859	23,10851	847,19681	0,8303604	0,6223902
357,83446	13,95774	23,180099	848,36338	0,836242	0,6273765
360,00302	14,016414	23,248368	848,49942	0,8420388	0,6322947
362,59244	14,084504	23,315849	849,66284	0,8488083	0,6380425
364,94183	14,147003	23,394901	849,39866	0,8550626	0,6433557
367,23679	14,202405	23,468174	849,41112	0,8606394	0,6480927
370,0879	14,274401	23,533705	851,2451	0,8679336	0,6542951
372,78217	14,332887	23,61969	851,21071	0,8738983	0,6593725
375,35721	14,393244	23,690238	851,99346	0,8800914	0,6646465
378,0731	14,452428	23,76371	852,85977	0,8862017	0,6698551
380,72335	14,512931	23,836423	853,60645	0,892487	0,6752179
383,23517	14,576756	23,91145	853,85453	0,8991604	0,6809152
386,00226	14,642268	23,991368	854,2995	0,9060569	0,6868054

l abulka namerených a vypocitaných nodnot z programu Dewesoft						
SÍLA	ΔH	Průměr D	$\sigma_{\rm p}$	φ	A_j	
[kN]	[mm]	[mm]	[MPa]	[-]	[J⋅mm⁻³]	
388,65411	14,70088	24,074239	854,25683	0,9401301	0,7159133	
391,27077	14,762536	24,144307	855,3354	0,9463696	0,7212468	
393,91605	14,824191	24,220242	855,89253	0,952609	0,7265854	
396,56134	14,885847	24,296176	856,44965	0,9588485	0,7319274	
399,20662	14,947502	24,37211	857,00678	0,9650879	0,7372729	
401,85191	15,009158	24,448044	857,5639	0,9713274	0,7426219	
404,49719	15,070814	24,523979	858,12103	0,9775668	0,7479744	
407,14248	15,132469	24,599913	858,67816	0,9838063	0,7533304	
409,78776	15,194125	24,675847	859,23528	0,9900458	0,7586898	
412,43305	15,25578	24,751782	859,79241	0,9962852	0,7640527	
415,07833	15,317436	24,827716	860,34953	1,0025247	0,7694191	

PŘÍLOHA 9 Tabulka naměřených a vypočítaných hodnot z programu Dewesoft