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Abstract 
The thesis explores the field of out-of-vocabulary word (OOV) processing within the task 
of automatic speech recognition (ASR). It defines the two separate O O V processing tasks -
that of detection and recovery - and proposes success metrics for both the tasks. Different 
approaches to O O V detection and recovery are presented within the frameworks of hybrid 
and end-to-end (E2E) A S R . These approaches and compared on an open access LibriSpeech 
database to facilitate replicability. 

Hybrid approach uses modified decoding graph with phoneme substrings and utilizes full 
lattice representations for detection and recovery of recurrent OOVs. Recovered OOVs are 
added to the dictionary and the language model (LM) to improve A S R system performance. 

The second approach employs inner representations of a word-predicting Listen Attend 
and Spell architecture (LAS) E2E system to perform O O V detection task. Detection recall 
and precision rates improved drastically in comparison with the hybrid approach. Recur­
rent O O V recovery is performed on a separate character-predicting system with the use of 
detected time frames and probabilistic clustering. 

Finally, we propose a new speller architecture with a capability of learning O O V repre­
sentations together with the word predicting network (WPN) training. The speller forces 
word embeddings to be spelling-aware during the training and thus not only provides O O V 
recovery, but also improves the W P N performance. 
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ral architectures, Listen Attend and Spell. 
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Abstrakt 
Tato disertační práce zkoumá oblast zpracování slov mimo slovník (out-of-vocabulary word, 
OOV) v rámci úlohy automatického rozpoznávání řeči (automatic speech recognition, ASR) . 
Definuje dvě samostatné úlohy zpracování O O V - detekci a obnovu - a pro obě úlohy 
navrhuje metriky úspěšnosti. Prezentuje několik přístupů k detekci a obnově O O V v rámci 
hybridních a end-to-end (E2E) A S R systémů. Experimentální práce a srovnání přístupů 
bylo provedeno na otevřené databázi LibriSpeech, aby byla zajištěna reprodukovatelnost 
experimentů. 

Hybridní přístup využívá upravený dekódovací graf s fonémovými podřetězci a pro de­
tekci a obnovu opakujících se O O V využívá reprezentaci založenou na plných rozpoznávacích 
grafech (lattices). Obnovená O O V jsou přidána do slovníku a jazykového modelu (LM), 
což vede ke zlepšení úspěšnosti A S R systému. 

Druhý přístup využívá k řešení úlohy detekce O O V vnitřní reprezentace systému E2E 
architektury "Listen Attend and Spell" (LAS) s predikcí slov. Tato metoda oproti hy­
bridnímu přístupu výrazně zlepšuje míru úplnosti a přesnosti (recall a precision). Obnova 
opakujících se O O V se provádí pomocí samostatného systému predikce znaků s využitím 
detekovaných časových rámců a pravděpodobnostního shlukování. 

Nakonec navrhujeme novou "speller" architekturu se schopností učit se reprezentace 
O O V společně s trénováním sítě pro predikci slov (word predicting network, W P N ) . Kom­
ponent "speller" ovlivňuje během trénování slovní embeddingy tak, aby dobře reprezento­
valy i fonetickou podobu slov, a t ím zajišťuje nejen možnost kvalitní obnovy OOV, ale i 
zlepšení výkonu sítě pro predikci slov. 

Klíčová slova 
Slova mimo slovník, automatické rozpoznávání řeči, hybridní ASR, E2E ASR, neurální 
architektury, Listen Attend and Spell. 
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A M acoustic model 
A R I adjusted Rand index 
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B D i H M M block diagonal infinite hidden Markov model 
b i L S T M bi-directional long short-term memory 
B P E byte-pair encoding unit 
C E cross-entropy 
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C M V N cepstral mean and variance normalization 
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E 2 E end-to-end 
f M L L R feature space maximum likelihood linear regression 
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G M M Gaussian mixture model 
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IV in-vocabulary word 
K W S key word spotting 
L A S Listen Attend and Spell architecture 
L D A linear discriminant analysis 
LID language identification 
L M language model 
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L S T M long short-term memory (recurrent neural network) 
M F C C Mel-frequency cepstral coefficients 
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M T machine translation 
N L P natural language processing 
N N neural network 
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O O V C O O V cost 
P2G phoneme-to-grapheme 
P D F probability density function 
PIP phoneme insertion penalty 
P L M S F phoneme L M scaling factor 
P L P perceptual linear predictive 
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RI Rand index 
R N N recurrent neural network 
SAT speaker adaptive training 
SID speaker identification 
S O T A state of the art 
S T C (global) semi-tied covariance 
T F T timed factor transducer 
W E R word error rate 
W F S A weighted finite-state acceptor 
W F S T weighted finite-state transducer 
W P N word predicting network 
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Chapter 1 

Introduction 

Speech data mining is an area of computer science that deals with extracting information 
from human speech by means of computation. Depending on the application, different in­
formation is obtained from the speech signal. Some of the most essential tasks are language 
identification (LID), speaker identification (SID), automatic speech recognition (ASR) and 
key word spotting (KWS). 

Practically, speech processing tasks represent speech production as a model and estimate 
its parameters by means of machine learning. In the framework of supervised learning, the 
system must get a sufficient amount of training data: speech with relevant output labels 
(in case of ASR, transcriptions). In a perfect scenario, the training data would be from the 
same domain (language, channel, type of speech) as the test data, otherwise the system 
may encounter problems and not function as well as expected. Often, additional external 
data is used to improve the systems, for example, dictionaries, language models (LMs), 
pre-trained models, etc. 

After decades of massive research in the field of speech processing, neither of the tasks 
that the field encompasses can be deemed fully solved. New challenges emerge due to im­
mense diversity of languages, speaking conditions and human factors. One of the biggest 
yet unsolved issues in speech data mining springs from the fact that a language's vocabulary 
is virtually unlimited, with new words constantly emerging in response to the ever-changing 
world. These words pose big problem in speech data mining applications, as it is practi­
cally impossible to keep up with them, providing new dictionaries and language models in 
response to their emergence. 

Words which are unseen in the training data are called out-of-vocabulary words (OOVs), 
and they constitute one of the biggest challenges in A S R and other speech processing tasks. 
The O O V problem gets even more interesting if one considers that OOVs are usually topic-
specific words or proper names, meaning they are often key words important for proper 
understanding of the message. 

In the classical component-based hybrid A S R system with neural network (NN) / hidden 
Markov model (HMM) - based architecture, OOVs are not represented in the dictionary 
or the L M and therefore cannot be correctly recognized. Instead, the system will try to 
find the (acoustically) closest in-vocabulary word (IV), often confusing the end user and 
interfering with the proper decoding of the words around it due to L M dependencies. In 
such a system the aim of O O V detection and recovery is to augment the dictionary and the 
L M with newly discovered words and thus enable their correct recognition. 

The more modern end-to-end (E2E) approaches avoid the limitations of dictionary by 
predicting character or subword labels. In spite of the temptation to declare the O O V 
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issue solved because of the advance of subword-predicting E2E systems, evidence shows 
that accuracy of subwords is still inadequate for rare words. Moreover, subword-based 
E2E systems limit direct application of external word-based L M s and usualy utilize rather 
ad-hoc units such as byte-pair encoding units (BPEs) instead of linguistically motivated 
words and characters, which hurts system explainability. Finally, new word analysis may be 
beneficial for downstream and user-experience-oriented applications, such as personalized 
auto-complete, slot filling, etc. However, a subword system does not "know" that an O O V 
is discovered and cannot use this information. Thus, in an E2E environment, our goal 
again would be to detect OOVs and to find their representations in the form of phonemes 
or numerical vector representations. 

1.1 Tasks and Metrics 

In this section, we introduce the speech data mining tasks that are relevant to this research 
and explain evaluation metrics for each of them. 

1.1.1 Automatic Speech Recognition 

A S R Task Definition 

Automatic speech recognition (ASR) is one of the most complex speech processing tasks. 
The ultimate goal of A S R is to transcribe text from acoustic input. The standard approach 
is to find the most likely sequence of words W* = w\,iu* given an utterance represented 
as a matrix of acoustic features X . 

W* = a rgmaxP(VF|X) » aigmaxP(K\W)P(W), (1.1) 
W W 

where P(W) represents the L M , and P ( X | W ) is the likelihood of the acoustics given a 
particular transcript. While in a hybrid setup the L M is separate from the acoustic model 
(AM), and they are combined via graph composition during decoding, in an E2E sequence-
to-sequence setup, they are less separable. 

A S R Metrics: Word Error Rate 

The metric for evaluating A S R system performance is usually the word error rate (WER), 
which is a version of Levenshtein distance on the word level. The system output is aligned to 
and compared with the reference annotation, and W E R is calculated as a ratio of insertions 
(I), deletions (D) and substitutions (S) required to change one sequence into the other to 
the total number of words (N) in the reference sequence: 

WBR-'-±%±£. ( 1 .2 ) 

There are several approaches to factor OOVs into the W E R calculation. For example, in 
a widely used NIST S C L I T E scoring tool 1 , transcriptions variants are allowed and treated 
as correct, and OOVs (labeled as <unk>) are excluded from the W E R estimation. This 
exemplifies the attitude of accepting that nothing can be done with OOVs in a classic A S R 
system, but hardly reflects the experience of the user with the final transcript. 

x http: //wwwl.icsi. berkeley.edu/Speech/docs/sctk-1.2/s clite.htm 
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Precision: 70% 

REF 

REC 

IV speech OOV 

Word sequence Sub- vord sequence 

Recall: 90% 

Figure 1.1: f-score precision and recall according to [Kombrink et al., 2010b]. 

In our experiments, we use W E R to evaluate A S R performance the following way: we 
calculate the distance between the predicted transcriptions that include <unk> label and 
the unchanged reference transcriptions. In this setup, predicting the O O V label always 
causes an error. This can be seen as the baseline W E R , the one we will aim to improve by 
applying O O V processing techniques. We call this metric W E R 1 (sec the upper panel of 
Figure 1.2). 

1.1.2 O O V Processing Tasks 

We can separately define two tasks in O O V processing pipeline, one that we call detection 
and another recovery. There are no standardised success metrics for these tasks as there is 
for ASR, therefore we describe ours in detail. 

O O V Detection Task Definition 

Detection task deals with finding places in speech which are OOVs and should return start 
and end times of where an O O V can be found. The output of the detection step is tuples 
of start and end times of O O V regions. The times can be represented in frames or seconds. 

Detection is treated as a separate task in Chapter 5, where we explicitly evaluate the 
detected times and apply them for O O V extractions, and in Chapter 4, where detection is 
done on full lattices, and O O V lattices start and end times arc evaluated based on time 
alignment of the lattices. In the speller setup in Chapter 6, we estimate detection just 
based on the system output, as time information is not needed. 

O O V Detection Metrics 

In case the goal is to explicitly evaluate O O V detection, we need to calculate how well 
the detected O O V regions corresponds to reference O O V regions. Time overlap between 
reference and hypothesis O O V regions is rarely ideal, so a good success metric would show 
how good the partial detections are. 

In the experiments in Chapter 4, we use the O O V detection f-score proposed in 
[Kombrink et al., 2010b]. This f-score is calculated for every detected O O V candidate 
and shows the quality of the detection. Precision is calculated as the overlap duration 
divided by the hypothesis O O V duration and recall is the overlap duration divided by the 
reference O O V duration. A n illustration is provided in Figure 1.1. 

F-score for each detection is then calculated as: 

j. 2 x precision x recall 
precision + recall 
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WER1 
Ref: NOR IS 

Hyp: NOR IS 

MANNER LESS INTERESTING THAN HIS / MATTER 

MANNER LESS INTERESTING THAN HIS \ <UNK> 

SUBSTITUTION SUBSTITUTION 

WER2 
Ref: NOR IS MISTER 

Hyp: NOR IS MISTER 

MANNER LESS INTERESTING THAN 

MANNER LESS INTERESTING THAN 

CORRECT SUBSTITUTION 

W E R r 
Ref: NOR IS MISTER /QUILTER'Sl MANNER LESS INTERESTING THAN HIS 

Hyp: NOR IS MISTER VQUILTERS/ MANNER LESS INTERESTING THAN HIS 

SUBSTITUTION CORRECT 

Figure 1.2: Comparison of W E R 1 , W E R 2 , and W E R r scores as proposed and used through­
out the thesis. 

Detections with / = 0 are false alarms, detections with / = 1 are perfect matches and 
f-scores of partial overlaps of reference and detected OOVs will range between 0 and 1. For 
system scoring, an average f-score across all candidates is calculated. 

Disappointingly, this logical and informative metric has not been widely accepted, and 
most of the papers reporting O O V detection choose to use hard decisions instead of a soft 
f-score overlap metric. So, when we needed to compare detection results with other papers, 
like in Chapter 5, we defined a successful detection as following: an O O V occurrence is 
treated as a true positive if the hypothesis overlaps with the reference for more than half 
of the reference duration. Thus, the detection recall is calculated as the percentage of true 
positives in the reference list of OOVs, and detection precision as the percentage of true 
positives in the list of detected O O V occurrences. 

As a way of assessing detection success directly from output labels, without time consid­
eration, we use a modified W E R score that we call W E R 2 . As we want to isolate the errors 
that happen due to the appearance of OOVs, W E R 2 treats the O O V label as a word. In 
terms of W E R 2 , when a system predicts the O O V label for a reference word that is an O O V 
with the current vocabulary, there is no error. To obtain W E R 2 , we calculate the distance 
between the predicted sequence and the reference sequence with all OOVs substituted with 
<unk> label (sec Figure 1.2). W E R 2 will then show how good a system is in predicting 
words labels, including the O O V label, which is essentially O O V detection. The differences 
between W E R 1 and W E R 2 show how many of W E R 1 errors are due to vocabulary limi­
tation. Wi th bigger vocabularies, this difference is smaller, as the O O V rate is smaller as 
well. 
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O O V Recovery Task Definition 

O O V recovery task aims to recover acoustic and/or graphemic representation of OOVs or 
link them to an existing word identity. 

In Chapters 4 and 5, the task is to recover recurrent OOVs by clustering similarly 
pronounced detected O O V candidates. The output of this recovery process is a list of pre­
viously unseen OOVs in their graphemic representation. Successful recurrent O O V recovery 
depends on 1) enough occurrences of the same word present in the text and 2) successfully 
detected, 3) the clustering assigning enough of these occurrences to the same cluster, and 
4) the phoneme-to-grapheme (P2G) conversion correctly discovering the graphemic repre­
sentation of the word from its subword unit representation. 

The speller architecture (Chapter 6) does not rely on recurrency of OOVs to recover 
their pronunciation. Instead, it trusts the trained speller model to predict the spelling of 
every encountered O O V directly from the state information of a word predicting network 
(WPN). In this case, the goal of recovery is to produce correct spelling for every occurrence 
of an O O V word. 

O O V Recovery Metrics 

When reporting recurrent O O V recovery success, this list of recovered OOVs is compared 
to the list of the reference OOVs (see Appendix A) with the help of Levenshtein distance. 
A word is marked as recovered (true positive) if its graphemic representation does not dif­
fer from some reference word by a distance more than 1. For example, a recovered word 
"morover" (closest dictionary word "moreover") would be considered correctly recovered, 
but "anctious" (closest dictionary word "anxious") not. Recovery recall shows the percent­
age of OOVs from the reference list that were recovered, and recovery precision shows the 
percentage of the recovered words that belong to the reference O O V list. 

As the speller architecture (Chapter 6) does not rely on recurrency of OOVs to recover 
their pronunciation, we do not use the list of OOVs to report recovery in speller experiments. 
Instead, we report W E R r - recovery W E R . Speller predicts words from a word predicting 
network, and whenever an O O V is generated, it outputs its spelling given by the speller. 
W E R r is calculated from the alignment with the original reference transcriptions, same 
as W E R 1 , and the spelled word is correct only when it is the same as in the reference 
transcription (see Figure 1.2). W E R r improvement in comparison to W E R 1 shows the 
system's potential for O O V recovery with completely correct spelling. 

1.2 Thesis Claims 

The main contributions of this thesis are the following: 

• O O V processing field in general: We separately define the two tasks of O O V 
processing, namely O O V detection and O O V recovery. We propose and adapt rep­
resentative metrics for both and provide results with the usage of these metrics on 
a well-known open-source database LibriSpeech. Thus the thesis promotes standard­
ization and replicability in a somewhat disjointed O O V field. 

• FST-based O O V detection and recovery in a hybrid A S R system: we show 
the benefit of working with full probabilistic lattices as opposed to one-best output at 
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every step of O O V detection and recovery from a hybrid A S R with weighted finite-
state transducer (WFST) - based decoding. 

• O O V detection in an E 2 E A S R system: we investigate the usefulness of inner 
representations of an E2E L A S A S R system for locating word boundaries; attention 
and connectionist temporal classification (CTC) approaches are compared. Moreover, 
a principled probabilistic clustering method for lattices is introduced. 

• Speller architecture for O O V detection and recovery: we introduce a new 
architecture for jointly training an E2E A S R with two granularities - words and char­
acters. Training with speller both allows O O V recovery directly during E2E decoding 
and also improves the word-predicting W E R . We also provide a lot of analysis into 
the information learned by different parts of a L A S decoder. 

1.3 Thesis Structure 

This thesis is structured as following: Chapter 2 provides an overview of the field of O O V 
detection and recovery. Chapter 3 describes the Librispeech dataset and its adaptation for 
our experiments. Chapter 4 proposes a procedure for recurrent O O V detection and recovery 
in a classic hybrid A S R system. O O V hypotheses are generated from the output lattices 
provided by a decoding with the usage of a hybrid word-subword FST. The candidates 
in a lattice form are then clustered in order to discover repeating phoneme patterns that 
suggest OOVs to be added to the dictionary and the L M . Chapter 5 introduces the usage of 
E2E L A S architecture for O O V detection: start and end times of O O V regions are inferred 
from either attention weights or C T C alignments. The detected times are used for recovery 
of phonetic representation from a phoneme system. Chapter 6 presents a new speller 
architecture that allows for joint training of a word-predicting system and a speller trained 
to predict graphemic representation of words from embeddings and other inputs. Finally, 
Chapter 7 provides conclusions, takeaways, and a look to the future. 
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Chapter 2 

O O V Field Overview 

O O V research is most relevant to the tasks of ASR, natural language processing (NLP), 
and key word spotting (KWS). In this chapter, we will first talk about sub-word units, 
and then we will present existing approaches to handling OOVs within two distinct flavors 
of A S R modeling: a classical component-based approach and a more recently popular 
E2E approach. Where relevant, work from N L P and K W S fields that provided us with 
inspiration will be cited also, but the tasks will not be described in depth. 

2.1 Sub-Word Units in O O V Representations 

One of the most common ways to represent OOVs is to use smaller than word units -
sub-word units - as recognition targets. This term can be an umbrella for units derived in 
many different ways. 

The first group of sub-word units are linguistically motivated sub-word units. These 
can include phonemes, morphemes or syllables. Although these units have the benefit of 
explainability (and being liked by the linguists), their usage requires language-specific ex­
pert data. For example, if a transcription dictionary is used in an A S R system to provide 
mapping of words into phonemes, this dictionary has to be generated by experts first. Split­
ting words into linguistically "correct" syllables or morphemes also usually requires some 
rule-based conversion system. We will use phonemes as sub-word units in the framework 
of a component-based A S R system in Chapter 4, where a dictionary is provided. 

Another group of sub-word units are data driven units. Uncovering these units does 
not require any external knowledge, just the analysis of the data itself. The simplest sub-
word units is a character. Although there is no guarantee that there is any one-to-one 
mapping between a character and a sound, strong E2E models do not care about that, and 
character outputs are fairly popular. We will use characters for out speller architecture 
experiments in Chapter 6. 

Wi th the release of the fast Sentencepiece algorithm [Kudo and Richardson, 2018] and 
a related free tool 1 , segmentation based on the byte-pair encoding unit (BPE) compression 
algorithm [Sennrich et al., 2016], for better of for worse, has solidified as the most frequently 
used for discovering subword units. B P E [Gage, 1994] is a data compression technique that 
iteratively replaces the most frequent pair of bytes in a sequence with a single, unused byte. 
For B P E unit discovery, instead of merging frequent pairs of bytes, characters or character 
sequences are merged. The symbol vocabulary is initialized as the character vocabulary 

x https: //github.com/google/sentencepiece 
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with a word boundary symbol. Iteratively, each occurrence of the most frequent pair ( 'A', 
'B') is replaced with a new symbol ' A B ' . Each merge operation produces a new symbol which 
represents a character n-gram. Frequent character n-grams (or whole words) are eventually 
merged into a single symbol. Discovered set of BPEs depends on the training data and 
on the number of units the algorithm was tasked to discover. We will use BPE-predicting 
systems for out E2E baselines in Chapters 5 and 6. 

Even though BPEs dominates the sub-word scene these days, there are still efforts to 
bring back acoustic motivation into subword unit discovery. For example, [Zhou et al., 2021] 
propose an acoustic data-driven subword modeling approach, in which BPE-like merging 
is performed on grapheme-to-phoneme (G2P)-initialized phonetic units and later mapped 
to characters. These units produce a more "logical" segmentation of the text and achieve 
better performance as targets on Librispeech data than the classical BPEs . Some of older 
but interesting data driven approaches to sub-word unit discovery also include spectral 
clustering plus machine translation (MT) [Hartmann et al., 2013], block diagonal infinite 
hidden Markov model ( B D i H M M ) [Vanhainen and Salvi, 2014], and others. 

2.2 Component-based A S R 

Component-based speech recognition is a widely used approach to speech modeling for A S R 
with a rich history. First, the basics of applying statistical pattern recognition to a problem 
of A S R have been formulated as long ago as in the 1970s [Jelinek, 1976]. A continuous speech 
signal can be parameterized by splitting it into (assumed stationary) frames and extracting 
relevant features from these frames. The most popular features used in A S R are Mel-
frequency cepstral coefficients (MFCC) [Davis and Mermelstein, 1980] and perceptual linear 
predictive (PLP) [Hermansky, 1990] features. In order to model the correspondence between 
the input features and the output word sequence (see section 1.1), a classic component-based 
speech recognition system combines three components: A M , L M , and a dictionary: 

• Acoustic model (AM) connects input features and phonetic units (usually phonemes 
or context-dependent phonemes) that are responsible for generating them. A M cor­
responds to P(X\W) in (1.1). Because of the sequential nature of speech and the 
assumption of conditional independence, A M is well suited to be modeled as an hid­
den Markov model (HMM), each state of which can generate a feature vector using 
the distribution associated with the state. The state output probability density func­
tions are modeled by, classically, a Gaussian mixture model (GMM) [Juang et al., 
1986] or, more recently, a N N [Hinton et al., 2012]. Component-based A S R that uses 
a combination of H M M s and NNs to model speech [Bourlard and Morgan, 1994] is 
called a hybrid ASR. 

• Language model (LM) is a probability distribution over sequences of words, which 
means that it estimates the likelihood of certain strings of words appearing in the 
system output. It corresponds to PiW) in (1.1). L M is usually represented with 
an n-gram model (trigrams are most common) assigning each word a conditional 
probability given the word history [Kneser and Ney, 1995]. Recently, recurrent neural 
network (RNN) - based L M s have been gaining popularity [Mikolov et al., 2010]. 

• Dictionary is a mapping of words to their phonetic representations, and as such, 
it connects the aforementioned two models. The dictionary may be a one-to-one 
mapping or it can allow several variants how a word can be pronounced. Usually, 
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the dictionary is given (expert-generated), but in case of insufficient expert effort 
available, a wider dictionary can be generated automatically using G2P models trained 
on a short expert dictionary [Bisani and Ney, 2008]. There have also been efforts 
to discover the dictionary in a completely unsupervised way from just a phoneme 
recognizer output (see, for example, [Heymann et al., 2014]). 

A l l the components of the component-based A S R have to be combined for the decoding, 
and this is done with the help of WFSTs [Mohri et al., 2008]. The process of building the 
decoding graph is described in detail in Chapter 4 with further references. 

2.3 OOVs in H y b r i d A S R 

In the context of a component-based ASR, OOVs are defined literally as words which are 
not in the dictionary. As the dictionary provides information connecting A M with L M , 
a system is not able to output the correct word, as the decoding graph limits the search 
space to known words only. Often, instead of outputting something useful for the user, the 
system will simply incline towards a word which is allowed by the language model and is 
phonetically close to the O O V word in question. 

Wi th an addition of a bigger external L M , the O O V problem can be partially alleviated 
by expanding the dictionary with automatically generated transcriptions for all the 
words in the bigger L M . One of the popular ways of training a pronunciation model that we 
also make use of in our experiments is G2P conversion with joint-sequence models presented 
by [Bisani and Ney, 2008]. The approach makes use of joint units called graphones which 
carry both input and output symbols; a sequence of such graphones can model a combi­
nation of input and output strings. Graphone sequences are presented as WFSTs and the 
model is trained on the dictionary using maximum likelihood estimates. The trained model 
can be used to transcribe input grapheme strings into a phonemic transcription by choos­
ing the most likely graphone sequence. [Bisani and Ney, 2008] shows that, with appropriate 
smoothing, the system achieves 9.47% phoneme error rate on different English datasets 
(Librispeech not included). After expanding the dictionary with the newly-generated pairs 
of words and transcriptions, the decoding graph will have to be recompiled with the updated 
dictionary and the L M . However, first, this in no way solves the issue of domain-specific 
or new OOVs that are completely unseen and not included in the bigger L M , and second, 
these automatically generated transcriptions are inferior to expert-generated ones. 

The idea of hybrid decoding, which is also a popular robustness technique in K W S , 
is that the system outputs the words that are in the dictionary if there is sufficient proba­
bility for them and goes one level below and outputs a sub-word string when no word has 
sufficient probability to be output. That way, the user gets some important information 
about the acoustics of the segment of speech instead of getting a wrong word hypothesis. 
There are different ways the two granularities - word and subword - can be combined to 
perform hybrid word-subword decoding. In general, there are two different approaches: 
prior combination and posterior combination [Yu and Seide, 2004]. 

In case of posterior combination, the decoding is done separately on two separate 
systems of different granularities - word and subword - and the hypotheses are evaluated 
with a combination of word and subword scores. Alternatively, the decoding works on 
a word level and switches to a sub-word level only in case the output does not fit pre-set 
conditions (e.g. minimum confidence score etc.) [Lee et al., 2015,Yazgan and Saraclar, 2004, 
Kombrink et al., 2010a]. In this approach, O O V detection and recovery stages are separated: 
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(b) Word level prior combination 

Figure 2.1: Example of a decoded lattice in a hybrid system with different prior combina­
tions from [Yu and Scidc, 2004]. 

low confidence of a word system means an O O V is detected, and then its representation is 
recovered from a subword system. The drawbacks of posterior combination arc time and 
space consumed by essentially doing the decoding twice and keeping twice as many lattices 
than in a regular system. 

The two granularities - word and subword - can also be combined in a prior combina­
tion to perform hybrid word-subword decoding. In this case, the decoding graph contains 
both word-level and sub-word-level paths. This is achieved by combining word and sub-
word language models in the graph generation step. The combination can be performed on 
either the utterance or the word level (see Figure 2.1). If the combination happens on an 
utterance level, the decoder can choose either the word or the sub-word path. The word 
level combination has the benefit of the system being able to choose sub-word or word path 
at every word boundary. Word level prior combination allows combining the two tasks -
O O V detection and recovery in one: an O O V is detected when output is string sub-word 
units, and these units also provide acoustic representation of the OOV. 

In the field of K W S , a more principled approach to hybrid decoding graph construction 
has been proposed. In [Szoke, 2010], the decoding graph is modified in such a way that 
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Figure 2.2: Example of inserting subword model in place of an 0 0 V in the decoding graph 
taken from [Szoke, 2010]. 

in place of every link with an O O V label, a subword graph is inserted (see Figure 2.2). 
Decoding graph built like this can thus produce either outputs consisting of just words or 
combined outputs, consisting of word and subword units. The decision whether the subword 
region of the decoding graph comes into play or not depends on the comparative costs of 
the paths through the graph. This allows for preserving correct posteriors from both word 
and subword graphs. 

This principled approach has been adopted for O O V detection and recovery in [Kom-
brink et al., 2010b]. In it, the O O V detection potential is analyzed with the f-score that 
takes into consideration partial overlaps (see 1.1.2), and detections with high f-score are used 
to recover OOVs as strings of phonemes from one-best output and map them to graphemes 
using a P2G system [Bisani and Ney, 2008]. Wi th this approach, they were able to detect 
about one third of all O O V words, and were able to recover the correct spelling for 26.2 % 
of all detections on T E D talks database2. 

Prior combination can also be achieved by incorporating sub-word units into the L M 
instead of modifying the decoding graph. For instance, [Bisani and Ney, 2005] substitutes 
rare words with their phoneme strings to obtain training data for the language model, 
while [Shaik et al., 2011] adds morphemic subwords to the lexicon. In [Qin and Rudnicky, 
2013], the pronunciation of O O V words is estimated through the G2P conversion, and 
then used to train the sub-lexical units. After that, O O V words in the training text were 
replaced by corresponding sub-lexical units to get a new hybrid text corpus from which 
a L M is trained. Thus, they combine word and sub-word levels into a single flat hybrid 
L M . The decoding graph created from such a model is also capable of performing O O V 
detection and recovery with the same result as word-level graph combination. 

2 https: //www.ted.com/ 
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2.4 End-to-End A S R 
E2E techniques have long taken over hybrid approaches to A S R and continue developing 
with remarkable speed. Unlike a component-based A S R system, E2E directly maps a 
sequence of input acoustic features into a sequence of output labels (characters, sub-word 
units, words, etc.). The system is somewhat of a black box, trained to optimize the single 
objective instead of individual components. Not only does it help with finding the global 
optimum (given there is enough data) and out-performing the classical A S R systems, it 
also greatly simplifies the training process, which in combination explains the popularity 
of the approach. The most popular milestone architectures are connectionist temporal 
classification (CTC) , attention and transformer architectures. 

C T C was the first E2E system to be widely used in A S R , and it was first described 
in [Graves and Jaitly, 2014]. In it, the neural network (five levels of bidirectional L S T M ) 
outputs probabilities of acoustic units and the probability of a blank symbol for each 
frame. The probability of a sequence of acoustic units is found by summing the proba­
bilities over all possible alignments (remove repeated symbols, remove blank symbols). The 
training is possible because of the long short-term memory (recurrent neural network) s 
(LSTMs) [Hochreiter and Schmidhuber, 1997] capability of remembering (and forgetting) 
information selectively over longer time series. To further simplify the training, no feature 
extraction was performed for the input, just the spectrogram was used. When compared 
with the traditional hybrid deep neural network ( D N N ) / H M M system, C T C model has 
achieved state of the art (SOTA) results on W S J dataset. 

Another milestone was Listen Attend and Spell architecture (LAS) [Chan et al., 2016] 
neural network for A S R . L A S system has two components: a listener and a speller (also 
known as encoder and decoder), which are trained jointly. The listener/encoder is a pyra­
midal recurrent network encoder that accepts filter bank spectra as inputs. The speller/de­
coder is an attention based recurrent network decoder that emits characters as outputs. 
The network produces character sequences without making any independence assumptions 
between the characters, which is the key improvement of L A S over previous end-to-end 
C T C models. Even though L A S did not surpass the current state-of-the-art hybrid D N N -
H M M model (on a subset of the Google voice search task), the idea took off. Later, [Zeyer 
et al., 2018] showed that with B P E units combined with an external L M , a LAS-like E2E 
system can achieve SOTA results on Switchboard and Librispeech. 

C T C and attention architectures have been successfully combined in [Watanabe et al., 
2017] for character-predicting E2E A S R . In the proposed hybrid CTC/attention architec­
ture, a CTC-based decoder and an attention-based decoder share the encoder (see Fig­
ure 2.3), and the system is optimized with a combination of C T C and attention losses. The 
attention objective is an approximated letter-wise objective, whereas the C T C objective 
is a sequence-level objective. Therefore, this multi-objective learning is able to mitigate 
this approximation with the sequence-level C T C objective, in addition to helping the pro­
cess of estimating the desired alignment. The paper demonstrated better performance in 
terms of character error rate of this hybrid approach in comparison with CTC-only and 
attention-only approaches on several datasets, including W S J and CHiME-4 . 

Wi th tens of thousands of citations for the seminal "Attention is all you need" [Vaswani 
et al., 2017], the introduction of Transformers was the next big milestone. Transformers 
use multi-headed self-attention in both encoder and decorer, without the use of recurrence 
or convolution. Wi th the ease of parallelization enabled by the transformers, new big archi­
tectures have been introduced, such as, for example, convolutional-augmented transformer 
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Figure 2.3: Hybrid CTC/attention architecture from [Watanabe et al., 2017]. 

architecture (Conformer) in [Gulati et al., 2020] and Perceiver [Jaegle et al., 2021]. Trans­
formers have also enabled effective pre-trained models such as B E R T [Devlin et al., 2018], 
W 2 V - B E R T [Chung et al., 2021] and W a v L M [Chen et al., 2022]. 

2.5 OOVs in an E 2 E Framework 

The majority of the E2E systems predict subword units, most often phonemes [Chorowski 
ct al., 2015a] or B P E s [Scnnrich ct al., 2016], and thus no OOVs arc present. However, some 
systems still report on predicting words [Soltau et al., 2017] in the interest of preserving 
wider context information, and these system do face an O O V issue. 

Notable for us, a word-generating E2E system has been used for O O V detection. 
In [Thomas et al., 2019], an E2E system predicting directly word sequences with atten­
tion mechanism was used for discovering positions of O O V words. For each output label, 
attention points to relevant input frames. Therefore, frames with the maximum attention 
weight for the O O V label can be used to find O O V center frame. These positions of OOVs 
were then used to improve subtitles generation with the use of subword units on broadcast 
data. This paper was used as an inspiration for our E2E O O V detection experiments pre­
sented in Chapter 5. However, we did not observe the performance they report of attention 
maximums pointing necessarily in the centers of words. 

Experiments have also been conducted using two levels of granularities - words and 
phonemes - in an E2E setup. For example, [Li et al., 2017] uses C T C training to implement 
backing-off to phoneme level when an O O V label is produced. Sometimes, instead of two 
granularities, a mix of word and sub-word units is used at the same level, for example, as 
the neural network (NN) output for C T C [Li et a l , 2018]. 

17 



2.6 Post-processing of OOVs 
After a successful discovery of O O V words as strings of sub-word units, further post­
processing can be performed. We have already introduced P2G conversion using [Bisani 
and Ney, 2008] in Section 2.3, and this is the most common step if an O O V was recovered 
in a phonetic form. Another common post-processing includes associating the discovered 
OOVs with IVs. For example, [Kombrink et al., 2010a] uses a per-phoneme similarity scores 
to check if the discovered OOVs are derivatives of words existing in the vocabulary. 

If OOVs are repeating, which is a reasonable assumption for most new, trending words 
(which we are interested in recovering), the strings of sub-word units can be clustered to 
discover these repeating OOVs. For example, in [Qin and Rudnicky, 2013], after O O V can­
didates are detected using a flat-hybrid L M decoding, a bottom-up clustering is performed 
to iteratively find multiple instances of the same O O V word. Each O O V candidate starts 
as a single cluster and in each iteration, two clusters with the smallest distance are merged. 
We adopt the same approach in Chapter 4 before switching to a more complicated proba­
bilistic clustering. As a similarity metric, [Qin and Rudnicky, 2013] use a combination of 
phonetic edit distance, acoustic distance between feature vectors, and context distance to 
achieve recovery rates of 40% to 80% on different databases for recurrent OOVs. 

[Hannemann et al., 2010] made use of an error W F S T to align phoneme paths of 
discovered OOVs to each other and to find closest candidates for clustering. The usage 
of error model allowed to recover somewhat from the limitations of working with one-best 
output path and also to adapt to repeating error pattern. We were inspired by this work 
to continue bringing fuzziness into O O V recovery and going for a full-lattice approach to 
clustering (see Chapter 4). 

2.7 OOVs in N L P 

Serving as an inspiration for our speller architecture for A S R is the speller architecture for 
open-vocabulary N L P introduced in [Mielke and Eisner, 2018]. In it, the L M for generating 
the corpus of tokens consists of two RNNs: the first one captures the sentence structure, 
and the second one, called the speller, captures the word structure. The speller can generate 
new word types following the spelling style of IVs. The novel words generated by this model 
fit the grammatical sentence structure well, but otherwise the model can produce a range 
of possible spellings that fit the language in question. 

Transformers have been widely used for pre-training in N L P tasks too, however, pre­
defined subword-based general-domain vocabularies do not perform well when used in the 
context of specialized domains. Therefore, work has been done on modeling two granular­
ities in N L P as well, for example, CharacterBERT [El Boukkouri et al., 2020] drops the 
wordpiece system and uses a Character-CNN module instead to represent entire words by 
consulting their characters, producing robust, word-level, and open-vocabulary represen­
tations. They show that this model improves the performance of B E R T on a variety of 
medical domain tasks. [Aguilar et al., 2020] proposes a character-based subword module 
(char2subword) that learns the subword embedding table in pre-trained models like B E R T , 
building representations from characters out of the subword vocabulary. The module is 
robust to character-level alterations such as misspellings, word inflection, casing, and punc­
tuation, and improves the performance on the social media linguistic code-switching eval­
uation (LinCE) benchmark. 
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Chapter 3 

Data and O O V Simulation 

The real case scenario of O O V detection and recovery would be continuously collected new 
data with newly emerging words or highly specialized data with topic-specific words. Due 
to the nature of the task, most of the relevant data is kept private, and a lot of research 
mentioned in Chapter 2 uses proprietary data to showcase their results, which makes them 
not easily replicable. To avoid that pitfall, we choose free access data to conduct our 
experiments. 

3.1 Librispeech Dataset 

The database for experiments was LibriSpeech A S R corpus of read audiobooks [Panayotov 
et al., 2015]. The choice of the dataset was dictated by the fact that it is free access, big in 
size, and also it is clean speech that would exclude the complications of having a bad W E R 
baseline interfere with the O O V tasks. No external data was used in any of the experiments 
either for acoustic or language model (pre-)training. 

LibriSpeech consists of several datasets of varying quality: for training, there are sets 
of 100 and 360 hours of "clean" speech (lower-WER speakers) and 500 hours of "other" 
data (higher-WER speakers). In addition, there are two developement and two test sets, 
also "clean" and "other". Each of the four evaluation sets is about 5 hours 20 minutes 
long. There is no speaker overlap between test and train data and the amount of speech 
by each speaker is balanced. In total, there is 1000 hours of 16 kHz data. There are several 
n-gram L M provided with LibriSpeech dataset1. For our experiments, we used the 3-gram 
ARPA-style L M trained on 14500 public domain books with around 803 million tokens in 
total and 900 000 unique words. The official dictionary contains 200 000 words. 

3.2 A S R Training Data 

Table 3.1 summarizes how different sets of Librispeech data are used in the experiments of 
the thesis. 

For our hybrid setup in Chapter 4, the acoustic model was trained on 100 hours of 
clean data, and the Librispeech L M was used. Recurrent O O V detection and recovery is 
performed on the 360 hours of clean data - keeping a lot of unseen data for O O V tasks was 
necessary to provide enough O O V occurrences for successful clustering. W E R is reported 
on a combined dataset of all dev and test subsets. 

x http: //www.openslr.org/11/ 

19 

http://www.openslr.org/11/


experiments set 

dataset 
FST-based E2E Detection Speller E2E 

dataset Chapter 4 Chapter 5 Chapter 6 
train-clean-100 100.6 hrs train train train 
train-clean-360 363.6 hrs O O V recovery O O V recovery train 
train-other-500 496.7 hrs - train train 

dev-clean 5.4 hrs dev, test dev, test dev, test 
dev-other 5.4 hrs dev, test dev, test dev, test 
test-clean 5.3 hrs test test test 
test-other 5.1 hrs test test test 

Table 3.1: LibriSpeech data usage for thesis experiments. 

For the E2E detection experiments in Chapter 5, the system is trained on 100 hours of 
clean plus 500 hours of other, as more data is needed for a successful E2E training. O O V 
detection and recovery is again done on the remaining chunk of 360 hours of clean data to 
provide enough recurrent O O V occurrences. W E R is reported separately on each dataset 
for comparison with other results in literature. 

In the speller E2E setup, O O V recurrency is not a requirement for recovery, so all the 
training data can be used for actual training. Thus, in Chapter 6, the training was done on 
all the training sets, 960 hours in total, and results in terms of different W E R s as described 
in Section 1.1 were reported on all the test sets. 

3.3 O O V Simulation Setup 

In a real-world scenario, OOVs would be newly-coined words and names, but in audiobooks, 
this is not a viable setup - the corpus majorly consists of free domain books, which are 
predominantly from the 19th century. Moreover, in a real O O V scenario, there is no 
information in the data about the OOVs, how they are written or pronounced. So OOVs 
need to be artificially simulated in order to be able to evaluate detection and recovery. 

For a word-predicting E2E system, O O V introduction is fairly staightforward: the num­
ber of output word labels has to be reduced from the initial 200000 to a manageable amount 
of outputs, and the less common labels will then be deemed OOVs and a special output 
label will be assigned to represent them. For our E2E training, the number of word labels 
has been reduced from 200 000 to 5000 most common words (min. 137 occurrences per 
word, 10.4% O O V rate), 10000 most common words (min. 53 occurrences per word, 5.9% 
O O V rate) and 27 000 most common words (min. 9 occurrences per word, 1.7% O O V rate) 
for different experiments. 

For the recovery techniques presented in Chapters 4 and 5, O O V recurrency is crucial: 
the unseen OOVs must be repeated enough times for the system to discover it through 
clustering. Thus, relying only on infrequent words as chosen OOVs is not a viable setup. 
Therefore, we simulate the real-world scenario of new appearing words. We "reverse" the 
task and designate archaic and out-of-usage words as OOVs. These words are not likely to 
be in a modern L M trained on Internet data and thus fit the O O V function. 

In order to choose archaic words as OOVs, we used Google ngram dataset of word 
usage statistics in books [Lin et al., 2012]. For each word, the database provides its number 
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of occurrences in sources published each year over the last 5 centuries. We calculate the 
relative frequency of a particular word in a particular year by dividing the number of 
occurrences of this word this year by the total number of words in this year's publications. 
For our purposes, words with twice as much frequency before year 1900 than after 1900 are 
chosen as OOVs. Moreover, all names are also added to the O O V list. Whether the word 
is a name can be checked by the relative number of its occurrences in the ngram with a 
capital letter and without. 

The resulting list of OOVs picked as described above is given in Appendix A complete 
with O O V frequencies. The list consists of 1000 designated OOVs, which present an example 
of 19-century bookish English. For example, it includes such words as interposed, hastened, 
mademoiselle, indignantly, countenance, etc. Wi th the O O V list obtained as a result of this 
method, the O O V rate (percentage of OOVs in all the words) on the 360 hours clean set 
reaches 1.5% with the default Librispeech 200 000 word dictionary. 

3.4 Data Availability 

A l l the experiments in the thesis are conducted on open access data in the interest of 
replicability. 

LibriSpeech corpus of read books is available" under Creative Commons license (all 
types of usage allowed with proper attribution). LibriSpeech is a widely used and reported 
on dataset, which has recently been expanded for unsupervised training with the release3 

of Libri-Light 60k hours of unlabeled data. Libri-Light can be used under M I T license. 
Most of the popular A S R toolkits have pre-made LibriSpeech recipes available, notably 

Kaldi ' 1 and espnet5. 
Ngram Viewer graphs and data are available6 to be freely used for any purpose. 
Our list of 1000 simulated OOVs is also available' for download. 

2 http: / / www.openslr.org/12/ 
3 https: //github.com/f acebookresearch/libri-light 
4 https: //github.com/kaldi-asr/kaldi/tree/master/egs/libri speech 
5 https: //github.com/espnet/espnet/tr ee/master/egs/libr i speech/asrl 
6 https: //books.google.com/ngrams/ 
7www.f i t . vutbr.cz/~iegorova/public/Libr iSpeech_1000_00V_list.txt 
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Chapter 4 

W F S T - B a s e d O O V Detection and 
Recovery in a Hybr id A S R System 

This chapter covers possibilities for O O V detection and recurrent O O V recovery in the 
framework of a WFST-based decoder of a hybrid A S R . OOVs are discovered in the form 
of lattices of sub-word units, and then a free clustering of these discovered candidates is 
performed in order to find recurring sequences and to add them to the dictionary as new 
words. 

Unlike previous hybrid decoding approaches mentioned in Chapter 2, the work covered 
here attempts to automatically discover new words in a decoding lattice rather than on the 
one-best hypothesis. A sub-word decoding lattice may contain paths that correspond to 
slightly different pronunciations. Thus, clustering performed on lattices instead of one-best 
output strings allows us to discover O O V patterns even if the same O O V is pronounced 
somewhat differently on different occasions. Moreover, this approach should be more robust 
in the case of an A S R output of low quality. These proposed O O V lattices can be seen 
as pronunciation models of O O V words. After discovering new words in this manner, we 
can suggest how they would look in graphemic form, for example using a pre-trained P2G 
system.The pairs of graphemic and phonetic representations of the newly discovered words 
can then be added to the dictionary. 

In this chapter, first, the WFST-based decoding is presented, then we describe the recur­
rent O O V recovery procedure and comment on the results. The core of the O O V detection 
and recovery procedure described in this chapter was published in [Egorova and Burget, 
2018]. In the thesis, we describe the W F S T operations, lattice indexing, and candidate 
extraction in more detail. Moreover, there is more discussion of how the parameters of the 
hybrid decoding graph affect the detection and recovery performed on the lattices resulting 
from the decoding with this graph. 

4.1 WFST-based A S R Decoding 

In a component-based A S R system, the decoding is usually performed with the use of a 
decoding graph to limit the search space. This is facilitated by using WFSTs to combine 
different levels of recognition system models: A M , L M , and the dictionary [Mohri et al., 
2008]. Here, we introduce some useful definitions for the W F S T framework, most of them 
adapted from the iconic [Mohri et al., 2002]. 
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• A semir ing defines how the weights are combined during various operations on a 
W F S T . A semiring is an abstraction that allows to define all W F S T operations dis­
regarding what exact mathematical operations are used for weight combination. A 
semiring is given by a tuple of numbers, two operations, ffi and <g>, and identity ele­
ments 1 and 0: 

/C = { K , ® , ® , 0 , 1 } . (4.1) 

In the framework of ASR, mostly two semirings are used: tropical and log. We will 
also use two semiring combinations: a product semiring and a lexicographic semiring. 

• L o g semir ing (£) is given by 

£ = { M U { o o } , ® Z o s , + , o o , 0 } , (4.2) 

where x ®iog V = — \og(e~x + e~y). C semiring is used for example for representing 
L M weights in the graphs. 

• A (minimal) T rop ica l semir ing (T) is given by: 

T = {MU{oo},min,+,oo,0}, (4.3) 

which means that computing the sum of paths in a graph in this semiring locates the 
minimum path; this is useful for Viterbi approximation. 

• A product semir ing is a combination of two semirings A = {A, ©A, © A , 0A, 1A} and 
B = {B, ® B , ® B , OB, TB} defined by 

A x B = {A x B , © x , © x , 0 A x 0 b ,TA x TB}, (4.4) 

where ® x and © x are component-wise operators, i.e. (ai,&i) ® x (02,62) = («i ©A 

a,2, h © B 62) and (ai, 61) © x (a 2 , 62) = (ai © A a2, 61 © B 62)-

Operator x for creating a product semiring is associative, and so the product of more 
than two semirings can be defined recursively. 

• A lexicographic semir ing is given by: 

A*B = {Ax B,ffi*,©*,0A x 0 b ,TA X Tb}, (4.5) 

where ©* is again a component-wise multiplication operator and ffi* is a lexicographic 
priority operator which gives order priority to the elements of the semiring A, and 
only operates on the elements of semiring B in case the elements of A are equal: 

{ (ai, h ® B 62) if a i = a 2 

(ai,&i) if a i = (ai ®A a2) / a 2 (4.6) 

(a 2, 62) if a i / (ai ®A 02) = 02 

Operator * for creating the lexicographic semiring is also associative, and so the 
lexicographic semiring of more than two semirings can be defined recursively. 
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eye:eye/l,3863 

Figure 4.1: Example of a W F S T representing L M (grammar transducer G). The weights 
on the arcs are negative log-probabilities. 

• A weighted finite-state transducer (WFST) (see Figure 4.1 for an example) is a 
finite automaton that defines a set of possible paths that go from the initial state (a 
circle labeled 0 in Figure 4.1) to any of the final states (double circled in Figure 4.1) 
through any of the allowed transitions (arrows labeled with input:output/weight in 
Figure 4.1). 

Formally, given a semiring JC, a W F S T T can be defined as an 8-tuple: 

where £ and Q are input and output alphabets respectively, Q is a finite set of states, 
E is a finite set of transitions E C Q x (S U e) x (fi U e) x K x Q, an initial state 
i G Q, a set of final states F C Q7 A is initial weight, and p is a final weight function. 
e is the empty label, representing a lack of input or output. 

A successful path TT = t±... tn is a path from the initial state % to a final state / G F, 
in which input labels of each consecutive transition tn correspond to the consecutive 
symbols in the input string x. The output string will then be comprised of the output 
symbols on this path. Thus, a transducer can map a string of input symbols to a 
string of output symbols if it contains a valid path that follows the symbols in the 
input string. 

If a transducer is weighted, the weight of a path vr is calculated as follows: 

The weight associated to the input sequence x is then the © — sum of the weights of 
all the successful paths TT that take x as an input. 

• A weighted transducer with input symbols only is called a weighted finite-state 
acceptor (WFSA). In OpenFST 1 framework, an acceptor is represented by a W F S T 
with equal input and output labels. A string of symbols is said to be accepted (thus 
the name "acceptor") by a W F S A if the acceptor contains a valid path on which input 
labels of the transitions correspond to the characters in the input string x. 

1 https: //www.openfst.org/twiki/bin/view/FST/WebHome 

T = (Z,n,Q,E,i,F,\,p), (4.7) 

(4.8) 
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Numerous operations are defined on WFSTs, the ones we will mostly use further are the 
operations of composition and union of two WFSTs , and the operations of minimization, 
determinization, and closure on a single W F S T . 

• The union operation (u) can be seen as a sum of two WFSTs . If W F S T A maps 
string x to y with weight a and W F S T B transduces string w to v with weight 6, 
then their union transduces x to y with weight a and w to v with weight b. Thus, the 
union of two transducer is a transducer that contains paths from both. 

• The composition operation (o) is used to combine different levels of a recognition 
system model. If W F S T A maps string x to y with weight a and W F S T B maps y 
to z with weight 6, then their composition maps string x to z with weight a®b. 

• The determinization operation (detQ) creates an equivalent (associates the same 
output sequence and weights to each input sequence) deterministic (each state has at 
most one transition with any given input label and there are no input e labels) W F S T 
from a nondeterministic one. The benefit of a deterministic W F S T over an equivalent 
non-deterministic one is its irredundancy: it contains at most one path matching any 
given input sequence, thereby reducing the time and space needed to process an input 
sequence. 

Not every W F S T can be determinized, so in the framework of WFST-based ASR, 
decoding WFSTs are made non-cyclic with the help of disambiguation symbols before 
determinizatoin operation. 

• The minimization operation (mmQ) creates an equivalent W F S T that has the least 
number of states and the least number of transitions among all equivalent determin­
istic WFSTs. Minimization operation can always be performed on a deterministic 
W F S T , so determinization is a required step before applying minimization. 

• The closure operation (*) creates a loop from the final states of an W F S T to its 
initial state. 

Ka ld i 2 framework [Povey et al., 2011] uses the aforementioned OpenFST library for 
handling FSTs. In Kaldi setup, the A S R decoding graph is given by a multi-step composi­
tion which combines different parts of the recognition system into a large H M M . This large 
H M M , on which decoding is performed, represents search space constraints on each of the 
levels in the system. These individual levels include: 

• G is a W F S A that encodes the L M ; its input and output symbols are word labels and 
weights that represent L M probabilities. G graph accepts only word sequences that 
are valid in a current L M . 

• L is a W F S T representing the lexicon; its output symbols are words and its input 
symbols are phones, so it transduces valid pronunciation sequences into word labels 
that they represent. 

• C represents the context-dependency; its output symbols are phones and its input 
symbols represent context-dependent phones, the more detailed acoustic units, which 
are represented by A M ; C graph can be omitted if a system uses phones or even larger 
entities as A M units. 

2 https: //kaldi-asr.org/ 
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• H contains the H M M definitions of acoustic units; typically, each context-dependent 
phoneme is modeled using a 3-state H M M , and H is the closure of the union of the 
individual H M M s ; in H FST, the output symbols represent context-dependent phones, 
and its input symbols encode information about states and transitions probabilities 
of the H M M s . 

To help visualize all the aforementioned WFSTs, a simple example is illustrated in 
Appendix B . 

The composition of all the levels of the decoding graph is then constructed the following 
way: 

HCLG = min(det(H o det(C o det(L o G)))) (4.9) 

Note that minimization and determinization operations are performed with auxiliary 
symbols (e and disambiguation symbols3) to avoid loops and non-determinism. After the 
composition auxiliary symbols are removed. 

The resulting HCLG graph is called the decoding graph, and during decoding, it limits 
the search space to valid sequences of units on every level. Thus, a path through the 
decoding graph encodes a mapping from a string of input symbols (transition-ids, which 
encode pdf-ids and other information4) to a string of output symbols (words). The weights 
on the links constituting a path in the HCLG graph are combined probabilities from the L M 
and H M M transition probabilities. These weights are often referred to as "costs", where a 
cost is a floating point number that typically represents a negated log-probability. Acoustic 
model likelihoods ( H M M emissions) are evaluated during decoding using the probability 
density functions (PDFs) corresponding to HCLG's input symbols. 

1/4.86 1/4.16 3/5.16 

Figure 4.2: Acceptor U for 3 frames and 4 H M M states from [Povey et al., 2012]. 

A W F S T interpretation of the decoding problem is then defined as following, according 
to [Povey et al., 2012]. Imagine we want to "decode" an utterance of X frames, i.e. we 
want to find the most likely word sequence, and the corresponding alignment. We construct 
a W F S A called U, which has X + 1 consecutive states representing boundaries between 
frames. Every state is connected with the next state with arcs for every context-dependent 
H M M state (see Figure 4.2). The costs on these arcs are the negated and scaled acoustic 
log-likelihoods. Then the search graph for the utterance can be constructed as following: 

S = UoHCLG (4.10) 

The decoding problem is equivalent to finding the best path or a number of best paths 
through S. Practically, the search is constrained by beam-pruning. 

, 3https: //kaldi-asr.org/doc/graph.html#graph_disambig 
4 https: //kaldi-asr.org/doc/hmm.htinl#transition_niodel_identif iers 
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The feature sequence is the input to the decoding with the decoding graph and a string 
(or several best-fitting strings) of words is the output. Alternatively, we can consider as an 
output a lattice (labeled, weighted, directed acyclic graph) of all possible decoding paths. 
For our O O V retrieval, we will use the full lattice output of the decoding, defined as the 
following: Let B be a pruned subset of states and arcs of S obtained with a pruning beam 
a. Then a lattice L must have the following characteristics: 

• Lattice L contains a path for every word sequence within a of the best-scoring one 
and does not contain duplicate paths with the same word sequence. 

• For every path in L , the score and alignment corresponds to the best-scoring path in 
B for the corresponding word sequence. 

4.2 O O V Detection and Recovery Procedure 

For successful O O V detection and recovery in a component-based A S R system that uses 
WFST-based decoding, several steps have to be made. First, the HCLG graph has to 
be adapted for hybrid word and subword decoding. This hybrid decoding graph will 
generate decoded lattices that contain paths with subword units that will inform O O V 
post-processing. This framework also requires efficient sublattice retrieval from lattices, 
and clustering of lattices. A l l these methods are presented in this section. 

For the ease of navigation, here we give the general algorithm for recurrent O O V de­
tection and recovery that is followed in this chapter. Each step of this algorithm will be 
described in more detail in the following sections. 

Algorithm 1 WFST-Based O O V Detection and Recovery 

1: train an A S R system (section 4.2.1) 
2: create a modified hybrid decoding graph (section 4.2.2) 
3: decode all the utterances with the hybrid decoding graph to create hybrid decoded 

lattices (section 4.2.3) 
4: create a T F T search index for all the decoded utterances (section 4.2.4) 
5: extract O O V candidates in form of phoneme sub-lattices from the index (section 4.2.5) 
6: cluster O O V candidates (section 4.2.6) 
7: incorporate discovered recurrent OOVs into the L M and the dictionary (section 4.2.7) 

M y implementation of the full O O V recovery procedure can be found on Github 5 . 

4.2.1 Baseline A S R 

The system is trained using Kaldi toolkit [Povey et al., 2011], following the official Lib-
rispeech recipe6 provided within the toolkit. The OOVs from the O O V list (see Appendix A) 
are excluded from the training, train-clean-100 dataset is used for the A S R training, and 
train-clean-360 for O O V extraction (see Table 3.1). The L M provided with Librispeech is 
used as word-level L M , and the phonotactic language model is a 3-gram A R P A L M trained 
on the whole Librispeech dictionary (200 000 words). 

5https://github.com/BUTSpeechFIT/OOV-recovery-in-hybrid-ASR-system  
6 https: //github. com/kaldi-asr/kaldi/tree/master/egs/libri speech 

27 

https://github.com/BUTSpeechFIT/OOV-recovery-in-hybrid-ASR-system


The features used in the training are Mel-frequency cepstral coefficients (MFCC) [Davis 
and Mermelstein, 1980] with 13 cepstra, 23 Mel-bins, extracted from the frames of length 
25 ms with 10 ms overlap. Energy is computed before preemphasis and windowing, and 
dc-offset is removed. The raw M F C C features have 13 coefficients for every frame. After 
feature extraction, cepstral mean and variance normalization ( C M V N ) is applied for every 
speaker. 

Pure M F C C s are only used for initial monophone training, later the features are ex­
panded to include A and A A features. Unlike the instantaneous M F C C features, A and 
A A approximate first and second derivative of the features. Wi th the addition of deltas, 
features grow to size 3 x 13 = 39; Kaldi adds deltas in an online fashion via convolving the 
features with a sliding window. 

Another way the features are modified in the later stages of training is through the 
application of linear discriminant analysis (LDA)+maximum likelihood linear transform 
(MLLT) transforms; L D A + M L L T transformation is computed on M F C C s the following 
way: we splice across 9 frames (4 left context and 4 right context), reduce the dimension to 
40 using L D A , and then later estimate, over multiple iterations, a diagonalizing transform 
known as M L L T or (global) semi-tied covariance (STC) [Gales, 1999]. L D A + M L L T features 
have dimension of 40 for every frame. 

For D N N training, features transformed with feature space maximum likelihood linear 
regression (fMLLR) are used (dimensionality 40); f M L L R transforms L D A + M L L T features 
to speaker adapted features using an affine transform. 

The sequence of systems in Kaldi baseline (nnet2 recipe) is: 

1. A simple initial hidden Markov model (HMM)/Gaussian mixture model (GMM) 
monophone system is trained on the subset of 2000 short utterances from train-clean-
100; each phoneme is represented by a three-state H M M ; 1000 total Gaussians are 
used. 

2. A triphone system with M F C C + A + A A features is trained on a subset of 5000 
utterances from train-clean-100 and based on alignments from the monophone system; 
maximum number of Gaussians is 10000. 

3. A triphone system with L D A + M L L T ; realignment is done every 10 iterations, and 
M L L T is recalculated 4 times during the training. 

4. A triphone system with LDA+MLLT+speaker adaptive training (SAT); SAT per­
forms speaker and noise normalization by adapting to each specific speaker with a 
particular data transform. 

5. A DNNs on top of the f M L L R features, using the decision tree and state alignments 
from the L D A + M L L T + S A T system as supervision for training. The D N N is a p-norm 
network [Zhang et al., 2014] using 4 hidden layers. Input dimensions are 360 (40 x 9), 
as the network sees a window of f M L L R features, with 4 frames on each side of the 
central frame. As it is hard for this particular architecture to learn from correlated 
input, these 360-dimensional features are multiplied by a fixed transform that de-
correlates the features. Output dimension is 3440 (context-dependent H M M states). 
The initial learning rate is 0.01, going down to 0.001 at the end of the training. 

The W E R 1 that is possible to obtain with this setting is 11.7% on the test-clean set. 
Note that it is more than the 9.32% reported by [Panayotov et al., 2015] for training on 
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train-clean-lOO, but our baseline is for a weaker L M (only 3-gram vs 4-gram - we were not 
able to use 4-gram in hybrid decoding graph due to size restrictions) and also already for 
the system with artificially chosen and excluded OOVs at 1.5% O O V rate. 

4.2.2 H y b r i d Decoding Graph 

The issue with OOVs in the HCLG decoding framework is that although we can have 
OOVs represented by a special word in the L M , there is no dictionary entry that specifies 
what string of acoustic units represents each particular O O V . Phonetically, OOVs are often 
modeled with a special garbage acoustic model. While practical, such a solution does not 
provide good acoustic representation of an OOV, so in our hybrid system we model the 
likely phonetic sequences representing an O O V by building a hybrid decoding graph in the 
same way as in [Szoke, 2010]. 

While in a hybrid word-subword graph subwords can be chosen as any smaller-than-
words units, such as syllables, BPEs , etc., in the following experiments we will use phonemes 
as subword units, as they are intuitive and linguistically defined, and also correspond to 
the representation of words in a dictionary. 

To obtain a hybrid word-phoneme decoding graph, we first build two G WFSAs: Gw is 
built from a word level L M , and Gp from a phonotactic L M trained on the dictionary. As 
the word-level L M contains probabilities for OOVs, Gw also contains arcs labeled <unk> 
which is the O O V label in the L M . The weight on the <unk> labeled arcs is the correct 
L M probability of an O O V in current context. We then modify Gw by replacing every node 
to which an <unk> labeled arc leads with a copy of the Gp graph. There are such nodes 
in the Gw graph for every L M history of the O O V word, and thus the resulting modified 
graph contains as many copies of Gp. Figure 2.2 illustrates such modification, but note 
that it is a toy bigram example, it only has one occurrence of an OOV, and thus the Gp is 
shown to be inserted only once. 

Technically, this G graph modification is done by the composition of Gw with the closure 
of Gp modified to add a word loop to the initial state: 

G = Gwo(mGp)*, (4.11) 

where mGp is the modified Gp with a word loop over the initial state. 
When this is done, every <unk> link in the decoding graph leads to a phoneme sub-

FST, and there is a special label for the end of subword sequence on all the links going 
from phoneme sub-FST back to word transducer. 

In the hybrid graph, we can manually control the preference that the system shows to­
wards paths containing phonemes. This is achieved by boosting the probability of following 
the O O V link and by increasing or decreasing probabilities inside of the phoneme sub-graph 
to encourage choosing paths through OOV. In particular, three parameters control decoding 
in the hybrid graph and can be adjusted for better performance: 

• O O V cost (OOVC) penalizes the hypothesis for entering phoneme sub-graph. It only 
affects the weight of the phoneme sub-graph entry link in the following way: 

w'[t0ov] = w[t00v] + OOVC. (4.12) 

As the weights in G are represented as negative log probabilities, the bigger the 
O O V C , the less OOVs are generated. 
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• Phoneme L M scaling factor (PLMSF) balances phonotactic and word model scores. 
It affects every link cost inside a phoneme sub-graph in the following way: 

w'[tphoneme] = Vj[tphoneme] X PLMSF. (4.13) 

• Phoneme insertion penalty (PIP) regulates the length of the generated phoneme 
strings. It is a number added to weights on every link inside the phoneme sub-graph: 

W [tphoneme] — W \tphoneme\ ~\~ PIP. (4.14) 

M y implementation of hybrid decoding graph creation in a Kaldi framework can be 
found at Github' . 

4.2.3 Decoding with a H y b r i d Decoding Graph 

This hybrid G graph is then composed with L, C, and H graphs normally as described in 
Section 4.1 and the decoding procedure is not changed from (4.10). Decoding with a hybrid 
decoding graph HCLG built in this way gives us hybrid decoded lattices containing both 
paths with words and paths with phonemes representing OOVs. The decision whether the 
subword region of the decoding graph comes into play or not depends on the comparative 
costs of the paths through the graph. Ideally, the cost of the paths going through subword 
region would only be lower than any word-only decoding path if and only if there is an 
O O V at this position in an utterance. 

Extracting O O V candidates from a lattice resulting from decoding with a hybrid graph 
allows an O O V to be correctly modeled with the combination of the probability of the O O V 
being in a certain place in the utterance and the conditional probability (given that the 
word is OOV) that the O O V is represented by a particular pronunciation. 

4.2.4 Lattice Indexing with T F T 

Working with full lattices instead of one best decoding output is beneficial for the O O V 
recovery task. First, this approach may avoid many errors stemming from a possible low 
quality A S R output. Second, it allows potential OOVs to be represented by several possible 
paths, and also to find OOVs on suboptimal word paths. However, while being more robust, 
this approach poses some challenges, as it can be time and space consuming to traverse the 
output word-phoneme lattices forward and backward to ensure that all phoneme paths are 
found. Thus, an effective way of presenting the information from the lattices is needed. We 
can speed up the process of O O V extraction if we first apply indexing to decoded lattices. 

The inverted index is a search optimization technique that is mostly used in the K W S 
task where it provides correspondences between words and times where they can be found 
in an utterance. A reverse index can be in many formats (e.g. lookup table), but here 
we will consider only one of them: a W F S T . This W F S T index is a tree-like structure 
which can take as an input any string that is found in the lattice, and outputs utterance 
labels, time frames and scores for the input query. During the search, the query is also 
represented as a W F S T and the composition operation of the query with the index W F S T 
is performed [Lee et al., 2015]. 

7 https: //github.com/BUTSpeechFIT/ASR-hybrid-decoding 
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For our needs of providing fast search for the timing of 0 0 V s , we used lattice indexing 
introduced in [Can and Saraclar, 2011]. The indexing procedure transforms output lattices 
into a single factor transducer which stores the timing information and scores on the output 
labels. The output symbols quadruple consists of utterance ID, start time, end time and 
posterior probability. This newly introduced type of factor transducer is called a timed 
factor transducer (TFT) . The whole procedure is described in the source paper in great 
detail, so here we only give the general understanding of it that is relevant for the efficient 
O O V extraction task. 

The input of the procedure of T F T construction is a word/phone lattice output by 
an A S R system. In these lattices, path weights correspond to a weighted combination of 
acoustic and language model probabilities. Factor generation requires some preprocessing 
of these lattices. First, we should perform a weight-pushing algorithm in the log semiring C 
to make the output lattices stochastic WFSTs, meaning that the weights leaving one state 
correspond to probabilities that sum up to 1. Then, the arcs with the same input label and 
overlapping time spans are clustered together: the new cluster labels are introduced and 
inserted as an output label of each arc. 

The left side of Figure 4.3 shows lattices for two utterances after pre-processing. Arcs 
are labeled with word or phoneme labels (a and b) as input symbols, cluster identifiers 
(1 and 2) as output symbols, and stochastic probabilities obtained from weight-pushing as 
weights. 

After preprocessing is finished, T F T can be generated. On each arc, the weight (in C) 
is replaced with a product semiring, consisting of weight (in C), start time (in min tropical 
semiring T) and end time (in max tropical semiring T'). Moreover, initial and final states 
are generated as well as arcs that connect them to each state of the FST . After that, the 
paths with the same factor-pair (i.e. input (word or phoneme label) and output symbols 
(cluster label)) are merged and the posterior weight becomes the sum of all probabilities 
of all successful paths that contain that factor pair. The transducer is then minimized 
and determinized in C x T x T', and we map the weight to the full tropical lexicographic 
semiring T * T * T• After this, cluster labels are removed on non-final arcs; on final arcs 
we insert disambiguation symbols, because we want to preserve each non-overlapping word 
occurrence separately. The resulting disambiguated T F T can now be determinized and 
minimized in T * T * T semiring. 

In the end, union operation of the transducers corresponding to indices for individual 
utterance is performed to obtain one big index for the whole dataset. Each utterances' 
input-output labels are encoded as a single label and utterance identifiers are put as outputs. 

The right side of Figure 4.3 shows the result of building an index on the example lattices. 
The output labels on the final arcs of each valid path point to the utterance label where 
the word string on this path can be found. The weight triple shows word posteriors, start 
time and end time. 

Search over T F T can be performed by simply composing the query (word FSTs with 
word labels on input and output) with the index, and the weights are sorted in a natural 
T *T *T order. 

Practically, this indexing procedure is implemented8 in the Kaldi toolkit and can be 
used as it is on the lattices generated by the hybrid decoding graph. However, OpenFst 
does not have the 7~* T* T semiring implemented, so an extension of OpenFST had to be 

8 https: //kaldi-asr.org/doc/kws.html 
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Figure 4.3: A n example of creating a T F T index from [Can and Saraclar, 2011]. Note that 
the weights here are stochastic probabilities instead of negative logs. 

PHN P:PHN P 

Figure 4.4: Phoneme acceptor P. 

written. M y implementation of the T*T*T semiring is included in the Github repository 
with my 0 0 V recovery procedure. 

4.2.5 O O V Extraction from Lattice Index 

The output of this indexing procedure on decoded lattices is a tree-like W F S T which con­
tains all partial paths through the decoded lattice, of which we care only about phoneme 
ones: we have to extract O O V candidates in form of phoneme sub-lattices from our decoded 
lattices, i.e. separate sub-lattices of phonemes from the rest of the lattices containing also 
words (that will not be used in further information extraction). We will search for sub-
lattices starting with the <unk> symbol that marks the entry point of phoneme lattice and 
ending with <plmsilsp> output symbol marking the exit point. 

Practically, to find only paths consisting of phonemes in the index tree I, we need to 
compose an 3-state unweighted acceptor P (see Figure 4.4) to the index tree. This acceptor 
P has 3 states, the arc between states 0 and 1 is accepting input symbol <unk>, the arc 
between states 1 and 2 is accepting input symbol <phnsilsp>, state 2 is the final state, and 
state 1 has a phone loop with all the possible phonemes. Thus, P only accepts strings of 
phonemes from the index tree that start with the <unk> symbol (phoneme subgraph entry 
symbol) and end with <plmsilsp> (phoneme subgraph exit symbol): 

L00v = PoL (4.15) 

A tree-like structure is fast to traverse, and after only the relevant phoneme paths are 
left, separate O O V candidates are extracted based on non-overlapping start and end times 

9 https : //github.com/BUTSpeechFIT/OOV-recovery-in-hybrid-ASR-system 
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PHN_D:PHN_D/1.4805 

Figure 4.5: 0 0 V candidate in lattice form: min(Loov)-

that are stored in the T F T weights. The minimization operation returns the extracted 
candidates to the structure they had in the decoded lattices (see Fig. 4.5). 

After they are extracted from the index, O O V candidates are represented as probabilistic 
phoneme lattices that now contain both the decoding graph probabilities and acoustic 
scores. The weight of every path of an O O V candidate lattice can be transformed to the 
posterior probability via weight-pushing in log semiring [Mohri et al., 2008]. We discover 
lattices that represent the same O O V with the help of clustering. 

4.2.6 O O V Candidates Clustering 

As O O V candidates arc represented probabilistically in the form of lattices, we need a tech­
nique for discovering the best pronunciation of recurrent OOVs among all the pronunciation 
variants. Clustering together O O V representations based on similar pronunciations in some 
of the paths will reinforce the repeating paths and provide better reference pronunciation. 

The similarity of two FSTs can be estimated by performing their composition and 
calculating the shortest distance from the initial state to a final state in this composition 
in log semiring. We call this distance Cscore and it can be interpreted as the probability of 
both O O V candidates being present in the recording and both being pronounced as the same 
sequence of phonemes. If two FSTs do not have a single common path, the composition 
output is empty and Cscore equals to 0. 

The first type of clustering we tried was hierarchical clustering. In the beginning, 
pairwise Cscores of all the O O V candidates are put into a matrix. At each step of the 
clustering, the system looks for the biggest Cscore and, if it is bigger than a pre-selected 
threshold, performs the union of the two corresponding O O V candidates. The newly united 
lattice preserves paths from all of the initial lattices that were merged into it at different 
steps. At the end of a clustering step, pairwise Cscores involving the two merged candidates 
are recalculated by performing the composition of the newly merged candidates with all 
other candidates. The prc-sclcctcd threshold defines a stopping criterion for the clustering 

if the Cscore is smaller than the threshold, the clustering is stopped, as we might not 
want to merge such unlike candidates. After the clustering is stopped, each O O V cluster is 
represented by the union of all the phoneme paths in all the occurrences that were clustered 
in it. 

To evaluate the hierarchical clustering of O O V hypotheses and to estimate the stopping 
point, we have looked at the clustering quality with adjusted Rand index (ARI) [Santos 
and Embrcchts, 2009], a standard way of analyzing relations between two clusterings based 
on [Rand, 1971]. Given two partitions into subsets X and Y over a set of elements n, Rand 
index (RI) is calculated as a number of agreements over the total number of pairs: 

33 



6x10 

T3 < 
0 

c 

i/i 

200 400 600 800 
Number of mergings 

1000 1200 

Figure 4.6: A n illustration of the progress of A R I score during hierarchical clustering of 
O O V hypotheses. 

where a is the number of pairs of elements that are in the same subset in X and in the 
same subset in Y, and b is the number of pairs of elements that are in different subsets in 
X and in different subsets in Y. A R I is the corrected-for-chance version of the RI and can 
take negative values if the index is less than the expected index. 

At each step of the clustering procedure, we compared the current hypothesis clustering 
with the true clustering given by the word labels obtained from alignment with a full 
dictionary. While A R I is small due to the huge number of initial clusters, it keeps growing 
while the Cscore is big enough to create mergings that make sense and falls once the 
system starts over-merging clusters (sec Figure 4.6). The steeper increases in A R I occur 
when bigger clusters are merged in a meaningful way. The maximum of A R I can be used 
to choose stopping criterion. 

Hierarchical clustering, although adequate, has several problems. First, the threshold 
must be chosen experimentally, and may vary for different number of O O V candidates. 
And second, once merged, a candidate can never leave the cluster. This sometimes led 
to appearance of big "garbage" clusters if no pruning is introduced. In the next chapter 
experiments, a more principled clustering approach was adopted that avoids these problems. 

4.2.7 Final Recovery Steps 

After the clustering, the system ignores the clusters with less then two candidates assigned 
to them - if there is no recurrency of the patterns and no reinforcing of the most common 
pronunciation paths, it is difficult to assess the quality of the cluster. From the clusters 
of size > 2, one best path is extracted - this path has appeared in the minimum of two 
O O V candidates with good costs and is thus the best bet. Then this path is turned into a 
grapheme form to obtain the new word with the help of a P2G model. 

The P2G model is trained on the reverse dictionary following [Bisani and Ney, 2008]. 
The dictionary for the training is the default Librispccch dictionary of 200 000 words with 
excluded 1000 OOVs from the list. This model can be applied to the best path or to the 
whole lattice of a candidate to propose new entries to the dictionary. 

RI = 
a + b 

(4.16) 
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4.3 Results 
4.3.1 O O V Detection 

The baseline system described above achieves 11.7% W E R and zero f-scorc (as proposed 
in Section 1.1.2) if estimated on one-best output on test-clean set. This means it is not 
capable of detecting O O V candidates at all. 

In a hybrid system, hybrid parameters described in section 4.2.2 can be changed to trade­
off between detecting more O O V candidates and retaining a good W E R . As an example, 
Figure 4.7 shows the sensitivity of O O V detection depending on P L M S F . It can be seen 
that the more we lower the cost of paths inside the phoneme subgraph and thus encourage 
the system to choose paths going through the O O V region, the more O O V candidates we 
get and the better our f-score, mainly due to recall. However, WER, is suffering from over­
producing OOVs on the best path, so one should be careful not to over-encourage paths 
with OOVs at the cost of compromising the best path. 
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Figure 4.7: Different A S R system characteristics depending on P L M S F . 

Tuning of the three hybrid parameters was done on the test-clean set (reference number 
of OOVs is 1070) to speed up the search process, but the results should be indicative of the 
performance on train-clcan-360 that we will use for O O V extraction. A l l three of the hybrid 
parameters are tuned separately. It can be seen that without encouraging the system to 
enter subword graph and produce phonemes, detection is very poor; however, if we lower 
the weight on phoneme paths too dramatically, W E R grows, and the average length of 
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hybrid parameters: 
PIP, P L M S F , O O V C 

W E R % f-score % # unks phn duration missed OOVs 

baseline 11.59 0 0 0 1070 
default 0 1 0 11.66 0 1 6 1070 

0 1 -2 11.66 0 1 6 1070 
0 1 -4 11.67 0.2 8 6.5 1067 
0 1 -6 11.68 0.4 22 6 1064 

-0.5 1 0 11.69 0.1 8 11.4 1068 
- 1 1 0 11.96 1 50 19.18 1048 

-1.5 1 0 15.12 3.2 239 32.9 968 
0 0.9 0 11.68 0.1 5 7 1068 
0 0.8 0 11.70 0.1 10 10.6 1067 
0 0.7 0 11.80 0.6 28 15.9 1058 

Table 4.1: Finding good hybrid graph parameters on test-clean dataset. Column unks" 
shows the number of OOVs predicted on the best decoding path; column "phn duration" 
shows the average duration of predicted OOVs in phonemes; column "missed OOVs" shows 
how many OOVs from the reference 1070 in the dataset were not detected. 

generated OOVs becomes too long compared to normal word length. These experiments 
confirm the results in [Szoke, 2010] and allow us to choose the best setting for O O V recovery 
task. 

The maximum f-score we were able to reach on the train-clean-360 dataset was 7.2 % 
but this setup was not viable due to the average length of phoneme stings of 25 - much 
longer than a word should be. The following recovery experiments are performed on a 
hybrid system with O O V C = —10, P L M S F = 0.8 and PIP = 0. This system provides 
f-score of 1% at 11.77% W E R on the test-clean set - a reasonable balance between the 
two. When evaluating the O O V detection performance on full lattices in comparison to a 
one-best output, benefits of the full lattice approach can be observed. On 360 hours of data, 
extracting O O V candidates as phoneme strings from one-best decoding output results in 
just 1247 O O V candidates, while from the full lattices, we get 15991 (see Table 4.2), which 
is more than 12 times more. However, considering the reference number of OOVs in the 
360 hours dataset is 60661, recall is still very poor: even if we assume 100% precision, 
maximum recall is only 26%. 

4.3.2 Recurrent O O V Recovery 

Below are the OOVs that are obtained from the clustering with Cscore threshold 0.01 (as 
defined in 4.2.6) of phoneme strings from one-best decoding output results. The corre­
sponding graphemic representation is obtained from a P2G system trained on the same 
dictionary as the phonotactic L M [Bisani and Ney, 2008] but reversed, so that the gra-
phone units are phonemes on the input and graphemes on the output. Only the OOVs 
that are a result of clustering of more than 2 candidates are considered, which produces 
the following 7 recovered words: 
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C O U R A G E K E R I H J H 
V O Y A G E V O Y IH J H 
F L A N E F L E Y N 
K L E Y S K L IY Z 
S A L O O S K I S A H L U W S K IY 
I M E T H E U S IH M IY T H IY A H S 
A N C T I O U S L Y A E N G K SH A H S L IY 

As can be seen, less than half of the words make sense. Only two of the OOVs out of 
1000 are recovered correctly and one ( "ANCTIOUSLY") is close enough to be recognizable. 
This gives us a recovery recall of 0.3 % and recovery precision of 43 % if it even makes sense 
to calculate precision on just 7 outputs. 

To compare, below are the 20 OOVs obtained with clustering candidates from full 
decoding lattices with 0.01 threshold. In the brackets is the number of the word's reference 
occurrences where applicable. Again, only OOVs that are the result of merging more than 
2 candidates are considered: 

C O U R A G E (288) K E R IH J H 
V O Y A G E (120) V O Y IH J H 
T H R A C E T H R E Y S 
T H R O N G (48) T H R A O N G 
SNESS S N A H S 
U N E S E A H N IY Z 
A T H O ' S A E T H O W Z 
H I T H E R (95) H H IH D H E R 
I G A R L Y (176) IH G E R L IY 
S A V A G E (182) S A E V IH J H 
W E L L I N G (82) W E H L IH N G 
A N X I O U S (296) A E N G K SH A H S 
B O L D L Y (68) B O W L D L IY 
T R I C H E R Y (43) T R IH C H E R IY 
D I G N I T Y (190) D IH G N A H T IY 
E R L O G I N G S E R L A A J H IH N G Z 
ERNESSNESS E R N A H S N A H S 
A N C T I O U S L Y (99) A E N G K SH A H S L IY 
C O R M A L I S K A O R M A E L A H S 
H I T H E R I N T H I T H E R H H IH D H E R IH N T H IH D H E R 

Of these 20, 8 are ideally recovered words from the 1000 on the O O V list, which is 
four times as many as with one-best approach. Furthermore, there are some close-to-ideal 
recoveries, like a name from The Three Musketeers (Athos, recovered as "ATHO'S") , and 6 
words that are still recognizable ( " T H R A C E " , " U N E S E " , " I G A R L Y " , " T R I C H E R Y " , "ER­
NESSNESS", " A N C T I O U S L Y " ) , although the graphemic representation is not completely 
right. So the O O V recovery recall in full-lattice clustering equals 1.4%, which is more than 
4 times better than one-best clustering, even though still underwhelming. Recovery pre­
cision rate can be estimated at about 50 % depending on how the words recovered similar 
enough to the reference are judged. A l l the results are summarized in Table 4.2. 

Of special interest are entries "SNESS" and " H I T H E R I N T H I T H E R " . The first is a 
suffix, which can help with the recognition of nouns that are derived from adjectives using 

37 



Detection method Detectior 
# of candidates 

l 
recall % clusters 

Recover 
recall % 

y 
precision % 

one best 
full lattice 

1247 
15991 

2 
26 

7 
20 

0.3 
1.4 

43 
50 

Table 4.2: Comparison of detection and recovery results using one best and full lattice 
approaches on train-clean-360 dataset. 

this morpheme. The second is a phrase "hither and thither", which repeats more often in 
the data than any of its parts separately. As this phrase has a distinct meaning and usage, 
it may be profitable to treat it as an individual lexical entity in a language model. We may 
also note that "anxious" and "anxiously" differ only in two phonemes in the end. This way, 
we can discover that it is a suffix and use this information for further analysis of discovered 
words. 

Even though the recovery procedure provides limited amount of new words, they seem to 
be helpful additions to the system. Adding these newly-discovered OOVs to the dictionary 
with the learned pronunciation and to the L M as unigrams with the same probability as 
an O O V reduces W E R from 11.77% to 11.62%. 

4.4 Conclusion 

It has been shown that the newly-proposed lattice-based approach outperforms one-best 
approaches both in terms of O O V detection and in terms of the recovery of phonetic and 
graphemic representations of OOVs. The proposed system shows promise of enhancing 
A S R user experience by bringing to their attention newly discovered words that may be 
added to the dictionary almost without adjustments. 

The benefits of the system is that it performs both detection and recovery and for each 
O O V phonetic representation, it preserves the correct posterior scores that reflect both the 
probability of the O O V being in the utterance in the given context and the probability 
of the O O V being realized as this specific phoneme string. Moreover, words represented 
as lattices reflect pronunciation variants well and this representation also helps to cluster 
them into good O O V representations in spite of minor errors or variations. As there is no 
jumping between two granularities, O O V boundaries are well defined and there is no risk 
of "stealing" a phoneme from a neighbouring word. 

Since the first publication of this work, the approach described here has been taken on 
and furthered by [Zhang et al., 2020]. They used the same hybrid graph creation with the 
same hybrid parameters and decoding as we did, and, having obtained O O V candidates 
by hybrid decoding, performed a second pass decoding by applying word-level R N N L M 
rescoring. They showed that by calibrating O O V candidates' language model (LM) scores, 
both O O V recovery and overall decoding performance can be significantly improved. 

There are several drawbacks discovered in the system however: 

1. Hybrid lattices can get unmanageably big in case of more-than-trigram models, and 
not fit in memory. Moreover, decoding takes a long time as the beam has to be wider 
to keep all the optimal variants including the phoneme paths. 

2. Hybrid parameters need tuning to achieve both good f-score rates and reasonable 
W E R . 
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3. Even if the hybrid parameters are set perfectly, the detection recall is comparatively 
poor (26%), which is reflected in low recovery recall (1.4%), as clustering does not 
get enough examples. These suboptimal results are explainable by the fact that in 
case of several words with similar pronunciations, the decoding is prone to choose 
them rather than to explore phoneme paths. 
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Chapter 5 

O O V Detection in an E 2 E System 

The work presented in this chapter attempts to improve the detection recall issues encoun­
tered in the hybrid setup by employing E2E techniques. For O O V detection, we will now 
rely on an E2E A S R system trained to predict directly word sequences. The input to the 
E2E system are acoustic features, and as output, we get predicted word labels, and also 
access to internal hidden representations of words. These word labels and other information 
from the E2E systems serve to obtain timestamps for detected OOVs. Then, a procedure 
similar to the one in the previous chapter is used: OOVs extracted from the timestamps 
in the forms of lattices are clustered according to their phonetic similarities, and recovered 
OOVs are added to the dictionary. 

The core of the O O V detection research described in this chapter was published in 
[Egorova et al., 2021]. In the thesis, we describe the Chinese restaurant process (CRP) 
clustering procedure in more detail and provide more results on different output label 
counts. 

5.1 Attention-based E 2 E A S R System 

The baseline E2E A S R system used in this work is a Listen Attend and Spell architecture 
(LAS) model [Chan et al., 2016]. This is a variation of Attention-based [Chorowski et al., 
2015a] encoder-decoder architecture that has enough capacity to learn complex patterns 
and enough explainability to use some of the inner representations for O O V tasks. 

5.1.1 L A S System Architecture 

Feature extraction follows the standard Kaldi filterbank extraction with 80 Mel-bins for 
higher resolution. For each frame of 25 ms with 10 ms overlap, feature vector is of size 
83: 80 filterbanks, plus 3-dimensional pitch features. The full input sequence matrix X has 
dimensions of the number of 25 ms frames in the utterance times 83. 

The input feature sequence X is transformed into the encoded hidden representation 
H by the encoder. Let X be the length of utterance in frames, F the dimension of 
input features, and H the size of the hidden representation, then the pipeline of encoder 
transformations with all the input-output dimensions can be seen in Figure 5.1. The encoder 
consists of six layers, each containing a bi-directional long short-term memory (biLSTM) 
layer followed by a linear projection layer. The input sequence is sub-sampled in the time 
dimension by a factor of 2 in the first two encoder layers; the sub-sampling is done by 
max-pooling with the kernel size 3 and stride 2. Non-subsampling layers have residual 

40 



x4 without dimensions change 

Figure 5.1: L A S encoder architecture; X is the length of utterance in frames, F is the 
dimension of input features, and H is the size of the hidden representation. 

connections, and dropout is applied to the outputs of the b i L S T M networks. Dropout 
probability is 0.1 in the subsampling layers and 0.3 in other layers. The output of the 
encoder step is hidden representation H of the size of H times X / A . 

The task of the decoder is to predict word labels from the hidden representation H . 
Figure 5.2 shows L A S decoder architecture graphically. For each timestep i a word label is 
predicted as following: first, we predict the L S T M state Sj (vector of size H), represented 
as the output of the decoder L S T M : 

s i = Z5rM ( c i _ i , y i _ i ) , (5.1) 

where Cj is the context vector (of size H) of the attention module from the previous timestep 
and yi-i is the embedding vector (of size H) of the word label predicted for the previous 
timestep itfj-i1. 

Then, given the L S T M state Sj and encoded hidden representation H , the context vector 
Cj (of size H) is calculated the following way: 

Cj = Attention(si,~H), (5.2) 

where Attention^, H) block has a complex inner structure introduced in [Chorowski et al., 
2015b]. Attention evaluation steps are the following: first, 

fj = F * Q j _ 1 , (5.3) 

where F is a trainable set of convolution filters, and fj is a frame-by-frame representation 
informing the network about previous attention. This location-sensitive attention f is then 
used as an additional feature in the attention mechanism: 

eij = zT tanh(Usj_i + V h , _ i + Wfjj + b) (5.4) 

1 Note that our notation in (5.1) is different from [Chan et al. , 2016], as we do not explicitly pass the 
previous state Si_i as a parameter to the L S T M block. We consider our notation to be more correct as 
the L S T M block implici t ly depends on the previos state Si_i (as well as on the cell state). Our notation is 
consistent with [Hsiao et al., 2020], which also tries to re-write L A S definitions in a more coherent way. 

41 



Figure 5.2: L A S system decoder architecture. 

exp(eitj) (5.5) 
£ k = l e x P (ehk) 

T 
(5.6) 

3 

Here, T = X/A is the number of acoustic frames subsampled by the encoder by the factor 
of 4; the weights U , V , and W are trainable weight matrices and z, b are trainable vectors: 
Cj is a weighted sum of H using the frame-level attention weights ckj j . Therefore, Cj can be 
seen as a summary vector representing a subsequence in H that is responsible for producing 
the current prediction for timestep i. 

Given the L S T M output Sj and the attention output Cj, the current output label Wi is 
predicted by the L A S decoder as follows: 

The one-best output from the softmax layer gives the word label Wi which is associated 
with the embedding vector yi. This one-best embedding from the current timestep will be 
one of the inputs to the L S T M in the next timestep. During training, teacher forcing or 
scheduled sampling can be used to pass the correct embedding to the next step. 

Attention loss (Latt) is cross-entropy (CE) with label smoothing between the predicted 
and the ground-truth label sequences. 

Described above is the pure L A S system, but we also use a hybrid CTC/attention 
training within the same encoder-decoder architecture from [Watanabe et al., 2017]. While 
attention works in a word-synchronous way, C T C is frame-synchronous, and generates 
output label predictions for every subsampled frame in hidden representation H . During 
hybrid training, attention loss ( L a 4 4 ) and C T C loss (Lctc) for every utterance are evaluated 
separately following [Watanabe et al., 2017] and are combined for multiobjective learning 
using a tunable hyper-parameter a G (0,1): 

P(wi\K;wi, ..,Wi-i) softmax (Linear ([SJ, Cj ])))• (5.7) 

Lhybrid = OiLctc + (1 - a)Latt. (5.8) 
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Although C T C and attention decoders can be used jointly during the decoding to inform 
each other's predictions, we only use hybrid approach for training. During the decoding, 
we use C T C alignments and attention separately for extracting information necessary for 
O O V detection. 

5.1.2 System Training 

In the following experiments we use hidden size H = 800 and the model is optimized with 
A D A M [Kingma and Ba, 2014] optimizer. In the beginning of the training, we use 30 000 
steps of gradual warmup [Goyal et ah, 2017] to get from the initial learning rate (LR) of 
0.000001 to 0.0001. After that, L R stays constant while W E R 1 on the dev-clean set keeps 
decreasing. If there is an increase in W E R 1 , L R is halved. The training stops when the L R 
reaches a pre-defined minimum. 

We perform scheduled sampling [Bengio et ah, 2015] during training: for every timestep, 
the correct label (teacher forcing) is selected with the probability 0.6 and the rest of the 
time the most likely predicted label is selected. This selected label Wi is then used for 
retrieving its embedding yj to serve as the decoder L S T M input for the next time step. 
The predicted labels sequences are decoded with a beam-size of 10. 

5.1.3 E 2 E Baselines 

We have chosen to compare our baselines to the results in [Zeyer et ah, 2018], as it uses 
a similar architecture (LAS) and model size (90M parameters) and does not use any ex­
ternal data. First, we trained a BPE-predicting L A S system to verify that out results are 
compatible with the reference, and then we switched to systems with word label outputs -
word-predicting networks (WPNs) - as they are the ones suitable for O O V detection. 

Table 5.1 shows, that, when tested on the full LibriSpeech database (960 hours), our 
BPE-predicting system functions on par with the systems with no L M reported in [Zeyer 
et ah, 2018]. 

Lines 3 - 7 of the table show W E R s for W P N s with different target vocabularies: 5000 
words or 10000 words not including the words from the O O V list described in Section 3.3. 
Rows 3, 5, and 7 show W E R 1 as calculated on reference transcription (see Section 1.1.1); it 
is much higher than for the B P E experiment due to the introduction of OOVs. Rows 4 and 
6 show the potential of the E2E system as an O O V detector, as it treats predicting the O O V 
label for an O O V word as correct, and not as substitution (see W E R 2 in Section 1.1.2). 

Detection experiments in this chapter will be mostly reported on the system with 10000 
target word labels. The last row shows W E R 1 for a hybrid CTC/attention system that 
gives most weight to the C T C training objective during training (a = 0.9 in (5.8)). For the 
A S R task, it performs worse than the pure attention system, but as we will see later, this 
system is helpful in the O O V detection task. 

5.2 O O V Detection 

We experiment with two approaches to O O V detection. The first involves estimating O O V 
positions from attention weights, and the second uses per-frame C T C predictions. 

Detection success is evaluated as following: The reference timing is obtained by force 
aligning the reference transcriptions containing target OOVs to the acoustic features. These 
force alignments have been done using a system trained as described in Chapter 4 following 
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system dev_clean dev_other test^clean test_other 
1 [Zeyer et al., 2018] no L M W E R 1 4.87 14.37 4.87 15.39 
2 5000 BPEs W E R 1 4.99 15.18 5.02 15.65 
3 5000 words attention W E R 1 15.38 26.75 16.05 27.24 
4 5000 words attention W E R 2 6.47 19.12 6.92 19.43 
5 10000 words attention W E R 1 14.21 26.61 14.58 27.19 
6 10000 words attention W E R 2 8.66 21.78 8.79 22.36 
7 10000 w. ctc+att (a = 0.9) W E R 1 15.38 27.29 16.00 27.85 

Table 5.1: Comparison of B P E baseline results with [Zeyer et al., 2018] and results for 
word-predicting E2E systems on 5k and 10k vocabulary. 

a standard Kaldi [Povey et al., 2011] H M M / G M M recipe. When reporting the O O V detec­
tion, we use a hard decision metric described in Subsubsection 1.1.2: an O O V occurrence 
is treated as a true positive if the hypothesis overlaps with the reference for more than half 
of the reference duration. 

As the ultimate goal of our experiments is improving recovery of repeating OOVs, the 
detection recall is more important - while incorrectly detected occurrences will most likely 
form singleton clusters and therefore be ignored after the clustering stage, the occurrences 
that are not detected at all have no chance to be recovered. 

5.2.1 O O V Detection with Attention 

A pure LAS-based E2E system in (5.8)) is used for the O O V detection experiments described 
in this section. For each output label, attention vector Qj (5.5) is pointing to certain frames 
that are relevant to the current decision. However, in contradiction with [Thomas et al., 
2019], where the centers of attention were assumed to point to the centers of OOVs, there 
is no guarantee that attention will be aligned to the real position of the word in the output. 

Table 5.2 illustrates results of O O V detection with attention weights on for systems with 
different vocabulary sizes. Two methods are used to estimate word position. In the first 
scenario, each O O V occurrence is detected at the position of the maximum attention weight 
corresponding to an O O V output label. We consider this detection to be true positive if 
its position is anywhere between the start and end of the reference O O V occurrence. A n 
O O V is considered unfound if no maximum of O O V label attention for the utterance falls 
in between its reference start and end times. Wi th this calculation method, the recall on 
the reference list of words reaches only 30 %. 

However, if we look if there is overlap between the reference timings and the frames 
responsible for 90% of attention mass, recall goes dramatically up. This experiment shows 
that the maximum of attention is definitely not the center of the corresponding word, nor is 
attention symmetric around the maximum. As shown in the last three columns of Table 5.2, 
the length of attention span for 90 % of attention weight is about 22.8 (subsampled) frames, 
and has a longer tail in the direction of the future. 

If we plot L A S attention vectors on for each predicted word label as shown in Fig­
ure 5.4 (a), we get more insight into what happens. It can be noted that some of the 
attention maxima lie before the centers of words and the span of attention is indeed located 
earlier in time than the reference word alignments. Figure 5.3 shows the amount of OOVs 
unfound by the maximum of attention with different attention time shifts. It can be seen 
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Number of labels 
Detection with 

max. of attention 
Detection using 

90 % att. mass range 
Attention span (frames) 

unfound recall % unfound recall % left right total 
5000 47524 21.6 26568 56.2 3.8 11.3 19.1 
10000 44304 26.9 19798 67.3 6.2 11.3 21.5 
27000 41650 31.3 20208 66.6 8.4 10.5 22.8 

Table 5.2: O O V recall from attention depending on different label setups. Unfound words 
and recall are calculated on the reference list of OOVs (60661 occurrences). 
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Figure 5.3: OOVs unfound by attention maximum with different time shifts of attention. 

that the best attention maximum recovery can be reached with attention delay of 0.1 - 0.2 
seconds. 

The discrepancy between attention and reference word and phoneme alignments has 
negative influence on recovery: if we convert frames receiving 90 % of attention mass for 
OOVs into times, and then extract their pronunciations according to these times and run 
clustering on them, the result will be very poor (sec Table 5.3, the first row). There arc 
almost no repeating phoneme strings to cluster, hence, there are not many clusters of at 
least size 2 and a low recovery recall. To solve this problem, the next experiment was made 
with timings obtained from attention with different delays. The best results have been 
observed with a delay of 0.2 seconds (see Table 5.3, the second row). 

5.2.2 O O V Detection with C T C Alignments 

It is observed that in E2E systems trained with C T C objective, C T C alignment behaves in 
such a way that it is possible to obtain timing information from the output labels. Word 
boundaries are positioned on the (subsampled) frames for which a new label is predicted. 
When the output is a blank symbol or the same label as before, there is no word boundary. 

Table 5.3 shows the O O V detection results for the hybrid attention/CTC system with 
different weights given to attention and C T C costs (a from (5.8)) in rows 3 and 4, respec­
tively. Both result in more extracted O O V occurrences than with the attention-based O O V 
detection due to the fact that attention tends to be very spiky. These occurrences also have 
much better overlap with reference timings, as confirmed by the detection scores. They 
also cluster much better and improve the recovery recall and precision metrics. 

Interestingly, while attention provides better W E R in general, C T C alignments are 
more trustworthy for the task of O O V timings extraction. This can be seen from the results 
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(b) OOV detection with a hybrid attention/CTC 
system (a = 0.9) 

Figure 5.4: Comparison of attention (a) and C T C (b) alignments to real O O V times. Lower 
x axis is in subsampled frames and the upper one is in seconds. Dashed lines with labels 
show reference transcriptions with time alignments. Black lines show borders of words 
according to C T C . Colored plots show attention weights for corresponding output labels. 

obtained by the system with 0.9 cost given to C T C (4th row in Table 5.3). In Figure 5.4 (b), 
alignments from C T C are drawn as black lines. It can be seen that, although attention does 
not reflect O O V position well, the word boundaries from C T C alignment mostly correspond 
to the reference word boundaries. 

5.3 Recurrent O O V Recovery 

The goal of this next step is to find only recurrent OOVs and to recover their pronunciations 
and spelling. To this goal, we cluster the O O V occurrences based on their pronunciation 
similarity with the aim to obtain clusters, each corresponding to one unique (possibly 
recurrent) O O V word. 

The O O V occurrences detected in the previous step serve as the first input to the 
recovery operation. Detected OOVs with the lengths of less than 0.5 seconds are discarded, 
to avoid getting too many occurrences to cluster. Moreover, shorter occurrences arc usually 
not full words but rather suffixes and hesitations. 

Another input is possible phonetic pronunciations and probabilities of these pronuncia­
tions for each O O V occurrence extracted from a phoneme recognizer. A Kaldi [Povey et al., 
2011] phoneme recognizer system is trained, following the same recipe as for words in Chap­
ter 4, on the 100 hours of clean data to generate decoded phoneme lattices. From decoded 
phoneme lattices, 50-best phoneme strings hypotheses are extracted with their probabili­
ties and time alignments. From these, all phoneme substrings that arc within the detected 
start and end times are extracted. This way, we extract a set of alternative pronunciations 
for each detected O O V occurrence. We efficiently store the alternative pronunciations and 
their probabilities in the form of a W F S T by performing union of the linear WFSTs cor­
responding to the individual 50 alternative pronunciations followed by minimization of the 
resulting W F S T . 
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More formally, for each O O V occurrence n, we have distribution P ( 0 ) n over its possible 
phonetic pronunciations O, represented by WFSTs. 

5.3.1 Probabilistic O O V Candidate Clustering 

The clustering is based on a non-parametric probabilistic model - Dirichlet Process, where 
the base distribution is a uniform distribution over all possible pronunciations. The usual 
Gibbs sampling using Chinese restaurant process (CRP) is used for the iterative inference in 
the model. At each iteration of the Gibbs sampling process, a particular assignment of O O V 
occurrences to clusters is sampled. Upon convergence, these can be seen as samples from 
the posterior distribution over the possible clusterings (i.e. likely clusterings are suggested). 
Before describing the iterative inference in the model, we need to introduce a few terms: 

Let us assume a particular assignment of O O V occurrences to clusters. Our model as­
sumes that each cluster corresponds to an O O V word with only one correct pronunciation 
and all the O O V occurrences that end up in the same cluster have that pronunciation. 
However, since we are uncertain about the correct pronunciation of individual O O V occur­
rences (as expressed by the distributions of the possible pronunciations P ( 0 ) n ) , we will be 
also uncertain about the correct pronunciation of a cluster. Given an assignment of O O V 
occurrences to cluster C , we calculate the probabilities of the possible pronunciations of 
corresponding O O V word as 

P(@\C) oc J] P (©)„ . (5.9) 

The product of the pronunciation probabilities in this equation expresses that the likely 
pronunciations for the cluster are the ones that all the O O V occurrences in the cluster 
agree on. Since we represent the distributions P ( 0 ) n using WFSTs, we can easily represent 
P(@\C) by a W F S T constructed as a composition of the individual WFSTs from the cluster 
and re-normalized using weight pushing. 

Given a particular assignment of O O V occurrences to clusters, the C R P defines the 
prior probability that a "new" (yet unclustered) O O V occurrence comes from an existing 
cluster C or starts a new cluster as 

„ , „ N I -TTT for a new cluster 
P(C) = I a+N (5.10) 

I f ° r existing cluster C, 

where N is the total number of observations already assigned to clusters , Nq is the size 
of cluster C , and a is the concentration parameter controlling the probability of creating a 
new class (i.e. controls the number of discovered clusters). 

If we were certain that the pronunciation of a "new" O O V occurrence n is O n , we could 
calculate the posterior probability that this occurrence belongs to cluster C simply using 
Bayes rule 

P(C\n) oc P(@n\C)P(C). (5.11) 

However, since we are uncertain about the pronunciation O, we replace the likelihood 
P(@n\C) by the expected likelihood where the expectation is taken with respect to the 
distribution P (©)„ . The posterior probability is therefore given as 
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P(C\n) oc ( ^ P ( 6 ) n P ( e | C ) ) p ( C ) . (5.12) 
e 

The complete iterative Gibbs sampling inference can be carried out as follows: 

Algorithm 2 Gibbs Sampling Inference for Probabilistic O O V Candidate Clustering 
initialize the clustering with each O O V occurrence forming a separate cluster 
while not converged do 

for every O O V occurrence n do 
"remove" n from its cluster: update P(@\C) and P(C) of the affected cluster 
re-assign n to a (potentially new) cluster according to distribution P{C\n) 
update P(G\C) and P[C) of the cluster 

end for 
end while 

We start with each O O V occurrence forming a separate cluster. We cycle one-by-one 
through the individual O O V occurrences. At each step, we remove one occurrence from its 
cluster, which affects probabilities P(@\C) and P(C); they need to be updated at this point. 
Then, we re-sample its assignment to a (potentially new) cluster according to distribution 
P(C\n). Upon the convergence, (e.g. we do not see significant changes in the clustering), 
we can pick the current assignment of OOVs to clusters as a likely clustering and derive 
pronunciations of O O V words corresponding to each cluster as its most likely pronunciation 
according to P(@\C). Since we are interested only in recovering the recurrent OOVs, we 
drop any singleton clusters and we do not consider them in the O O V recovery evaluation. 

In practice, this correct Gibbs sampling procedure takes a lot of time, and we use an 
approximation: In each iteration, we fix P(@\C) and P{C) given the current clustering and 
re-sample all the occurrences in parallel. 

5.3.2 O O V Recovery Results 

After clustering, clusters with two or more O O V candidates are post-processed to obtain 
graphemic representations of the recovered OOVs. For this, one best path is taken from the 
composition of all O O V occurrences in each cluster, and these paths are given to a phoneme-
to-grapheme system. Phoneme to grapheme conversion that we use is again a joint-sequence 
P2G model [Bisani and Ney, 2008], trained on a reverse, phoneme to grapheme dictionary 
of size 200 000 with the 1000 OOVs from the list excluded. 

Table 5.3 shows that successes in detection recall mostly translate into recovery success 
- the more candidates are there at the start of the clustering process, the more chance 
the clustering process has for discovering a repeating pattern. Improving the detection 
boundaries, for example by the time shift in attention-only detection, or giving more weight 
to C T C objective, also improves both recovery recall and precision. 

5.4 Comparison with the H y b r i d A S R 

Experiments have shown that the E2E approach to O O V detection and recovery achieves 
better results than the hybrid F S T approach (see Table 5.4), especially in terms of detec­
tion recall (25% —> 81.5%), which is crucial for also improving recovery recall (1.4% —> 
14 %). To be precise, detection recall of the E2E system should more honestly be compared 
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Detection method W E R % # cands De 
recall % 

section 
precision % # clusters 

Recoverj 
recall % 

T 
precision % 

attention 
att. 0.2 sec right shift 

9.8 
9.8 

57701 
57669 

33.4 
34.4 

14.5 
14.9 

147 
489 

0.7 
5.5 

6 
29 

ctc+att /3 = 0.5 
ctc+att P = 0.9 

10.7 
13.0 

134843 
148428 

73.7 
81.5 

32.0 
35.3 

1996 
3485 

8.3 
14.0 

15 
15 

Table 5.3: O O V Detection and recovery results using different combination of attention and 
C T C decoding. Column "Cands" shows the amount of O O V candidates on the clustering 
input, and column "clusters" shows the number of clusters of size 2 or more after clustering 
saturates. 

Approach Detection method Detec 
# cands 

:tion 
recall % # clusters 

Recovery 
recall % precision % 

W F S T 
one best 

full lattice 
1247 
15991 

2.0 
26.0 

7 
20 

0.3 
1.4 

43 
50 

E2E 
attention 
ctc+att 

57669 
148428 

34.4 
81.5 

489 
3485 

5.5 
14.0 

29 
15 

Table 5.4: Comparison of the best detection and recovery results in the frameworks of 
W F S T and E2E approaches on train-clean-360 dataset. 

with detection results for one-best path in an WFST-based system, because in the experi­
ments presented in this chapter we only worked with one-best output of a W P N . Detection 
precision is not directly comparable to WFST-based decoding, as there we consider also 
candidates extracted from sub-optimal paths. 

Despite the improvement of E2E detection and recovery results in comparison with 
FST results, it is problematic to utilize recovered OOVs to improve the word-predicting 
E2E system for future uses with this approach. The newly discovered words can be added 
as output labels but, unlike in a hybrid A S R system, which uses lower-level phoneme 
representations, this output will stay untrained. 

5.5 Conclusion 

We have shown that E2E approach has definite potential to be applied for the task of O O V 
detection. C T C alignments provide better temporal information about word position than 
the pure attention-based E2E system, and so are more suitable for the task of extracting 
O O V occurrences. Improved detection results also correlate with better recovery of recur­
rent OOVs. For the pure attention-based E2E model, it can be seen that even though the 
system performs better in terms of word error rate, there is no guarantee that attention ac­
tually provides the position of frames that are directly responsible for producing the output 
label in question. 

Drawbacks of the described approach are the following: 

• It utilizes two unconnected granularities (words and phonemes), which leads to prob­
lems with time alignment and boundaries of the discovered OOV; also, two separate 
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E2E systems need to be trained: a word-predicting main one and a separate phoneme 
recognizer. 

• It is problematic to utilize recovered OOVs to improve the word-predicting E2E sys­
tem: the newly discovered words can be added as output labels but these output 
labels will not be predicted in the decoding as they were not present in the training 
data, and the weights and embeddings representing them will be untrained. 
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Chapter 6 

Speller Architecture for O O V 
Detection and Recovery 

This part of research was partly inspired by the field of N L P (section 2.7), in particular 
by [Mielke and Eisner, 2018] that presents a two-level "word plus speller" generative L M 
for tasks involving OOVs. In [Mielke and Eisner, 2018], the open-vocabulary L M consists 
of two RNNs: the first one captures the sentence structure, and the second one, called the 
speller, captures the word structure. The speller can generate new word types following the 
spelling style of I Vs. The novel words generated by this model fit the grammatical sentence 
structure well, and the model can produce a range of possible spellings that fit the language 
in question. 

We propose to extend this approach to A S R and implement word-predicting E2E A S R 
training with a speller-like network. While the speller trained for L M tasks in [Mielke and 
Eisner, 2018] had only a text input to train on, A S R has the benefit of providing the speller 
with acoustic information too. The novelty lies in jointly training the word predicting 
network (WPN) and the speller instead of working with two separate A S R systems with 
outputs of different granularity as in Chapter 5. This approach can potentially recover 
OOVs that are not only plausible from the L M point of view, but also acoustically correct. 
This training should also benefit in-vocabulary word (IV) representations (and thus improve 
W E R 1 metric) by forcing the word embeddings within the A S R system to learn character 
representations as the second objective. 

The architecture presented in this chapter was first published in [Egorova et al., 2022]. 
The thesis shows results on more different speller inputs and different vocabularies, reports 
the results of experiments with several O O V embeddings that allow for natural O O V rep­
resentation clustering, and also provides in-depth analysis into what information is stored 
in the embeddings. 

6.1 W P N Baselines 

The W P N architecture and training schedule used in this chapter are the same as described 
in Chapter 5 and are shown in Figure 6.1 in black and blue colors. The only change in 
comparison with the L A S E2E system of the previous chapter is that the embedding layer 
weights (Embedding box in Figure 6.1 denoting a linear layer that projects word label into 
its embedding of size 1600) are tied [Inan et al., 2017] to the weights of the linear layer 
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Figure 6.1: Baseline LAS-like W P N (in black) and speller network trained on different 
inputs (in red). Weights of layers in blue are tied. 

from (5.7): Embedding = Linear7'. Thus, for each word label Wi, the embedding yj is the 
corresponding row from the linear predicting layer weight matrix. 

The baselines we will be comparing with are the same as reported in Table 5.1. We 
reiterate B P E and 10000 words baselines (denoted lOOOOw) in the first part of Table 6.1. As 
we will be comparing our O O V recovery with the BPE-predicting system, we first provide 
an analysis of B P E recovery potential in the form of a word accuracy metric. Lines named 
" B P E rOOVs" and " B P E rIVs" show percentages of correctly recovered rare (OOVs) and 
common (IVs) words. There are no real OOVs in a B P E system, so we count the most 
frequent 10000 words (same as IVs in the lOOOOw system) as Njy, and Tjy is the number 
of IVs that is correctly recognized. Then, 

rIVs = — . (6.1) 
NIV 

rIVs recovery rate is reported in line " B P E rIVs". Rare words Noov a r e words which are 
OOVs in the lOOOOw system and Toov is the number of such words that was recognized 
correctly. Then, 

r 0 O V s = ^ . (6.2) 
Noov 

rOOVs recovery rate is reported in line " B P E rOOVs". 
Table 6.1 shows that although rIV recovery rate is very high: more than 95% on clean 

data, for rare words, r O O V is just over 60%, which means that while B P E system is very 
successful at recognizing common words, there is potential for improvement in the task of 
recovering rare words in a B P E system. 

6.2 Speller Architecture 
The speller consists of a single layer L S T M and a linear output layer, and it is optimized 
for predicting a string of characters that constitute a word. In Figure 6.1, it is shown in 
red. Several red lines leading to the speller represent different inputs that were given to the 
speller in the following experiments. The line going from the word embedding is solid 
as this is the main representation of the word, which we then concatenate to other inner 
representations from the W P N . 
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The speller solves a simpler problem, and so is much smaller than the W P N model: 
our baseline W P N model with 5000 outputs contains 90M trainable parameters; the same 
model with the addition of the speller has 98M trainable parameters. As the speller does 
not increase the W P N model dramatically, no change in training was needed; the learning 
rate, batch sizes, warmup etc. stayed the same as for the baselines. 

M y speller implementation in Python can be found on Gi tHub 1 . 

6.3 Experiments with Speller Inputs 

In the experiments, the general architecture will stay fixed, and we will experiment with 
different inputs to the speller to discover which parts of the W P N benefit most from being 
trained jointly with the speller and, vice versa, in which representations of the W P N infor­
mation relevant to spelling can be discovered. The spellers that have been tested are the 
following: 

1. speller with only embeddings yj of the word to be spelled as input (section 6.3.1) 

2. speller with input of concatenation of word embedding yj with either or both of 
context vector Sj and attention output Cj, and speller with the concatenation of just 
Sj ; and Cj as the input (section 6.3.2) 

3. the same speller but with OOVs allowed to be represented by several embeddings 
(section 6.3.3) 

4. two spellers trained concurrently to investigate O O V embeddings clustering, one pre­
dicting from just word embeddings yj and another predicting from the concatenation 
of y j , Sj, and Cj (section 6.3.4) 

6.3.1 Embedding Speller 

Inspired by the LM-speller in [Mielke and Eisner, 2018], the first speller architecture we 
trained takes word embeddings yj as an input and generates letters as an output. The 
limitation of this approach is that a number of diverse OOVs are assigned a single O O V 
label and thus a single embedding. This single embedding cannot learn all the spellings of 
OOVs, and therefore the O O V embedding is not updated through the speller. 

To spell an IV word, its embedding is repeated as a constant input for every output 
letter (one-to-many RNN) . There is interaction between the W P N and the speller as the 
word embeddings are shared by both networks and are updated with both the W P N loss 
(Latt) and the speller loss (Lsp) during the training. Lsp is calculated for every word in 
the dictionary as C E between the reference spelling and the speller output for this word's 
embedding. To accommodate updates from both networks, the training iterates between 
updating the W P N and the speller network as shown in Algorithm 3. This training ensures 
that the word embeddings are trained to represent not only the information useful for word 
prediction but also the information useful for the speller task, i.e. it makes word embeddings 
spelling-aware, which is beneficial for W P N training. 

We have found it sufficient to update the speller once for each word in the vocabulary 
after every 500 mini-batches of 20 utterances of W P N training. Thus, in every update, 

xhttps://github.com/BUTSpeechFIT/speller 
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system metric (all %) dev_clean dev_other test_clean test_other 

W E R 1 4.99 15.18 5.02 15.65 
S-i 5000 B P E rOOVs 63.8 36.5 62.0 33.2 
a 
CO 

rIVs 95.7 85.0 95.6 84.7 
O 
a lOOOOw W P N 

W E R 1 
W E R 2 

14.21 
8.66 

26.61 
21.78 

14.58 
8.79 

27.19 
22.36 

W E R 1 11.56 23.53 11.80 24.05 

Yi W E R 2 8.05 20.82 8.61 21.10 
W E R 1 (spIV) 12.84 24.75 13.33 25.13 

W E R 1 10.79 21.56 10.98 22.07 

t-i 

m 

[yi,Si] 
W E R 2 
W E R r 

5.69 
11.39 

17.50 
22.39 

5.98 
11.36 

17.74 
22.76 

h 
sp

el
L

 

rOOVs 12.0 5.2 12.2 5.1 

h 
sp

el
L

 

W E R 1 10.94 21.53 10.85 22.40 

W
PN

 w
it:

 

[yi,Ci] 
W E R 2 
W E R r 

5.82 
8.84 

17.39 
20.59 

5.80 
8.79 

18.07 
21.42 

W
PN

 w
it:

 

rOOVs 32.0 14.8 32.3 13.3 
W E R 1 9.99 20.43 10.17 20.70 

10
00

1 

[yi)Sj,Cj] 
W E R 2 
W E R r 

4.74 
7.16 

16.23 
19.05 

5.05 
7.29 

16.27 
19.44 

rOOVs 44.4 23.3 45.9 19.2 
W E R 1 10.13 19.89 10.12 20.28 

k- p-1 W E R 2 4.86 15.59 4.97 15.81 
W E R r 7.42 18.58 7.36 18.91 
rOOVs 41.8 20.7 43.2 19.1 

Table 6.1: Comparison of different speller architectures with B P E and lOOOOw W P N base­
lines. W E R 1 and W E R 2 show the performance of the W P N without speller participation. 
W E R r shows results with OOVs recovered through the speller, and rOOVs shows the per­
centage of OOVs that were recovered. In the speller section, the best results for every 
metric are shown in bold. 

each word in the dictionary updates its embedding once and also contributes with an equal 
weight to updating the speller weights ( W P N weights are not affected by the updates from 
the speller training step). 

Two LRs are used in this speller architecture: W P N L R and speller L R . Both the W P N 
L R and the speller L R start with the initial value of 0.000001. In the beginning of the 
training, we use 30 000 steps of gradual warmup for W P N L R and 30000/500 = 60 warmup 
steps for speller L R to ensure that it is maximized at the same time as the W P N L R . The 
maximum L R for both W P N and speller equals to 0.0001. After that, the two LRs are 
updated separately: W P N L R is halved when W E R 1 on dev-clean increases, and speller 
L R is halved when speller character error rate (CER) calculated on the dictionary increases. 
The training stops when the W P N L R reaches a pre-defined minimum. 
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Algorithm 3 Embedding Speller Training 
while L R > predefined minimum do 

for number of mini-batches in training epoch do 
evaluate Latt 
update W P N weights to improve LaU 

end for 
for every IV word do 

evaluate Lsp 

update speller weights and word embedding to imrove L 
end for 
calculate W E R for W P N on the validation set 
if W E R > W E R from the previous epoch then 

do W P N L R halving 
end if 
calculate C E R for the speller on the dictionary 
if C E R > C E R from the previous epoch then 

do speller L R halving 
end if 

end while 

The fist section of speller experiments in Table 6.1 shows the results for the join train­
ing of the W P N with embeddings-only speller. Note that this system uses only a single 
embedding representing all the diverse OOVs and although we can sample different O O V 
spellings from it, we cannot recover spelling for particular OOVs based on acoustic evidence 
or context. This is the reason why O O V recovery results (WERr and rOOVs, defined in 
Section 1.1.2) are not reported for this speller input. 

It can be seen that spelling-aware embeddings improve both W E R 1 and W E R 2 (defined 
in Section 1.1.2). As the speller is not used in the decoding, the improvement in W E R 1 
and W E R 2 does not come from the slight increase of the number of parameters, but solely 
from the fact that word embeddings are forced to be aware of the spelling. 

The third metric ("WER1 (spIV)") shows the performance of the speller. First, the 
word label is predicted, and if it is an IV label, it is passed through the speller to obtain 
character representation. Only if the spelling is correct, the word is not considered an error. 
The " W E R 1 (spIV)" W E R increases only slightly in comparison to W E R 1 , which shows 
that the speller part learns to spell in-vocabulary embeddings almost perfectly. 

6.3.2 Context- and Acoustics-Aware Speller 

To give the speller more information about the OOVs that we want it to spell, several other 
speller inputs have been tested (see dashed red lines in Figure 6.1): 

1. concatenation of word embedding yj and context vector Sj from decoder L S T M , 

2. concatenation of word embedding yj and attention output Cj, 

3. concatenation of y j , Cj, and Sj, 

4. concatenation of only Cj, and Sj. 
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A l g o r i t h m 4 Context- and Acoustics-Aware Speller Training 
while L R > predefined minimum do 

for number of mini-batches in training epoch do 
for number of words in a batch do 

evaluate Lw 

get Yi embedding of one-best prediction 
generate speller output for y, and/or other inputs 
evaluate Lsp 

calculate combined loss for the word = (1 — a)Lw + aL, 
end for 
evaluate Lutt (6.3) 
update all weights to improve Lutt 

end for 
calculate W E R for W P N on the validation set 
if W E R > W E R from the previous epoch then 

do L R halving 
end i f 

end whi le 

The speller is trained to predict the correct sequence of characters (spelling) given the 
speller input. Concatenating the word embedding with Sj gives the speller context infor­
mation, as decoder L S T M preserves label history, while concatenating the word embedding 
with Cj gives the speller knowledge about acoustic information relevant for the currently 
decoded word. Sj has no acoustic information about the first word in an utterance and is 
not useful for spelling it. 

As the speller needs current inner representations from the W P N for every timestamp, 
the training cannot proceed iteratively as for the embedding-only architecture. This is why 
the speller is updated simultaneously with the W P N during the training. After every word 
hypothesis is generated by the W P N , the speller is given the embedding yj of the current 
one-best word label together with the current Cj and/or Sj. There is no teacher-forcing for 
the speller, meaning that it always gets the embedding of the predicted word label, not the 
reference word label. This is due to the fact that the weights of the embedding yj are tied 
to the weights of the last W P N linear layer, and we want the speller to update the relevant 
weights. 

The training for the context- and acoustics-aware speller is summarized in Algorithm 4. 
The overall loss for joint training of the W P N and the speller is a weighted combination of 
the losses: 

where Lw is the W P N loss calculated from the C E between the W P N output and the 
reference word label. Lsp is the speller loss for this word and is calculated from the C E 
between the speller output and the spelling of the reference word. The reference character 
sequence is obtained by tokenizing the correct word label into characters. Lsp is normalized 
by the number of characters in the reference word. The two losses are combined for every 
word using a tunable hyper-parameter a. 

(6.3) 
wGutt 
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For the experiments presented in Table 6.1, equal cost weights are given to the speller 
and the W P N updates (a = 0.5). Unlike during the embedding speller training described 
in Subsection 6.3.1, here, each embedding is not updated equal number of times during 
training, but the amount of times it appears in the training data, so the speller is better 
attuned to more frequent words. 

In the test time, the W P N calculates the output for every timestamp (word) first, and 
if the best predicted word label happens to be the O O V label, the speller network predicts 
the spelling of the current O O V from the current input. This cascade is thus able to both 
recognize IVs as well as recover OOVs. The output is a string of words: part of them are 
IVs and part are speller-generated. 

The last four sections of Table 6.1 show performances of the four different speller input 
variants. As before, W E R 1 and W E R 2 are scored on the output of the W P N and do not 
use the speller network during decoding. Any improvements happening with W E R 1 and 
W E R 2 in comparison with the no speller baseline come due to the regularizing effect that 
the speller has on the word embeddings. The best results are achieved by the systems with 
speller input either concatenating y j , Cj, and Sj or just Cj, and Sj. These systems outperform 
both the concatenations [yj, Cj] and [yj, Sj]. 

The two metrics that we use to evaluate speller systems are W E R r and rOOVs, which 
show the capacity of these systems to recover OOVs through spelling. First, the word label 
is predicted, and if it is the O O V label, the inputs from the current decoding step are 
passed through the speller to obtain the character representation. The resulting output is 
then a sequence of words, some of them predicted IV words, and some recovered OOVs. 
This output is then scored against the reference transcription to obtain " W E R r " metric 
(see section 1.1.2). Meanwhile, "rOOVs" shows the percentage of OOVs that were ideally 
recovered through this process. 

Concatenating word embedding y, with Sj as the speller input makes the speller context-
aware. This architecture has the drawback of not being able to spell an O O V if it happens to 
be the first word in a sentence: the input to the decoder L S T M is a vector of zeros. Table 6.1 
clearly shows that the addition of the context information is not as helpful for W E R r as 
the other architectures. However, this training still improves W E R 1 and W E R 2 , and it is 
sometimes better at improving W E R 1 and W E R 2 than the [yj,Cj] speller architecture. 

As Cj contains representation of the acoustics relevant to the current word, concatenating 
the word embedding yj with Cj makes the speller acoustics-aware. This information proves 
to be vital for O O V recovery, as is illustrated in Table 6.1 by the dramatically improved 
W E R r as compared to W E R 1 . 

The speller system that takes the concatenation of y j , Sj and Cj as an input seems to 
take the best from both worlds and shows improvements across all metrics. 

Indeed, the presence of word embedding yj at the speller input is not even vital for the 
good performance, as can be seen from the experiments with only Sj and Cj at the input 
that show comparable, and in some cases better, results. The result with Sj and Cj and 
without the embedding yj is actually one of the best performing out of all the systems. This 
can be explained by the fact that the word label prediction is made from the concatenation 
of Sj and Cj in the W P N , so all the necessary information should be in them, meanwhile, 
the absence of the definite embedding does not force a hard decision on the input. We 
investigate further what information is stored in the embeddings in the next sections. 

For every speller system, rOOVs shows the percentage of reference OOVs that were 
ideally recovered after speller decoding. We are able to reach 44 - 46% rOOVs for clean 
data and 1 9 - 2 3 % on other. This can be directly compared to the system with B P E 
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system dev_clean dev_other test_clean test_other 
5000w loov 9.79 21.74 10.03 23.06 

5000w lOoov 9.91 21.34 9.93 22.35 
5000w lOOoov 10.08 21.62 10.16 22.42 
5000w lOOOoov 10.38 22.98 11.02 22.38 

lOOOOw loov 7.16 19.05 7.29 19.44 
lOOOOw lOoovs 7.64 19.83 7.85 20.37 

lOOOOw lOOoovs 7.73 19.31 7.83 20.4 
lOOOOw lOOOoovs 7.55 19.3 7.67 20.22 

20000w loov 6.76 18.44 7.17 19.14 
20000w lOoov 6.54 18.36 6.9 18.66 
20000w lOOoov 6.47 18.19 6.68 19 

20000w lOOOoov 7.05 19.16 7.16 19.73 
lOOOOw lOOoovs prob oov embs 8.51 20.6 8.55 21 
lOOOOw lOOoovs yi input only 11.11 21.5 10.88 22.25 
lOOOOw lOOoovs two spellers 7.82 19.47 7.96 20.26 

Table 6.2: Results (WERr) of experiments with multiple O O V embeddings. 

targets. Although the B P E system does not have OOVs per se, we score rOOVs on the 
words that are OOVs in the 10000 word vocabulary system. Table 6.1 shows 62 - 64% 
rOOVs in a B P E system for clean data and 33 - 36 % on other. 

While our numbers do not reach the recovery rates of the B P E system, our double-
granularity system provides additional information about the word being an O O V and also 
its useful internal representation in the form of the speller input. Speller output does also 
better than BPEs for words that are not easily reproducible from common morphemes. 
For example, the speller correctly recovered the words "amputation" and "adventuring" 
whereas the B P E suggested "amutaion" and "adventureing". However, in general, B P E 
recovery performance is still better if one only cares about improving W E R . 

6.3.3 Mult iple O O V embeddings 

In an attempt to investigate if a single O O V embedding is hurting the speller performance 
by forcing part of the speller input to be the same for every output, a speller system was 
trained with multiple O O V embeddings representing O O V words. 

We assume that there are N individual O O V "classes" that are represented with inde­
pendent O O V labels. The system is allowed to figure freely during training which specific 
OOVs fall into which class, or, in other words, how to cluster the O O V representations. To 
this end, the output layer is extended by N outputs. As the reference transcription only 
contains one O O V label, the probabilities of individual O O V outputs are summed for C E 
calculation. The speller is always given the O O V embedding with the biggest predicted 
score in the W P N softmax layer as an input. 

Table 6.2 shows results of systems with the [yi, Sj, Cj] input speller and different numbers 
of output labels and O O V labels. Contrary to our intuition, not forcing all of the OOVs to 
be represented by a single embedding is not helping in recovery. It seems that spreading the 
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W P N Decoder step i 

I N 

word sequence 

character sequence 
for word i 

character sequence 
for word i 

Figure 6.2: Baseline LAS-like word-predicting network (WPN) (in black) with two speller 
networks trained on different inputs (in red). Weights of layers in blue are tied. 

training information from one to several O O V embeddings is actually hurting the training 
and W E R r result. 

Another approach to representing OOVs with several embeddings is to not treat these 
embeddings as separate entities but rather as one big probabilistic embedding matrix. In 
this approach the embedding yj that goes as the input to the speller is calculated as the 
sum of all N O O V embeddings weighted by their output probabilities 7r n : 

However, this soft representation also did not prove helpful to O O V representation as 
can be seen in line 'TOOOOw lOOoovs prob oov embs" in Table 6.2. 

The failings of multiple-embedding O O V representations can be explained by the fact 
that spelling information is not extracted from the embedding, but rather from Sj and Cj. 
If only 100 separate embeddings are used as the speller input, with no addition of Sj or 
Cj (line 'TOOOOw lOOoovs yj input only"), W E R r shows almost no recovery has happened. 
Meanwhile, Table 6.1 shows that the system that provides the speller with only Sj and c, 
that ignores the embedding completely performs similarly to the [yj, Sj, Cj] system. 

6.3.4 Two Spellers 

To investigate what information is relevant for spelling prediction, a system with two spellers 
has been trained. Spellerl predicts spelling from just the embedding yj (multiple separate 
O O V embeddings are used) and Speller2 predicts spelling from a full concatenation of y j , 
Sj and Cj. Apart from discovering what information is relevant to the speller, this will 
give insight into how OOVs are grouped together into sets that the system learns to be 
represented by the same embedding. The schematic of the two speller training can be seen 
in Figure 6.2. 

Spellerl learns an average representation of all the OOVs that are grouped under it. It 
can be said that it represents a specific type of O O V and OOVs of this type can be sampled 
from it. However, without the usage of context or acoustic information it is very improbable 

(6.4) 
n€JV 
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True label NOR IS MISTER QUILTER'S MANNER 
LESS INTERESTING T H A N HIS MATTER 

recovery output 1 NOR IS MISTER <UNK10085>[SAREE'S] [QUILTER'S] MANNER 
LESS INTERESTING T H A N HIS MATTER 

recovery output 2 NOR IS MISTER <UNK10086>[BANTE'SS] [QUILTER'S] MANNER 
LESS INTERESTING T H A N HIS MATTER 

recovery output 3 NOR IS MISTER <UNK10033>[SASSSS] [QUILTER'S] MANNER 
LESS INTERESTING T H A N HIS MATTER 

recovery output 4 NOR IS MISTER <UNK10021>[PORTEESS][QUOLTER'S] MANNER 
LESS INTERESTING T H A N HIS MATTER 

recovery output 5 NOR IS MISTER <UNK10085>[SAREE'S] [QUILTER'S] MANNER 
LESS INTERESTING T H A N HIS <UNK10023> [MANAA] [METTOR] 

recovery output 6 NOR IS MISTER <UNK10085>[SAREE'S] [QUILTER'S] MANNER 
LESS INTERESTING T H A N HIS <UNK10102>[MANNE] [METTOR] 

recovery output 7 NOR IS MISTER <UNK10046>[TRRERSSS] [QUILTER'S] MANNER 
LESS INTERESTING T H A N HIS MATTER 

recovery output 8 NOR IS MISTER <UNK10075>[CAADEE] [QUILTER'S] MANNER 
LESS INTERESTING T H A N HIS MATTER 

recovery output 9 OR IS MISTER <UNK10088>[PANTIN] [QUILTER'S] MANNER 
LESS INTERESTING T H A N HIS MATTER 

recovery output 10 NOR IS MISTER <UNK10063>[TORTERD] [QUILTER'S] MANNER 
LESS INTERESTING T H A N HIS MATTER 

Table 6.3: Recovery output example for two spellers. The identity of the O O V embedding 
is shown in angle brackets, Spellerl output is shown in the first square brackets and Speller2 
output is in the second square brackets. 

that it will actually suggest a most likely output that will spell a particular OOVs correctly. 
Thus Spellerl does not contribute to W E R r , but this architecture allows us to analyze what 
information is stored in the O O V embeddings and how O O V representations cluster into 
O O V embeddings. For this kind of recovery analysis, whenever an O O V is predicted, the 
one-best spelling is first predicted with the use of Spellerl. The spelling will be the same 
for every O O V that has been represented by this particular O O V label. Then, the one-best 
spelling will be predicted by Speller2 from the concatenation of Vj, Sj and Cj. We will look 
at the output that preserves 10 best system outputs of the joint W P N plus two spellers 
architecture. 

Table 6.3 shows an example of one decoding output preserving 10 best recovery strings. 
The name "Quilter's" in the possessive form is the O O V that we will analyze. < U N K > with 
a number shows which of the 100 O O V embeddings was the most likely according to the 
W P N ; the word in the first square brackets is the one-best output of Spellerl, representing 
the averaged spelling of all the OOVs it represents; the word in the second square brackets is 
the output of Speller2 ([yj, s*, Cj] input) which is able to recover the spelling. In 9 out of 10 
best recovery outputs (except for output 4), Speller2 has successfully recovered the O O V in 
question "Quilter's", even though the most likely embedding has been different. Moreover, 6 
out of the 10 best outputs (namely, outputs 1, 2, 3, 7, 8, and 10) are completely correct and 
differ only in the most likely O O V embedding predicted by the W P N . However, embedding 
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information is not completely irrelevant: from one-best spellings generated from Speller 1, 
it can be seen that the predicted embeddings mostly represent possessives and names. 

Another useful analysis that we can perform is to look at all the O O V embeddings and 
compare the spellings generated from them to the reference OOVs instead of which they 
were predicted. Table 6.4 highlights the O O V embedding 10085 that generated the correct 
spelling " Q U I L T E R ' S " on the best path (recovery output 1 in Table 6.3) and several other 
paths (recovery outputs 5 and 6 in Table 6.3) for the same utterance. Rs one-best Spellerl 
output, " S A R E E ' S " suggests that the cluster groups together mainly possessive words. 
Grammatical characteristics are observed commonly as a grouping criterium, however, some 
clusters also group words by first letters or spelling similarities rather than grammatical. 
The first column shows reference words that have been substituted with the generated 
OOVs and the second column shows words generated by the Speller2 with the input of y*, 
S j ; and C j . Indeed, a lot of reference words are possessive names and pronouns, but there 
are also some words that just end with the letter "S". 

6.4 Comparison with Previous Methods 

We cannot directly compare detection and recovery of a speller system with previously 
presented approaches, as the metrics are calculated differently due to the nature of the 
task. But what is directly comparable is the ease of training. Speller architecture demands 
just adding an L S T M layer to the L A S architecture, which is very straightforward: it 
does not require any graph recompilation, time-aligning or training a separate phoneme 
recognizer. 

Similar to a W F S T decoding approach, speller architecture is a principled way of jointly 
modeling two speech granularities, and the outputs preserve correct probabilities of pre­
dicting an O O V and its spelling. However, speller is much faster than hybrid decoding, and 
does not necessitate optimizing as many parameters as a hybrid graph. 

Speller uses similar base architecture as the E2E O O V detection system and makes 
good use of meaningful inner representation that it provides. However, speller does not 
just utilize the E2E output to recover O O V spellings from another character-predicting 
system, it instead trains the two granularities jointly which gives benefits to both and 
avoids problems with word boundaries. 

More importantly than all of the above, the speller has the power to perfectly recover 
up to 46 % of OOVs on clean data and 23 % on other data. Speller can also naturally group 
OOVs into meaningful clusters if the training is performed with several O O V embeddings. 
A l l in all, speller brings together the best of the hybrid and E2E approaches described in 
Chapters 4 and 5 respectively and avoids some of their pitfalls. 

6.5 Conclusion 

We have proposed a new neural architecture for the A S R task that jointly trains two 
networks predicting both words and characters using shared inner representations. We 
have shown that forcing embeddings of a word-predicting system to also be spelling-aware 
improves W E R 1 of the word predicting task. 

Different inputs to the speller network have been tested, and we have shown their 
capability of recovering OOVs through spelling. The best improvements across all W E R s 
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Reference Speller2 output 
A B A L O N E ' S A B A L O N I S ' S 

A L E X A N D E R ' S A L E X A N D E R ' S 
A R A B E S Q U E A R A B U S ' 

C H A R L I E ' S C H A R L E E ' S 
C O O K ' S C O O K ' T 

C R E E T E R S C R E E T O S ' S 
C U C U M B E R S C U C U M B E R ' S 

C U L P R I T ' S C U L P E I T ' S 
F R E D E R I C K ' S F R E D E R I C K ' S 

J E M ' S J E M ' S 
GRIFFIN 'S GRIFFIN 'S 

H I L D A ' S H I L D E R ' S 
JIM'S G E M ' S 

K I T T Y ' S K I T T Y ' S 
L A S S E N ' S LASSON'S 

L U C Y ' S L U C Y ' S 
N O R M A N ' S N O R M A N ' S 
O R T H O D O X O R T H O D O X 
Q U I L T E R ' S Q U I L T E R ' S 

R A B B I T R A B E E T O N S S 
R E G E N T ' S R E G E N T ' S 
R E G E N T ' S R E G I N T ' S 

R U G G E D O ' S R I G O E D O ' 
R U D E R U T H ' S 

SAILOR'S SAILOR'S 
SYNESIUS'S S A N E C I E U S 

S A T U R D A Y ' S S A T T E R Y Y ' S 
S H E E P ' S S H E E P ' S 

S Y D N E Y ' S S I D D E Y ' 
S Y D N E Y ' S S IDNEY'S 

S O M E B O D Y ' S S O M E B O D Y ' S 
S E R E N A S S S R R E N A 
S T E V I E ' S S T E V Y E ' S 

TAD'S T A D ' S 
T R A I T S T R A T E ' S 

V E R L O C ' S V E R L I C ' S 
W A V E R L E Y ' S W A V E R L E Y ' S 

Table 6.4: Example of outputs of Speller2 for O O V embedding 10085 (One-best Spellerl 
output - "SAREE 'S" ) in dev-clean dataset compared to reference words that were recovered. 
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ware achieved with speller inputs that include use the concatenation of attention and L S T M 
outputs as an input, together with or without the O O V embedding. 

When the speller is trained with several embeddings representing OOVs, is has also 
shown a capability to naturally assign OOVs to meaningful clusters that reflect grammatical 
and spelling similarities of the words grouped there. 
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Chapter 7 

Conclusions 

7.1 Summary 
In the thesis, we have explored the field of O O V processing within the task of A S R . We have 
re-established clear definitions of two separate O O V processing tasks - that of detection 
and recovery. We have proposed and defined success metrics for both tasks and modified 
W E R to evaluate O O V effect on A S R . We have described hybrid and E2E setups on an 
open access database viable for testing O O V processing approaches and provided system 
descriptions and code to facilitate replicability. 

Three different approaches have been presented and compared, all bringing their own 
merits and challenges to the table. Hybrid approach used modified decoding graph with 
phoneme substrings for detection and recovery of potential OOVs. The novelty of the work 
was working in full lattice mode instead of with one-best outputs and utilizing properties 
of WFSTs to preserve correct probabilities of all paths. Hybrid approach successfully 
recovered some OOVs, which proved to be valid additions to the dictionary. However, 
this approach suffered from low recall rates due to the nature of the decoding. Moreover, 
memory and time needed for training were a problem. 

The second approach utilized inner representations of a word-predicting E2E system 
to perform O O V detection task. Detection recall and precision rates improved drastically 
in comparison with the hybrid approach. However, O O V recovery had to be performed 
on a separate character-predicting system which led to boundary synchronization issues. 
Moreover, E2E architecture limits the possibilities of re-introducing recovered OOVs into 
the A S R system. This second approach also made use of a Chinese restaurant process-
based clustering, defined in a principled way for the task of clustering O O V candidates 
with probabilistic pronunciations. 

In the final approach, we propose a new speller architecture with a capability of learning 
O O V representations together with the word predicting network training. Speller architec­
ture brings together the principled combination of two granularities observed in a hybrid 
decoding system with the power of E2E training. Speller architecture also does not rely on 
an external clustering procedure for O O V recovery, and is able to find meaningful groups 
of OOVs during training with multiple O O V embeddings. Using the speller architecture 
also shows improvements both in terms of A S R and O O V recovery. 
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7.2 Future Directions 
Even though automatic speech recognition (ASR) works "well enough" now in applications 
like Google, Siri etc., O O V post-processing can make the applications more user-oriented. 
For example, it can help a customer select their own target words from a list suggested 
by an O O V recovery system. These suggestions can change over time with user needs and 
their personal vocabulary development. 

Speaking of speller architecture in particular, one of the immediate uses would be its 
integration with N L P tasks. Spelling-aware embeddings can be useful in other speech 
processing applications, such as machine translation or slot-filling. There is a theoretical 
possibility of combining spelling-aware training with pre-trained models to improve their 
performance on out-of domain tasks. Multiple O O V embeddings trained to predict different 
classes of words can be potentially used for part-of-speech tagging, as they clearly contain 
information about morphemes, their spelling and the grammatical classes they represent. 

In the context of multi-linguality and code switching, OOVs from one language may 
be IVs in another language, and cross-utilizing the speller-aware embeddings might help 
recover foreign words in a multilingual A S R environment. 

A less immediate but promising extension of the speller architecture would be joint 
training of a speech recognizer on two or more different speech granularities, with informa­
tion from all of them feeding into and informing others. This would be a principled speech 
representation approach, explainable and versatile for various tasks. 
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Appendix A 

Simulated O O V list for LibriSpeech 
dataset 

Numbers show the number of occurrences of the O O V in the train-clean-360 dataset; the 
list is sorted according to these occurrences. 

replied 1302 moreover 215 melancholy 165 
captain 879 companions 213 admiration 163 
gentleman 535 monsieur 212 squire 162 
exclaimed 531 ceased 212 departed 161 
scarcely 437 proceeded 210 magnificent 160 
wished 425 wholly 207 hastily 159 
colonel 365 delighted 201 conscience 159 
madame 331 whence 197 commanded 159 
carriage 297 affection 197 rendered 154 
anxious 296 fellows 196 majesty 154 
courage 288 begged 196 solemn 153 
evidently 282 escaped 195 resumed 149 
servant 281 seldom 191 astonishment 145 
gentlemen 278 whilst 190 throne 144 
seized 272 dignity 190 gratitude 144 
nearer 266 kindly 186 triumph 143 
servants 256 behold 186 hitherto 143 
possessed 252 plainly 185 beheld 143 
succeeded 246 temper 182 descended 142 
remarked 241 savage 182 compelled 141 
sorrow 240 inhabitants 181 likewise 140 
delight 240 uttered 178 fierce 139 
nevertheless 238 eagerly 176 duchess 139 
handsome 237 maiden 175 deserted 139 
divine 233 lighted 175 astonished 136 
peculiar 228 earnest 175 chiefly 135 
splendid 221 kindness 174 pursued 133 
mistress 220 trembling 173 doubtless 133 
countenance 218 utterly 172 concealed 131 
virtue 217 immense 169 beasts 131 
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marched 126 awakened 93 wrought 72 
fancied 126 wherein 92 careless 72 
hastened 125 obeyed 92 advancing 71 
furnished 125 fortunes 92 serpent 70 
beloved 124 steamer 91 seeming 70 
ambition 123 feeble 91 prevailed 70 
voyage 120 commenced 91 conspicuous 70 
fastened 120 wherefore 90 summoned 69 
multitude 119 solitude 90 picturesque 69 
pretended 118 sentiments 90 afforded 69 
sailed 115 savages 90 descend 68 
parted 115 regiment 90 boldly 68 
englishman 115 florence 90 tremble 66 
dearest 115 philip 89 thyself 65 
ventured 114 gladly 88 horsemen 65 
thither 114 alarmed 88 gallant 65 
exceedingly 114 frightful 87 furnish 65 
notwithstanding 112 disagreeable 87 workmen 64 
passions 111 deceived 87 mademoiselle 64 
disposed 111 Constance 87 justly 64 
scarce 109 yonder 85 jasper 64 
virtues 108 indignation 85 impatience 64 
misfortune 108 whereupon 84 clergyman 64 
countess 107 repose 84 nobles 63 
contented 105 pleasures 84 exhibited 63 
wretched 104 rejoined 83 erected 63 
mingled 104 dwelling 82 destined 63 
gloomy 103 whither 81 contrived 63 
heartily 102 supposing 81 conquered 63 
condemned 102 murmur 81 thereupon 62 
preserved 101 devotion 81 rejoiced 62 
tenderness 100 amiable 81 herbert 62 
quarrel 100 roused 79 conveyed 62 
belonging 100 exquisite 79 unworthy 61 
farewell 99 cheerfully 78 robbers 61 
anxiously 99 yielded 77 guarded 61 
vengeance 97 disgrace 77 grieved 61 
thence 97 crimson 77 delicacy 61 
procession 97 consented 77 crowned 61 
distinctly 96 tenderly 76 cherished 61 
betrayed 96 solemnly 75 wretch 60 
trembled 95 politeness 75 glittering 60 
princes 95 graceful 75 frenchman 60 
pierre 95 bestowed 75 errand 60 
hither 95 eustace 74 decidedly 59 
cunning 95 sufferings 73 cultivated 59 
jewels 94 speedily 73 propriety 58 
earnestly 93 confessed 73 nobility 58 
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clothed 58 
onward 57 
dreadfully 57 
commanding 57 
westward 56 
venerable 56 
falsehood 56 
eagerness 56 
sublime 55 
reproach 55 
reigned 55 
prudence 55 
marguerite 55 
hounds 55 
descending 55 
coachman 55 
stately 54 
robber 54 
bridle 54 
sweetness 53 
reverence 53 
perceiving 53 
monarch 53 
misfortunes 53 
interposed 53 
bravely 53 
apprehension 53 
tumult 52 
therein 52 
ascended 52 
waistcoat 51 
illustrious 51 
hereafter 51 
hasten 51 
endeavoured 51 
despised 51 
curate 51 
respectfully 50 
practised 50 
carriages 50 
watchful 49 
northward 49 
mutton 49 
maidens 49 
henceforth 49 
headlong 49 
bestow 49 
warmly 48 

throng 48 
tempest 48 
occasioned 48 
napoleon 48 
innumerable 48 
desirous 48 
charms 48 
chanced 48 
bertram 48 
ardent 48 
reckoned 47 
fancies 47 
excellency 47 
countrymen 47 
adorned 47 
uneasiness 46 
torrent 46 
southward 46 
retreated 46 
reginald 46 
indignant 46 
hospitality 46 
eloquence 46 
withered 45 
stooping 45 
sorrows 45 
proprietor 45 
elinor 45 
dainty 45 
carlyle 45 
springing 44 
procured 44 
negroes 44 
malice 44 
joyous 44 
indulged 44 
forthwith 44 
barbarous 44 
assented 44 
amidst 44 
affections 44 
triumphant 43 
treachery 43 
sullen 43 
softened 43 
saluted 43 
rejoicing 43 
mournful 43 

henrietta 43 
haughty 43 
gallop 43 
courtiers 43 
augustus 43 
attentively 43 
trifling 42 
tidings 42 
sprung 42 
plunder 42 
eastward 42 
devoured 42 
defiance 42 
whereof 41 
vainly 41 
superstition 41 
singularly 41 
richly 41 
pierced 41 
blushing 41 
admiring 41 
restrained 40 
relics 40 
pleasantly 40 
indignantly 40 
exalted 40 
endowed 40 
ecclesiastical 40 
earnestness 40 
carelessly 40 
wickedness 39 
weariness 39 
thrice 39 
slumber 39 
prostrate 39 
personage 39 
nobleman 39 
labours 39 
insensible 39 
horace 39 
doings 39 
delights 39 
declaring 39 
composure 39 
alfred 39 
uttering 38 
suspicions 38 
resolute 38 
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rapidity 38 temperance 34 enveloped 31 
overtook 38 seizing 34 dismounted 31 
obstinate 38 revived 34 chivalry 31 
lizzie 38 modesty 34 bravery 31 
heaped 38 magnificence 34 trifles 30 
draught 38 lodged 34 surrendered 30 
dashing 38 homeward 34 statesmen 30 
convent 38 homage 34 splendour 30 
respecting 37 feebly 34 rudely 30 
renders 37 fearfully 34 quarrels 30 
principally 37 excepting 34 mortimer 30 
possesses 37 discharged 34 haunts 30 
manhood 37 boughs 34 comprehended 30 
humbly 37 adventurer 34 betwixt 30 
eloquent 37 undertook 33 antiquity 30 
confounded 37 thickly 33 summons 29 
alighted 37 strove 33 sombre 29 
vexation 36 rector 33 seclusion 29 
silken 36 recollected 33 schooner 29 
serpents 36 rascal 33 regiments 29 
merrily 36 possessing 33 pitied 29 
lodgings 36 peeping 33 noiselessly 29 
inasmuch 36 peculiarly 33 horseman 29 
galloped 36 eminence 33 coolly 29 
forlorn 36 displeasure 33 boasted 29 
englishmen 36 despatched 33 apprehensions 29 
Cornelius 36 confided 33 admirably 29 
consternation 36 conceit 33 tremulous 28 
bessie 36 ascending 33 swiftness 28 
beauties 36 ascend 33 swelled 28 
banished 36 afresh 33 sweetly 28 
attentions 36 unbroken 32 subsided 28 
assuredly 36 sorrowful 32 soothed 28 
assent 36 renown 32 quarrelled 28 
ascertained 36 perished 32 perpetually 28 
serene 35 mortals 32 pecuniary 28 
resembling 35 industrious 32 parson 28 
professed 35 hesitating 32 natures 28 
penetrated 35 exerted 32 insolent 28 
obscurity 35 desiring 32 impelled 28 
loveliness 35 conferred 32 gratified 28 
kneeling 35 clearness 32 fortified 28 
glided 35 affords 32 flattered 28 
cruelly 35 traversed 31 extinguished 28 
coolness 35 murmuring 31 exertions 28 
bustle 35 maxims 31 conversed 28 
allusion 35 manifested 31 conqueror 28 
verily 34 heathen 31 churchyard 28 
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cheerfulness 28 bertha 25 thickets 22 
amusements 28 asunder 25 sympathies 22 
alternately 28 apparition 25 shrieks 22 
toiled 27 tolerably 24 schoolmaster 22 
solicitude 27 terrors 24 rosalie 22 
redoubled 27 seamen 24 poetical 22 
perils 27 scanty 24 mourned 22 
obstinacy 27 plaintive 24 merriment 22 
marquis 27 personages 24 mended 22 
insolence 27 pallid 24 fringed 22 
girdle 27 musing 24 fondness 22 
footman 27 multitudes 24 foaming 22 
divinity 27 lustre 24 ferocity 22 
cordial 27 impudent 24 endeavouring 22 
uncommonly 26 implored 24 dick's 22 
traitor 26 hollows 24 despairing 22 
sundry 26 hoisted 24 courier 22 
rapture 26 grandeur 24 cordially 22 
quickened 26 gentleness 24 busily 22 
muslin 26 entreaties 24 baronet 22 
marian 26 effectually 24 wanderings 21 
interfered 26 discontent 24 trodden 21 
hastening 26 declares 24 Spaniard 21 
habitation 26 dearer 24 sorely 21 
graces 26 dazzled 24 resounded 21 
forgetfulness 26 concealing 24 recollections 21 
firmness 26 chevalier 24 proffered 21 
exquisitely 26 avarice 24 mournfully 21 
envied 26 audacity 24 meditated 21 
encamped 26 arrayed 24 marjorie 21 
charley 26 approbation 24 lamented 21 
carelessness 26 amounted 24 kindled 21 
benevolence 26 adventurers 24 irresistibly 21 
wearied 25 thronged 23 implacable 21 
therewith 25 solemnity 23 imperfectly 21 
resided 25 ornamented 23 habitually 21 
repast 25 languid 23 frankness 21 
presided 25 impetuous 23 nourishing 21 
overpowered 25 fugitive 23 flattery 21 
joyfully 25 frenchmen 23 ferdinand 21 
incessantly 25 flocks 23 despatch 21 
impracticable 25 exclaiming 23 desolation 21 
groves 25 disconcerted 23 assailed 21 
genial 25 boldness 23 affectation 21 
ejaculated 25 alacrity 23 Venetian 20 
drooping 25 vehemence 22 tottering 20 
contemptuously 25 unobserved 22 steamers 20 
bridegroom 25 unmoved 22 speculations 20 
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revolted 20 
pretensions 20 
pauline 20 
mightily 20 
matilda 20 
indifferently 20 
imperious 20 
hospitable 20 
heiress 20 
greedily 20 
extravagance 20 
enmity 20 
counsels 20 
contrivance 20 
confound 20 
wreaths 19 
thereon 19 
signified 19 
salutation 19 
myriads 19 
impertinent 19 
heretofore 19 
harriet 19 
godfrey 19 
discontented 19 
commended 19 
busied 19 
brutes 19 
visage 18 
ursula 18 
undulating 18 
treading 18 
sovereigns 18 
scruples 18 
rebuke 18 
needful 18 
madeleine 18 
loosed 18 
livery 18 
heedless 18 
freshness 18 
despotism 18 
desertion 18 
cowardice 18 
coldness 18 
betrothed 18 
beholding 18 
attired 18 

antagonist 18 
agreeably 18 
adoration 18 
accosted 18 
wherewith 17 
thundering 17 
therefrom 17 
surmounted 17 
successively 17 
smitten 17 
reproof 17 
perchance 17 
murmurs 17 
meekly 17 
Jacques 17 
irishman 17 
gleams 17 
gertrude 17 
forsaken 17 
familiarly 17 
courteously 17 
consoled 17 
conscientiously 17 
billows 17 
admirers 17 
wilful 16 
unheeded 16 
studded 16 
straggling 16 
steadiness 16 
saluting 16 
repelled 16 
prettily 16 
mortification 16 
messrs 16 
indolent 16 
idleness 16 
graciously 16 
gallantry 16 
gaiety 16 
flitting 16 
feigned 16 
exasperated 16 
evermore 16 
devouring 16 
claret 16 
blanche 16 
availed 16 

ascribed 16 
affectionately 16 
wedded 15 
vivacity 15 
unmolested 15 
unhappily 15 
toiling 15 
rascals 15 
quarrelling 15 
mingling 15 
methinks 15 
katharine 15 
ingratitude 15 
imparted 15 
imitated 15 
handsomely 15 
furnishes 15 
frederic 15 
feasted 15 
exclaim 15 
exaltation 15 
epistle 15 
enjoined 15 
dwells 15 
disgraced 15 
descends 15 
decked 15 
cromwell 15 
contended 15 
consecrated 15 
caresses 15 
caprice 15 
ardently 15 
uncouth 14 
sufficed 14 
reproached 14 
remarking 14 
pitying 14 
pervaded 14 
peaceably 14 
overhanging 14 
numberless 14 
muriel 14 
miseries 14 
leaden 14 
lamentations 14 
incredulity 14 
imploring 14 
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hester 14 antony 12 cornelia 9 
glories 14 acquiescence 12 consigned 9 
follies 14 abashed 12 chafed 9 
evinced 14 triumphs 11 boudoir 9 
edifice 14 swarms 11 bestowing 9 
cometh 14 sauntering 11 skilfully 8 
aforesaid 14 rogues 11 protruded 8 
unwillingly 13 pervading 11 oratory 8 
unawares 13 peopled 11 moorish 8 
timidity 13 penitent 11 margery 8 
sixpence 13 mildred 11 josiah 8 
reverently 13 gaston 11 grandly 8 
resuming 13 frolic 11 exacted 8 
musket 13 forgetful 11 brightening 8 
menaced 13 fearlessly 11 awaking 8 
maurice 13 deportment 11 amounting 8 
kinsman 13 commencing 11 philippa 7 
grecian 13 comely 11 oration 7 
flocked 13 bonaparte 11 mistook 7 
finery 13 avowed 11 minutely 7 
fetters 13 aright 11 exulted 7 
exultation 13 ardour 11 esther 7 
exclamations 13 abounded 11 enlivened 7 
entertainments 13 swarthy 10 drapery 7 
diffused 13 ripened 10 divinely 7 
devoutly 13 muskets 10 delighting 7 
detested 13 mollie 10 commences 7 
despondency 13 moistened 10 bequeathed 7 
crowning 13 magnanimity 10 begotten 7 
clergymen 13 intimated 10 beatrice 7 
blotted 13 gallantly 10 acquiesced 7 
vagabond 12 chieftain 10 wordsworth 6 
ulysses 12 blundering 10 voltaire 6 
slumbering 12 archibald 10 thirsting 6 
shewed 12 annals 10 tennyson 6 
seizes 12 affording 10 swells 6 
sculptured 12 undaunted 9 Prussian 6 
relapsed 12 triumphed 9 helen's 6 
protestations 12 tradesmen 9 growths 6 
orator 12 slackened 9 geoffrey 6 
levity 12 recurred 9 foreseeing 6 
languidly 12 rebuked 9 filial 6 
lances 12 journeying 9 deeming 6 
glimmering 12 jennie 9 credulity 6 
damsels 12 hector 9 bespoke 6 
cunningly 12 forbearance 9 theodore 5 
confiding 12 fierceness 9 pricking 5 
cheerily 12 disdained 9 lottie 5 
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dragoons 5 abounding 4 prussia 1 
divested 5 trembles 3 nellie 1 
convulsively 5 roderick 3 midshipman 
cleopatra 5 odysseus 3 lucien 1 
accursed 5 impartially 3 lilian 1 
thunders 4 eugenia 3 jeanne 1 
reclined 4 Camilla 3 herrick 1 
prescott 4 thackeray 2 gladys 1 
percival 4 rowland 2 cecilia 1 
messer 4 Johannes 2 bertie 1 
Josephine 4 jimmie 2 thereto 0 
francois 4 gustave 2 signora 0 
francesco 4 exclaims 2 Johnnie 0 
coleridge 4 clarissa 2 godwin 0 
cicero 4 winifred 1 desmond 0 
agatha 4 rosalind 1 
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Appendix B 

Examples of H , C , L , and G graphs 
in a hybrid A S R system 

The following simple example helps visualize how the FSTs repesenting different components 
of a hybrid A S R system look like. 

Assume that we have a set of just 2 phonemes and 3 words, 2 of them being homophones 
(words that have the same pronunciation but different graphemic representation). Here is 
a sample dictionary: 

I ay 
ice ay s 
eye ay 

A small example of a training text might look like the following: 

ice eye 
I eye 
ice 

A bigram language model, estimated from this small training corpus by Kneser-Ney 
smoothing [Kneser and Ney, 1995], will then look like shown in Table B . l in A R P A format1 

(<s> is sentence start and </s> is sentence end symbols). 
The L M and the dictionary provide all the needed information for the creation of C, L, 

and G graphs which will then be composed with H that represents acoustic states. 
A G graph for the L M in Table B . l is shown in Figure B . l , #0 being the vocabulary 

disambiguation symbol that substitutes empty (<eps>) input symbol in order to keep the 
graph determinizable. Note that G graph contains valid paths for all 1-grams and 2-grams 
in the L M . Also, there are back-off paths to node 1 with input disambiguation symbols that 
allow for stacking 1-grams and 2-grams together. 

Figure B.2 shows lexicon transducer (L) for this small example. Note that words with 
the same pronunciations have acquired disambiguation symbols at the end of each repeating 
transcription path, so now there paths of input strings ay #1 for output word / and ay #2 
for word eye. 

x http: //www. speech, sri.com/projects/srilm/manpages/ngram-f ormat.5.html 
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\data\ 
ngram 1 
ngram 2 

=5 
=6 

\l-grams: 
-0.4771213 </s> 
-99 <s> -0.39794 
-0.7781513 I -0.30103 
-0.60206 eye -0.4771212 
-0.60206 ice -0.3010301 

\2-grams: 
-0.5740313 <s> I 
-0.30103 <s> ice 
-0.20412 I eye 
-0.1091445 eye </s> 
-0.3802112 ice </s> 
-0.4259687 ice eye 

\end\ 

Table B . l : Example L M in A R P A format 

Context dependency graph C can be viewed in Figure B.4. Even for the small example 
we have, note how big it is as it expands the existing phonemes into the context-dependent 
variants. 

And finally, a part of H transducer is depicted in Figure B.3. Output labels are context-
dependent phonemes and input labels are transition-ids encoding phone, H M M state index 
withing the triphone, P D F ID and the index of outgoing arc from the node in the second 
field. 

eye:eye/1.3863 

Figure B . l : Example of a grammar transducer G. 
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ay:I 

Figure B.2: Example of a lexicon transducer L. 

Figure B.3: Example of an H M M definition transducer H. 
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<qis>/sil/<Lp*>:<;$ 

00 
CO 

Figure B.4: Example of a context dependency transducer C. 


