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Abstract

In this Thesis, I perform a detailed characterization of the basic quantum
pulsed homodyne detector. I characterize the charge sensitive amplifier, the
photodiodes and required optical setup. I execute the calibration to the vacuum
state and I detect the quantum noise of light. I verify the linearity and other
properties of the detector such as electric noise, bandwidth. Furthermore, I
create a quantum random number generator using homodyne detector. Random
bits are extracted from the measured quantum noise with the rate of 4 Mbit/s
and verified using DIEHARDER battery of tests.

Keywords

Homodyne detection, Quantum detection, Quantum detectors, Photodetector

i



Acknowledgments

I would like to express the deepest appreciation to my supervisor and advisor
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Matúš Frick

Declaration

I hereby declare that I have written this Bachelor’s Thesis—and performed
all the presented research and experimental tasks—by myself, while being su-
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Chapter 1

Introduction

1.1 What is homodyne detection

The homodyne detection is a widely used technique for finding the information
encoded in the amplitude and the phase of unknown signal. The unknown signal
is compared to the signal with a defined phase/frequency/amplitude known
as the local oscillator. This technique can be used with any electromagnetic
signal. Firstly, it was used in RF communication. We will use it for optical
signals. The term homodyne means that the frequency of the local oscillator and
unknown signal is the same (in contrast to different frequencies in heterodyne
detection). Also, the local oscillator and unknown signal must be coherent, they
are typically derived from the same light source. The unknown signal and the
local oscillator interfere in an interferometer and the output signals are detected.
Balanced homodyne detection was firstly applied in frequency domain. In our
case, the homodyne detector is designed for measurements in time domain. The
signal and the local oscillator are provided by a pulsed laser. This time domain
pulsed regime is necessary for measurement of the non-classical features of light,
such as multiphoton states localized in particular times. The measurement of
quantum states is highly demanding. There are some challenges that need to
be solved beforehand. The electronic noise of the detector must be smaller
than the quantum noise of optical states of light. There is a need for fast
components, faster than the repetition of the pulsed signal. Also, there is a
need for photodiodes with good quantum efficiency.

The requirements are hard to fulfil and we cannot use a commercial de-
tector, so we have to construct home-made one. There are only two types of
amplifiers used in quantum optical homodyne detectors which can be used in
the pulsed regime. Both types allow for electronic noise smaller than quantum
noise. The first one uses a combination of a low-noise FET transistor and a
charge sensitive amplifier. After the first amplification, the signal is shaped
with shaping amplifiers. The second type uses one operational amplifier in the
trans-impedance configuration. In our detector, we use the charge sensitive am-
plifier. The trans-impedance amplifier scheme is newer and faster. The charge
sensitive amplifier was used in the beginning of the quantum homodyne detec-
tion. Balancing is easier with a charge sensitive amplifier and also its signal to
noise ratio is typically higher than for trans-impedance amplifier.
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Table 1.1: Comparison between various homodyne detectors, taken from [5].
CS stands for charge sensitive, TI stands for trans-impedance.

Characteristics [3] (2000) [6] (2002) [4] (2008) [7] (2009) [5] (2011) This work (2019)
Wavelength (nm) 790 786 1064 800 791 810
3 dB bandwidth (MHz) 1 50 250 54 100 2
Clearance (dB) 14 5 7.5 12 10-18 > 23
Amplifier CS - - TI TI CS

1.2 State of the art

The first homodyne detection for quantum optical used in frequency domain
was performed by Slusher et al. in 1985 [1]. They detected optical squeezed
states. For the quantum state reconstruction with applications in hybrid quan-
tum information processing, homodyne detection in time domain is needed.
Using quantum tomography one can obtain Wigner’s function, containing full
information about the quantum state of light. The first quantum homodyne
detector which works in time domain was constructed by Raymer et al. [2] in
1993. First fast detector with a bandwidth of 1 MHz was created by Hansen et
al. [3] in 2001 who used charge sensitive amplifier in the well-known electronic
scheme used for nuclear and particle physics. Many homodyne detectors are
based on the Hansen’s charge senstive detector. Fastest homodyne detector was
created by Okubo et al. [4] in 2008 with 3 dB bandwidth of 250 Mhz. This
detector was not stable and had a small clearance in comparison with others.
Kumar et al. [5] made significant improvement developing a detector with band-
width around 100 MHz and with fairly good clearance. The detectors made by
Zavatta et al. [6], and Haderka et al. [7] should be also mentioned. Various im-
plementations of homodyne detectors and their key parameters are summarized
in Tab. 1.1. Namely, the bandwidth and signal to electronic noise (clearance)
are compared. Homodyne detection was used for conditional preparation and
characterization of various strongly non-classical optical signals. For example,
Ourjoumtsev et al. [8] in 2006 used a homodyne detector for detection of cat
states. There are many applications of homodying in quantum information pro-
cessing and quantum metrology. Homodyne detection can also be used as a
quantum random number generator [9].

1.3 Outline

In this work, I will describe how our homodyne detector is made, how the
photodiodes are chosen, how the detector is calibrated for the vacuum state
of light, how quantum noise is measured and how the results of the quantum
noise measurement are used as a quantum random number generator. In the
chapter 2, I will explain the fundamentals of homodyne detection. Also the basic
terms will be clarified. The essential scheme of developed homodyne detector
is shown there. In the chapter 3, I will describe our charge sensitive amplifier.
I will explain how I measure the parameters of the homodyne detector, such
as gain, noise and response. The scheme of the measurement setup will be in
this chapter. In the chapter 4, I will discuss the parameters of the photodiodes,
for example the response and quantum efficiency. I will describe the process of
photodiode matching and the selection of the best photodiode pair which will be
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used. In the chapter 5, I will explain the optical setup with all the components.
Also, I will comment on calibration to the vacuum state and how I found the
linear region of the detector. The extraction of random bits from the quantum
noise of light will be described in this chapter. Result of the randomness testing
could be found in appendix.
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Chapter 2

Fundamentals of homodyne
detection

In classical physics the state of the light could be approximately described with
one complex variable α represented by one point in the phase diagram. This
complex number, α has a real part q and an imaginary part p,termed quadrature
amplitudes. These two parts are then

q =
1√
2

(α+ α∗), (2.1)

p =
1

i
√

2
(α+ α∗). (2.2)

The angle

φ = arctan
p

q
, (2.3)

represents the optical phase. The norm of α is the overall amplitude of the state.
Squared amplitude is equal to the intensity I of the signal in classical optics. In
quantum physics, this number corresponds to the mean photon number,

|α|2 ∼ I ∼ 〈N〉. (2.4)

Vacuum state of light containing no photons would be one point in the zero. In
full quantum description, however, the light is modelled as quantized harmonic
oscillator and therefore the Heisenberg principle is applied. The light is not
anymore described with one point in the phase space but it is represented using
uncertainty areas. Heisenberg uncertainty principle tells us that

∆q∆p ≥ 1

4
, (2.5)

for the vacuum state the uncertainties are ∆q = ∆p = 1/2, shown in Fig.2.1 (a).
The same goes for coherent states of light, shown in Fig.2.1 (b). If the state is
squeezed then ∆q 6= ∆p. This uncertainty manifests itself as quantum noise.

The basic scheme of the homodyne detection is visualized in Fig. 2.2. In
balanced homodyne detection, an unknown signal is mixed with the known sig-
nal of the local oscillator. An unknown signal and the signal of local oscillator
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Figure 2.1: (a) Phasor diagram for a vacuum state. (b) Phasor diagram for a
coherent state.

needs to be coherent. The signals interferes and are divided on the 50 % beam-
splitter into two output signals. These signals have the same intensity. We
want them to be as similar as possible. Then these two signals are brought on
the photodiodes, where the optical signal is converted into an electric photocur-
rent. The photocurrents from both photodiodes are subtracted. The differential
photocurrent is

I = (Nα−NLO)·(T −R)+4
√
R · T ·NLOQ(φ)+o(NLO, Ubias, Unoise, . . .), (2.6)

where Nα is the mean photon number of the measured signal, NLO is the mean
photon number of the local oscillator, R, T are coefficients of reflection and
transmission of the beam splitter and o(. . .) contains the parasitic elements
such as electric noise and others. We want this error element to be as small as
possible. Q(φ) quadrature is defined as Q(φ) = q cosφ + p sinφ. The values of
this function depend on the angle φ, which describes the angle of the measured
state in phase diagram with respect to the local oscillator. When we scan values
of the quadratures for φ = 〈0, 2π〉 we can reconstruct the full information about
the measured quantum optical state. We can measure Wigner’s function of this
state. If the spiltting ratio is R = T = 1/2 and we assume that the detection is
perfect, the Eq. 2.6 will transform to

I ∼
√
NLO ·Q(φ). (2.7)

Final differential photocurrent after subtraction is amplified and shaped, as
shown in Fig. 2.2 by a simplified schematic of charge-sensitive amplifier. We
can detect the output signal in the time domain with the oscilloscope or in the
frequency domain with the spectrum analyzer. In our detector, the R/T ratio
can be almost perfect but an error element will always be there. There are
many problems, such as the differences between the two photodiodes and the
noise generated by the amplifier. Well designed and precisely adjusted charge
sensitive amplifier is important for a good balancing in homodyne detection.
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Figure 2.2: The simplified schema of our homodyne detection.
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Chapter 3

Charge sensitive amplifier

Well designed and well-made electronic amplifier is crucial part of good homo-
dyne detector. Our charge sensitive amplifier follows the well-known scheme,
which is widely used for detection in nuclear physics with one detector. H.
Hansen et al. [10] were the first, who used this scheme for optical homodyne
detection. This scheme of the detector was chosen because of its low noise.
The printed circuit board and assembly of our amplifier was performed by M.
Dudka based on the design provided by M. Ježek. Same as Hansen et al., we
used a slightly modified scheme of the amplifier which is in the datasheet of am-
plifier AMPTEK A275. Our implementation of charge sensitive amplifier was
thoroughly tested without photodiodes. I measured the gain of the amplifier,
linearity, and electronic noise, which must be smaller than quantum noise. Also,
I measured the shape of output pulses and I described the time response of the
amplifier.

3.1 Characteristics of amplifier

Gain g of the charge-sensitive amplifier is defined as a ratio of output pulse
voltage peak Uout and input charge Qin. The gain was measured using the
scheme 3.1 (a). The input signal was prepared using the signal generator (Tek-
tronix AFG3252) which generates a square wave with frequency f = 1 MHz.
The amplifier responds to both negative and positive edges of the test signal.
The generator is connected to a small capacitor of C = 2.7 pF. This capacitor
converts the input voltage to the charge Qin = Uin · C expressed as number of
electrons. The capacitor was used only during the measurement of the charac-
teristic of the homodyne detector. After this measurement, the capacitor was
replaced with larger capacitor with capacity of 470 pF. During all measure-
ments, the voltage U = ±12 V was applied to the amplifier. Output signal was
measured in the time domain with a 200 MHz oscilloscope (Hameg 2024).

At the output, there are negative and positive pulses, see Fig. 3.1 (b). I
measured the difference between the maximum and the base line of these pulses
for positive pulses. For the negative pulses I measured the difference between
the minimum and the base line. This differences are called an output voltage.
The function of the output voltage on the input charge is a linear function in
a specific interval, see Fig. 3.1 (c). The function is perfectly linear between

7



Generator

G
S

D A250 A275
Pole zero

differentiation
Low pass

filter OscilloscopeA275

-2.×10-7 0 2.×10-7 4.×10-7 6.×10-7 8.×10-7 1.×10-6

-4

-2

0

2

4

time [s]

vo
lt
ag
e

[V
]

(a)

(b) (c)

Coupling 
Capacitance

2.7 pF

Figure 3.1: (a) The scheme of aperture which was used for measuring the gain
and the pulses in time domain. (b) Output pulses of amplifier in time domain.
Normal pulses and pulses in saturation. (c) Gain and linearity of the charge
sensitive amplifier. There are two types of output voltage (red points are voltage
of positive pulse peak and blue ones of negative).

8000 electrons and 5·105 electrons. The reasons why the respose function is not
linear outside of this region are the noise of the amplifier and its saturation.
The electronic noise is larger than the weak output signal and the pulses are
lost within. The saturation can be seen for large values of the output voltage.
The amplifier works well in the linear area. Gain is a slope of the linear part of
the curve in Fig. 3.1 (c). The function of the fit is

Uout = g ·Qin. (3.1)

The gain is g = 9.1 µV/e−.
The time response of the amplifier is measured in the same way as I mea-

sured the gain, Fig. 3.1 (a). We want the amplifier to have the same characteris-
tic as for the positive so for the negative pulses. I measured and compared two
pulses which have the same input voltage but opposite polarity, see Fig. 3.1 (b).
The compared pulses are the red one and the green one. I describe the pulses
with the full width at half maximum (FWHM), the duration of the rise and
the decay tails. The rise time and decay time are measured from 10 % to
90 % of the amplitude. The response of the positive (red) pulse with amplitude
A = 2.08 V is tredFWHM = 270 ns, tredrise = 126 ns and treddecay = 276 ns. The response

of the negative (green) pulse with amplitude A = −2.06 V is tgreenFWHM = 264 ns,
tgreenrise = 122 ns and tgreendecay = 262 ns. The rise time is nearly the same for both
pulses. The difference in measured decay times is caused by the difficult read-
ing of the values. In future measurements of time response I would suggest to
use averaging functionality of an oscilloscope. The amplitude and the gain are
the same for positive and negative pulses in the linear interval. Positive pulses
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saturate at voltage 3.89 V. The response and shape of the pulse are the same
for negative and positive pulses below this voltage.

The scheme of the noise measurement is Fig. 3.2 (a). For measuring the
noise I turned off signal generator. The amplifier was still connected to a power
supply. I used cursors on the oscilloscope to measure the difference between
maximum and minimum noise voltage. With this window I measured noise
Up2p = 20 mV. This value corresponds to the value of six stadard deviations,
so called sigma. One sigma is Unoise = 3.3 mVrms. After dividing this value
with gain we get Qnoise = 363 e−. For the second measurement of noise I used
electronic spectrum analyzer (Rohde and Schwarz) instead of the oscilloscope.
During the measurement, the amplifier was connected to the power supply with
a voltage of U = ±12 V. When the amplifier was connected to the generator
with its signal output turned off, the analyzer showed a spectrum with multiple
peaks. This means that there is another source of noise, probably produced
by the generator or by the electromagnetic interference. For that reason, the
amplifier was connected only to the power supply and spectral analyzer during
the measurement (the tektronix generator was disconnected). In this case, the
result was a smooth spectrum, see Fig. 3.2 b).

G
S

D A250 A275
Pole zero

differentiation
Low pass

filter A275 Spectral
analysator

a)

b)

Coupling
Capacitance

2.7 pF

Figure 3.2: (a) The scheme of the system used for measuring the noise of the
amplifier. At the input nothing is connected. (b) Noise of the amplifier measured
on a spectrum analyzer.

From measured data we can calculate the total noise power as

P =

∫ νmax

0

Var[U (ν)] dν, (3.2)

where ν is frequency, P is the total noise power and V ar[U (ν)] is variance of
voltage signal U(ν). I numerically calculated the integral of variances P = 7.3×
10−6 V2. Square root of this number is standard deviation of normal distribution
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of noise voltage Unoise = 2.7 mVrms. Which gives us value of Qnoise = 297 e−.
This value is smaller than the result which I got from measurement with an
oscilloscope. Noise from the signal generator could cause this difference between
the two values. Also, I performed the first noise measurement with the amplifier
case not closed sufficiently. With an open enclosure, it receives a lot of signals
and noise as it behaves like an antenna. Consequently, every measurement of the
noise should be conducted with a metal case of the amplifier closed. I summarize
all the measured parameters of our charge sensitive amplifier in Tab. 3.1.

Table 3.1: The parameters of the charge sensitive amplifier.
Measured parameters

Gain 9.1 µV/e−

Noise 297 electrons
tFWHM 270 ns
trise 126 ns
tdecay 262 ns
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Chapter 4

Photodiodes

The photodiodes convert optical signal into an electric current. In homodyne
detection scheme, two photocurrents are subtracted. For that reason, we want
to have the photodiodes with the same response. We use Si-PIN diodes S3883
produced by Hamamatsu, which possess the optimal trade-off between efficiency,
capacitance and the response speed. These photodiodes are widely used for
homodyne detection. Hansen et al. [3], Ježek et al. [7], Windpassinger et al.
[11] use this type of photodiodes in their detectors. The manufacturer claims
that these photodiodes have the cutoff frequency of 300 MHz, and quantum
efficiency 92.2 % at wavelength 780 nm. The maximal reverse voltage is 30 V,
the active diameter is 1.5 mm, the spectral response is between 320-1200 nm
with a sensitivity peak at 840 nm.

We had 6 pieces of these photodiodes. The goal was to chose the best pair
to be soldered onto the board of the amplifier. For finding the best pair we used
pulsed laser signal from Toptica femtosecond laser. Pulse length was smaller
than 300 fs. This laser is used because the response of the photodiode is not
influenced by the shape of the laser pulse. The laser pulses are so short that
they can be described as a Dirac delta function with respect to the photodi-
ode bandwidth. The photodiodes were tested one at a time under the same
conditions. Each photodiode was connected to the testbed, which was made
according to the scheme 4.1. The photodiode was biased with a power sup-
ply with the voltage Ubias. The testbed was designed to minimize noise of this
voltage, using sequence of low pass filters in the bias arm. The signal from the
photodiode was read by an oscilloscope (LeCroy 1.5 GHz). This setup was used
for the measurement of the photodiode response. The shape of the pulse for
every photodiode can be found in Fig. 4.2 (a).

In homodyne detection, the amplitude of two pulses could be compensated
by changing the splitting ratio of the beamsplitter or by attenuation of laser
signals in front of the photodiodes. Also, the position of the pulse in time can
be varied by changing the length of the path of the beam. This is the reason why
I was numerically changing the amplitude and shifting the pulses in time during
the comparison. I compared the shape of pulses using the overlap parameter

O =

∫ T

0

|U1(t)−A ·U2(t +B)| d t. (4.1)

This parameter is used because it characterizes the quality of the subtraction in
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Figure 4.1: The scheme of the testbed for the photodiode characterization.

the homodyne detector. The parameter A scales the amplitude U2 of the pulse
and B moves U2(t) in time. I compared the pulse for each photodiode with all
the other photodiodes. Value A is taken between 〈0.8, 1.2〉 and B is from -20
samples to 20 samples from the initial position. The first photodiode and the
fourth photodiode form the most similar pair, see Fig. 4.2 (b).
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Figure 4.2: (a) The time response of all the measured photodiodes. (b) The
response of the best pair of the photodiodes with A = 1 and B = 0.

The shape of photoelectric pulses depends on the bias voltage Ubias of the
photodiodes and the polarization, focus and the other parameters of incident
optical pulses. The sensitivity to the Ubias is shown in Fig. 4.3 (a). For a better
understanding of how the response depends on Ubias, the area under the pulse
versus Ubias is visualized in Fig. 4.3 (b). This area is linearly increasing with
Ubias. We can see that the shape of the pulse is changing with the value of bias
voltage. That means we can use Ubias for a slight modification of the shape of
the pulse.

I also measured the dependence of quantum efficiency on incident light polar-
ization. The beam impinges photodiode under the angle of 45◦. The polarization
of the beam was changing from horizontal to vertical, see Fig. 4.4 (a). The best
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Figure 4.3: (a) The dependence of the photodiode response on bias voltage.
(b) The area under the pulse versus Ubias.
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Figure 4.4: (a) Quantum efficiency versus polarization of incoming light. Max-
imum is for horizontal polarization. (b) The scheme of the connection of pho-
todiodes before the amplifier.

quantum efficiency is measured for horizontally polarized signal. This efficiency
is taken for the calculation of detector efficiency. I measured the maximum
quantum efficiency of 93.3 % at 775 nm. We can reach even better quantum
efficiency if we remove the glass from the photodiode cover. The detector will
be used mainly for wavelengths 800 nm and 810 nm, where the efficiency of the
photodiodes is slightly higher.

Two photodiodes were selected for the developed homodyne detector. Ubias

applied on the photodiodes can be modified using precise ten turns potentiome-
ters. Before photodiodes, we attached low pass filters, see Fig. 4.4 (b). They
attenuate high frequencies of the bias voltage and reduce the noise.
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Chapter 5

Calibration of homodyne
detection

5.1 The optical setup for calibration of homo-
dyne detector

For optical vacuum state calibration, we used the optical setup shown in the
Fig. 5.1. The pulser was connected to the laser diode, so the signal from the laser
diode was in the form of the nanosecond pulses with the repetition frequency of
1 MHz. The laser diode was manufactured by QPhotonics QFLD-808-50S-PM
and emits a wavelength of 808 nm. The oscilloscope trigger was set on the signal
from the pulser.

ESA

OSC

DRIVERS &
PULSER AMP

Laser
PBS

LPHWP HWP

HWP

HWP
LENS

LENS

HD

Figure 5.1: The optical setup for calibration of homodyne detector. HWP half-
wave plate, LP linear polarizer, PBS polarizing beam-splitter, ESA electronic
spectrum analyzer, OSC oscilloscope. This setup was used for measurement of
different powers of local oscillator.

The optical signal from laser diode impinges the half-wave plate and the
linear polarizer. Both are mounted in manual rotation mounts. With this
combination of the half-wave plate and the linear polarizer, we got defined
polarization of laser beam. With the rotation of the half-wave plate, it is possible
to set continuously the power of the signal (attenuation is possible). The signal
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continues to the next half-wave plate and after that to the polarizing beam-
splitter. With this half-wave plate in precise rotation mount, we can change
splitting ratio of the beam splitter, which is crucial for balancing of homodyne
detector. The transmitted and reflected parts have different polarization. One
has vertical and one horizontal polarization. For that reason, the two signals
are brought to the half-wave plates. The polarization of one signal was changed
to match the polarization of the second signal. These half-wave plates can be
used for a little change of quantum efficiency of photodiodes. The signals are
focused to at photodiodes. These photodiodes are mounted into the detector
case under the angle of 45 ◦. The quantum efficiency is better if the incoming
signal does not land on the photodiode upright but under the angle. The first,
rough balancing is made with the half-wave plate in precise manual rotation
mounts right before the beam-splitter. With this plate, we roughly set the R/T
ratio. For a precise setting of R/T ratio, we can use half-wave plates which
are situated in the setup after beam-splitter. The additional configuration of
focus may be needed for better balancing. The setting of Ubias is used for
precise balancing. Usually, the decreasing the Ubias makes the pulse wider, see
Fig. 4.3 (a).

5.2 The data processing

Approximate balancing can be made using an oscilloscope. On the oscilloscope,
we brought a trigger signal from the pulser and signal from the homodyne de-
tector. We want the pulses from the homodyne detector as balanced as possible,
see Fig. 5.2 (a). For more precise balancing, we connect the output from the
detector to the spectral analyser, see Fig. 5.2 (b). In unbalanced detection, there
should be peaks Fig. 5.2 (b) blue trace. This trace has a peak at 1 MHz. This
peak corresponds to the repetition rate of the laser diode. The second peak at
2 MHz corresponds to the second harmonic oscillation of the laser. With better
balance, the peaks will be smaller. If the detector is balanced, it detects the
quantum noise. In this case, the peaks are not visible, as shown in Fig. 5.2 (b)
orange trace. With the setting of Ubias, we can minimize also higher harmonic
frequencies. The electronic noise is measured with no input, Fig 5.2 (b) green
trace. We measured the noise in the dark room as it is sensitive enough to
detect stray light from monitors, room lighting and other sources.

We detect pulses on an oscilloscope and visualized them one over other, see
Fig. 5.3 (a) and Fig. 5.4 (a). These two traces are plotted for the different power
of local oscillator. We integrate the small neighbourhood of the maximum of the
pulse. This integration is equal to quadrature Q′. We can make a histogram
of these quadratures. We find the mean of this distribution and subtract it
from every Q′: Q = Q′ − 〈Q′〉. This subtraction is possible because we know
that the offset is caused by the amplifier. After the subtraction, we have got
a new distribution which is symmetric around the zero point. These quadra-
tures in time-domain without offset are visualized in Fig. 5.3 (b), Fig. 5.4 (b)
and the histograms are in Fig. 5.3 (c), Fig. 5.4 (c). The histogram represents
the distribution of fluctuation of quadratures of vacuum state of light in time.
This distribution is normal distribution and therefore can be fitted with Gauss
function and variance can be read from the fit.

We measured these distributions for different values of power of local oscil-
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Figure 5.2: (a) Balanced homodyne detection measured on oscilloscope. Red
signal is trigger signal from pulser. This signal is larger than the vertical axis
range. Blue signal is signal from balanced homodyne detector. (b) Ilustrating
image of the output of homodyne detection on the electronic spectrum analyzer.
The green trace is the electronic noise, the orange trace is the result of balanced
homodyne detection, the blue trace (with peaks) represents unbalanced detec-
tion.

lator. The variance is proportional to the power of local oscillator. We plotted
this dependence in Fig.5.5. We fitted the measured values with linear function.

V ar = a ·NLO, (5.1)

with a ≈ 2.2 × 10−6 V·µs−2. Our detector works properly only in the linear
interval. The linear interval is between 1 mio-100 mio photons in the local oscil-
lator pulse. The higher powers are not longer in the linear region. This could
have various reasons. For example, the laser is not stable, we changed the focus
of the laser on the photodiodes for larger values (it was impossible to balance
the detector without the change of the focus), the detector could be saturated.
The linear region is important because we need to chose the point where we fix
the operating power of the local oscillator in here. The criteria for choosing the
working point are the high stability of the balancing and the high clearance, i.e.
the high signal to electronic noise ratio. After fixing the power of local oscillator
we will measure again the distribution of the quadratures. The unknown signal
will be measured with the same power of the local oscillator and will be shifted
to zero mean and rescaled by the standard deviation of the previously measured
vacuum state (with no signal). The maximum clearance of our homodyne detec-
tion is more than 23 dB, shown in Fig. 5.5. For the higher values of clearance,
the detector starts to be unstable.

5.3 Quantum random number generator

Our first application of the homodyne detection is a quantum random number
generator. The quadrature amplitude is a random quantity [9]. The quadra-
ture histograms from the section 5.2 can be divided around zero into two parts
with the same probability of finding a quadrature value there. We can assign
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Figure 5.3: Results of measurement with power of local oscillator NLO ≈ 5 mio
photons in the entry. (a) Every pulse of the one measurement visualized one over
another. (b) The amplitude of quadratures visualized over time. (c) Histogram
made from quadratures, fitted with Gauss distribution.

value zero to the negative quadratures and value one to the positive ones. With
this logical conditions we create the random number generator. This generator
produces 1 Mbit/s of random bit rate, which can be further increased. The
quadrature of histogram quantum vacuum state of light posses normal distri-
bution. The range 〈0 : 1〉 of the corresponding cumulative distribution function
is divided into the equidistant parts. The boundary values for normal distribu-
tion are obtained using the inverse function applied to the border values of the
equidistant parts of the range. Normal distribution is transformed in such way
in the uniform distribution if the number of the equiprobable parts goes in limit
into the infinity. To every part, we assign a binary number. The amount of
random numbers depends on the amount of the parts. We divided the normal
distribution into 16 parts. Consequently, we got 4 bits of random information as
24 = 16. So far, our generator produces 4 Mbit/s. We can improve the speed of
the generator in two ways. The first way is the increasing of the density of the
division, the second is the increase in the repetition rate of the laser signal. I
verified the quality of the generated random bits using the dieharder tests. The
results can be found in the appendix A in Tab. A.1. All tests passed successfully,
except two results of the test which were granted as WEAK. It is because we
do not have enough numbers to test in data sample.
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Figure 5.4: Results of measurement with power of local oscillatorNLO ≈ 651 mio
photons in the entry. This result is no longer in linear region, but in compar-
ison with Fig. 5.3, there is growth of the variance. (a) Every pulse of the one
measurement visualized one over another. (b) Amplitude of quadratures vi-
sualized over time. (c) Histogram made from quadratures, fitted with Gauss
distribution.
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Figure 5.5: The variance of the quadratures against the intensity of LO. Plot is
LogLog scaled. Linear interval is between 1 mio - 100 mio photons (red points).
The yellow line shows the electronic noise level.
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Chapter 6

Conclusions and outlook

As shown in this thesis, the homodyne detection is a powerful tool not just in
quantum state reconstruction but also in other fields of quantum physics. It is
useful to have a well performing homodyne detector for the reconstruction of the
quantum state. In the first chapter, I explained the fundamentals of homodyne
detection. In the second chapter, I measured parameters, as the gain, which
was g = 9.1 µV/e−1 and electric noise of the our homodyne detector which was
only 300 electrons on the input. This detector was shown to be sufficient for
measuring the quantum noise. I determined the working region of the ampli-
fier and its response. In the third chapter, I measured the response and the
quantum efficiency of the photodiodes. Also, I measured the response of the
photodiodes on the Ubias and I found out quantum efficiency of photodiodes
on the incoming polarization. I made an analysis and chose the best pair of
photodiodes for use in our detector. After completion of the detector, I made
the first optical measurement. It was the measurement of the vacuum state. I
measured quantum noise of vacuum state of light and I found the quadrature
distribution. I measured the variation of the vacuum state for a different power
of local oscillator. With this measurement, I found out limits of our homodyne
detector. The clearance is larger than 23 dB. As the final result, I processed
the quadrature data and I made the quantum random number generator, which
passed the dieharder random number tests. Our quantum random number gen-
erator was able to produce 4 of random megabits per second. The speed of this
generator can be further increased.

Our next step will be the improvement of the quantum random number
generator. We want to increase the bit rate. We will also improve its quality
using various randomness extractors, such as Von Neumann extractor. We will
build a new homodyne detector based on a trans-impedance amplifier with faster
response. If the bandwidth of the detector will be large enough (> 80 MHz),
we would like to use it with a signal from Ti:Sapphire laser. I want to use such
detector to measure quantum states of light. Furthermore, I will use algorithms
for quantum tomography to estimate quantum features of multi-photon states
and other highly non-classical states.
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Appendix A

Statistical tests

Table A.1: Results of Dieharder tests of randomness of our generator. In case of

multiple tests, the smallest p-value was chosen.The tests were applied to 10 000 4bit

numbers generated from 10 000 quadrature values measured by the developed homo-

dyne detector.

dieharder version 3.31.1 Copyright 2003 Robert G. Brown

test name ntup tsamples psamples p-value Assessment

diehard birthdays 0 100 100 0.21497146 PASSED
diehard operm5 0 1000000 100 0.14241201 PASSED

diehard rank 32x32 0 40000 100 0.60546573 PASSED
diehard rank 6x8 0 100000 100 0.24139853 PASSED
diehard bitstream 0 2097152 100 0.74073273 PASSED

diehard opso 0 2097152 100 0.20538212 PASSED
diehard oqso 0 2097152 100 0.48751682 PASSED
diehard dna 0 2097152 100 0.72747834 PASSED

diehard count 1s str 0 256000 100 0.13006773 PASSED
diehard count 1s byt 0 256000 100 0.00340306 WEAK
diehard parking lot 0 12000 100 0.50228590 PASSED
diehard 2dsphere 2 8000 100 0.11097490 PASSED
diehard 3dsphere 3 4000 100 0.29285974 PASSED
diehard squeeze 0 100000 100 0.97151958 PASSED
diehard sums 0 100 100 0.29766412 PASSED
diehard runs 0 100000 100 0.99260417 PASSED
diehard runs 0 100000 100 0.34179895 PASSED
diehard craps 0 200000 100 0.98341518 PASSED
diehard craps 0 200000 100 0.68555885 PASSED

marsaglia tsang gcd 0 10000000 100 0.06557901 PASSED
marsaglia tsang gcd 0 10000000 100 0.25595429 PASSED

sts monobit 1 100000 100 0.66552170 PASSED
sts runs 2 100000 100 0.95157186 PASSED
sts serial 16 100000 100 0.18019484 PASSED

rgb bitdist 8 100000 100 0.02811108 PASSED
rgb minimum distance 3 10000 1000 0.27427811 PASSED

rgb permutations 4 100000 100 0.49329694 PASSED
rgb lagged sum 31 1000000 100 0.00273749 WEAK
rgb kstest test 0 10000 1000 0.60186049 PASSED
dab bytedistrib 0 51200000 1 0.03584510 PASSED

dab dct 256 50000 1 0.79110916 PASSED
dab filltree 32 15000000 1 0.33912115 PASSED
dab filltree2 1 5000000 1 0.57657326 PASSED

dab monobit2 12 65000000 1 0.57781143 PASSED
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