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Abstract 
Convolut ional Neura l Networks (CNNs) have revolutionised computer vision field since their 
introduct ion. B y replacing weights w i th convolution filters containing trainable weights, 
C N N s significantly reduced memory usage. However, this reduction came at the cost of in 
creased computat ional resource requirements, as convolution operations are more computat ion-
intensive. Despite this, memory usage remains more energy-intensive than computat ion. 

This thesis explores whether it is possible to avoid loading weights from memory and 
instead functionally calculate them, thereby saving energy. To test this hypothesis, a novel 
weight compression algor i thm was developed using Cartes ian Genetic Programming. This 
algor i thm searches for the most opt imal weight compression function, a iming to enhance 
energy efficiency without compromising the functionality of the neural network. 

Experiments conducted on the LeNet-5 and Mob i l eNe tV2 architectures demonstrated 
that the algor i thm could effectively reduce energy consumption while maintaining high 
model accuracy. The results showed that certain layers could benefit from weight compu
tat ion, val idat ing the potent ial for energy-efficient neural network implementations. 

Abstrakt 
Konvolučné neurónové siete (CNN ) od svojho vynájdenia zrevolucionizovali spôsob, akým sa 
realizujú úlohy z odvetvia počítačového videnia. Vynález C N N viedol k zníženiu pamäťovej 
náročnosti, keďže váhy bol i nahradené konvolučnými f i l trami obsahujúcimi menej tréno-
vateľných váh. Avšak, toto zníženie bolo dosiahnuté na úkor zvýšenia požiadaviek na 
výpočtový výkon, ktorý je naviazaný na výpočet konvolúcie. 

Táto práca skúma hypotézu, či je možné sa vyhnúť načítavaniu váh a miesto toho 
ich vypočítať, čím sa ušetrí energia. N a otestovanie tejto hypotézy bo l vyvinutý nový 
algoritmus kompresie váh využívajúci Kartézske genetické programovanie. Tento algoritmus 
hľadá najoptimálnejšiu funkciu kompresie váh s cieľom zvýšiť energetickú účinnosť. 

Exper imenty vykonané na architektúrach LeNet-5 a Mob i l eNe tV2 ukázali, že algoritmus 
dokáže efektívne znížiť spotrebu energie pr i zachovaní vysokej presnosti modelu. Výsledky 
ukázali, že určité vrstvy je možné doplniť vypočítanými váhami, čo potvrdzuje potenciál 
pre energeticky efektívne neurónové siete. 

Keywords 
Convolut ional Neura l Networks, C N N , Evo lut ionary Algor i thms, E A , Genetic A lgor i thms, 
G A , Cartes ian Genetic Programming, C G P , Opt imal i zat ion, Compression, Mob i l eNe tV2 , 
LeNet-5, Energy Efficiency, Weight Compression A lgor i thm, Deep Learning 

K lícová slova 
Konvolučné neurónové siete, C N N , Evolučné algoritmy, E A , Genetické algoritmy, G A , 
Kartžeske genetické programovanie, C G P , Optimalizácia, Kompresia , Mob i l eNe tV2 , LeNet-
5, Energetická účinnosť, Kompres ia váh, Hlboké učenie 

Reference 
L O R I N C , Marián. Automated compression of neural network weights. Brno , 2024. Master 's 
thesis. B rno University of Technology, Faculty of Information Technology. Supervisor 
Ing. Vojtech Mrázek, P h . D . 



Rozšířený abstrakt 
Umelé neuronové siete ( ANN ) , ktoré sa štandardne používajú v rôznych aplikáciách umelej 
inteligencie, sa prvýkrát objavi l i v 60. rokoch minulého storočia [55]. Avšak významný 
rozmach zaznamenali v posledných dvoch desaťročiach, predovšetkým vďaka napredovaniu 
vývoja počítačov [8]. S možnosťou pracovať s veľkým množstvom dát tieto siete dokážu 
efektívne vyriešiť rôzne úlohy, ktoré by bolo konvenčnými spôsobmi prácne vyriešiť. 

Výpočtový model umelých neurónových sietí sa značne opiera o matematické operácie 
násobenia a sčítania. N a začiatku musí model prejsť tréningom, čo sa považuje za opti
malizačný problém s cieľom minimalizovať stratovú funkciu. Chyby modelu sú ovplyvnené 
váhami a hodnotami bias, ktoré sú uložené vo fyzickom úložisku. N a proces inferencie mu
sia byť tieto parametre načítané z fyzického úložiska do rýchlej pamäte D R A M aby mohl i 
byť použité pr i výpočte, čo vedie k spotrebe energie. Avšak prístup k pamäti je energet
icky náročný [75, 12, 62], čo viedlo k výskumu zameranému na minimalizáciu prístupu do 
pamäte. 

Spotreba energie je kľúčová, pretože priamo koreluje s výkonom, zahrievaním, eko
nomickými a environmentálnymi faktormi [16]. Velké jazykové modely, ktoré preukázali 
veľký potenciál v interakci i človeka s počítačom, vyžadujú značnú výpočtovú s i lu. Bolo 
preukázané, že tréning takýchto modelov môže produkovať viac emisií ako jeden let l ietad
lom [16], čo viedlo výskumníkov k zahrnut iu výpočtu emisií do svojich správ. Ekonomicky 
sú tieto modely nákladné nielen na tréning, ale aj proces inferencie je nákladný. Existuje 
teda silná motivácia zlepšiť oba faktory, poháňaná ekonomickými a environmentálnymi 
faktormi. Konvolučné neurónové siete (CNN ) preukázali, že menej častý prístup k pamäti 
môže umožniť hlbšie, širšie a energeticky efektívnejšie modely. Predpokladá sa, že váhy 
je možné ešte viac komprimovať ich nahradením kompresnou funkciou, aby sa zabránilo 
prístupu k pamäti, čím sa ušetrí energia. V dôsledku toho bo l navrhnutý a vyhodnotený 
nový algoritmus využívajúci Kartézské genetické programovanie ( C G P ) na rôznych experi
mentálnych konfiguráciách. Tento algoritmus môže nahradiť váhy aproximačnou funkciou, 
čím efektívne znižuje počet váh, ktoré je potrebné načítať z pamäte zariadenia a následne 
znižuje spotrebu energie. 

N a dosiahnutie tohto cieľa bo l použitý algoritmus C G P na automatický návrh digitál
nych obvodov. Návrhy sa vyhodnocujú na základe obvodových parametrov ako je chyba, 
spotrebovaná energie, oneskorenie a počet hradieb Po zrealizovaní prvého prototypu prvá 
iterácia experimentov bola vykonaná na architektúre neurónovej siete LeNet-5 [44], ktorá 
dosiahla experimentálne sľubné výsledky. Algor i tmus dokázal nájsť riešenia bez akejkoľvek 
spotreby energie pr i zachovaní vysokej až pôvodnej presnosti modelu. Avšak, na potvrdenie 
výsledkov a zaistenie, že model nebol přetrénovaný alebo nadmerne pre parametrizovaný, 
ďalšia iterácia bola vykonaná na najviac energeticky efektívnom model i Mob i l eNe tV2 [57]. 
Predtým avšak bolo nutné vykonať optimalizáciu algoritmu, pretože výkonovo nestačil. Za
viedol sa algoritmus, ktorý zhlukuje rovnaké váhy na výstupy a prakt icky ich zaskratuje. 
Tento prístup dosiahol neskutočne zjednodušenie náročnosti dizajnu obvodov pre algoritmus 
C G P . P rak t i cky odstránil problém škálovateľnosti a lgor i tmu pre problémy, ktoré nevyuží
vajú súčiastky multiplexor. 

Séria experimentov na Mobi lenetV2 priniesla zaujímavejšie výsledky a ukázala, že každá 
vrstva reaguje na zmeny váh odlišne. Okrem toho tiež zdôraznila niektoré obmedzenia al
goritmu, ako je optimalizácia energie, ktorá významne závisí od unikátnych váh, ktoré je 
potrebné vydedukovať. Podstatným zistením je, že aj na tak dôležitom modeli , ako je Mo-
bi leNetV2, návrh algor i tmu stále dokázal nájsť efektívne riešenia a tak prekonať konvenčný 



prístup k pamäti. Jedinou nevýhodou je, že každá vrstva je komprimovaná individuálne, a 
preto z hardvérového hľadiska implementácia nie je v tomto aspekte kompletná. 

N a riešenie tohto problému bola implementovaná multiplexná metóda. Avšak, rýchlosť 
evolúcie implementácie nebola uspokojivá, čo by neviedlo k praktickému použitiu v reálnom 
prevoze. Rovnaký princíp ako predošlá spomínaná optimalizácia bo l pridaný k multiplexnej 
metóde, avšak vylepšenia neboli markantné. Tento problém teda zostal nevyriešený a mohol 
by byť spojený na další výskum, ktorý by skúmal optimalizáciu na viacerých vrstvách 
súčasne. N a záver, vykonaný výskum prispel v oblasti energeticky efektívneho používania 
neurónových sietí, najmä v prostrediach s obmedzenými zdrojmi, ako sú mobilné zariadenia 
a elektronické systémy. Výskum ukázal, že je možné aproximovat konvolučné váhy pomocou 
algort imu C G P . Bolo taktiež zistené, že optimalizácia energie závisí od vstupných váh a 
od počtu jedinečných výstupných váh, ktoré je potrebné optimalizovat. V experimentoch 
vykonaných na Mob i l eNe tV2 niekoľko riešení dokázalo prekonať energetickú efektívnosť 
oboch typy pamätí buffer a D R A M . 
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Chapter 1 

Introduct ion 

Art i f i c ia l Neura l Networks ( A N N ) , widely used in many arti f icial intelligence applications, 
appeared in the 60's [55]. However, it has gained significant tract ion over the last two 
decades, pr imar i ly due to the increased accessibility of computat ional resources [8]. W i t h 
access to large quantities of data, these networks demonstrated the capabi l i ty to solve 
various tasks that would be challenging to resolve programmatical ly at the cost of imperfect, 
although acceptable, accuracy. 

The computat ional model of Ar t i f i c ia l Neura l Networks heavily relies on mult ip l icat ion 
and addit ion mathematical operations. Initially, a model must undergo training, a process 
considered an opt imisat ion problem aimed at minimis ing model loss. Furthermore, model 
loss is influenced by weights and biases, which are then stored in physical storage. For 
inference, those parameters must be loaded from physical storage to device memory and 
used for calculations resulting in energy consumption. However, memory access is an ex
pensive energy operation [75, 12, 62], which resulted in several types of research focusing 
on avoiding memory access as much as possible. 

Energy consumption is essential, as it directly correlates w i th performance, heating, 
economic and environmental factors [16]. Large language models have lately exhibited 
tremendous potential in human-computer interaction; however, as can be determined from 
the name, those models require a lot of computat ional power. Notably, it has been proven 
that t ra in ing can emit more emissions than a single air flight [16], prompt ing some re
searchers to incorporate emission calculations into their reports. Economical ly, those mod
els are not only expensive to t ra in ; the inference process is costly as well. Therefore, a 
solid motivat ion exists to improve both factors, driven by economic considerations and 
environmental concerns. 

Convolut ion Neura l Networks demonstrated how less frequent memory access can open 
opportunities for deeper, wider and more energy-efficient models. It is hypothesised it is 
possible to compress weights even more by replacing them w i th a compression function to 
avoid memory access, therefore saving more energy. As a result, a novel a lgor i thm uti l is
ing Cartes ian Genetic Programming was proposed and evaluated on various experimental 
configurations. The result ing a lgor i thm can substitute weights w i th a learnt function, ef
fectively reducing the number of weights that need to be fetched from device memory and, 
consequently, reducing energy consumption. 

The following thesis is organised into several chapters, gradually introducing the reader 
to the problem of weight compression using Evo lut ionary A lgor i thms. In Chapter 2, Convo
lut ion Neura l Networks are introduced to explain the required concepts and methodologies 
that the architecture builds on so these concepts can be later uti l ised. Fol lowing a chapter 
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later, Chapter 3 instigates the field of Evo lut ionary A lgor i thms that heavily take inspirat ion 
from natura l processes to look for opt imal solutions through searching space. Chapter 4 
proposes a novel convolution weight compression algori thm, which is later more concretely 
described in the implementat ion Chapter 5. Several experiments were conducted to vali
date the a lgor i thm functionality, presented in detai l i n Chapter 6. F inal ly , the findings and 
algor i thm performance are concluded in Chapter 7. 

G 



Chapter 2 

Convolut ion Neura l Networks 

Art i f i c ia l Neura l Networks (ANNs ) are computat ional models inspired by the human brain's 
biological structure [13]. The bra in contains an interconnected network of neurons respon
sible for handl ing and transmit t ing signals to other parts of the bra in or body parts. These 
neurons have synapses that act as output points for each neuron. It might be modified or 
interrupted before transferring the signal to another neuron. F r om a mathematical stand
point, a Neura l Network is often an unknown function f(x) w i th a noise e that roughly 
approximates a reference function, as exhibited in Formula 2.1. 

A l though a function alone is not capable of approximation, Horn ik et a l . [27] discovered 
that chaining mult iple non-linear squashing functions gi (Formula 2.2) allows these squash
ing functions to approximate the reference function. Hence, the approximation function 
possesses the universal approximation property. 

A s machine learning evolved, it became apparent that only neuron-based neural net
works were unsustainable regarding the number of parameters. Hence, research for other 
architectures was highly motivated. In 1988, Denker et a l . [15] developed one of the first 
Convolut ion Neura l Networks (CNN ) to classify handwri t ten digits for the U S Posta l Ser
vice. The architecture had one big drawback, and it required manual weight calculat ion 
of act ivat ion maps and a large amount of image pre-processing. A s such, later, Denker 
and L e C u n et a l . [41] employed the backpropagation algor i thm to C N N . A s a result, the 
classifier could classify raw images w i th minor transformations to the former counterpart, 
which used input vectors [15]. Thus, adapting pattern recognition principles described in 
the book of Watanabe [70] led to a novel and more efficient feature extraction architecture 
type. 

Convolut ion is a computation-heavy operation; however, the most significant energy 
consumption arises from memory access [12, 75], explained more i n Section 2.2. A d d i 
tionally, C N N s are not suited for every type of task, though they are remarkably good at 
computer vision [41] and speech recognition tasks. The explanation of why C N N performs 
better in those tasks can be found in architectural design. Hence, the whole architecture, 
including the bui ld ing blocks of C N N , w i l l be explained i n Section 2.1. 

(2.1) 

f(x) « 371(53(52(51(2:)))) (2.2) 

7 



2.1 Arch i t ec ture Overv iew 

Convolut ion Neura l Networks excel at pattern recognition tasks, such as computer vision, 
speech recognition or signal processing. To perform well, C N N s use the convolution function 
to extract features from patterns, which is especially beneficial when analysing signals 
and image data. However, convolution layers alone are insufficient for classification and 
regression problems. In order to reach the most opt imal performance when developing 
C N N s , other layers are required to function well, which w i l l be explained i n this section. 

2.1.1 C o n v o l u t i o n L a y e r 

Convolut ion layers are the most essential bui ld ing blocks of C N N s and are responsible 
for feature extraction from the data. Conceptually, a convolution layer is a part icular ly 
restricted case of the fully connected layer, which has more strict restrictions than a regular 
fully connected layer. However, those restrictions are made in a way that sl ightly restricts 
the layer's capability, result ing in a significant reduction of parameters, reducing over-fitting 
[63]. Every convolution layer consists of a finite number of filters, as shown in Figure 2.1, 
sometimes called maps, that store weights later for convolution. 

1 

5 9 8 2 1 

0 2 3 9 5 

0 5 4 5 0 

0 6 5 8 5 

0 7 1 5 0 

8 

Figure 2.1: A single convolution layer containing mult iple filters trained to find specific 
features in data. Each filter contains trainable weights used for convolution or depthwise 
convolution. 

Convolution 

Convolut ion is a mathematical operator of two functions that has been proven efficient in 
pattern recognition [15, 41] and since then became a standard in computer vision. Convo
lut ion operator has many definitions; for instance, the continuous definition w i th integral 
is used i n signal processing. However, C N N s function i n discrete space. Therefore, it has 
slightly different definitions, as defined in Formula 2.3, where / is an input image and g is 
a filter. 

b d 
i*g[u,v} = 

E E 9[i,j]f[u + i,v + j] (2.3) 
i=—a j=—c 

One part icular difference is how the sum iterates over values. In C N N s , it is common to 
use filters w i th odd kernel size; thus, the variables a, 6, c, d are equal, which implies that 
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kernel dimension can be t r iv ia l ly calculated as (2a + 1) x (2a + 1). Moreover, compared to 
the standard convolution, the C N N s convolution also defines parameters such as stride and 
padding that define by how much filter is moved across the image after each convolution, 
and padding specifies how are missing values handled which is a case for image pixels that 
reside on the edges of the image. For instance, the padding effect can be seen i n Figure 2.2, 
which also incorporates an example of how an image can be convoluted. 

2 0 1 2 1 

0 2 3 9 9 

0 5 4 5 3 

0 6 5 7 8 

0 7 1 5 0 

3 6 

10 2 3 

0 5 4 

12 45 59 98 67 

32 62 108 125 128 

51 96 191 210 132 

76 105 163 150 100 

57 65 150 94 81 

Figure 2.2: Example of 3 x 3 convolution performed on the region in the left imaginary 
greyscale image of 5 x 5, which is padded w i th zeros. The result is highlighted by purple 
colour on the right and was calculated w i th the following formula: y = 2- l + 0- 3 + l - 6 + 
0 -10 + 2- 2 + 3 - 3 + 0- 0 + 5- 5 + 4- 4 from top left to bo t tom right. 

Convolution Evolut ion 

Apar t from ordinary convolution, which was first introduced by Denker et a l . [15], later 
Denker and L e C u n et a l . improved it by ut i l is ing backpropagation [41] followed up by the 
creation of LeNet-5 [44]. However, C N N s were not popular unt i l a significant breakthrough 
occurred in 2012 when Kr i zhevsky et a l . used G P U paral lel ization for the first time, R e L U 
activation, Dropout and data augmentation to t ra in neural networks, which won them the 
I L S V R C challenge w i th convolution neural network A lexNet [36]. The most interesting 
feature of the model is how big the first convolutional filters are w i th size 11 x 11. Even 
though G P U tra in ing became a norm w i th more research by Kr i zhevsky [35], large filters 
d id not stay ground, and more effective convolution techniques were invented. 

One of the more efficient techniques is 1 x 1 convolution i n convolutional layers, as 
showcased i n the proposed model by L i n et a l . [46]. The premise builds on the idea that 
inside feature extract ion layers, inter-channel classification and pool ing should improve 
model accuracy. Basically, l x l convolution is a compatible multilayer-perceptor, which is 
a capable function approximator [46]. Furthermore, the standard F C N layer is not used at 
al l at the end of the model. Instead, the last layer is a convolutional network w i th global 
averaging pool ing, as shown in Figure 2.3. 

Moreover, l x l convolutions have become widely used and are present in state-of-the-
art models, for instance, Mobi leNet [57, 28] and GoogleNet [63]. However, original 5 x 5 
convolution filters are s t i l l a viable opt ion despite Simonyan and Zisserma proving that two 
3 x 3 filters have an effective receptive field of 5 x 5 filter [58]. 
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Figure 2.3: Architecture of the Network i n Network model proposed by L i n et a l . [46] 
w i th non-standard architecture which places neurons i n between convolution layers. Image 
courtesy [46]. 

Convolution Types 

As convolution was more researched, mult iple convolution techniques were invented. U n t i l 
now, only the standard convolution has been explained; however, the most recent state-of-
the-art models use different convolution methods, such as: 

• 1 x 1 Convolutions - his technique, as previously mentioned, serves mult iple pur
poses. F irst ly , it can be used for pooling, as mentioned earlier. Secondly, it can be 
used to adjust the input dimension. 

• Depthwise Convolutions - In this method, only one filter is employed per channel, 
thereby reducing the number of parameters and convolution filters required. 

• Pointwise Convolutions - A 1 x 1 convolution is applied for every point value in 
the input matr ix , performing linear combination. It is required to have the same 
number of filters as input channels. 

• Separable Depthwise Convolutions - B y combining Depthwise and Pointwise 
convolution, it is possible to perform effective feature extract ion trading off fewer 
parameters for a l i tt le bit worse accuracy, as demonstrated by Mobi leNet [57, 28], as 
elaborated i n Section 2.5. 

• G r o u p e d Convolution - Inputs are div ided into mult iple groups, each of which 
undergoes separate convolution w i th mult iple kernels. Ini t ia l ly proposed as a tech
nique for G P U paral lel ization i n A lexNet [36]. Later, it was used in ResNeXt [73] 
to introduce cardinality, a new dimension comprising n groups that are eventually 
aggregated. 

• Shuffled G r o u p e d Convolution - Bu i ld ing upon the previous idea, a shuffling 
operation is employed after group concatenation which originated from ShumeNet 
[79]. The motivat ion is to promote feature diversity and to exchange data between 
channels thereby improving model learning. 
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Comparission to Fully Connected Neura l Layer 

As mentioned, the convolutional layers impose restrictions on inference and these are de
pendent on filters. Whereas F C N has a set of weights w and biases b and performs inference 
based on the following Formula 2.4, where / is an activation function. 

A l though the formula appears to be simpler to calculate, the problem is that F C N 
layers require significantly more weights than convolution layers, and that 's the pr imary 
determinant of their differences. Moreover, the higher weights also cause more intense 
memory usage, which is, in terms of energy and delay, very demanding [12]. So, by replacing 
memory access at the cost of more intensive calculat ion, more can be learnt as the result 
of better resource ut i l isat ion, which is an interesting concept that w i l l be pivotal unt i l the 
end of the thesis. 

Nonetheless, both layer types cooperate well and create a foundation for C N N s . The 
most common C N N architecture involves nesting mult iple convolution layers, also called 
feature extractors. Nest ing is essential because a single convolution layer cannot capture 
al l the required details of a pattern, meaning the deeper the image is processed, the finer 
details are extracted. F inal ly , calculated activation maps are passed to the classification 
part bui l t out of F C N layers. A schematic can be seen i n Figure 2.4, and a more specific 
example i n Figure 2.5. 

2.1.2 P o o l i n g L a y e r s 

A pool ing layer is often employed to downscale a given sequence. However, pool ing layers 
are not str ict ly necessary and are considered optional . Al ternat ive architectures without 
pool ing layers have been found to be as effective, as demonstrated by Springenberg et 
al . [59]. Despite that, the pool ing layer is a beneficial layer when assisting i n learning 
translat ion invariance [14]. A lso , down-scaling input helps prevent model over-fitting [63]. 

Required hyper-parameters for the layer are a pool ing function, poo l size, stride and 
a padding method. The most used pool ing functions are min , max and average, which 
are simple to calculate. Thus, for their s impl ic i ty and favourable properties of dimension 
reduction, they are commonly used to speed up the tra in ing and inference process. Figure 
2.6 shows an example of the performing max pool ing operation. 

2.1.3 D r o p o u t L a y e r 

Dropout is a regularization technique to combat the over-fitting problems in neural networks 
[60, 26]. However, the common dropout technique for F C N cannot be applied to convolution 
layers because of the spat ial correlation between elements in a sequence. For example, pixels 
in photos are highly correlated as they belong to a part icular object; hence, they can be 
inferred from other pixels. Therefore, a spat ial dropout is used instead. 

2.2 Energy Ana lys is 

Deep neural networks are known for high computat ional requirements and energy use. A s 
models become more robust, energy costs increase, resulting i n higher f inancial costs. Thus, 

(2.4) 
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FCN - Classifier 

Figure 2.4: Inference workflow diagram showcasing classification for a digit seven from 
M N I S T [39] dataset. In this example, the first layer applies a convolution operator on 
the image, creating new feature maps consisting of convoluted pixels. The feature maps 
are downsampled to smaller dimensions i n the next step, resulting in faster inference and 
helping the model learn transit ion invariance [14]. This procedure can be repeated arbitrary 
times to extract more detailed features from previously extracted features. Ult imately , the 
created features must be classified, often done by flattening feature maps into a single-
dimensional vector to allow the Fu l l y Connected Network ( FCN ) to classify the extracted 
features. 

to localise energy hotspots, it is crucial to know how the C N N works on the hardware level, 
as Yang et a l . [75] found out data movement has more significant energy consumption 
than computat ion alone, giving an example of GoogLeNet [63] that uses 10% of tota l en
ergy for computat ion and 78% for moving feature maps. Similarly, the memory hierarchy 
and dataflow significantly influence the energy consumption of data movement [75]. Fur
thermore, Chen et a l . [12] demonstrated that reusing weights makes it possible to utilise 
memory hierarchy less frequently, decreasing energy usage. 

Because of a l l the mentioned reasons, this thesis aims to find and research possible energy 
savings and evaluate the savings against the loss of accuracy. Therefore, the following 
sections were split into specific components that play important roles when performing 
inference. Every section w i l l describe energy usage on its own level. 

2.2.1 C o n v o l u t i o n L a y e r s 

A convolution layer for an input feature map applies mult iple convolution filters and, as a 
result, generates mult iple output feature maps. In every step, element-wise mult ip l icat ion 
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Convolutions and ReLU 

Figure 2.5: A n example of the C N N conducting inference on 3-channel input of R G B colour 
format image of a dog, which is being convoluted by each layer w i th output feature maps 
visible as rectangular grey-scale images. Specifically, in this example, the dog is being 
recognised based on its eye. The image was created by L e C u n et a l . [40] 

occurs, and result values are accumulated to compute an act ivat ion for the output feature 
map. However, the accumulat ion cannot be done in a single step. Therefore, values get 
accumulated iteratively, creating par t ia l sums. A s such, the Mul t ip l i ca t i on and Accumu
lat ion ( M A C ) unit , which is graphical ly described i n Figure 2.7, was established as a way 
how to measure the computat ion intensity of A N N . [75] 

Convolut ion layers computat ion i n C N N s can amount to as much as 90% of overall 
computat ion resources [14], or in the case of Yang et a l . [75] it was 72% even though 
the fully connected layers consisted of 96% of tota l weights. Due to the dominant use of 
computat ion resources, it is an interesting subject. Chen et a l . [12] conducted a study on 
the impact of energy usage, which was compiled into Figure 2.8. F rom the image, it is 
noticeable that memory is energy expensive and opens a new opportunity to research ways 
to avoid memory as much as possible. For instance, an A L U computat ion consists of one 
M A C . Similarly, R F registers have the same amount. However, as the memory hierarchy 
gets deeper, energy usage increases. Hence, mult iple techniques were invented to minimise 
memory usage. 

D a t a Reuse 

Convolut ion operation offers mult iple opportunities for calculat ion reuse due to how con
volut ion works. The three main techniques are [12] (for v isual demonstration see Figure 
2.9): 

• Sharing of unique input data - The method is based on exploit ing the weight 
sharing property of convolution layers, which utilises every weight filter E2 times in 
the same input feature map. Nonetheless, fully connected layers do not possess this 
type of property. 

• Filter reuse - Every filter weight is reused among the batch of iV input feature maps 
in convolution and fully connected neural layers. 
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Figure 2.6: Operat ion of pool ing w i th kernel dimension equals two and w i th a stride of 2, 
commonly matched w i th dimension. M a x pool ing selects the largest value in 2 x 2 sub-
matrices and then moves by 2 to the right. Similarly, the average pool ing performs the 
same steps. However, the average value is calculated from 2 x 2 sub-matrices. The image 
was created by Yan i et a l . [76] 

• Input feature map reuse - Every input feature map pixel is reused among M 
filters i n convolution and fully connected neural layers. 

2.2.2 F u l l y C o n n e c t e d N e u r a l L a y e r s 

Ful ly connected neural layers are commonly placed at the end of the C N N s . Even though 
they dominate i n terms of quantity of weights, their energy use is not that significant 
compared to convolution layers [75]. S t i l l , energy ut i l isat ion can be optimised by reusing 
values and accelerators described in Section 2.3.1. 

2.2.3 A c t i v a t i o n F u n c t i o n s 

Act ivat ion functions 1 are used to mainta in the property of the universal approximation, 
which in history was achieved by T a n H or Sigmoid functions. However, the latest mod
els use R e L U , which gained popular i ty w i th its simple function definition and first-order 
derivation. Furthermore, those simplifications brought reduced tra in ing times and compu
tat ional complexity, as demonstrated by Kr i zhevsky et a l . [37] in the paper they managed 
to make tra in ing six times faster than an equivalent model w i th T a n H function. Neverthe
less, act ivat ion functions do not require intensive access to memory, thus rendering them 
inferior candidates for energy savings measurements. 

2.2.4 P o o l i n g L a y e r s 

Pool ing layers are also not good energy-saving candidates because the most popular function 
max does not require frequent memory access. Moreover, their resource usage is insignificant 
during the whole process. 

1 i n t r o d u c i n g non - l i n ea r i t y to mode ls 
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M e m o r y R e a d M A C M e m o r y W r i t e 

WE 

DRAM 

Extra levels o f local m e m o r y h ierarchy 

Figure 2.7: A single Mul t ip l i ca t i on and Accumulat ion ( M A C ) operation example. The 
A L U unit takes one filter weight (WE ) and input feature activation (AC ) , which are i n the 
next step mult ip l ied and summed to the previous part ia l sum PSt, creating a new part ia l 
sum PSt+i- Input values and an output value are stored i n the same memory hierarchy. 
Therefore, a single M A C operation requires three memory readings and one memory write 
operation. Taken from [75]. 
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Figure 2.8: A n example of the energy cost of M A C used by commercial 65nm processors 
using R F (Register Fi le ) , P E (Process Element) , buffers and D R A M . The energy cost is 
normalised. Thus, five is equivalent to 5 operations of M A C . Image was taken from [75], 
measurements were collected from [12]. 

2.3 Ar t i f i c i a l Neu ra l Ne twork Opt imisa t i on 

Art i f i c ia l Neura l Networks, from the beginning, were l imited by computat ion resources, for 
instance, an invention of Percepton [47] i n 1943. Even though Machine Learning was known 
much before, the most significant inventions (LeNet-5 [44]) happened throughout the '90s 
unt i l the most influential inventions, such as attention-based learning [69] that moved the 
development of Large Language Models such as G P T - 4 [3], Inception Blocks [63] to keep 
activation maps size in the acceptable range, Res idual Blocks [23] to overcome degradation 
problem, or R e L U [4] w i th a simpler derivation. 

A l l of the abovementioned approaches improved performance by introducing new con
cepts into architecture. Nonetheless, addi t ional techniques can also be employed to improve 
performance, which w i l l be explained in the following sections. 

2.3.1 H a r d w a r e O p t i m i s a t i o n 

As mentioned and shown in Figure 2.8, D R A M memory access is expensive, requiring for 
every M A C three reads from memory for loading weights, act ivat ion maps and part ia l sums 
[62]. Thus, to optimise energy and speed performance, F i e ld Programmable Gate Arrays 
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CONV layers only 
(sliding window) 

Filter 
Ifmaps 

Ft 
Reuse: 

Ifmap activations 
Filter weights 

Feature Map Reuse 

CONV and FC layers 

Filter Reuse 

CONV and FC layers 
(batch size > 1) 

Ifmaps 
ZC>1 

Reuse: Ifmap activations Reuse: Filter weights 

Figure 2.9: V i sua l demonstration of the three data reuses. Image courtesy: [75]. 

( F P G A ) , App l i ca t ion Specific Integration C i rcu i t A S I C and Tensor Processing Uni ts ( T P U ) 
are used to offer more opt imal hardware configuration. To achieve performance gains, these 
techniques optimise calculations so that the D R A M is used as l i tt le as possible. Instead of 
D R A M , local registers are preferred. Some of these configurations w i l l be explained and 
graphical ly presented i n the following sections. 

Weight Stationary 

One of the configurations is Weight Stationary, which stores weights in R F that are assigned 
to some P E . The weights stay mostly stationary; meanwhile, input data and accumulated 
sum changes. After the weights are fetched, N • E2 operations using the same weight are 
performed. [12, 33] 

From a hardware point of view, R x R filter weights are distr ibuted into P E , which 
stores them in R F , where they stay stationary. In the next step, each pixel from input 
feature maps is sent to those P E s , where they are spatial ly accumulated across P E s . For 
instance, Weight Stat ionary can be found in T P U [21] and visual demonstration i n Figure 
2.10. [12, 33] 

Psum 
Global Buffer 

| A c t 

W e i g h t 

I wi m r w T i m 

Figure 2.10: V i s u a l demonstration of the Weight Stat ionary acceleration. Taken from [62]. 
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Output Stationary 

Output Stat ionary aims to reduce memory access by storing accumulated sums into each 
P E ' s R F . To ensure stationary property, input feature maps data are streamed into P E s , 
and the same filter weight is broadcasted to a l l P E s . Th i s configuration is mainly helpful 
for convolution reuse. Figure 2.11 shows a visual a id demonstrating the concept. [12, 33] 

Global Buffer 
A c t | Weight T 

Psum 

Figure 2.11: V i s u a l demonstration of the Output Stat ionary acceleration. Taken from [62]. 

P E 

R o w stationary 

Row Stat ionary [12] reuses every mentioned data primit ive, such as weights, input feature 
map pixels and accumulated sums. The algor i thm assigns the calculat ion of 1-D convolution 
to each P E that is later aggregated in case 1-D convolution is not sufficient. The concept 
of 1-D calculat ion is visualised in Figure 2.12, and 2-D convolutions can be found in Figure 
2.13. 
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(a) Step 1 (b) Step 2 

Fsr.t Sums 

1 RQQ Fit* PE 

1 ^ ~ 1 ^ ~ _ i 0 [ H B 

(c) Step 3 

Figure 2.12: V i s u a l demonstration of the 1-D Row Stationary acceleration. Taken from 
[62]. 

2.3.2 P r u n i n g 

Neural Networks consist of many parameters, not a l l of which are used for inference, as 
noted i n a study of Gho lami et a l . [19] and other implications that follow in the following 
sentences. Therefore, removing them, especially those exhibit ing slight sensitivity to the 
result, is possible. Thus, removing them results i n a sparse computat ional graph, reduced 
computat ional costs, and, more importantly, a reduced memory footprint, which is the 
pr imary goal of this thesis. Furthermore, pruning is div ided into two categories: 

1. Unstructured pruning [19, 43, 17, 45] - In unstructured pruning, every neuron 
w i th smal l sensitivity is removed, hence leading to large parameter e l iminat ion. It 
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Figure 2.13: V i s u a l demonstration of the 2-D Row Stationary acceleration. Taken from 
[62]. 

is considered an aggressive approach that does not significantly change the model's 
generalisation. However, sparse matrices are created as a result. The issue is that the 
sparse matrices are difficult to accelerate. Thus, the computat ion is memory bound 
[9, 18]. 

2. Structured pruning [19, 25, 29] - Al ternat ive to unstructured pruning is to remove 
groups of parameters such as weights or even entire convolutional filters. Because of 
that, the matrices stay dense, and the acceleration issues do not arise. Conversely, an 
increased level of unstructured pruning does not guarantee a state-of-the-art model 
performance, which means model loss and accuracy may drop significantly. For more 
information, refer to [19]. 

2.3.3 W e i g h t S h a r i n g 

Another way to reduce weight and space is through weight sharing, which exploits the fact 
that weights can be close together, so their mean can replace them. However, to determine 
the mean, first, weights must be grouped into clusters, as was demonstrated i n the work of 
Coupek [81], who also extended the a lgor i thm to quantisation to grouped weight and further 
improved weight sharing compression efficiency. Moreover, to improve model accuracy even 
more, the fine-tuning method was proposed, which looks for opt imal parameters that can 
expand weight dimensions to be better differentiable by clustering algorithms, as cluster 
centroids outperformed in expanded dimensions. 

2.3.4 K n o w l e d g e dis t i l la t ion 

Considering a trained model w i th many parameters, the model is used to t ra in the smaller 
model i n this method. The premise builds on the thought that the larger trained model 
can give useful information in the form of soft probabil it ies that contain more information 
than hard labelled data. However, the major problem is that aggressive compression causes 
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significant accuracy loss. Conversely, it can be reduced by combining the method w i th 
pruning and quantisation. [19] 

2.3.5 Q u a n t i s a t i o n 

The quantisation is a method of transforming one part icular range of values into another 
arbitrary range while keeping information w i th min ima l loss. Mapp ing one range value, 
for example, real values, into integer values has the benefit of more efficient computat ion 
ut i l isat ion, as integer operations perform better than floating point operations. Moreover, 
it is also possible to map a more extensive range to a smaller range w i th the premise of 
ut i l i z ing computat ion resources even more, leading to more efficient calculations and less 
demanding energy requirements. 

In Neura l Networks, quantisation is frequently used to map real float32 values to in
teger values w i th smaller bit bandwidth, for example, int8. A s a result, the data type 
gets smaller, and the disadvantages of float ar i thmetic are not present anymore, which, in 
the end, improves computat ion performance and reduces memory footprint. More interest
ingly, Deep Neura l Networks tend to be over-parameterised, which carries more degrees of 
freedom; thus, the quantisation error is not as significant as it would typical ly be [19]. 

Formal ly defined Neura l Network quantisation is a process of finding such quantisation 
parameters that minimalise empir ical risk min imizat ion function, thus retaining model gen
erality, as denoted in Formula 2.5. iV is a number of samples, Xi and yi are the pair of 
da tum and labels, I loss criterion, and 9 is the set of learnt model weights. 

Furthermore, quantisation can be further div ided into uniform or non-uniform quanti
sation, as seen i n Figure 2.14, both involv ing various trade-offs. In practice, despite the 
better potential accuracy achievable by non-inform quantisation, uni form quantisat ion is 
only used because non-uniform quantisation is complicated to deploy on current C P U s and 
G P U s while maintaining inference speed. However, the memory footprint might be less 
demanding [77]. 

Figure 2.14: Examples of uniform quantisation and non-uniform. O n the left is uniform 
quantisation that maps r real domain values to quantised values Q in even increments. O n 
the other hand, non-uniform quantisation maps values i n uneven increments. Source: [19]. 

(2.5) 
i=l 

Q 
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U n i f o r m Quantisation 

To uniformly quantise numbers, quantisation operator Q is applied on real value r , as 
defined in Formula 2.6. 

Quantisat ion scale factor S (Formula 2.7) influences how numbers are scaled into quan
tified form. 

Zero point Z defines where zero maps i n quantified scale. Consequently, quantisation 
resolution b determines the number of bits that w i l l be used to encode values from one 
domain into the quantified domain, restricting the largest possible quantified value. F inal ly , 
(3 and a variables define a clipping range, the range from which real domain values w i l l be 
quantised. If the value is out of the range, the quantisation w i l l not work correctly. 

Likewise, by modifying the formula to express r instead of Q(S), backwards conversion 
can be performed from the quantified domain to the real domain as seen i n Formula 2.8. 

However, the rounding information had already been lost i n the quantisation process, so 
a quantisation error might be present. Nevertheless, the quantisation error is insignificant 
due to model over-parameterisation, which makes quantisation the most stable and used 
compression method. 

Quantisat ion requires a proper scale factor and zero point to function optimally. Whi l e 
zero point w i l l be explained later, the process of looking for appropriate scale factor is 
called calibration. Ca l ib ra t i on aims to find such f3 and a that w i l l cover a l l possible used 
real values while ensuring that quantisation loss w i l l be as min ima l as possible. This can 
be achieved by selecting proper quantisation resolution bit 6; however, due to compression 
purposes, it should be min ima l , too. Therefore, i n this case, the a im is to find a c l ipping 
range that w i l l not be too wide, which is explained more i n Section 2.3.6. 

Moreover, properties of the variable Z divide the quantisation further into symmetr ical 
and asymmetr ical quantisation. Asymmetr i ca l quantisation poses a tighter c l ipping range, 
which becomes essential when used on imbalanced weights or act ivat ion functions which are 
imbalanced, for instance, R e L U , which cannot have negative values [19], or for this thesis, 
quantisation of energies, that cannot be negative. Conversely, symmetr ical quantisat ion is 
more widely used because the zero point Z is at zero, as seen i n Figure 2.15. Therefore, 
the computat ion cost gets cheaper as it can be neglected entirely [72]. 

2.3.6 Q u a n t i s a t i o n G r a n u a l i t y 

Quantisat ion on Neura l Networks can be performed on mult iple levels, and every method 
has some trade-offs to consider. Those methods £1X6 ctS defined by [19]: 

1. Layerwise - Quantise a l l weights in a layer using the same c l ipping range and scale 
factor, which may result i n a potential c l ipping range that might be way too broad for 
some other weights w i th a narrow c l ipping range. O n the other hand, the algor i thm 
is simple to implement. 

(2.6) 
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Figure 2.15: Symmetr ic and assymetric quantisation compression. Symmetr ica l quantisa
t ion has zero point at 0 compared to the asymmetr ical variant. Moreover, symmetr ical 
quantisation must be satisfied the following condit ion —a = (3. Taken from [19]. 

2. Groupwise - Selects a group of filters and channels w i th in a single layer and performs 
quantisation. Th is approach proved to be beneficial in Transformers [69] and comes 
w i th one drawback, and that is mult iple scale factors S. 

3. Channelwise - Each filter i n a channel has its c l ipping range, whereas every channel 
has its scale factor. This technique is the most popular because of its high quanti
sation resolution and accuracy. Figure 2.16 shows v isual representation compared to 
Layerwise quantisation. 

4. Sub-channelwise - The last technique is a modif ication of the previous Channelwise 
quantisation, just w i th a slight difference. It uses various c l ipping ranges for different 
groups, and mult iple scale factors must be considered. 
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Figure 2.16: Quant isat ion granularity of Layerwise and Channelwise type. Vert ica l red and 
green lines represent the c l ipping range, which, in this case, Channelwise is more accurate 
in quantisation. Source: [19]. 

Nonetheless, a l l techniques must undergo the calibration process to set the most opt imal 
c l ipping ranges. Ca l ibra t ion can be done either dynamically when the range is determined 

Filter 2 
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just i n t ime dur ing inference for each combination of filter and its input, result ing i n better 
accuracy at the cost of computat ion overhead 2 . O n the other hand, quantisation can 
be done ahead of model deployment w i th statically set scalers and zero points, leading 
to worse accuracy than dynamic quantisation, although w i th less computat ion overhead 
during inference. [19] 

However, static quantisation cal ibrat ion comes w i th challenges and can be done in nu
merous ways to minimise accuracy loss to determine a and j5 variables. The most popular 
static quantisation method is to calculate the c l ipping range from a subset of data based 
on their activations as demonstrated by Jacob et a l . [32] and Yao et a l . [77] that is used 
in Post-Training Quantisation (PTQ) and Quantisation-Aware Training (QAT), schemat
ical ly compared i n Figure 2.17. 

Pre-trained model 

1 
Quantization 

Training data 

Pre-trained model Calibration data 

Calibration 

Retraining / Finetuning Qua ntization 

Quantized model Quanti;ed model 

Figure 2.17: Compar is ion of two static quantisation techniques. Quantisat ion-Aware Tra in
ing on the left quantises a subset of t ra in ing data and then fine-tunes the model. Re-
cal ibrat ion is performed in paral lel w i th fine-tuning. Conservely, Post-Tra in ing Quantisa
t ion performs inference on arbitrary data and collects statistics for quantisation. Based on 
that, the c l ipping range and scale factors are determined. Taken from [19]. 

2.3.7 Q u a n t i s a t i o n - A w a r e T r a i n i n g 

Weight quantisation can introduce quantisation error due to resolution l imitat ions, causing 
an undesired noise in original weights. Consequently, the model suffers accuracy loss and 
deviates from the in i t i a l converged state. Therefore, to eliminate noise, the model undergoes 
the tra in ing process on the t ra in ing dataset, described i n the sections below, to reinstate 
part of lost accuracy, which is perpetuated i n Figure 2.18. [19] 

Forward Pass 

It is necessary to note that the tra in ing process uses real and quantified domain values. 
A t first, integer weights are dequantised to float values using static quantisation parame
ters so weights can be forwarded to the Neura l Network [19]. After that, an inference is 
performed, and the error gradient is calculated i n floating-point as the quantified version 
would not allow for calculat ion gradient as Stochastic Gradient Descent (SGD) [55] explores 
space in smal l and noisy steps, which are eventually statist ical ly averaged [30]. Hence, it 
implies higher precision is needed, as described by several researchers in [30, 5, 78], and 
also according to s imi lar ly reported results by Gyse l et a l . [22]. 

2 t h e a l g o r i t h m ca lcu la tes severa l s t a t i s t i c a l proper t i es s u c h as m i n i m u m , m a x i m u m , percent i les , etc. 
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Backward Pass 

In the subsequent phase, the gradient must be back-propagated to the in i t ia l weights. 
However, the quantisation function quantised those weights init ial ly, which must be reflected 
in the error function. The problem is that the quantisation function is not continuous. 
Therefore, the round operator is not differentiable. To overcome this issue Straight Through 
Est imator (STE ) [7] operator is employed instead (Formula 2.18) that ignores the rounding 
operator altogether [19]. Despite not model l ing round operators, it performs very well in 
practice, excluding cases when lower resolutions, especially b inary quantisation, are used [5]. 
Furthermore, apart from S T E , mult iple other approaches were proposed i n other studies, 
as mentioned i n [19]. F inal ly , as in standard S G D , weights are updated to new values and 
are prepared for the next i teration. 

Figure 2.18: A single i teration of Stochastic Gradient Descent on quantised weights that 
are dequantised dur ing the process to allow S G D to minimise loss function C{9). For more 
detailed workflow, refer to Section 2.3.7. Taken from [19]. 

Implications 

Quantisation-Aware Tra in ing excels in circumstances when min ima l accuracy loss is pre
ferred. However, it requires fine-tuning, which might take several epochs to converge again 
at acceptable accuracy and loss, thus resulting i n a higher in i t i a l investment. If the model 
exhibits frequent alterations, it raises doubt whether employing Post-Tra ining Quant isat ion 
might not be more advantageous, as it circumvents the need for prolonged training, thereby 
accelerating model deployment. 

2.3.8 P o s t - T r a i n i n g Q u a n t i s a t i o n 

Post-Training quantisation is a much simpler alternative to Q A T . It does not undergo a 
fine-tuning process and exhibits lower overhead. Moreover, it does not require much data 
to calibrate, and even the data do not have to be labelled because, dur ing quantisation 
activation statistics are collected to determine scale factor and resolution, for instance, as 
shown in Figure 2.19. However, these advantages come at the cost of lesser accuracy, which, 
on the other hand, opens many opportunities for improvement. [19] 

For instance, Banner et a l . [6] proposed a novel technique of Ana l y t i ca l C l ipp ing for 
Integer Quant isat ion (ACIQ ) that analyt ical ly computes c l ipping range and channel-wise 
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bi t -width according to activations w i th in tensor, reducing the rounding error instead of 
using input tensor at the cost of potential distort ion of the input tensor. Furthermore, they 
perform bias correction according to monitored weights, means and variances. However, 
A C I Q reaches low accuracy losses on channel-wise quantisation; it is inherently hard to 
deploy on hardware [19]. 

D.D D.5 1.» 1.5 2.D 2 5 

Figure 2.19: A distr ibut ion of activations i n layer 3 i n ResNet50 [23]. Three statistics are 
used to determine the cl ipping range: max, entropy and 99.99% percentile. Taken from 
[72]. 

2.4 LeNet -5 

LeNet-5 is a convolution network proposed by L e C u n et a l . [44] in 1995 that superseded 
LeNet-1 [41] as this network was unsuitable for learning from the newly created dataset 
M N I S T [39]. Because of that, two networks were prototyped, LeNet-4 and LeNet-5, in 
which LeNet-5 turned out to be superior w i th hyperparameter configuration as shown in 
Table 2.1. The ma in difference is that LeNet-5 has more feature maps and a more extensive 
fully connected layer and uses the distr ibuted representation to encode classes. 

Furthermore, w i th the creation of LeNet-5 also comes the database M N I S T that is used 
in this thesis. It is a database of handwri t ten digit images split into 60000 labelled t ra in 
samples and 10000 labelled val idation samples, w i th the largest digit having a size of 20 x 20 
pixels centred around 28 x 28 pixels large field. Despite that, LeNet-5 resizes input images 
to 32 x 32 pixels to capture distinctive features of end strokes or corners. Moreover, the 
input pixels are normalised, so background white pixels are represented as —0.1 and black 
digit pixels as 1.175, resulting i n mean equal zero and variance one, thus improving learning 
[38]. More detailed information can be found in [42]. 

Layer Output Feature M a p s K e r n e l Size Stride Activat ion 
Input 32 x 32 1 - - -
Convolut ional 28 x 28 6 5 x 5 1 T a n H 
Avg. Pool ing 14 x 14 6 2 x 2 2 -
Convolut ional 10 x 10 16 5 x 5 1 T a n H 
Avg. Pool ing 5 x 5 16 2 x 2 2 -
Convolut ional 1 x 1 120 5 x 5 1 T a n H 
Fu l l y Connected 84 - - - T a n H 
Fu l l y Connected 10 - - - Soft max 

Table 2.1: Hyperparameter Configurat ion for LeNet-5 
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Nowadays, as LeNet-5 replaced LeNet-1, the LeNet-5 has been replaced by other modern 
architectures. Nevertheless, it served as a baseline for C N N s , and it is s t i l l used for test 
purposes because of the fast t ra in ing times, even though it used to take twenty days to t ra in 
[44]. However, this thesis used a sl ightly modified version w i th new modern discoveries. 

2.4 .1 Q M N I S T Datase t 

Q M N I S T [74] was developed to address the par t ia l loss of the original pre-processing pro
cedure used to create the M N I S T [39] dataset. Wh i l e the orig inal M N I S T testing set had 
60,000 test images, only 10,000 of them are available nowadays. To address this issue, 
Yadav et a l . [74] created a new dataset sampled from the N I S T Special Database 19 [20], 
str iv ing to reproduce the former M N I S T dataset following the creation procedure as closely 
as possible. 

For the purposes of this thesis, especially in terms of evaluating compression techniques, 
testing on mult iple datasets is advantageous. The Q M N I S T dataset offers 50,000 new test 
samples that were not used for tra ining. Furthermore, the dataset is well integrated into 
PyTorch [53] l ibrary and attainable when accessing dataset split test50k. Moreover, the 
N I S T dataset (split nist) dataset is also available providing even more data. 

Historically, even tra in ing a simple model like LeNet was t ime-consuming, but w i th 
modern computat ional resources, it is now feasible to evaluate the entire N I S T dataset. 
W i t h more data, the weight compression evaluation w i l l be even more robust. 

2.5 Mob i l eNe t 

Mobi leNet [57, 28] is a neural network designed to maximise energy efficiency while st i l l 
maintaining acceptable accuracy levels. Energy efficiency is pr imar i ly achieved through 
the use of Depth Separable Convolut ion. However, the most influential savings stem from 
Inverted Res idual Blocks. 

W i t h the release of the Mob i l eNe tV2 new Inverted Res idual Blocks were proposed. 
Before going into more detail , it is important to first introduce Res idual Blocks. Fol lowing 
the success of V G G N e t [58] i n I L S V R C [56] competi t ion of 2014, very deep neural networks 
emerged as a popular architecture choice. However, soon enough, the deep architecture 
was shown to be sensitive to vanishing gradient and to the degradation problem [23]. A t 
the t ime, it was anticipated the deeper the model, the better accuracy it could achieve. 
Contrary to this expectation, deeper networks began to exhibit d iminishing performance 
when stacking layers, indicat ing that s imply adding more layers s t i l l was not adequate. 

To address this problem shortcut connections among layers were proposed. These short
cut connections can take mult iple forms, as experimented w i th by K a i m i n g et a l . [24], who 
found that simple shortcut connections outperformed other tested configurations. However, 
it must be noted the shortcut connections appeared earlier, for instance, ResNet [58], which 
won the I L S V R C competit ion. This t r iumph highlighted how shortcut connections have 
the potential to enable the bui ld ing of deeper models. ResNet used Res idual Blocks and 
Bottlenecks schematically demonstrated in Figure 2.20. These blocks scale channel size 
using the first layer l x l convolutions, the second layer performs 3 x 3 convolution, and 
the th i rd layer applies l x l convolutions again to restore channel size. In the case of the 
ResNet and Residual Blocks overall, input channels are downscaled. 

Inverted Res idual Blocks [57] adopted an approach opposite to the " shr ink ing " by ex
panding the input act ivat ion map, as shown in Figure 2.21. The idea builds on the principle 
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(a) Residual Block (b) Bottleneck 

Figure 2.20: O n the left is a schematic example of a Residual Block, which shortcuts two 
convolution layers w i th an identity function. O n the right is a schematic for the Bottleneck 
block, which first scales the act ivat ion map, then convolves it , and finally reshapes the 
activation map to its or ig inal shape. The Bottleneck does not necessarily have a shortcut 
connection. The figure was redrawn from [23]. 

that Inverted Res idual Bottlenecks sacrifice some learning capabilities for parameter reduc
t ion. Furthermore, to decrease the number of trainable parameters, depthwise separable 
convolution is uti l ised, reducing model complexity and tota l size. These blocks are com
bined w i th various techniques such as batch normalisat ion, dropouts, convolution layers 
and classification layers to form complete architecture, which can be further examined in 
Table 2.2. 

2.5 .1 Image N e t Datase t 

ImageNet [56] is a large database of images used to evaluate competing models i n the 
I L S V R C computer vision competit ion. For that reason, the test dataset split consisting of 
100,000 samples is not publ ic ly available. The available dataset splits are: t ra in split w i th 
1,281,167 samples and val idat ion split inc luding 50,000 samples. 

The dataset is div ided into 1,000 classes which need to be correctly classified. However, 
this classification task is challenging. Therefore, in addit ion to model accuracy and loss, 
Top-5 accuracy is also assessed. Top-5 accuracy is a metric that evaluates how successful 
the model is i n predict ing data by tolerating minor misclassifications. It is calculated by 
by considering the five most l ikely classes, and i f the target class is among these five, then 
the classification is assessed to be successful. 
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Figure 2.21: The pr imary blocks used in Mobi leNet models. O n the left is a schematic 
for a depthwise separable convolution block. To the right of that, Bottlenecks are shown 
w i th various strides, and in the case of s = 1, it also contains a residual connection. For 
completeness, dw stands for depthwise convolution. The figure was redrawn from [23]. 

Operator Input (w,h,Ci) Output (u>, h, c) t s n 
Conv2D 224 x 224 x 3 112 x 112 x 32 - 2 1 
Bottleneck 112 x 112 x 32 112 x 112 x 16 1 1 1 
Bottleneck 112 x 112 x 16 56 x 56 x 24 6 2 2 
Bottleneck 56 x 56 x 24 28 x 28 x 32 6 2 3 
Bottleneck 28 x 28 x 32 14 x 14 x 64 6 2 4 
Bottleneck 14 x 14 x 64 14 x 14 x 96 6 1 3 
Bottleneck 14 x 14 x 96 7 x 7 x 160 6 2 3 
Bottleneck 7 x 7 x 160 7 x 7 x 320 6 1 1 
Conv2D 1 x 1 7 x 7 x 320 7 x 7 x 1280 - 1 1 
AvgPoo l 7 x 7 x 1280 1 x 1 x 1280 - - -
F la t t en 1 x 1 x 1280 1280 - - -
Linear 1280 1000 - - -

Table 2.2: Tabular overview of the Mob i l eNe tV2 architecture as defined i n the PyTorch 
[53] implementation. In the original implementation, the last layer is Conv2D 1 x 1 x 1280 
w i th an output size of 1000. Moreover, w stands for tensor width, h for tensor height, and 
Cj for input channels count. Likewise, the same notations are used for output, w i th one 
difference: c denotes the number of output channels. Lastly, parameter t is an expansion 
factor responsible for expanding input channels, s is the convolution stride, and n is the 
number of repetitions of a given layer. 
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Chapter 3 

Evolut ionary and Genetic 
A lgor i thms 

Evolut ionary and Genetic algorithms belong to the metaheuristic searching class of opt imi
sation algorithms. These algorithms are inspired by nature and biological evolution. The 
entire process is based on the biological evolution of species, selecting the best populat ion 
specimens (referred to as chromosomes in Evo lut ionary algorithms) to create a new gener
ation while discarding less fit members of the populat ion. The complete evolutionary cycle 
w i l l be thoroughly explained in Section 3.1. 

The pr imary goal of opt imisat ion algorithms is to search through the search space to find 
the most opt imal solution. Throughout history, mult iple types of algorithms w i th different 
concepts emerged. For instance, the Random Search algori thm, solely based on randomly 
traversing the search area, is one of the simplest algorithms. Similarly, the H i l l C l imb ing 
algor i thm exhibited better performance; nonetheless, the found solution was not opt imal 
because the a lgor i thm struggled to leave local extremes. As these algorithms were not 
sufficiently effective for some problems, more sophisticated algorithms emerged. Especial ly 
for this thesis, the Cartesian Genetic Programming ( C G P ) was employed to solve the weight 
compression task, explained in Section 3.2. Moreover, the C G P phenotype function w i l l be 
described in the section so it can be used to interpret experiments. 

3.1 Evo lu t i on Cyc le 

Evolut ionary algorithms utilise the concept of biological evolution to find opt imal solutions 
by evaluating them based on their fitness. Fitness determines the quality of a given candi
date solution encoded i n a chromosome, which is also a term in evolutionary biology. The 
chromosome contains different gene combinations that store parts of the encoded candidate 
solution. Hence, a gene is the smallest part of the evolution cycle, carrying information; 
otherwise, it is called an allele. In summary, the resulting compiled solution is called a 
phenotype, compiled from information contained w i th in a chromosome w i th alleles. 

Eventually, the evolution cycle w i l l find the opt imal phenotype when fitness evaluation 
and chromosome encoding are appropriately done. To util ise algorithms properly, it is 
necessary to be able to encode phenotype into a chromosome, usually in the format of 
binary representation, vector, tree, graph, etc. Equa l l y crucia l to encoding is the abi l i ty 
to calculate fitness value. After that, the evolution process can begin, which is further 
explained in the upcoming sections and introduced in Figure 3.1: 
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Figure 3.1: A generic evolution cycle for Evo lut ionary algorithms. A t the beginning of the 
chosen algori thm, the in i t i a l populat ion must be created according to the preferred strategy. 
Fol lowing that, a fitness function is used to evaluate the fitness of every chromosome, 
which is further used in the selection process to select the fittest chromosomes. After the 
selection process, a new populat ion w i l l be created, combining the fittest chromosomes and 
performing mutat ion operators on chromosomes. Eventual ly, a brand new populat ion is 
restored, which can be evaluated, and if it contains a satisfying candidate solution, the 
process can be successfully stopped. 

3 .1 .1 Ini t ia l P o p u l a t i o n 

In the beginning, an in i t ia l populat ion must be created. It can be init ial ised from a pre-set 
populat ion or, more commonly, a randomly generated populat ion. The first approach is 
beneficial when existing chromosomes are uti l ised to resume evolution from arbi trary saved 
checkpoints. The latter is applicable when there are no evolved chromosomes, and the 
whole process starts from scratch. 

3.1 .2 F i t n e s s E v a l u a t i o n 

In every cycle of evolution, each chromosome is evaluated and assigned a fitness value 
describing the quality of the candidate solution. In addit ion, the fitness value must be 
calculated at least from a single parameter; however, it can be derived from mult iple pa
rameters, known as multi-objective opt imisat ion. Therefore, the values do not have to be 
necessary of scalar type since some problems might require to optimise various parameters, 
or at least be able to find trade-offs between parameters, often visual ly determined from 
Pareto fronts, for example, showcased in Figure 3.2, or decided by pr ior i t is ing part icular 
parameters over others, for instance, the accuracy of an electrical circuit over several d ig i ta l 
gates. Alternatively, multi-objective can be done by aggregating parameters into a single 
fitness value apply ing weighted sum, for reference Formula 3.1. 

N 

/'(*) = £ > < • / ( * ) ) (3.1) 
i=l 

29 



A) 

Min(f2) 

Pareto fronts Dominated 
solutions B) 

• / \Min(f2) 

Non-dominate 
solutions 

Min(f±) 
Convex Pareto Front 

• 

Min (A) 
Concave Pareto Front 

Figure 3.2: A n example of three Pareto fronts marked by coloured lines. Displayed solutions 
w i th marks outperform other solutions in either parameter f\ or fi- Furthermore, an 
example of convex and concave Pareto fronts is shown, as aggregated fitness methods can 
only be used on convex-shaped Pareto fronts. The image was authored by A b o n y i et a l . 
[2]. 

O n the other hand, the problem w i th aggregated methods is that, compared to the 
Pareto front, only one solution can be found. Moreover, the opt imal aggregate function 
has to be discovered w i th a good combination of weights. F inal ly , the aggregated approach 
does not work for problems that would result i n non-convex Pareto fronts. 

3 .1 .3 C h r o m o s o m e Select ion 

After the fitness evaluation, the next step i n Evo lut ionary algorithms is to create a new 
populat ion derived from the best chromosomes. For this task, the best chromosomes are 
used to evolve a new generation of chromosomes, possibly carrying the most good proper
ties, w i th a chance of becoming better or even worse than parent chromosomes. Mul t ip l e 
strategies have been researched throughout history to achieve the most opt imal offspring 
chromosomes, and these w i l l be described i n the following sub-sections. 

Roulette Selection 

Roulette is a stat ist ical method of choosing fit chromosomes to establish a new chromosome 
populat ion. The whole principle is based on assigning a probabi l i ty of selection determined 
by chromosome fitness. The higher the fitness, the higher the l ikel ihood it w i l l be selected for 
re-creation. Each possible unique fitness value is summed together to infer the probabi l i ty 
of every chromosome. Consequently, the final probabi l i ty is calculated using the Formula 
3.2. 

/'(*) = J { X )
U : (3-2) 
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Tournament Selection 

In the tournament e l iminat ion method, chromosomes are randomly compared among each 
other, stemming from their fitness values. The number of competing chromosomes is given 
by parameter K, usually set to two, resulting in pair comparisons. Compared to the roulette 
method, chromosomes w i th lower fitness values do not have a chance to be selected for re
creation. Thus, the fittest chromosomes are always selected. 

Deterministic Selection 

The deterministic method selects K chromosomes w i th the highest value. This method is 
part icular ly interesting for this thesis, as it was uti l ised as the selection method for the 
Cartesian Genetic Programming algor i thm in Section 3.2. 

3.1 .4 N e w P o p u l a t i o n 

The final step i n evolution is to create a new populat ion of potential ly better chromosomes. 
Th is step selects the best chromosomes for evolutionary operators such as mutat ion or 
crossover, explained in the following sections. 

M u t a t i o n Operator 

The mutat ion is the slightest change i n chromosomes used in Evo lut ionary algorithms. 
Changes are done stochastic, either randomly selecting the number of genes to be mutated 
w i th in the chromosome and eventually performing gene mutat ion on the number of genes 
or i terat ing over genes and mutat ing it according to set probabil ity. In the first case, it 
is called a point mutat ion; in the second case, it is a probabi l i ty mutat ion. A n example 
of mutat ion can be found in Figure 3.1, or more thoroughly explained i n the Cartesian 
Genetic Programming Section 3.2 as expl ic i t ly employed for thesis implementation. 

Crossover Operator 

The last operator i n this thesis is the Crossover operator, conceptually grounded on com
bining two chromosomes to create two new chromosomes. Gene exchange is chosen entirely 
on a crossover point or two crossover points i n case a 2-point crossover is performed. The 
most used crossover techniques are the following: 

1. Single Point Crossover - A single point is randomly chosen, and points to the right 
are exchanged between chromosomes. 

2. 2-point Crossover - Two points are selected, mark ing an exchange zone in between. 
The in-between zone is exchanged. 

3. U n i f o r m - Every offspring chromosome is randomly assigned a parent gene to receive. 

3.2 Car tes ian Genet ic P r og ramming 

Cartesian Genetic Programming ( C G P ) [50, 48] is a variant of Genetic Programming (GP ) , 
a computat ional opt imisat ion approach widely used for solving complex problems. In tree-
based G P [34, 54], solutions are represented as computer programs, and the evolutionary 
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process seeks to evolve these programs to achieve opt imal performance. Initially, candi
date solutions are randomly generated, but more effective programs are explored through 
iterative evolution. C G P , i n part icular, employs a graph-based representation, enabling 
node resue and multi-variable output [51]. Furthermore, it is capable of solution space 
exploration while producing fewer b loat 1 [64] compared to other tree-based G P counter
parts. Moreover, the resulting genotype can contain non-coding genes because of the graph 
structure. However, those inactive nodes are discarded as the phenotype is constructed by 
iteratively traversing the graph backwards from output nodes. A l though those nodes are 
not used i n phenotype, they are essential i n helping evolution find more opt imal candidate 
solutions [64]. 

The Cartesian Genetic Programming is especially useful i n performing symbolic regres
sion for functions w i th multi-variable output or circuit electrical design as demonstrated by 
Mi l l e r et a l . [48]. Addit ional ly , C G P excels at circuit opt imisat ion as well; for instance, a 
couple of studies [80, 52] employed formal verification techniques to optimise a more com
plex ari thmetic circuit based on a pioneered idea by Vasicek and Sekanina [67] ut i l is ing 
S A T verification to check for correctness when evaluating fitness. 

As this thesis aims to research energy-effective circuits, tree-based G P is unsuitable for 
such tasks due to high bloat. To get more acquainted w i th Cartes ian Genetic programming, 
this chapter is organised into sections clarifying evolution concepts introduced i n Section 
3.1 into more detail ; however, now only focusing on the C G P . Hence, chromosome encoding, 
fitness evaluation, and lastly mutat ion operators w i l l be explained i n this section. 

3.2 .1 G e n o t y p e E n c o d i n g 

The algor i thm works w i th the graph structure that reassembles r x c gr id of nodes when 
searching for candidate solutions, i n which a single candidate solution is encoded into a 
chromosome 2 formed out of genes. Nonetheless, several parameters must first be defined to 
demonstrate better what the chromosome looks like, its rules, and potential implications. 
A v isual demonstration can be seen i n Figure 3.3. 

• R o w - A row in the graph, the max imum value defined by parameter n r . 

• C o l u m n - A co lumn in the graph, the highest value l imi ted by parameter n c . 

• Function - A function / : X —> Y, where X and Y might have different dimensions 
as defined by ni for input ar i ty and n Q for output arity. The set of these functions is 
denoted as T. 

• Input N o d e - Special case of the node that performs no function calculat ion. Input 
quantity is specified by pi. 

• Output N o d e - Special case of the node that performs no function calculat ion. 
Output quantity is specified by p Q -

• N o d e - A node i n the C G P graph, accepting at least one input and outputt ing 
min imal ly one value calculated by the function. The function does not have to be 
computed w i th every parameter. However, it must assign values to a l l outputs. 

1 g r o w t h of the tree w i t h o u t s igni f icant fitness improvement 
2 s y n o n y m to genotype i n G P a l go r i thms 
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Edge - A connection between every node type. The C G P l imits how many columns 
can be skipped or reused from previous columns, as defined by the L parameter, often 
called Look-Back. 

: l OR 3 * OR 
±

 1

- AND 7 L - AND 

; 2 \ 
/ 

2 AND 4 AND & 
i OR B 2 - OR 

3 \ \ 

Figure 3.3: The graph structure of the C G P algor i thm candidate graph solution w i th the 
following parameters: nr = 2, nc = 4, I = 3, tii = 2, n0 = 1, pi = 3, p0 = 2, T = 
{AND (0), OR (1)}. The image was authored by Vasicek et a l . [66]. 

W i t h a l l of the relevant terminology, it is an ideal moment to define the chromosome 
encoding for the Cartesian Genetic Programming ( C G P ) algor i thm. G iven that chromo
somes should be as smal l as possible yet be able to describe a graph, it is crucia l to define 
how nodes are connected by specifying what input p in is connected to what node. After 
that, each node performs a function; therefore, that information must also be present. This 
information must be repeated for r x n times. F inal ly , output nodes O remain (Formula 
3.3), and those must specify the node they are connected to. Consequently, the chromo
some encoding definition R (Formula 3.4) and its size (Formula 3.5) can be calculated in 
the following way: 

O — {(xPl,xP2,xPo)} (3-3) 

R = {(xa,b,o,xa,b,i, •••,xa,b,ni,f) I Va, b e ( l , n r ) x ( l , n c ) A / g T J u O (3.4) 

\R\ = n c • nr • (rii + 1) + p0 (3.5) 

3.2.2 F i t n e s s E v a l u a t i o n 

Fitness in circuit design is usually evaluated using a multi-objective pr ior i t isat ion technique. 
The most essential fitness parameters are accuracy, energy, the number of used nodes or 
dig i ta l circuit delays. Accuracy can be calculated using mult iple methods depending on 
the type of approximated function. For instance, the dig i ta l circuit can use Hemingway 
Distance, which calculates how many bits are different to reference the result. For circuit 
opt imisat ion, the S A T solver may be employed [80, 67, 52] to verify the equality of solution 
to the reference solution. 

Addit ional ly , errors such as those demonstrated by Mrazek et a l . [52] can be used 
as chromosome fitness. Those include ER, MAE, WCE, MSE, MRE, and others can be 
used, however for this thesis was Mean Squared Error (MSE ) used as an error metric. 
Mean Squared Error (MSE ) i n Formula 3.6, calculates the difference between reference and 
approximated values. However, compared to Hemingway Distance, the method works for 
scalar values and is especially good for accompanying outl ier values because the error is 
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squared, highl ighting errors. Th is property is especially significant to achieve the most even 
distr ibut ion of errors i n convolution filters. 

M S E = N ^ { V I ~ M 

i=l 

3.2.3 Selec t ion Process 

Because when working w i th the C G P algori thm, it is not common to use the Crossover 
operators [31]; the selection process is purely done deterministically. Thus, an evolution 
strategy // + A (// = 1), a specific form of e l i t i sm 3 , is applied to the selection process, which 
means that only the best chromosome is used for recreation, and as a result, creates A 
offsprings. If two chromosomes share the same fitness value, a chromosome not used to 
create a new populat ion is priorit ised instead of the original parent chromosome. Th is 
effect is known as neutrality and was proven beneficial in research conducted by Vassilev 
and Mi l l e r [68]. The effect can be seen in Figure 3.4. 

•;.°s 

•;.?4 

•;.JS 

•;.-4 

Xemr aL mutation; 

Xemral mutation; OFF * 

,{* • : * I *W K 'I * t L 
, J - a 1 r * J . ] _ I * j r „ T " * 1 
„ i i , P 1 * t ™ J I : * * : • *V+ : * * : •:+ . 

! V * h 1 

_ J _ l J — I — I — - j — i 

4C 50 SO 
EvoliuiDnarv run 

Figure 3.4: A n effect of neutral mutations on a search for candidate solutions as researched 
by Vassilev and Mi l l e r [68]. The graph was taken from their study. 

3.2.4 N e w P o p u l a t i o n 

As previously mentioned, the Crossover operator does not work well w i th the C G P . Hence, 
the point mutat ion operator is responsible for creating a new collection of chromosomes. 
Muta t i on can be done i n mult iple ways, though point mutat ion for this thesis follows these 
two essential concepts. F i rs t , an introduced gene mutat ion l imi t dictates how many genes 
can be mutated. In every mutat ion evolution cycle, a random number n is generated from 
the range zero to the l imi t . Later, depending on the random number n , n genes are mutated. 

Regarding gene mutat ion, it is essential to note that the amount of possibly mutated 
genes is very significant, w i th opportunities to do experiments. The lower the quantity is, 
exploitat ion is more prevalent than exploration. The exploitat ion effect tends to converge 
more slowly, t ry ing to improve the best chromosome w i th l i tt le modifications. A l though, it 
is useful when searching for the most opt imal phenotype. Oppositely, exploration results in 

d e t a i n i n g the best chromosomes i n p o p u l a t i o n 
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t ry ing out different combinations and reaching decent candidate solutions faster than the 
opposite approach. However, it is less l ikely to find the most opt imal candidate solution. 

The impact of mutat ion depends on what part of a chromosome is being mutated. In 
the C G P , the mutat ion can lead to changes in a node function, rewired inputs for the node, 
or rewiring of outputs. However, a part icular constraint, such as the L parameter, prevents 
nodes from further layers set by the parameter to be connected to nodes. Moreover, every 
mutat ion must be legal. Therefore, a node input cannot be connected to nodes in the 
following layers. 

In conclusion, f inding the most suitable trade-off between exploitat ion and exploration 
is essential when considering gene mutat ion. However, this part of the a lgor i thm design is 
mainly experimental work. 

3.2.5 E v o l v e d P r o g r a m P e r f o r m a n c e 

As defined in Section 2.2.1, the Mul t ip l i ca t i on A n d Accumulat ion operation is a standard 
unit to count the quantity of operations. Because the C G P algor i thm utilises a graph 
structure i n which one node represents a single function w i th a fixed number of inputs 
and outputs. A l though the C G P function can have an arbi trary number of M A C units, 
keeping each function as one M A C operation or one F loat ing Point Operat ion ( F L O P ) for 
weight compression and possible hardware integration is better. Alternatively, one F L O P 
is equivalent to one-half of the M A C . 

It is also important to note that a constructed phenotype does not have to necessarily 
use every bit of information from the found genotype due to unused nodes. Unused nodes 
are helpful when searching for candidate solutions, as they can contribute to finding better 
configurations. Therefore, these nodes can be omitted from the genotype to construct an 
even more opt imal phenotype. 

Final ly , when an optimised phenotype is constructed, performance can be calculated by 
summing together functional nodes and their M A C units. After that, given the function 
can be synthesised into a hardware version support ing P E and R F , energy ut i l isat ion is 
analysed according to measurement in Figure 2.8. 
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Chapter 4 

A lgo r i thm Design 

As previously mentioned, conventional memory access is an expensive operation consum
ing a non-negligible amount of energy [12]. To mitigate memory access as much as possible, 
neural network weight compression is a heavily researched field. Despite of that, the field 
st i l l possesses many undiscovered open challenges, creating many diverse opportunities. 
For instance, the most significant discoveries, such as quantisation, hardware opt imisat ion, 
pruning, weight sharing and knowledge dist i l lat ion, have been mentioned in Section 2.3. 
Nevertheless, one of them employed interesting concepts such as weight and act ivat ion map 
reuse on a hardware level to avoid unnecessary memory, which can be summarised into a 
single research question: 

Is it possible to avoid conventional memory access? 

Che et a l . [12] used energy-efficient local registers to store accumulated convolution 
sums and activation maps. However, convolution weights must s t i l l be fetched from the 
buffer or, i n the worst case, from R A M which extends the previous research question: 

C a n weight inference substitute memory access? 

In circumstances when the weight compression function would be more energy-efficient 
than conventional memory access or S R A M buffers, it could be a viable solution. However, 
the v iabi l i ty of the solution does not entirely rely on energy consumption, as it is not 
the only p ivota l parameter. Another equally important attr ibute is delay, which can be a 
l imi t ing factor i n some real-time applications. 

To address a l l the mentioned circumstances to decrease memory use and thus decrease 
energy consumption as much as possible, an automatic convolution weight compression 
algor i thm was prototyped. The algor i thm aims to find such electrical circuit configurations 
that would infer a port ion of convolution weights from the memory-fetched weights or 
potential ly from previously used weights which can be seen i n Figure 4.1. Due to the 
nature of the task, the Cartes ian Genetic Programming algor i thm was employed to evolve 
circuits since, compared to deep learning approaches, it does not require mul t ip l i ca t i on 1 . 
Addit ional ly , C G P tends to generate smal l phenotype without bloat [64], which goes well 
w i th the goal of reducing energy i n evolved circuits. 

Nonetheless, the C G P algor i thm and its configuration cannot be universally applied 
to every problem, as explained by the No Free Lunch Theorem [71]. Consequently, this 
chapter w i l l be dedicated to detai l ing the C G P setup, covering aspects such as chromosome 
encoding, populat ion generation, fitness evaluation, selection, and mutat ion. 

1 t h e mos t energy- intens ive ope ra t i on 
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Figure 4.1: A n example of how the algor i thm could operate upon convolution weights. O n 
the left, the nine core weights are fetched from the memory to the remaining outer weights 
that are eventually merged into the original filter. 

4.1 Chromosome Encod ing 

The chromosome, for its functionality, needs to know how nodes are connected to each 
other. The relation can be t r iv ia l ly encoded i n an array of number values where first 
nr x nc values contain a connected input p in to which output p in and finally what function 
the node performs. After the node connection relation, an output sequence follows, which 
is not compatible w i th the two-dimensional representation of filters. Therefore, the output 
vector was flattened the same way as the input vector was as well, resulting in flat vectors, 
which is visual ly demonstrated i n Figure 4.2. The only drawback of this flattened solution 
is it must be reconstructed into a two-dimensional filter again, which w i l l be described in 
more detai l i n the implementat ion Chapter 5. 

4.2 Popu la t i on 

In an aspect of populat ion management and generation, a standard evolution strategy fi+A 
was picked, specifically w i th /j, = 1 which is often employed in evolutionary circuit design. 
The strategy retains the best solution serving as a baseline for newly A created circuits, that 
eventually reach eventual convergence and gradual improvements over t ime. However, to 
first reach the convergence, the populat ion needs to be managed every generation; therefore, 
the whole section w i l l be dedicated to processes achieving that in chronological order. 

4.2 .1 Ini t ia l G e n e r a t i o n 

Unless the algor i thm is init ial ised w i th a beginning chromosome, thus skipping this step 
altogether, an in i t ia l populat ion must be generated. A simple stochastic chromosome gen
eration approach was used, adhering to the rules of val id circuit configuration, forming a 
direct acyclic graph w i th respect to the given look-back parameter. After ini t ia l isat ion, 
optional manual circuit modif ication follows, which is used for opt imisat ion purposes later 
described i n Section 5.1.6. Other than that, the init ia l isat ion process is complete, and evo
lut ion progresses into the fitness evaluation phase, after which a new generation populat ion 
is created unt i l the stop condit ion is met. 
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Figure 4.2: V i sua l representation of the C G P genotype. The most important rule is that 
the input p in can be connected only to one input or output node. Furthermore, not every 
input or output p in must have a connection, for instance, on input numbers five and six 
and the output p in of the bot tom right node. F inal ly , the genotype i n this figure is purely 
a demonstration, does not have perfect accuracy and solely serves as a visual a id. 

4.2.2 N e x t G e n e r a t i o n 

To create a new populat ion, the best solution is mutated w i th the point mutat ion method 
for A times spawning new candidate solutions that might be evaluated superior, inferior 
or neutral to the parent as shown in Figure 4.3. O n the assumption of a neutral solution, 
it was determined to allow neutral solutions to replace the parent ensuing populat ion d i 
versity, which has been proven to have a positive effect on convergence and opt imisat ion 
performance [68]. 

Shift ing back to the mutat ion part, the process does not significantly diverge from 
the usual procedure; however, to implement some optimisations, minor modifications were 
required, which w i l l be explained in Section 5.1.4. F inal ly , after mutat ing the parent into 
a new generation of A children, a fitness evolution follows. 

4.3 Fitness Eva luat ion 

Fitness Eva luat ion is considered one of the most computation-intensive parts of the C G P 
algorithm. Thus, the evaluation is split into two phases to optimise the populat ion opti
mally. In the first phase, which is active unt i l a single offspring does not reach a certain 
threshold, only convolution weight error is measured which might be Squared E r r o r 2 (For-

2 t o avo id d i v i s i o n opposed to MSE 
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mula 4.1), Mean Squared Error (Formula 4.2) or Absolute E r r o r 3 (Formula 4.3). Other 
metrics could be measured as well. Nevertheless, their computat ion is much more demand
ing than linear iterations over outputs that have linear complexity of 0(p0). Furthermore, 
potential multi-objective opt imisat ion reduces a possible number of neutral mutations that 
have been proven to degrade evolution [68]. Thus, the error threshold was introduced to 
have a condit ion to switch to the second phase. 

M S E 

N 
S E = (Vi 

i=l 

1 N 

(4.1) 

(4.2) 

A E 
N 

£ 
i=l 

Vi ~ Vi\ (4.3) 

After the transi t ion to the second phase, metrics such as energy, delay, and gate count 
become relevant, and they are priorit ised in the order they were mentioned. Eva luat ion 
becomes more computat ional ly demanding, and because of that, lazy evaluation was used 
to calculate fitness. The lazy evaluation flowchart can be seen in Figure 4.3. Notably, the 
error is guaranteed not to exceed the error threshold. 
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Figure 4.3: Flowchart of the second phase fitness evaluation. In the beginning, there are 
two solutions represented as chromosomes. These solutions are compared according to the 
flow chart; on the left is a candidate solution from the populat ion, and on the right is the 
parent. If the candidate solution turns out to be dominat ing or neutral , it w i l l be selected as 
the best solution. Otherwise, the parent w i l l remain. If there are more dominant solutions 
than the parent alone, then the most recent solution w i l l be selected 

avo id d i v i s i o n a n d m u l t i p l i c a t i o n a n d a p p l y less severe p ena l t y for out l i e rs 
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4.4 A l g o r i t h m Stop Cond i t i on 

The C G P algor i thm usually operates on large search spaces, which means many solutions 
can be found to varying degrees. Nonetheless, the perfect solution is difficult to discover, 
while alternative solutions might offer satisfactory quality for an acceptable metric trade-off, 
for instance, for this thesis, the error metric. Therefore, instead of f ixating on the specific 
generation count, the a lgor i thm uses the patience known from the deep learning algorithms. 
Patience is a parameter that monitors how many generations remained unchanged in terms 
of the evolved best solution, and if a patience counter reaches a set l imi t , the evolution is 
early-stopped. In case an improvement is evolved, the counter is set to zero, restarting the 
whole counting. As previously mentioned, neutral solutions are allowed to replace parent: 
however, it does not reset the counter to prevent infinite evolution. 

4.5 Exper iment Rep l i cab i l i t y 

Final ly , every experiment should be replicable by executing the same procedure as used 
in the first run. Therefore, the C G P algor i thm supports parameterization through con
figuration files generated w i th the experiment. Moreover, when an experiment finishes, 
it saves the final configuration file for later repl ication reuse, inc luding the best solution 
chromosome encoded as a str ing w i th addi t ional metrics such as error, energy, delay, gate 
count, and more metrics used internal ly by the C G P . Alongside the mentioned metrics and 
configuration files, other necessary files are saved as well such as: 

1. train, data - input/output weights pairings for the C G P algor i thm 

2. train_cgp.config - in i t ia l experiment configuration 

3. cgp_configs/cgp.{run}.config - f inal experiment configuration 

4. train statistics/fitness/statistics, -frunj.csv - experiment statistics w i th metrics and 

chromosomes 

5. gate_parameters.csv - gate parameters file i n C S V format (for later evaluation) 

6. gate_parameters.txt - gate parameters file for the C G P algor i thm 

7. train.pbs.sh (optional) - O p e n P B S job script 
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Chapter 5 

Implementation 

The entire project consists of four major parts, each dedicated to a specific task. Start ing 
unconventionally, not from the beginning, the C G P algor i thm carries out the most extensive 
computat ional task of weight compression. Evo lut ion algorithms require a lot of computa
t ional resources; therefore, many optimisations were introduced to speed up the evolution 
process. Because of the importance of the C G P module, it w i l l be described in the opening 
Section 5.1. 

However, the C G P algor i thm is implemented in C++, which offers high-optimisation 
opportunities at the expense of developer product iv i ty ; therefore, computat ional ly non-
cr i t ica l parts are delegated to P y t h o n scripts that are addit ional ly separated into three 
parts as showcased in Figure 5.1. 

The weight preparation part extracts convolution weights from the input quantised 
model also referred to as reference model. After weight extraction, weights can be either 
passed directly to the C G P module, hence proceeding w i th tra in ing on a local machine or 
addit ional ly processed to generate an O p e n P B S batch script to delegate the computat ion 
to the Czech National Grid Organization Metacentrum CESNET1 z.s.p.o. 

The second red H P C preparation part, apart from generating P B S scripts, handles 
various compiler opt imisat ion settings for hyper-computing which are not supported for 
the local training. Furthermore, O p e n P B S opens opportunit ies for vertical and horizon
ta l scaling where the latter exhibits so much potential for acceleration. Moreover, path 
manipulat ion is different than in local t ra in ing mode because the Metacentrum C E S N E T 
organisation mandates the use of SCRATCH directories, which makes the former local 
approach incompatible. 

A t last, after weights are extracted and the weight compression circuit evolved, the found 
solution must be validated. For val idation, the last model evaluation part obtains reference 
model accuracy, Top-5 and loss to compare w i th an approximated model reconstructed out 
of inferred weights. To reconstruct the approximated model, the best chromosome is read 
from the statistics file i n comma-separated values format 2 which is used to infer weights. 
The resulting weights are injected into a copy of the reference model and evaluated. The 
metric calculat ion follows creating metric deltas, thus providing a lgor i thm performance 
metrics and concluding the whole pipeline. 

x https: //metavo.metacentrum.cz/en/index.html 
2 https: //en. wikipedia.org/wiki/Comma-separated_values 
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Figure 5.1: D iagram of the algor i thm ecosystem consisting of the four major modules, 
each coloured differently. The Weight Preparat ion module is responsible for preparing and 
separating weights between input and reference weights for training. Tra in ing can then 
be conducted i n one of two ways: either on the local machine (transit ioning to the C G P 
module) or on a remote machine running the O p e n P B S service. After the tra in ing phase, 
the inferred weights are injected into the reference model and can be compared w i th the 
approximated model. 

5.1 Genet ic Weight Compress ion 

The weight compression tool plays a crucia l role i n this thesis, being the most computat ion-
intensive module. Th is is due to the ut i l isat ion of the Cartesian Genetic Programming 
algor i thm for evolving potential candidate circuits, replacing conventional memory access. 
Achiev ing this for larger datasets necessitated several optimisations to obta in the results 
presented i n the experimentation Chapter 6. 

The following section starts w i th the a lgor i thm input parsing, continues through evolu
t ion parts involving mutat ion and fitness evaluation, and eventually finishes w i th the most 
significant opt imizat ion that allows approximation of arbitrary-sized datasets. 

5 . 1 .1 T r a i n D a t a s e t F o r m a t 

The weight compression tool was designed to be independent of other modules. Thus, 
it is not t ightly integrated w i th a single l ibrary such as PyTorch [53]. To support other 
libraries, such as Tensorflow [1], only changes to Weight Preparation and Model Evaluation 
are needed. Furthermore, the selected format ensures the algor i thm works w i th the weights 
as str ict ly defined i n the dataset file and infers weights precisely in the order they were 
defined i n the dataset. To achieve this, weights are serialised i n text form w i th t ra in weights 
preceding target weights del imited by a new line. A s the number of t ra in combinations 
increases, n different pairs are added after each previous pair. 

The increase i n t ra in combinations does not have a significant impact on the C G P 
algorithm, which was facil itated w i th the addit ion of the mult iplexer function and a selector 
variable. Input weights are stored in memory for the entire run and can be easily changed 
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by assigning a pointer to a different combinat ion and simultaneously setting the selector to 
the combination's index. However, it has a major drawback that slows down evolution due 
to more difficult function approximation and inhomogeneous layer size. Inhomogeneity was 
part ia l ly solved by introducing no-care marked as " x " in the dataset file, which stops error 
evaluation and does not include it i n the calculat ion. 

Files related to that module can be found in C++ files Dataset.h and CGPStream.h 
which also incorporates d ig i ta l gates properties loading and data parsing. 

5.1 .2 D i g i t a l G a t e s P r o p e r t i e s F o r m a t 

Candidate solutions represent different circuits, which can be compared based on approxi
mat ion error, energy used, chip area, t ime delay and gates used. Therefore, the algor i thm 
must load these properties from a file, w i th each row containing gate data for a specific 
function. To dist inguish and correctly pair gates' properties and functions, the parameters 
file needs to adhere to ordering based on function number as defined i n Table 5.1. Cur 
rently, these function numbers are hard-coded i n the CGPOperator enum datatype. The 
only exceptions to this rule are: 

1. Identity Function - used for optimisat ion, as w i l l be explained later i n Section 5.1.6 

2. Mult iplexer Function - mult iple-bit variants can be used; however, the algor i thm 
strict ly selects the min ima l one that w i l l conform to the dataset size and discards 
others 

3. Demultiplexer Function - the same as the Mult ip lexer Funct ion 

Furthermore, dur ing development, issues arose related to floating point precision i n fit
ness evaluation, part icular ly concerning energy and delay parameters. To mitigate these 
problems, quantisat ion was adopted into the algor i thm. However, the quantisation is per
formed sl ightly differently than described i n Formula 2.6, w i th some minor modifications. 
F i rs t , c l ipping range and zero point must have been defined as done for energy in For
mula 5.1 and delay in Formula 5.2. 

aE = 0, j3E = nr • nc • Emax, ZE = 0 (5.1) 

old = 0, j3D = nc- Dmax, ZD = 0 (5.2) 

Where a represents the lowest possible values, which is zero for both energy and delay, 
and j5 assumes the worst possible fitness values. For energy, the worst achievable fitness 
occurs when a l l gates consist of the most energy-intensive function. Conversely, the worst 
fitness for the delay is when a l l columns are used, and the function w i th the highest delay is 
used. Lastly, the zero point is set to zero because it is also mapped to zero i n the quantised 
domain. 

In the following step, a minor modif ication is introduced compared to Formula 2.7. 
Typical ly, a value of one is subtracted from the max ima l quantised value; however, in this 
case, it is subtracted by one again to accommodate an extra value that represents the 
undefined state i n the algor i thm. The modified scale formula can be seen in Formula 5.3. 

S = ^ (5.3) 
2b - 2 
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However, resolution parameter b is unknown beforehand and has to be calculated con
sidering quantisation error e shown in Formula 5.4 which can be rearranged to calculate 
the resolution. 

£ = 
(3 — a 
2b-2 

(5.4) 

To determine the m in ima l value satisfying the error condit ion, Formula 5.5 was uti l ised. 
However, using the m in ima l value would in wasting bits in a C++ program because datatypes 
are bound to bits powers of two. Therefore, the min ima l value is rounded to the closest 
upper datatype size to util ise al located space more effectively for better precision, thus 
resulting i n lower quantisation error. 

Eventually, after put t ing everything together, a quantised number can be calculated as 
shown in Formula 5.6 and used in fitness evaluation. 

5 .1 .3 P o p u l a t i o n M a n a g m e n t 

Al though chromosomes are pr imar i ly represented as an array of ordinal values, for conve
nience, they were implemented as a C++ class Chromosome, located i n the file Chromo
some.h. The class consists of many helper functions ranging from opt imisat ion functions, 
correction functions and mainly CGP- re l a t ed functions such as mutate and evaluate. 

Furthermore, dur ing development, the philosophy behind chromosome class changed 
several times, influenced by scalabil ity problems. A s dataset size increases, the chromo
some size also increases, leading to performance degradation. W h e n combined w i th circuit 
grid expansion, it spirals evolution into higher complexity, thereby p lummet ing a lgor i thm 
search efficiency and rendering it unusable. The degradation i n search efficiency can be 
attr ibuted to two factors: search space complexity and memory al location. The former w i l l 
be explained later in Section 5.1.6, while the latter is t ightly t ied to chromosomes; hence, 
this section is wel l suited for this. It is important to note that unt i l the last philosophy, 
the best chromosome was stored i n a variable, while candidate solutions were stored in a 
C-style array. 

T h e First Philosophy: Immutable Chromosomes 

Immutable objects are essential i n functional programming paradigms that discourage the 
use of impure funct ions 3 . Th is promotes cleaner, verifiable code w i th a lower chance of 
introducing programming mistakes, so-called "bugs". O n the other side, w i th every change, 
a new instance w i th a new state must be created, resulting in the creation of a new object 
copy. W i t h a generation cadence that scales over a mi l l i on i n C G P , this approach soon 
became unsustainable, and the pure function paradigm was discontinued. 

f u n c t i o n s tha t cause side-effects outs ide i t s b o d y 

(5.5) 

(5.6) 
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T h e Second Philosophy: Chromosome Reuse 

Under the assumption that w i th every mutat ion, an old chromosome is replaced by a new 
one, it was later exploited that the original chromosome is not t ru ly deleted. Instead, the 
old chromosome is overridden by the parent's chromosome and metrics are set as invalid, 
thus preserving other internal ut i l i t y arrays. Th is approach saved a lot of t ime by omit t ing 
internal array init ial isations for chromosome instances, which, w i th the cadence of evolu
t ion, accumulated and created a serious bottleneck. Unfortunately, the chromosome array 
cannot be copied and further optimised. Regardless, this philosophy s t i l l stored the best 
chromosome in a variable, which sometimes required the parent chromosome to perform a 
deep copy of itself, carrying the disadvantage of the previous philosophy. 

T h e T h i r d Philosophy: Best Chromosome as Part of Population 

In the latest philosophy, the best chromosome was relocated from the variable to the array, 
effectively v i r tua l ly increasing the populat ion array by one. Nevertheless, the best chromo
some is not considered to be part of the populat ion and is disregarded i n fitness evaluation 
once it has been assessed. Furthermore, because it resides i n the same array, the C G P 
creates chromosome objects only once i n the beginning w i th quantity A + 1. Addit ional ly , 
there are no trade-offs; the instance resides i n the same memory space, and when changing 
the best chromosome, it can be s imply done by cal l ing std::swap(chrom[0], chromfi]) where 
the best chromosome is at index zero. 

5.1 .4 C h r o m o s o m e M u t a t i o n 

A chromosome is mutated w i th a point mutat ion, where each gene has a certain probabi l i ty 
of being mutated, requiring i teration over a l l genes in the chromosome. To speed up the 
whole process and avoid modulo operations per gene, a random number indicat ing the 
number of genes to mutate is generated instead. Th is opt imisat ion reduces the number 
of modulo operations from pQ to just one while mainta in ing equivalent functionality. The 
random value is used to generate random gene indices to mutate, and these are iterated 
instead. Once the mutat ion process is complete, the chromosome is ready for evaluation. 
However, the evaluation process can be entirely skipped if a neutral mutat ion occurs, which 
is safeguarded by a gate visit array mark ing gates that have an effect on the fitness. Th is 
frees up one C P U core to assist in evaluating other chromosomes. 

5.1 .5 C h r o m o s o m e E v a l u a t i o n 

Chromosome evaluation stands out as the most computation-heavy aspect of the entire C G P 
algorithm. Consequently, this led to C G P being implemented in C++ w i th enabled support 
for O p e n M P [ l l ] , al lowing C P U core paral lel ism and instruct ion vectorization. Overal l , the 
C G P a lgor i thm is ideal for mult i-threaded applications because every chromosome can be 
evaluated asynchronously and init ial ly, this was also a motivat ion for immutable objects. 
However, s imilar effects were accomplished by employing val idity flags for every metric. 

Furthermore, chromosome fitness metrics are independent al lowing for the simultaneous 
evaluation of energy and delay metrics. Nonetheless, the problem arises w i th the time 
complexity of fitness functions, which for an error function is ideal linear complexity O (p0)-, 
however, other metrics require more complex computat ion. 
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Energy, A r e a and Gate Count Metrics 

These metrics can be accumulated to calculate their fitness, which is advantageous for 
traversing the phenotype from the output nodes to the input nodes or constant gate nodes 1 

without repetit ion. To traverse phenotype, Depth-F i rs t Search algor i thm was employed 
to traverse through used gates while accumulat ing their fitness metrics. Moreover, these 
metrics can be computed and aggregated i n a single function, thereby minimis ing the per
formance penalty. However, to speed up the calculation, every output node can spawn a 
new thread to traverse the graph, which is part icular ly beneficial when some chromosomes 
were neutral ly mutated and their evaluation was omitted. The only drawback of paral-
lelisation is the increased memory usage, which was not fully uti l ised even i n the most 
memory-intensive experiments. The entire search has a time complexity of O (n™c) and 
space complexity of O (nr • nc). In the paral lel version, the space complexity is mult ip l ied 
by a max ima l number of possible threads. 

Delay Metr i c 

Simi lar to the previous metrics, the delay is determined by traversing the graph using Depth-
Firs t Search w i th one difference: delay fitness is not cumulative. Instead, it relies on the 
max ima l delays that add up each column. Thus, visit opt imisat ion cannot be applied here 
making frequent delay evaluation undesirable. However, it remains an important metric in 
deep convolutional neural networks because latency is crucial for sensible usage, especially 
in real-time applications. To address this, a lazy evaluation procedure was introduced, 
depicted i n a state diagram in Figure 4.3, which essentially showcases when a part icular 
fitness metric is calculated. 

A p p l y i n g O p e n M P to Depth-Firs t Search 

Compared to Breadth-Firs t Search, Depth-F i rs t Search requires lower memory but, more 
importantly, traverses the phenotype graph by depth. The latter is especially beneficial 
for mult i - threading applications because, on the other hand, Breadth-Firs t Search tends 
to traverse graphs i n a shallow way. Consequently, that would result i n a single thread 
reserving way too many gates near output nodes for itself and potential ly blocking other 
threads. In contrast, Depth-F i rs t Search deep-oriented traversal minimises the risk of a 
single thread locking many gates near the output nodes. Instead, it is biased to lock gates 
progressively unt i l the input nodes, thus al lowing other threads to traverse the phenotype 
as well. 

To ensure operation val idity and prevent race conditions cr i t ica l sections were introduced 
to places where gate visit status is checked. The second cr i t ica l section guards fitness value 
updates, w i th a dist inct ion being made for the delay metric. Unl ike other fitness metrics, 
it is not cumulative; instead, it is determined by the max function to save the longest delay 
in the phenotype. 

Energy, area, and gate count metrics are more straightforward to calculate and have 
only one cr i t ica l section securing gate visit status checks. D a t a val idity is safeguarded 
by arrays sized to accommodate the max imum number of O p e n M P threads, where each 
thread stores temporary values i n its own allocated memory chunk. After graph traversal 
is completed, these values are aggregated into a single fitness metric for energy, area, and 
gate count. 

4 f o r ins tance / (X) = 1 
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5 .1 .6 C o m p r e s s i o n i n C o m p r e s s i o n O p t i m i s a t i o n 

As the experiments progressed and chromosome sizes increased, the performance of evo
lut ion plummeted into infeasible conditions. U p o n investigating the factors contr ibut ing 
to the emerged effect, it was determined that the pr imary cause of performance degrada
t ion was the poor scalabil i ty of the C G P algor i thm part icular ly highlighted by increasing 
output size. Therefore, an opt imizat ion technique was researched to recover lost efficiency 
Eventually, it was discovered that any problem w i th a single dataset pair can be reduced to 
an opt imizat ion problem to just 256 outputs i n the worst case. Th is f inding tremendously 
curtai led the evolution t ime for datasets w i th many output weights, whereas the solution 
is rather simple: compress outputs by shortcutt ing the same weights. 

However, the algor i thm design imposes strict restrictions on language and l ibrary-
agnostic properties and independence. Hence, the opt imisat ion happens i n the background 
while s t i l l preserving the input and output weight format. To achieve that, 256 gates are 
sacrificed and fixated to the identity function i n the first phase, where each gate represents 
one number from range (—128,127). Similarly, each gate is uniquely connected to a single 
output, which on the large scale forms a bijective function / : X —> X, effectively shrinking 
output size from pQ to 256 outputs as seen in Figure 5.2. 

Figure 5.2: The left side il lustrates the in i t i a l phase short-circuit-based opt imisat ion, which 
reduces the problem to an approximat ion of 256 weights, resulting i n faster evolution. Once 
evolution is completed, these identity gates are removed as they serve purely as helper gates 
and do not have any important influence on phenotype, as depicted on the right side. Special 
attention should be pa id on red cross marks on the left side, indicat ing that gate input is 
not used. Th is is part icular ly relevant for unary operators and the identity function. 

Effect on the E r r o r Fitness Evaluation 

Another advantageous property of the found opt imisat ion is that only 256 iterations are 
needed to calculate the error metrics driven by the fact that each weight can be mapped 
to its frequency i n an array. Th is weight frequency information effectively provides an 
opportunity to simplify previously mentioned error metrics as shown in Formula 5.7, 5.8 
and 5.9. 
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256 

i=l 

(5.7) 

256 

MSE = - Y / W i ( y i - y i ) 2 (5.8) 

i=l 

256 

AE = ^2 Wi\yi-yi\ (5.9) 
i=l 

In the context of this implementation, Wi denotes weight frequency, representing the 
significance of a convolution weight i n inference. Th is metric reflects how likely the weight 
is to impact the overall outcome. 

G r a p h Search Based Metrics 

Regarding metrics such as energy and delay (and others mentioned), there was no significant 
speedup from this technique. St i l l , it is not required to iterate over a l l outputs, so speedup 
becomes more apparent and visible i n large output datasets. Theoretically, it could have 
been optimised more efficiently because currently, when a thread visits a gate, the gate gets 
greedily marked as visited which might block other threads. It could be implemented the 
way that only one p in could be taken at a time; however, at this point, it was not deemed 
neccesary to obtain experimental data. 

Mult i - combinat ion Datasets 

The technique can also be uti l ised to optimize mult i -combinat ion datasets. However, the 
output size is composed of multiples of 256, expressed mathematical ly as 256n. Th is repre
sents an improvement over the original size while sacrificing energy efficiency. The energy 
is consumed by ut i l i ty multiplexers, which are inserted just right after identity functions. 
Moreover, every output node requires a single multiplexer, which imposes a physical l imit 
on how many outputs can be mult iplexed unt i l it is more efficient to fetch weights from 
memory. Theoretically, multiplexers could be removed through evolution, sacrificing accu
racy for energy. However, it is uncertain how sensitive is every layer to the weight change. 
For this thesis, it was more important to research the overall weight approximation ef
fect, and this could be a potential extension for the future to optimise mult i -combinat ion 
approximation. 

5.2 Exper iment P repara t i on 

The C G P algor i thm imposes a strong pre-condition that weights must be prepared before
hand in text format. Moreover, considerable emphasis was placed on designing reproducible 
experiments, providing researchers w i th information on what parameters were used and 
what weights were approximated. Hence, a Py thon framework was designed to prepare ex
periments i n a predictable manner before their deployment, which is going to be described 
in the following sections. 
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5.2 .1 E x p e r i m e n t T e m p l a t e 

A n experiment is assembled based on its P y t h o n class definition, which must extend the 
base Experiment class. Every experiment must have a unique name to ensure it can be 
isolated i n its own file directory . his guarantees independence and experiment isolation 
against outside factors. The only exception is applied to an composite experiment, which is 
an experiment template created to better manage independent variables of sub-experiments. 
The composite experiment is considered to be an experiment, albeit it does not perform 
any computat ion. Instead, it groups experiments w i th the same experiment protocol par
t icular ly useful i n evaluation and experiment bootstrapping. 

Fol lowing experiment bootstrapping, every non-composite experiment must define what 
weights it aims to approximate. Hence, to guarantee safe weight extraction and weight re
construction a FilterSelector class was created. Currently, only PyTorch [53] is supported, 
whose weights can be retrieved from the model state dict ionary in the form of a Tensor ob
ject. The tensor values can be obtained by numerical indices or range indices. For instance, 
Conv2D is four-dimensional w i th the following semantical meaning: output channels, input 
channels, kernel width and kernel height. For i l lustrat ion, filters from the first channel can 
be fetched by executing: conv2d[:, 0, :, :]. 

To ensure predictabi l i ty and readabil ity for unconventional filter selectors, such as outer 
filter weights, addi t ional uti l it ies were introduced which can be found i n models/quantiza
tion.py. Furthermore, to handle datasets w i th mult iple t ra in ing pair combinations, FilterS-
electorCombination was introduced to handle single combination and FilterSelectorCombi-
nations for the entire dataset. The latter is used for experiment environment init ia l isat ion. 

5.2.2 E x p e r i m e n t B o o t s t r a p p i n g 

Consequently, at this phase, the experiment instance is created w i th a nl led-in name and 
filter selectors. To complete the whole process, a C G P parameter configuration and weight 
extraction based on the weight selectors must be finalized. F i rs t , default C G P parameters 
are loaded from the file provided in the codebase, and other mandatory parameters are 
either derived or filled in by the script. The final configuration is saved to train_cgp.config. 

Weight extract ion is managed by the experiment instance, which then passes the ex
tracted weights to the CGP class i n the cgp_adapter.py file. The C G P instance stores t ra in 
and reference weights into an array of one-dimensional tensors that are eventually wr i t ten 
to train, data file. Addit ional ly , i f a mult i -combinat ion dataset is provided, no care values 
are inserted into output nodes where output weights cannot be inserted. Consequently, the 
value of these nodes becomes irrelevant, and their evaluation is skipped. 

Gate Metr ics Preparation 

In the final phase, the gate metrics parameter file, which includes energy, area, and delay 
parameters, is generated. Wh i l e energy and delay are part icular ly significant for this thesis, 
the area also holds importance. However, since area correlates w i th energy, it is deemed 
unnecessary to optimise based on the area metric. 

These values are extracted from the synthesised Veri log functions mentioned i n Ta
ble 5.1, where a l l metrics are presented as decimal numbers. However, the decimal rep
resentation posed scale problems as extensively explained i n Section 5.1.2. B o t h floating 
point numbers w i th a combination of physics units caused comparison problems. Moreover, 

5 i n i m p l e m e n t a t i o n referred to as " e xpe r imen t e n v i r o n m e n t " 
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if decimal numbers were st i l l used, it would require defining a m in ima l delta value e to de
termine whether two values are t ru ly equal. Eps i l on requires careful consideration to avoid 
introducing comparison errors. To address these problems, the quantisation technique was 
employed to convert decimal numbers to integer numbers, ensuring comparabi l i ty on equal 
terms. The quantisation is conducted by P y t h o n scripts from circuit package that require 
Veri log synthesised data to be available from the data_store directory. 

Eventually, a new experiment w i th a l l file dependencies is created and ready for local 
tra ining. However, as experiments demanded more computat ional resources, a more robust 
solution was needed. Therefore, O p e n P B S support was integrated into the current pipeline, 
significantly extending its functionality beyond the in i t ia l scope. 

5.3 High-Per formance C o m p u t i n g P repara t i on 

The H P C Preparat ion module serves as an opt ional part w i th in the weight compression 
pipeline, providing support for the O p e n P B S service managed on Me taCent rum servers. 
O p e n P B S provisions jobs based on their P B S scripts. Integration to O p e n P B S required 
adjustments due to the uncertainty of the working directory unt i l jobs are provisioned. 
Apar t from that, it does not have many l imitat ions, which w i l l be mentioned. However, it 
has many benefits, which w i l l be described i n subsequent sections. 

5.3 .1 C h a n g e s to E x p e r i m e n t B o o t s t r a p i n g 

The process largely remains unchanged, except absolute paths are converted to relative 
paths to make them compatible w i th Me taCen t rum Scratch directories. Furthermore, 
O p e n P B S provisions computat ional resources based on P B S scripts, which contain infor
mat ion such as the required number of processors, R A M , Scratch capacity, and more which 
can be found in the Me taCent rum documentation [10]. Accordingly, w i th a l l files gener
ated, a new O p e n P B S job preparation file, named train.pbs.sh is generated as well. The 
generated provisioning script can be queued to the Me taCen t rum O p e n P B S queue. 

5.3.2 V e r t i c a l S c a l i n g 

MetaCen t rum servers leverage server less architecture, offering good computat ion flexibil ity 
and relieving end users from server management. O n the other hand, the C G P algorithms 
seldom use configurations which would set A parameter to high values 6 , a lthough addit ional 
cores might be valuable when doing energy and delay evaluation. Contrary to vertical 
scaling, horizontal scaling exhibits a much stronger advantageous use case. 

5.3.3 H o r i z o n t a l S c a l i n g 

W h e n experimenting w i th C G P algorithms, it is standard practice to conduct mult iple 
evolution runs to statist ical ly evaluate performance, a process that takes a considerable 
amount of t ime. To streamline this, a new batching feature was integrated into the weight 
preparation module, al lowing experiment runs to be split into smaller jobs. W i t h smaller 
jobs, it is possible to launch experiment runs simultaneously, proport ional ly saving time. 
Contrariwise, simultaneous experiment evaluation comes w i th one weakness of extended 
post-processing tasks that must be done to merge batches into a single experiment, which 

6 t h e mos t p o p u l a r is A = 4 
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is handled by ut i l i t y Bash scripts located i n scripts folder, most notably experiment.sh that 
compresses result into an archive. 

5.3.4 T h e C G P C o m p i l a t i o n 

The C G P configuration loads parameters from generated files or command-l ine arguments, 
which l imits the compiler to optimise certain aspects of the code. For instance, it is unnec
essary to make a div is ion when the output ar i ty of the gate is set to one or to do one for 
i teration. 

However, the most impact ful opt imizat ion arises from the compression technique intro
duced in Section 5.1.6. Th is technique modifies the algorithm's flow by using compile-time 
macros to minimise the number of condit ional jumps caused by if statements. Th is ap
proach ensures that dur ing evaluation, there is no need to check the type of error metric used 
or whether compression opt imisat ion is enabled, as this information is known beforehand. 
Otherwise, either str ing or numerical check would be required i f macros were substituted 
by command-l ine arguments checking. 

5.4 Exper iment Eva lua t i on 

In the final phase of the weight compression, the C G P generates statistics files containing 
fitness metrics and pr imar i ly chromosomes. The best chromosome is located on the last 
line of the statistics file and is later used for model evaluation. F rom this chromosome, 
the C G P algor i thm reconstructs the circuit configuration and initiates evaluation for every 
input and output weight pair, logging the resulting weights into the all_weights folder. 
Weight injection follows, which injects weights based on the selectors from the experiment 
preparing model evaluation. After evaluation, the model is reset to its in i t i a l state, and the 
process can be repeated again i f there are more solutions to evaluate. For more demanding 
evaluations, a P B S script has also been created that supports uni form file spl i t t ing based 
on file order i n the directory. 
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N u m b e r F u n c t i o n N a m e P o w e r mW] D e l a y A r e a E n e r g y [ßJ] 

0 1 2 7 - a 0.00042901 0.01 9.8553 0.0000042901 

1 a + b 0.03259 0.62 69.456402 0.0202058 

2 a — b 0.038322 0.65 80.719602 0.0249093 

3 a • b 0.2076 0.73 376.378598 0.151548 

4 —a 0.011560 0.28 58.193198 0.0032368 

5 - 1 2 8 + a 0 .000061287 0.01 1.4079 6 . 1 2 8 7 - 1 0 " 7 

6 a » 2 0 0 0 0 

7 a > 1 0 0 0 0 

8 a © b 0.0022856 0.04 18.771999 0.000091424 

9 a b 0.0028906 0.04 18.771999 0.000115624 

10 a®b 0.01097 0.04 37.543999 0.0004388 

11 ~a 0.0004903 0.01 11.2632 0.000004903 
12 a < 1 0 0 0 0 

13 a + 1 0.0072 0.33 34.258899 0.002376 
14 a - 1 0.0090466 0.35 53.030899 0.00316631 

15 a > 3 0 0 0 0 

16 a » 4 0 0 0 0 

17 a > 5 0 0 0 0 

18 a < 2 0 0 0 0 

19 a < 3 0 0 0 0 

20 a < 4 0 0 0 0 
21 a « 5 0 0 0 0 

22 1 0 0 0 0 

23 - 1 0 0 0 0 
24 0 0 0 0 0 

25 - 1 2 8 0 0 0 0 

26 127 0 0 0 0 

27 M X 2 -> 1 0 .0088363 0.06 41.2984 0.000530178 

28 M X 4 -> 1 0.033524 0.21 118.732898 0.00704004 

29 M X 8 -> 1 0.057117 0.31 256.237795 0.01770627 

30 M X 16 -> 1 0.1016 0.41 556.589787 0.041656 

31 D - M X 2 -> 1 0.0061661 0.07 38.951899 0.000431627 

32 D - M X 4 -> 1 0.016176 0.14 101.368797 0.00226464 

33 D - M X 8 -> 1 0.025693 0.13 195.698094 0.00334009 

34 D - M X 16 -> 1 0.045728 0.21 400 .312887 0.00960288 

100 f(X)=X 0 0 0 0 

Table 5.1: E le t r i ca l parameters of d ig i ta l gate circuits used. A n identity function has a 
special value of 100, which was added later to support opt imisat ion. D a t a were obtained 
w i th the assistance of my supervisor w i th Synopsys Design Compi ler [61] using gates im
plemented in Veri log and Free P D K 4 5 n m [65]. 
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Chapter 6 

Exper iments 

Several experiments were designed to validate the proposed algor i thm. These experiments 
are ordered by increasing difficulty, start ing w i th the simple filter approximation. To 
progress further, the smallest gr id size was tested, which was later followed by algor i thm 
l imit testing. The first l imi t was a special case when the algor i thm approximates the core 
of a kernel to outer values, which were set to zero. 

Nonetheless, these experiments resolved mainly around accuracy and viabi l i ty, which 
is only half the task that must be fulfilled. Therefore, i n the next experiment iteration, 
a hypothet ical scenario was created to test whether it is possible to calculate the next 
layer weights from the previously used weights. Th i s experiment was especially cr i t ica l , 
completely highl ighting a lgor i thm l imitat ions. 

After fixing the l imi t ing issues and basically enabling the algor i thm to approximate more 
complex functions, it was decided to test the algor i thm on the more recent network Mo-
bi lenetV2, which is currently considered to be state-of-the-art. However, before reporting 
results and implicat ions, it is necessary to introduce the experiment methodology. 

6.1 Methodo logy 

The first experiments were conducted on a modified version of the LeNet-5 architecture, 
which modified version can be seen i n Table 6.1. It was trained on t ra in split of M N I S T 
dataset, and for hyper-parameter search, the val idation split was used. 

Layer Output Feature M a p s K e r n e l Size Stride Activat ion 
Input 32 x 32 1 - - -
Convolut ional 28 x 28 6 5 x 5 1 R e L U 
M a x Poo l ing 14 x 14 6 2 x 2 2 -
Convolut ional 10 x 10 16 5 x 5 1 R e L U 
M a x Poo l ing 5 x 5 16 2 x 2 2 -
F la t t en 256 - - - -
Ful l y Connected 120 - - - R e L U 
Fu l l y Connected 84 - - - R e L U 
Fu l l y Connected 10 - - - Soft max 

Table 6.1: Hyperparameter Configurat ion for experimental LeNet. 
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The second experimental model is Mob i l eNe tV2 , described i n detai l i n Section 2.5, 
uti l ised without any modifications except for Post-Tra ining Quantisat ion. Likewise, the 
experimental LeNet-5 was also subjected to quantisation, albeit using the Quantisat ion-
Aware Tra in ing method. 

To obtain reference metrics, these models were assessed across various datasets. In 
the case of LeNet-5, a more comprehensive evaluation was used compared to Mobilenet. 
Mobi leNet was solely evaluated on the val idation split of ImageNet [56], which, unfortu
nately, provides only t ra in ing and val idat ion labels. Reference model metrics can be found 
in Table 6.2. 

Mode l Dataset Split Samples Acc [%] Top-5 [%] Loss 

LeNet-5 [44] 
M N I S T [39] test 10,000 98.96 100 0.031 

LeNet-5 [44] 
Q M N I S T [74] 

test50k 
nist 

50,000 
402,953 

98.75 
99.28 

99.98 
99.98 

0.0491 
0.0307 

LeNet-5 (QAT) 
M N I S T [39] test 10,000 99.16 100 0.032 

LeNet-5 (QAT) 
Q M N I S T [74] 

test50k 
nist 

50,000 
402,953 

98.87 
99.38 

99.98 
99.98 

0.0498 
0.0309 

Mob i l eNe tV2 [57] ImageNet [56] val idat ion 50,000 71.6 90.24 1.1627 

Table 6.2: Performance metrics for different models, datasets, and splits using cross-entropy 
loss metric. 

6 .1 .1 D e t e r m i n i n g E r r o r T h r e s h o l d s 

Energy and accuracy metrics are expected to be negatively correlated, requiring careful 
selection of an error threshold that is t ightly coupled w i th accuracy. The error threshold 
shifts the pr imary opt imisat ion objective from error minimisat ion to energy minimisat ion, 
hoping to optimise lower energy consumption at the cost of accuracy. 

To define these error thresholds and research their influence on accuracy, LeNet-5 (QAT ) 
model was tested. The test consisted of 256 evaluations w i th arti f icial ly inserted errors 
to convolution weights of interest w i th in range (—128,127). So, for instance, for global 
error, in the first i teration, every weight would be subtracted by —128. Accord ing to this, 
model sensitivity data were collected, which are presented in Figure 6.1. Initial ly, threshold 
e| = 11 was selected for experimentation, which accuracy can be found in Table 6.3, also 

containing thresholds for other error types. It was selected based on how many weights can 
be compressed while maintaining decent accuracy. However, in the later experimentation 
stage, these thresholds were not str ict ly followed, and new thresholds were selected. If such 
a change is made, it w i l l be mentioned in the experiment introduct ion. 

Er ro r Loca t ion £ Accuracy [%] 
Everywhere (global) 7 95 
Outside Kerne l Core 3 x 3 11 95.34 
Kerne l Core 3 x 3 17 95.22 

Table 6.3: M a x i m a l error thresholds that s t i l l allow to operate LeNet-5 (QAT ) above 95% 
accuracy. 
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Regrettably, the same surveying method could not be used for Mob i l eNe tV2 , which 
showed significant accuracy degradation even in the slightest error. Therefore, it is unknown 
what is an approximately acceptable error for the model. 

LeNet-5 (QAT ) : Weight Error Sensitivity 

-100 - 5 0 0 50 100 0 20 40 60 80 100 120 
Error per Weight (e) Absolute Error per Weight (\e\) 

Figure 6.1: Sensit ivity of LeNet-5 (QAT ) to convolution weight errors. It can be observed 
that as the number of affected weights increases, accuracy deteriorates more rapidly. Con
versely, the kernel core appears to respond differently to the same errors, as demonstrated 
by the absolute error on the right. Lastly, the red line highlights the lowest acceptable 
accuracy 95%. 

6.1 .2 E r r o r P r e s e n t a t i o n 

Experiments measure weight errors using the Squared Er ro r metric. However, it w i l l be 
reported as Mean Squared Er ro r instead to ensure errors can be compared on equal terms. 
Formula 6.1 shows how N t ra in datasets 1 errors are converted to M S E on pQ outputs. 

Mean Squared Er ro r = — ^ 7 • Squared Er ro r (6.1) 

6 .1 .3 E n e r g y Reference E s t i m a t e s 

The ma in objective of the following experiments is to evaluate how well models perform 
energetically while maintaining satisfactory levels of accuracy. To orientationally compare 
that against reference values, energy estimates measured by Chen et a l . [12] are used, which 
can be also found in Figure 2.8. Est imates for D R A M , buffer and single M A C operation 
can be found in Table 6.4 calculated according to Table 5.1. 

1 w h e n m u l t i p l e datasets are used , homogenous o u t p u t s t ruc tu r e mus t be met ; however, no t a l l ou tpu t s 
are used a n d eva lua ted 
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Memory M A C Energy [//«/] 
Single M A C 
Buffer 
D R A M 

1 
6 

200 

0.1717538 
1.0305228 
34.35076 

Table 6.4: Energy requirements of three operations: mult iple and accumulate, fetch data 
from buffer memory and read data from D R A M . M A C measurements originate from [12]. 

6.2 Single F i l t e r App rox ima t i on 

To validate whether the algor i thm works on the most fundamental problem, which is a 
single filter approximation, th i r ty experimental runs were conducted on a single filter. The 
experiment examines an evolution abi l i ty to evolve approximated convolution weight func
t ion on grid size w i th dimension 5 x 5 . The grid size was selected based on tested filters 
from LeNet-5 Q A T that are also sized 5 x 5 . 

Sixteen outer weights were approximated from kernel core weights consisting of size 
3 x 3 w i th the C G P configuration as shown in Table 6.5. For demonstration, only the first 
filter convl layer was tested, whose approximat ion results can be viewed in Figure 6.2 w i th 
gathered metrics such as error, energy, gate count, t ime taken and evolved generations. 

Parameter Value 
Patience 400,000 
Er ro r Threshold 0 
Runs 30 
Muta t i on 15% 
Functions 28 
Populat ion 16 
L max 
G r i d (nr x n c ) 5 x 5 

Table 6.5: Conf igurat ion parameters for C G P approximation. 

The results conclude that the weight compression algor i thm has the potential to accu
rately approximate missing weight while efficiently using energy. However, a single filter 
approximation is not sufficient to prove the algor i thm legitimate; therefore, more robust 
experiments are needed. Before that, it is necessary to find a min ima l viable gr id size 
because larger networks contain large quantities of convolution filters and w i th increasing 
quantity, C G P scales poorly. 

6.3 M i n i m a l G r i d Size 

Following the successful single filter experiment, a question about m in ima l gr id size arose. 
To explore that further an experiment was created to examine the m in ima l gates required 
to reach perfect accuracy. The experiment consists of three randomly selected filters from 
convl and an addit ional three randomly selected filters from the other layer conv2. These 
filters were approximated th i r ty times and evolved w i th the same C G P parameters as it 
was in the previous experiment. A lso, stat ist ical data, such as energy, gate count, time 
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Figure 6.2: Results obtained from the single filter experiment. The results show that 
approximation was successful, energy consumption looks promising and the whole gr id was 
not uti l is ied. 

taken, chip area, delay, and created generations, were collected. Col lected statistics can be 
examined i n Figure 6.3, which shows two qualifying solutions w i th perfect accuracy. 

According to collected data, significantly lower energy consumption was observed in the 
10 x 10 gr id than in the 5 x 5 grid. However, on the other hand, the 5 x 5 grid shows 2.42 
times quicker convergence t ime on average, w i th notably fewer blocks used. F inal ly , the 
mean dig i ta l gate count for the 10 x 10 is statist ical ly lower than 25. 

LeNet-5 (QAT ) : M i n i m a l G r i d Size Circui t Metrics 

M S E : W YliLiiVi ~ Vif Energy \pj] D ig i ta l Gate Count T ime [s] 
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Figure 6.3: D a t a collected in M i n i m a l G r i d Size experiment. F rom the figure, it can be 
observed that only grids of 5 x 5 and 10 x 10 satisfy the in i t ia l constraint M S E = 0. 

6.3 .1 I m p l i c a t i o n s 

Overal l , the 10 x 10 phenotypes included more energy-efficient solutions at the cost of higher 
evolution t ime and larger gate count. Nonetheless, the gate count mean was measured to 
be lower than 25, which is the max ima l possible phenotype for 5 x 5 grid. Hence, w i th 
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the more opt imal mutat ion rate, more energy-efficient solutions are also evolvable by the 
smaller grids. 

In terms of even smaller grids, those grids have not managed to evolve val id solutions, as 
seen in the figure as flat lines. Moreover, the smallest viable gr id 5 x 5 has not evolved any 
solution smaller than 17 nodes. A s a result, it is hypothesised that creating an accomodable 
grid for the circuit should not be smaller than the number of filters mult ip l ied by five for 
each dimension. 

6.4 Reversed App rox ima t i on 

U n t i l now 3 x 3 kernel cores were used to approximate missing outer weights. To explore 
the opposite inference, twelve random filters were sampled from conv2 layer, ant ic ipat ing 
they would extract finer details from the previous layer. So, the expected outcome is the 
evolution w i l l find worse or equally good solutions as i n the m in ima l gr id size experiment. 
Just for information, the patience parameter was changed to 600,000, ant ic ipat ing a more 
difficult opt imisat ion problem. 

Contrary to the expectations, this hypothesis turned out to be wrong after obtaining 
experiment results reported i n Figure 6.4. More surprisingly, the evolution managed to 
find accurate solutions in 3 x 3 grids that prove the approximation is, i n this case, i n fact, 
simpler. Nonetheless, gate count for 3 x 3 grids i n most cases used a l l gates available, 
completely e l iminat ing it from potential use in the next experiments. Furthermore, larger 
grids managed to remove enough gates that would comfortably fit into 4 x 4 grid, which 
appears to be the most opt imal configuration for these part icular filters. 

Regarding the relation between 5 x 5 and 10 x 10, previously tested metric differences 
stay the same, except for the observation of the most opt imal solutions that got closer than 
before and the time taken difference got even more pronounced from 2.42 times to 4.44 
times being quicker. However, this is mainly at tr ibuted to higher patience. 

LeNet-5 (QAT) : Reversed Approx imat ion Circui t Metrics 
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Figure 6.4: Exper iment results for reversed weight approximation. O n the contrary, a 
more difficult approximat ion was expected. It turned out that functions were simpler to 
approximation highlighted by 3 x 3 errors and gate count of a l l gr id configurations which 
would fit into 4 x 4 setting. 
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6.5 Zero-Outer App rox ima t i on 

Before concluding single filter approximat ion experiments the last experiment conducted 
in this category was kernel core approximat ion on zero borders. In this experiment, an 
independent variable is whether a kernel core contains at least one zero. Thus, the perfect 
solution would not require any gates, and direct wir ing can be made from a single input 
zero to a l l outputs consisting of zeros. Oppositely, a m in ima l non-zero kernel core solution 
includes just one gate representing constant zero. 

Fourteen filters w i th a zero in the kernel core were tested. To balance it, fourteen 
addit ional filters were randomly sampled from LeNet-5 (QAT ) . The patience parameter 
was set to 400,000 again, expecting a simpler problem than before, which was confirmed 
compared to the m in ima l gr id size experiment ( 5 x 5 grids), shown in Figure 6.5. 

LeNet-5 (QAT) : Zero-Outer Approx imat ion Circui t Metrics 
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Figure 6.5: Approx imat ion of the kernel core to zeroed borders. Interestingly, not a single 
opt imal solution was found in either category. 

A l though there appears to be no difference between the two populations, it was statis
t ical ly confirmed (p = 0.013) that filters w i th a zero in the kernel core tend to have fewer 
gates than other filters. O n the other hand, t ime taken and energy do not significantly 
differ among the two groups. Nevertheless, none of the solutions managed to reach the 
defined target, which was caused by a nonopt imal C G P configuration. The reason was way 
too high a mutat ion rate, which was found to be an issue in later experiments. U n t i l then, 
it was undetected and at tr ibuted to low patience. 

6.6 Single Channe l App rox ima t i on 

From this point onwards, single-filter experiments w i l l no longer be reported. The first 
multi-f i lter experiment is a single-channel experiment consisting of six filters forming convl 
layer in LeNet-5 (QAT ) . The objective of this experiment is to verify the hypothesis that 
mult iple filters can be approximated simultaneously. To validate this, the first and only 
channel i n convl was selected, expecting it to have a significant impact on inference accu
racy. 

Based on previous experiment results, the patience parameter was increased to 2,000,000. 
Addit ional ly , an identity function was removed. Furthermore, addit ional error thresholds 
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were defined s imi lar ly to how LeNet-5 was tested on error sensitivity. The thresholds are 0, 
1.442, 35, 45, 51, and 56. More aggressive thresholds were selected to examine how larger 
thresholds influence energy opt imisat ion and result ing error. 

The grid was allocated to accommodate 30 x 7 gates, which should be more than enough 
for six filters. Two extra columns were reserved to ensure the evolution can find opt imal 
solutions. Addi t ional ly , from now on, the delay metric w i l l be reported instead of the time 
taken due to its importance for real-world use. 

LeNet-5 (QAT ) : Single Channel Approximat ion Circui t Metrics 

M S E : jf J2iLiiVi ~ Ůi)2 E n e r g y \p,J\ D i g i t a l G a t e C o u n t D e l a y [ms] 

Figure 6.6: Fitness values achieved by evolution using different error thresholds. 

In terms of obtained fitness values presented in Figure 6.6, it is interesting to note 
how accurate the solutions are w i th very low energy consumption. Addit ional ly , a higher 
threshold managed to find more opt imal solutions, as can be seen in Figure 6.7. The only 
trade-off in this case seems to be predictabil ity, where lower error thresholds are more 
likely to result i n less noticeable accuracy loss. It is difficult to draw a definitive conclusion 
based on these results, as 54 weights were mapped to 96 weights, which is a smal l number. 
Therefore, a more robust experiment is needed. 

6.7 LeNet -5 App rox ima t i on 

To obtain more representative measurements, the entire conv2 layer was selected for ap
proximation. Th is choice has two motivations. F irst ly , the main objective of this thesis is 
to investigate how circuit design can replace conventional memory. Considering the first 
layer weights must be fetched anyway, they could hypothet ical ly be used to infer a l l weights 
of the next layer. Secondly, using a l l filters and a l l weights provides the opportunity to test 
the a lgor i thm on a more challenging approximation. 

Addit ional ly , when investigating possible reasons why the zero-outer experiment d id not 
manage to find an opt imal solution, changes were made based on experimental results from 
Mi l l e r and Smi th [49], who researched mutat ion probabi l i ty and genotype length interaction. 
Th is led to decreasing the mutat ion probabi l i ty to 0.01 and using larger grids than those 

t h r e s h o l d s used to be con f igured i n squared error f o rmat ; however, the exper iment was r u n w i t h zero 
th r e sho ld expe r iment before thresho lds fo l lowed m e a n squared error fo rmat 
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LeNet-5 (QAT ) : Single Channel Mode l Metrics 
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Figure 6.7: Accuracy loss based on threshold and energy usage. More aggressive thresholds 
unexpectedly found very accurate solutions, albeit w i th the drawback that they must be 
evaluated to know their performance compared to perfect approximation. 

that originated from the grid size experiment. Normally, for this experiment, a grid of size 
480 x 7 would safely suffice; however, 500 x 30 was allocated instead. 

In terms of error thresholds, a reserved strategy was selected for this experiment, in 
volving the following thresholds: 0.5, 2, 5, and 11. The last threshold was inspired by the 
survey, which is expected to find a better solution anyway. Then, a threshold of five was 
selected to cover the mid-threshold range and two and a half to cover smaller thresholds. 
Another unintended threshold is 0, which at first, based on previous results, was not planned 
to be included. However, this experiment uncovered an issue w i th scalability, making it 
a very lengthy process to evolve circuits. In part icular, this approximation problem maps 
150 weights to 2400 weights. Compared to the previous experiment, it involves twenty-five 
times more convolution weights to approximate. 

To address this problem, a compression in compression opt imisat ion, explained i n Sec
t ion 5.1.6, was implemented. The opt imisat ion was later experimentally tested w i th the 
threshold set to 0, w i th the same patience parameter of 2,500,000 shared w i th other thresh
olds. 

6.7 .1 F i t n e s s M e t r i c s 

Start ing, as usual, w i th the fitness metrics (Figure 6.8), the new optimised algor i thm clearly 
outperformed solutions optimised on threshold 0.5 in a l l metrics while s t i l l maintaining lower 
error. Moreover, experiments w i th threshold 0 managed to find solutions in under two days, 
whereas a l l experiments w i th threshold 0.5 t imed out after four days. Unfortunately, this 
skews the results because it is unknown how long it would take to finish without forcefully 
stopping evolution. Nonetheless, this experiment showed how the former a lgor i thm wi th
out opt imisat ion was computat ional ly unsustainable, leading to a much better-optimised 
version. 

61 



LeNet-5 (QAT ) : LeNet-5 Approximat ion Circui t Metrics 
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Figure 6.8: Fitness measurements over a l l examined thresholds, plus a novel opt imisat ion 
tested on threshold 0 which outperformed other solutions except i n energy and delay. 

6.7.2 M o d e l M e t r i c s 

Following accuracy and energy analysis, the same pattern can be observed as in the single-
channel experiment. Interestingly, energy seems to follow a similar relationship w i th accu
racy loss and threshold, where lower error guarantees more predictable accuracy loss. In 
the case of energy consumption to accuracy loss, it appears that w i th lower errors, energy 
consumption is more diverse. 

m 0.02 -
-n O 

J 
>> 0.01 -

| 0.00 - • 
o 

< 

- 0 . 0 1 -

- 0 . 0 2 • 

- 0 . 0 3 • 

LeNet-5 (QAT ) : LeNet-5 Approximat ion Mode l Metrics 

D a t a s e t S p l i t 1 0 _ 1 

• n i s t ® tes t50k 

i 6 x 1 0 - 2 

<i 3 x 1 0 -

2 x I O - 2 

—I 1 1 1 1 

0.0 0.5 2.0 5.0 11.0 

O p t i m i s a t i o n E r r o r T h r e s h o l d 

M S E T h r e s h o l d 

• V* • 0.0 
• •» • • 0.5 

• 2.0 
•"• '• • 5.0 

• 11.0 
• u— 

.. . ... D a t a s e t S p l i t 

• 1 • test 

• • * nis t 

• t e s t50k 

i o - 4 i o - 2 10° 

E n e r g y [pj] + e 

Figure 6.9: Accuracy loss in relation to threshold and energy efficiency. A s expected, the 
approximation was more difficult, resulting i n more diverse solutions. It is important to 
mention that the threshold of 0.5 t imed out i n a l l instances, so solutions d id not have a 
chance to evolve fully. 
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6.7.3 E n e r g y A s s e s m e n t 

To investigate how zero-energy solutions manage to approximate functions imprecisely yet 
do not suffer any loss of accuracy i n some cases, a comparison study was conducted. The 
findings are reported in Figure 6.10 and Figure 6.11. 

LeNet-5 (QAT ) : Energy Consumption Difference between Thresholds 0 and 11 

Figure 6.10: Energy and gate use comparison for thresholds 0 and 11. Results indicate that 
the more lenient threshold only precisely approximates weights that can be bit-shifted or 
represented by constant gates. Essentially, it re-wires input weights to output weights i n a 
way that achieves the least error. 

LeNet-5 (QAT ) : Energy Consumption Difference between Thresholds 0 and 0.5 

Figure 6.11: Compar ison of the two most strict error thresholds. B o t h phenotypes are the 
best from the populat ion to study how threshold 0 outperformed the opposing threshold. 
F rom the graph on the right, the difference is noticeable. Zero threshold tends to utilise bit 
operators instead of ar i thmetic operators. W i t h only a single exception of the decrement 
operator, which from the right graph is not dominant ly used as well. 

The study reveals that LeNet-5 (QAT ) is over-parameterised, enabling evolution to ex
ploit strategies such as simple rewiring. B i t operators follow i n terms of energy efficiency, 
and i n the last place, ar i thmetic operators are the least desired to use. More importantly, 
several solutions were found that comfortably outperformed buffer and D R A M access in 
terms of energy consumption, thereby making them feasible for replacement. Furthermore, 
the weight inference could possibly be calculated simultaneously w i th convolution infer
ence. However, to prove the hypothesis about subst i tut ing conventional memory access, 
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experiments should be performed on a model that is more sensitive to weight errors and 
has more layers because LeNet-5 no longer offers any layers for further experimentation. 

6.8 Mob i l eNe t App rox ima t i on 

Bui ld ing on the LeNet-5 experimentation, which ult imate ly demonstrated insensit ivity to 
errors introduced by approximated solutions, thereby making the in i t ia l weight sensitiv
ity survey irrelevant, Mob i l eNe tV2 was selected for subsequent experiments to acquire re
spectable model performance metrics that are widely accepted i n the scientific community. 
The objective is to verify whether the a lgor i thm performs effectively on other layers as well. 
Addit ional ly , a threshold's influence on accuracy loss and energy w i l l be examined, pr imar
i ly to determine whether the threshold affects reduced energy consumption at the expense 
of model accuracy. It is also hypothesised that energy consumption may be significantly 
influenced by the number of missing weights that need to be approximated from scratch. 

6.8 .1 E x p e r i m e n t a l S e t t i n g 

Mobi leNet offers 52 convolution layers for experimentation, which were examined using 
four thresholds: 0, 1, 5, and 11. Due to the complexity of the experiments, thresholds 
0.5 and 2 were omitted, and a rounded average value was chosen instead, corresponding 
to threshold 1. Furthermore, the number of experimental runs was reduced from th i r ty to 
twenty, al lowing the patience parameter to be increased from 2,500,000 to 10,000,000. A s 
a result, evolution should have enough time to find energy-efficient solutions. Contrary to 
the previous experiment, a grid of size 256 x 31 was used, as the introduced opt imisat ion 
appears to function w i th smaller grids without complications. 

To further challenge the compression algori thm, every layer was approximated using 96 
weights. Weight uniqueness was not guaranteed, as the input weights consisted of the first 
96 weights i n every layer, and no uniqueness check was performed. The reasoning behind 
this approach is the suspicion that there is a correlation between the number of different 
weights and energy ut i l isat ion. 

It is important to note, however, that there was an error i n calculat ing the tota l thresh
olds 3 , which is negligible for non-zero thresholds. Nonetheless, threshold 0 allows one weight 
to be off by one, sl ightly skewing the results for this threshold category. 

6.8.2 G l o b a l R e s u l t s 

Before delving into a comprehensive analysis at the layer level, a descriptive analysis was 
performed to identify key aspects for further focus. A s standard practice, a stat ist ical 
analysis using a boxplot graph was performed, which can be seen i n Figure 6.12. 

For the first t ime, the boxplot graph revealed concerning information regarding poor 
approximation performance. Nonetheless, this poor performance provided much more valu
able insights compared to the LeNet-5 experiments. To identify the root cause of the per
formance degradation, two addit ional boxplots were created to show how layers react to 
compression indiv idual ly . The first boxplot examines accuracy, as depicted i n Figure 6.13. 
O n the positive side, only a few layers show a drop i n accuracy, which is not a cr i t ica l issue 
as it only concerns more lenient thresholds. 

3 t h e th r e sho ld f unc t i on was c o m b i n e d w i t h the q u a n t i s a t i o n error func t i on , w h i c h adds one to the t o t a l 
error 
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Mobi leNetV2: Dig i ta l Circui t Metrics 
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Figure 6.12: Descriptive layer analysis of the Mob i l eNe tV2 model. A t first glance, it is ap
parent that some layers were not properly approximated. Moreover, precise approximation 
exhibits worse energy consumption than buffer memories. However, they s t i l l outperform 
D R A M . 

Wha t is more interesting is the intersection w i th Coupek's results [81], who tested the 
model using his compression a lgor i thm on subsets of ImageNet. Layers 1, 7, 41, and 50 
were identified as sensitive i n his study as well. Addit ional ly , this experiment identified 
even more sensitive layers, which are l isted in Table 6.6. 

Mobi leNetV2: Accuracy Loss by Layer 
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Figure 6.13: Detai led analysis of accuracy losses across a l l layers i n the Mob i l eNe tV2 feature 
extraction sequence. 

Similarly, the second boxplot, as shown in Figure 6.14, was created to capture energy 
ut i l isat ion. In Mobi leNet , precise approximat ion appears to be quite costly. However, in 
terms of target energies, it s t i l l performs better than D R A M , although it starts to lag 
significantly behind buffer memory. 

Lastly, to conclude this section, a Pareto front showing a l l found solutions was plotted to 
i l lustrate how each threshold influences phenotype energy consumption, as further explained 
in Figure 6.15. F r om the figure, it can be determined that smaller thresholds are less l ikely 
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Mobi leNetV2: Energy Consumption by Layer 
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Figure 6.14: Layer-wise overview of energy consumption in the Mob i l eNe tV2 model. 
Threshold 1 demonstrates very efficient energy ut i l isat ion, despite being only sl ightly stricter 
than threshold 0. 

to incur major accuracy losses, a trend more pronounced in Mobi leNet than in LeNet-
5. To verify this hypothesis, the Pearson correlation coefficient was examined for every 
threshold. Surprisingly, a significant positive correlation between the error metric and 
accuracy loss was only found in higher thresholds. Conversely, threshold 0 exhibited a 
significant negative correlation. Threshold 1 does not show any significant correlation. 
These results should show consistent correlation results. However, it might be attr ibuted 
to diverse layer sensitivities. Therefore, an addit ional M a n n - W h i t n e y U test was conducted 
on thresholds 0 and 1 to prove that a lower threshold outperforms a higher threshold in 
terms of mean accuracy. 

Mobi leNetV2: Found Solutions Across Layers 
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Figure 6.15: The relationship between energy consumption and traded-off accuracy. W i t h 
less strict accuracy requirements, energy efficiency increases. In the Mobi leNet model, the 
threshold has more influence on evolution and further supports the hypothesis that lower 
errors tend to have lower accuracy losses. O n the other hand, evolution is hampered by 
error constraints and cannot find more energy-efficient designs. Moreover, threshold 11 is 
excessive, blending in w i th threshold 5. 
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Mean Accuracy [%] Accuracy Loss [%] 
M S E Threshold 5.0 11.0 5.0 11.0 
Layer Index 
0 66.8296 66.2173 4.7664 5.3787 
1 38.8818 34.423 32.7142 37.173 
2 65.0151 61.5361 6.5809 10.0599 
5 68.7168 68.4704 2.8792 3.1256 
7 67.0231 64.6437 4.5729 6.9523 
8 65.343 66.5954 6.253 5.0006 
11 65.7302 66.2717 5.8658 5.3243 
13 68.1062 68.4975 3.4898 3.0985 
20 68.8861 - 2.7099 -
31 66.0348 67.2503 5.5612 4.3457 
32 65.029 67.9837 6.567 3.6123 
41 66.8136 67.8289 4.7824 3.7671 
50 67.5964 67.5147 3.9996 4.0813 

Table 6.6: Mean accuracy and accuracy loss for different M S E thresholds and layer indices 
in Mob i l eNe tV2 . On ly layers w i th more than two per cent accuracy loss were listed. 

To test whether a l l thresholds differ from each other, the Kruska l -Wal l i s H-test was em
ployed. The Conover test result does not indicate a significant difference between thresholds 
5 and 11, suggesting threshold 11 was redundant. 

6.8.3 H i g h T h e s h o l d s L i m i t a t i o n s 

As mentioned previously, several layers experienced significant degradation. To investigate 
this issue, two of the most affected layers were examined closely. Specifically, two Pareto 
fronts were constructed, as shown in Figure 6.16. Unexpectedly, one of the Pareto fronts 
does not even contain a single dominat ing solution belonging to threshold 0. A similar 
s ituation was also observed i n the global Pareto front (Figure 6.15), though in this case, it 
occurs at the layer-wise level. 

Moreover, i n layer two, the highest thresholds showed insignificant accuracy losses, 
although threshold 11 is more energy-efficient on average and also offers one dominant so
lut ion. Regarding the degradation problem, it seems these layers are just more sensitive to 
error loss, which highlights the problem w i th the chosen opt imisat ion error metric. How
ever, the threshold-accuracy hypothesis s t i l l holds as threshold 0 significantly outperformed 
threshold 1. Nevertheless, one pattern recurs i n every instance, and that is the relationship 
between energy and threshold. 

6.8.4 E n e r g y C o n s u m p t i o n 

A recurring theme when analysing Pareto fronts is that the thresholds are clustered together, 
at least for Mobi leNet . Th is is expected, as achieving higher accuracy requires more energy 
to reach precise weights. The question is, what drives this in the background? 

Bu i ld ing on the insights from LeNet-5 experiments, a function energy hierarchy was 
identified. The hierarchy consists of three tiers, start ing from the most energy-efficient and 
gradually decreasing i n efficiency. The first tier consists of bit shift operators and constant 
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Mobi leNetV2: Discovered Solutions on Layer 1 Mobi leNetV2: Discovered Solutions on Layer 2 
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Figure 6.16: Re lat ion between energy consumption and accuracy of the two most erroneous 
layers. A n interesting observation appeared i n solutions w i th threshold 5. It seems it 
has the potential to be energetically as performant as threshold 11. However, evolution 
struggles to evolve such solutions. 

functions, which do not consume any energy. In the second tier reside bit operators and 
unary ari thmetic functions. The least efficient tier comprises the remaining arithmetic 
operators. 

To infer a new weight solely from bit shifts, it is possible to create an addit ional seven 
weights from one weight i n the best case. In a hypothet ical scenario where the only input is 
zero, it would depend on constant functions to create weights of power two. Subsequently, 
it would supposedly strive to bu i ld new weights from bit operators and, i n the worst case, 
from ari thmetic operators. 

This reasoning formed a hypothesis from the section introduct ion, which now wi l l be 
rephrased into a modified version. The new hypothesis states that the more weights evo
lut ion needs to infer, the more energy is needed to acquire precision. To assist w i th the 
hypothesis assessment, this relation was plotted i n Figure 6.17. 

MobileNetV2: Impact of Miss ing Weights on Energy Consumption 
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Figure 6.17: Relat ionship between the energy required and missing weights per threshold. 
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A strong linear correlation was identified among a l l thresholds except threshold 11 which 
approximated everything to zero (best seen in Figure 6.12). This explains why the single-
channel experiment worked on aggressive threshold settings without problems. It needed 
to approximate just 64 weights, while the LeNet-5 approximat ion experiment had to infer 
125 unknown weights, almost doubl ing the amount. 

6.8.5 C o n c l u s s i o n 

To conclude the whole experiment, threshold selection is essential, as demonstrated by se
lecting threshold 11, which was, i n most cases, outperformed by threshold 5. Similarly, the 
same applies to the least lenient thresholds 0 and 1, where the best solutions achieving per
fect accuracy per layer are shown in Figure 6.18 and Figure 6.19. A l l ow ing weights to have 
some error enabled evolution to find more energy-efficient solutions while not decreasing 
model accuracy. 

Mobi leNetV2: Lowest Energy Consumption per Layer at Threshold 0 
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Figure 6.18: Energy efficiency of the perfect solutions using threshold 0 without inheri t ing 
any accuracy loss. 

Mobi leNetV2: Lowest Energy Consumption per Layer at Threshold 1 
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Figure 6.19: Energy efficiency of the perfect solutions using threshold 1 without exhibit ing 
any accuracy loss. 

Unfortunately, these solutions are not the most opt imal . Other better solutions w i th 
non-zero errors were omitted, as they have not been tested together as one piece to prevent 
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unexpected outcomes, as happened when testing error-threshold correlation. Th is is a 
major flaw of this experiment because it is unknown how these compression functions would 
integrate together. 

6.9 Impl icat ions and L imi ta t i ons 

A lgo r i thm viabi l i ty was experimentally tested on mult iple diverse test scenarios, challenging 
the a lgor i thm in different aspects. The pr imary strength of the a lgor i thm is its abi l i ty to 
find decent solutions without needing any weights, as demonstrated in Figure 6.20. 

LeNet-5 (QAT ) : No Input Circui t Metrics 
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Figure 6.20: Add i t i ona l LeNet-5 experiment conducted w i th the same setting as the Mo-
bileNet experiment. The only change is that the input is only zero, and the output consists 
of every single convolution weight. The evolution is supposed to approximate 237 unique 
weights. 

It was discovered that input weights significantly simplify the evolution process and help 
evolution find more energy-efficient solutions by providing extra bits for approximation. 
Th is can be observed in the previous image, where energy ut i l isat ion is worse compared to 
other LeNet-5 experiments due to the fact that energy-free evolvable numbers are powers 
of two and provided constants. 

The major l imi ta t ion is that despite the mult iplexer function being supported, it is 
hardly usable because of the t ime it needs to evolve accurate solutions. Furthermore, every 
multiplexer consumes energy, which is cumulative. One experiment was conducted just to 
highlight these shortcomings, as portrayed in Figure A . l . 

In the case of non-mult iplexed opt imisat ion, the biggest problem turned out to be 
the error metric function. Every model reacts differently to weight changes, which might 
influence accuracy metrics that do not significantly correlate w i th the chosen error metric. 
Th is was mainly a concern in the Mob i l eNe tV2 model, which has several sensitive layers. 
Some of them suffered major performance losses. Nonetheless, the error metric s t i l l serves 
as a good estimate. It would be much better if some predict ion method or model evaluation 
occurred while evolution is s t i l l ongoing, although one must be careful not to slow evolution 
too much. 

The last l imi ta t ion is that the Mobi leNet network was not tested as a complete unit , 
leaving potential approximated circuit cooperation in question. 
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Chapter 7 

Conclusion 

A novel Convolut ional Neura l Network weight compression algor i thm was proposed to de
sign a more energy-efficient mechanism to replace conventional memory access methods 
involving R A M or buffer memories. The idea stems from the fact that memory access is 
an energy-intensive operation [12], significant enough that it could be replaced by a digi
ta l circuit performing computat ion i n the background. Thus, the goal was to provide an 
alternative that utilises more hardware, such as F P G A or A S I C . 

To accomplish this, the Cartesian Genetic Programming algor i thm was employed to 
evolve circuit designs based on multi-objective opt imisat ion, pr ior i t is ing smal l convolution 
weight errors and min ima l energy consumption. In i t ia l experiments on the LeNet-5 [44] 
architecture yielded promising results, w i th the a lgor i thm finding solutions without con
suming any energy while maintaining high model accuracy. To ensure robustness, further 
experiments were conducted on the state-of-the-art Mob i l eNe tV2 [57]. 

These experiments revealed that each layer reacts differently to weight changes and 
highlighted some algor i thm l imitat ions, such as energy opt imisat ion, which depends signif
icantly on the missing weights that need to be approximated. Despite this, the algor i thm 
st i l l found better solutions than conventional memory access. However, compressing mul t i 
ple layers at once remains a drawback, as the implementat ion is incomplete from a hardware 
perspective. 

A mult ip lex ing method was implemented to address this, but its evolution speed was 
impract ica l for real-world use. The same technique was adopted into non-mult iplexing 
designs which enabled the approximation of Mob i l eNe tV2 and larger quantities of weights. 
Th is presents an opportunity for further research into multi- layer compression to accomplish 
circuit gate reuse. 

The research contributes to energy-efficient neural network use, especially i n resource-
constrained environments such as mobile devices and embedded systems, making them more 
sustainable and cost-effective. It demonstrated the feasibility of approximat ing convolution 
weights using Cartes ian Genetic Programming, showing that energy opt imisat ion depends 
on input weights and the number of unique output weights to be optimised. Several solu
tions exceeded the energy efficiency of conventional memory. Future research could focus 
on overcoming current l imitat ions, improving the mult ip lex ing method's evolution speed, 
and integrating approximated circuits. Further studies could also explore apply ing this 
algor i thm to other neural network architectures and combined opt imisat ion approaches. 
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Append i x A 

Mul t ip l exed Approx imat ion 

LeNet-5 (QAT) : Mult ip lexer Circui t Metrics 
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Figure A . l : The Last LeNet-5 experiment was conducted w i th a similar setting as the 
Mobilenet experiment, except patience was set to 2,000,000 w i th mult ip lex ing enabled and 
the error threshold set to one. A t first sight, the energy usage is noticeably high, and the 
t ime taken compared to generations shows a very slow evolution t ime. The gate count 
is also very high due to mandatory multiplexers. In terms of weights, one of the first 
approximation techniques was used, meaning the kernel core was approximated to outer 
borders. 
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