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Abstract 
Fiduciary markers form the base for camera pose estimation for many Augmented Reality applica
tions, when a fast and robust solution is required. In this thesis an efficient marker-based camera 
pose estimation is outlined for Uniform Marker Fields with several real-world applications. The 
proposed algorithm is highly efficient and works in real time even on multiple platforms, including 
mid-range smartphones. On-screen markers are used to establish relative pose between devices for 
task-migration and information reaccess. In movie production, the described camera pose estima
tion as part of the chromakeying process, provides content creators real-time preview. Results show 
that the described detection algorithm performs comparably to other marker-based methods and it is 
several times faster. The implemented applications provide viable - cheaper and faster - alternative 
to existing solutions. 

Abstrakt 
Definované markery tvoří základ určování polohy kamery pro velké množství aplikací s rozšířenou 
realitou, v případě že jsou přísné požadavky na rychlost a robustnost. Tato práce popisuje účinnou 
metodu pro určení pózy kamery pomocí Uniformního pole markerů a několik realistických aplikací 
na bázi popsané metody. Metoda je velice výpočetně levná a poskytuje spolehlivou detekci pro 
několik výpočetních platforem, včetně běžných chytrých telefonů. Markery jako část zobrazené 
informace na monitorech jsou použité v této práci pro určení relativní orientaci mezi poskytovatelem 
obsahu a uživatelským zařízením, sloužícím pro výběr prvků uživatelského rozhraní při interakci 
a migraci úkolů. Ve filmařském průmyslu poskytuje popsaná metoda pro zjištění polohy kamery 
jako součást klíčovaní pozadí filmařům živý náhled virtuální scény. Výsledky ukazují, že popsaná 
metoda pro detekci pole markerů má srovnatelnou úspěšnost a přesnost v porovnání s ostatními 
metodami na bázi markerů a je několikrát rychlejší. Aplikace zahrnuté v této práci podle výsledků 
testů jsou životaschopné - rychlejší a levnější - alternativy k existujícím řešením. 
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Chapter 1 

Introduction 

Augmented Reality (AR) is viewed as a variation of Virtual Environments. While immersed in a 
Virtual Environment, the user is limited to seeing only virtual objects. Augmented reality, on the 
other hand, simply enhances the real world with virtual objects. Azuma [ ] proposed a commonly 
accepted definition of augmented reality systems from 1997. Such system is required to have three 
characteristics: combines real and virtual environment, it is interactive in real time and registered 
in 3D. This definition does not allow simple 2D overlays or (non-interactive) movie effects. On the 
other hand, augmented reality based applications on contemporary mobile devices clearly fit all the 
required characteristics. 

Presumably, the first augmented reality interface was introduced in the 1960's by Suther
land [ ]. Since then, augmented reality has found utilization in many fields from industry through 
military to medical care and training. The availability and the number of possible applications of 
augmented reality systems rose recently considerably thanks to the advances in mobile comput
ing, which made powerful, yet small and cheap multimedia devices a commodity. Nonetheless, the 
progress of technology on the hardware side still lacks behind in unobtrusiveness and a breakthrough 
for augmented reality to be used in everyday life is still in the future. 

Aside from the hardware limitations, the current state of research in technology is mostly 
focused on sub-parts of an augmented reality system, which only enable the theoretical usage of 
such systems. Exhaustive research on user interactions, on integration into real-world applications 
and establishing common usage patterns is still missing. In other areas, especially in real-time 
realistic rendering of virtual objects and tracking of real-world objects, great progress has been 
made. 

This work is focused on real-time camera pose tracking. The current state of the art in several 
areas, such as marker-based tracking, feature point matching and tracking has achieved great 
maturity. Objectively, there is still progress to be made in this field to enhance robustness, reduce 
computational complexity and increase scalability to mobile devices. In this work I included an 
overview of the above mentioned tracking of the camera pose relative to real-world objects. I 
pinpointed current limitations and established possible future directions with a focus on methods 
with extremely low computational and memory requirements. 

For augmented reality applications and other similar problems in computer vision, camera 
localization within a captured scene is crucial. Camera localization can be done either by using 
fiduciary markers [ ] or without them (by using P T A M [ ], keypoint template tracking [167], 
homography-based [127], etc.). In this thesis, I investigated and improved upon marker-based 
approaches. 

I also analyzed new use-cases and scenes where fiduciary markers are acceptable. A challenge 
in this area is the requirement for detection and localization algorithm to be extremely fast (to 
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work in real time on mid-level ultramobile devices) and to localize the camera from a single frame 
(i.e. without temporal tracking and mapping). I have done comprehensive testing of the proposed 
systems and algorithms. 

For many use-cases it is acceptable to allow for perfectly planar markers - placed on a tabletop, 
a wall, computer screen, etc. The challenge in this case is that the marker must cover a large 
planar area and, at the same time, it must be reliably detected even from a small visible portion 
of the marker. Also, the detection must be invariant to high degrees of perspective distortion and 
to varying lighting conditions (direct light, shadows, different lighting intensities). What marker 
design and corresponding detection algorithm can meet these requirements and, at the same time, 
be aesthetically appealing? 

Conventional approaches use disjoint markers such as the ARTag [41], A L V A R [2], or C A L -
Tag [ ]. Marker-based solutions such as ARTag and A L V A R (a number of other similar solutions 
exists) are using square black-and-white markers with their identity digitally encoded. One part of 
the marker's design is used for the marker's localization (typically the outer black/white rim) and 
another part is used for distinguishing between individual markers (typically inner content of the 
square). An array of such individual markers is used to cover a larger planar area. CALTag [ ] alters 
black-and-white with white-and-black (inverse) markers and attaches the markers one to another. 

An approach to be able to detect the camera position even from a small part inside a larger 
marker are the Random Dot Markers [166] by Uchiyama et al. They are detecting and tracking 
fields of randomly displaced dots on a solid background using geometric features. The field of 
random dots can also be used as a deformable marker [165]. 

None of the above mentioned approaches fulfills the requirements set as the goals of this work: 
scalable size, reliable and robust detection, and efficient algorithm suitable for ultra-mobile devices. 
ALVAR, ARTag, CALTag and similar approaches have very efficient algorithms, but allow only 
small individual markers and require complex setup and calibration, if a larger area is to be used. 
Random Dot Markers' marker design theoretically allows for scalable sizes, but the detection 
algorithm is far from efficient. 

These limitations lead to the development of Uniform Marker Fields by me and my colleagues. 
My most important contribution was the research of efficient algorithmic approaches and their 
maximally efficient implementation on multiple computing platforms. The marker design and 
synthesis were done as a joint research with Michal Zacharias, Adam Herout, Jiff Havel - my 
contribution to these parts was secondary. Based on the developed technology of UMF, we opened 
space for a few distinct applications. 

1.1 Summary of Contributions 

This thesis contributes to the state of the art of fast camera localization using artifical markers. It ex
plores the possibilities of designing artificial markers for efficient and precise camera pose estimation 
and opportunities to utilize these advantages in the fields of augmented reality, movie production and 
human-computer interactions. This work describes the design decisions and proposed algorithms 
for efficient detection of the Uniform Marker Fields. 

The proposed algorithms and proposed utilization of the designed systems are general in the 
sense that they are not limited to Uniform Marker Fields. Parts of the detection algorithm for the 
Uniform Marker Fields and applications are separate contributions and are ready to be re-used in 
other areas. The most notable of these contributions follow. 

Efficient detection of planar grid structures using vanishing points. 
In the industrial manhattan world, the occurrence of tile-based structure is frequent. Many 
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marker based approaches rely on tiles of black and white fields to encode information (ARTag, 
ALVAR, QR code) or to get reliable points for the camera pose estimation. However, these 
approaches use only corners or special local image features to localize the markers (silent 
areas, length-ratio on line segments, circular patterns, etc.)- The proposed method in this 
thesis uses a global approach to detect the grid of tiles as a whole. This is the key part of the 
camera pose estimation algorithm for the Uniform Marker Fields. 

Novel approach to real-time virtual camera. 
Contemporary virtual camera systems used in movie production to replace image segments 
with virtual objects use complex and expensive hardware and software setups. A challenging 
component in these systems is the real-time camera pose estimation for live scene previews 
and storyboarding. This thesis describes an approach that works on commodity mobile 
devices in real time. 

Estimating relative pose for human computer interactions. 
The growing number of user-owned smart devices equipped with camera opened the door 
towards new inter-device interaction techniques. Visual one-time transfer of data with limited 
size between devices already exists (QR codes, V R codes). This thesis discusses a novel 
interaction technique that uses continuous information flow for interaction. This is achieved 
by establishing and tracking the smart devices' camera pose relative to the information 
provider. 

Cross-platform efficient implementation of proposed methods in real-world use cases. 
With technological advancement, the number of available computational platforms grows. 
Mobile architectures focus on low power consumption with rich support for auxiliary sensors, 
while desktop architectures aim for maximum possible performance and ease of development. 
The methods described in this thesis were implemented with both these platforms in mind. 
An efficient, low-memory footprint algorithm is especially important on mobile platforms, 
where the computational power is relatively low. 

1.2 Authorship 

Although most of the work presented in this thesis is my own, some parts resulted from a collabo
ration with colleagues. 

Adam Herout has contributed to my work with many ideas and consultations. He proposed 
first the usage of de Bruijn sequences as a perspective direction to solve the limitations of state-of-
the-art marker designs. The initial visual design and synthesis of such markers (Uniform Marker 
Fields) were done as a joint research with Michal Zachariáš, Adam Herout and Jiří Havel - my 
contribution to these parts was secondary. My contribution related to Uniform Marker Fields was the 
proposal of an efficient detection method, its refinement into a practical algorithm and experimental 
evaluation. Jiří Havel's research and consultations were pivotal during this process, who laid down 
the mathematical bases of efficient vanishing point detection. 

Markéta Dubská proposed the first basic principle of using fiduciary markers as part of a green-
screen for cheap camera pose estimation in movie production. I refined this idea into a practical 
algorithm and tested in the experiments presented in this thesis. 

Rudolf Kaj an proposed the system for continuous inter-device communication. This system 
included the module for relative pose estimation using the camera stream as a bases for interactions. 
The parts relevant to this module in this thesis are my own work. 
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1.3 Text Structure 

This thesis covers a wide range of research areas ranging from computational geometry, through 
low-level computer vision to real-time rendering. Given the difficulty to separate state of the art 
and contributions without sacrificing clarity for the reader and natural flow of the text, I describe 
some of the findings from secondary research areas only as they become relevant. 

The discussion of existing publications for the main research area: augmented reality and camera 
pose estimation are described in Chapter 2. This is followed by the introduction of Uniform Marker 
Fields (Chapter 3). In order to prove practical value of the Uniform Marker Fields, it was adapted 
to fit various settings. These are described along with the state of the art of the relevant research 
fields in Chapter 5 and Chapter 6. 

4 



Chapter 2 

Camera Pose Estimation and Tracking 
in Augmented Reality Systems 

Augmented reality systems are complex systems consisting of many individual sub-parts or sub-
modules from a broad range of fields concerning computer vision, computer graphics, hardware 
sensors, robotics, etc. The research on augmented reality is in consequence highly fragmented. 

An up-to-date definition of an augmented reality system is elusive in the literature. Almost 20 
years before writing this thesis, Azuma [ ] provided a definition, that has been generally accepted 
by the research community. He states, that an augmented reality system has to have the following 
three characteristics: 

1. Combines real and virtual 

2. Interactive in real time 

3. Registered in 3-D 

This definition was associated only with visual systems and did not consider haptic environments, 
although the ambiguity of the definition allows them. There is also confusion, if 2-D overlays 
could be considered part of this definition. Azuma [ ] states, that "it does not include film or 
2-D overlays". Yet, 2-D overlays, where only the on-screen position of the overlay is changed to 
match the real 3-D object's on-screen position is accepted as an Augmented Reality system in the 
literature [ ]. Such system clearly does not have to fulfill the third point of the definition and 
only partially the first point. 

Recent advancements in the field are pushing the boundaries of what could be considered an 
augmented reality system. SoftAR [ ] changes only the appearance of real objects to translate 
haptic into visual feedback, challenging the concept of mixing real and virtual objects in an A R 
system. Similarly, IllumiRoom [ ] brings the virtual world out from the conventional screen-space 
dimensions. Bork et al. [22] combine visual and auditory feedback showing that multiple sensory 
feedback is beneficial. These are only a few examples to demonstrate the wide spectrum A R 
applications cover and how open the concept of an augmented reality system have become. 

The overwhelming majority of contemporary A R systems solutions use exclusively visual 
information. Even the strict definition of augmented reality systems by Azuma [ ] does not specify 
the characteristics of devices used for registering 3D position. Besides optical sensors, as the most 
common sensor used at present, magnetic, acoustic, inertial, GPS, mechanical and other sensors 
can be used. Using captured images alone for 3D registering is sometimes insufficient and require 
relatively large computation power. 
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The aforementioned inertial and location sensors all represent open-loop systems. A l l of them 
have their advantages and disadvantages [138], but in recent systems they are rarely used alone. 
They appear primarily in combination with visual sensors. They are used for prediction, enhancing 
precision and robustness. Research in this area is mainly focuses on how to combine the inputs from 
different sensors. Newman et al. [109] proposed an approach, called Ubiquitous Tracking, where 
heterogeneous and widespread tracking sensors are automatically and dynamically fused. More 
recently Oskiper et al. [11] combined monocular camera, MEMS-type inertial measuring unit with 
3-axis gyroscope, accelerometers and a GPS unit using an error-state extended Kalman Filter for 
wide-area augmented reality. An exception to using visual sensors as primary sources is a system 
developed by Newman et al. [108] based on an ultrasonic tracking system called Bat system, which 
could be used for wide-area augmentation using head-mounted display and a PDA. 

Registration 3D rendering 

i 
Detection & Camera 

1 
Matching — Homography 
points PnP 

Lighting 
estimation 

Interaction 

Camera 
calibration 

Figure 2.1: Simplified model of an augmented reality system. For each iteration, the system 
starts with gathering sensory input (Registration) and provides the user with an augmented view 
(3D rendering). Visual data, as the main source for camera pose estimation, needs to be further 
processed (Detection & Tracking, Matching points, Homography - PnP calculations). Other sensory 
information, like GPS or IMU, can be directly used for camera pose estimation. An A R system 
optionally includes several other modules. I gave three examples: Lighting estimation for realism, 
Interaction with virtual objets, Camera calibration for improved precision. 

For the remainder of this work, I will focus on augmented reality systems using cameras as 
main input sensors. Figure 2.1 contains a simplified model of such a system. The first step is 
registration - acquiring the input from different sensors. The visual data is then further processed to 
find important edges, corners, other reliable feature points and markers in the image. These points 
are then matched based on the model to 3D positions. The correspondences between the 2D and 
3D points can be used to calculate a homography, to get the global 6 degrees-of-freedom camera 
pose (position, rotation). As discussed above, other sensor input can optionally be used to improve 
precision (dashed line between Registration and Camera pose in Figure 2.1). Using the knowledge 
about the camera's internal parameters and its position and rotation, the system is able to augment 
the captured image or video with virtual objects. 

The three further modules: Lighting estimation, Camera calibration and Interaction are also 
important to achieve realistic results, good user experience and precise camera position estimation. 
Unfortunately, the research on interaction with the virtual environment is still in early stages. 

Lighting model estimation so far has been approximated using light probes or secondary fish-
eye cameras. Real-time lighting estimation from visual data is currently an active area of research. 
Jachnik et al. [66] presented an algorithm to estimate light-field represented by spherical harmonics 
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using specular surfaces by separating the diffuse and specular components of lighting. Gruber 
et al. [50] estimated diffuse-only lighting using real-time geometric reconstruction with the help 
of an RGBd camera. Even though both the aforementioned solutions ran in real-time, they both 
used a powerful desktop GPUs for computations. There is still research to be done before lighting 
estimation would be possible on mobile platforms. 

2.1 Camera Calibration 

In conventional A R systems, the user sees the augmented world through a display. The display 
is usually head mounted or hand-held. The display provides the user a view of the real world 
augmented with virtual objects. In order to correctly place virtual objects into the field of view of 
the observer device, a precise camera pose has to be calculated relative to the real world. 

Before any homography calculations could take place, the algorithms usually require prior 
knowledge about the camera's intrinsic parameters to be able to calculate a metric 3D camera 
pose [ ]. This information is either provided by the manufacturer of the lenses and chips, or it is 
acquired using camera calibration. For the camera calibration for monocular A R applications a pin
hole camera representation is used with constant intrinsic parameters. Techniques estimating these 
parameters can be classified into two main groups: photogrammetric calibration and self-calibration. 

For photogrammetric calibration a well defined 3D object with precise dimensions is observed 
with the camera in several positions. The object can be a full 3D model [ ], 2D plane [187, 115] or 
even a simple ID line [188]. An unconventional calibration method for static pin-hole camera's was 
proposed by Dubská et al. [ ]. They used the trajectories of automotive vehicles with statistical 
data of their sizes to compute vanishing points and consequently estimate the road-side camera's 
intrinsic and distortion parameters. 

The second class of techniques, self-calibration, does not require any calibration objects. In
stead, most methods in this category restrict allowed camera movement [ ] or rotation [ ] and 
presume a static scene. Luong et al. [90] showed that three images taken with the same camera of 
a static scene are sufficient to recover both intrinsic and extrensic parameters of the camera. Given 
the large number of parameters required by these methods, however, they tend to provide less stable 
and less reliable results. 

A well-known and often used method for camera calibration was proposed by Zhang et al. [187, 
186], thanks to its simplicity and easy setup. It uses several images of plain chess-board structure 
with different rotations and positions. For the next part I will follow their notation. Their algorithm 
assumes a pinhole camera, where the relationship between the projected p 2D point and real 3D 
position P is given by: 

sp = A ( R t ) P , (2.1) 

where s is a scale factor, R and t are the rotation and translation of the camera, and ~ means 
homogenous coordinates. In their camera model, A is the camera intrinsic matrix given by 

i a 7 u0\ 
A = 0 P v0\, (2.2) 

\0 0 1 / 

with (UQ, VQ) being the principal point, a and (3 the scale factors for the u, v axis and 7 parameter 
describing the skewness between them. Given this model, the approach described by Zhang et al. 
and also generally used in the literature is: 

1. Detect corners or other well known points in every input image. 
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2. Use the 2D - 3D correspondences to estimate the camera projection matrix (3x3 homography 
matrix): H = A (R t) . This projection matrix has 8 degrees of freedom. An initial 
estimate of the projection matrix can be acquired by linear least squares. The estimate is often 
further refined using non-linear optimization techniques (e.g. Levenberg-Marquardt [110]) 
minimizing minn J2i\Pi ~ Pi|> where p"j is the estimated position. 

3. Recovering the intrinsic matrix A from the projection matrix H has a closed-form solution. 
Given the intrinsic matrix the extrinsic parameters R and t can be recovered in closed 
form [188] as well. 

4. Until now the radial (k\,k2, k%) and tangential (pi,p2) distortion coefficients with (UO,VQ) 

as the center were ignored. Based on the literature, for desktop cameras the distortion is 
dominated by the first two radial components [188, 163]. These can be estimated using linear 
least-squares solution. More elaborated distortion modeling was found to cause numerical 
instability [98, 163]. 

s (x'y'l) = A (R t) P (2.3) 

x" = (x' - uo),y" = {y - v0),r = yfx"2 + y"2 (2.4) 

x = x + k\r2 + k^r + k^re + 2pix"y" + P2(r2 + 2x"2) (2.5) 

y = y' + kxr2 + k2rA + k3r6 + Pl(r2 + 2y"2) + 2p2x"y", (2.6) 

where s is an arbitrary scalar and x, y are the true image coordinates. 

5. Refining A , R , t and the distortion coefficients through a non-linear optimization (e.g. 
Levenberg-Marquardt [110]). 

In augmented reality applications where the camera stream is directly used for rendering, several 
assumptions are made usually about the camera model. Most of these assumptions relate to the 
properties of the rolling-shutter cameras that are used in prevalent majority in the literature and the 
limitations of real-time rendering engines. The skewness 7 between the axis is set to 0, assuming 
90° between the x and y axis. In reality, rolling shutter camera's 7 depends on the movement speed 
of the camera and sensor frequency. Modeling this behavior would require the prior knowledge of 
these and is not available during calibration from a static set of images. 

During the rendering of virtual objects, the pixels are assumed square and the center of projection 
is set to the center of the image. To match the square pixel assumption during calibration, a constant 
focal length is assumed: a = (3 = f focal length. Depending also on the used rendering software, 
often the supported camera model might be limited and ignores the camera distortion altogether for 
maximum performance. With fully calibrated camera model used to recover camera pose and no 
support for camera distortion from the rendering software, the virtual objects would be misplaced. 

A limitation of the described calibration procedure is the assumption of constant parameters. 
Changing the zoom level of the camera causes a non-linear change in camera parameters and are 
difficult to model for a continuous range of lens settings. Another difficulty arises with determining 
the current zoom level in real time. Variable-parameter lenses, hence, are not commonly used in 
Augmented Reality or Machine Vision [176]. 

In photogrammetric calibration, the most used calibration objects are chessboard patterns. The 
disadvantage of these approaches is that the whole chessboard containing the control points for the 
calibration has to be visible in the images. This is problematic especially at the corners. Oyamada 
et al. [120] proposed a method to lift this limitation. In order to allow partially occluded control 
points, they proposed the use of Random Dot Markers [ 166]. In a synthetic experimental evaluation 
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they showed that the correctly detected control points near the corners and edges of the calibration 
images increased the accuracy and stability of the camera parameter estimation (See Figure 2.21). 

2.2 Perspective-w-Point Problem 

In some computer vision applications, simple 2D homography between consecutive frames might 
be enough to track the camera movement. In augmented reality, however, most applications rely on 
acquiring the full camera position and orientation relative to a known origin. In these calculations, 
the camera's intrinsic parameters are assumed to be available (see Section 2.1). The problem of 
determining the camera pose given the correspondences between 2D and 3D points and the intrinsic 
parameters is known as Perspective-n-Point, where n refers to the number of correspondences. 
From this section onward, I stick to a notation most often used in the literature for Augmented 
Reality which is slightly different from the previous section. 

Generally, PnP solving algorithms try to solve the equations given by the pin-hole camera model: 

P i « K ( R , t ) r r i i (2.7) 

for unknowns 3 x 3 orthogonal rotation matrix R and translation vector t for each correspondence 
(pi,rrii). Points pi are the undistorted 2D projected points expressed as a column vector in 
homogeneous coordinates and 3D homogeneous column vectors rrii of the model points. K is the 
camera intrinsic matrix: 

( fx 0 cx\ 
0 fy Cy\, (2.8) 
0 0 lj 

where fx, fy are the focal lengths expressed in the same units as the projected points and (cx, cy) is 
the principal point. These equations are equivalent up to notation to equations (2.2) and (2.1) with 
the assumption of perpendicular axes. 

Solving PnP accurately is computationally expensive even with known camera calibration. 
Quan et al. [130] described an often used solution for fixed n = 3 (combined with R A N S A C for 
n > 3). Usually a fourth point is used for disambiguation between possible solutions. This is used 
with markers like ARTag [ ] or ARToolkit [76], which have exactly 4 corner points. For n > 3 
stable non-iterative approaches have complexity of 0 (n 5 ) [130] or even 0 (n 8 ) [6]. From iterative 
approaches, Lu et al. [89] described a very accurate algorithm, though slower than non-iterative 
algorithms without a good initial pose. 

More recently, Lepetit et al. [ ] proposed a non-iterative algorithm combined with Gauss-
Newton optimization algorithm with 0(n) complexity - EPrcP. They express the 3D points as a 

1 Image from: http://nicolas.burrus.name/index.php/Research/KinectCalibration 
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weighted sum of four virtual control points. Thus, they reduce the camera pose estimation to these 
four points only. Their solution assumes a simplified pinhole camera discarding all distortion. The 
undisrtotion of the projected points takes place before applying this method. They reduce the PnP 
problem to computing the eigenvectors of a 12 x 12 matrix and a constant number of quadratic 
equations. They propose to improve the precision of this closed form solution using Gauss-Newton 
scheme. They optimize four projection parameters for the virtual control points using the distance 
relationships between them. According to their testing, this improved the precision of their method 
to comparable levels to L H M [ ] (named after the authors: Lu, Hager, Mjolsness). They also 
showed that using EPrcP as the initial guess for L H M , they could reduce the number of needed 
iterations required by L H M . 

In an augmented reality setting, the temporal camera pose dependence between successive 
frames provides a good enough initial guess for iterative methods to reduce the number of needed 
iterations. Methods like EPrcP are still useful during initialization and when the tracking gets lost. 

The rising availability of builtin inertial measurement units in camera racks and smartphones 
provides opportunities to aid the camera pose estimation. These auxiliary sensors can help create 
more robust tracking, but also can be used to reduce the camera pose's degrees of freedom for 
the PnP problem. Sweeney et al. [154] introduced a robust camera pose estimation from only two 
2D-3D correspondences assisted by prior knowledge of the gravity direction. Their method requires 
only solving a single quadratic equation. 

Although there has been active research in all areas concerning augmented reality systems, 
tracking methods for camera pose estimation have high popularity [189]. In Figure 2.1, this 
concerns mostly the four bottom sub-systems: Detection & Tracking, Point matching, Homography 
or PnP calculations and Camera pose calculations. Section 2.3 summarizes the current state of the 
art in this area. 

2.3 Vision-based Tracking Techniques 

Vision-based tracking have been a very active area of research in augmented reality. It allows to 
calculate the camera position with high accuracy compared to other sensor based techniques. They 
represent closed loop systems, since they can use results from previous steps and correct errors 
dynamically. 

Vision-based tracking methods can be separated into two main classes based on the used 
information from the image: feature-based and model-based. The feature-based methods try to find 
a correspondence between 2D image feature points and 3D world frame coordinates. Feature-based 
methods can be further split into two groups based on the type of the features used for detection: 
fiduciary marker based tracking methods (Section 2.3.1) and natural image feature based tracking 
(Section 2.3.2). 

Model based tracking methods explicitly use the features of tracked objects, which have a 3D 
model known beforehand. This technique is often combined with methods based on natural features. 
The texture of objects provides more easily trackable features and is usually more dominant than 
the shape of the objects. These approaches are discussed in Section 2.3.3. 

As mentioned at the beginning of Chapter 2, computer vision methods alone are not sufficiently 
robust against rapid camera movement. Several hybrid methods have already been discussed above. 
A more detailed discussion of the state-of-the-art hybrid methods is in Section 2.4. 
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2.3.1 Approaches Based on Fiduciary Markers 

Historically and also in recent literature many augmented reality based research is using fiduciary 
markers to reliably establish the camera position within the scene. The first vision-based camera 
pose tracking techniques achieved real-time camera pose estimation thanks to these fiduciary mark
ers. Such markers are typically two-dimensional planar black-and-white images placed into the 
scene. When the camera captures a marker in its entirety or a significant portion of it, the homog-
raphy between the observed projection and the known location within the scene can be accurately 
computed. 

By (fiduciary) markers in this and the following sections a synthetic 2D pattern is meant, which 
was designed to be easily found and used as a source for 2D to 3D correspondences. Popular designs 
of fiduciary markers consist of two components: geometrical features which help localize the marker 
in the processed image and features defining the identity of the marker (for example [41, 43, 76]). 
That allows for placing several (or many) markers into one scene and their efficient detection. Usage 
of several markers displaced within the scene is necessary to allow for free movement of the camera 
within the scene. 

' • • H I 
! • • ( • • • 

H i 

Figure 2.3: Landmark detection and identification by Stricer et al. [1 
center and on the right an example application. 

] on the left. Tracking in the 

Rekimoto [136] in 1998 has shown an approach to combine pattern recognition and pose 
calculations. He used square markers with binary encoded information in combination with adaptive 
thresholding and connected component analysis for marker detection. Strieker et al. [150] also 
presented an optical tracking system which tracked square markers, but it was able to track linear 
features of landmarks, too. To achieve real-time performance, they used scanlines and edge pixel 
connection to get edge lines in the initiation step (Figure 2.3). After the position was successfully 
detected, they used simple 2D linear extrapolation as predictions for the tracking. To uniquely 
identify each blob or rectangle in the image, they used a labelling area with binary codes represented 
by red color overlay. 

ARToolkit 

The ARToolKit library was first presented in 1999 [ ]. Even though the detection algorithm 
has disadvantages and newer, more robust methods were introduced, it is still used in research in 
augmented reality as a fast and simple solution. The detection algorithm of the markers is based 
on binarization with adaptive threshold (see Figure 2.4). Image regions after the thresholding, with 
contours that could be fitted by four line segments, are considered candidate positions for markers. 
The identity of the markers is determined by first rectifying and then matching the contents of 
the regions to a set of templates. The corners of the marker are then matched to their known 
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3D positions. Based on these correspondences, the algorithm estimates and iteratively refines the 
camera pose to achieve higher precision. 

Input Image 

0 
Thresholding Image Marker Detection 

Virtual Image Overlay Pose and Position Estimation 

Figure 2.4: ARToolkit [ ] tracking process. 

The disadvantages of the described detection algorithm are the relatively expensive template 
matching and adaptive thresholding. ARToolkit detection algorithm lacks robustness against occlu
sion of the borders. The use of template matching and computing correlation to verify and identify 
markers might cause high false positive rates or mismatch between markers with growing library 
size of templates or in less ideal shots in some situation (motion blur, lighting, depth of field, etc.). 
The number of marker templates with ARToolkit is also limited by computational performance. 
They store twelve prototypes for each marker in an effort to cover all four rotations and different 
relative lighting conditions. 

ARTag 

ARTag introduced by Fiala [ ] has tried to solve these problems (Figure 2.6). They combined 
Data matrix coding for marker identification with the rectangular thick border shaped markers used 
in ARToolKit. In the detection algorithm, they replaced the adaptive thresholding of image regions 
with thresholding of extracted edges. These changes improve detection performance and require 
lower computational complexity. 

Figure 2.5: From left to right MaxiCode, Data Matrix, Aztec Code and QR-code. 
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The most notable change introduced by ARTag is replacing the template image with digitally 
encoded information. There have been 2D barcodes already available to encode digital information, 
like MaxiCode used by the US Postal service, Data Matrix, Aztec code [ 1 ], QR-Code [ ] to mention 
a few (see Figure 2.5). These barcodes have been designed to be easily localized and to maximize 
data density and error-correction capabilities. They lack reliable reference points to be used for 
camera pose estimation compared with ARToolkit markers with the 4 distinctive corners. ARTag 
tried to combine the two approaches by replacing the image template in ARToolkit markers with 
encoded binary information. 

Figure 2.6: ARTag [ ] marker detection algorithm. 

ARTag contains a 2D 6 x 6 digital symbol array representing the encoded marker ID. They 
use 10 bits to store the ID and the extra 26 bits are used to provide redundancy and to ensure that 
the markers are uniquely identifiable in all 4 rotations. The ID encoding algorithm uses an XOR 
operation first to shuffle the bits, followed by Cyclical Redundancy Check (CRC) and Forward Error 
Correction (FEC) algorithms. The error checking and redundancy bits are also beneficial to rule out 
any false positives. 

ARTag also improves upon the quad detection from ARToolkit. Instead of binary image 
segmentation, the algorithm uses edge pixels over a predefined threshold linked into segments. 
These segments are further combined into quad segments. Using the segments, the algorithm is 
able to detect the marker outlines even if a corner is missing or the edge segments are broken by 
occlusion using heuristics of segments that almost meet. 

In their experiments, Fiala et al. [41] show vastly superior performance when compared to 
ARToolkit. ARTag still suffers from several design flaws inherited from ARToolkit. The individual 
markers are small and provide only 4 points relatively close together in projected image space for 
camera pose estimation. The camera pose estimation precision hence still suffers causing unpleasant 
jitter in the A R interface. 

In a follow-up work, Fiala [ ] combined several markers on a single plane of known relative 
position and rotation to improve the reliability of the camera pose detection (see Figure 2.7). He 
used this approach to provide a "magic mirror" system with acceptable accuracy and delay. One 
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Figure 2.7: Several ARTag markers combined into a single plane [42]. 

disadvantage of this approach is that individual markers are still detected and decoded separately, 
wasting computational time. The second disadvantage is that the relative position and rotations 
between markers contributing to a single reference frame have to be annotated manually. Only 
after each marker was detected, their corners are extracted and combined together based on the 
annotations to improve camera pose estimation precision. 

Composite Markers 

When relying solely on tracking based on fiduciary markers, any frame of the camera must contain 
at least one of the markers and the marker must be large enough in order to compute precise camera 
location. These requirements are contradictory. Installing markers everywhere is unreasonable, 
since they become too conspicuous and difficult to calibrate and set-up. Multiple marker solutions 
also still do not deal well with varying observing distance even when using differently sized markers. 
Even though a marker is always visible in the scene, a close-up on a large marker or a small marker 
observed from long distance makes marker identification and subsequently camera pose estimation 
difficult. 

Nested Markers [159] try to solve the contradictory requirements of small enough marker size 
to fit in the frame and large enough to realize accurate geometric registration by nesting a number 
smaller markers into a larger one. Their marker design is depicted in Figure 2.8. Their detection 
algorithm is still based on ARToolkit algorithm. The visual representation of the markers at each 
level are used as templates for identification. This, similarly to ARToolkit, leads to limitations on 
the size of the library of marker IDs due to false-positive rate and high computational complexity 
while identifying the marker. In their experiments, they consider a relatively low distance range 
with a nested marker with 3 layers (4cm to 80cm). This approach also does not consider large lateral 
movements. 

One of the latest improved techniques based on individual square based markers was proposed 
by Herout et al. [59], who introduced Fractal Marker Fields (Figure 2.9). They provide the ultimate 
solution to the contradictory requirements faced by pure marker-based approaches. These marker 
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Figure 2.9: Fractal Marker Fields [ ] with detected sub-markers. 

Their marker design is reminiscent of the QR code and ARTag (see Figure 2.10 left) with two 
black and white synchronization and validation patterns combined with encoded marker ID forming 
a border. In Figure 2.10 the remaining blank space in the middle and corners (gray color) is used 
to place further markers with different scales. This design is inspired by fractal designs - hence the 
name. They define three main and one additional rules, how the actual „marker field" is constructed. 
They state that theoretically a complete marker field containing 42 different marker sizes - levels, if 
the smallest markers were as small as 3 cm, the whole field would be 17 million km wide. Practically 
so many levels would decrease the contrast at larger scales, which could lead to loss of detection 
performance. 

Their proof-of-concept implementation of the detection algorithm using parallel coordinates is 
not included in the paper. I provide here a short description of the detection algorithm, as it served as 
an inspiration for one of the major contributions in this work - the Uniform Marker Fields detection 
algorithm. Their detection algorithm was based on an algorithm for detection of chessboard grids 
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Figure 2.11: Fractal Marker Fields [ ] detection algorithm using parallel coordinates. Left: Edges 
separated into bins based on direction. Right: the highlighted edges mapped to TS space. 

and matrix codes using parallel coordinates [ ]. The algorithm can be separated into four main 
steps: 

1. Edge extraction. Thresholded edges extracted by a computationally cheap edge detector 
are separated into two dominant edge orientations. These orientations are roughly 90° apart. 
Only edges with gradient direction close to these orientations are processed further. 

2. Accumulation to the Hough Space. For each group of edges with similar gradient directions, 
a small part of the complete Hough space is accumulated. The Hough space in their work 
is the TS space using parallel coordinates (Figure 2.11). The advantage of this space is that 
the vanishing points are represented as lines (green lines in Figure 2.11). The maxima in the 
Hough space, defining dominant lines in the image with a common vanishing point, coincide 
with the line representing the vanishing point. 

3. Finding Groups of Originally Parallel Lines Another interesting property of the TS space is 
that after stretching the vanishing line using the information about the two dominant vanishing 
points, equally spaced lines in the real world are represented by equally spaced maxima in the 
TS space. For both orientations, equally spaced clusters of maxima are found on the stretched 
line to recover their frequency. 

4. Extraction and decoding of the Marker Bitmap. Using the detected frequency of the 
detected maxima clusters, a parametric solution can be found for the module centers at each 
scale. At each scale, a bitmap is extracted and the synchronization patterns (Figure 2.10) are 
used to localize the actual markers. The localized markers are then decoded and verified for 
errors. Based on the recovered ID, the marker's real 3D position is known. 

Unfortunately, F M F was not researched further to create a full augmented reality system. From 
the marker design it is not well defined what information would be used to recover a full 3D pose. 
I hypothesize three different approaches. Due to the visual resemblance between F M F and the 
Uniform Marker Fields proposed in this work, these hypotheses apply to Uniform Marker Fields as 
well. 

Global solution The vanishing points for two axes were found during step 2. of the detection 
algorithm. This information is sufficient to recover the camera rotation. A single known 
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3D-2D correspondence is sufficient to detect the camera translation. This approach would 
provide a precise camera pose under the assumption that the camera was calibrated precisely 
and either the edge pixels or the whole image was undistorted during the vanishing point 
calculations. Given this assumption and precise vanishing point estimation, the computed 3D 
pose should be very precise. The computational complexity depends largely on the camera's 
distortion. With assuming insignificant distortion, this approach provides a computationally 
very efficient closed-form solution. The camera pose precision, however, would be highly 
sensitive to precise camera calibration and the precision of the vanishing point detection. 

Marker based solution Given the detected markers, a classical marker based camera pose estima
tion is possible. For each successfully detected marker, the marker's outer edge segments 
could be refined. The intersections of lines denned by these edge segments should define 
precisely the marker corners. These 4 corner points can be used to recover the camera's 
3D pose using a conventional closed-form P3P algorithm [ ]. If multiple markers were 
detected successfully, the camera pose can be iteratively refined from the initial guess. Using 
this approach, only the corner points would have to be undistorted. This approach would 
theoretically provide a good balance between camera pose precision and computational com
plexity. 

Corner based solution Corner points between modules of successfully detected markers can be 
extracted with sub-pixel precision. The real 3D position of these points can be recovered 
from the marker's ID. The 2D-3D correspondences could be used to recover a very precise 
camera pose using any PnP algorithm (Section 2.2). This approach would provide the most 
precise and robust camera pose estimation at the expense of high computational complexity. 

Fractal Marker Fields would be an ideal solution in large-scale situations, where markers are 
acceptable. Practical applications of the allowed freedom in scale is limited. In most real-world 
augmented reality applications: human-computer interaction, 3D visualization, medical training, 
etc. - 2-3 scale levels at most are sufficient. The biggest disadvantage of Fractal Marker Fields is 
the dependence on computationally complex detection algorithms. The Hough transformation and 
maxima detection is theoretically the most demanding. Alternative marker detection algorithms 
are difficult. The synchronization patterns (Figure 2.10) are not distinct enough for quick detection 
as for the QR code. Detecting the frequency at each scale without the global solution of Hough 
transform could also prove difficult. The undeniable advantages of the checkerboard structure and 
the effective use of vanishing points and line parametrization served as great inspiration for this 
thesis. 

Random Dot Markers 

One disadvantage of traditional square markers like ARToolKit [76] and ARTag [41] is the black 
frame. ARTag was able to reconstruct the marker frames if they were partially occluded, but neither 
approach is able to handle occlusion of corner points or a completely covered edge. 

Uchiyama et al. [ 166] used randomly scattered dots as fiducial markers (Random Dot Markers 
- Figure 2.12 left). Compared to traditional markers with square patterns, Random Dot Markers 
require slightly larger area, so that the camera could recognize the individual points for detection. 
On the other hand, random dot markers are more robust against occlusion. 

The detection algorithm assumes black points on white background. The algorithm first binarizes 
the image using a threshold to extract the black dots. The centroid of the extracted dot segments 
are used as keypoints. Each keypoint is then matched with the database and votes for the individual 
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Figure 2.12: Random Dot Markers [166] demonstrating robustness against occlusion. Right: 
Deformable Random Dot Markers [165] with detected mesh. 

marker ID. In their work, they reference Locally Likely Arrangement Hashing (LLAH) [ ] as the 
matching algorithm. 

In the original work describing L L A H for document page matching, Nakai et al. [ 106] use two 
different geometric invariants for the keypoint descriptions: cross-ratio and affine invariant. The 
cross-ratio uses 5 neighbor co-planar points A, B,C, D, E: 

P(A,B,C)P(A,D,E) 
P{A,B,D)P{A,C,EY K ' ' 

where P(A, B, C) is the area of the triangle with vertices A, B and C. The affine invariant requires 
only 4 points as the ratio between bordering triangles: 

P ^ D ) ( 2 10) 

The former is invariant to perspective transformation, while the latter is invariant only to affine trans
formation. Unexpectedly, Random Dot Markers uses the affine invariant, which would theoretically 
give worse results under perspective transformation. Since perspective view of the markers is very 
common in augmented reality applications, this choice should theoretically hinder the detection 
performance. 

The descriptors for a keypoint are computed as the affine invariants from 4 points for all 
combinations (2), n > 4 of n neighbor points. These descriptors are then hashed for fast retrieval. 
Overall, the matching algorithm has a very efficient O(N) computational complexity, where iV 
is the number of keypoints in the image. The camera pose estimation uses the correspondences 
between 2D positions of successfully identified keypoints and their known 3D positions from the 
database for the given marker. 

The advantage of Random Dot Markers is that it is not constrained by a square area and it 
has excellent robustness against occlusion. Theoretically any shape can be used for the marker. 
The disadvantages of their approach lie in the memory-intensive keypoint extraction, questionable 
choice of descriptors, and the sensitivity of the detection algorithm to the chosen dot size. Large 
dot size slows down segmentation and makes it difficult to extract the dot centroid precisely under 
various transformations. Small dot size limits the distance from where the marker is still detectable. 
Small dots also make detection difficult under motion blur, where the dots simply disappear unlike 
corner points of conventional markers like ARTag and ARToolKit. 
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Since the geometric descriptor uses only local arrangements of points, the Random Dot Markers 
could also be applied to slightly curved surfaces (Figure 2.12 [165]). This approach allows planar 
mapping of textures. For example it can be used to replace the dot marker on a T-shirt with arbitrary 
2D image. Full 3D camera pose estimation from a deformed surface would be unstable. 

Alternative Approaches 

Before the introduction of ARTag by Fiala [ ] in 2005, Zhang et al. [185] compared leading 
approaches of square marker based detection algorithms. Marker based approaches were considered 
almost fully researched and only a few publications were created on this topic (except for the 
previously mentioned). Marker based approaches are still being utilized in the development of 
prototypes and actual systems either as the primary source for camera calibration and tracking or as 
reference frame during the tracking initialization. 

Apart from square bordered markers, some researchers also explored ring shaped fiduciary 
markers [ ], circular shaped marker clusters with various parameters [171]. An example of more 
recent non-square markers apart from the aforementioned Random Dot Markers is reacTIVision [ ]. 

Figure 2.13: Several reacTIVision [ ] markers. 

ReacTIVision uses "amoeba" fiducials (see Figure 2.13). It consinsts of black and white 
segments forming a tree by inclusion. The detection algorithm is based on segmenting out each 
region and finding the sub-pixel precise positions for the node centers in the image. They used their 
framework to create "reacTable" - a multi-user table-based instrument for music generation. 

The amount of research on fiducial marker based tracking has been on decline in recent years. 
This suggests that the research in this area achieved high maturity. Marker based approaches 
are slowly replaced by natural feature based tracking. However, where simplicity, precision and 
computational efficiency is critical, marker detection based methods are still superior and widely 
used method. 

2.3.2 Camera Tracking Based on Feature Points 

Marker based tracking methods have the disadvantage of the need to use special equipment or 
printed patterns. They could also be seen in some cases as unnecessary visually disturbing artifacts. 
Instead of markers, naturally occuring image features, such as points, lines, edges, and textures 
could be used by an augmented reality system. 

Park et al. [122] integrated natural feature tracking with fiducial tracking to increase the range 
and robustness of vision-based augmented reality tracking. They still used fiducial markers for 
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initial calibration. Once the natural features' position was found they used tracking of these features 
to extend range and stabilize the tracked pose against occlusion and noise. 

Figure 2.14: Demonstration of Robust Planar Target Tracking and Pose Estimation from a Single 
Concavity [ ]. Left image is the input image, the middle shows the detected and classified 
(color-coded) MSER regions and the right image shows the augmentation. 

Natural feature point base tracking has been a very active area in vision tracking research [189]. 
In order to get full 3D camera pose from the tracked features, these techniques often build models 
(see Section 2.3.3). Augmented reality systems also need highly stable feature detection methods 
with high repeatability rate and efficient feature matching techniques for real-time speeds. A good 
example of using feature detectors for tracking is the work of Donoser et al. [ ]. They were able 
to track camera pose using Maximally Stable Extremal Regions and with one contour with at least 
one concavity (see Figure 2.14). 

Figure 2.15: Left: BRISK [ ] sampling pattern used in simple brightness comparison step between 
pairs of points (blue) in the image smoothed with given standard deviation (red circle) for the gauss 
kernel. Right: Examples of Local Difference Binary [ ] descriptors for the three examples at top 
and the binary descriptor at the bottom. 

SIFT [ ] and SURF [ ] have been historically the two most used and well performing feature 
descriptors. However, both SIFT and SURF require relatively high computational resources. For 
fast keypoint detection FAST [141] was proposed. Leutenegger et al. was able to achieve real-time 
results with FAST in combination with BRISK [ ]. However, they still needed around 30 ms to 
match 1000 keypoints from two images. Recently Yang et al. [180] proposed a highly efficient, 
robust and efficient binary descriptor, called Local Difference Binary (LDB) with augmented reality 
applications for mobile platforms in mind. They claim better performance and almost twice the 
speed in matching when compared to BRISK. Although there are many other publications concerning 
fast keypoint detection and matching, they are related to the topic of this work only indirectly. A 
complete survey of the state-of-the-art in this area was published by Marchand et al. [95]. 

20 



2.3.3 Model Based Tracking Methods 

The latest trend in computer vision tracking techniques are model-based tracking methods. Simple 
feature point based methods without full 3D correspondences would make sense only for planar 
objects. Model based tracking methods use a 3D model of tracked features consisting of feature 
points, edges or other distinguishable forms. 

One of the first 3D trackers was RAPiD introduced by Harris et al. [54]. They key idea was 
to track points that lie on high contrast edges in the images. The 3D motion then can be recoverd 
from 2D displacement of these points. An early research on 3D model based tracking approach for 
augmented reality was presented by Comport et al. [30]. Some further research already existed in 
the related computer vision and robotics literature. Most of this research, though, was focused on 
motion tracking and 3D object recognition and tracking, not primarily on augmented reality. 

Figure 2.16: Model based tracking by Comport et al. [ ] using a circle, a cylinder and two lines. 

Comport et al. [3 ] incorporated research also from the robotics field. Specifically, they used 
tracking by means of visual servoing. In visual servoing the aim is to move the virtual camera to a 
position defined by the 2D projection image. This can be achieved by minimizing the error between 
the desired state's and current state's image features. They showed that if the position difference 
between consecutive frames is small, using the determined 3D camera pose from the previous 
frame, the visual servoing approach will converge to the new position. They defined several error 
functions for primitives like lines, ellipses, and cylinders (see Figure 2.16). They tracked these 
primitives using local moving edge trackers, in order to achieve real-time frame rates. To improve 
the robustness against outliers and occlusion, they proposed a new robust control law integrating an 
M-estimator. 

Most modern model based tracking methods, unlike the previous solution, build their own 
models based on points, edges, or lines. There are two main families of approaches, depending on 
how the image features are being used. The first family tries to match projections of target objects 
based on lines and edge positions, as the algorithms described above. The second set of approaches 
rely on local information in the image region as outlined in Section 2.3.2. 

Model based approaches that rely only on geometric properties of the objects are not scalable 
enough for larger scenes. In an outside area they fail to register finer geometry, like the windows 
on buildings. Reitmayr and Drummond [ ] presented a hybrid approach, using the texture edge 
properties, if required, combined with the classical 3D geometry model based tracking using distinc
tive edges. This method is called tracking-by-synthesis. More recently, Simon [ ] proposed an 
extension of this method to use interest points instead of simple image properties (edges, corners,...) 
during textured model comparison (Figure 2.17 left). They also compared the performance of Harris 
corner detector, SURF and FAST keypoint detectors for this application. 

Most of the 3D reconstruction methods like monocular S L A M , D T A M [ ], P T A M [79] 
(Figure 2.17 right), etc., could be also classified under model based tracking methods. Even though 
these methods can be extended to be used in augmented reality system, they require large amount 
of memory and computational power. As a consquence, it is unrealistic for them to work on 
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Figure 2.17: Left: One iteration of model based tracking combined with feature matching on 
textures by Simon [147]. Right: Parallel tracking and mapping [79] (PTAM) demonstration. The 
successful point observation and the maps dominant plane is shown in the image. 

contemporary mobile devices and used for consumer oriented augmented reality applications. In 
the future, with the expansion of powerful smart phones and further research, these approaches could 
become mainstream. In a limited form, some of the functionality is already available in Vuforia 
developed by Qualcomm2. These methods only marginally relate to the content of this work. A 
more complete survey can be found in [95]. 

2.4 Hybrid Tracking Methods 

Vision based tracking methods for augmented reality work with high precision and robustness in 
confined areas with complex geometry and textures. For some larger environments and situations 
when the camera view changes dramatically, vision based tracking methods are not sufficient. Using 
other type of sensors, like GPS or inertial sensors, works well in these situations. On the other hand, 
however, they do not provide acceptable precision due to noise and error accumulation. This led to 
the development of hybrid tracking methods. 

Some of the research was already discussed in previous sections. I mentioned earlier the work of 
Park et al. [122], who combined fiducial markers and feature tracking. I also used the work Oskiper 
et al. [117] as an example of the combination of visual and inertial tracking (Figure 2.18). Notable 
newer research was done for example by Klein and Drummond [78] who combined a model-based 
approach with gyroscopes for rapid camera motion. Satoh et al. [142] described head tracking using 
visual tracking and a gyroscope to reduce the number of parameters to be estimated. 

With the dawn of personal high computational performance, small form-factor devices equipped 
with wide variety of precise inertial and localization sensors, this research area has great potential 
in the near future. Until now most of these devices were focused on virtual reality (Oculus Rift 3, 
HTC Vive 4 , Playstation V R 5 ) , but researchers already started exploring the possibilites of using 
these devices for augmented reality by using semi-transparent glasses (Microsoft HoloLens6) or 
using see-through cameras [116]. 

2http://www.qualcomm.com/solutions/augmented-reality 
3https://www.oculus.com/en-us/rift/ 
4https://www.htcvive.com/us/ 
5https://www. playstation.com/en-us/explore/playstation-vr/  
6https://www.microsoft.com/microsoft-hololens/en-us 
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Figure 2.18: System block diagram by Oskiper et al. [117] combining multiple sensors using 
Error-state Extended Kalman Filter. 

2.5 Augmented Reality Applications 

In the state of the art describing mostly new and improved methods of camera pose tracking, scene 
modeling and visually correct rendering, there are many applications envisioned for Augmented 
Reality. The fields of these applications also varies widely, ranging from medical training to children 
book coloring. Most of the research, though, is focused on individual pieces required to create a 
full Augmented Reality experience. This leads to the fact that the overwhelming majority of the 
showcased applications are in the form of demos or eye-catching presentations. Industry-ready 
use cases of augmented reality are almost completely non-existent. In the state of the art also 
comprehensive user evaluation of the proposed systems is missing. The enabling technologies and 
the commodity of high-performance smartphones represent a landmark, which could boost this 
research area in the near future. This thesis also focuses on these realistic use cases and presents 
several use cases of A R including a cheap match-moving solution and efficient inter-device content 
acquisition. 

Figure 2.19: Interactive coloring book with live animated characters textured based on the drawing. 
The templates for augmentation are on the right. 

This sections describes some of the latest presented applications in the state of the art that were 
developed into a fully functional prototype, ready for user testing. A l l of the described prototypes 
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rely heavily on moving camera pose estimation and use a hand-held or head-mounted display. I 
also attempted to include applications from various research areas: training, entertainment, remote 
interactions or productivity tools. 

Recently, Magnenat et al. [ ] from Disney Research showcased an application for an interac
tive coloring book (see Figure 2.19). Their detection algorithm uses the contour binary image. To 
extract this binary image from the camera frame, they use luminance channel processed by adaptive 
threshold and smoothed with Gaussian smoothing with standard deviation a = 1 to remove the 
staircase effect caused by binarization. To detect the template and acquire the 2D-3D correspon
dences for the camera pose, they use BRISK feature point detector and descriptor. The disadvantage 
of using feature point descriptors on binary images is the low discriminatory power between feature 
points. In their work, they had to use complex heuristics to filter out outliers and in some cases they 
added complex visual patterns around the drawing to achieve reliable camera pose estimation and 
tracking. For frame-to-frame tracking, they used Lukas-Kanade tracker [183] to achieve real-time 
frame-rates on tablet devices. 

Figure 2.20: Remote Mixed Reality System Supporting Interactions with Virtualized Objects [179]. 

A recent work from Yang et al. [179] is a good example how markers are used as the base for 
camera pose estimation even in contemporary A R applications. They used marker based tracking 
combined with kinect sensor and video see-through head mounted display to create a collaborative 
desk. They proposed a method to share real objects from one side by virtualizing them on the other 
side. The shared virtual object could then be controlled by the second participant. 

'1 
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Figure 2.21: MobileFusion: Real-time Volumetric Surface Reconstruction and Dense Tracking On 
Mobile Phones [114]. 

An outstanding demonstration of the growing computational power of smart-phones and grad
ually maturing state of dense tracking algorithms is the work of Ondruska et al. [114]. They 
demonstrated an application supporting full volumetric surface reconstruction and dense tracking 
in real time on mobile phones (see Figure 2.21). During their system's initialization they rely on 
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feature point tracking-based camera pose estimation to select a 3D cube region of interest (ROI) to 
be reconstructed. After initialization, they rely completely on dense tracking and reconstruction. 
The continuously refined volumetric representation of the region of interest is used to track the 
camera using a dense feature-free monocular approach. In order to achieve real-time frame-rates, 
they distributed the computational work between the phone's CPU and GPU. They used the GPU for 
stereo depth computation, volumetric model update and raycasting for the camera pose tracking. On 
the CPU, they utilized SIMD (NEON) instructions to speed up processing during the camera pose 
optimization step. The most obvious limitation of their method as a general camera pose tracking 
is that the ROI needs to be visible in every frame. For the chosen application, this is expected 
and even required for the model reconstruction. With further research, a more general volumetric 
representation and with the growing computational power of smart-phones, this research direction 
has a great potential. 

At the Internation Symposium on Augmented Reality 2015, Hwang et al. [ ] showcased an 
augmented reality system for museums. They created several prototypes using the latest technolo
gies: Oculus Rift, Google Glass and Nexus 5 smartphones. They found Oculus rift problematic for 
mobile usage and stated the Google Glass was not suitable for A R due to narrow field of view. Their 
final solution used Nexus 5 in combination with Qualcomm Vuforia SDK and Unity 3D for planar 
targets and a modified version of P T A M [ ] ported to Android. The P T A M algorithm was already 
mentioned in Section 2.3.3. Their work did not include a description of the necessary changes and 
optimizations to achieve real-time frame-rates on smartphones. 

Figure 2.22: A real-time A R mentoring system with virtual assistant [ ]. 

A frequent A R application in the state of the art is mentoring or training. Recently, Zhu et al. [190] 
demonstrated a wearable real-time A R mentoring system to assist in complicated maintenance and 
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repair tasks. Their system combined optical-see-through display with virtual voice assistant (see 
Figure 2.22). For head-mounted camera pose estimation they used a hybrid approach with a high-
latency visual landmark matching and feature tracking modules, and a low-latency I M U prediction 
module. They fused the results from these modules using Extended Kalman Filter to achieve high-
precision global camera pose estimation. During the initial live training test their system helped 
perform an advanced 33-step maintenance task. 

Figure 2.23: Augmenting virtual object behind a real surface. Left side image pair shows the pig 
inside the box without depth hints and the right image pair shows improved depth perception with 
„stereoscopic pseudo-transparency" [118]. 

Recently, Otsuki et al. [ ] presented an A R story-telling application focusing on visualizing 
virtual objects behind or inside real objects (see Figure 2.23). They used an Oculus Rift (HMD) 
to create a see-through augmented reality display. For the the camera tracking - in this case also 
head-tracking - they used ARToolKit. 

(a) 

huinlic1 ul iidilxipdnte 

Figure 2.24: A user interface design and prototype for professional 3D media production A R system 
[81]. (a): the distribution of participants in their survey during the design process; (b) the envisioned 
A R system; (c): the implemented prototype. 

One of the goals set forth in this thesis was to showcase the possibility to create real-time 
functional A R systems with practical use even in the real world and media production. A similar 
notion also lies behind the recent work from Krichenbauer et al. [81]. They explored the possibilities 
to create an immersive 3D UI for 3D computer graphics content creation. In order to form an idea 
about the requirements and expectations of such system, they conducted a survey with participants 
from all over the world (see Figure 2.24). For robust 6DOF camera pose estimation and hand-
tool localization, they used fiducials in their prototype implementation. These examples further 
accentuate the fact that fiduciary markers are still the go-to solution for prototype systems, when 
fast and robust solution is required, and that fiduciary markers are still a relevant research area. 
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Chapter 3 

Uniform Marker Fields 

This chapter presents the technological core of my PhD research. First, I explain the newly proposed 
concept of marker fields and its particular implementation Uniform Marker Fields. I describe an 
algorithm for synthesis of these markers, which is based on a genetic algorithm. I describe a highly 
efficient detection algorithm for the detection of the Uniform Marker Fields. In later chapters the 
description of the basics is followed by several use-cases and the description of changes required 
by the specific circumstances. Lastly, I describe several additional use cases and a fast method for 
finding regular patterns (like Uniform Marker Fields, and QR codes) in the image for multiple scales 
and sizes. My main contribution in the following description are mostly the marker field generation, 
detection algorithms and experimental evaluation. 

I have succeeded in contributing at conferences and a journal in the augmented reality field in 
cooperation with others. Some of the work resulted from collaboration with others: Adam Herout 
and Michal Zacharias in relation to marker design and generation and Jiff Havel in relation to 
de Bruijn tori theory and line parametrization. In the following text I will use „we", whenever the 
results described here were a collaborative effort between me and others. The description below is 
based on our publications. 

3.1 Orientable Window Arrays as Marker Fields 

Perfect maps are 2D arrays in which every possible rectangular subarray of a given size occurs 
exactly once. The perfect map can be either periodic or aperiodic. An aperiodic (m, n)-window 
array [24] is an A;-ary 2D array of size h x w 

A = (aij € {0, • • • , k - 1}; 0 < i < h; 0 < j < w), (3.1) 

in which each subarray AT:C of size m x n occurs exactly once. 
If all possible subarrays are used (i.e. (w + n — l)(h + m — 1) = kmn), the (m, n)-window 

array is called aperiodic perfect map [133]. Opposite edges of the array can be connected together 
for a periodic window array. Of course, the windows created by the connection must also be unique 
(i.e. wh < kmn). 

A periodic perfect map [99] is the 2D case of the De Bruijn torus [ ]. Construction of 
ID De Bruijn tori can be done by algorithms such as prefer-one or prefer-opposite [ ]. From a 
decomposition of a N-D torus, N+l dimensional tori can be constructed [63]. Contrary to a ID De 
Bruijn sequence, the existence of a 2D torus was proven only for certain cases of k, h, w, m, and n 
[ ]; for example when k is a prime power [123]. 
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Aperiodic two-dimensional perfect maps have been researched extensively in the literature. 
Reed and Stuart [133], Ma [91] and Fan et al. [ ] all gave constructions for perfect maps. Fan 
et al. [39] also gave proof that for each n and m there exists h and w such that hw = knm for 
k = 2 and there exists ah x w binary array with the n x m window property. They labeled these 
(h, w; n, m)-arrays. 

An alternative construction of arrays with similar properties under the name pseudorandom 
arrays exists in the literature. Gordon [ ] and MacWilliams and Sloane [ ] described binary 
arrays of size hw = 2nm — 1 such that all nonzero matrices of size n x m appear exactly once as 
a window. A comprehensive description and generalization to non-binary cases of perfect maps 
and pseudorandom arrays was given by Etzion [38]. Perfect maps, pseudorandom arrays and arrays 
where not all possible windows of size (m, n) appear, but have the n x m window property, will be 
referenced as window arrays in further description. 

Unfortunately, when the orientation of the array is not known, the simple (m, n)-window 
property of a window array is not enough. It is possible that multiple rotations of the same window 
can occur in the array. Orientable window arrays [ ] solve this problem. Orientability can be 
gained by using certain equivalence relation for the window property [56]. 

1- orientable arrays are ordinary (m, n) -window arrays defined earlier. 
2- orientable arrays deal with two possible orientations (e.g. "north" vs. "south" orientation). 

Windows in the 2-orientable perfect maps are unique in respect to rotation by 180°. 
4-orientable arrays can distinguish all four rotations of the array (e.g. "north", "east", "south", 

"west"). The 4-orientability is reasonable only for square windows, that must be unique in respect 
to rotation by 90°. It is self-evident that 4-orientable arrays are always also 2-orientable [56]. 

Contrary to the 1-orientable maps, 2 and 4-orientable arrays are much less explored in the 
literature and no good construction algorithms existed for them before our proposed algorithm in 
[157] and [60]. The upper bound for the size of the 2-orientable (m, n)-window array is 

where iV is the window count, i.e. iV = hw for periodic and N = (h — m + l)(w — n + 1) for 
aperiodic arrays. For the 4-orientable (n, n)-window arrays (n2-window arrays), 

It is known that these size bounds are not tight [24]. It is not known whether any orientable perfect 
map exists, i.e. the inequalities may be strict. 

For 2-orientable ID window arrays, the upper bound of the size is slightly more refined, but still 
not tight [ ]. The sequences for n < 16 were found by brute force [24]. 

Similar work on 4-orientable 2D window arrays to the best of my knowledge have been missing 
in the literature. The only related work in computer vision and augmented reality literature using 
1-orientable pseudorandom arrays was published by Morano et al. [102]. They used pseudorandom 
arrays submaps generated as structured light to reconstruct 3D surfaces efficiently (see Figure 3.1). 
Their pseudorandom array generations was done by a trial-error intuitive approach. Their work was 
extended by Scholz et al. [ 1 ], who printed these pseudorandom submaps on clothing. They used 
the printed patterns to accurately reconstruct garment motion from video (see Figure 3.2). 

Binary 4-orientable window arrays can be visualized as 2D checkerboard structure, where the 
white and black modules are reorganized to match the values in a window array (Figure 3.3). As a 
more general definition, Uniform Marker Fields are visual patterns - fiduciary markers - made up 
of square modules forming a regular grid, where windows of size n 2 are unique in every rotation. 

N < (3.3) 
4 
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Figure 3.1: Color encoded perfect submap [102] (PSM) (left) and the 3D information reconstructed 
using this pattern (right). 

Figure 3.2: Pseudorandom array submaps printed on cloth with 3D reconstructions of the models 
[ ]. 

In this thesis, initially only binary (k = 2) window arrays will be considered. They are easily 
printable and they can be easily and robustly detected in grayscale camera images. However, all the 
algorithms can be easily modified for higher values of k, which also led to modified marker design 
as seen in later sections. 

3.2 Synthesis of Binary n2-Window Arrays 

According to equation (3.3), for binary 4-orientable aperiodic binary n 2-window arrays with n = 3, 
a (square) map cannot be larger than 12 x 12. Our algorithm described in this section has found 
a number of 11 x 11 arrays (Figure 3.3 left). Thus, 32-window arrays can be used as Uniform 
Marker Fields, but the dimension of the field is very limited and the benefits over any existing 
marker designs are not very interesting. However, even for such a small array, the construction by 
exhaustive search is practically impossible (for a 12 x 12 array, the algorithm would need to search 
a state space of 2 1 4 4 variants). 

For the proposed binary Uniform Marker Fields, n = 4 is an interesting value: n is still small 
enough and therefore a small fraction of the field needs to be captured by the camera in order to 
localize the actual view within the field. At the same time, the theoretical upper bound according to 
(3.3) for the dimensions of a square map is 127 x 127. By the algorithm presented in this section, 
4-orientable 42-window arrays as large as 92 x 92 have been found by using a supercomputer 
(Figure 3.3 right). Also, rectangular arrays of similar w x h areas have been generated - refer to 
Section 3.2.3 for more information. 

For n = 5, the arrays of reasonable dimensions can be generated (more or less) randomly; 
however, the required portion of the marker field to be visible by the camera ( 5 x 5 modules) is 
unnecessarily high. For practical purposes, the 4 x 4 window is therefore of most interest and in 
the further text, the algorithm's properties will be explored for these window dimensions. 
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Figure 3.3: Largest generated 4-orientable n2-window arrays using our synthesis algorithm, with 
n = 3 on the left and n = 4 on the right. 

The literature does not provide any efficient construction method for 2 or 4-orientable n 2 -
window arrays. Burns and Mitchell [ ] provided a baseline construction for 4-orientable window 
arrays. However, this construction is far from optimal (i.e. for a given n, the w, h dimensions 
are small) and, more importantly, the constructed map cannot be binary, but its arity is given by 
combining two helper ID 2-orientable De Bruijn sequences. Exhaustive search is not feasible as a 
construction method: for example, for a 42-window array 90 x 90 modules large, the area of the 
map to be searched for is 8100 modules and the state space is just too large (2 8 1 0 0 ) . 

This section presents considerations leading to a genetic algorithm for synthesis of 4-orientable 
window arrays. The algorithm is still very computationally demanding; however, it can be par
allelized (as described in Section 3.2.2) and executed on a large number of computation nodes. 
We harnessed a supercomputer of around 1 000 nodes and generated usable window arrays. The 
successfully generated binary arrays are described in Section 3.2.3. 

3.2.1 Random Maps 

Let us first consider a binary map (ajj G {0,1}) generated randomly. The theoretical problem that 
a randomly generated periodic array will contain 1-orientable conflicting windows is analogous to 
the birthday problem [103]. Its probability can be approximated as the: 

where o G {2,4} is the orientability. The equations above considers conflict only between different 
windows. There is significant probability that some windows can be self-conflicting, for example 
due to symmetry. The probability that an array contains self-conflicting windows is 

For 2 and 4-orientable arrays with square windows, the birthday conflict probability is 

(3.5) 

(3.6) 
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Figure 3.4: The probability of conflicting windows in a random square map of a given size (binary 
map, 4 x 4 windows). 

Figure 3.4 shows the probability of conflict for square aperiodic arrays with k = 2 and n = 4. 
The experimental measurement was done using 1000 randomly generated arrays. The number of 
conflicts caused by self-conflicting windows is a significant factor. The graph shows that arrays of 
small sizes can be generated randomly and there is significant probability that it will still satisfy the 
n2 window array property. 

1 | , , — 1 I ^ • i i 1 
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Figure 3.5: Approximate probability that the randomly "replaced" content will be in conflict with 
another window or itself after iV trials of replacement (binary map, 4 x 4 windows). 

With growing array size, the conflicts become inevitable for randomly generated arrays. An 
intuitive solution is to "replace" conflicting windows with alternative content. For a randomly 
generated n 2 window in a periodic map, otherwise free of conflicts, the probability that the window 
does not conflict with the rest of the map is roughly 

( h 2 1 2 \ < - 2 n _ 1 ' ) 2  

1 ~ 0 1 n 2 + 1 I • ( 3 - 7 ) 

2 n 2 _ 2 L 2 J / 
The internal conflicts in the block around the window are approximated using equation (3.5). 
Figure 3.5 shows the probability that the new window will be in conflict with an existing window 
after a certain amount of tries. 
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Figures 3.4 and 3.5 should illustrate the possibility of generating the window array randomly. 
For k = 2 and n = 4, small arrays (around 15 x 15) can be generated totally randomly and some of 
the generated arrays would comply with the 4-orientable n 2-window property. Random arrays of 
dimensions around 50 x 50 can be fixed by replacing the conflicting windows with random content; 
after a moderate number of such trials for replacement, the array will achieve the n 2-window 
property. However, for arrays of higher dimensions (e.g. 90 x 90), the process of fixing the array 
by replacing the conflicting tiles with random content can be very time consuming. 

3.2.2 Genetic Algorithm for Synthesis of Window Arrays 

The considerations from the previous section led to a genetic algorithm which works with maps 
containing conflicts and improves it continually by mutations that lead to decreasing the conflict 
count. To initialize the population individuals can be generated randomly. Alternatively, they can 
be created from a smaller window array extended by randomly generated rows and/or columns. 

The genetic algorithm can be characterized by these terms: 

• For the initial population we use a number of copies of the same array, or various arrays are 
generated randomly. 

• The fitness function of an individual is based on the number of conflicts in the given array 

f ( A ) = c(A)+l-

• The fitness threshold, where the algorithm is stopped is set to 1 (the algorithm is looking for 
conflict-free maps). 

• For selecting members for the next generation, rank selection is used. 

• Mutation is defined as replacing a window with randomly generated content. The windows 
are selected randomly; the conflicting windows have a higher probability of being selected 
for replacement. 

In order to improve the algorithm's convergence we made a few modifications to the aforemen
tioned general approach. In the mutation step, the algorithm discards from random selection all 
windows that are already in the map or that would cause more conflicts then the current count. The 
other changes to the algorithm described below were carried out in order to further improve the 
speed of convergence on the proposed client-server configuration. 

In order to distribute calculations required to solve the conflicts in randomly generated arrays, 
we used a client-server architecture. The server keeps track of the population, while the clients 
query the server for computational tasks and send back the results. 

The server stores the active population and distributes tasks for mutations to the clients. The 
server itself is state-less in the sense that it does not keep track of the clients and their status. The 
most important change from the described genetic algorithm is that the server does not separate 
arrays into several generations, but works with a single population and updates it incrementally. 
This is necessary because the run-time of the clients might differ dramatically, and clients might 
post changes into different generations. 

As mentioned earlier, each client queries the server for a new task after it is started or when it 
finishes a task. The client receives a single array and tries to solve conflicts in the array by mutation: 
i.e. by replacing a conflicting (or non-conflicting) window with a better combination of modules. 
If it successfully finds a different array with the same or smaller number of conflicts, it sends the 
array back to the server. Otherwise, the client discards the mutated array and requests a new one 
from the server. 
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3.2.3 Synthesized Window Arrays 

We generated a set of binary aperiodic 4-orientable n 2-window arrays using the client-server 
architecture describe above. The data set includes rectangular maps of different aspect ratios: 

• 1:1 - square marker fields, 
• V2:l - marker fields suitable for office paper sizes, 
• 2:1 - marker fields for rectangular areas, 
• 3:1 - marker fields for wide rectangular areas. 

Table 3.1 gives the highest resolutions of the window arrays available for the respective aspect ratios 
in the data set. There are several important things to note about the size of the generated markers. 

aspect ratio available dimension 
1:1 92 x 92 

V2:\ 110 x 78 
2:1 122 x 61 
3:1 159 x 53 

Table 3.1: Available sizes of the binary 4-orientable aperiodic 42-window arrays. 

Although larger markers allow covering larger areas, the distance from the marker while it is 
still detectable depends largely on the chosen module size. For example, the generated 92 x 92 
marker with modules size 1 inch = 2.54 cm would have an edge 2.34 m long. Such marker could 
theoretically be detectable from distance ~ 15 cm, to fit a n x n unique window, to ~ 2.5 m, where 
the checkerboard nature of the marker starts to disappear making detection difficult. A marker with 
window-array size 9 x 9 and module size 25 cm on the other hand would be detectable with the 
same camera and resolution in the distance interval ~ (1.5 m, 20 m). These values largely depend 
on the camera's field of view and resolution. This fact makes the choice of module size and required 
window array size application specific. 

A disadvantage of using large markers where the location inside the marker needs to be detected 
even from the smallest unique sub-window is the high probability false-positive detection in case of 
noise or occlusion. With growing marker sizes nearing the theoretical limits, the average hamming 
distance between individual unique sub-windows is reduced. Smaller markers can be generated to 
maximize the average Hamming distance between unique n x n sub-windows. On the other hand, 
where the application allows it, larger marker sizes are desirable to fit as many modules into the 
camera's view as possible for more reliable location identification. 

The final important things to note about synthesized window arrays, is that a single large window 
array can be separated into several disjunctive smaller sub-marker fields. A l l the resulting marker 
fields will have the n 2 unique window property. In this set of marker fields, each of them is uniquely 
identifiable. For example, given the generated 92 x 92 marker field divided into uniquely identifiable 
marker fields of size 9 x 9 , would result in 100 unique marker fields. 

3.3 Detection of Marker Fields and Camera Pose Estimation 

My main contribution related to Uniform Marker Fields is the efficient detection algorithm. This 
work was published in [ ] and the description below is the extension of this work. Uniform Marker 
Field was designed to cover large planar area and is composed of mutually overlapping uniquely 
identifiable partial markers (see Figure 3.6). The design was inspired by Fractal Marker Fields, 
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proposed by Herout et al. [59] and by ARTag, the work of Fiala et al. [ ]. The former removed 
the limitation of existing fiduciary markers of using only a single scale to encode information over 
a given area of a planar surface. Unfortunately, the described detection algorithm is not suitable 
for mobile processors, mostly caused by the memory and performance requirements of the Hough 
transformation (PC-lines). ARTag still used conventionally designed fiduciary markers to build a 
large-scale field or reference model from them. For more detailed description of these approaches, 
see Section 2.3.1. 

Figure 3.6: A fragment of the marker field. The overlapping markers are unique in all possible 
rotations. Two markers are highlighted with different colors - the point in the left top corner indicates 
rotation. 

Conventional marker detectors typically rely on first detecting the bounding borders [76, 41] of 
the markers by finding the contours in a thresholded image and choosing shapes consisting of four 
straight-line contours. The Uniform Marker Field construction does not distinguish between marker 
design features intended for general marker localization and features for marker identification. 
Checker-board modules serve simultaneously as the localization and identification features. This 
approach is more space efficient - no valuable area is taken up by thick black borders and quiet zones. 
The second advantage from camera pose estimation viewpoint is the more uniformly distributed 
points of interest - the corners between modules. For conventional markers, only the 4 corners are 
used as 2D-3D correspondences. In an ideal case, a single marker inside a 42-window array could 
provide 25 correspondences. Theoretically this could provide more robustness against occlusion or 
other outliers and result in higher camera pose estimation precision. 

3.3.1 Overview 

The detection algorithm was designed so that it visits as small a fraction of the image pixels as 
possible. This is important mostly on mobile platforms, where the memory access is slow and 
the processor's L2 and L3 (if present) caches are small relative to their desktop counterparts. The 
algorithm performs the following main steps: 

1. Extraction of edgels (edge element or connected edge pixels; term borrowed from Martin 
Hirzer [ ]) - typically, the algorithm extracts around one hundred straight edge fragments 
in the whole image for V G A resolution, but generally the number of edgels depends highly 
on the used marker and the resolution of the image. Edgels are described by an image point 
and edge orientation (vector) or by two endpoints. 
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2. Determination of two dominant vanishing points among the edgels. The vanishing points 
define the horizon (a line connecting the vanishing points). 

3. Finding the grid of checker-board edges as two groups of regularly repeated lines coincident 
with each vanishing point. These groups will be referred to as fans in the further text. 

4. Extraction of checker-board modules using the grid and localization of the camera view 
within the 4-orientable n2-window array. 

I describe each of these steps in more detail below. The algorithm assumes that a significant 
portion of the input image is covered by the marker field. In our earlier research [158] we showed 
that the image can be efficiently searched for areas likely to contain a checker-board pattern thus 
pre-selected rectangles can be supplied as the input to the recognizer (see Section 4). In high-
resolution images, the marker fields can thus be found even if it covers an arbitrary fraction of the 
camera input. 

3.3.2 Extraction of Edgels 

Yu et al. [ 182] in their work on Gridding Hough Transform showed that for long straight lines in the 
image, a relatively sparse grid of horizontal and vertical scanlines can be used to detect the edges. 
Also, some of the "conventional" marker detectors [ , ] scan the image in horizontal and vertical 
scanlines and detect edges (or edgels), which in turn are connected into segments. 

To detect an edge point po on a scanline, our algorithm uses adaptive thresholding based on a 
moving average window (similarly as in the state-of-the-art marker detectors). The Sobel operator is 
applied in order to obtain a rough approximation so of the slope of the corresponding checker-board 
edge line using the gradient direction no. 

In order to improve the accuracy of the slope in each direction of the slope, more edge pixels 
are searched for. Let w be an offset parameter (a good offset could be 5 pixels). Edge points pi (i.e. 
image locations with a high gradient similar to no) are searched for in the proximity of points pi on 
the presumed edge line: 

Pi+i = po + iwsi, (3.8) 

where i j stands for normalized vector Sj. If an edge point is indeed found, the slope is updated 
using the new edgel's endpoint 

Sj+i = p i + i - po, (3.9) 

and the same procedure is repeated for increasing i and also for the opposite direction i e 
{—1,-2,...}. The iteration is stopped when no further edge point is found in the given direc
tion or the edgel's length is over a given threshold. The threshold helps avoid situations, where one 
long and strong line in the image would cross multiple scanlines and from each point separate edgel 
lines would be extracted with the same parameters and similar lengths. A good threshold is 2ls, 
where ls is the offset between scanlines in pixels. 

Only the reliable edgels are stored for further processing: if points pi are not collinear with a 
sufficient tolerance, or if an insufficient number of edges pi is found leading to short edgel length, 
the edgel is dropped. When the edgels are reliable, further steps in the algorithm do not require 
a very high number of them (around 100) to successfully detect the markers. Experiments show 
that approximately 10 scanlines in horizontal and in vertical direction are sufficient for extracting 
enough edgels for V G A resolution. See Figure 3.7 for an illustration of the edgels that are extracted 
from an input image. 
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Figure 3.7: Yellow - horizontal and vertical scanlines that are processed by the algorithm. In the 
actual implementation, a higher number of scanlines is used (around 10 in each direction). Red -
edges po detected on the scanlines. Green - edgels detected around the "starting" red dots. 

3.3.3 Identifying Vanishing Points 

After edgels were successfully extracted, the algorithm clusters them into two groups based on their 
slope. These groups should correspond to two main directions of the edges in the marker. Such 
grouping seems sufficient for the detection; however, in noisier data, a RANSAC-like selection 
of groups of edgels coincident with a common vanishing points is done. In order to improve the 
reliability of clustering, a heuristic is used during clustering, where the angle difference between the 
two groups' slope angle should be around 90°. The two selected groups of lines (edgels extended 
to infinity) are shown in Figure 3.8. 

Using the described method, a cluster of lines is obtained without any disturbing outliers. 
Such a cluster can be used to compute the vanishing point for the cluster fairly precisely. Using 
homogeneous coordinates for the vanishing point v and the cluster of lines 1«, all the lines must be 
coincident with the vanishing point, i.e. 

V i : v l » = 0. (3.10) 

The coordinates of the lines in the real projective plane form a 3D vector space without an origin 
(with an equivalence relation). Points of the real projective plane correspond to hyperplanes passing 
through the origin, so the vanishing point can be found by fitting a hyperplane through all the 
observed lines - edgels. The line vectors lj are scaled so that each one's magnitude corresponds 
to the edgel length. This way, the longer and more reliable edgels are favored. The hyperplane's 
normal is found as the direction of the least variance by eigendecomposition of the correlation 
matrix 

C = ( l 0 . . . l ^ v ) ( l o . . . l i v ) T . (3.11) 

Since the matrix C is 3 x 3 and symmetric, the eigenvalues and vectors can be computed very 
efficiently through QR decomposition [ ]. 
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Figure 3.8: Blue, Green - Two groups of lines (extended edgels). For each of the groups, a vanishing 
point is found by using hyperplane fitting with eigendecomposition. 

3.3.4 Finding Two Fans of Grid Lines 

After the two vanishing points v i , V2 are found for the two groups of edgels, the horizon (i.e. the 
line that passes though both of the vanishing points) is computed as h = v i x V2. The lines in the 
marker corresponding to the edges of the grid squares at one direction can be computed using the 
horizon as (x denotes normalized vector) 

where l& a s e is an arbitrarily chosen base line coincident with the vanishing point, different from the 
horizon [ ]. Parameter k controls the line density and q determines the position of the first line. 
A good simple choice for l f , a s e is a line through the center of the image (and through the vanishing 
point). 

To find k and q, the value of (ki + q) is calculated for every line (extended edgel) of the input 
group. These values are clustered, each cluster is assigned an i and then overall optimal k and 
q are found by linear regression. Blue and green lines in Figure 3.9 are the two fans of lines lj 
corresponding to the two vanishing points. 

The clustering at this stage can be very simple due to the low number of lines. The small number 
of lines also makes more sophisticated grouping of lines (k-means clustering, Fourier transformation 
to detect dominant frequency) problematic. For the small number of lines, the (ki + q) values are 
sorted and the differences between neighboring values are computed. The most frequent difference 
over a small threshold is chosen as the slope k. 

3.3.5 Extraction of the Checker-Board Modules 

Once the two fans of lines defining the edges of the checker-board grid are found, they are both 
defined by Equation (3.12). Their definitions are differing only in hase, because each one is related 
to a different vanishing point, and each has its pair of k and q: 

k = hase + (ki + C7) h, (3.12) 

(3.13) 

(3.14) 
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l ( 2 ) Figure 3.9: Blue, Green - lines 1L% and respectively. Orange - points X j j sampled from the 
input image. 

V) 

Points 

^ = i ( ! i i / 2 ) x l ! i l i / 2 ) - v ^ ' e N ( 3 - 1 5 ) 

are intersections of lines right between the edge lines: points in the middle of the checker-board 
square modules. These locations are sampled from the input image. The resulting bitmap (which 
has very low resolution) is adaptively thresholded. The n2-windows are looked up in a hash table to 
determine the location within the marker field. The sampled points X y are illustrated by Figure 3.10. 

3DDD0 i 

Figure 3.10: Orange - points X j j sampled from the input image (left top box) then filtered using 
adaptive threshold to get a the binary map (left bottom box). 

3.3.6 Location Recovery and Camera Pose Estimation 

Once the sampled values have been filtered using an adaptive threshold, each 4 x 4 window's location 
inside the sampled region is found using a hash function. The global location and orientation of the 
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extracted region inside the marker field is decided by the most votes. Given the known locations 
for all on-screen sample points, the 3D positions of the module centers is known. This information 
can be used to recover the camera pose using standard methods (Section 2.2). In this early work we 
used an iterative method [89] based on Levenberg-Marquardt optimization as implemented in the 
OpenCV 1 library. 

This algorithmic approach had several flaws. The image needs to be rectified to remove radial 
distortion and achieve high precision vanishing point estimation. The assumption of minimal camera 
distortion leads to imprecise camera pose estimation. The image distortion is also clearly visible on 
Figures 3.7 - 3.10. 

A weak trait of this approach is during the third step of the algorithm, approximating k as the 
average most frequent difference between groups of lines belonging to a single vanishing point. 
With motion blur or depth of field blur, the computed (ki + q) parameters for edgels associated with a 
single line in the image will have significant deviation. This will cause the algorithm to consistently 
underestimate the parameter k, since the gaps between groups of lines would be smaller. 

Another weakness is the dependency of the camera pose estimation on the precision of the marker 
grid parametrization, since the computed module centers are used in this step. If the assumptions 
of correct camera calibration and precise grid parametrization held, such global solution for the 
camera pose would be more robust and precise when compared to reliance on noisy corner points. 
These weaknesses and flaws have been resolved in our follow-up work described in Section 3.4. 

3.3.7 Experimental Results 

For testing purposes of this initial solution, I collected a set of videos acquired by 3 different 
smartphone cameras at resolution 640 x 480 or 720 x 480 with 24 frames per second, each 20 to 
30 seconds long. Smartphones used for collecting the data were: 

• Desire - HTC Desire G S M (720 x 480), 
• Evo - HTC Evo 3D (720 x 480), 
• Titan - HTC Titan (640 x 480). 

In order to evaluate the detection precision for different types of movements, I split the dataset 
into 6 categories according to the dominant movement manifested in each video: 

• zoom - zooming in and out on the marker field, 
• horizontal - horizontal movement over the marker field, 
• rotation - rotating the camera over, 
• perspective distortion - videos where the marker field is skewed by perspective projection, 
• general movement over the marker including several of the above mentioned distortions, 

and 
• occlusion - objects covering some parts of the marker field. 

Each category contains 6 videos: 2 for each smartphone. In the videos, the marker field is visible 
in all frames. I used two different marker fields. Both marker fields were printed out black and 
white on standard office papers. The low-density marker field's resolution was 14 x 10 and the 
high-density marker field's was 28 x 19. The total number of videos in this dataset was 36. Example 
frames from the video dataset are shown in Figure 3.11. 

In the first set of experiments I evaluated the success rate of detecting the checker-board marker 
field and recognizing a location within it. To estimate a baseline of the algorithm's robustness we 

1 http://opencv.willowgarage.com 

39 

http://opencv.willowgarage.com


Figure 3.11: Sample images from the dataset. Green dots are the detected module center points X J J 
sampled for localization (Section 3.3). 

did not use information from previous frames. Using such information in real applications should 
improve the precision of the algorithm, as well as improve the processing speed. 

Table 3.2 contains the success rate results for the video dataset. Successfully recognized frame 
is a frame, where the detector was able to find the grid, sample the X J J points and the resulting 
binarized bitmap (or its significant part) was successfully localized inside the Uniform Marker Field. 

The results show that our algorithm performs well even for very challenging videos (see the 
dataset) with rapid movement causing directional blur, rotation, and high perspective distortion. 
The low-density marker performed better in almost all categories. This is caused by the longer 
edges, hence more precise edgels. In the case of the occlusion category, the higher density marker 
still contains enough unoccluded fields to enable successful detection, unlike in some frames with 
the lower density marker. The difference for the horizontal category is caused by a statistical error 
caused by rapid movement and excessive motion blur in one of the videos. In the case of zoom 
category, the low density marker is detectable from larger distance, while the high density marker's 
grid was difficult to retrieve due to dense on-screen edgel distribution. 
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Category Low density High density 
Zoom 94.5 % 92.0 % 

Horizontal 97.3 % 99.4 % 
Rotation 99.9 % 99.0 % 

Perspective 99.8 % 99.4 % 
General movement 95.3 % 95.0 % 

Occlusion 91.9% 92.5 % 

Table 3.2: Success rate for detecting the position in the marker with different categories and marker 
densities. 

Success rate Visited pixel percentage 
Smartphone 

Evo 95.3 % 5.50% 
Desire 96.3 % 5.79 % 
Titan 97.4 % 5.68 % 

Marker density 
Low 96.5 % 5.83 % 
High 96.1% 5.59 % 

Table 3.3: Success rate and percental evaluation of the visited pixels in the image by our algorithm. 

Table 3.3 contains the success rate breakdown for the videos based on the used smartphones and 
marker density. Smartphone Titan gave the sharpest image and best picture quality, which helped 
improve the success rate. The videos captured by smartphones Evo and Desire contain an intensive 
motion blur which caused a drop in the performance. The results also show that the algorithm 
visited and used for computation only less then 6 % of the total number of pixels in the image. Since 
one of the slowest operations on mobile processors is randomly accessing large chunks of memory, 
our algorithm is well suited for smartphones. 

Table 3.3 also shows the difference in the visited pixel percentage for marker fields with different 
densities. Since the edges in the image are longer in the low density markers, the algorithm visits 
more pixels along these edges. This helps the precision of the edgels and also the detection 
performance slightly. 

In order to get a comprehensive analysis about the computational complexity of the algorithm, 
I measured the required time of different components of the detection algorithm. Table 3.4 shows 
the percental distribution of computational time between different components. The most time-
consuming part of the algorithm is the camera localization as implemented in the OpenCV library. 
The computational times were measured on an Intel Core i5 661, 3.3 GHz with a DDR2 memory. 

Algorithm part time percent 
Scanlines 0.21ms 16% 
Edgel extraction 0.22 ms 16% 
Vanishing points and Grid 0.11ms 8% 
Module extraction 0.06 ms 5% 
Camera localization 0.74 ms 55% 
Overall 1.34 ms 100% 

Table 3.4: Breakdown of computational time into different parts of the algorithm. 
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3.4 Five Shades of Gray 

In the previous sections, I described the base Uniform Marker Fields design and it's detection 
algorithm. I also pointed out several weaknesses of the proposed detection algorithm in Section 3.3.6. 
The precision of the pencil detection was insufficient for augmented reality applications. Although 
it gave a global solution for the marker field orientation and position, the detection of the grid was 
noisy due to outliers and numerical calculations. In this section a generalization to Uniform Marker 
Fields is presented (Figure 3.12). The description below is based on our publication [60]. 

Figure 3.12: Marker Field design patterns, left: The basic black and white marker. The highlighted 
green and brown windows are unique in the marker field, just as all other sub-windows in every 
rotation, right: The marker with several shades of grey. The highlighted blue sub-window is 
unique in the map considering the edge directions as seen on the extracted region. 

3.4.1 Improved Uniform Marker Fields Design 

As defined in Section 3.1, aperiodic 4-orientable binary n2'-window arrays [157, 24] are matrices 
A = (aij G {0,1}), where each square sub-window Arc of dimensions n x n appears only once, 
including all four rotations. If any of the windows appeared more than once, we would be speaking 
of a conflict - either a mutual conflict between two different windows (possibly rotated) or a self-
conflict, where a window is self-similar after rotation. In Section 3.1, we interpreted such a binary 
array as a black-and-white checkerboard and proposed to use it as a marker field for augmented 
reality. The unique n2-windows largely overlap. Thanks to this overlap, only a small fraction of 
the marker field must be visible in order to be detected and recognized. 

In our follow up work [ ], we generalized the Uniform Marker Fields construction to grayscale 
or color A;-ary marker fields (a^ £ { 0 , . . . , k — 1}, Figure 3.13). Mathematically if the shades of 
gray or exact colors could be recovered, these would correspond to window-arrays with k defined 
as the number of shades used. 

Technically, however, in comparison with binary marker fields the absolute greyscale or color 
values of the grid modules cannot be reliably discerned under varying lighting and camera conditions. 
That is why we used the edge gradients between the modules in a single nxn window as the unique 
window array property for localization within the marker field. Horizontal (3.16) and vertical (3.17) 
edge gradients are defined as: 

eij = Oij+i — Oij, (3.16) 

ejj = ai+ij-a,ij. (3.17) 
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The absolute value of the edge gradient is also hard to recognize reliably and thus only the basic 
character of the edge is used for recognition: g*j = sgne*^ G { — 1, 0, +1}. The n2-window used 
for localization within the marker field then is (Figure 3.13): 

Grc = (g^, • • • , 5 ( r " + n _ i i C + n _ 2 ) ) ffrc) • • • ) 5 ( r + n _ 2 , c + n - l ) ) ' (3.18) 

where Grc is the unique window at position (r, c) inside the window array. Given this ternary 
classification of edges, grayscale markers can be seen as a generalized version of k = 3-ary n2-
window arrays, and color marker fields as k = 3c-ary n2-window arrays, where c is the number of 
channels in the used color model. Note that the number of shades s >= n2 has no effect on the 
possible variations for edge directions inside a window and has minimal effect on a global scale. 
For s < n2, the number of shades limits the available pool of edge configurations, reducing the size 
of possible marker fields. The number of shades also has an impact on the detector's performance, 
with low number of shades causing shorter and less edgels, and high number of shades reducing the 
ability to differentiate between shades under varying lighting conditions. Based on empirical data, 
5 shades for a grayscale marker gave a good compromise. 

Figure 3.13: A fragment of the marker field, left: Five shades of grey, right: 8 different colors. 
Arrows across the edges illustrate the observable gradient which describes an individual line. In 
color, multiple gradients can be observed at one edge (e.g. RGB). 

Synthesis of the marker field is done in a manner similar to the genetic algorithm sketched out in 
Section 3.2. In this case, the fitness function additionally also reflects the quality of edges between the 
modules - edges with higher absolute value | |, representing higher intensity difference between 
modules are preferred. This property ensures more distinct edges for the grid detector and also 
makes edge direction detection more robust. 

3.4.2 Recognition of Planar Greyscale Grids of Squares 

This section describes the revised algorithm based on the algorithm presented in Section 3.3 for 
detection of the grayscale checkerboard-like marker field. As before, the algorithm supposes that the 
grid of squares is planar and distorted by a perspective projection. The experiments (Section 3.4.3) 
show that this condition is fulfilled enough in realistic scenes observed by standard cameras. Thanks 
to this assumption, the algorithm is very efficient: the fraction of visited pixels (the algorithm's 
"pixel footprint") within an average input image is very small (Section 3.4.3.2). 
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3.4.2.1 Greyscale Grid Detection 

Conventional marker detectors typically rely on first detecting the bounding borders [76, 41] of 
the markers by finding the contours in a thresholded image and choosing shapes consisting of four 
straight-line contours. The grayscale or color Uniform Marker Fields, similar to binary Uniform 
Marker Fields, does not distinguish between marker design features intended for general marker 
detection and features for marker identification. Grid modules serve simultaneously as the detection 
and identification features. The motivation for this approach is to better use the marker field's 
surface: the localization features are much denser in the field, while still preserving the identification 
capabilities. 

Figure 3.14: Detection of the greyscale grid of squares. A : The image is processed in sparse 
scanlines. On each scanline, edges are detected (Red) and extended to edgels (Green) by iteratively 
finding further edge pixels in the direction perpendicular to the gradient. B: The edgels are grouped 
into two dominant groups using R A N S A C ; two vanishing points are computed by hyperplane 
fitting. C: Based on the vanishing points, the optimal grid is fitted to the set of the edgels (orange 
dots denote the estimated centers of grid modules). D: Edges between the modules are classified 
(Section 3.4.2.2). Note that despite the blur, lighting and occlusion in the image, the camera is 
localized correctly (Figure 3.17). 

The Uniform Marker Fields detection algorithm performs the following three main steps to 
detect the grid (Figure 3.14). The steps correspond to the steps 1 — 3 described in Section 3.3. I 
describe the improvements for all steps and discuss the necessary changes to the algorithm due to 
the changed marker design. 
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1. Extraction of edgels (edge element or edge pixel) - typically, for the improved design the 
algorithm extracts more straight edge fragments in the whole image than for the binary variant. 
The exact number depends on a lot of variables: resolution, number of shades, scanline density, 
blurriness. The image is processed in sparse horizontal and vertical scanlines (Figure 3.14 A). 
Additionally, when a video input is being processed, the detected edgels are filtered based on the 
previous detected position of the marker field. In the tests we used a simple rectangular mask to 
filter out the edges outside the area corresponding to the previously detected marker field. This 
change is beneficial in case of more marker's on-screen on other patterns in the image with strong 
lines. 

2. Determining two dominant vanishing points among the edgels (Figure 3.14 B). This step 
mostly remained identical. Two groups are found using R A N S A C . The lines 1« in each group should 
be coincident with vanishing point v: 

V i : v l i = 0. (3.19) 

The vanishing point is found as the smallest eigenvector of the correlation matrix 

C = ( l 0 . . . l ^ v ) ( l o . . . l i v ) T . (3.20) 

Since matrix C is 3 x 3 and symmetric, eigendecomposition can be computed very efficiently. We 
added one additional step to filter out outliers inside each group using RANS AC-like approach before 
the vanishing point calculations. This change helped detection on frames with strong perspective 
distortion, where the slope distribution inside pencils was wide. 

3. Finding the grid of marker field edges as two groups (pencils) of regularly repeated lines 
coincident with each vanishing point. As pointed out in Section 3.3.6, the estimation of k was not 
ideal in equation 

U = hase + (hi + q) h, (3.21) 

where l& a s e is an arbitrarily chosen base line through the vanishing point, different from the hori
zon [143]. Parameter k controls the line density and q determines the position of the first line. 

Since grayscale markers provide longer and more reliable edgels, a more robust estimation can 
be used for k. In order to find k and q, the value of (ki + q) is calculated for every line (extended 
edgel) of the input group. These values are clustered by mean-shift and median difference between 
cluster candidates is used as initial estimate of k. (The mean-shift box kernel size in normalized 
image coordinates [0,1] in our tests was w = 0.05.) Each cluster is assigned an index i based on 
the initial guess and then overall optimal k and q are found by linear regression (Figure 3.14 C, blue 
and green lines). 

For simplicity, the algorithm description supposes that a significant portion of the input image is 
covered by the marker field. Additionally, steps 2 and 3 of the algorithm are conditionally applied 
on rectangular parts of the image (quarters, ninths); in high-resolution images, the marker field is 
thus found even if it covers an arbitrary fraction of the camera input. 

Due to the design decisions for the generalized Uniform Marker Fields, the proposed algorithm 
after step 3 diverged significantly from the original algorithm described in Section 3.3. These 
changes are discussed in more detail below. 

3.4.2.2 Edge Classification 

When only a small fraction of the marker field is visible, it is crucial that the edge gradients 
(Equations (3.16) and (3.17)) are recognized correctly. Their recognition can be challenging due to 
motion blur, uneven lighting conditions, etc. (Figure 3.15). 
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Figure 3.15: Examples of problematic edges within the pictures of the marker field (left to right: 
motion blur, dynamic lighting, occlusion). 

In order to correctly classify an edge given the locations of the neighboring marker field modules, 
our algorithm samples pixels from the edge's vicinity. If a small number of samples suffices to 
decide an edge either way (—1, +1; see Section 3.4.1), the decision is made, otherwise more pixels 
are sampled. If an edge cannot be confirmed, the location between the modules is treated as a place 
without an edge: e*- = 0. The stopping criterion is given by Wald's sequential probability ratio test 
[173], which is proven to be the optimal sequential test for this purpose. 

3.4.2.3 Localization Within the Marker Field 

The sub-window described by edges Grc is formulated as a vector of scalars in (3.18). This vector 
can be used as a key to a hash table. Values in the table represent locations in the marker field (two 
discrete coordinates in the terms of grid modules; enumerated orientation 0 ° / 90°/ 180°/ 270°). An 
absent record in the hash table means a wrongly recognized fragment of the marker field. Hash 
tables are implemented fairly efficiently in today's programming languages. 

Figure 3.16: The decision tree used for localization in the marker field, left: A compact cluster of 
edges detected in the image. Edges are numbered in a predefined order, right: Decision tree - the 
leaves are either invalid or contain a location and orientation inside the marker field. 

Instead of using a ready-made hash table, we prefer to create a decision tree. When a compact 
piece of the marker field is detected in an input image, the edges are classified and used for traversing 
the tree. A central edge in the detected cluster of edges decides the root node, and surrounding edges 
follow in a predefined order (Figure 3.16). Any cluster of neighboring edges is recognized by the 
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tree - the leaf node would either define the cluster's location and orientation within the marker field 
or reject the cluster of edges as invalid (due to misdetection). Constructing a deeper tree implies 
that a larger cluster of edges is used for localization within the field. This allows for larger marker 
field resolutions. By using a larger number of deciding edges, the tree can also be constructed 
fault-tolerant - the tree nodes can tolerate one or more falsely classified edges. 

3.4.2.4 Corner Search and Iterative Refinement 

For a precise camera pose estimation the algorithm finds all possible corners between the square 
modules in the marker field (with a sub-pixel precision). The corners of the grid of squares are 
localized using the detected overall position and grid parametrization. Their precise location in the 
image is iteratively refined. Based on the marker field's layout, the algorithm knows each corner's 
appearance including its rotation and searches for such a particular pattern. This helps mostly in 
cases when the image is motion blurred, the marker is not perfectly planar, or noise in the edgel data 
cause the grid not to fit the edges precisely. 

Figure 3.17: Result with grayscale Uniform Marker Field. Marker Fields with clutter, occlusion, 
varying lighting, strong blur, left: Original image - input to the recognizer, right: Recognized 
camera location and augmented scene. 

Another way of improving the precision of the camera pose estimation accuracy is to iteratively 
search for correct corners outside the detected region in the marker field in the image space using 
back-projection. In the tests we use both of the aforementioned improvements. A demonstration of 
improvements and robustness can be seen Figure 3.17. 

3.4.3 Experimental Results 

We compared our solution to A L V A R [2] as the most mature available ARToolKit follower (ARTag 
is no longer publicly available). A L V A R supports arrays of disjointed square markers. The 
other baseline is the Random Dot Markers (RDM) [ 166] as an alternative "marker field" solution, 
where individual localization markers overlap in the field and exhibit robustness against occlusion 
(Section 2.3.1). We performed identical experiments with CALTag [8] as well, but its results were 
always worse than A L V A R and it is much slower (written in Matlab), so I omit CALTag's results 
from this work. 

For comparing our solution with the alternatives, we shot videos of side-by-side markers (Fig
ure 3.18). The marker fields have comparable (as much the same as possible) dimensions and 
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resolution of the individual markers (n2-windows vs A L V A R individual markers vs RDM's sub-
markers) and the movement is simple and well-defined to ensure fairness in the comparison (see 
Figure 3.21 for example frames from the videos). 

Figure 3.18: Illustrative frames of the side-by-side comparison video, left: Greyscale U M F vs. 
ALVAR. right: U M F vs. R D M . top: Motion blur tests, bottom: Occlusion tests. Videos were 
recorded in 1080p, capturing different classes of movement: zig-zag movement, upright rotation, 
rotation with severe perspective distortion, near/far movement, variable lighting conditions with 
fixed camera and general movement with occlusion. 

Method RDM ALVAR UMF 
Average position variance: 
Average rotation variance: 

8.5 cm 
0.049 

3.48 cm 
0.035 

3.28 cm 
0.024 

Table 3.5: The average local variance in position and rotation change using 10 frames for averaging 
in a 1080p 50FPS video. The rotation variance is expressed as variance of quaternions, since the 
euler angles are unstable due to the gimbal lock. (Note: R D M gave highly unstable results and the 
low average variance in rotation is caused mainly by the low detection rate. For the rotation test 
video it gave 0.080 variance.) 

3.4.3.1 Success Rate and Precision 

Figure 3.20 shows the estimated camera pose in graphs for different videos for A L V A R and UMF. 
In order to evaluate the precision of our algorithm, we used the local variance (in time domain) 
of the estimated camera pose (position and rotation) - see Table 3.5. Low local variance means 
that the results of camera localization are smooth. We did not include R D M , since its stability was 
notably worse (Table 3.6) and A L V A R thus serves as a good reference for precision evaluation. Our 
method gave smoother results thanks to the good spatial distribution of matched points between 2D 
and 3D. A L V A R was also unable to find the corners of the individual markers precisely in blurred 
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images and for partially occluded corners. The number of detected corners used for the camera pose 
estimation is shown in Figure 3.19. 

300 500 600 
Frame 

A L V A R 
UMF 

n 

300 400 500 600 
Frame 

700 

Figure 3.19: Number of correspondences used by A L V A R (red) and U M F (green) for the camera 
pose estimation, left: near-far video, right: perspective (refer to Figure 3.20). More points 
naturally mean a more stable and precise camera pose estimation and better tolerance to wrongly 
detected points (caused by a motion blur, partial occlusion, etc.). 

Apart from the precision I also show in Table 3.6 the success rate for each method in every 
category of videos. (A frame is successfully detected, when the marker was successfully detected 
and a camera pose was estimated.) Random Dot Markers had the lowest performance, mostly due to 
their high sensitivity to motion blur. Even for a fixed camera or rotation with minimal blurring, the 
R D M detection algorithm gave the worst results. A L V A R and U M F were both very successful and 
gave very similar results. The only major difference was for zooming and occlusion. Figure 3.18 
shows the clear advantage of our continuous marker field over ALVAR. A L V A R only detected two 
completely visible markers plus one, which had one edge slightly occluded. On the contrary, our 
method was able to detect sub-markers and corner points even between the cups. 

Method RDM ALVAR UMF 
Lighting 89.7 100.0 100.0 
Perspective 42.7 100.0 100.0 
Near/Far 75.8 91.3 93.4, 94.6 
Rotate 94.7 100.0 100.0 
Zig-Zag 29.6 98.3 97.5, 97.4 
Occlusion 38.5 93.0 94.0, 96.5 
Overall 61.8 97.1 97.8 

Table 3.6: Marker field detection success rates in %. For Uniform Marker Fields, rates from 
comparison videos with R D M and A L V A R are given separately, if different. Success rate is the 
percental ratio of video frames where the different markers were successfully detected. 
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Figure 3.20: Graphs of estimated camera rotation (RX, RY, RZ) and translation (TX, TY, TZ) 
for representative videos. Smooth curves mean an error-free pose estimation; noise and "dents" 
in the curves indicate inaccuracies. 1 s t column UMF, 2 n d column ALVAR. From top to bottom: 
perspective, occlusion, zig-zag, near-far. Major steps in the graph are caused by the gimbal lock 
and an angular over/underflow at — ir and TT. 
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3.4.3.2 Pixel Footprint and Computation Complexity 

Table 3.7 shows the speed of the three tested algorithms and the breakdown of speed of our marker 
detection algorithm for videos with 1920 x 1080 resolution. Our algorithm was more than 3 x faster 
than A L V A R and visited on average about 5.3 % of all pixel points. A small memory footprint is an 
important property for ultra-mobile processors where the memory accesses are slow due to limited 
caching. 

RDM ALVAR UMF (edge grid match cam sref) 
164.4 30.1 8.8 (3.8 1.1 0.3 0.7 2.9) 

Table 3.7: Breakdown of speed in milliseconds for 1080p videos using a mid-range Intel(R) 
Core(TM) i5 C P U 661 (3.33GHz) CPU. edge: edgel detection in scanlines; grid: reconstructing 
the grid using RANS A C and vanishing point detection; match: edge direction detection and position 
decision making; cam: camera pose estimation based on the found matches; sref: processing in 
subwindows and position refinement by iterative search for more corner points. 

3.4.4 Realistic Dimensions of the Marker Field 

We used a cluster of computers (~ 1000 nodes) to synthesize the marker fields with highest possible 
resolutions. Table 3.8 shows several reasonable configurations of the marker fields. Marked in bold 
are the most conservative variants - 3 x 3 sub-window, 3 colors. {Note Substantially larger fields 
could be generated if necessary, but for practical reasons we capped the generation at this resolution.) 
Square marker fields are suitable for printing on paper. 16:9 marker fields are fine for panoramic 
canvases and monitors. Stripes are a good solution for scenes with large lateral movements. For 
example, stripes are good in case of localization inside buildings with long corridors or long moving 
shots in front of a greenscreen (Section 6). 

Lower number of colors is better for assuring sufficient edge contrast. During our research 
we used 3 — 5 shades for grayscale (Sections 3.4.1 and Chapter 5) and greenscreen (Chapter 6) 
markers. Higher numbers can be afforded when more variable shades can be permitted: higher 
quality camera, good lighting conditions, large resolution, etc. 
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aspect window #of M F 
ratio edges colors/shades dimensions 

3 40x40 
# 4 110x110 

5 175x175 

_i_i 3 175x175 
1:1 -E + 4 250x250* 

5 250x250* 
3 250x250* 
4 250x250* 
5 250x250* 
3 48x27 

# 4 144x81 
5 192x108 

_| u 3 160x90 
16:9 : E 4 320x180* 

5 320x180* 
3 320x180* 
4 320x180* 
5 320x180* 
3 600x6,150x15 

# 4 3000x6, 1200x15 
5 3000x6, 1500x15* 

_|_| i_ 3 4000x8, 1200x20 
stripe -E $ 4 8000x8, 2000x20* 

5 8000x8, 2000x20* 
3 8000x8, 2000x20* 
4 8000x8, 2000x20* 
5 8000x8, 2000x20* 

Table 3.8: Synthesized marker fields of reasonable parameters. The window edges shows the 
configuration of used edges for the window-array property. For each aspect ratio 3 different 
configurations are used: edges inside a 3 x 3 window (12 edges), edges inside a 4 x 4 window in a 
circle pattern (16 edges), and all edges inside a 4 x 4 window. For practical reasons we capped the 
size of the marker fields, but larger fields could be generated if necessary (labeled as *). 
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3.5 Follow-up and Related Research 

The previous sections demonstrated that Uniform Marker Fields can be detected faster, more reliably 
and with similar or better precision as alternative marker based solutions. The simple and clean 
design has the potential to be used in many applications. 

In this section I would like to summarize follow-up works - applications and improvements -
based on Uniform Marker Fields. Follow-up works, where I contributed significantly, are discussed 
in more detail in Chapters 5 and 6. In this section I briefly describe publications, where I was not 
involved or my involvement was minimal. For more details refer to the individual works. These 
works demonstrate the extendability, reuseability and viability of Uniform Marker Fields as a marker 
field solution. 

3.5.1 Generalizations and Adaptations of U M F 

A common assumption, when dealing with fiduciary markers, is their planarity. Even 3D markers 
often consist of several planar surfaces. Approximating more complex 3D forms for camera pose 
estimation is more difficult, since they have more degrees of freedom. Kriz [71] in his diploma 
thesis explored the possibilities of mapping Uniform Marker Fields on a cylinder (Figure 3.22). 
He approximated the ellipses formed by rings of the cylinder by a set of paraboles coincident with 
two points on the horizon. He was able to successfully detect grayscale Uniform Marker Fields in 
average in 70 ms with 96 % success rate. These results are promising and show a possible future 
work direction. 

Figure 3.22: Detection algorithm for Uniform Marker Fields mapped on a cylinder [71]. Left: 
approximation of ellipses forming the rings on a cylinder with parabols coincident with two common 
points on the horizon. Center: detected pencil of parabols. Right: detected module centers on the 
cylinder. 

Figure 3.23: Modification of binary Uniform Marker Fields for deformable surfaces [ ]. Left: the 
modification of the Uniform Marker Fields. Right: an example of the detected surface with the 
resulting mapped texture. 

Deformable fiduciary markers or structured light can be used for surface reconstruction. In 
combination with a projector, deformable markers can be used to create a variant of Augmented 
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Reality system, where real objects are given virtual texture. Fujimoto et al. [4' ] used a modified 
variant of binary Uniform Marker Fields (Section 3.1) to create geometrically correct projection-
based texture mapping on deformable surfaces. The deformable surface was overlayed with a thin 
0.2mm aluminium metal mesh, with a point based variant of Uniform Marker Fields (Figure 3.23) 
encoded on it visible under IR light. To identify the location of each marker point detected on 
the deformed surface, they used a simple voting system. It is important to note that they did not 
use the deformed marker for surface reconstruction, but only for texture mapping. Their current 
implementation did not work in real time - they were able to detect the deformed pattern on average 
in 0.41 s. 

Figure 3.24: Generalized Uniform Marker Fields with image templates [128]. 

Figure 3.25: Empirical evaluation of color stability by Betko [ ] for Uniform Marker Fields. The 
highlighted edges show false edge detections. 

The generalization of binary Uniform Marker Fields to use colorful markers was further de
veloped by Paldy et al. [128]. In his student paper he investigated the possibilities to optimize 
the generated Uniform Marker Fields using a cost function (Figure 3.24). He extended the marker 
design by generalized concept of window definitions and introduced a cost function to generate 
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optimal marker fields. The cost function involved maximizing edge difference for reliable lines, 
matching a template image, optimize color palette, etc. 

A more detection rate-oriented investigation of Uniform Marker Fields with RGB colors was 
done by Betko [ ]. He performed empirical tests on color and edge stability in RGB color channels 
between reference colors and camera shots of printed colors. Unfortunately, his tests primarily 
concerned mostly RGB and only partly Y U V color channels. His results show that encoding 
Uniform Marker Fields into RGB color channels leads to unreliable detection. His investigation 
led me to explore alternative options of mapping Uniform Marker Fields into color information for 
greenscreen markers (Chapter 6), instead of using color channels directly. 

3.5.2 Indoor Localization by U M F 

We created a dataset of images to measure the precision of the Uniform Marker Fields detector in 
collaboration with M . Zacharias et al. [ ] as part of our research concerning indoor navigation. 
We marked 6 different view points relative to a projected grayscale Marker Field with 14.3cm 
module size. We triangulated the reference point relative to 3 fixed points on the ground. The 
precision of our ground truth measurement approach had 0.193 cm standard deviation. 
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Figure 3.26: Detected positions from the (15+ photos for each test point) - A, B,C, D, E, F points. 
The + points are the illustrative reference point positions - Am, Bm, Cm, Dm, Em, Fm. 

We took images from the 6 reference points with a smartphone camera (Nokia Lumia 930) at 
1920 x 1080 px resolution. For each reference point we took 15+ photos of the scene at different 
angles and 3 different heights from the ground. Robotic arms have limited range and would not 
have covered the tested area. Instead, we used a plummet to achieve relatively high precision 
camera positioning. Another factor complicating the exact measurement is the camera rotation and 
determining the exact center of projection. These complications cause a small, but not dismissible 
noise to the detected positions. We also calibrated the smartphone camera for maximal precision. 

Figure 3.26 shows the results. The ground truth points in Figure 3.26 are for illustration purposes 
only. The absolute distance of the detected points from the ground truth might contain a bias. One 
of the sources of bias is the possibility of slight axis misalignment (rotation) between the reference 
system of our ground truth position relative to the fixed objects in the scene and the space of the 
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marker. Another source of misalignment could be the camera calibration and/or mis-detections. To 
achieve reliable and unbiased results, we compared the relative distances between pairs of detected 
positions. 

The overall standard deviation of the distances between pairs of detected positions from the 
ground truth was 6.73 cm and the median 3.21 cm. It's important to note that the precision varies 
based on the distance from the fiduciary marker plane. With growing distance, the limited camera 
resolution and possibly imperfect camera calibration cause loss of camera pose precision. This 
effect is also visible in Figure 3.26. The measurement jitter is visibly increased for point E which 
observes the marker field from a large distance. 

This concludes the design, testing and evaluation of the base algorithm for Uniform Marker 
Fields. In the following sections, I demonstrate the viability of Uniform Marker Fields for device-
to-device task migration (Chapter 5) and for camera pose estimation as part of a greenscreen 
(Chapter 6). The next section deals with fast grid pattern localization that can also be used to 
efficiently localize candidate positions of Uniform Marker Fields in high resolution images. 
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Chapter 4 

Fast Detection of Grids and 
Matrix Codes 

The previous chapter described the design and detection for Uniform Marker Fields marker solution. 
One important assumption during the design of U M F and its detection algorithm is that it covers 
a significant portion of the input image. For large scenes, this assumption is unrealistic. In this 
chapter, I propose an efficient search for candidate positions for regular grid patterns. While I 
demonstrate this approach for detecting QR codes in high resolution images, the algorithm is not 
limited to any specific marker or Matrix Code. 

Fiduciary markers (ARToolKit, ARTag, Fractal Marker Fields, etc.) and visual patterns for en
coding information (QR code, Data Matrix, Aztec Code, etc.) often exhibit distinctive checkerboard 
structure. In the case of data codes, this serves multiple purposes. Firstly they are a straightfor
ward way to encode binary information in 2D and secondly they are easily noticeable by users and 
machines. The "manhattanic", mostly black-and-white structures stand out in most scenes. There 
is great potential in using this definite structure to find regions of interest in the image containing 
markers and data codes. 

Traditional fiduciary markers rely on strong edges and segmentation to localize the markers. 
This has two major disadvantages: they lack robustness against occlusion and the segmentation 
process is computationally costly. The advantage of these marker solutions is that their size is 
relatively small and they can represent multiple separate virtual objects in the scene (for example a 
virtual canvas and a virtual pencil used to draw on the canvas). 

Uniform Marker Fields described in Section 3 rely on two clusters of long edgels to localize 
the marker. This approach has the advantages of being robust against occlusion and it is possible 
to cover large areas in the scene. A disadvantage of this (global) approach is that the localization 
method has no direct support for multiple markers in the scene. This problem can be partially solved 
by processing the edgels in sub-regions of the image and discard parts, where no suitable pattern 
was found. 

We presented an alternative, more robust approach to finding checkerboard structures in collab
oration with A. Herout and M . Dubská [ ]. In our research, we focused on QR-codes. My main 
contribution was the efficient algorithm to find possible occurrences of checkerboard structures and 
testing. The description below follows closely our publication. 
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4.1 Motivation 

QR codes [3] are a very popular case of matrix codes (or 2D barcodes). They are receiving an 
increasing popularity among smartphone users and are becoming the standard when it comes to 
short data migration into their devices. The QR codes themselves or similar matrix codes (Aztec, 
DataMatrix, etc.) are being routinely used by different industries to carry meta-information attached 
to real-world objects. These matrix codes are designed so that they would be detected in images 
where they cover a significant portion of the image and where they are not deformed by perspective 
projection. However, their detection in high-resolution images of real-world complex scenes is 
desirable. These views would involve rotation, perspective deformation, and other distortions of 
the codes. 

Figure 4.1: Examples of QR codes in high resolution images distorted by perspective transformation. 

When the QR code covers a significant portion of the input image 25 % or more) and only 
one code appears in the image, the situation is simplified and algorithms exist which solve this 
efficiently [4, 36]. However, in complex scenes with more than one QR code skewed by perspective 
projection and rotation (see Figure 4.1 for an example), the process of detection and recognition of 
the codes is different. Alfthan [ ] observes that for "just" detecting the code, a lower-quality image 
and other means of processing can be used - compared to recognition of the code. This may lead 
to two distinct algorithms - an algorithm for detection of the codes in a complex high-resolution 
image, and an algorithm for recognition of individual codes in the identified sub-images. 

Some researchers keep relying on the Finder Patterns embedded in each QR code (however ab
sent in other codes, such as the DataMatrix) [ 18,151, 112] to localize the markers in high-resolution 
images. Others detect the code as a whole - by using texture analysis [62], morphological opera
tors [ ] and other techniques [68]. Most of these approaches are computationally very demanding 
(they would use the Canny edge detector, several passes by a morphological operator, convolution 
with large kernels, and similar techniques). Even the algorithms targeting real-time operation are 
not quite usable on images with high resolution. For example, a recent solution by Belussi and 
Hirata [ ] takes 50-150 ms to process a 640 x 480 image in one pass and several passes are needed. 

I propose in the following sections our method for QR code detection in complex scenes based 
on Histograms of Oriented Gradients (HOG) [ ] and segmentation of image parts based on HOG. 
Our solution is computationally very efficient - only a fraction of image pixels needs to be visited in 
order to detect the QR codes in a high-resolution image. Its byproduct are the evaluated HOGs for 
the individual detected QR codes; they can be used by a published algorithm by Dubská et al. [36] 
for matrix code recognition, sparing additional computational resources. 
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4.2 QR code Detection 

The QR code was designed in such a way, so that it can be easily localized by finding the predefined 
structures at its three main corners (see Figure 4.2). There have been many attempts to speed up 
and improve the detection of the QR codes the way it was intended using the Finder Patterns (FIP). 

Finder pattern (FPI) 

Timing patterns 

Data 

Alignment pattern 

Quiet zone 

Figure 4.2: The structure of the QR code. 

Ohbuchi et al. [112] used scanlines on a preprocessed image to find FIPs and then applied 
an inverse perspective transformation for image reorganization to extract the binary information 
enclosed in the QR code. Sun et al. [151] used a similar approach, but for locating the FIPs they 
used the Canny edge detector and looked for square contours. 

Choosing the correct threshold to binarize the image and find FIPs depends among others on 
the properties of the camera and illumination. Liu et al. [87] used multilevel threshold to deal with 
varying lighting conditions for QR code detection. 

Given the regular structures of QR codes and matrix codes in general, there has been research 
on using the Hough transformation for matrix code or barcode detection and localization. Muniz 
et al. [104] presented a robust method for decoding linear barcodes using the Hough transform. 
Wang and Zou [ ] used the Hough transform to locate the four corners of the 2D bar code region 
and used the second derivative image in combination with bidirectional centripetal run-length to 
decode the bar code. Parikh and Jancke [121] also used the Hough transform. They combined it 
with adaptive threshold and texture analysis to locate the correct position of 2D high capacity color 
barcodes and to decode them. 

Dubská et al. [36] introduced an approach, that efficiently searches for straight lines that coincide 
with two dominant vanishing points by using a variant of Hough transform (PC-lines) and a line 
parameterization which is a point-to-line mapping. They assume that the image contains a single 
QR code, which covers a large portion of the image. This method was used during our research for 
experiments and evaluations. 

The matrix codes (including the QR codes) have a very specific texture characteristic. Thus 
the problem of localization of the QR code is similar to image segmentation based on the texture 
features and then selection of a segment with requested characteristics. Methods of texture based 
segmentation vary in used textural descriptors such as the Local Binary Patterns [113], Gabor 
features [175] or Markov random field statistic [52]. 

Ouaviani et al. [119] presented an image processing framework exploiting the regular structure 
of 2D barcodes. First they used the histogram of gradients to detect regions of interest in the image. 
To get the precise area of the code, they segmented out the region containing the code based on an 
average gray-level of pixels in a small neighborhood using region growing and found the smallest 
4-sided polygons surrounding the segmented code. 
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4.3 Rapid Detection of Regions with a Possible QR code 

During our research, we focused on relaxing the constraint of having exactly one 2D barcode in the 
image and consequently allowing that barcodes cover only a small part of the image (see Figure 4.3 
for an example). We proposed an algorithm that can efficiently localize and extract candidate 
positions for the 2D barcodes even in high-resolution images. In order to achieve this, we exploited 
the property of 2D barcodes of having a regular distribution of edge gradients to get probable 
positions for full QR code detection. 

Figure 4.3: The original 15MPix image. Multiple codes are present in the image; they are subject 
to perspective projection; dominant edges and text appear in the image. 

4.3.1 Processing in Tiles 

A naive way of finding the 2D barcodes without using special properties of specific barcode types in 
a high resolution image at every reasonable scale would be to scan through the image at each scale 
with a sliding window of a given size and run the detection algorithm (such as the one described 
in [36]) at each position. This would require too much computational time. 

There are some common properties of 2D barcodes, however, that could be potentially exploited 
to help localizing them. Two most important of these are the regular distribution of edge lines and 
a characteristic distribution of the gradient directions. 

We proposed separating the image into a regular grid of tiles. Each tile could serve as an 
indicator for a probability of being part of a 2D barcode. Let T(u, v) be a tile at index u, v 6 No-
The tile then corresponds to a square image region with top-left corner (uw, vw), where w is the 
width of the tile (all tiles share the same size). Figure 4.4 shows an example of such a grid. The 
overlayed green intensity represents the probability of the tile being a part of a QR code. 

4.3.1.1 Extraction of the Histogram of Oriented Gradients 

To get an indicator for QR code presence, the algorithm first extracts the Histogram of Oriented 
Gradients (HOG) for each tile. For each pixel, the algorithm computes the size of the gradient: 
both its magnitude and orientation. Only gradients whose magnitude exceeds a given conservative 
threshold are processed. The threshold is set fairly low so that a reasonable amount of blur does 
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not spoil the detection. The stored edge pixels are used to create the HOG for the tile. We used 
a histogram with a low number of bins (e.g. 12 bins); higher histogram resolution is futile due to 
the limitations of gradient direction precision computed from a small neighborhood of pixels. The 
resulting histogram is a vector for each tile: h = Hn(T(u, v)), where n is the number of bins. See 
Figure 4.4 for HOG representation. The highlighted red and blue bins of the HOGs are the detected 
two dominant edge orientations. 

To speed up the process, the histograms can be approximated by taking only pixels along 
scanlines vertically and horizontally separated by a given number of pixels. By processing only the 
scanlines, only a small percentage of input image pixels have to be processed for each tile, but still 
have a precise-enough approximation of the HOG. 

Figure 4.4: The grid with histograms of oriented gradients. 

4.3.1.2 Feature Vector Extraction 

In addition to the gradient histogram, a feature vector is computed for each tile. It contains the 
normalized histogram and four additional values: corresponding angles of the two main gradient 
directions in the histogram, the number of edge pixels per unit area and an estimation of the 
probability score of a chessboard like structure in the tile based on the histogram. 

Let then v = (p, «1,0:2, h n o r m ) be the feature vector for a tile with normalized histogram 
h-norm, pixel area A, and the number of edge pixels over a threshold Ne. The probability score is 
computed in the following way: 

«1 ~ «2! ~ f \ \ 2min(h a , h b ) 
§ ) h a + h b ' ( 4 " l j 

where h a and hj, are the values in the histogram corresponding to the two dominant edge orientations. 
The first term ensures that the two dominant directions are approximately § apart; the second term 
prefers equally high peaks in the histogram. 

The two main gradient directions detected from the HOG a\ and «2 meet an additional constraint 
that Iai — | | <C \ot2 — f I or a\ < «2- The order of the angles is important for the segmentation. 
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4.3.1.3 Segmentation of the Tiles 

This vector of features can be used for segmentation of the tiles. For segmentation we used a simple 
4-neighborhood blob coloring [139], which requires two passes for each level in the hierarchy of 
tiles. 

We used only the first angle a\, the probability score p and the edge density ^ for segmentation 
for performance reasons. The segmentation is done on a relatively small number of elements, so it 
does not introduce any major computational overhead. 

The result of the segmentation (Figure 4.5) is a set of connected tiles {S\, S2,..., Sk}, 
If A(Sk) is the area of the axis-aligned bounding box in pixel2 and then let the probability score 
that the segment is a possible position of a QR code be: 

where p and ^ are values from the feature vector for tile T . 

4.3.1.4 Segment Classification 

Based on the computed score P(Si) and the shape of a set of tiles Si, we use a binary classifier 
to determine whether the area covered by a given segment should be further processed to find 
QR codes: 

where T is an experimentally acquired threshold. The regions classified as probable positions of a 
2D barcode in our example in Figure 4.4 are represented by thick yellow rectangles. 

An example of the segmentation is shown in Figure 4.5. The edge length of the tiles in this 
case were w = 120 pixels for a lbMPix image. Two of four QR codes were precisely localized. 
The segment corresponding to the third, bigger one on the left side of the image contains also some 
parts of the text, since at this level of tiling it has properties similar to the QR code itself. The fact 
that the QR code candidate rectangle does not tightly fit the actual code edges, does not prevent 
it from being detectable by the detection/recognition algorithm. The fourth blurred QR code in 
the background did not get localized due to the small number of edge pixels and the near uniform 
distribution of the gradient directions. 

4.3.2 Multiscale Processing 

The size of the tiles can have a major effect on the success of finding correct candidate positions. 
Choosing too large region size might cause overlooking small matrix codes. For example, when 
a small QR code surrounded by large noise covers only a small part of four neighboring tiles, the 
probability score of a regular structure in the four tiles would be very small. On the other hand, 
choosing too small tile size w would cover only a small part of a large QR code and the segmentation 
would fail to group the tiles covered by the QR code. 

We proposed using a quad-tree of tiles Ti(u, v), where I is the level. The HOG and edge 
extraction have to be computed only at the lowest level 1 = 1. The histogram of the tiles at a 
higher level in the hierarchy can be computed simply by accumulating the corresponding bins of 
the histograms of the child tiles: 

(4.2) 

1 if P(Si) > T (is a possible position) 

0 otherwise (not a probable position) 
(4.3) 

1 1 
H„(7I(u, v)) = ] T ] T H„(7I_i(2u + i, 2v + j)). (4.4) 

i=0 j=0 
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Figure 4.5: The segments used for finding the QR code. Red color component encodes the edge 
count per tile (inverted). Green color component represents the angle of the first dominant direction 
(ai). Blue color component indicates the absence of the QR code based on p (refer to Equation (4.1)). 

The segmentation and classification of the segments can be done at each level (or alternatively, 
a hierarchical segmentation can be used). Since the gradients and edge pixels are not recomputed 
for higher levels and the number of segments is relatively low, so this does not mean a significant 
computational overhead. 

The whole algorithm for detection of QR codes in a high-resolution image is depicted in 
Algorithm 1. 

Algorithm 1 QR code detection in high-resolution images 
Input: Image / 
Output: Detected QR codes 

l : compute H n ( 7 i ( u , v)) by edge extraction 
2: compute Hn(Ti(u, v)), I G { 2 , . . . , lmax} from lower-level histograms (4.4) 
3: for all / G { l , . . . , Z m a s } d o 
4: compute feature vectors vi(u, v) from the histograms 
5: compute the segments S = {Si, S2,..., Sk}, fc£N 
6: for all Si G S do 
7: compute segment probability P(Si) (4.2) 
8: if C(Si) == 1 then 
9: run QR code detection algorithm 

10: end if 
11: end for 
12: end for 

4.4 Experimental Results 

In order to evaluate the performance, we collected a dataset of challenging real-life images. Since no 
standard dataset was publicly available for evaluation of QR code detection algorithms, we acquired 
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the images ourselves . The images in the dataset were taken both with a cell-phone camera and a 
professional high-definition camera. The resolution of the images scales from 1 MPix to 15 MPix. 
The cell-phone camera had a maximal resolution of 5 MPix, so larger images were all taken with 
the professional camera. 

The images in the dataset contain several different QR codes. A l l images contain at least one 
QR code, the maximal number of codes in a scene was 14. The percentual image coverage of the 
codes varies from 2 % to 70 %. The position and size of the codes for all images was annotated. 
Additionally we also annotated some further properties/flags for the codes: rotation, perspective 
deformation, varying lighting conditions and blur. 

We divided the evaluation into two parts. In the first part we evaluated only the performance 
of the candidate position search using our hierarchical grid. In the second part we evaluated the 
performance of the whole algorithm including the 2D barcode detection method described in [36]. 

4.4.1 Candidate Position Search 

In order to evaluate the efficiency and precision of the candidate search with our hierarchical grid, 
we used false positive and false negative metrics. They are defined in this case as follows: 

#FP 
^correct candidates 

j^all candidate positions' 

#missed positions 

(4.5) 

(4.6) 
#all annotated positions 

A correct candidate is a candidate position, where an annotated QR code lies completely inside 
the candidate image region and covers at least 30 % of it. We also experimented with expanding 
the candidate image regions by 0 %, 20 %, 40 % and 60 %, since the segmented image region might 
underestimate the QR code's size. 

grow by FP FN DT 
0% 58.9% 12.2% 74% 

20% 54.6% 9.4% 79% 
40% 52.9% 7.4% 80% 
60% 53.4% 9.4% 78% 

Table 4.1: Performance evaluation of the candidate search algorithm. FP: false positive percentage; 
FN: false negative percentage; DT: the percentage of QR code successfully detected in all images 
using [36]. 

Table 4.1 shows the results. Growing the candidate areas by 40 % proved to be the most robust 
option. This proved our hypothesis, that the segmentation underestimates the QR code size. By 
growing the candidate regions even further causes loss of performance, since the covered area by 
the QR codes became too small for the QR code detection algorithm [36]. For this challenging data 
set, results show acceptable false positive rate and low false negative rate. 

4.4.2 Detector Evaluation 

In this section, I describe the evaluation of the overall precision of our method. We extended the 
method for evaluation proposed by Dubská et al. [36] to include information also on the localization 

'Downloadable from www. f i t . vutbr. cz/research/groups/graph/download/qrcodes/ 
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performance. Since the QR code decoders are differently sensitive to the rotation, perspective 
deformation, blur and irregular illumination, the images are thus sorted into six categories: 

plain the code is upright, 
rot the code is rotated, 
pers the code is upright but skewed by perspective, 
rot+pers general orientation of the code, 
blur general orientation of the blurred code, 
shadow general orientation of the code with irregular illumination. 

The algorithm is composed of localization, detection, and decoding of the codes. If the code is 
localized, the binary bitmap of the code's blocks (binary matrix) is extracted and compared to the 
ground-truth bitmap. Since the QR code is capable of error repair and a few percent of the code can 
be missed, correct detection is counted when at least 95 % (99 %, 100 %) of the code is correctly 
extracted. Finally, the QR code is decoded by a publicly available ZBar 2 library and compared to 
the original encoded string. 

type (count) L 
DT 

(100, 99, 95) DC ZB 

plain (53) 93.7 
90.6 

(89.6, 95.8, 100.0) 
88.7 90.6 

rot (54) 98.2 88.9 
(93.8, 97.9, 100.0) 

85.1 98.2 

pers (19) 100.0 94.7 
(55.6,61.1,88.9) 

63.2 57.9 

rot+pers (50) 96.0 88.0 
(77.3, 88.6, 95.5) 

78.0 60.0 

shadow (26) 92.3 69.2 
(33.3, 66.7, 94.4) 

46.1 46.1 

blur (51) 80.4 52.9 
(66.7,74.1,92.6) 

41.2 67.9 

overall (251) 92.8 
80.5 

(76.7,86.1, 96.5) 
70.1 74.8 

Table 4.2: The results are shown for candidate position enlarged by 40% of the corresponding 
segment size. The values in the three columns relate to the number of all QR codes in the category. 
L: successfully localized; DT: successfully detected (the brackets show the percentual correctness 
of the extracted matrices); DC: successfully decoded using zbar; ZB: success rate achieved by zbar 
library independently of our algorithm. 

Table 4.2 shows the success rate for each step of the algorithm. A l l the values (except the ones in 
brackets) relate to the overall number of codes in the category. The first column shows the number 
of correctly localized barcode positions using the first part of the algorithm; the second column 
the percentage of the barcodes for which a binary matrix was successfully extracted. The brackets 
contain the information about the precision of the extracted binary maps compared to the annotated 
ground truth data. The third column shows the percentage of the QR codes that were successfully 
decoded out of all the code instances in the dataset. 

2zbar. sourcef orge. net - we reused the QR code decoding part from the already extracted matrix 
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For example for the rotated QR codes 98.1 % of the codes were correctly localized. For 88.9 % 
percent of all annotated QR codes, the binary matrix was successfully extracted. 93.8% of these 
were identical to the annotated data, 97.9 % of them were over 99 % correct and all the rest was 
over 95 % accuracy. Lastly 85 % of the QR codes in this category were correctly decoded. 

The results show that the blur caused by out-of-focus shots and movement are the most disturbing 
phenomena for 2D barcode detection by our algorithms. Another problematic case are 2D barcodes 
with shadows across them, since our detection algorithm did not take into account the much weaker 
gradients on shadowed areas. This could be solved by separating the candidate area into smaller 
parts and taking an equal number of best edge pixels from each part. Another disturbing area in 
the case of shadows is the penumbra, where the adaptive thresholding fails to determine the binary 
information of the field. 

One other area where the matrix code is not extracted precisely are the perspectively distorted 
QR codes. This might be caused either by the non-planarity of surfaces and the small resolution of 
the TS space used during Hough transformation [ ], since the maxima are not equally distributed 
along the vanishing line. To solve this issue, a re-fitting step could be added to detected QR code 
field centers similarly as was described by Parvu et al. [111]. 

We compared the performance and speed of our method with an open-source project for QR code 
detection: the ZBar library. It uses linear scans with adaptive thresholding to localize FIPs in the 
QR codes. We chose this implementation because it is popular, frequently maintained, it uses a 
completely different and theoretically fast approach, and also because it supports detecting multiple 
QR codes in one image. 

In Table 4.2 the ZB column shows the success rates for the ZBar implementation for different 
QR code categories. Because ZBar does not use edge extraction, it is more successful decoding 
blurred images. On the other hand it does not cope well with perspectively distorted images in 
comparison to our method. The difference for detecting rotated QR codes might be caused by slight 
blur or small size of the codes, causing our algorithm to fail to determine the edge orientations 
precisely. This limitation might be solved with an extra sharpening step. 

candidate search —1— 
decoding 

detect code * 
overall : 

segmentation 
tiles » 
zbar » 

S 
"400 -
s 

* 300 -
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0 -
0 2 4 6 8 10 12 14 16 

resolution [MPix] 
Figure 4.6: The required time for processing in ms. The graph also shows average required times 
for different parts of the algorithm: the overall time consists of the candidate search, code detection 
and binary matrix decoding; the code detection then from segmentation and the creation of the tile 
hierarchy. 
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4.4.3 Speed Evaluation 

Figure 4.6 shows the average required time for the algorithm. It does not contain the system 
overhead for loading and saving the images. The tests were carried out on a mid-range Intel® 
Core™ i5-2410M, 2.3 GHz processor using a single core. The graphs show that there is a linear 
relation between the image resolution and candidate search. The overall time, however, varies more 
thanks to the different amount of detected candidate positions. The drop at 5 MPix resolution can 
be explained by the difference between professional cameras and cameras integrated into mobile 
phones. Since most mobile phones apply sharpening filters to the images, the number of edge 
gradients grow accordingly. This may cause a higher number of candidate positions, making the 
detection/recognition part of the algorithm slower. 

The main purpose of using the grid of tiles is to reduce the number of positions to search 
for the QR codes in the whole image. As seen in Figure 4.6, the code detection itself takes for 
high-resolution images in average less than half of the required time of the whole algorithm. As 
mentioned earlier, to reduce speed and computational requirements we also approximated the HOG 
creation for the grid by subsampling the scanlines. This speed-up is largely dependent on the 
distance of the scanlines. We used 10 pixel distance between consecutive scanlines. This means 
the algorithm had to process only approximately 1/5 of the image pixels plus the neighbors of the 
pixels where a gradient was detected to get the gradient direction. 

200 r 

175 -

candidate position 

Figure 4.7: The required time for detecting QR codes in relation to the number of detected candidates 
in milliseconds for 1080p images. 

From Figure 4.6 is also clear that the major slowing factors are the creation of the tile grid 
hierarchy and the number of candidate positions the detector is forced to process (see Figure 4.7). 

The grid creation part basically consists of the gradient detection and feature vector calculations 
for each tile. The segmentation is only done on the grid level and it does not introduce a large 
computational overhead. However, the quality of the segmentation and the classification of the 
segments has a direct effect on the number of candidate positions and consecutively on the speed of 
the detection part. 

We also tested the required time for resolution used by common HD cameras - 1080p. Figure 4.7 
shows the results depending on the number of candidates positions that were found. The average 
time required to process one image was 54 ms and over 95 % of the images were processed under 
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100 ms. The outliers were caused mainly by extremely disturbing background texture and very 
high-resolution QR codes, where the number of candidates were relatively large. 

Since we are able to detect for a large range of scales, the achieved 250 ms in average for 15 MPix 
images is sufficient for localization for a slow moving object equipped with a high-resolution camera. 
In order to get truly real-time speed, GPGPU solutions could be used for segmentation, classification 
and Hough transform. 

Figure 4.6 shows also the speed of the detection with the ZBar library. Similar to the evaluation 
of our method, these results do not include the overhead for loading and saving images. The 
results show that the ZBar library is approximately 4 times slower for high resolution images with 
a comparable detection rate. 

4.5 Conclusions 

I described an algorithm for predetection of QR codes (and similar matrix codes, such as Aztec, 
DataMatrix, etc.). The algorithm is capable of detecting locations with probable occurrences of 
matrix codes in a high-resolution image. These locations can be further processed by an algorithm 
for detection and recognition of QR codes. The predetection algorithm and the detection/recognition 
one can share some computed information, further reducing the computational cost. 

The algorithm was evaluated on a dataset of high-resolution images with one or more QR codes 
present in the scene. The codes are viewed from different point and at different scales; the dataset 
thus well represents real-life scenes. Our algorithm successfully localized 95 % of all QR codes. 
The required run-time was under 250 ms in average for the tested images (up to 15 MPix large). 

The algorithm was fairly efficient and it notably exceeded the results published recently 
(e.g. [ ]). The algorithm is very suitable for parallelization in a SIMD environment, and it should 
be fairly efficient when executed on recent GPUs. To evaluate the performance of the algorithm, we 
collected and annotated a dataset of real-life images, suitable for comparison of algorithms. Such a 
public dataset was missing. 

In a follow-up work, Klimek and Vamossy [ ] published an implementation written using 
Microsoft .NET library and demonstrated slightly better results on their own dataset. Our QR code 
dataset has been already used for evaluation in [ 18], [162], [161] and others. 
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Chapter 5 

On-screen Markers 

In the previous Chapter 3, I introduced the Uniform Marker Fields, described methods for its 
synthesis and especially its real-time and computationally cheap detection. It turned out that this 
technology enables certain domain-specific augmented reality applications. This chapter presents 
one of them, where the markers are placed onto a computer screen so that it can be detected and 
recognized by an ultramobile device (typically a smartphone). This work was done in collaboration 
with other colleagues (primarily Rudolf Kajan) who provided the user interaction expertise and the 
use-case itself, my role was to adapt and optimize the technology of the marker fields and to design 
and implement the mobile technological solution. 

We used Uniform Marker Fields as an overlay on a large displays' content to achieve fast 
screen-to-screen task migration initially with binary markers [72]. This work involved research 
and development of an improved prototype using grayscale Uniform Marker Fields (Section 5.1). 
We took this research further and revised it into a full augmented reality experience for continuous 
inter-device interaction technique [73] (Section 5.2). The text of this chapter is based on two articles 
published in in a conference proceedings and in a journal [72, 73]. 

Figure 5.1: Uniform Marker Fields aiding eye-tracker localization [ ]. Left: frame where marker 
is shown and was detected. Right: consecutive frame with hidden marker tracking feature points 
(red dots). 

With the appearance of large and cheap high-resolution network-connected displays, and smart-
phones becoming a widespread personal accessory, the ubiquity of screen real-estate naturally drew 
the interest of many researchers to examine the possibilities for interaction between these devices. 
This research, though, is not limited only to smartphones - large display combination, but includes 
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any camera-equipped personal device like: eye-trackers, head-mounted see-through displays, binoc
ulars, etc. These interactive systems can also be perceived as a form of augmented reality system: 
the mobile device localizes itself in 3D relative to the large display and uses this information to 
remotely interact and/or augment the users' view with virtual objects and extra information in real 
time. 

Similar investigation into on-screen markers was done by Pavelková [124], who combined 
on-screen Uniform Marker Fields with an eye-tracker and natural feature tracking. During this 
research, my only contribution was the Uniform Marker Fields detector. I only mention it briefly, 
since this research direction has a great potential. She proposed a system for real-time tracking 
of the computer screen and estimating area of user's visual attention on the screen with the use of 
eye-tracking data from a head-mounted eye-tracker aided by a fragment of Uniform Marker Fields 
at monitor corners to establish reference key-frames. Between key-frames the proposed system 
used natural feature tracking (Figure 5.1). In order to make the marker as unobtrusive as possible, 
gaze information is used to display the marker as far away as possible from the area of user's visual 
attention. 

5.1 Screen-to-Screen task migration using Uniform Marker Fields 

An important element of computer-supported cooperative work is information sharing and task 
migration among users' devices, whether they are desktops, mobile or ultra-mobile devices. Recent 
study by Bales et al. [10] focused on methods and content of web information re-access and sharing 
among personal devices. It showed that cross-device reaccess and content sharing is often very 
spontaneous and unplanned and that currently native applications play an important role in how 
users share content. Unfortunately, contemporary solutions for content sharing and information 
reaccess are mainly document-centric and rely on complicated infrastructure, thus creating barriers 
for users trying to share information and collaborate [75]. 

For an on-spot dynamic sharing and collaboration, it is necessary to exchange not only the data 
itself (e.g. a text document or an address), but to transfer the information in context. This usually 
requires the transfer of a complete application state (e.g. place on a map with a route along with 
any comments or annotations) rather than just fragments of information. What is more, this process 
usually involves information transfer between different platforms - whether they are public displays, 
smart meeting rooms, desktops or mobile devices. 

Figure 5.2: In our work, we aimed at exchange of information between a large screen (a desktop 
computer, a public kiosk, etc.) and a mobile device. This information exchange should be visual 
and intuitive: based on the metaphor of "video recording" with the mobile camera. We achieved 
this by inserting a cutout from a Uniform Marker Field into the monitor screen that would be reliably 
detectable and could accurately establish the location within the screen. 
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Dearman et al. [32] state that for most users, the migration from a non-mobile platform to a 
mobile platform is more frustrating than any other means of follow-up. The main source of this 
frustration is the fact that users are often forced to use many creative, although very time-consuming, 
methods to enable content and task migration among their devices, because of the lack of support 
from the software. Among most commonly observed means of content reaccess were [32]: leaving 
browser tabs open on the mobile device; using handwritten or printed information carried between 
the devices and inputted on the second device; utilizing shared bookmark systems in order to access 
and share data between devices; unplanned reaccesses and information sharing are frequently 
executed by entering search queries into another device. 

As Bales at al. [ ] state, users would often use features that were made for different purposes as 
methods to find information later. Many tools, such as Context Clipboard, Evernote, and Dropbox, 
have attempted to address this problem by enabling easy capture and reaccess, such as saving a link 
to find it later [ ]. Although these tools are seamless and easy to use, they still require planning 
ahead on the part of the user. 

In our work, we were looking for a way to make this task migration or content sharing process 
instant and intuitive. In particular, the explored method is completely mobile-centric, i.e. no user 
interaction needs to be done on the side of the content provider screen. That made our approach 
especially feasible for acquiring information from public displays. 

Our approach was to insert a piece of fiduciary information into the screen's contents in order 
to reliably establish the homography between the screen and the observation of the mobile device's 
camera. We were using grayscale Uniform Marker Fields (Section 3.4) as the fiduciary marker. The 
marker field can be reliably detected with moderate computational resources (available on low-end 
mobile devices). The marker fields are suitable for this task especially because a small fraction of 
the marker field can be masked out of the complete field and used for the localization. 

5.1.1 Previous Work and Motivation 

For a vast majority of applications, the initial assumption is still that users interact with just a single 
computing device throughout the day. The practical consequence of this assumption is the lack of 
collaboration among devices and lack of user-centric activities that may span multiple devices as 
well as multiple applications. 

While there are initial steps in this direction [ ], they must support a wider variety of activities 
and fully recognize the members of a user's device collection. Researchers have proposed supporting 
activities that span multiple applications [29]. 

Pierce et al. [126] introduced an infrastructure based on instant messaging which provides 
mechanisms for applications to send information, events and commands among devices. A system 
for document redirection based on SIFT features which uses a mobile camera to achieve document 
drag and drop functionality in a physical environment was presented by Liu et al. [86]. Shoot 
& Copy [ 19] is an interaction technique for transferring information from a public display onto a 
personal mobile phone by using its built-in camera. In similar manner, Point and Shoot allows users 
to take a photo of an object in order to interact with it [12]. 

Chang and L i proposed DeepShot [ ] - a framework for capturing work state which uses 
natural visual features (SURF [ ]) and tracks them. Their approach is a simplified sibling of 
P T A M (Parallel Tracking and Mapping [ ]). However, despite various techniques to balance the 
features' density in the camera view, it is impossible to ensure the presence of enough visual features 
in the whole view. In the case of observing a computer screen, the problem is even more difficult, 
because unlike the real world, the monitor screen tends to contain surfaces of exactly constant color, 
backlit by the monitor lamp and thus avoiding any external lighting which would help distinguish 
unique locations. 
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A recent step towards direct information transfer from a desktop screen to an ultramobile device 
are the V R Codes by Woo et al. [177]. In this solution, a digital pay load is encoded into solid gray 
surfaces on the screen by a time multiplex. The encoding requires a significant computational effort 
on the desktop monitor side, and assumes a particular design of the camera (rolling shutter) on the 
mobile side. This method could be more promising for the desired purpose of task migration if it 
allowed encoding the information into arbitrary images and into dynamic content. 

In our research, we wanted to go further and provide users with a lightweight solution for 
information transfer, which is able to work with different types of information and contexts, respects 
the need for privacy and supports additional metadata generated through interaction which is useful 
for future interactions on other devices. 

There are four basic scenarios when we considered content and task migration: 
Sharing content with an (ultra)mobile device which is one of the most desired and at the same 

time most frustrating scenarios. Very often "going mobile" means significant reduction of comfort, 
pace of work and accuracy in the favor of accomplishing tasks on the road. Usually this scenario 
involves explicit planning and preparation, for example synchronization of documents through 
specialized tools and services, which is time consuming. 

Sharing content with a desktop computer. Besides consuming information (reading books, 
content from web pages, games), users also often generate multimedia content on the go - they 
take photos, record video sequences, create notes and bookmarks. As in the previous scenario, 
specialized synchronization services are commonly used, even though they are document-centric 
and they are not able to capture and handle the application state. 

Sharing content between (ultra-)mobile devices. Only few solutions exist that allow for sharing 
of content among (ultra-)mobile devices. Most commonly seen scenario is a content exchange 
between devices belonging to different users, content and state transfer between mobile devices of 
one user (e.g. task migration from smart phone to a tablet) is rare [25]. 

Sharing content between desktop computers through an (ultra-)mobile device. Despite wide 
availability of cloud-based platforms (SkyDrive, Dropbox, Google Drive, etc.) and traditional (FTR 
email) file sharing solutions, people still tend to rely on USB drives [32] to transfer content from 
one (desktop) computer to another. 

5.1.1.1 Objectives of Our Research 

The main objective for design and implementation of our task collaboration system was to transfer 
tasks and information among a large variety of devices while minimizing configuration time and 
being as intuitive as possible. An inspiration and the leading metaphor was video recording 
on mobile platforms and augmented reality applications in general, where users just point their 
device's camera at the object of interest and immediately begin to record (capture) it or interact with 
it. This means that besides transferring a simple document or U R L to another device, also complete 
application state and related metadata are migrated to the requester device. 

We have designed our task collaboration system with the following goals in mind: 

• Fast deployment without changes to existing network infrastructure. 

• Avoid requirements for a shared server or other central hub. 

• Users do not have to manually configure network settings or configure mobile devices. 

• Support of variety of interaction scenarios in both online and offline environments. 
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• Because communication protocols and ways in which messages are delivered are always 
changing, the system must be flexible enough to support these changes and allow for an easy 
modification of the existing protocols and addition of new protocols. 

• Implemented security must ensure that users have only access to certain parts of the system 
and do not access restricted parts of system and applications. 

• Integration of available standard computing components to support effective collaboration by 
combining the most suitable set of existing resources available on nearby devices. 

5.1.2 Proposed System Architecture 

With the video recording metaphor in mind, we have designed a highly responsive system (see 
Section 5.1.4.4) which allows for intuitive task migration without the need for manual application 
state inspection or copying of "raw" pixels without any additional semantic information (as done 
in Deep Shot [ ]). The task migration process from the system architecture's point of view is a 
two-way communication between a content provider and a content requester device (see Figure 5.3). 

Device in the role Device in the role 
of content provider of content requester 

Figure 5.3: The task migration process between a content requester and a content provider device. 
The content provider device creates an unobtrusive maker field overlay which enables fast and 
accurate within-screen view localization of the requester device. This localization information is 
used to select either full application state or to migrate selected content to the requester device. 

The content provider device is the device with the application state that needs to be transferred 
to the other device or platform based on the user's current context. A device in this role is able 
to share the state of its applications with authenticated clients - content requesters. The content 
provider device provides the state of its applications by either querying individual applications for 
their current work state (URL and internal settings for web applications, the document along with 
current page number for document viewers, streamed multimedia content, etc.) or provides general 
services, e.g. providing high quality screenshots of a selected screen area or text from a selected 
area via optical character recognition. 

Content requesters are responsible for communication initiation with the target provider device, 
for selection of the screen region or application of interest and selection of requested/offered content 
based on the user's intent. In a typical scenario, content requesters are mobile or ultra-mobile 
devices (smart phone, tablet, PDA). 
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Figure 5.4: Top: System overview. Content requester communicates wirelessly with a content 
provider. The system on both sides consists of a stack of functional blocks (blue rectangle) 
whose purpose is to ensure information sharing between the built-in or third-party applications (red 
rectangles). The system thus provides infrastructure for general communication between different 
devices' applications. Bottom: Communication between requester and provider devices during the 
task migration process. Our system supports full and also partial state migration where only selected 
state elements are transferred to a requester device. 
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5.1.2.1 System Components and Their Functionality 

Communication between requester and provider devices during the task migration process is shown 
in Figure 5.4. Prior to the task migration, a network connection between the content requester and 
the provider must be established. The network session manager module, which is present on both 
devices, is responsible for network connection initiation to a remote content provider (e.g. public 
display, laptop). At the moment, the communication is implemented through a WiFi connection, 
due to its availability on a broad range of devices. The target device is located either via network 
discovery, by manually entering an IP address (or selecting IP address from history) or the user 
scans a specific code associated with target device (e.g. on-screen or printed visual marker / matrix 
code). 

After the connection is successfully established, the requester device asks for authorization and 
sends its device capabilities (e.g. camera resolution and internal camera parameters). Afterwards, 
the content provider creates and displays an unobtrusive on-screen localization marker adjusted for 
the given requester. The marker overlay covers the whole screen until the camera's position is 
detected for the first time (less than a second). Afterwards, the overlay is automatically adjusted, 
so that it covers just (a part of) the area captured by camera. The part of the marker which is 
observable is based on camera's position and distance from the content provider device. The 
marker field detector on the requester device is used for fast and accurate client-side on-screen 
marker decoding and sending of within-screen localization information to the target device. This 
approach minimizes the amount of transferred data between the devices, because only the detected 
2D position coordinates are sent back to the content provider. During the interaction, the marker 
field is automatically adjusted (its opacity, color contrast and/or brightness are changed in time) 
based on the detection rate and quality. The transferred and processed content is much smaller 
compared to the feature-based solutions where either the feature vectors or the whole camera stream 
are sent to the target device or to an intermediate server for processing and camera localization. 

Based on the obtained camera-localization information, the provider's context manager queries 
individual applications and gathers their status. In order to obtain application status from web 
applications, we have implemented an extension for Google Chrome browser which is able to 
forward the application state requests from our system and return the gathered state information 
for further processing. If the selected application is unable to provide its state and metadata, only 
general intents are available. General intents include high-quality screenshots, and text and phone 
numbers recognition for the selected part of the screen. 

The acquired application state is sent to the intent manager on the requester device which 
translates these JSON-encoded messages to intents, directly usable on the requester platform (e.g. 
on the Android platform the system creates Android intents from JSON messages). Afterwards, 
the state manager provides the user with a visual feedback and updates the GUI, based on the 
available actions for the selected content. The options include resuming work on a requester device 
- continuing work with a reconstructed web application state on a current device, editing text in an 
available text editor, manipulation and viewing of images, audio/video playback, etc. 

5.1.2.2 Marker Field's Design and Detection 

In our approach we tried to minimize the required time to localize the client relative to the content 
provider with high stability. We achieved this using grayscale Uniform Marker Fields [157, 60] 
(Section 3.4). Marker Fields are efficiently detectable fiduciary markers made up of uniquely 
identifiable sub-markers. Uniform Marker Fields provide large enough pattern to cover the whole 
content provider's display. The position identification in the marker field relies on the relative 
intensity differences between neighboring fields and even a small fragment of the marker field is 
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sufficient for reliable localization. Thanks to these properties Uniform Marker Fields are easily and 
unobtrusively "mixable" into the real content showing only a fragment of the marker field with high 
transparency. 

Figure 5.5: Marker detection steps: a): along sparse scanlines (yellow) edges are detected using 
adaptive threshold (red dots) and expanded into edgels (green); b): lines filtered based on camera 
rotation and separated into two groups; c): the detected grid; d): based on the extracted edge 
directions (red arrows and equal signs) the correctly identified positions (green dots) are used to 
calculate the cross-hairs (yellow) position inside the marker - this position is sent to the content 
provider to readjust the target position on the display (red cross; pink background - the highlighted 
element based on the position using the Chrome plugin). 

Showing the whole marker on the whole display would be highly obtrusive. Instead, only a 
small part of marker is shown, which is still reliably detectable by our detection algorithm (see 
below). We tested constant transparency or pulsing between transparency levels (25 — 75% during 
performance evaluations) to achieve high detection rates and make the marker less obtrusive. 

In order to minimize the outliers caused by the most commonly occurring horizontal and vertical 
lines in display content (window borders, menus, vertical panels), we rotated the whole marker by 
angle a (a = \ in our tests). To avoid introducing additional long edgels into the content provider's 
display, we also used two types of border mask: a sinus function border mask, resembling the jagged 
edges of postal stamps (see Figure 5.6); and a gaussian blurred mask (see Figure 5.2). 

The detailed detection algorithm of grayscale Uniform Marker Fields for augmented reality 
applications was described in Sections 3.3 and 3.4.1. The main steps of the algorithm for this 
use-case are demonstrated in Figure 5.5. There were no major changes necessary to the detection 
algorithm. Improvements and smaller changes are described below. 

An improvement over the base algorithm is during the edgel extraction step. The advantage 
of using modern smartphones is the availability of orientation sensors. The content provider's 
orientation is assumed to be mounted on the wall without any rotation. The extracted edgels in 
the mobile device's view can be consequently filtered based on the its orientation acquired from its 
built-in accelerometer or gyroscope and the marker orientation (a) on the content provider. 

Another minor change from the original algorithm was in the edge classification (Section 3.4.2.2). 
To make the edge classification more robust against transparency, we checked more sample points 
than the stopping criterion by Wald's sequential probability test [173] for reduncancy. 

The other minor changes were implementation specific for mobile devices. The algorithm also 
does not compute the full homography, since the detected grid and marker position is sufficient to 
compute for arbitrary image pixel the position inside the marker field. Given the decoded marker 
position, 1q in each pencil represents either a set of rows starting at index l$r or columns starting 
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Figure 5.6: A succesfully detected Uniform Marker Field as seen by the requester device's camera 
with a crosshair shown to aid the user with targeting. The purple highlight is the content provider's 
reaction to targeted content based on continuous interaction. 

at IQC. The position (mr;mc) in the marker field of an arbitrary point p in the camera image can be 
determined by solving: 

where v r and v c are the determined vanishing point for the pencils representing rows and columns, 

In order to minimize the noise caused by a shaking hand holding the requester device and to 
correct slight inaccuracies of the detector, we also use a 2D Kalman Filter before sending the data 
to the content provider for further processing. 

5.1.3 Implemented Solution - Chrome and Android 

As a proof of concept and as the testing prototype for user testing and exact experimental evaluation, 
we created a pilot version of the whole system. It consisted of: 

• The content provider background service for Microsoft Windows, 

• Google Chrome extension as the application-side provider module, 

• Android application as the client. 

My contributions in this prototype was the client side communication and Uniform Marker Fields 
detection. 

5.1.3.1 Content Provider Chrome Plugin 

In order to be able to access and retrieve the full application state of an online application or 
user-selected parts of a web page, the content provider needs to access the loaded content in a web 

p X V r = klor + (mr — ^Or)h, 

p x v c = klQc + (m c - kc)ii, 

(5.1) 

(5.2) 

and h is the horizon. 
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browser. We have developed an extension for the Chrome browser which acts as a communication 
bridge between our application on the content provider device and web applications / pages running 
inside the browser (see Figure 5.7). 

Device in the role of content provider External Application - Web Browser 

Default 
Intents 

Marker 
Overlay 

Context 
Manager 

Interaction Manager 

Network Session Manager 

Websocket 
Connection 

Browser Extension 

Persistent 
Background Page 

Injected Script for 
Content Extraction 

iTTTrrmrrr. 

X 

Figure 5.7: The content provider is able to retrieve the application state of a web application running 
in a browser via a browser extension. The implemented browser extension is able to extract the 
state of web applications or alter it through code injected into the opened web application. 

When the user selects contents of a web page (blocks of text, images, videos or links to other 
web-based resources) or a complete online application state (e.g., a trip planned in Google Maps) 
for a migration, the extension finds the active web application and through code injection inserts 
a script into it. This script is able to directly manipulate with the page's Document Object Model 
(DOM) and extract the required parts of the online application/web page and send them back to the 
content provider. This script executes in the context of a page that's been loaded into the browser, 
making it a part of a web application, not as part of the extension. Besides extraction, the script is 
also able to inject information into web applications (forms), thus allowing for continuation of task. 
Afterwards, the content provider forwards them to the requester device, where the application state 
is reconstructed, thus allowing the user to continue with a task on the other device. 

Besides retrieving the application state, the browser extension is able to directly manipulate 
with web page's D O M and provide visual feedback for user's actions. When the user is selecting a 
part of a web page for migration with an ultra-mobile device, a virtual cursor can be created above 
the marker. This way the user can clearly see on the provider screen what content is selected for 
migration (see Figure 5.6 and Figure 5.8 for example). 

5.1.3.2 Content Requester Android Application 

For the implementation of a mobile content requester prototype we chose the Android platform 
because of its availability on a broad range of mobile and ultra-mobile devices. For the initial 
design of our application, the main goal was a clean and minimalistic design of control elements, 
which will support the video recording metaphor. 

After starting the application, the user is welcomed with the option to choose between connecting 
to a previously used provider device, using network discovery to discover available provider devices 
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Figure 5.8: The content provider directly manipulates the on-screen content and provides a visual 
feedback for the user's actions. For content migration assistance either a virtual cursor can be 
displayed above the marker (yellow crosshair), or selected element can be highlighted (area with a 
pink background). 

or by scanning a specific code associated with target device (e.g. on-screen or printed visual 
marker/matrix code). 

The main user interface can be seen in Figure 5.9 left and middle. The top of the screen is filled 
with the upper part of the camera preview. This way the bottom part of the camera stream containing 
the marker stays hidden on the requester side. The bottom part of the UI shows the preview of 
the information acquired from the content provider (text on the left, map or images in the center). 
During the interaction between the content provider and the requester device, the application stores 
the history of the accessed content, which allows the user to migrate multiple data, and choose 
between them afterwards. The user can optionally migrate the whole state of the viewed application 
(button on the bottom). 

The application uses the video stream from the camera to identify the position and orientation of 
the content requester relative to the content provider. For best performance we use double buffering 
of the video stream. The marker field detection algorithm was implemented in native code through 
Android N D K toolset that allows implementation application parts using native-code languages 
such as C and C++. 

The detection algorithm computes the position inside the marker and also the position of a virtual 
cursor (see Figure 5.8). These coordinates are sent to the content provider, which uses them to 
extract semantic content and move the visible marker field fragment on the content provider device, 
so that it is still in the bottom part of the video stream and rarely registered by the user. 

5.1.4 Experiments: Empirical Tests and User Study 

We have performed a user test to find out the most acceptable shape of the marker field and the 
parameters of mixing it into the desktop screen image. The technical evaluation involves tests of 
reliability of detection of the marker field on different screen contents and under different viewing 
angles. Finally, computational performance is evaluated. 

5.1.4.1 Marker Unobtrusiveness 

We conducted an initial user study to observe how would people use our prototype. Our main goal 
was to find out how obtrusive was the usage of marker fields for task migration for participants and 
whether this approach is feasible also for inexperienced users. 
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Figure 5.9: Content requester application. Left and Middle: Partial application state acquisition. 
Only selected parts of state (block of text and high resolution image) are migrated to a requester 
device. Right: Full application state (with metadata and internal variables) is migrated to a requester 
device. 

The study we conducted consisted of 25 participants. In the beginning, participants had to fill 
out a questionnaire. This questionnaire asked them about their technical expertise, their knowledge 
regarding mobile phones, as well as some demographic statements. The average age of attendees 
was 28 years, the youngest participant was 21 and the oldest was 42. Ten participants were from 
non-technical professions. 

A l l attendees used at least one ultra-mobile device (e.g., smart phone, tablet, PDA) and one 
desktop computer or laptop on a daily basis. The average device count per participant was 3.18. 
20% of our participants used the camera on an ultra-mobile device for taking pictures on a daily 
basis, 36% several times in a week, 23% at least once in a month and 21% less than once in a 
month. 9% of our participants used the camera on an ultra-mobile device for video recording on a 
daily basis, 16% several times in a week, 38% at least once in a month and 37% less than once in a 
month. 72% of participants used multiple devices for content reaccess on a daily basis. Table 5.1 
shows reported usage of most frequently used methods of content reaccess by participants. 

Method of content reaccess Reported usage 
File synchronization service 88% 
Search queries 76% 
Flash disks or external drives 60% 
Shared bookmark systems 56% 
Leave browser tabs open as a reminder 40% 
Handwritten or printed notes 16% 

Table 5.1: Reported usage of most frequently used methods of content reaccess. 
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After filling in the questionnaire, we introduced our system and four basic task migration 
scenarios: cartographic map state transfer, acquisition of textual information from a web page, 
acquisition of an image from long online article with a photo gallery and resuming writing of a text 
on a laptop. 

We provided the participants with an Android smartphone and a laptop with our system; the 
laptop also contained an application which allowed fast change of marker parameters from presets. 
Participants were asked to rate marker presets based on perceived obtrusiveness on a five point 
Likert scale (1-least obtrusive, 5-most obtrusive). In order to be able to compare feedback from 
participants, we have created ten marker presets divided into four categories: 

1. Marker with constant opacity (20%, 40% or 60%), without blurred background. 

2. Marker with constant opacity (20%, 40% or 60%), with blurred marker background (gaussian 
blur with four pixel radius). 

3. Marker with variable opacity, pulsing between 20% - 40% or 20% - 60%, without blurred 
background. 

4. Marker with variable opacity, pulsing between 20% - 40% or 20% - 60%, with blurred 
background (gaussian blur with four pixel radius). 

Figure 5.10 shows the user-reported average obtrusiveness for individual marker presets. The 
average rating across all presets was 2.65. Markers with high opacity were perceived as most 
obtrusive (average rating 3.54), while markers with 20% and 40% opacity had similar, significantly 
lower, average rating (1.67 and 2.38). Among our participants, the presence of blurred background 
or periodic changes in marker opacity had only minimal influence on perceived obtrusiveness. 
Application of blur on the background decreases the amount of natural edges present in the image 
and allows for the marker field edges to prevail. Similarly, the pulsing intensity of the marker allows 
for periodic appearances of highly opaque form of the marker field, which can be tracked afterwards 
or at least can provide localization information in discrete time frames. The fact that the users tend 
to tolerate these modes of mixing, offers truly reliable on-screen localization with acceptable levels 
of obtrusiveness. 
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We also conducted a test of our system with simulated network latency, in order to find out the 
maximum time the system should need until a content is returned to the user's device. The average 
time after which participants perceived system as poorly responding (obtrusiveness rating 3-5 on a 
5-point Likert scale) was 4.5 seconds. This slightly contradicts the findings of Boring et al. [19], 
where ten seconds response time was acceptable by most users. 

In general, our system was perceived very positively, with 86% of participants stating that 
it would definitely help them with content reaccess. 72% of participants would use it to obtain 
information from public displays. In this case, the biggest concern were privacy issues - fear that 
publicly available system could access private information stored in mobile devices due to security 
flaws or identify individual users and track their actions. 

5.1.4.2 Marker Field Detection Reliability 

We tested the reliability of our marker field detection algorithm, with the marker mixed into natural 
screen contents. This is important for smooth user experience. We created a setup consisting of one 
device in the role of content provider and one device in the role of content requester. As a content 
provider device we used a laptop computer with a high-resolution (1920 x 1080, 17 inch) display, 
and an Android 4.0.4 smartphone Samsung Galaxy S2 for the role of information requester device. 
The requester device was attached to a base perpendicular to the floor, in a fixed height, focused at a 
chosen part of the screen (see Figure 5.11). The experiment was conducted in a room with artificial 
(fluorescent) lighting. Devices were connected through a WiFi connection. 

Figure 5.11: Parameters of marker detection reliability setup - distance between mobile device and 
laptop, range of screen angles used during tests and height range of a mobile device in order to be 
focused on the same point on screen. 

The requester device was held at a distance of 10, 20 and 30 cm and a pitch angle of 75°, 90°, 
105°, and 120°. On the content provider device a fullscreen web application containing text, several 
smaller images, and a map was displayed during the experiment. The experiments were conducted 
with both constant opacity (50 %) and pulsing (25 — 75 %) marker fragment. The pulsing period 
for the pulsing marker was set to 1.5 seconds. The resolution of the videos was 1280 x 720 and the 
framerate was 20FPS. The size of the fragment from the marker field mixed into the real content 
was 180 x 180 pixels covering 1.5 % of the display. 

Figure 5.12 contains the evaluation of the reliability of our detection algorithm for different pitch 
angles for the content provider device. This figure (and equivalent subsequent ones) show, what is 
the probability of missing a given number of acquired frames between two successful detections. 
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Figure 5.12: Breakdown of the probability distribution of the number of frames between consecutive 
successful detections for different angles between the content provider and client. 

The results show, that we were able to detect reliably the content requester's position and viewing 
angle within 5 frames with 95 % probability on average over all angles and marker types. For angles 
120° and 75° the colors shown on the content provider were already shifted leading to slightly 
worse results. The framerate of the smartphone camera is 20FPS, which means that the probability 
of missing the localization for a whole second of time is close to zero. 

5 10 15 
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Figure 5.13: Breakdown of the probability distribution of the number of frames between consecutive 
successful detections for different distances between the content provider and client. 

During the experiments, we used a fragment of the marker field with constant size. From 10cm 
distance the fragment took up 350 x 350 (13 %), from 20cm 230 x 230 (6 %) and from 30cm about 
120 x 120 pixels (1.5% of the field of view) in the 720p camera stream. With smaller marker 
fragment in the camera image the number of potential outliers for the grid detection grow, leading 
to less reliable detection (see Figure 5.13). In our application this issue was solved by information 
exchange between the content requester and content provider enabling the content requester to set 
the fragment size based on the distance. 

Figure 5.14 shows that the pulsing marker field was detectable more reliably. Thanks to changing 
opacity, the marker fragment was detected even on highly challenging background, and viewing 
angles compared to constant opacity. 

Finally, we also experimented with different border masks: sinus curve, blurred and non4olurred 
rectangle. We did not find any measurable difference in reliability between different options. During 
experiments we used the blurred rectangle, since it was the most aesthetically pleasing for users. 
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Figure 5.14: Comparison of the probability distribution of the number of frames between consecutive 
successful detections between constant opacity and pulsing markers. 

5.1.4.3 Accuracy of Location Finding 

For accuracy measurements we used the same videos as in the previous section. The mobile device 
was fixed during measurements with the visible fix-sized marker segment moving around on the 
screen. Table 5.2 shows the standard deviation of the determined position on the content provider's 
display in pixels. We did not use Kalman filter for these measurements. 

[pixels] 75° 90° 105° 120° 
10cm constant 11.0 10.0 10.0 27.6 
10cm pulsing 6.3 7.6 8.9 11.8 

20cm constant 27.7 19.4 21.9 26.4 
20cm pulsing 17.0 24.1 24.3 27.0 
30cm constant 34.4 27.2 22.6 23.4 
30cm pulsing 25.0 27.2 23.9 23.0 

Table 5.2: Standard deviation of the detected positions in content provider's coordinate system in 
pixels. 

The accuracy of the algorithm without corner detection and full homography calculations is 
relatively low. On the other hand, an unstabilized hand-held mobile device would cause even larger 
variance in position. As a solution we used a Kalman filter, modelling position and speed of the 
detected position (measurement variance set to a2 = 400px). The accuracy was sufficient to select 
blocks of text, map regions, images or menu entries. 

5.1.4.4 Speed Performance 

In order to be able to compare our solution to alternative frameworks (e.g. DeepShot), we have tested 
four target applications: maps from Google Maps, photos from Picasa, long articles with images 
from CNN.com and short textual information from Twitter. For each application, 10 information 
requests were sent and processed. The setup for this experiment was identical to the previous test. 

Table 5.3 summarizes the breakdown of the time consumed in different phases of the processing. 
The marker field decoding process runs independently from state acquisition process. 

From the marker field decoding part the edgel extraction and edge classification required on 
average ~ 7 5 % of the time on a mid-range smartphone (Samsung Galaxy S2 1.2GHz ARMv7 
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Activity % Time spent 
Network transfers (WiFi) 
Provider-side message processing 
State acquisition via plugin 

84% 
3% 

13% 

Table 5.3: Timing breakdown of the mobile client. 

processor released in 2011) even with the very low "pixel footprint" of the detection algorithm 
(14.9% with a 25 pixels between horizontal and vertical scanlines). The overall average time 
required by our baseline implementation for mobile platforms - excluding the system overhead 
to acquire the image - was 24.5 ms (~40FPS) for 800 x 480 resolution, extracting on average 
~84 filtered edgels based on the device's orientation. We used standard web-site content as the 
background during these evaluations with the marker constantly visible in the field-of-view. Results 
might differ considerably for different smartphones or display content. 

The results show a significant speed increase when compared to task migration solutions based 
on visual features - authors of the DeepShot [ ] task migration framework report 7.7 seconds (SD 
0.3 seconds) for processing the request. Our approach allows for real-time information feedback 
for a selected screen area. A big advantage of our system is the utilization of a video stream, which 
allows for fast localization from the following frame, if the localization fails on the current one. 

5.1.5 Conclusion 

I described a solution for instant document reaccess and task migration, based on visual commu
nication between an ultra-mobile device and a content provider screen. We explored the approach 
based on mixing a fiduciary marker field into the screen - in a way that would be least obtrusive, 
while offering good detection performance even on low-end mobile devices. 

Our system allowed for direct task migration and document reaccess - without any direct 
interaction with the content provider system, i.e. straight from the mobile device. This made our 
solution suitable for collaboration on public displays as well as one's private desktop monitor. At 
the same time, the solution was instant in the communication and intuitive (being based on the 
metaphor of video recording). 

We created a prototype implementation of the whole solution using Google Chrome (as a 
plugin) and Android devices. This prototype was examined within a user study and by a set of 
performance evaluation experiments. The results indicated that it substantially outperformed the 
existing solutions: the detection and recognition of the marker field was done in real time by a mid-
level cellphone; the recognition was reliable even for different observation angles and for cluttered 
screen content. Our solution operated on a video stream with all the benefits: if one camera frame 
failed for a reason, the mobile client program determined the location from a subsequent valid one. 

A possible future direction is to extend the computer vision solution on the ultra-mobile device 
by natural features tracking in order to minimize the required time for the fiducial to be present on 
the screen. The fiducial could be displayed for a limited period of time, only to acquire the reliable 
information about the observed screen part. As long as the natural features will be sufficient for 
tracking the location, the fiducial should not be displayed until necessary again. This approach was 
also followed by Pavelková [ ] for eye-tracker - display combination, mentioned at the beginning 
of this chapter. 
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Figure 5.15: Content transfer steps, (left) the user aims at the desired display (which acts as the 
content provider), (upper right) After the initialization phase, the content is seen in the live video 
on the mobile device, (center right) The user starts moving the requester device (usually a mobile 
phone, tablet or a PDA). As long as the device is pointed at the original display, selected parts of 
the on-screen application are recognized (images, maps, block of text or individual words), (lower 
right) Whenever user indicates so, the selected content is transferred to the requester device either 
for immediate processing (editing, opening in a predefined application, sharing or saving) or saved 
in history for later review and processing. 

5.2 Continuous Task Migration using Natural Features 

In our follow-up work in collaboration with Rudolf Kajan, Adam Herout and Alena Pavelkova we 
improved on the system presented in Section 5.1. We created a full augmented reality experience on 
the mobile phone centered more around interaction. My main contributions were the camera pose 
estimation on the content requester device and its testing. Figure 5.15 shows briefly how content 
is transferred using the improved task migration technique. The description below is based on our 
publication [73]. 

The main objective for the design and implementation of our task migration system, similar to 
previous sections, was to transfer tasks and information among a large variety of devices without 
any special hardware or changes to existing infrastructure, while being as intuitive as possible. At 
the same time, we argued for continuous interaction, instead of discrete selection. This way, the 
feedback is provided to the user throughout the whole interaction and the user is able to manipulate 
with numerous selected objects in one continuous session, instead of breaking down the session into 
two phases - acquisition and processing of each individual object. 

In order to allow mobile use, the requester device continuously tracks itself with respect to 
interactive displays in its surrounding using its built-in camera and computes its spatial relationship 
between itself and each identified display. Our interaction method used for state acquisition and 
transfer is based on rich foundations of interaction through video streams [20, 21, ], bimanual 
interaction [23, 82, 58], interaction at a distance [125, 69, 105] and mobile augmented reality. 
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Augmented reality is often used in the literature on mobile devices equipped with displays to 
create virtual pointers and help users access remote content. Pears et al. [125] used a camera phone 
for pointing on large screens. Sweep [11] used optical flow analysis to enable continuous relative 
control of a remote pointer on a large screen. The Boom Chameleon [164] is a spatially aware 
display. Peephole Displays [181] introduced two-handed interaction technique which combined 
pen input with a spatially aware displays. 

Our inspiration and the leading metaphor was video recording on mobile platforms and aug
mented reality applications in general. In these scenarios users usually just point their device's 
camera at the object of interest and immediately begin to record (capture) it or interact with it. Our 
interaction technique provides the user at every moment with relevant tasks and content-migration 
options for the selected application and its content. Our approach thus emphasizes spontaneous and 
unplanned content access with minimal user input, while being responsive. 

The backend system of our improved method is identical to the system described in Section 5.1 
(see Figure 5.4). The most changes were made in the interaction technique on the content requester 
side and camera pose estimation. 

5.2.1 Marker Tracking and Natural Key-points Based Detection 

Our solution utilized a combination of natural features based detection and marker tracking in order 
to reliably establish the homography between the screen and the observation of the mobile device's 
camera. This allows us to employ a fast and precise continuous interaction even on low-end mobile 
devices. 

During the initialization phase and in case of fast camera movement, we employed natural 
features based detection. Detecting keypoints and extracting features on the mobile phone would be 
too costly on some low-end devices. Instead, the features are computed and matched on the content 
provider. Similar approach was taken in [25] and [14]. The difference is, that our solution does 
not stream the video, as it would generate high network traffic (see experiments). Instead, we use 
natural features detection as a fallback method, and send frames only in large intervals. 

A major disadvantage of pure natural features based methods is that they rely on rich features 
being present on the target display. This assumption is rarely met in the highly manhattanic world 
of desktop and web applications. As a solution, we utilize a virtual cursor using the Vuforia library 
on the content requester side combined with a small natural image target on the content provider. 
The natural image target is used to compute the required offset on the content provider caused by 
the camera movement. The computed relative correction is sent to the content provider. This is our 
primary method for camera movement tracking. 

Figure 5.16: The proposed interface of the content requester application with virtual button overlay ed 
over the natural image target for content recording. 
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The image target also serves a secondary objective as a reference position to draw the augmented 
UI elements of the application. These elements give visual feedback to the users, so they move 
within acceptable distance from the content provider. The augmented layer also hides the obtrusive 
marker on the client side (Figure 5.16). 

If multiple users are simultaneously interacting with a single provider, their primary mean of 
localization is natural features based detection of a target. In the case that multiple targets overlap, 
clients automatically fall back to natural keypoints tracking on the target display. This approach 
ensures that the interaction will not be interrupted even if multiple users are migrating the same 
elements at the same time. 

5.2.2 Content Requester Android Application 

For the implementation of a mobile content requester prototype we chose the Android platform 
because of its availability on a broad range of mobile and ultramobile devices. For the initial design 
of our application, the main goal was a clean and minimalistic design of control elements, which 
will support the video recording metaphor. 

After starting the application, the user is welcomed with the option to choose between connecting 
to a previously used provider device, using network discovery to discover available provider devices 
or by scanning a specific code associated with target device. 

After connection, the detection algorithm computes the position of the requester device with 
respect to the current provider and optionally position of a virtual cursor (see Figure 5.16) which 
helps the user to identify the exact spot the user is pointing at. 

Figure 5.17: The user interface of the requester device consists of three layers - live video stream from 
the device's camera, 3D GUI based on augmented reality and content acquisition GUI dynamically 
updated with respect to the current content selection. 

The main user interface can be seen in Figure 5.17. The interface consists of three layers. 
Live video stream from device's camera is on the lowest layer. On top of the video stream is an 
augmented reality 3D GUI. The main advantage of the augmented reality interface element is that it 
naturally guides the user to the appropriate distance and angle with respect to the content provider 
by the means of size and rotation change. This interface is used to mark the content for migration -
similarly to a video camera's record button. It is used by user's non-dominant hand. The topmost 
layer consists of 2D elemets which are dynamically changed based on the content which the user 
is currently selecting for migration and display preview of recorded items - blocks of text, images, 
hyperlinks. If any of this content is touched by the user's (dominant) hand, options for further 
processing are displayed. These options are dependent on the selected content and include editing, 
sharing on social networks, saving to the device or launching an appropriate android Intent. During 
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the interaction between the content provider and the requester device, the application stores the 
history of the accessed content and allows the user to access it later. 

5.2.3 Experiments 

We tested both the reliability of our feature detection-based algorithm and the tracking performance 
of the Vuforia library as a part of the user tests. We created a setup consisting of one device in 
the role of content provider (17 inch laptop computer with 1920 x 1080 resolution display and an 
Intel® Core™ i7 processor running at 2.2 GHz) and one device in the role of content requester 
(Samsung Galaxy S2 smartphone). 

5.2.3.1 Tracking Reliability 

In order to evaluate the reliability of the feature detection based algorithm used during initiation, 
the requester device was attached to a base perpendicular to the floor, at a fixed height, focused at a 
chosen part of the screen (see Figure 5.18). The experiment was conducted in a room with artificial 
(fluorescent) lighting. The devices were connected through a WiFi connection. 

Figure 5.18: Parameters of reliability setup for initialization - distance between mobile device and 
laptop, range of screen angles used during tests and height range of a mobile device in order to be 
focused on the same point on the screen. 

The requester device was held at a distance of 10, 20 and 30 cm and a pitch angle of 75°, 90°, 
105°, and 120°. On the content provider device a fullscreen web application containing text, several 
smaller images, and a map was displayed during the experiment. The resolution of the images sent 
to the content provider to compute the initial homography was 320 x 240. 

Figure 5.19 contains the evaluation of the reliability of our natural feature based detection for 
different pitch angles for the content provider device. For each distance settings, 20 images were 
taken - 5 per each angle. The results show that the natural features based detection was highly 
reliable. For angles 120° and 75° the colors shown on the content provider were highly shifted 
changing the visible key-point features causing slightly worse results. This issue is caused mostly 
by the used display during testing, and would harm any computer vision based technique. 

During user testing, the participants were given several tasks to migrate data. During the tasks, 
we recorded the tracking status of our system. The detection algorithm ran at 20 frames per second. 
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Figure 5.20 shows the probability of successfully localizing the content requester relative to the 
content provider. The blue line shows the probability of successfully tracking for a given amount 
of time given that we successfully tracked the previous frame. After the tracking was lost, a full 
frame was transferred to the content provider, in order to be used for natural features based detection 
(hence the step around the Is mark). The delay interval of 1 second for full frame sending was 
chosen not to overload the network connection. The results show that after 4s the cursor tracking 
algorithm was able to restore tracking with 99 % probability. This causes a short but noticeable 
delay for the user after the tracking is lost and needs to be restored. Despite this delay, the overall 
performance of the natural feature detection is good enough to provide the users with continuous 
interaction, and is an area which we are planning to improve. 

Time [s] 

Figure 5.20: Breakdown of the probability distribution for the tracking phase (blue) - the probability 
of tracking continuously for a given time; and the detection phase (brown) - the probability 
distribution in time of successfully restoring cursor tracking. 
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5.2.3.2 Speed Performance 

In order to be able to compare our solution with alternative frameworks (e.g. Touch Projector 
or DeepShot), we tested four target applications: maps from Google Maps, photos from Picasa, 
long articles with images from CNN.com and short textual information from Twitter. For each 
application, 10 information requests were sent and processed. The setup for this experiment was 
identical to the previous test. A l l tests were done using the hardware from the setup for the reliability 
testing. 

Table 5.4 summarizes the breakdown of the time consumed by the initiation phase of the 
interaction for a single frame. The majority of the time (59.2 %) was consumed by network transfer 
of the reference image. This gives 1.3 FPS for the natural features based position estimation part. 
In the setup experiment we sent reference images in Is intervals to avoid flooding the network. 

Activity Time spent 
Client side processing 
Network transfers (WiFi) 
Provider-side processing 
State acquisition via plugin 

11 ms 
442 ms 
289 ms 

4 ms 
Sum 746 ms 

Table 5.4: Timing breakdown of the initialization phase. Client side processing covers camera 
image retrieval and resizing operation. Provider-side processing includes image reconstruction, 
acquiring screenshot and homography calculations. 

Once the tracker was initialized, it was able to track the cursor with full 20 FPS speed provided 
by the camera on the tested smartphone. After the user decided to migrate content from the 
content provider, the required time to transfer information was 19 ms on average including network 
communication (approximately 73 %). 

The results show a significant speed increase when compared to task migration solutions based 
on visual features - the authors of the DeepShot [ ] task migration framework report 7.7 seconds 
(SD 0.3 seconds) for processing the request - and allows for real-time information feedback for a 
selected screen area. An advantage of our system is the utilization of video stream, which enables 
continuous interaction instead of discreet selection. 

5.2.3.3 Bandwidth usage 

Table 5.5 summarizes the required bandwidth of our system measured during the user tests. The 
last column contains the theoretical minimum required bandwidth if we used natural features only. 
In this scenario we assume that the content requester detects and extracts at least 20 binary feature 
vectors of 512 bits (common for state-of-the-art binary feature descriptors). These feature vectors 
are then sent to the content provider for homography computations. We also assume a speed of at 
least 15 FPS for continuous detection. 

The results show that our system requires on average 2.5 x less bandwidth than the theoretical 
minimum bandwidth used up by a pure natural features-based approach. However, 88.4 % of the 
time during interactions (cursor tracking) our system requires just 0.5kB/s bandwidth, which is 
approximately 35 x less than a natural features based approach. Our system needs more bandwidth 
only in the initialization phase and in the case when the cursor tracking is lost during the interaction. 
In the future, this part could be replaced by computing features on the content requester side. 
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Median Peak Average 
Natural 
features 

Bandwidth 546.5 B/s 82.4 kB/s 7.8 kB/s 19.2 kB/s 

Table 5.5: Bandwidth usage of our system used for interaction between content provider and content 
requester. 

5.2.3.4 Content Selection Accuracy 

In order to measure accuracy of content selection with our system, we have used targeting tasks 
based on ISO 9241-9 standard [ ]. We used a rectangular target instead of a distinct target point. 
We asked participants to try to navigate pointer into the rectangular area, while being as fast as 
possible. 

The task started after the connection between requester and provider devices was established 
and the tracking subsystem was fully initialized. Afterwards users were notified about the trial's 
start and moved the virtual cursor inside the area filled with text or images. The task ended once the 
cursor was inside the area and user touched the content acquisition button with the non-dominant 
hand. We measured the time and the virtual cursor's coordinates throughout trials. 

The trials were performed for three different sizes of the target area, corresponding to the sizes 
of standardized web elements. During the testing trials, timestamp and virtual cursor position was 
recorded for every received position information. From these recorded data, the throughput was 
computed. Throughput, in bits per second, is a composite measure derived from both the speed and 
accuracy in responses [92]. The results are shown in Figure 5.21. 

Another information obtained from these data is average target re-entry. This information 
estimates how many times has the virtual cursor left and re-entered the target area after it entered it 
the first time. As can be seen in Figure 5.21 right, target re-entry strongly depends on the size of the 
target area. The reason for majority of target re-entries in small target areas was the natural hand 
tremble. 

We have also computed additional accuracy measures as defined in [92] - movement error, 
movement offset and movement variability. Average movement error across all trials was 20.78 
pixels, average movement offset, computed from absolute values of all movement offsets, was 15.63 
pixels and movement variability was 20.09 pixels. Movement direction change occurred 3.37x per 
trial and orthogonal direction change 8.37x per trial. 

When compared to commonly used pointing devices, our system had a lower throughput (TP), 
but also lower error rate (ER) for primary migration targets - images, text paragraphs, links. In [92] 
the reported values were: joystick TP 1.8 bps ER 9%, touchpad TP 2.9 bps ER 7%, trackball TP 
3.0 bps ER 8.6%, mouse TP 4.9 bps ER 9.4%. 

These results show that our system is comparable to commonly used pointing devices and usable 
even by inexperienced users. As possible future research, the throughput and error rate could be 
improved. As a possible solution to compensate for natural hand tremble (which is the main source 
of lower TP and higher ER), we could employ a smooth estimate of cursor's position and add the 
option to (semi-)automatically zoom for a better selection of content from remote providers. 

5.2.4 Conclusion 

We created an improved prototype using feature-point tracking, which allows for task and content 
migration from web applications to a mobile client. This prototype was examined within a user 
study and by a set of performance evaluation experiments. The results indicate that it substantially 
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Figure 5.21: Left: Average throughput acquired during experiments where the user was moving the 
virtual cursor from starting point to the target area. In the graph, the relation between the throughput 
and the sizes of the target area is shown, which were chosen according to the sizes of standard web 
elements. Right: Average error rate depending on the size of the target area. 

outperforms the existing solutions: the localization and task migration is done in real time on a 
mid-level cellphone; the localization is reliable even for different observation angles and distances. 
Our solution operates on a video stream for continuous interaction. 

Future research directions include increasing interaction distance, thus allowing for continuous 
interaction with remote and unreachable displays. This could be made possible by employing 
automatic and semi-automatic zoom functionality for selected content. Another possible area 
for improvements is making the tracked cursor as unobtrusive as possible for the other users or 
minimizing the required time for the fiducial to be present on the screen. 
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Chapter 6 

Poor Man's Virtual Camera 

This chapter describes another important and distinct usecase of the Uniform Marker Fields which 
constitute the core of my work. In this case, I, with my colleagues, proposed to use the marker fields 
in the film-making domain for a structured greenscreen canvas. 

Since the early years of film-making, artists have wanted to create artificial worlds to bring 
their ideas onto the film screen. Modern digital virtual production is still a new technology that 
requires several steps from different research areas: matting or background subtraction and visual 
tracking from computer vision, alternatively hardware based tracking from robotics and realistic 
rendering from computer graphics. Each of these steps is computationally extremely expensive. 
We proposed a cheap, instant and reliable matchmoving solution for chromakeying-based film 
effects [35] enabling real-time mobile solution for virtual production for preview purposes and as 
a fast, simple and cheap solution for low quality production. We pursued this idea further and 
created a fully functional mobile implementation [156]. My contribution in this research was the 
adaptation of Uniform Marker Fields detection algorithm as part of the chromakeying process. I 
proposed a color mapping between grayscale and greenscreen marker fields and matting method 
using GPU shaders for the functional prototype. My contributions also include the implemented 
real-time solution and its experimental evaluation. The subsequent description follows closely our 
publications. 

6.1 Motivation 

One of the early methods to mix the artificial and virtual worlds was matting - an effect for 
composition of several images into one frame. Several approaches for matting were developed in 
time: e.g. glass paintings, double exposure or using optical printer [ ]. Nowadays, the most 
commonly used method is chroma keying, where a specifically selected color (often green or blue) 
is set to transparent and substituted [ 4]. Computer vision developed various methods for removal 
of background, whether with constant color [149], as used in filmography, or with an arbitrary 
image [152, 28]. 

During rendering of a virtual world to replace the blue or green canvas, the exact movements 
of the camera must be determined. This information can be obtained by camera rigs programmed 
to follow a pre-defined track (e.g. Cyclops or M i l o 1 , TechnoDolly2), using sensors mounted to the 
camera (e.g. Insight V C S 3 ) , by tracking simple artificial markers placed on the canvas [83] or natural 

1 http://www.mrmoco.com 
2http://www.supertechno.com/product/technodolly.html  
3http://www.naturalpoint.com/opti track/products/insight- vcs/ 
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image features in the captured real world [33]. 
Recent advances in mixed reality filmmaking technology include the concept of virtual camera 

- the position of the real camera is detected and used to simulate the virtual camera in the digital 
world 3 ' 4 . Coupled with a classic camera (also referred to as a Simulcam) it forms a tool for 
superposition of the real and digital world and capturing the scene in one moment. These concepts 
represent the best available technology today; however, they require high financial and technical 
resources. 

Real-time replacement of a greenscreen with another scene (synthetic or real) can be seen as a 
kind of an augmented reality system [ ], for example, the live T V production [ ]. The problem 
of camera pose estimation can be solved by using markers [172, 76], natural features as points or 
edges [140], textures [ ] or by using other sensors such as GPS and gyroscope on a handheld 
camera [135]. Commercial virtual cameras are mostly based on motion capture [ 100,45], e.g. Insight 
V C S 3 or I L M virtual camera4. 

The previously mentioned solutions require complex and costly setup of infrared cameras, 
additional tracking extensions for the main cameras and external servers. They provide real-time 
visualization only for the virtual scene and not the augmented result. In the field of augmented 
reality, there has been prevalent research to create an integrated solution with the help of commodity 
hardware [ ]. Effort has also been put into taking advantage of the growing computational power 
of hand-held devices for ultra-mobile augmented reality systems [ ]. However, Ventura et al. 
[170] have shown that systems based on feature-points and point-clouds are still realizable only 
with the aid of additional server-side computations. 

Our aim in this research was to eliminate such limitations. The required image processing 
algorithms are computationally expensive and common mobile hardware still lack the performance 
to support them in full. There has been extensive research to optimize the computational efficiency 
of these algorithms. In this work we took advantage of Halide language and compiler proposed 
by Ragan-Kelley et al.[131, 132]. The main idea behind Halide is to separate the scheduling of 
the performed operations and the algorithm itself. The main advantage over other domain-specific 
languages is its transparent support for data-parallel computational units such as A V X , SSE, OpenCL, 
and - most importantly for our work - N E O N 5 . Finding the best schedule for a given algorithm, 
however, is not trivial and requires deep knowledge of the underlying hardware architecture. 

After the precise position of the camera was determined, the eliminated background of the 
real scene is replaced by the virtual scene. Many graphics algorithms were invented during recent 
years to achieve a high degree of realism of the virtual worlds: faithful animation of fluids, hair, 
clothes or properties of light distribution, etc. The composition of the real and virtual world is also 
not a problem for today's film production systems. However, this is only possible after shooting 
the given scene and the filmmakers depend on their own imagination during the film shot and its 
preparation. Storyboard is an old and very widely used method for pre-visualizing film sequences 
using illustrations and images [55, 146]. It represents a great tool for understanding the scene 
layout. The disadvantages are large time requirements for creating a storyboard for a whole film 
and complicated incorporation of the real actors and objects into the illustrations. 

The bases of our proposed system was built upon grayscale and colorful Uniform Marker 
Fields (Section 3.4). The advantages of the used marker fields compared to other marker based 
solutions [172, 76] in a virtual production setting are mainly robustness against occlusion and low 
contrast. The marker field covers the matting canvas (as a whole or a selected fraction). Then, 
during the shooting, the camera position is established and a preview of the mixed scene is rendered 
in real time. Our algorithm is computationally extremely efficient. In contrast with state of the 

4http://www.ilm.com/ 
5http://www.arm.com/products/processors/technologies/neon.php 
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art camera grids our solution can thus run on common mobile devices, providing almost unlimited 
freedom in movement and a very low-cost virtual camera or simulcam solution. 

This solution is unprecedentedly cheap - it is available for a wide range of filmmakers, including 
amateurs. In general, this relatively simple technique unleashes new creative and innovative 
approaches, so far unseen especially in indie filmmaking. For simplicity, in the text we are using 
the term "greenscreen", but the same applies to any other color (blue, purple, etc.). 

This research has been a result of collaboration between Dubska, M . , Herout, A. , Zacharias, M . 
and myself. My main contributions in this research are the following: 

• Proposed color mapping for A R use and color selection for the greenscreen marker fields. 

• Proposed automatic color calibration for matting by sampling the marker field. 

• Mobile prototype implementation of the 3D preview application. 

• Real-time performance even on mobile platforms using multi-platform optimization (using 
Halide [131]). 

• Evaluation and testing of the prototype system. 

In this section I will focus on these parts of the research. For more detailed information about the 
proposed virtual camera settings and storyboarding concept, refer to [35] and [156]. 

6.2 Greenscreen Marker Field 

In a chromakeying setting, the proposed algorithm first computes the chromakeying mask to segment 
out the background containing a fiduciary marker. For high quality calibrated cameras the raw data 
is sufficient to detect the difference between shades of green used by the marker. For videos 
acquired through low quality or smartphone cameras, the algorithm also maps the different shades 
of green into a single grayscale image to achieve higher contrast (see Figure 6.1 A). The mask and 
the mapping computations are described in Section 6.3.1. 

The fiducials used in our research were based on Uniform Marker Fields described in Section 3.4. 
The synthesis of such fields is highly time consuming and its size is limited by the size of the uniquely 
identifiable sub-windows n 2 (see Section 3.4.4). 

The detection algorithm, after the shades have been mapped into grayscale representation, 
follows the detection algorithm descibed in detail in Section 3.4.2. The process is demonstrated in 
Figure 6.1. 

A benefit of a chromakeying setting is the straightforward foreground-background segmentation. 
The chromakeying mask was used to filter out foreground edgels during the edgel extraction step 
(Figure 6.IB). For recovering the edge directions (Figure 6.IE) we used the mapped grayscale 
intensity value (Figure 6.1 A). Based on these edge directions the unique sub-windows can be 
identified using a decision tree, as in the original algorithm (Figure 6.2). 

To improve the precision of our prototype application we employed sub-pixel precise corner 
search (Figure 6.IF). After a successful detection, these points are tracked using the Kanade-Lucas-
Tomasi tracker. This is a change from the pure track-by-detection approach used in previous 
applications. For camera pose estimation we use L H M [ ] initialized by EPnP [84]. The pose 
ambiguity for planar targets is solved by the method described by Schweighofer and Pinz [145]. 

The limitation of our approach is that the Uniform Marker Field has to be visible during the 
whole shooting to be able to track the camera pose. In the future, this can be partially solved 
by merging visual tracking with motion tracking acquired from hardware sensors. Contemporary 
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Figure 6.1: Detection of the grid of squares composed of suitable shades of green. A : The YCbCr 

image is mapped to grayscale for the detection algorithm. B: The grayscale image is processed in 
very sparse scanlines (for better visualization we use the source image). On each scanline, edges 
are detected (yellow points) and extended to edgels (red lines). C: The edgels are grouped into 
two dominant groups using R A N S A C ; two vanishing points are computed by hyperplane fitting. 
D: Based on the vanishing points, the optimal grid is fitted to the set of the edgels. E: Edges between 
the modules are classified. F: The annotated corner points are used for tracking and computing the 
3D camera pose. 
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Figure 6.2: Localization within the Marker Field. The RGB decision tree is simplified so that the 
decisions are made based on a single value for each edge, not on all RGB components, top: The 
order in which the edges are visited, bottom: The decision tree. Leaves are either invalid or contain 
the location and orientation within the marker field. 

smartphones already include high-precision IMU units. For cameras connected to PCs, an external 
sensor could be used (e.g. [45]). 

The described camera pose estimation using Uniform Marker Fields in future work is also 
extendable to use multiple markers, since the image is processed in sub-windows. Alternatively the 
fast grid detection can be used from Chapter 4. 

The grayscale marker design allows for very large marker fields even with 3 shades of gray 
(see Section 3.4.4). When using multiple marker fields, ideally, the similarity between the marker 
fields is minimal. To achieve this and to guarantee the uniqueness of detected sub-markers across 
all used marker fields, a single large marker field is separated into smaller marker fields. To be able 
to compute the camera pose from multiple marker fields, an initial scan of the scene is necessary to 
create a model of the scene containing the relative position and rotation of the fields. 

6.3 Matchmoving With Shades of Green 

Most existing fiduciary marker designs use different marker features (typically edges) for localization 
of the marker and for recognition of its identity. Therefore, in order to assure reliable detection, 
the edges must exhibit a large contrast and none of them can be missed. On the contrary, Uniform 
Marker Fields use the same edges for detection of the marker and for its localization and recognition. 
That allows for the edges to be of low contrast, because even when a high fraction of the edges are 
missed, the marker field can still be detected and recognized. Low contrast edges are necessary for 
a marker to amalgamate into a sufficiently homogeneous green (or blue or other) surface for the 
background subtraction. 

6.3.1 Selection of Suitable Shades of Green 

The marker field modules' color must be a compromise between usage of as-similar-as-possible 
colors for the chroma keying and colors different enough to detect the edges. The selection also 
depends on the selected chroma keying algorithm. Using, for example, the keying equation of first 
choice A = G — max(.B, R) [ ], it seems suitable to vary R and B color components so that 
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max(B, R) stays the same (i.e. value A is constant for the whole marker field). However, more 
advanced algorithms are able to also deal with changing of the intensity of the green color (with 
constant hue). For example a method described by Jack [67] uses the YCbCr color model to achieve 
high quality matting robust against changing intensities (shadows). This is important due to the low 
dynamic range of videos from smart-phone cameras. 

Contemporary mobile device cameras provide raw data in this YCbCr color space (or a variant 
of it). Choosing this colorspace to encode gradient direction between modules, initially means no 
information loss for the matting process due to conversion, and saves computational time. Encoding 
the marker into the C\,Cr channels provides more robustness against intensity changes (shadows) and 
white balance. Finally, higher quality real-time matting is possible. For matting, in our experiments 
we are using the method based on [67]. 

The detection algorithm does not rely on high-quality matting to filter out outliers in the 
foreground. Instead, we used a simplified approach, where (1 — C&)(1 — Cr) is over a conservative 
threshold (Cb, Cr G (-1,1)). 
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Figure 6.3: The normalized CbCr mapping to XZ space. The red dot represents the main keying 
color. The red and yellow dots are used for the U M F fields. The half arc demonstrates the mapping 
of the XZ space to grayscale for the detector. 

6.3.2 Mapping 

For the detection algorithm we encoded the edge direction between modules of the U M F into the 
CbCr channels. A good mapping is: 

Im(x, y) = a t a n 2 ^ X ' V ] , (6.1) 

where Im is the mapped image and X, Z are the rotated Cb, Cr channels respectively by the <f> angle 
of the average key color in the CbCr space (Figure 6.3). As an example for the choice of colors, 
in our experiments we used 3 hues with identical Y channel with 20° difference on the CbCr plane 
(yellow dots in Figure 6.3). Such a choice of the mapping is robust against changing intensities and 
to some extent also against image saturation levels on different smartphones. An alternative simple 
choice for mapping could be: 

Im(x,y) = 2(Cb-Cr) + l, (6.2) 

with Cb,Cr G (—1,1). We used the latter mapping in our experiments. 
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The detection algorithm then uses the resulting Im mapped image as a grayscale image to detect 
U M F in further processing. Given the chosen mapping function, motion blur would only cause 
blurring in the mapped grayscale image. The U M F detection algorithm has proven to be highly 
robust against such distortion (Section 3.4.3). 

6.3.3 Matting for Visualization 

For camera pose reconstruction, a low-quality mask creation is sufficient to guide the detection 
algorithm to discard foreground pixels. For the user interface a high quality matting is done on the 
GPU, freeing resources for image processing on the CPU. Due to white balancing and other automatic 
image capture controls (generally present in commodity smartphones), having a predefined set of 
key colors is insufficient. We proposed to progressively optimize the exact key colors (by using 
G M M [137] in the experiments) once the marker was successfully detected in the image. Its layout 
can be used to sample image regions belonging to different shades in the U M F to predict the exact 
shades of green. 

Figure 6.4: Sample images from the dataset. Left: original image. Middle: ground truth alpha 
mask (see Section 6.4.5). Right: our implementation using shaders. Odd rows showcase constant 
color and even rows show sample images with the encoded U M F marker. 

6.3.4 Practical Set-Up: Projection 

Classic green, blue or white canvas together with a projector can be used as a marker field canvas. 
Two options for organizing the set-up with a projector exist: front or back projection (Figure 6.5). 
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The main advantage of this approach is the opportunity to change the intensities/colors of the markers 
depending on the camera, lights and other conditions. Because of the additional light produced by 
the projector, this approach is not suitable for high-fidelity shots. However, it is fine for prototyping, 
simple scene shooting and instant tuning of the scene/setup. 

Figure 6.5: Projection of the marker field on green (or white or other) canvas, top: Front projection 
- the actor's movement is limited because he must not interfere with the projection rays, bottom: 
Back projection - requires more space behind the greenscreen. 

6.3.5 Practical Set-Up: Special Canvas 

An alternative to the projection of the marker field is using a special canvas with the marker field 
printed on it. It is possible to synthesize marker fields of arbitrary dimensions by selecting suitable 
window shape/size and a proper number of colors (Section 3.4.4). The marker field does not have 
to cover the whole matting plate; instead, only a stripe or other shape can be covered by the marker 
field. Using several sheets requires mutual and world calibration which can be done completely 
automatically by quickly scanning over the scene with a camera. 

6.4 Experiments and Evaluation 

A thorough side-by-side comparison of the shades-of-grey marker field with alternative markers was 
given in Section 3.4.3. In Section 6.4.1 I describe our proof-of-concept implementation integrated 
into Unity 3D cross-platform game engine. The rest of the subsections show results of experiments 
of different aspects of our solution. 

6.4.1 Unity 3D Plug-In 

We targeted live streaming applications using a webcam for PC or an integrated camera on smart-
phones. We created a plugin for Unity 3D, that integrates with our proof-of-concept implementation. 
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Unity 3D 6 is a free and cross-platform 3D game engine, that supports all our targeted platforms (see 
Figure 6.6). 

For a real-world solution, even real-time performance of the detection algorithm causes signi
ficant lag due to other parts of the pipeline (frame acquisition, OS overhead, rendering overhead, 
texture copy between CPU and GPU). We proposed to process the frames asynchronously, which 
provided smooth video stream, but out-of-sync rendering placement. On the A R M platform, the 
camera stream was acquired directly from the operating system simultaneously for rendering (as 
texture) and detection (as bitmap). On the PC, the transfer speed between GPU and CPU memory 
was sufficient for real-time performance. 

1 JE&M J~ ^ 
Figure 6.6: Camera pose estimation and chromakeying using green-screen markers on mobile and 
PC platforms. 

To further free up CPU processing time, the costly high-quality chromakeying was done on the 
GPU using shaders. The detection algorithm used the simplified method described in Section 6.3.1. 

Our plugin finally consists of a script attachable to the camera object, a custom shader material 
for the PC platform and native libraries for all supported platforms. The only inputs required from 
the user are the camera parameters for the PC platform. On Android OS, these parameters are 
provided by the operating system. Hence, our solution is extremely easy to use, suitable even for 
less experienced designers. For more advanced users, it should provide a very easy to setup tool to 
preview virtual scenes. 

6.4.2 Detection Rates 

To re-evaluate and compare the detection rates between grayscale and greenscreen markers, we 
created a small video dataset (16 videos). We used the setup with a projector projecting the marker 
from the front (Figure 6.5 top). We used two different projectors in combination with a smartphone 
(1280 x 720px, 30Hz) and a hand-held dedicated video camera (1920 x 1080 px, 50Hz). 

With tracking enabled, our algorithm was able to localize the camera in 99.9 % of frames. Since 
tracking is a replacable part of the pipeline, Table 6.1 summarizes the percentage of frames for all 
combinations where the camera was successfully localized without tracking. 

Camera/UMF marker grayscale greenscreen 
smartphone 

hand-held camera 
94.5% 96.9% 
97.7% 87.7% 

Table 6.1: Detection rates between grayscale and greenscreen markers projected on canvas. 

6http://uni ty3d.com 
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With a smartphone camera, the detection rates were comparable between grayscale and green-
screen markers. There was even a slight improvement, which might be caused by the reduced 
number of outlier edgels thanks to the background mask. 

Figure 6.7: Left: Frames acquired with mobile camera with grayscale (top) and greenscreen 
(bottom) U M F Right: Frames acquired with hand-held dedicated video camera. Notice the very 
low-contrast greenscreen U M F compared to the frames from the mobile camera. There is also 
visible banding on the right-bottom image (hand-held camera with second projector). 

With the dedicated camera, the detection rates of the greenscreen U M F were significantly 
worse. This was caused by two specific issues. The dedicated camera did not do as aggressive 
white-balancing as the smartphone camera, hence the contrast of the greenscreen marker was 
significantly lower. Secondly, the frame-rate collision between one of the projectors and the camera 
caused banding and flickering (Figure 6.7 bottom right). 

6.4.3 Computational Complexity 

For the speed performance evaluations, we tested our solution for preview purposes with V G A 
(640 x 480) resolution camera stream. For the tracking, the algorithm used a sub-sampled resolution 
of 320 x 240. Since contemporary cameras provide sub-sampled color channels (C&, Cr channels) 
used in our mapping to grayscale representation, sub-sampling should theoretically not cause any 
loss in the detection precision. We tested our solution both on PC (Intel(R) Core(TM) i7 2.2 GHz) 
and A R M platform (ARMv7 Processor rev. 9, 1.5 GHz). 

For our experiments, we used our Unity plugin (Section 6.4.1) with a basic 3D scene. The 
Android implementation was running at 33.7 FPS on the GPU, and was processing frames (sent at 
13 FPS to the CPU) asynchronously in 23.4 ms including Java overhead (theoretical 40 FPS). On the 
desktop PC, the web-camera was providing the V G A video stream at 30 FPS and each frame was 
processed by the detector in 6.4 ms on average. The measurement results are shown in Table 6.2 
(chroma: the chromakeying process for the detector; tracking and detection (t&d): the detection 
and tracking average time; camera pose: camera pose estimation based on the found matches). 
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The times include conversion from RGB to YC\,Cr for the PC and communication overhead from 
native to managed code for the A R M platform. 

The main part of computational time on the A R M platform (~ 63%) was taken by simple image 
manipulation: gradient computation and gaussian blur for the tracker, sub-sampling, matting mask, 
and mapping computations. We used the Halide language [131, 132] to create a solution for these 
tasks with more optimized memory access patterns. On the PC platform, this led to ~ 41% speed 
improvement overall, with the chroma mapping being 18 x faster. On the A R M platform, the speed 
improvement was ~ 8% overall. 

Platform total (chroma t&d cam.) 
PC 10.7 3.7 1.9 1.4 

PC with Halide 6.3 0.2 1.9 1.4 
A R M 25.3 4.8 14.0 2.1 

A R M with Halide 23.4 4.1 12.8 2.1 

Table 6.2: Breakdown of the processing time in milliseconds, for V G A video. 

6.4.4 Preview Precision 

To evaluate the camera pose precision for the preview use-case, we created a second small video 
dataset. The videos were shot with the smartphone camera (720p, 30Hz) from a 2-5 m distance 
from the canvas. We calibrated the smartphone camera including camera distortion for maximum 
precision. As reported earlier in Section 3.4.3, U M F detection algorithm outperforms alternative 
marker based solutions. We used our detector without any optimization and with precise calibration 
to establish a reliable reference for each frame. 

To simulate the video stream processed by the detector on the mobile platform, we scaled down 
and cropped each video to V G A resolution. As calibration, we only used the camera fovy defined 
by the manufacturer. The median difference in the detected camera angle was 1.5° and the median 
distance from the reference camera pose was 5.91 cm. 

6.4.5 Matting Precision 

In this section, I describe the conducted tests if the presence of the U M F in the greenscreen degrades 
the matting performance with our algorithm. In the experiment, we projected both plain green color 
and U M F encoded in the shades of green on the canvas and took images with both smartphone and 
dedicated cameras. We evaluated the precision of our matting algorithm using GPU shaders with 
reference to a state-of-the-art alpha-matting approach (KNNMatting [26] with manual annotation, 
see Figure 6.8). We quantified the error in the resulting alpha masks as the standard deviation of 
transparency values [0,100). 

There was only a small difference in precision for the plain green color (standard deviation 3.62) 
and with the U M F marker present (standard deviation 4.5). This shows that using the green U M F as 
the background does not significantly decrease the segmentation compared to solid color. However, 
global methods (typically based on graph cuts) perform better on boundaries and on surfaces with 
bounced green light, at the price of much higher computational complexity. 

6.4.6 Sensitivity to Edge Contrast 

For the greenscreen to be segmented reliably, the various green colors must be close enough to a 
common shade, i.e. the contrast on the edges between the neighboring squares of the marker field 
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Figure 6.8: top: The original image from the camera, middle: Matting results from GPU shaders. 
bottom: Reference alpha mask acquired using KNNmatting with manual annotation. 

must be low. At the same time, the marker field must be reliably recognized. An assumption 
fundamental to the viability of our approach is that these two contradictory requirements must be 
satisfied at the same time. 

Figure 6.9 shows the results of our experiment targeted on this issue. We printed out multiple 
variants of a single generated marker field (14x10) with the green colors altered to change their 
"contrast". We shot short video sequences with the hand-held dedicated camera observing the marker 
field from varying angles at normal daylight conditions in an office setting. The detection rate is the 
fraction of correctly recognized video frames without tracking. The reported graph therefore depicts 
a pessimistic look on the detection performance. With the tracking feature enabled and even with 
75% detection rate, camera pose tracking is theoretically restored with 99.9% probability within the 
next 5 video frames. 

6.5 Results 

We were successful in creating an instant and reliable matchmoving solution for chromakeying-
based film effects. It was based on the multi-color uniform marker fields. We proposed methodology 
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Figure 6.9: Detection rate as it depends on the marker "contrast", contrast 255 = extreme colors 
(darkest, brightest) are 255 units apart in the color channels, contrast 0 = the colors in the field 
are all identical. Good news is that as assumed, the detection performance drops at reasonably 
low values of the "contrast" between the shades. The experimentally found tipping point (~ 40) 
intensity difference is a good choice for practical greenscreen canvases. 

to design marker fields of shades-of-green (blue or any other practical color). Such marker fields 
can be detected, recognized (for accurate camera pose estimation), and precisely segmented out 
in order to be replaced by rendered content. The experiments show that the process is both very 
efficient (the applications can easily run on today's ultramobile mid-range processors) and at the 
same time it is inexpensive and simple to use. 
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Chapter 7 

Conclusion 

This thesis presents in its core an efficient camera pose estimation for real-time augmented re
ality applications. Most importantly, I introduced the concept of Uniform Marker Fields, which 
overcome limitations of existing marker designs. Uniform Marker Fields are a marker solution 
with a checkerboard structure with unique sub-windows of size n 2 in every rotation. Such marker 
fields can cover large areas and still be detectable from small distance. The marker field design, 
contrary to conventional markers (ARToolKit, ARTag), does not distinguish between localization 
and identification features. 

The detection algorithm proposed in this thesis was designed to be highly efficient and have a 
small memory footprint. The algorithm relies on long edgels (connected edge pixels) to estimate 
two vanishing points and recover the marker fields' grid structure by line parametrization. The inter
relation between neighbor modules is used to recover the marker fields rotation and position. This 
information provides 2D-3D correspondences for module corners, which can be used to compute 
a full 6 degrees of freedom camera pose. Comprehensive evaluation shows that the described 
algorithm for Uniform Marker Fields was faster than alternative marker-based approaches with 
comparable or better performance. 

The efficient implementation of the detection algorithm and its various modifications enabled 
real-time camera pose tracking even on mid-range commodity smartphones. I have demonstrated 
this on several applications of Uniform Marker Fields. These included the on-screen markers used 
for document reaccess, task migration, and other user-centric tasks. The last important application 
was the use of the U M F in film-making domain as a structured and "intelligent" green screen. 

My PhD research was centered around the topic of camera pose estimation (mostly based on 
markers), but it naturally visited other related fields, such as mobile app development, algorithmic 
optimization, rendering, human-computer interactions, and a few distinct and specific applications. 
I would also like to give credit to my colleagues for providing knowledge and assistance in the vast 
research fields associated with this thesis. 

Coming into this research, I was focusing on computer graphics and rendering during my earlier 
studies. I was pleased with the opportunity to further my education and broaden my horizon. Not 
only was I fortunate enough to dive into several fresh and rapidly developing research fields, I also 
contributed my own ideas and created original solutions. My work is already cited and used in 
several publications authored by other researchers. 
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List of Publications 

For my masters thesis, I investigated several methods for fast approximation of global illumination 
using GPU shaders. A subset of these experiments, concerning mainly Screen-Space Directional 
Occlusion was published in: 

[I] I. Szentandräsi (supervisor A. Herout). Modern methods of realistic lighting in real time. 
In Proceedings of The 15th Central European Seminar on Computer Graphics, pages 17-24. 
Technical University Wien, 2011. 

Figure 1: Fast detection and recognition of QR codes in high-resolution images [II]. 

Dubská et al. [36] introduced a QR code detection algorithm using Hough transformation (PC-
lines). In a follow up work (Figure 1), I proposed a method for fast localization of checkerboard 
patterns as candidate positions for QR code detection: 

[II] I. Szentandrási, A. Herout, and M . Dubská. Fast detection and recognition of QR codes in 
high-resolution images. In Proceedings of 28th Spring conference on Computer Graphics, 
Bratislava, SK, 2012. UNIBA. 

The main contributions of this thesis have been published in the following four publications. 
Uniform Marker Fields (UMF) are fiduciary markers with checkerboard pattern, where every n 2 

window is unique in every rotation (Figure 2). They were first published in: 

[III] I. Szentandrási, M . Zachariáš, J. Havel, A . Herout, M . Dubská, and R. Kajan. Uniform 
Marker Fields: Camera localization by orientable De Bruijn tori. In 11th IEEE Interna
tional Symposium on Mixed and Augmented Reality (ISMAR), 2012. 
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Figure 2: Binary Uniform Marker Fields with 3D augmentations [III]. 

My contribution involved mainly the detection algorithm of U M F and evaluations. The algo
rithm iss highly memory efficient with low computational complexity. In collaboration with Kajan 
et al. we proposed to use U M F to aid inter-device communication by establishing relative pose 
between two devices. The U M F detection algorithm proved robust against high transparency and 
image clutter. 

[IV] R. Kajan, A . Herout, I. Szentandrasi, and M . Zacharias. On-screen marker fields for 
reliable screen-to-screen task migration. In SouthCHI 2013: International Conference on 
Human Factors in Computing and Informatics, pages 692-710, 2013. 

A major improvement and generalized concept of Uniform Marker Fields was published in: 

[V] A . Herout, I. Szentandrasi, M . Zacharias, M . Dubska, and R. Kajan. Five shades of grey for 
fast and reliable camera pose estimation. In IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), pages 1384-1390. IEEE Computer Society, 2013. 

By using the edge gradients between U M F modules allowed for larger, less obtrusive marker fields 
compared to binary UMF. Thanks to the changes, I was able to make the detection algorithm more 
robust against occlusion, lighting changes and motion blur (Figure 3). I also further optimized the 
detection algorithm to work on mid-range smartphones in real time. 

Figure 3: Grayscale Uniform Marker Fields detection algorithm and example of augmentations [V]. 
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Thanks to the positive properties of Uniform Marker Fields design and robust detection algo
rithm, we also experimented with extremely low-contrast markers. We first proposed using RGB 
markers as part of a greenscreen in: 

[VI] M . Dubska, I. Szentandrasi, M . Zacharias, and A. Herout. Poor man's SimulCam: Real
time and effortless matchmoving. In 12th IEEE International Symposium on Mixed and 
Augmented Reality (ISMAR), pages 249-250, 2013. 

I was involved in the effort to create easily detectable deformable Marker Fields with a hexagonal 
structure. The published solution was able to reconstruct the deformed marker in 5 ms for V G A 
resolution. 

[VII] Zs. Horvath, A . Herout, I. Szentandrasi, and M . Zacharias. Design and detection of local 
geometric features for deformable marker fields. In Proceedings of 29th Spring conference 
on Computer Graphics, pages 85-92. Comenius University in Bratislava, 2013. 

We developed further our task-migration solution based on a video recording metaphor [IV]. 
The resulting fully Augmented Reality solution was published in: 

[VIII] R. Kajan, I. Szentandrasi, A . Herout, and A. Pavelkova. Reliable and unobtrusive inter-
device collaboration by continuous interaction. In Journal of WSCG, pages 95-103. 
University of West Bohemia in Pilsen, 2014. 

Figure 4: Augmented Reality for video streams from static cameras [IX] using [37]. 

[IX] I. Szentandrasi, M . Zacharias, R. Kajan, J. Tinka, M . Dubska, J. Sochor, and A. Herout. 
IN CAST: Interactive camera streams for surveillance cams AR. In Proceedings of the 
2015 14th IEEE International Symposium on Mixed and Augmented Reality, pages 1-5. 
Institute of Electrical and Electronics Engineers, 2015. 

In this work, we dealt with the challenging task of camera pose estimation using static cameras and 
its usability for augmented reality applications. We presented a prototype system for broadcasting an 
augmented video stream, and demonstrated the possibilities on several use-cases - non-interactive 
demos and simple A R games (see Figure 4). 

In collaboration with M . Zacharias and A. Herout, we have investigated the viability of using 
unobtrusive colored U M F markers for indoor navigation. We tested the precision of the U M F 
detection algorithm relative to real-world ground truth distances. This work has been accepted to 
SCCG 2016: 
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[X] M . Zacharias, I. Szentandrasi, and A. Herout. Visual correction of position drift using 
uniform marker fields. In Spring conference on Computer Graphics, Bratislava, SK, 2016. 
UNIBA. 

We developed further the concept of using low-contrast markers as part of a greenscreen in [VI]. 
I proposed a new mapping of Uniform Marker Fields into YCbCr channels for more robustness, 
improved detection algorithm for camera pose estimation, presented a distribution of computations 
between different computational units for real-time performance, and described an efficient matting 
method using GPU shaders. We created a plugin into the popular Unity 3D engine. To evaluate 
our solution, we implemented a real-time preview application (see Figure 5). This work has been 
accepted and pending publication in IEEE Computer Graphics and Applications journal. 

[XI] I. Szentandrasi, M . Dubska, M . Zacharias, and A. Herout. Poor Man's Virtual Camera: 
Real-time simultaneous matting and camera pose estimation. IEEE Computer Graphics 
and Applications, 2016. 

Figure 5: Camera pose estimation and chromakeying using greenscreen markers on mobile and PC 
platforms [XI]. 
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