VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF POWER ELECTRICAL AND ELECTRONIC ENGINEERING

KONSTRUKCE EC MOTORU S VNĚJŠÍM ROTOREM

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR ONDŘEJ SMRŽ

BRNO 2010

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF POWER ELECTRICAL AND ELECTRONIC ENGINEERING

KONSTRUKCE EC MOTORU S VNĚJŠÍM ROTOREM

CONSTRUCTION OF BLDC MOTOR WITH OUTER ROTOR

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE ONDŘEJ SMRŽ

VEDOUCÍ PRÁCE Ing. ROSTISLAV HUZLÍK SUPERVISOR

BRNO, 2010

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

Ústav výkonové elektrotechniky a elektroniky

Bakalářská práce

bakalářský studijní obor Silnoproudá elektrotechnika a výkonová elektronika

Student: Ondřej Smrž Ročník: 3

ID: 106781 *Akademický rok:* 2009/2010

NÁZEV TÉMATU:

Konstrukce EC motoru s vnějším rotorem

POKYNY PRO VYPRACOVÁNÍ:

- 1. Seznamte se s konstrukcí EC motoru s vnějším rotorem.
- 2. Dle pokynů vedoucího navrhněte EC motor s vnějším rotorem.
- 3. Navržený motor ověřte pomocí metody konečných prvků.

DOPORUČENÁ LITERATURA:

Dle doporučení vedoucího

Termín zadání: 1.10.2009

Termín odevzdání: 27.5.2010

Vedoucí projektu: Ing. Rostislav Huzlík

doc. Ing. Čestmír Ondrůšek, CSc.

předseda oborové rady

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následku porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledku vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Abstrakt

Tato práce je zaměřena na konstrukci EC motoru s vnějším rotorem. Jejím úkolem je seznámení s konstrukcí, základními vztahy, uplatněním tohoto typu motoru, s postupem návrhu magnetického obvodu s permanentními magnety a následným návrhem motoru. Dále pak dojde k ověření navrhnutého motoru metodou konečných prvků. V neposlední řadě shrne charakteristické vlastnosti a veličiny návrhu a dojde k porovnání prvotního návrhu s dalšími dvěma návrhy s určitými změnami v oblasti zubů statoru.

Abstract

This work is focused on the construction of the BLDC motor with outer rotor. Its mission is to become familiar with the design, basic relationships, applying this type of motor, the design procedure of magnetic circuit with permanent magnets, and then design the engine. Then there is a verification of designed motor finite element method. Finally, it summarizes the characteristics and parameters of the proposal and will compare the initial design with the other two designs, with some changes in the stator teeth.

Klíčová slova

Elektronicky komutovaný; FEMM; magnetická indukce; motor; permanentní magnet; točivý moment; vnější rotor

Keywords

Brushless; FEMM; motor; magnetic flux density; permanent magnet; outer rotor; torque

Bibliografická citace

SMRŽ, O. *Konstrukce EC motoru s vnějším rotorem*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2010. 43 s. Vedoucí bakalářské práce Ing. Rostislav Huzlík.

Prohlášení

Prohlašuji, že svou bakalářskou práci na téma Konstrukce EC motoru s vnějším rotorem jsem vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této bakalářské práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č. 140/1961 Sb.

V Brně dne Podpis autora

Poděkování

Děkuji vedoucímu bakalářské práce Ing. Rostislavu Huzlíkovi za účinnou metodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování mé bakalářské práce.

V Brně dne

Podpis autora

OBSAH

2 ELEKTRONICKY KOMUTOVANÉ MOTORY	1 ÚVOD	12
2.1 ZÁKLADNÍ VZTAHY	2 ELEKTRONICKY KOMUTOVANÉ MOTORY	12
2.1.1 NAPĚTÍ NA SVORKÁCH 12 2.1.2 OKANŽITÁ HODNOTA PROUDU 13 2.1.3 INDUKOVANÉ NAPĚTÍ 13 2.1.4 ELEKTROMAGNETICKÝ MOMENT 14 2.1.5 ELEKTROMAGNETICKÝ MOMENT STEJNOSMÉRNÉHO EC MOTORU S PM. 14 2.1.6 RYCHLOST OTÁČENÍ. 14 2.1.6 RYCHLOST OTÁČENÍ. 14 2.1.6 RYCHLOST OTÁČENÍ. 14 2.1.7 ROVOZ PŘI HALF WAVE KOMUTACI. 15 2.2.1 PROVOZ PŘI HALF WAVE KOMUTACI. 16 2.3 VYUŽITÍ STEJNOSMĚRNÝCH EC MOTORŮ S PM. 17 2.3.1 VOZIDLA NA ELEKTŘINU 17 2.3.2 VĚTRÁKY S PROMĚNNOU RYCHLOSTÍ OTÁČENÍ. 17 2.3.3 VĚTRÁKY S PROMĚNNOU RYCHLOSTÍ OTÁČENÍ. 17 2.3.1 VOZIDLA NA ELEKTŘINU 17 2.3.2 VĚTRÁKY S PROMĚNNOU RYCHLOSTÍ OTÁČENÍ. 17 2.3.3 VYSOKORYCHLOSTNÍ LĚTECKÉ POHONY. 18 2.4 JOSUNÍKY V OSÁCH X A Y 18 2.4 JZÁKLADNÍ VZTAHY 19 2.4.1 ZÁKLADNÍ VZTAHY 19 2.4.1.2 Magnetický tok 19 2.4.1.3 Intenzia magnetického pole 19 2.4.1.4 Objem materiálu 20 2.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU 20 <	2.1 ZÁKLADNÍ VZTAHY	12
2.1.2 OKAMŽITÁ HODNOTA PROUDU 13 2.1.3 INDUKOVANĚ NAPĚTÍ 13 2.1.4 ELEKTROMAGNETICKÝ MOMENT 14 2.1.5 ELEKTROMAGNETICKÝ MOMENT STEJNOSMĚRNÉHO EČ MOTORU S PM 14 2.1.6 RYCHLOST OTÁČENÍ 14 2.1.6 RYCHLOST OTÁČENÍ 14 2.1.6 RYCHLOST OTÁČENÍ 14 2.2.1 PROVOZ PŘI HALF WAVE KOMUTACI 15 2.2.2 PROVOZ PŘI HALF WAVE KOMUTACI 16 2.3 VYUŽITÍ STEJNOSMĚRNÝCH EČ MOTORŮ S PM 17 2.3.1 VOZIDLA NA ELEKTŘINU 17 2.3.2 VĚTRÁKY S PROMĚNNOU RYCHLOSTÍ OTÁČENÍ 17 2.3.3 PŘEHRÁVACE KOMPAKTÍNCH DISKŮ 18 2.3.4 POSUVNÍKY V OSÁCH X A Y 18 2.3.5 VYSOKORYCHLOSTNÍ LETECKÉ POHONY 18 2.4.1 ZÁKLADNÍ VZTAHY 19 2.4.1 J Magnetický tok 19 2.4.1.2 Magnetické napěti 19 2.4.1.2 Magnetické napěti 19 2.4.1.2 Magnetické napěti 20 2.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU 20 </td <td>2.1.1 NAPĚTÍ NA SVORKÁCH</td> <td>12</td>	2.1.1 NAPĚTÍ NA SVORKÁCH	12
2.1.3 INDUKOVANÉ NAPĚTÍ .13 2.1.4 ELEKTROMAGNETICKÝ MOMENT .14 2.1.5 ELEKTROMAGNETICKÝ MOMENT STEJNOSMĚRNÉHO EC MOTORU S PM. .14 2.1.6 RYCHLOST OTÁČENÍ. .14 2.1.6 RYCHLOST OTÁČENÍ. .14 2.1.7 ROVOZ PŘI HALF WAVE KOMUTACI. .15 2.2.1 PROVOZ PŘI HALF WAVE KOMUTACI. .16 2.3.1 VOZIDLA NA ELEKTŘINU .17 2.3.1 VOZIDLA NA ELEKTŘINU .17 2.3.2 VĚTRÁKY S PROMĚNNOU RYCHLOSTÍ OTÁČENÍ. .17 2.3.3 PŘEHRÁVAČE KOMPAKTNÍCH DÍSKŮ. .18 2.3.4 POSUVNÍKY VO SÁCH X A Y .18 2.3.5 VYSOKORYCHLOSTNÍ LETECKÉ POHONY. .18 2.4 DOSUVNÍKY VO SÁCH X A Y .18 2.4 J ZÁKLADNÍ VZTAHY .19 2.4.1.1 Magnetický tok .19 2.4.1.2 MARDNÍ SCHÉMA MAGNETICKÉHO OBVODU .20 2.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ .21 3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU .22 3.1.4 Objem materiálu .20 2.4.1.4 Nopiem teriálu .20 2.4.1.4 OKJEM RETICKÝ KOMUTOVANÉHO MOTORU .22 3.1.4 STUPNÍ PARAMETRY .22 3.2.5 VINTŘNÍ PEĽMAROTORU A VNĚKA DRÁŽKU<	2.1.2 OKAMŽITÁ HODNOTA PROUDU	13
2.1.4 ELEKTROMAGNETICKÝ MOMENT STEJNOSMĚRNÉHO EC MOTORU Š PM	2.1.3 Indukované napětí	13
2.1.5 ELEKTROMAGNETICKÝ MOMENT STEJNOSMĚRNĚHO EC MOTORU S PM	2.1.4 ELEKTROMAGNETICKÝ MOMENT	14
2.1.6 RYCHLOST OTÁČENI 14 2.2 KOMUTACE EC MOTORŮ S PM	2.1.5 ELEKTROMAGNETICKÝ MOMENT STEJNOSMĚRNÉHO EC MOTORU S PM	14
2.2 KOMUTACE EC MOTORŮ S PM	2.1.6 RYCHLOST OTÁČENÍ	14
2.2.1 PROVOZ PŘI HALF WAVE KOMUTACI. 15 2.2.2 PROVOZ PŘI FULL WAVE KOMUTACI. 16 2.3 VYUŽITÍ STEJNOSMĚRNÝCH EC MOTORŮ S PM. 17 2.3.1 VOZIDLA NA ELEKTŘINU 17 2.3.2 VĚTRÁKY S PROMÉNNÔU RYCHLOSTÍ OTÁČENÍ. 17 2.3.3 PŘEHRÁVAČE KOMPAKTNÍCH DISKŮ. 18 2.3.4 POSUVNÍKY V OSÁCH X A Y 18 2.3.5 VYSOKORYCHLOSTNÍ LETECKÉ POHONY 18 2.4.1 ZÁKLADNÍ VZTAHY 19 2.4.1.1 Magnetický tok 19 2.4.1.2 Magnetické napčtí 19 2.4.1.2 Magnetické napčtí 19 2.4.1.3 Intenzita magnetického pole 19 2.4.1.4 Objem materiálu 20 2.4.3 MATERIÁLY K VÝROBÉ PERMANENTNÍCH MAGNETŮ 21 3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU 22 3.1 VSTUPNÍ PARAMETRY 22 3.2 VLASTNÍ VÝPOČET 22 3.2.1 ŠÍŘKA MAGNETU 24 3.2.2 VÝŠKA ROTOROVÉHO JHA 24 3.2.3 VNITŘNÍ PRŮMĚR ROTORU A VĚJŠÍHO PRŮMĚR STATORU 22 3.2.1 ŠÍŘKA MAGNETU 25 3.2.5 PLOCHA VINUTÍ VPLŇULÍCÍ DRÁŽKU 26 3.2.5 PLOCHA VINUTÍ VPLŇÚŘK ROTORU A VĚJŠÍHO PRŮMĚR STATORU 25	2.2 KOMUTACE EC MOTORŮ S PM	15
2.2.2 PROVOZ PŘI FULL WAVE KOMUTACI 16 2.3 VYUŽITÍ STEJNOSMĚRNÝCH EC MOTORŮ S PM	2.2.1 PROVOZ PŘI HALF WAVE KOMUTACI	15
2.3 VYUŽITÍ STEJNOSMĚRNÝCH EC MOTORŮ S PM	2.2.2 PROVOZ PŘI FULL WAVE KOMUTACI	16
2.3.1 VOZIDLA NA ELEKTŘINU 17 2.3.2 VĚTRÁKY S PROMĚNNOU RYCHLOSTÍ OTÁČENÍ 17 2.3.3 PŘEHRÁVAČE KOMPAKTNÍCH DISKŮ 18 2.3.4 POSUVNÍKY V OSÁCH X A Y 18 2.3.5 VYSOKORYCHLOSTNÍ LETECKÉ POHONY 18 2.4 MAGNETICKÉ OBVODY S PERMANENTNÍM MAGNETEM 18 2.4.1 ZÁKLADNÍ VZTAHY 19 2.4.1.2 Magnetický tok 19 2.4.1.3 Intenzita magnetického pole 19 2.4.1.4 Objem materiálu 20 2.4.2 NÁHRADNÍ SCHĚMA MAGNETICKÉHO OBVODU 20 2.4.2 NÁHRADNÍ SCHĚMA MAGNETICKÉHO OBVODU 20 2.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ 21 3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU 22 3.1 VSTUPNÍ PARAMETRY 22 3.2.1 ŠÍŘKA MAGNETU 22 3.2.2 VLASTNÍ VÝPOČET 22 3.2.1 ŠÍŘKA MAGNETU 22 3.2.2 VVŠKA ROTOROVÉHO JHA 24 3.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VŇĚŠKA DRÁŽKY STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VŇĚŠKA DRÁŽKY STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKU 27 3.2.4 ŠÍŘKA ZUBU ST	2.3 Využití stejnosměrných EC motorů s PM	17
2.3.2 VĚTRÁKY S PROMĚNNOU RYCHLOSTÍ OTÁČENÍ. 17 2.3.3 PŘEHRÁVAČE KOMPAKTNÍCH DISKÚ 18 2.3.4 POSUVNÍKY V OSÁCH X A Y 18 2.3.5 VYSOKORYCHLOSTNÍ LETECKÉ POHONY 18 2.4 MAGNETICKÉ OBVODY S PERMANENTNÍM MAGNETEM 18 2.4.1 ZÁKLADNÍ VZTAHY 19 2.4.1.2 Magnetické napčtí 19 2.4.1.3 Intenzita magnetického pole 19 2.4.1.4 Objem materiálu 20 2.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU 20 2.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ 21 3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU 22 3.1 VSTUPNÍ PARAMETRY 22 3.2.1 ŠÍŘKA MAGNETU 22 3.2.2 VVŠKA ROTOROVÉHO JHA 24 3.2.3 VNITŘNÍ PRŮMÉR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VŇŠKA DRÁŽKY STATORU 25 3.2.5 PLOCHA VINUTÍ VYLŇUJCÍ DRÁŽKU 26 3.2.7 POČET VODIČŮ NA DRÁŽKU 26 3.2.9 HODNOTA FÁZOVÉHO PROUDU 28	2.3.1 VOZIDLA NA ELEKTŘINU	17
2.3.3 PŘEHRÁVAČE KOMPAKTNÍCH DISKŮ	2.3.2 VĚTRÁKY S PROMĚNNOU RYCHLOSTÍ OTÁČENÍ	17
2.3.4 POSUVNÍKY V OSÁCH X A Y 18 2.3.5 VYSOKORYCHLOSTNÍ LETECKÉ POHONY 18 2.4 MAGNETICKÉ OBVODY S PERMANENTNÍM MAGNETEM 18 2.4.1 ZÁKLADNÍ VZTAHY 19 2.4.1 ZÁKLADNÍ VZTAHY 19 2.4.1.1 Magnetický tok 19 2.4.1.2 Magnetické napětí 19 2.4.1.3 Intenzita magnetického pole 19 2.4.1.4 Objem materiálu 20 2.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU 20 2.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ 21 3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU 22 3.1 VSTUPNÍ PARAMETRY 22 3.2 VLASTNÍ VÝPOČET 22 3.2.1 ŠÍŘKA MAGNETU 22 3.2.1 VÝŠKA ROTOROVÉHO JHA 24 3.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU 26 3.2.6 EFEKTIVNÍ DÉLKA STOJE 27 3.2.7 POČET VODIČŮ NA DRÁŽKU 26 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.3 ZHODNOCENÍ NÁVRHU 29 4 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ 30 </td <td>2.3.3 PŘEHRÁVAČE KOMPAKTNÍCH DISKŮ</td> <td>18</td>	2.3.3 PŘEHRÁVAČE KOMPAKTNÍCH DISKŮ	18
2.3.5 VYSOKORYCHLOSTNÍ LETECKÉ POHONY 18 2.4 MAGNETICKÉ OBVODY S PERMANENTNÍM MAGNETEM 18 2.4.1 ZÁKLADNÍ VZTAHY 19 2.4.1.1 Magnetický tok 19 2.4.1.2 Magnetické napětí 19 2.4.1.3 Intenzita magnetického pole 19 2.4.1.4 Objem materiálu 20 2.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU 20 2.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ 21 3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU 22 3.1 VSTUPNÍ PARAMETRY 22 3.2 VLASTNÍ VÝPOČET 22 3.2.1 ŠÍŘKA MAGNETU 22 3.2.1 VŠIKA AMAGNETU 22 3.2.1 ŠÍŘKA AMAGNETU 22 3.2.1 ŠÍŘKA AUBU STATORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.5 PLOCHA VINUTÍ VYPLŇUIĆÍ DRÁŽKU 26 3.2.6 EFEKTIVNÍ DÉLKA STOJE 27 3.2.7 POČET VODIČŮ NA DRÁŽKU 26 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.2 HODNOCENÍ NÁVRHU 29 4 OVĚŘENÍ N	2.3.4 POSUVNÍKY V OSÁCH X A Y	18
2.4 MAGNETICKÉ OBVODY S PERMANENTNÍM MAGNETEM 18 2.4.1 ZÁKLADNÍ VZTAHY 19 2.4.1.1 Magnetický tok 19 2.4.1.2 Magnetické napětí 19 2.4.1.3 Intenzita magnetického pole 19 2.4.1.4 Objem materiálu 20 2.4.2 Náhradní SCHÉMA MAGNETICKÉHO OBVODU 20 2.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ 21 3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU 22 3.1 VSTUPNÍ PARAMETRY 22 3.2 VLASTNÍ VÝPOČET 22 3.2.1 ŠÍŘKA MAGNETU 22 3.2.2 VÝŠKA ROTOROVÉHO JHA 24 3.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU 25 3.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU 26 3.2.6 EFEKTIVNÍ DÉLKA STOJE 27 3.2.9 HODNOTA FÁZOVÉHO PROUDU 28 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.3 ZHODNOCENÍ NÁVRHU 29 4 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ 30 4.1 VYTVOŘENÍ NÁKRESU MOTORU 30	2.3.5 VYSOKORYCHLOSTNÍ LETECKÉ POHONY	18
2.4.1 ZÁKLADNÍ VZTAHY 19 2.4.1.1 Magnetický tok 19 2.4.1.2 Magnetické napěti 19 2.4.1.3 Intenzita magnetického pole 19 2.4.1.4 Objem materiálu 20 2.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU 20 2.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ 21 3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU 22 3.1 VSTUPNÍ PARAMETRY 22 3.2 VLASTNÍ VÝPOČET 22 3.2.1 ŠÍŘKA MAGNETU 22 3.2.2 VÝŠKA ROTOROVÉHO JHA 24 3.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKU STATORU 25 3.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU 26 3.2.6 EFEKTIVNÍ DÉLKA STOJE 27 3.2.7 POČET VODIČŮ NA DRÁŽKU 27 3.2.8 CELKOVÝ POČET VODIČŮ 28 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.3 ZHODNOCENÍ NÁVRHU 29 3.3 ZHODNOCENÍ NÁVRHU 30 4.1 VYTVOŘENÍ NÁKRESU MOTORU 30	2.4 MAGNETICKÉ OBVODY S PERMANENTNÍM MAGNETEM	18
2.4.1.1 Magnetický tok 19 2.4.1.2 Magnetické napětí 19 2.4.1.3 Intenzita magnetického pole 19 2.4.1.4 Objem materiálu 20 2.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU 20 2.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ 21 3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU 22 3.1 VSTUPNÍ PARAMETRY 22 3.2 VLASTNÍ VÝPOČET 22 3.2.1 ŠÍŘKA MAGNETU 22 3.2.2 VÝŠKA ROTOROVÉHO JHA 22 3.2.3 VNITŘNÍ PŘŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU 25 3.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU 26 3.2.6 EFEKTIVNÍ DÉLKA STOJE 27 3.2.7 POČET VODIČŮ NA DRÁŽKU 27 3.2.8 CELKOVÝ POČET VODIČŮ 28 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.3 ZHODNOCENÍ NÁVRHU 29 4 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ 30 4.1 VYTVOŘENÍ NÁKRESU MOTORU 30	2.4.1 ZÁKLADNÍ VZTAHY	19
2.4.1.2 Magnetické napětí 19 2.4.1.3 Intenzita magnetického pole 19 2.4.1.4 Objem materiálu 20 2.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU 20 2.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU 20 2.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ 21 3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU 22 3.1 VSTUPNÍ PARAMETRY 22 3.2 VLASTNÍ VÝPOČET 22 3.2.1 ŠÍŘKA MAGNETU. 22 3.2.1 ŠÍŘKA ROTOROVÉHO JHA 24 3.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU 25 3.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU 26 3.2.6 EFEKTIVNÍ DÉLKA STOJE 27 3.2.7 POČET VODIČŮ 28 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.3 ZHODNOCENÍ NÁVRHU 29 4 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ 30 4.1 VYTVOŘENÍ NÁKRESU MOTORU 30	2.4.1.1 Magnetický tok	19
2.4.1.3 Intenzita magnetického pole192.4.1.4 Objem materiálu202.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU202.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ213 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU223.1 VSTUPNÍ PARAMETRY223.2 VLASTNÍ VÝPOČET223.2.1 ŠÍŘKA MAGNETU223.2.2 VÝŠKA ROTOROVÉHO JHA243.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU253.2.4 ŠÍŘKA ZUBU STATORU A VNĚJŠÍHO PRŮMĚR STATORU253.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU263.2.6 EFEKTIVNÍ DÉLKA STOJE273.2.7 POČET VODIČŮ NA DRÁŽKU273.2.8 CELKOVÝ POČET VODIČŮ283.2.9 HODNOTA FÁZOVÉHO PROUDU293.3 ZHODNOCENÍ NÁVRHU204 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ304.1 VYTVOŘENÍ NÁKRESU MOTORU30	2.4.1.2 Magnetické napětí	19
2.4.1.4 Objem materiálu202.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU202.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ213 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU223.1 VSTUPNÍ PARAMETRY223.2 VLASTNÍ VÝPOČET223.2.1 ŠÍŘKA MAGNETU223.2.2 VÝŠKA ROTOROVÉHO JHA243.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU253.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU253.2.6 EFEKTIVNÍ DÉLKA STOJE273.2.7 POČET VODICŮ NA DRÁŽKU273.2.8 CELKOVÝ POČET VODICŮ283.2.9 HODNOTA FÁZOVÉHO PROUDU293.3 ZHODNOCENÍ NÁVRHU204 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ304.1 VYTVOŘENÍ NÁKRESU MOTORU30	2.4.1.3 Intenzita magnetického pole	19
2.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU202.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ213 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU223.1 VSTUPNÍ PARAMETRY223.2 VLASTNÍ VÝPOČET223.2.1 ŠÍŘKA MAGNETU223.2.2 VÝŠKA ROTOROVÉHO JHA243.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU253.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU253.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU263.2.6 EFEKTIVNÍ DÉLKA STOJE273.2.7 POČET VODICŮ283.2.9 HODNOTA FÁZOVÉHO PROUDU293.3 ZHODNOCENÍ NÁVRHU294 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ304.1 VYTVOŘENÍ NÁKRESU MOTORU30	2.4.1.4 Objem materiálu	20
2.4.3 MATERIALY K VYROBE PERMANENTNICH MAGNETU 21 3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU 22 3.1 VSTUPNÍ PARAMETRY 22 3.2 VLASTNÍ VÝPOČET 22 3.2.1 ŠÍŘKA MAGNETU 22 3.2.2 VÝŠKA ROTOROVÉHO JHA 24 3.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU 25 3.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU 26 3.2.6 EFEKTIVNÍ DÉLKA STOJE 27 3.2.7 POČET VODIČŮ NA DRÁŽKU 27 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.3 ZHODNOCENÍ NÁVRHU 29 4 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ 30 4.1 VYTVOŘENÍ NÁKRESU MOTORU 30	2.4.2 NÁHRADNÍ SCHÉMA MAGNETICKÉHO OBVODU	20
3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU223.1 VSTUPNÍ PARAMETRY223.2 VLASTNÍ VÝPOČET223.2.1 ŠÍŘKA MAGNETU223.2.2 VÝŠKA ROTOROVÉHO JHA243.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU253.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU253.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU263.2.6 EFEKTIVNÍ DÉLKA STOJE273.2.7 POČET VODIČŮ NA DRÁŽKU273.2.8 CELKOVÝ POČET VODIČŮ283.2.9 HODNOTA FÁZOVÉHO PROUDU293.3 ZHODNOCENÍ NÁVRHU294 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ304.1 VYTVOŘENÍ NÁKRESU MOTORU30	2.4.3 MATERIÁLY K VÝROBĚ PERMANENTNÍCH MAGNETŮ	21
3.1 VSTUPNÍ PARAMETRY 22 3.2 VLASTNÍ VÝPOČET 22 3.2.1 ŠÍŘKA MAGNETU 22 3.2.2 VÝŠKA ROTOROVÉHO JHA 24 3.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU 25 3.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU 26 3.2.6 EFEKTIVNÍ DÉLKA STOJE 27 3.2.7 POČET VODIČŮ NA DRÁŽKU 27 3.2.8 CELKOVÝ POČET VODIČŮ 28 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.3 ZHODNOCENÍ NÁVRHU 29 4 OVĚŘENÍ NA VRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ 30 4.1 VYTVOŘENÍ NÁKRESU MOTORU 30	3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU	22
3.2 VLASTNÍ VÝPOČET 22 3.2.1 ŠÍŘKA MAGNETU 22 3.2.2 VÝŠKA ROTOROVÉHO JHA 24 3.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU 25 3.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU 25 3.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU 26 3.2.6 EFEKTIVNÍ DÉLKA STOJE 27 3.2.7 POČET VODIČŮ NA DRÁŽKU 27 3.2.8 CELKOVÝ POČET VODIČŮ 28 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.3 ZHODNOCENÍ NÁVRHU 29 4 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ 30 4.1 VYTVOŘENÍ NÁKRESU MOTORU. 30	3.1 VSTUPNÍ PARAMETRY	22
3.2.1 ŠIŘKA MAGNETU223.2.2 VÝŠKA ROTOROVÉHO JHA243.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU253.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU253.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU263.2.6 EFEKTIVNÍ DÉLKA STOJE273.2.7 POČET VODIČŮ NA DRÁŽKU273.2.8 CELKOVÝ POČET VODIČŮ283.2.9 HODNOTA FÁZOVÉHO PROUDU293.3 ZHODNOCENÍ NÁVRHU294 OVĚŘENÍ NA VRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ304.1 VYTVOŘENÍ NÁKRESU MOTORU.30	3.2 VLASTNÍ VÝPOČET	22
3.2.2 VÝŠKA ROTOROVÉHO JHA243.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU253.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU253.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU263.2.6 EFEKTIVNÍ DÉLKA STOJE273.2.7 POČET VODIČŮ NA DRÁŽKU273.2.8 CELKOVÝ POČET VODIČŮ283.2.9 HODNOTA FÁZOVÉHO PROUDU293.3 ZHODNOCENÍ NÁVRHU294 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ304.1 VYTVOŘENÍ NÁKRESU MOTORU30	3.2.1 Šířka magnetu	22
3.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU253.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU253.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU263.2.6 EFEKTIVNÍ DÉLKA STOJE273.2.7 POČET VODIČŮ NA DRÁŽKU273.2.8 CELKOVÝ POČET VODIČŮ283.2.9 HODNOTA FÁZOVÉHO PROUDU293.3 ZHODNOCENÍ NÁVRHU294 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ304.1 VYTVOŘENÍ NÁKRESU MOTORU30	3.2.2 Výška rotorového jha	24
3.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU 25 3.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU 26 3.2.6 EFEKTIVNÍ DÉLKA STOJE 27 3.2.7 POČET VODIČŮ NA DRÁŽKU 27 3.2.8 CELKOVÝ POČET VODIČŮ 28 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.3 ZHODNOCENÍ NÁVRHU 29 4 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ 30 4.1 VYTVOŘENÍ NÁKRESU MOTORU 30	3.2.3 VNITŘNÍ PRŮMĚR ROTORU A VNĚJŠÍHO PRŮMĚR STATORU	25
3.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU 26 3.2.6 EFEKTIVNÍ DÉLKA STOJE 27 3.2.7 POČET VODIČŮ NA DRÁŽKU 27 3.2.8 CELKOVÝ POČET VODIČŮ 28 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.3 ZHODNOCENÍ NÁVRHU 29 4 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ 30 4.1 VYTVOŘENÍ NÁKRESU MOTORU 30	3.2.4 ŠÍŘKA ZUBU STATORU A VÝŠKA DRÁŽKY STATORU	25
3.2.6 EFEKTIVNÍ DĚLKA STOJE 27 3.2.7 POČET VODIČŮ NA DRÁŽKU 27 3.2.8 CELKOVÝ POČET VODIČŮ 28 3.2.9 HODNOTA FÁZOVÉHO PROUDU 29 3.3 ZHODNOCENÍ NÁVRHU 29 4 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ 30 4.1 VYTVOŘENÍ NÁKRESU MOTORU 30	3.2.5 PLOCHA VINUTÍ VYPLŇUJÍCÍ DRÁŽKU	
3.2.7 POČET VODICU NA DRAZKU	3.2.6 EFEKTIVNÍ DĚLKA STOJE	
3.2.8 CELKOVY POCET VODICU	3.2.7 POČET VODICU NA DRAZKU	
3.2.9 HODNOTA FAZOVEHO PROUDU	3.2.8 CELKOVY POCET VODICU	
3.3 ZHODNOCENÍ NÁVRHU	3.2.9 HODNOTA FAZOVEHO PROUDU	
4 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ	3.3 ZHODNOCENI NAVRHU	29
4.1 VYTVOŘENÍ NÁKRESU MOTORU30	4 OVĚŘENÍ NAVRŽENÉHO MOTORU METODOU KONEČNÝCH PRVKŮ	30
	4.1 VYTVOŘENÍ NÁKRESU MOTORU	30

4.2 ANALÝZA V PROGRAMU FEMM	
4.2.1 DEFINICE VLASTNOSTÍ JEDNOTLIVÝCH PLOCH NÁKRESU	31
4.2.2 URČENÍ MOMENTU MOTORU	
4.2.3 Rozložení magnetické indukce v motoru	34
4.2.4 INDUKCE VE VZDUCHOVÉ MEZEŘE	
4.3 TVORBA DALŠÍCH NÁVRHŮ A JEJICH POROVNÁNÍ	
4.3.1 Porovnání rozdílů	
5 ZÁVĚR	41
LITERATURA	42
PŘÍLOHY	43

SEZNAM OBRÁZKŮ

Obrázek 1: Pořadí přepínání a fázory indukovaného napětí při half wave komutaci pro stejnosměrný EC motor s PM zapojený do hvězdy. [1]16
Obrázek 2: Pořadí přepínání a fázory indukovaného napětí při full wave komutaci pro stejnosměrný EC motor s PM zapojený do hvězdy. [1]
Obrázek 3: Magnetický obvod s permanentním magnetem a jeho řešení [2]
Obrázek 4: Magnetický obvod [3]
Obrázek 5: Náhradní schéma magnetického obvodu z předcházejícího obrázku [3]21
Obrázek 6: Nákres navrženého motoru v programu AutoCAD 2010
Obrázek 7:Výsledný nákres motoru v programu FEMM
Obrázek 8: Rozložení magnetické indukce v motoru
Obrázek 9: Rozložení magnetické indukce ve vzduchové mezeře
Obrázek 10:Porovnání rozložení magnetické indukce ve vzduchové mezeře původního návrhu s následným zúžením zubů
Obrázek 11:Rozložení magnetické indukce v motoru pro případ zúžení zubů
Obrázek 12: Rozložení magnetické indukce v motoru při zúžení a prodloužení zubů

SEZNAM SYMBOLŮ A ZKRATEK

- A lineární hustota proudu $[A \cdot m^{-1}]$
- *B* magnetická indukce [T]
- *b*_{ts} šířka zubu statoru [m]
- c_E konstanta indukovaného napětí [rad⁻¹]
- c_T konstanta točivého momentu [-]
- D průměr [m]
- *E_f* indukované elektromotorické napětí [V]
- *e* okamžitá hodnota indukovaného elektromotorického napětí [V]
- f frekvence [Hz]
- g šířka vzduchové mezery [m]
- H_c koercitivita [A·m⁻¹]
- H_p intenzita magnetického pole [A·m⁻¹]
- h_{rr} výška rotorového jha [m]
- *I* elektrický proud [A]
- *i* okamžitá hodnota proudu [A]
- k obecný symbol
- k_E konstanta indukovaného napětí [V·s/rad] $k_E = c_E \phi_f$
- k_{pl} koeficient plnění [-]
- k_T konstanta točivého momentu [Nm·A⁻¹] $k_T = c_T \phi_f$
- k_w koeficient vinutí [-]
- *L* indukčnost; efektivní délka stroje [H; m]
- *l* střední délka siločáry [m]
- l_m tloušťka magnetu [m]
- *l_p* délka pólového nástavce [m]
- M moment motoru [Nm]
- m počet fází [-]
- *n* rychlost otáčení $[s^{-1}]$
- *ns* počet vodičů na drážku [-]
- p počet pólů [-]
- *2p* počet pólových dvojic [-]

	ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně	11
Q	počet drážek statoru [-]	
q	počet drážek na pól a fázi [-]	
R_I	odpor vinutí kotvy [Ω]	
R_m	magnetický odpor jádra [H ⁻¹]	
S	plocha [m ²]	
Т	perioda [s]	
T_d	elektromagnetický moment [Nm]	
U	elektrické napětí [V]	
U_m	magnetické napětí [A]	
u	okamžitá hodnota elektrického napětí [V]	
V	objem [m ³]	
ν	rychlost otáčení [s ⁻¹]	
Ζ	celkový počet vodičů [-]	
θ	úhel natočení rotoru u EC motorů [°]	
μ_0	permeabilita vakua [H·m ⁻¹]	
μ_r	relativní permeabilita [-]	
τ	pólová rozteč [m]	
Φ	magnetický tok [Wb]	

1 Úvod

S elektrickými stroji se setkáváme každý den, ať už přímo nebo nepřímo prostřednictvím různých výrobků, které používáme. Mnozí z nás si to ani neuvědomují, ale bez těchto zařízení by byl život "chudší" a hlavně složitější. Jako příklad bych uvedl výtah. Sám ho používám každý den ve škole, i když mám možnost použít schodiště, ale kdo by se namáhal cestou do pátého nebo šestého patra. K dalším významných využitím patří letecká nebo lodní doprava. Těchto příkladů bychom mohli najít celou další řadu.

Cílem této práce je seznámit se s návrhem EC motoru s vnějším rotorem a tento motor také navrhnout dle pokynů vedoucího. Nakonec přijde ověření vlastností motoru pomocí metody konečných prvků.

2 Elektronicky komutované motory

Obvody stejnosměrných elektronicky komutovaných (dále jen EC) motorů mají stejnou stavbu elektrických a magnetických obvodů jako synchronní motory s permanentními magnety. (dále jen PM) Skládají se ze statoru, ve kterém se nachází vícefázově vinutá kotva a magnetu umístěném v rotoru, který slouží k buzení. U synchronních motorů se využívá vlastností magnetického pole a napájeny jsou třífázovým napětím sinusového průběhu. EC motory s PM využívají zpětné vazby rotoru. Uvažujme, že rotor je pod určitým úhlem a díky možnosti přepínat kotevní proud během natočení motoru v závislosti na pohybu rotoru může nastat synchronizace. Tato synchronizace se nazývá vlastní.

2.1 Základní vztahy

2.1.1 Napětí na svorkách

Z druhého Kirchhoffova zákona vyplývá, že okamžitá hodnota napětí na svorkách je rovna:

$$u_1 = e_f + R_1 i_a + L_s \frac{di_a}{dt}, \qquad [1]$$

kde e_f je okamžitá hodnota indukovaného elektromotorického napětí v jedné fázi vinutí kotvy vzniklé buzením, i_a je okamžitá hodnota proudu kotvou, R_I je odpor kotvy jedné fáze a L_s je indukčnost jedné fáze zahrnující jak magnetický rozptyl, tak reakci kotvy.

Tato rovnice odpovídá provozu motoru zapojeného do hvězdy s vyvedeným středem při half wave komutaci (komutaci na půl vlnu).

2.1.2 Okamžitá hodnota proudu

Uvažujeme – li nulovou impedanci polovodičových spínačů, $u_1 = U_{dc}$, kde U_{dc} je vstupní stejnosměrné napětí měniče a $L_s \approx 0$, potom okamžitá hodnota proudu protékajícího kotvou je rovna:

Pro vinutí zapojeného do hvězdy při half wave komutaci:

$$i_{a}(t) = \frac{U_{dc} - e_{f}}{R_{1}}$$
 [1]

Pro vinutí zapojeného do hvězdy při full wave komutaci (komutace na celou vlnu):

$$i_{a}(t) = \frac{U_{dc} - e_{fL-L}}{2R_{1}},$$
[1]

kde e_{fL-L} je indukované elektromotorické napětí vodiče vůči vodiči ve dvou řadách spojených fázových vinutí.

2.1.3 Indukované napětí

Indukované napětí můžeme jednoduše vyjádřit jako funkci rychlosti otáčení rotoru n.

Pro provoz při half wave komutaci platí:

$$E_f = c_E \phi_f n = k_E \phi_f n \qquad [1]$$

Pro provoz při full wave komutaci platí:

$$E_{nL-L} = c_E \phi_f n = k_E \phi_f n, \qquad [1]$$

kde c_E nebo $k_E = c_E \phi_f$ je konstanta indukovaného napětí.

Pro buzení PM a zanedbatelnou reakci kotvy je magnetický tok konstantní.

2.1.4 Elektromagnetický moment

Za předpokladu, že magnetická vazba ve vinutí statoru vytvářená PM rotoru je $\Psi_f = M_{12}i_2$, pak můžeme elektromagnetický moment vyjádřit jako:

$$T_d(i_a,\theta) = i_a \frac{d\Psi_f}{d\theta}, \qquad [1]$$

kde $i_1 = i_a$ je proud statorem, i_2 je proud tekoucí imaginárním rotorovým vinutím, u kterého uvažujeme vzájemnou indukčnost M_{12} se statorovým vinutím a θ je úhel natočení rotoru.

2.1.5 Elektromagnetický moment stejnosměrného EC motoru s PM

Pro moment platí:

$$T_d = c_{Tdc} \Phi_f I_a = k_{Tdc} I_a, \qquad [1]$$

kde c_{Tdc} a $k_{Tdc} = c_{Tdc}\phi_f$ jsou konstanty točivého moment a I_a je proud kotvy.

2.1.6 Rychlost otáčení

Rychlost otáčení je rovna podílu plnému úhlu otočení nebo 2τ a doby plné otáčky T.

$$T = \frac{1}{2pn}$$
[1]

Z tohoto vyplývá:

kde τ je pólová rozteč, 2p je počet pólových dvojic a n je rychlost otáčení v otáčkách za sekundu.

2.2 Komutace EC motorů s PM

2.2.1 Provoz při half wave komutaci

Uvažujme třífázové vinutí zapojené do hvězdy s vyvedeným středovým bodem. Každá fáze obsahuje polovodičový spínač, který slouží k přepínání fázového napětí mezi svorkami. Kladný pól je na fázové svorce, záporný na nulové. Fázory magnetomotorických napětí jednotlivých proudů se otáčí proti směru hodinových ručiček. V případě, že pořadí proudů je opačné, fázory napětí se otáčí ve směru hodinových ručiček. Uvažujeme – li lineární magnetický obvod platí, že magnetický tok je úměrný magnetomotorickému napětí.

Tento způsob provozu nazýváme half wave komutací, protože vedení probíhá pouze v kladné části tvaru vlny indukovaného napětí. Jaký bude mít tato vlna tvar je důsledkem návrhu statorového vinutí a PM. Pokud bychom uvažovali sinusový průběh, tak zvlnění točivého momentu bude velké a nebude se hodit pro některá využití EC motorů s PM.

Obrázek 1: Pořadí přepínání a fázory indukovaného napětí při half wave komutaci pro stejnosměrný EC motor s PM zapojený do hvězdy. [1]

2.2.2 Provoz při full wave komutaci

Stejnosměrné napětí se mění mezi fázovými svorkami a v případě zapojení do hvězdy se vždy v okamžiku vedení zapojí dvě vinutí (každé z jiné fáze) zapojí sériově. Abychom tohoto stavu dosáhli, je zapotřebí, aby každá fáze obsahovala dva polovodičové spínače. Pro dané pořadí proudů se fázory indukovaného napětí otáčí proti směru hodinových ručiček.

Tento způsob provozu nazýváme full wave komutací, protože vedení probíhá jak v kladné části tvaru vlny indukovaného napětí, tak i záporné. Při použití sinusového průběhu můžeme změnou proudu získat až čtvercový průběh signálu. Elektromagnetická síla a moment jsou vždy kladné.

Zde se využívá jak kladná tak záporná část vlny indukovaného napětí, a proto nedochází k velkému zvlnění točivého momentu.

Obrázek 2: Pořadí přepínání a fázory indukovaného napětí při full wave komutaci pro stejnosměrný EC motor s PM zapojený do hvězdy. [1]

2.3 Využití stejnosměrných EC motorů s PM

2.3.1 Vozidla na elektřinu

Vozidla se spalovacími motory jsou hlavními zdroji znečisťování vzduchu. V zájmu ochrany přírody se do popředí dostávají vozidla s elektrickým pohonem. Jako nejvýhodnější motory pro použití se jeví EC motory, které mají nejlepší účinnost, výkon na kilogram hmotnosti a pevnost.

Výkony elektrických motorů pro osobní automobily jsou v rozmezí 30 – 100 KW. [1]

K uskladnění energie se využívají nikl – metal hybridové baterie nebo palivové články. Indukční nabíjecí soustavy mají více výhod než vodivé soustavy.

2.3.2 Větráky s proměnnou rychlostí otáčení

Chlazení je častou součástí přístrojů. Pouhou změnou napětí jsme schopni elektronicky měnit rychlost otáčení v závislosti na okamžité teplotě uvnitř přístroje. Napětí bývá obvykle 12, 24 nebo 115V. Snížením otáček se také může regulovat úroveň hluku, protože maximální otáčky jsou potřeba pouze v případě, když je přístroj nejvíce zatěžován a tedy nejvíce se zahřívá. Jmenovitý výkon chladičů může být až 180W a rychlost otáčení se pohybuje mezi 2000 – 6000 otáčkami za minutu. [1]

2.3.3 Přehrávače kompaktních disků

Motorky s PM se obvykle používají pro otevírání a zavíraní dvířek mechaniky, otáčení disku nebo výměnu disků. Napájení motorků je od zlomků voltů až po 10 nebo 12V. Rychlost otáčení disku udržuje stálou rychlost dle záznamu na CD. V závislosti na poloměru spirály se nastavuje rychlost otáčení. [1]

2.3.4 Posuvníky v osách X a Y

U některých zařízení je vyžadováno značné nastavení tuhosti, velký rozsah nastavení rychlosti, jemné nastavení otáčení a přesná opakovatelnost. Všechny tyto vlastnosti vysoce ovlivňují kvalitu procesu výroby.

2.3.5 Vysokorychlostní letecké pohony

U leteckých pohonů je vyžadována vysoká míra spolehlivosti, nízká hladina elektromagnetického rušení, vysoká účinnost, dokonalá kontrola rychlosti, vysoký startovací výkon a zrychlení.

Jedním z hlavních problémů v navrhování motorů pro letectví je málo místa pro motor a poměr průměru k délce motoru musí být malý. Jako příklad si můžeme uvést, že servomotor o výkonu 200W, 20 000 ot/min a účinnosti 90% měří na délku 90 mm a má průměr 55 mm. [1]

Dále se EC motory mohou používat k pohonu počítačových disků, k automatizaci provozu v továrnách, v zařízeních na stříhání ovcí nebo také do gramofonů, se kterými se už tolik nesetkáme a v neposlední řadě jako pumpovaní zařízení. Také se používají pro výrobu nástrojů pro vesmírné mise, kde je požadována velmi vysoká účinnost a spolehlivost.

2.4 Magnetické obvody s permanentním magnetem

Úkolem magnetických obvodů je koncentrace magnetického pole do daného prostoru k jeho dalšímu využití. Fungování elektromotorů je založeno na vzájemné interakci mezi magnetickým polem vodiči protékanými proudem.

Díky permanentním magnetům jsem schopni vytvořit magnetické pole i bez potřeby dodání energie z vnějšku. Magnetické pole lze vytvořit i bez budícího vinutí a zdroje proudu použitím

2.4.1 Základní vztahy

2.4.1.1 Magnetický tok

Magnetický tok můžeme vyjádřit vztahem:

$$\phi = B_p S_p = B_v S_v, \qquad [2]$$

kde B_p je magnetická indukce v magnetu, B_v je magnetická indukce ve vzduchové mezeře, S_p je plocha magnetu a S_v je plocha vzduchové mezery.

2.4.1.2 Magnetické napětí

Pokud v obvodu není další zdroj, je výsledné magnetické napětí magnetu a mezery rovno nule.

$$U_{mp} + U_{mv} = 0$$
 [2]

2.4.1.3 Intenzita magnetického pole

S využitím vztahů výše dostaneme pro intenzitu magnetického pole uvnitř magnetu vztah:

$$H_{p} = -\frac{B_{\nu}l_{\nu}}{\mu_{0}l_{p}} = -\frac{1}{\mu_{0}}\frac{S_{p}l_{\nu}}{S_{\nu}l_{p}}B_{p},$$
[2]

kde l_v je střední délka indukční čáry ve vzduchové mezeře, l_p je střední délka indukční čáry v magnetu, μ_0 je permeabilita vakua.

Parametry vzduchové mezery B_{ν} , l_{ν} , S_{ν} jsou většinou již určeny. Magnetický obvod tedy můžeme navrhnout vhodnou hodnotou ostatních veličin. Naší cílem je vytvoření požadovaného

magnetického pole ve vzduchové mezeře, přičemž se snažíme o co nejmenší spotřebu materiálu k výrobě permanentních magnetů.

2.4.1.4 Objem materiálu

Objem materiálu potřebný pro výrobu magnetu je roven:

$$V_p = l_p S_p = \frac{B_v^2 l_v S_v}{\mu_0 B_p H_p} = \frac{konst}{B_p H_p}$$
[2]

Potřebný objem materiálu je nepřímo úměrný součinu B_pH_p . Tento vztah nazýváme energetickým součinem a definuje objemovou hustotu energie v J/m^3 . Pro splnění podmínky zmíněné výše, tj. co nejmenší spotřeba materiálu, je zapotřebí, aby tento součin byl maximální.

Obrázek 3: Magnetický obvod s permanentním magnetem a jeho řešení [2]

2.4.2 Náhradní schéma magnetického obvodu

Obrázek 4: Magnetický obvod [3]

Obrázek 5: Náhradní schéma magnetického obvodu z předcházejícího obrázku [3]

Vztah pro výpočet magnetického napětí:

$$U_m = R_m \phi \qquad [3]$$

nebo

[3]

kde R_m je magnetický odpor jádra a l_m tloušťka magnetu.

Magnetické obvody lze řešit analogicky s obvody elektrickými. Lze zde tedy například uplatnit 1. a 2. Kirchhoffův zákon.

 $U_{mp} = H_p l_m,$

2.4.3 Materiály k výrobě permanentních magnetů

K výrobě permanentních magnetů se dříve používala kobaltová ocel a slitina AlNiCo. Nyní máme k dispozici materiály ze vzácných zemin jako NdFeB, R₂Co₁₇ nebo SmCo₅.

3 NÁVRH ELEKTRONICKY KOMUTOVANÉHO MOTORU

3.1 Vstupní parametry

Navržený motor má mít tyto parametry:

- 1. jmenovité otáčky $n = 1000 ot \cdot min^{-1}$,
- 2. jmenovitý moment M = 0.5Nm,
- 3. vnější průměr Dor do 50mm,
- 4. frekvenci do 100Hz.

Při návrhu se vycházelo z článku *Design of a Compact BLDC motor for Transient Applications*, který publikovala stockholmská univerzita (Royal Institute of Technology) ve Švédsku. [4]

3.2 Vlastní výpočet

3.2.1 Šířka magnetu

Na rotoru budou umístěny PM typu NdfeB 40, u kterých známe relativní permeabilitu $\mu_r = 1,049$ a koercitivní intenzitu $H_c = 979000A \cdot m^{-1}$. Z těchto dvou hodnot vypočteme remanentní indukci $B_r = \mu_0 \mu_r H_c = 4\pi \cdot 10^{-7} \cdot 1,049 \cdot 979000 = 1,29T$. Tuto hodnotu potřebujeme k následnému výpočtu tloušťky magnetu.

Tloušťku magnetu vypočteme ze vztahu:

$$B_g = \frac{B_r}{1 + \mu_r \cdot \frac{g_e}{l_m}}$$
 [4]

Tento vztah upravíme tak, abychom na jedné straně rovnice získali samostatnou tloušť ku l_m .

$$B_g + B_g \mu_r \cdot \frac{g_e}{l_m} = B_r$$

$$B_g \mu_r g_e = l_m \cdot (B_r - B_g)$$

$$l_m = \frac{B_g \mu_r g_e}{(B_r - B_g)}$$

V dalším kroku dosadíme za efektivní šířku vzduchové mezery g_e následující rovnici:

$$g_e = g_c + \frac{l_m}{\mu_r} \tag{4}$$

Dosazením do předchozí rovnice dostáváme:

$$l_m = \frac{B_g \mu_r \cdot \left(g_c + \frac{l_m}{\mu_r}\right)}{(B_r - B_g)}$$

$$l_m \cdot (1 - B_g) = \frac{B_g \mu_r g_c}{(B_r - B_g)}$$

$$l_m = \frac{B_g \mu_r g_c}{(B_r - B_g) \cdot (1 - B_g)},$$

kde $g_c = 1mm$ je celková šířka vzduchové mezery a $B_g = 0,7T$ je indukce ve vzduchové mezeře.

$$l_m = \frac{0,7 \cdot 1,049 \cdot 0,001}{(1,29 - 0,7) \cdot (1 - 0,7)} = 0,0041m = 4,1mm$$

Šířka magnetu je přibližně 4mm.

3.2.2 Výška rotorového jha

Sloučením následujících dvou rovnic vypočteme pólovou rozteč τ_p abychom mohli určit výšku rotorového jha h_{rr} .

$$\tau_p = \frac{\pi \cdot (D_{or} - h_{rr})}{p}$$
[4]

$$h_{rr} = \frac{\tau_p \cdot B_g}{2 \cdot B_{iron}}$$
[4]

Výsledná rovnice je ve tvaru:

$$\tau_{p} = \frac{\pi \cdot D_{or}}{p + \frac{\pi \cdot B_{g}}{B_{iron}}},$$
[4]

kde p = 4 je počet pólů a $B_{iron} = 1,6T$ je předpokládaná indukce v železe.

$$\tau_{p} = \frac{\pi \cdot 0.05}{4 + \frac{\pi \cdot 0.7}{1.6}} = 0.0292m = 29.2mm$$

Nyní se vrátíme ke vztahu pro výpočet výšky rotorového jha h_{rr} a dosadíme již známou hodnotu pólové rozteče.

$$h_{rr} = \frac{0,029 \cdot 0,7}{2 \cdot 1,6} = 0,0064m = 6,4mm$$

Výška rotorového jha je 6,4mm.

3.2.3 Vnitřní průměr rotoru a vnějšího průměr statoru

V dalším kroku nás čeká výpočet vnitřního průměru rotoru D_{ir} a vnějšího průměru statoru D_{os} k následnému určení šířky zubu statoru b_{ts} a výšky drážky statoru h_s .

Vyjdeme ze vztahů:

$$D_{ir} = D_{or} - 2 \cdot (h_{rr} + l_m) \qquad [4]$$

$$D_{os} = D_{ir} - 2 \cdot g , \qquad \qquad [4]$$

kde g = 0,75mm je skutečná velikost vzduchové mezery.

Dosazením získáváme:

$$D_{ir} = 0.05 - 2 \cdot (0.0064 + 0.0041) = 0.0289m = 28.9mm$$

$$D_{as} = 0,0289 - 2 \cdot 7,5 \cdot 10^{-4} = 0,0274m = 27,4mm$$

3.2.4 Šířka zubu statoru a výška drážky statoru

Šířka zubu statoru b_{ts} je definována podle vztahu:

$$b_{ts} = \frac{\pi \cdot D_{os} \cdot B_g}{p \cdot B_{iron}}$$
[4]

Dosazením získáváme:

$$b_{ts} = \frac{\pi \cdot 0,05 \cdot 0,7}{4 \cdot 1,6} = 0,0094m = 9,4mm$$

Šířka zubu pro návrh je tedy 9,4mm.

Výška drážky statoru h_s je dána rovnicí:

$$h_s = \left(\frac{D_{os}}{2} - \frac{Q \cdot b_{ts}}{2 \cdot \pi}\right),$$
[4]

kde Q = 6 je počet drážek statoru.

$$h_s = \left(\frac{0,05}{2} - \frac{6 \cdot 0,0094}{2 \cdot \pi}\right) = 0,0047m = 4,7mm$$

Výška drážky statoru je 4,7mm.

3.2.5 Plocha vinutí vyplňující drážku

V okamžiku, kdy máme určenou šířku zubu a výšku drážky, můžeme dosadit do vztahu pro výpočet plochy drážky, kterou vyplňuje vinutí S_{Cu} .

$$S_{Cu} = k_{pl} \cdot \left\{ \frac{\pi}{4 \cdot Q} \left[D_{os}^2 - (D_{os} - 2 \cdot h_s)^2 \right] - h_s \cdot b_{ts} \right\}, \qquad [4]$$

kde $k_{pl} = 0,5$ je koeficient plnění.

$$A_{Cu} = 0.5 \cdot \left\{ \frac{\pi}{4 \cdot 6} \left[0.0274^2 - (0.0274 - 2 \cdot 0.0047)^2 \right] - 0.0047 \cdot 0.0094 \right\} = 5.82 \cdot 10^{-6} m^2 = 5.82 mm^2$$

Plocha, kterou vyplňuje vinutí v jedné drážce je 5,82mm².

3.2.6 Efektivní délka stoje

V dalším kroku se dostáváme k návrhu efektivní délky stroje, která má souvislost s momentem motoru a to tak, že tyto veličiny jsou přímo úměrné. Moment motoru tedy můžeme ovlivňovat přímo délkou stroje. Vztah mezi nimi vyjadřuje následující rovnice:

$$L = \frac{3 \cdot M}{\pi \cdot D^2 \cdot B_g \cdot A},$$
[4]

kde $A = 20000 A \cdot m^{-1}$ je lineární proudová hustota a *D* je průměr vzduchové mezery, který určíme ze vztahu:

$$D = D_{is} + g , \qquad [4]$$

Dosazením do rovnice pro délku stroje získáváme:

$$L = \frac{3 \cdot 0.5}{\pi \cdot (0.0274 + 7.5 \cdot 10^{-4})^2 \cdot 0.7 \cdot 20000} = 0.043m = 43mm$$

Efektivní délka stoje je 43mm.

3.2.7 Počet vodičů na drážku

Při výpočtu vyjdeme ze vztahu pro velikost indukovaného napětí *E* daného rovnicí:

$$E = q \cdot n_s \cdot D \cdot L \cdot \omega_m \cdot k_w \cdot B_g \qquad [4]$$

Z této rovnice vyjádříme počet vodičů na drážku ns:

$$n_s = \frac{E}{q \cdot D \cdot L \cdot \omega_m \cdot k_w \cdot B_g},$$

kde E = 10V je indukovaného napětí, q = 1 je počet drážek na pól a fázi, $k_w = 0.9$ je koeficient vinutí a ω_m je mechanická úlová rychlost dána vztahem:

$$\omega_m = \frac{2\pi \cdot n \cdot \frac{p}{2}}{60}$$

Dosazením získáváme:

$$\omega_m = \frac{2\pi \cdot 1000 \cdot \frac{4}{2}}{60} = 209,4 rad \cdot s^{-1}$$

Nyní se vrátíme k rovnice vyjadřující počet vodičů na drážku a dosadíme již známou úhlovou rychlost:

$$n_s = \frac{10}{1 \cdot 0.0282 \cdot 0.043 \cdot 209.4 \cdot 0.9 \cdot 0.7} = 62.5$$

Počet vodičů na drážku má být dle výpočtu 62,5, ale u žádného stroje se nesetkáme s případem, že by počet vodičů nebyl celočíselný a bylo někdo navinuto například půl vodiče. Pro náš případ tedy zaokrouhlíme toto číslo dolů a dále budeme pracovat s 62 vodiči.

3.2.8 Celkový počet vodičů

Pro výpočet celkového počtu vodičů vyjdeme z rovnice:

$$n_s = \frac{Z}{3 \cdot p \cdot q} \tag{4}$$

Vyjádříme Z:

 $Z = 3 \cdot p \cdot q \cdot n_s$

Nakonec dosadíme za p, q a n_s :

 $Z = 3 \cdot 4 \cdot 1 \cdot 62 = 744$

Celkový počet vodičů je 744.

3.2.9 Hodnota fázového proudu

Pro výpočet velikosti protékajícího fázového proudu použijeme vztah pro celkový počet vodičů Z:

$$Z = \frac{3 \cdot M}{D \cdot L \cdot I \cdot B_g \cdot k_w}$$
[4]

Tuto rovnici upravíme do takového tvaru, abychom na její jedné straně měli osamocený fázový proud *I*:

$$I = \frac{3 \cdot M}{D \cdot L \cdot Z \cdot B_{g} \cdot k_{w}}$$

Po dosazení:

$$I = \frac{3 \cdot 0,5}{0,0282 \cdot 0,043 \cdot 774 \cdot 0,7 \cdot 0,9} = 2,64A$$

Hodnota vypočteného fázového proudu je 2,64A.

3.3 Zhodnocení návrhu

29

V této části práce byly spočítány základní parametry pro návrh elektronicky komutovaného motoru s vnějším rotorem. Je zde velké množství čísel, která mnohdy sama o sobě o mnohém nevypovídají. Mezi ně můžete zařadit například tloušťku magnetu, která nám zatím neřekne, jestli magnety budou schopny dodat dostatek potřebné energie. Abychom tedy mohli posoudit platnost výše uvedených hodnot, je potřeba takto navržený motor ověřit pomocí vhodné metody. V další části práce se zaměříme na ověření navrženého motoru metodou konečných prvků.

4 Ověření navrženého motoru metodou konečných prvků

K ověření navrženého motoru metodou konečných prvků je výhodné použít nějaký speciální program, který je vytvořen přesně pro řešení tohoto druhu problému nebo jemu podobného. Po konzultaci s vedoucím práce byl vybrán program pod názvem Finite Element Method Magnetics. (zkráceně FEMM) Licence tohoto programu je typu AFPL (Aladdin Free Public Licence), tedy zjednodušeně řečeno jeho užití pro potřeby této práce je zdarma.

4.1 Vytvoření nákresu motoru

V prvním kroku je zapotřebí vytvořit nákres motoru, abychom měli z čeho vycházet. Nákres můžeme vytvořit přímo v programu FEMM. Tento způsob klade člověka vytvářejícího nákres určité nároky a není zrovna jednoduchý a dovolil bych si tvrdit, že jsou zapotřebí i zkušenosti.

Další možností je použít jiný program, který dovede ukládat do formátu DXF a takto vytvořený nákres následně importovat do FEMMu. Tímto způsobem jsem postupoval já. Ke zhotovení nákresu motoru jsem využil služeb programu AutoCAD 2010. Tento program narozdíl od FEMMu není volně šiřitelný, ale společnost Autodesk nabízí pro nekomerční využití studentům výukovou verzi.

S využitím vypočtených hodnot jednotlivých částí motoru byl vytvořen nákres, který je na obrázku 3. Každý magnet je rozdělen na 10 části a to proto, aby následná analýza ve FEMMu byla přesnější. Dále je možné si všimnou pomocných čar u drážek statoru. Jejich význam je jednak v oddělení sousedních skupin vinutí a jednak v oddělení vinutí od prostoru s vlastnostmi vzduchu. Je třeba také zmínit, že střed motoru je v počátku souřadného systému [0;0], neboť FEMM počítá veličiny jako například moment právě od počátku souřadného systému. Jakékoliv jiné umístění by způsobilo chybu v analýze.

Obrázek 6: Nákres navrženého motoru v programu AutoCAD 2010.

4.2 Analýza v programu FEMM

4.2.1 Definice vlastností jednotlivých ploch nákresu

- 1. vzduch použito na vzduchovou mezeru a vnější obal rotoru,
- 2. ocel M-45 použito na statorové plechy a rotor,
- 3. měděné dráty o průměru 1mm použito na vinutí,
- 4. PM NbFeB 40 MGOe použito na magnety.

Dále přiřadíme tyto materiály jednotlivým částem (plochám) nákresu.

U ploch typu vzduch a ocel není zapotřebí další nastavovaní vlastností.

V případě magnetů je ale nutné určit úhel magnetizace tak, aby jednotlivé vektory magnetizace směřovaly do středu motoru.

U vinutí se doplní počet závitů s tím, že dbáme na znaménko. Znaménko koresponduje se směrem navinutí vodiče na zub. Dále pak, zda protéká proud I_a , I_b nebo I_c s tím, že proudy I_a a I_b mají velikost rovnu uvedenou v části Návrh elektronicky komutovaného motoru a I_c je rovno nule.

Velmi vhodné je si jednotlivé plochy, které spolu navzájem souvisí, vložit do jedné skupiny. Díky tomuto je pak můžeme označit jedním kliknutím všechny najednou a následná manipulace nepředstavuje riziko chybu v důsledku opomenutí označení některé z částí.

Dále nastavíme typ problému na planární, jednotky místo v palcích v mm a vepíšeme vypočtenou efektivní délku stroje.

Přiřazením okrajové podmínky A = 0 vnějšímu obalu vzduchu dokončíme nákres. Tímto krokem se můžeme přesunout k samotné analýze.

Kompletní nákres je zobrazen na obrázku níže:

Obrázek 7:Výsledný nákres motoru v programu FEMM.

4.2.2 Určení momentu motoru

Stisknutím tlačítka pro běh analýzy a následného zobrazení výsledků přibudou v nákresu například jednotlivé siločáry. Označením rotoru a magnetů si necháme spočítat skutečný moment stroje. Maximální možný moment pro námi navržený stroj je přibližně 1,03_Nm. Všem je jistě jasné, že odhadnout přesnou polohu statoru vůči rotoru, kdy je moment maximální je nemožné. Na řešení tohoto problému je možné použít nástrojovou sadu OctaveFEMM, která umí spolupracovat s programem Matlab.

Zdrojový kód m-filu je následující:

Mi1=zeros(361+1,2);

for i=0:360

mi_analyze

mi_loadsolution

mo_zoomnatural

mo_showdensityplot(1,0,2.6,0,'mag')

mo_savebitmap(sprintf('indukce%1\$d.bmp',i))

mo_groupselectblock(1)

Mi1(i+1,:)=mo_blockintegral(22);

mo_clearblock

mo_close

```
mi_selectgroup(1)
```

mi_moverotate(0, 0, 1)

```
mi_selectgroup(2)
```

mi_moverotate(0, 0, 1)

end

Otáčení rotoru se provádělo po 1 stupni a celkem tedy došlo k 360 otáčkám, pokud neuvažujeme výchozí polohu. Toto je poměrně časově náročná záležitost.

4.2.3 Rozložení magnetické indukce v motoru

Dále byla zaměřena pozornost na rozložení magnetické indukce v motoru.

Rozložení indukce je patrné z následujícím obrázku:

2.539e+000 : >2.673e+000 2.406e+000 : 2.539e+000 2.272e+000 : 2.406e+000 2.138e+000 : 2.272e+000 2.005e+000 : 2.138e+000 1.871e+000 : 2.005e+000 1.737e+000 : 1.871e+000 1.604e+000 : 1.737e+000 1.470e+000 : 1.604e+000 1.336e+000 : 1.470e+000 1.203e+000 : 1.203e+000 9.355e-001 : 1.069e+000 8.019e-001 : 9.355e-001 6.682e-001 : 8.019e-001 5.346e-001 : 6.682e-001 4.009e-001 : 5.346e-001 2.673e-001 : 2.673e-001 4.336e-001 : 2.673e-001 2.673e-001 : 2.673e-001 0.336e-001 : 2.673e-001 2.673e-001 : 2.673e-001 0.09e-001 : 1.336e-001 2.673e-001 : 2.673e-001 2.673e-001 : 2.673e-001 0.09e-001 : 2.673e-001 0.09e-001 : 0.36e-001 0.09e-001 : 0.09e-001 0.09e-001 : 0.09e-001 0.09e-001 0.09e-001 : 0.09e-001 0.09e-001 : 0.09e-001 0.09e-00

Obrázek 8: Rozložení magnetické indukce v motoru.

4.2.4 Indukce ve vzduchové mezeře

Na závěr bylo zkoumáno rozložení magnetické indukce ve vzduchové mezeře. Tento průběh je možné si prohlédnout v následujícím grafu, kde *l* je střední délka vzduchové mezery:

Obrázek 9: Rozložení magnetické indukce ve vzduchové mezeře.

Následně byly pomocí numerické integrace a programu Microsoft Excel vypočtena efektivní hodnota magnetické indukce ve vzduchové mezeře. Pro potřeby výpočtu byla celková délka vzduchové mezery rozdělena na 176 částí, neboť její délka je 88,6mm a tedy $\Delta x \approx 0,5mm$. Po provedení všech náležitostí bylo zjištěno, že efektivní hodnota magnetické indukce ve vzduchové mezeře je 0,98T.

4.3 Tvorba dalších návrhů a jejich porovnání

Pro účely porovnání návrhů byly následně vytvořeny ještě dva nákresy, jejichž změna spočívala v tom, že u prvního byly zuby zúženy z každé strany o 2mm a u druhého navíc ještě prodlouženy o 2mm. Tato modifikace se neopírá o žádný výpočet, ale je čistě náhodně vybrána.

4.3.1 Porovnání rozdílů

V prvním případě, tj. pouhé zúžení zubů celkově o 4mm, klesl maximální moment motoru na hodnotu 0,84Nm oproti původnímu návrhu.

Ve druhém případě, tj. zúžení zubů celkově o 4mm a prodloužení o 2mm, klesl maximální moment motoru na hodnotu 0,85Nm oproti původnímu návrhu.

V obou případech byl použit stejný postup zjišťování maximální hodnoty momentu jako u původního návrhu.

Rozložení magnetické indukce v motoru pro tyto dva případy je zobrazeno na obrázcích 11 a 12 na následující straně.

Pro vyhodnocení rozložení magnetické indukce ve vzduchové mezeře byl taktéž použit stejný postup jako výše.

V prvním případě, tj. pouhé zúžení zubů celkově o 4mm, klesla efektivní hodnota magnetické indukce ve vzduchové mezeře na 0,88T.

Ve druhém případě, tj. zúžení zubů celkově o 4mm a prodloužení o 2mm, klesla efektivní hodnota magnetické indukce ve vzduchové mezeře na 0,87T.

Z výsledů jak momentů, tak magnetické indukce je patrné, že prodloužení zubů o 2mm prakticky nehraje žádnou roli.

V následujícím grafu je zobrazeno a porovnáno rozložení magnetické indukce pro původní motor a následné dva modifikované případy.

Do porovnávacího grafu byly vyneseny pouze hodnoty prvního zúžení, neboť se příliš neliší od zúžení druhého a graf by se stal nepřehledným. Nyní je i z grafu patrné, že efektivní hodnota magnetické indukce ve vzduchové mezeře po zúžení zubů klesla.

Obrázek 10:Porovnání rozložení magnetické indukce ve vzduchové mezeře původního návrhu s následným zúžením zubů.

2.878e+000 : >3.030e+000 2.727e+000 : 2.878e+000 2.575e+000 : 2.727e+000 2.424e+000 : 2.575e+000 2.272e+000 : 2.424e+000 2.121e+000 : 2.272e+000 1.969e+000 : 2.121e+000 1.818e+000 : 1.969e+000 1.666e+000 : 1.818e+000 1.515e+000 : 1.666e+000 1.363e+000 : 1.515e+000 1.212e+000 : 1.363e+000 1.060e+000 : 1.212e+000 9.089e-001 : 1.060e+000 7.574e-001 : 9.089e-001 6.059e-001 : 7.574e-001 4.544e-001 : 6.059e-001 3.030e-001 : 4.544e-001 1.515e-001 : 3.030e-001 < 7.844e-008 : 1.515e-001
Density Plot: B , Tesla

Obrázek 11: Rozložení magnetické indukce v motoru pro případ zúžení zubů.

2.796e+000 : >2.943e+000 2.649e+000 : 2.796e+000 2.502e+000 : 2.649e+000 2.354e+000 : 2.502e+000 2.207e+000 : 2.354e+000 2.060e+000 : 2.207e+000 1.913e+000 : 2.060e+000 1.766e+000 : 1.913e+000 1.619e+000 : 1.766e+000 1.472e+000 : 1.619e+000 1.324e+000 : 1.472e+000 1.324e+000 : 1.177e+000 8.829e-001 : 1.030e+000 7.358e-001 : 1.030e+000 7.358e-001 : 7.358e-001 5.886e-001 : 7.358e-001 2.943e-001 : 4.415e-001 1.472e-001 : 2.943e-001 2.189e-006 : 1.472e-001 Density Plot: B , Tesla	

Obrázek 12: Rozložení magnetické indukce v motoru při zúžení a prodloužení zubů.

5 Závěr

Úkolem této práce nebylo navrhnout a vytvořit motor o předem definovaných parametrech, který by byl nasazen do provozu a plnil by určitou činnost. Za hlavní cíl se považovalo seznámení se s návrhem elektronicky komutovaného motoru s vnějším rotorem a pochopit souvislosti týkající se následného návrhu tohoto typu motoru dle zadaným parametrů. Následně se seznámit se samotným ověřením navržených hodnot motoru s využitím vhodné metody a programu – v tomto případě metody konečných prvků a programu FEMM.

Připomeňme, že na začátku bylo zadáno, že točivý moment motoru má být 0,5Nm při 1000 otáčkách za minutu a vnější průměr nejvíce 50mm. Po provedení výpočtu a následném ověření bylo zjištěno, že hodnota momentu navrženého motoru se pohybuje kolem 1Nm. Ve skutečnosti by moment takto vysoký nebyl, neboť se neuvažoval žádný druh ztrát, jako například ztráty v důsledku komutace ztráty v železe nebo ztráty ve vinutí. Pokud bychom trvali na hodnotě momentu 0,5Nm, tak jednou z variant, jak jí docílit, by bylo zmenšení efektivní délky stroje, která je momentu přímo úměrná. V průběhu vytváření návrhu se vycházelo z předpokladu, že indukce ve vzduchové mezeře je 0,7T, přičemž ve skutečnosti by její hodnota byla téměř 1T.

Pro možnost porovnání byly vytvořeny ještě další dva návrhy, přičemž první se od originálního liší tím, že celková šířka zubu statoru byla zmenšena o 4mm a v druhém případě jeté navíc byl zub prodloužen o 2mm. Naměřené hodnoty těchto dvou návrhů jsou prakticky totožné a oproti původnímu došlo k poklesu momentu na 0,85Nm a efektivní hodnotě indukce ve vzduchové mezeře na hodnotu 0,9T.

Osobně tuto práci považuji za zajímavou a přínosnou, neboť jsem nikdy předtím neměl možnost se přímo setkat s navrhováním jakéhokoliv druhu pohonu a nyní si již sám vyzkoušel, co všechno toto obnáší a jaké jsou kladeny nároky na návrháře. Nejvíce oceňuji získání základních dovedností potřebných pro práci v programu FEMM.

Na závěr už zbývá pouze říct, že třeba v některé z příštích prací budu mí t možnost se ještě více seznámit s touto problematikou a navrhnout motor, který by bylo možné použít v opravdovém provozu.

[1] Gieras J., Wing M.: Permanent Magnet Motor Technology: Design and Applications, 2. vydání, 2002 New York, 592 s., ISBN: 0-8247-0739-1

[2] Brančík L., Elektrotechnika 1, Skriptum VUT v Brně, 2003

[3] Dědek L., Dědková. J.-Elektromagnetismus -VUTIUM, 2000 Brno, 232 s., ISBN: 80-214-1548-7

[4] Y.K. Chin, W.M. Arshad, T. Bäckström, C. Sadarangani: Design of a Compact BLDC motor for Transient Applications, dostupné na

 $http://www.ee.kth.se/php/modules/publications/reports/2001/IR-EE-EME_2001_001.pdf$

Přílohy

Zpracování výpočtů v sešitu Microsoft Excel