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Abstrakt 
Práce se zabývá možnostmi implementace VoIP do existujícího X M P P programu se sdílenou 
tabulí. Analyzuje možnosti využití současných technologií pro podporu VoIP. Cílem je 
nahrazení stávajících komunikačních knihoven klienta za telepathy. Dále také přidání VoIP. 

Abstract 
This thesis tackles the issues of implementing a VoIP support into an X M P P based I M 
application. The state of the art is analyzed to find a suitable technology to base the 
VoIP on. The work's goal is to port the existing client application to network framework 
telepathy and implentation of VoIP. 
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Introduction 

Human is a social creature and likes to chat, share feelings and ideas. At first we managed 
to do so by making simple sounds. Those sounds later on developed into words. Then much 
later the human race started to feel the need to record what we were thinking. We made up 
symbols and started to write. As the society grew and spread, we wanted to communicate 
with people from other tribes and villages. At first we would travel and use spoken words, 
but as the distances grew we figured we can have our thoughts delivered in writing. Mai l 
was born. In 1844 telegraph was invented by Samuel Morse followed by telephone in 1874 
by Alexander Graham Bell. And finally in 1969 the Internet was created. A l l of these 
inventions aimed to provide means of communication to satisfy the needs of the evolving 
society. 

In the early days of the Internet email was the main means of communication. And 
just like regular mail people would have their electronic mailboxes to which the emails were 
delivered. Email was a huge step forward for it provided a way to almost instantly deliver 
text from one place to another regardless of the distance for free. The main disadvantage 
of email is that people had to check their mailboxes read new mail and then reply. It is just 
neither fast nor convenient enough for team cooperation when team members are far apart. 
For those and other purposes like chatting Instant Messenger programs were introduced. 

A n I M program offers real-time communication between two people via text messages 
that are delivered from one user to another instantly. Instant messengers became very 
popular and started adding on features like multi-user chat, various games and most im­
portantly VoIP(Voice over IP) support. VoIP capable I M like skype have become extremely 
popular at first for making it possible for people to call each other for free over the internet. 
Later video conferencing capability was added, so you could talk and see you colleague 
at the same time. One more thing comes in extremely handy when working in a team -
a whiteboard. 

At this time there is no usable I M providing VoIP and shared whiteboard for GNU/L inux . 
This thesis aims to add VoIP support to an existing X M P P client with shared board called 
Makneto. Makneto was created by Jaroslav Rezník as a master's thesis in 2008. At this 
point it is using iris library for X M P P communication. The shared board data is also trans­
ferred over X M P P . One of the goals of this thesis is to port Makneto to telepathy, which is 
now a very reliable and robust library for communication for numerous protocols. 

This work is done for Red Hat Czech. I have never worked for a software company 
and moreover on a project that has such a great potential. I have a chance to improve my 
programming skills under the leadership of experienced programmers. 

The following chapter 1 gives a detailed description of the current version of program 
Makneto. We will find out about it's architecture, strengths and weaknesses. 

Chapter 2 focuses on X M P P / J a b b e r communication protocol. It talks about it's fea­
tures and limitations. The chapter contains concrete examples that give the reader an idea 
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of how it works and is it so popular. 
Chapter 3 is about Telepathy communication framework, how it works, what it consists 

of. There is also a description of a I M client application Empathy based on Telepathy. 
Current audio and video streaming protocols are listed and discussed in chapter 4. 

Based on this chapter a suitable protocol is chosen for the implementation. This chapter 
also talk about VoIP and what should the implementer have in mind when writing a VoIP 
application. 

The port to Telepathy and new Makneto's architecture are in chapter 5. It talks about 
design decisions and reasoning behind them. 

Chapter 6 explains how was the VoIP implemented, what problems were encountered 
and what is the result. 
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Chapter 1 

Makneto 

The collaborative application Makneto is the main topic of this chapter. First we take 
a look at the architecture and what it is based on. The following section explains why port 
Makneto to Telepathy and add VoIP. The main sources are [48, 29, 44]. 

1.1 Current architecture 

Makneto is an instant messenger with a shared board capability. It was written by Jaroslav 
Rezník as his master's thesis in 2008. Makneto is written using Qt version 4 and K D E 4 
libraries. Qt is a application framework extending C++ and adding dynamic functionality 
like signals and slots mechanism or property system. Signals and slots are used instead of 
callback function, because they are as opposed to callbacks type-safe. The dynamic property 
system allows objects to have properties added at runtime without previous specification 
in their header file. In order to use the extended functionality the objects must directly 
or indirectly inherit QObject, which all the framework's classes are derived from. These 
mechanisms also require source files to be compiled by the Meta Object Compiler before 
any standard C++ compiler. 

Qt runs on all major computer platforms like G N U Linux, Microsoft Windows and 
Mac OS X . More so it is supported by mobile device platforms such as Symbian and 
Microsoft Windows Mobile. There is also a port to Google Android called Lighthouse. It 
was developed by company named Trolltech and was available under two licenses. First was 
a commercial license allowing companies to write proprietory applications for a fee. Second 
was G N U General Public License, which was of course free. Thanks to the commercial 
license the Qt documentation is one of the best among any software available under G N U 
G P L . In June 2008 Trolltech was acquired by Nokia that decided to make the source code 
available so that anyone could contribute. In January 2009 another licensing option was 
added - Lesser General Public License [29, 31]. 

Besides Qt Makneto utilizes functionality provide by K D E 4 [23] libraries, which makes 
Makneto unable to run on a different operating system than G N U Linux. K D E is a desktop 
environment created by Matthias Ettricht in 1996 for he felt the need for a good quality 
window manager for Linux. It is currently in version 4, which brought great features. There 
is a new desktop called Plasma, which allows users to display widgets called plasmoids 
directly on the desktop. That allows users to have a T O D O list, calendar, translator, 
weather forecast, system monitor and much more right in front of them on their desktops 
without having launch any of those to get the information they need. It makes users' work 
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easier and more efficient. K D E and G N O M E are the most common window managers 
in Linux. G N O M E offers stable useful environment and is influenced mostly by large 
businesses using it. K D E is more flexible and works more with the look and feel. 

Makneto communicates using X M P P / J a b b e r protocol implemented in Qt-based C++ 
library called Iris. A l l of the Iris is primarily used by Psi instant messenger. It's development 
is still quite active and it supports all of Jabber's key features as well as several extensions. 
Iris' downside is very poor documentation. It's wiki is very brief and all to all gives one 
example. The only way to find out how it works is browsing through Psi code [35]. 

Makneto's shared whiteboard is based an official extension of X M P P S V G W B by Joonas 
Govenius [ ]. That is implemented in Psi and Makneto utilizes their code. S V G W B defines 
all the necessary actions like whiteboard session initiation including invitation and mainly 
method of sending and receiving information about the graphical objects using X M P P 
X M L . The actual graphical object representation is defined by S V G 1 [ ] by W3C. It 
describes graphics objects using vectors in X M L format. Makneto uses just a subset of 
S V G called S V G Tiny [44] as it does not need all of the features. The subset includes two-
dimensional vector graphics and raster graphics and multimedia. To sum up Makneto's 
whiteboard features, it allows you to draw lines, rectangles, ellipses, circles, sketch using 
a paintbrush and input images in jpg and png formats. Graphical objects are resizable, can 
be rotated and copied. 

Makneto runs in one window represented by class MaknetoMainWindow as shown in 
the class diagram in figure 1.1 and displayed in figure 1.2 . User's contact list (RoasterView) 
is on a panel on the left hand side as a part of stacked widget along with M U C 2 (MUCView) 

tab and tab for controlling presence (ConnectionView). The whiteboard and chat session 
are initiated through the contact list and are located on the right side of the window. 
Makneto handles more sessions at once each in a separate tab. Each tab is represented 
by a SessionView object and the whiteboard within it by WbWidget. The subject to 
change is class Connection that is built on top of iris library. Using the application is very 
comfortable although it crashes from time to time. 

1.2 Motivation for porting and adding VoIP support 

Makneto has a potential to become a great collaboration tool. The tasks of today are more 
and more difficult so the need to solve the task in teams is greater and greater. Especially in 
computer science the teams are often from all over the world and it is important to discuss 
current issues. Meeting in person is not an option and that is where Makneto comes in. 
The shared whiteboard is very useful for sharing thinkmaps and visualizing problems and 
solutions, but the days when people had the time and patience to write are gone. Everybody 
wants to talk these days. 

Makneto at this point has couple design flaws. First it uses iris library for communi­
cation in X M P P network. Iris is very poorly documented and every change in the imple­
mentation would reflect in Makneto. Second Makneto depends on K D E libraries, which 
at this point is not necessary. Getting rid of this dependency will help increase Makneto's 
portability. 

The current implementation of Makneto is UI and backend in one large application. 
The goal is to separate the backend and UI. Backend will take care of communication. 

1 Scalable Vector Graphics 
2 Multi-User Chat 
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MaknetoContactList 
- m_cl : 
- m_conn : 
- m mainwindow : 

Connection 
- m makneto : 

MaknetoN ainWindo 
- m maknetoView : 

ConnectionView 

RoasterView 

SidebarWidget 
m w i d g e t s : 

MaknetoView 
- m_sessionTabManager: 
• ms idebarWidget : 

SessionTabManager 
m w i d g e t s : 

¥ 
SessionView 

m w b w i d g e t 

WbW dget 

Figure 1.1: Makneto class diagram 

That means text messaging, shared whiteboard and after this thesis is finished also VoIP. 
Backend will use communication framework telepathy described in chapter 3. Telepathy 
supports various protocols as well as voice and video calls. Makneto will be able to use 
X M P P , ICQ, IRC, M S N etc. with one implementation of a client. 

Frontend shall be a subject to change based on target device. Makneto for desktop will 
have a Qt4 frontend and Makneto for smartphones and tablets will use the Qt Quick UI. 
Wi th rapidly increasing number tablets and smartphones made and sold it would be shame 
not to plan to support them. 
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m s 
File Settings Help 

# % Add contact a Show all 

Makneto 

Home • cambi@jabbim.cz portilo@jabbim.cz 

D Zdena Kraus 
O Pep^ - DP 
O KGB 
© T jako TrDLo 

Michal Trna 

© C a m b i 
O K v e t a k 
©jab info@jabbim.com 

Ahoj! Jak se mas? 

Send 

Figure 1.2: Makneto before any work was done on it. 
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Chapter 2 

X M P P 

This chapter talks about Extensible Messaging and Presence Protocol [ ]. The first section 
lists key features and explain how the protocol works. Next section is about extensions 
of X M P P , mainly Jingle designed for media session signaling. The information is mainly 
acquired from [39, 37, 38]. 

In 1999 Jerremie Miller created protocol called Jabber. Jabber was an open protocol 
based on X M L as opposed to existing protocols like ICQ [ ] or A I M [ ], which were 
proprietory and owned and controlled by private companies. The first attempt to make 
Jabber a standard failed. The second attempt did not use the name Jabber, but extensible 
Messaging and Presence Protocol instead. I E T F 1 approved and X M P P was standardized in 
2004 in R F C 3920 [37] and R F C 3921 [38] called X M P P Core and X M P P I M respectively. 
Development of X M P P is still active as it is based on X M L it is possible to add functionality 
without jeopardizing the compatibility of existing implementations. 

X M P P is a robust, scalable, secure, open and extensible protocol that has been well 
tested over the years passing all of the test without any sign of trouble. It has been very 
well thought out and altogether it is a great protocol. The description given bellow is in 
some of the parts simplified. Full description is out of the scope of this thesis. 

2.1 X M P P protocol 

X M P P is defined in [ ] and [38], which describe all the key features of the protocol. 
Authors of X M P P aim for a scalable, extensible and in every way powerful protocol. Years 
later with X M P P still around and more and more popular we can safely say they succeeded. 
The key features of X M P P include: 

• Decentralized architecture - X M P P network does not rely on one server. The 
network consists of servers and clients. Every client may run his or her own server. 
Clients register with a server of their choice. The figure 2.1 demonstrates how it 
works. There are several clients connected to three servers. If a client on Server 1 
wants to communicate with another one on Server 2, then Server 1 sends the message 
to Server 2 and Server 2 forwards it to the client. It works much like email. If a client 
is not satisfied with the server he or she registered with he or she may simply register 
with a different server or run his or her own. There is also no way to take the whole 

1 Internet Engineering Task Force 
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network out with DoS 2 or DDoS 3 attack. There simply is not a small number of 
target to attack. 

• Open nature - X M P P is an open standard that can be used by anyone without 
having to pay, sign any agreement or behave by any restrictive policies. Also it's fate 
is not in hands of one company but rather in the hands of everyone. Anyone who 
wishes to contribute can do so by cooperating with X M P P Standards Foundation. 

• Extensibility - thanks to X M L based nature of X M P P it is very simple to add new 
features without discontinuing support of the old ones. This feature makes X M P P 
very flexible for it can easily add new functionality and it has been already done 
several times. More on this is later in this chapter. 

• Security - with built-in support for T L S and SSL there is no need to worry that 
the messages might be read by a third person using man in the middle attack. Com­
panies using X M P P for communication inside their network might run their server 
locally with no access to the outside world. 

Client 1 Client 2 Client 3 

Cli«iH4 Clients Client 6 Client7 Clients Clients 

Figure 2.1: X M P P decentralized architecture [39] 

Now let's look at the protocol and how to use it. 

Client-server communication 

X M P P is basically streaming X M L documents. The stream is an unbounded X M L doc­
ument which contains another X M L documents from both client and server. The X M L 
documents enclosed in the stream tags with a depth of 1 are called stanzas. Stanza is 
a basic unit of communication like a packet. The following stanzas are defined: 

2 Denial of Service 
3Distributed Denial of Service 
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• message - used for getting information from one place to another in a push manner. 
The message stanza is not acknowledged and no answer is expected. It is used for 
instant messages, alerts, notifications, group chat etc. The nature of the message is 
specified by type. 

• presence - stanza for acquiring another user's presence. X M P P honors user's privacy 
and to get someone's presence status he or she needs to authorize it first by adding 
the querier to his or her contact list. There are several types of presence just like in 
any other I M protocol. 

• IQ - is an abbreviation for Info/Query. This stanza is used for everything else. IQ 
works on question-answer basis. It is used for example for getting remote client's 
capabilities. IQ stanza must always receive a reply. 

First a T C P connection is established between client and server. Once established 
a stream is opened by the client by sending the server <stream> tag. For illustration have 
a look at example 2.1 a stream opening. Line 2 and 3 contain used namespaces, line 6 
language used for any human-readable X M L character data and line 7 version for signaling 
support for stream-features. 

1 <?xml ve r s ion= '1 .0 ' encodingsUTF-8 '?> 
2 <stream:stream 
3 xmlns= ' j abber :c l i en t ' 
4 xmlns:s t ream='http : / /e therx. j abber.org/streams' 
5 to=\"jabbim .cz\" 
6 xml:lang='en' 
7 version=\"1.0\"> 

Example 2.1: Opening communication with server 

Server answers with a second stream back to the client, which is shown in the exam­
ple 2.2. The server assigns the session a unique id (line 5), that is used for preventing 
domain spoofing in case encryption is not set up in the following parameter negotiation. 
The id ought to be both unique and unpredictable. 

1 <?xml vers ion= '1 .0 '?> 
2 <stream:stream 
3 xmlns= ' j abber :c l i en t ' 
4 xmlns:s t ream='http : / /e therx. j abber.org/streams' 
5 id='856661962' 
6 from='jabbim.cz' 
7 vers ion= '1 .0 ' 
8 xml:lang='en'> 

Example 2.2: Server's reply to client's opening stream 

The next step is to negotiate properties of the stream. The server sends an X M L 
enclosed in stream: feature tags, informing the client about features it supports. The most 
important property is by far encryption and authentication. Preferred encryption method 
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is T L S , but SSL is also an option. However some servers may require usage of TLS, which 
is recommended for both client-server and server-server communication. Authentication is 
a key responsibility of the server. It must ensure that users attempting to connect to it 
are who they say they are. The server acts as a gateway to the entire network and must 
not allow identity spoofing. Authentication is done via S A S L 4 and options supported by 
the server are enclosed in mechanism tags. The example 2.3 shows the supported encryption 
on line 3 (TLS) and mechanisms for authentication are on lines 4-11. 

1 <stream:features> 

2 <starttls 

3 xmlns='urn:ietf:params:xml:ns:xmpp-tls'/> 

4 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> 

5 <mechanism> 

6 PLAIN 

7 </mechanism> 

8 <mechanism> 

9 DIGEST-MD5 

10 </mechanism> 

11 </mechanism> 

12 

13 </stream:features> 

Example 2.3: Server sends supported encryption options 

Once communication parameters are set, client can request presence, set his or her 
own presence or communicate with other clients. Sending a message to a fellow user is 
accomplished via message stanza and may look like X M L in example 2.4. 

1 <message 

2 from='vtheman@jabbim.cz' 

3 to='kuba86@jabber.cz' 

4 xml:lang='en'> 

5 <body>Hey, how are you?</body> 

6 </message> 

Example 2.4: Chat message 

It must include to, from attributes and body opening and closing tags. The first specifies 
who is the message addressed to using a Jabber ID. Jabber ID consists of 
user name @ domain name [/ resource]. Resource was added to JID to allow user to 
connect from different device/locations without having to log out. A n example of resource 
is home or work. A simple Jabber ID is vtheman@jabbim.cz. Attribute from naturally 
contains a jabber ID as well, but this time an ID of the sender. The body element contains 
the actual message. 

Next stanza is presence and it is needed for following presence of contacts in users' 
roster. To get presence of a user he or she must approve of it. Once the user has been 
authorized to get another user's presence they have both subscribed to get each other's pres-

4 Simple Authentication and Security Layer 
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ence. After connecting to the server the user sends initial presence stanza: <presence/>. 
From that moment on the server takes care of the presence. Whenever the user's presence 
changes, it sends notification to all subscribers in the user's roster as shown in example 2.5. 
Similarly if someone else's presence changes the user gets notified by his or her server. 

1 <presence from="vtheman@jabbim.cz" to="kuba86@jabber.cz"> 

2 <show>dnd</show> 

3 <status>Working on my thesis!</status> 

4 </presence> 

Example 2.5: Presence publication 

Presence stanza contains elements show and status, show can be either chat meaning 
available and ready for chat, away meaning the user is not at the P C at the moment, xa 
indicates the user will be gone for a longer period of time and finally dnd, which stands for 
do not disturb. 

The last of stanzas is Info/Query shortly IQ. IQ is very similar to H T T P in methods 
and in the query-answer nature. IQ queries use method get for requesting information and 
method set for making requests based on provided information. Answer to a query is IQ 
stanza of type result and contains information requested by get method or acknowledge 
in case of set method. The last type of IQ is error and is used to indicate that something 
went wrong. A good example of an IQ stanza is acquiring a roster shown in figure 2.6. The 
type of stanza (IQ) and method (get) are specified on line 1 and 2 says what exactly the 
client ask for. The server's answer is in figure 2.7. We can see it is of type result and lines 
3-5 contain the requested data - JIDs of people in the roster. 

1 <iq type="get"> 

2 <query xmlns="jabber:iq:roster"/> 

3 </iq> 

Example 2.6: Requesting roster from server 

1 <iq type="result"> 

2 <query xmlns="jabber:iq:roster"> 

3 <item jid="kuba86@jabber.cz"/> 

4 <item jid="rezza@jabber.cz"/> 

5 <item jid="imlich@jabber.fit.vutbr.cz"/> 

6 </query> 

7 </iq> 

Example 2.7: Roster sent by the server 

The stream ends with </stream> tag and that means end of the communication. 
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XMPP Extensions 
As mentioned earlier X M P P is easily extensible thanks to it's X M L based architecture. 
X M P P extensions are published by X S F 5 as X E P 6 . Basic X M P P functionality defined in 
the R F C 3920 [ ] and R F C 3921 [38] ought be supported by every X M P P server and client. 
Functionality described in X E P is optional. These are the most popular extensions: 

• Multi-User Chat defined in XEP-0045 [36] allows users to create virtual rooms just 
like in IRC, invite their contacts to join the room and thus communicate with multiple 
people at once. 

• Service Discovery registered as XEP-0030 [ ] defines a way of finding out what 
capabilities have one's contacts. 

• Entity Capabilities defined in XEP-0115 [ ] adds client's capabilities to presence 
information, so that if a XEP-0115 capable client requests presence it receives a list 
of supported features as well. 

There are tens of extensions either standardized of waiting for becoming a standard 
defining various handy features. 

2.2 Jingle 

X M P P Extension defined in XEP-0166 [41] known as Jingle is a signaling protocol that ini­
tiates, manages and terminates media sessions via X M P P . Jingle was first used in Google 
Talk [11] for Voice call signaling in 2005. The idea was to use an existing X M P P com­
munication channel to setup a peer-to-peer media session that uses a different means of 
transporting data, e.g. R T P 7 for voice or video and T C P for file transfer. 

Figure 2.2 shows how the protocol works. Session initiation starts when the initiator 
sends session-initiate with Application type, e.g voice call, and Transport method, e.g 
U D P are described. As you can see in the figure Jingle uses an IQ stanza so the initiator 
immediately receives a IQ result acknowledging the invitation reception from the responder. 
Next all the necessary application type and transport type parameters of the session are 
negotiated. In case of voice call the application type parameters might be audio codec 
and sampling frequency. Transport type parameters include the peers' IP addresses and 
ports and transport method. When all the parameters have been set up the responder 
either accepts or declines the invitation. If accepted the data start flowing between the two 
peers just as it was agreed during the initiation phase. Jingle can also be used to adjust 
parameters of an existing session if necessary. And final one of the peers sends the other 
session-terminate to end the session. 

5 X M P P Standards Foundation 
6 X M P P Extension Protocol 
7Real-time Transport Protocol 
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Initiator Responder 

offer (Jingle session-initiate) 

acknowledge offer receipt 
(IQ result) 

[if necessary, negotiate parameters 
for application type and transfer method] 

accept offer (Jindle session-accept) 

acknowledge offer receipt 
(IQ result) 

Exchange media 

[if necessary, modify parameters 
for application type and transfer method] 

terminate session 
(Jingle session-terminate) 

Figure 2.2: Data flow in media session initiation, management and termination using X M P P 
Jingle [39] 
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Chapter 3 

Telepathy 

In this chapter the framework to which Makneto shall be ported is looked at. First basic 
terms and basic idea of how is the framework designed what can it do. Then we describe 
D-Bus and the relationship with Telepathy and have a detailed look at components of 
Telepathy. Finally we talk about an existing client built on Telepathy. The chapter takes 
information mainly from [7, 3]. 

Telepathy [5] is a modular communications framework for building real-time communica­
tion applications. It supports numerous communication protocols as plugable backends e.g 
XMPP/Jabber(telepathy-gabble), SlP(telepathy-sofiasip), MSN(telepathy-butterfly), etc. 
Each of telepathy's components runs in a separate process as desktop service and commu­
nicates via D-Bus. The components are shared by telepathy clients. To get a better idea of 
how this concept works take a look at figure 3.1 [7]. X M P P represents Connectin Manager 
Gabble that creates a connection for an account. Chat client can use that connection for 
text messaging and Voice client can use the same connection for establishing a call using 
Jingle. Or one client client can use more Connection Managers simultaneously. The VoIP 
client can without any adjustments support calls to X M P P , M S N and SIP networks thanks 
to the high level of abstraction. 

Chat Voice I Logging 

X M P P 

Figure 3.1: Telepathy architecture [ ] 

There are several features making telepathy very useful as a communications framework. 

• Robustness - all the components are independent. If one crashes, others will not be 
affected 

• Ease of development - the components can be replaced without having to stop 
the service 
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• Language independence - since telepathy components use D-Bus for communica­
tion among themselves, any language that has D-Bus binding might be used to write 
them 

• Desktop independence - D-Bus is present in both main Linux window managers 
G N O M E and K D E , so the same telepathy components could be backend for appro­
priate frontends. 

• Code reuse - the client applications do not have to worry about protocol specifics, 
which are handled by Telepathy. The client can use more protocols by making no or 
small alterations to the code. 

• Connection reuse - more than one Telepathy client can use the same connection 
simultaneously: 

3.1 Telepathy architecture 

Telepathy is a very powerful framework and as such it is also complicated. To successfully 
write programs using Telepathy we need to know what telepathy consists of and what it is 
based on. This section tries to put all the terms into context of this thesis. 

D-Bus 

D-Bus is a kind of inter-process communication. It allows two applications running in 
different processes, written in different programming language communicate. More so these 
applications may communicate directly, without having to go through message bus daemon. 
There two types of D-Bus. First is a system bus used for events such as "USB device 
disconnected" or "printer out of paper." Second type is per-user-login-session bus, which 
is used by user applications. D-Bus low level A P I is represented by libdbus and it requires 
X M L parser (libxml or expat) to work. Higher level language bindings such as Qt, GLib , 
Java etc. are built on top of libdbus and offer more convenient way of using D-Bus, although 
they add more dependencies [3, 7]. 

Each process that wants to communicate over D-Bus will need to use most the following 
depending on it's nature: 

• Unique name - is an unique id (e.g. :2 . l ) assigned by D-Bus daemon to the client 
application. Unique name is similar to a public IP address. 

• Well-known name - is similar to a DNS name. If a process wants to make a service 
available to other processes it requests a well-known name. If another process wants 
to access the service it uses the well-known name to do so. Well-known name might 
look like this: org.freedesktop.Telepathy.ChannelDispatcher. 

• Object path - is a path to an object that is exported by process running a service. 

• Interface - is a way of requesting a service using signals or methods. Each D-Bus 
client must register at least one interface and each interface provides at least one 
method or signal. Every interface needs to have to name like a well-known name. 

• Method - is implemented in the object specified by object path and exposed in 
the interface for that object for other processes to use. 
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• Signal - is a D-Bus signal client process can connect to it's callback function. If 
a signal is invoked the callback function is called. 

• Property - is used for exposing D-Bus object's properties. To do so the objet must 
implement org.freedesktop.DBus.Properties interface. 

The figure 3.2 shows an example of two programs connected to D-Bus to be able to 
communicate with each other. Program B provides a service called well-known name 
(org.freedesktop.foo.Bar) and it's id is :1.3. Program A does not provide any ser­
vice and thus does not need any well-known name. It just needs an id 1.2 to use other 
programs' services [7]. 

Figure 3.2: D-Bus id and well-known name example [7] 

The figure 3.3 shows an overview of all of the terms described above in a simple diagram. 

Fetch 

/org/freedesktop/foo/jill org.freedesktop.dbus.lntrospectable 

Figure 3.3: D-Bus architecture [7] 

D-Bus is a key component of Telepathy framework. Telepathy supports many protocols 
all of which might provide different capabilities. For example IRC does not support avatars 
while X M P P does. Even though avatar feature is supported by X M P P protocol it might 
not be supported by the server we are connected to or by the opposite client in case of 
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peer-to-peer connection. The available features are exposed by D-Bus Properties Interface. 
That is an easy way of determining the protocol, server or client capabilities [3]. 

Mission Control 

Mission Control is a Telepathy component that implements Account Manager and Channel 
Dispatcher and it's primary purpose is to encapsulate those two. There always only one 
running on the system. It is very important to check version running for they are backwards 
incompatible [ ]. For better understanding of the role of this and the following components 
have a look at figure 3.4. It illustrates the relationship among the the key components. 

Account Manager 

Account Manager is responsible for handling accounts (e.g. X M P P , ICQ, M S N etc.). It is 
accessible by well-known name on D-Bus - org. f reedesktop. Telepathy. AccountManager. 
A client application first creates an account using the provided methods, supplying it with 
Connection Manager, protocol and display name. Account Manager creates and then as 
long as the Account is active maintains Connection to that Account. The Accounts are 
persistent and the next time the application runs it does not need to create them again. 

To create a Connection a Connection Manager is called by Telepathy. A n Account may 
be valid or invalid and also enabled or disabled. Valid ones may establish a Connection, 
whereas invalid can't. Enabled and disabled property are user's way of telling the appli­
cation which one should be ignored and which not. The lists of valid and invalid accounts 
are accessible via appropriately named methods [ ]. 

Account 

Accounts are created via Account Manager. They are only created once and then stay 
on the system and can be accessed by any Telepathy clients. A n active Account object 
registers with D-Bus and has an object path 
/org/freedesktop/Telepathy/Account/CM/PROTOCOL/ACCDN. CM stands for Connection 
Manager (e.g. gabble, salut, buttefly, etc.), PROTOCOL is substitution for a protocol name 
and ACCDN is Account's Display Name. The Account object implements org. f reedesktop. Telepathy. Ac< 
interface. Features supported by this interface depend on the protocol used and the server-
side software. 

The Account settings are done via org.freedesktop.Telepathy.Properties interface. 
A l l available attributes can be obtained by calling a single method provided by the prop­
erties Interface. The method is very convenient for it returns all the properties at once in 
single D-Bus call. Setting all properties at once works exactly the same. Some features are 
available via specified interface, e.g. avatar. Avatar used to be a property, but now it has 
it's own interface. The Interfaces property of the account lists all interfaces of additional 
features [7]. 

Connection Manager 

Connection Manager supplies Account Manager with Connections. It is not directly used 
by the client program. Account Manager requests connection for active accounts. There is 
always only one Connection Manager for each protocol running at any time. 
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Connection Manager is a protocol-dependent Telepathy component. Different protocols 
need different Connection Managers. For example if the client application wants to commu­
nicate using X M P P / J a b b e r it has to use Telepathy-gabble and for M S N Telepathy-butterfly 
is required. Some Connection Managers can communicate via more than one protocol, for 
example Telepathy-haze. To see what protocols are supported there is an appropriate 
method implemented by the Connection Manager [ ]. 

Connection 

Connection represents an active protocol session. It is associated with an Account and 
is created by Connection Manager based on a request of the Account Manager. Connec­
tion implements org.freedesktop.Telepathy.Connection interface and additional interfaces 
depending on the protocol. List additional interfaces available can be retrieved by checking 
the Interfaces property. The most common interfaces are listed below [ ]: 

• Contacts - used to get as much information about a contact as asked in one D-Bus 
call. 

• Aliasing - serves for setting aliases for contacts and checking if the contacts have 
changed their alias themselves. 

• Avatars - interface to one of the most popular protocol features. Allows users to set 
their avatars and retrieve other users' avatars. 

• Contact Capabilities - retrieves capabilities of contacts' Clients to see what features 
they support. Checks for example for VoIP or file transfer support. 

• Location - lets user publish his or her current location as well as find out his or her 
contacts' whereabouts. 

Channel Dispatcher 

This component handles Channels incoming from active Connections of valid Accounts. 
Channel Dispatcher monitors available or activatable Telepathy Clients through D-Bus. 
Clients register with user's session D-Bus and provide a CLIENT\_NAME. client file. Both 
of those serve as a way to publish Client's properties including a channel filter. The Channel 
Dispatcher based on these properties knows what kind of a client it is and what type of 
channels it is interested in (channel filter). If the Client is running then the properties 
are acquired via the Client interface. If the client is not running and is activatable then 
the .client file is used by Channel Dispatcher to pre-look up the properties and if they match 
the incoming Channel, the Client is activated. So providing the .client file only makes sense 
for activatable Clients. 

When a Channel comes in from one of the Connections Channel Dispatcher notifies 
appropriate Clients. There are three kinds of clients - Observer, Approver and Handler 
detailed description of which is given later in this chapter. The Channel is dispatched to all 
Observers and all Approvers with a matching channel filter. The Approvers choose Handler 
to handle the Channel. Should the Client fail, Channel Dispatcher may recover from such 
error and look for another Handler [7]. 
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Channel 
Channel allows the local client to exchange various kind of data with a remote server. It 
is associated with a Connection and always implements at least two interfaces. The first 
is org. freedesktop. Telepathy .Channel and the second depends on the Channel type. 
Channels for text messaging will be of type Text and will implement 
org. freedesktop. Telepathy. ChannelType. Text interface. The following list shows most 
common types of Channels [7]: 

• ContactList - used to get information of contacts in user's contact list. 

• Text - designed for exchanging text messages. 

• Call - used for VoIP and video calls. 

• FileTransfer - Channel for sending and receiving files. 

• ContactSearch - is used when a user wants to find a contact on a server. 

Channels are created using two methods - CreateChannel() and EnsureChannel(). 

These methods are implemented by both Channel Dispatcher and Connection. When call­
ing either of those methods on Channel Dispatcher the resulting Channel will go through 
the procedure of looking for handler as described above. When using directly the connec­
tion the calling application must handle the Channel itself as the Channel Dispatcher will 
not interfere. It is also possible to supply the Channel Dispatcher with a preferred handler 
and thus achieve the same effect. It is better to use the Channel Dispatcher for if the client 
should fail it may dispatch the Channel to another handler [7]. 

Both of the methods provide a Channel. The difference between the two is that 
CreateChannel () creates actual new Channel whereas EnsureChannel () will attempt to 
reuse an existing Channel with the same properties. The first is typically used for file trans­
fer and contact search and the latter for text, streamed media and contact list Channels [7]. 

Client 

Client is an application that wants to use Telepathy. It needs to register a well-known name 
in org.freedesktop.Telepathy.Client namespace, e.g. Empathy registers 
org.freedesktop.Telepathy.Client.Empathy. Then it provides a .client file where purpose of 
which is described above. Telepathy defines three types of clients - Observer, Approver and 
Handler. A l l of these need to provide appropriate channel filter, e.g. Observer provides 
ObserverChannelFilter. Based on the published filter the Channel Dispatcher dispatches 
an incoming Channel to the Client or not [7]. 

Observers are called upon a creation of a new Channel. They monitor Channels and 
provide the acquired information to user. The observers have different functions based on 
the type of observed Channel, e.g. Text Channel observer might serve as a logger and 
FileTransfer observer as a file transfer progress monitor. Observer is must not interfere 
except for when the user interaction like hitting the cancel button in a file transfer progress 
window [7]. 

Approver is a Telepathy Client that is supposed to accept the incoming Channel and 
decide, which Handler it is dispatched to. The Channel Dispatcher provides Approvers with 
a list of possible Handlers. Approver notifies the user of a new Channel and lets him or her 
decide whether to accept or reject it. Similarly the user is allowed to choose which Handler 
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will handle the Channel. Handler might also be chosen by the Approver itself. Approver 
does not call methods just like the Observer. Calling methods is up to the Handlers. For 
example if there is an incoming file transfer the Approves lets user decide whether to accept 
it or not, but the AcceptFile method will be called by the chosen Handler [7]. 

The last client is Handler. Handler does all the interaction with the Channel. A typical 
example of a Handler is chat-window. It displays messages and allows the user to send text 
messages back [7]. 

Connection Manager XMPP Connection Manager ICQ Handler 1 Handler 2 

Figure 3.4: Simplified Telepathy architecture 

The figure 3.5 represents typical setting using Telepathy. There is one Account Manager 
and one Channel Dispatcher for those are unique in the system. Next we can see Connec­
tion Managers, which allow the clients use numerous protocols. In general the number of 
supported protocols equals the number of present ConnectionManagers. Finally there are 
clients, which may an Observer for logging, Approver and a Handler. But it as well may be 
three handlers. Also one client may represent Handler, Approver and Observer at the same 
time. A l l of these entities communicate via D-Bus. 

3.2 Empathy 

Empathy is a multiprotocol instant messaging application based on Telepathy. In the terms 
described above Empathy is a Telepathy client. It is written in python using Telepathy-
python bindings. Empathy registers a well-known name with D-Bus and communicates 
with Telepathy components to provide the communication services. Empathy supports text 
messaging, file transfer, voice and video calls over various protocols. Supported protocol 
include Google Talk, XMPP/Jabber , M S N , IRC, A I M Facebook, Yahoo!, Gadu Gadu, 
and ICQ. For some of those protocols like Google Talk and X M P P voice and video calls 
implemented. The support of the protocols depend on Telepathy Connection managers 
installed. Additional functionality includes sharing users' whereabouts among themselves, 
automatic reconnection when internet connection is reestablished and automatic changes 
of presence to away and extended away [34]. 

The current stable version of Empathy is 2.32.2 and it is a default communication 
application in G N O M E releases since version 2.24 instead of Pidgin. Empathy also replaced 
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Ekiga - program for voice calls and video-call. It became an ultimate free communication 
tool. Empathy's GUI is takes after Gossip, which is an older I M application for G N O M E . 
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Chapter 4 

Existing solutions 

The first section of this chapter talks about existing applications supporting both VoIP and 
whiteboarding. The listed solutions were chosen based on relevance in the context of this 
work. The level of technical details of each of the applications depends on whether it is 
an open source or proprietory. The next section explains how to transfer multimedia over 
the internet. Finally the last section aims at VoIP and what must be taken into account 
when implementing it. The chapter is based on information from [40, 10, 25]. 

There is a number of existing communication applications offering voice calls and shared 
whiteboard. Some more popular, more advanced, more user-friendly, offering more features 
or better support than others. Some of those programs support video call and some even 
conference calls. We shall go over the existing solutions that implement both shared white­
board and voice calls. Among the described are Skype [ ], Windows Live Messenger [28], 
Brosix [ ], Yahoo! Messenger [ ] and A I M [32]. 

4.1 Applications with whiteboard and VoIP support 

Skype 

Skype is the most popular and most used common VoIP application of all. Skype was 
released in 2003 and was developed by KaZaa [22]. It is available for all major computer 
platforms (Microsoft Windows, Mac OS X and G N U Linux) as well as mobile platforms 
like Android and even Apple's iOS. Although skype is available for Linux it is not well 
supported. The latest version of skype for Linux is 2.1.0.81 Beta while skype for Windows 
is of version 5.1. The polarity of skype demonstrates the fact it is built-in on more and 
more TVs. 

Skype communicates using Skype protocol, which is proprietory. Recently much effort 
is being put in reverse engineering the skype protocol although the first attempt dates 
back to 2004 and was done in [ ]. Skype encrypts the communication end-to-end with 
256 bit A E S so the amount of information acquired by packet sniffers is very limited. The 
motivation for recent efforts are simple. Skype is used by tens of millions of users every 
day, but the support for Linux is at this point almost non existing. Linux users have had 
enough and plan to create an open source client capable of communicating with skype. The 
Wikipedia skype protocol page [45] is filling up with details. 

While most of I M programs utilize client-server communication scheme, skype uses 
peer-to-peer model. The skype network consists of nodes, supernodes and login servers. 
See figure 4.1, which was taken from [ ]. Nodes are clients. Each client keeps addresses of 
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a number of supernodes. Supernodes are clients with good-enough bandwidth, public IP 
address and enough memory and C P U power. Supernodes forward traffic to clients behind 
device with network address translation or restrictive filters. It is believed that skype uses 
something like S T U N , which helps overcome N A T and was first defined in [ ] and then 
superseded by [18]. It seems that nodes themselves determine whether they are behind 
address translating device or firewall. If two nodes want to communicate and either of 
them or both is behind N A T then a supernode is used to forward traffic between them. 

Skype call signaling is done via T C P and U D P is primarily used for the voice transfer. 
If a skype client finds out it is behind a firewall that forbids U D P , the speech is transferred 
using T C P . The codec used is unknown although there are couple candidates, but it is 
almost certainly of wideband type. 

The decentralized architecture seems to be working well although there was an outage 
on December 22nd 2010. Skype officials claim it was due to lack of supernodes [1]. 

Features of skype include calling landlines and cell phones and sending text messages 
and vice versa - SkypeOut and Skypeln. The feature list continues with voice and video 
calls, multi-user chat, conference calls, voice mail and screen sharing. The newest and long 
expected feature of video conference was introduced in may of 2010 in skype 5.0. 

Though closed program, skype provides an A P I for developers who want to create 
extensions called skype extras. Skype extras include a wide range of utilities that might be 
plugged into skype. The extras uSeeToo, TalkAndWrite, WhiteBoardMeeting and Sketch 
Pad all provide shared whiteboard each in their own way. 

Windows Live Messenger 

Windows Live Messenger was first released in July 1999 as M S N Messenger and offered just 
text messaging with users of A O L Instant Messenger [32]. Due to A O L ' s constant effort to 
block Microsoft from it's network Microsoft gave in and removed the feature. Since then 
M S N Messenger could only connect to M S N Messenger Service. In 2001 with the release 
of Windows X P , M S N Messenger 4.6 came out with voice call support. The last version 
of M S N Messenger, version 7.5, featured video calls. Windows Live Messenger 8.0 was 
released in June 2006 and that was the end of the name M S N Messenger. 

Windows Live Messenger utilizes client-server model and communicates using Microsoft 
Notification protocol over T C P . The first 7 versions of M S N P were disclosed to public, but 
since version 8 the details have been kept a secret. M S N P does not use encryption so even 
though MSNP ' s description was not published it was not hard to put it together using 
packet sniffers. 

The Live Messenger is available for Windows, Mac OS X and recently was integrated 
into Microsoft's game console Xbox 360. It features social network integration, offline 
messaging, games and applications, voice and video calls and standard I M features. A n 
interesting feature is Multiple points of presence allowing user to be connected on two 
devices. Shared whiteboard is available as an extra application and is not capable of multi­
user session. 

Brosix 

A n award winning application first released in 2006. Brosix features voice and video chat 
and multi-user chat, basic I M functions and couple advanced functions. Brosix's whiteboard 
is an Microsoft Paint like window shared among the participants and won Best I M Feature 
2009 award from about.com. Next great feature allows users share screen, including mouse 
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neighbor relationship in the 
Skype network 

Figure 4.1: Skype architecture [ ]. 

and keyboard much like V N C . Finally Brosix implements co-browsing where users share 
a browser window. 

Brosix is available for Windows, Max OS X and G N U Linux in commercial and personal 
(free) version. There is little known about used technologies and it is almost impossible to 
reverse-engineer using packet sniffers as Brosix uses 256 bit A E S encryption. 

Yahoo! Messenger 

Yahoo! Messenger is just like all of the above a closed program though some information 
has leaked [46]. Yahoo! Messenger protocol(YMSG) uses T C P on port 5050 or a different 
one if default is not available. To get to clients behind firewall H T T P is utilized. Video 
and voice supposedly use SIP and H.323. 

Besides the standard set of I M functions Yahoo! Messenger can call P S T N , send SMS 
and handle voice conference. Whiteboard feature is called Scribbler and is a plugin. Linux 
is missing in the list of supported platforms while Windows and Mac OS X are not. 
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AOL Instant Messenger 
A I M is yet another I M with proprietory communication protocol. Though A I M is a bit of 
an exception for it supports two protocols. First is just for simple text messaging called 
T O C and has been disclosed to public. Second protocol that supports all of the advanced 
features is being kept a secret. 

AOL' s messenger is available for Windows and Mac OS X and features voice and video 
calls as well as whiteboarding. Whiteboard is available as a plugin for A I M called I M 
Whiteboard. 

4.2 Multimedia streaming protocols 

The following section lists the most popular protocols for VoIP and explains how they work. 
The first part is about signaling protocol SIP and the second about streaming protocol RTP . 

SIP 

Session Initiation Protocol is standardized by I E T F and was first defined in R F C 2543 [27]. 
The latest definition is in R F C 3261 [19]. SIP is used in VoIP for negotiating the details 
of the call. The parameters of the call are described using Session Description protocol 
described in R F C 4566 [ ]. It can be used for establishing, negotiation and terminating 
any type of session whether it is between two users or it is a multi-user session. Among 
the features of SIP is also instant messaging, presence or any kind of event notification. 
SIP uses primarily U D P on port 5060, but can also use T C P on the same port and 5061 

for T L S secured SIP. The syntax is similar to H T T P . 
The clients are identified by URI which looks like this: sip:username@hostname, to be 

concrete sip:bob@biloxi. com. First the client must register with a proxy, which in Bob's 
case is biloxi. com. Now let's say Alice wants to call Bob. To do that she needs to know his 
URI . She sends an INVITE to her proxy, by which it is forwarded to Bob's proxy and finally 
delivered to Bob and his phone or computer start ringing. If he picks up an appropriate 
numeric code is sent to Alice. The example 4.1 shows the scenario presented. 

1 INVITE sip:bob@biloxi.com SIP/2.0 

2 Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds 

3 Max-Forwards: 70 

4 To: Bob <sip:bob@biloxi.com> 

5 From: Alice <sip:alice@atlanta.com>;tag=1928301774 

6 Call-ID: a84b4c76e667100pc33.atlanta.com 

7 CSeq: 314159 INVITE 

8 Contact: <sip:alice@pc33.atlanta.com> 

9 Content-Type: application/sdp 

10 Content-Length: 142 

Example 4.1: SIP invite from Alice to Bob [ ] 

Since SIP serves only to initiate and control the session it needs to cooperate with 
a protocol that does perform the actual data. That protocol is Real-time Transfer Protocol. 
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RTP 
Real-time Transport Protocol is an I E T F standard for transporting data that need to be 
delivered in real-time rather than reliably. Therefore U D P is used on the transport layer. 
R T P was first defined in R F C 1889 [13] in 1996 and then later updated in R F C 3550 [14] in 
2003. It is primary protocol for streaming audio and video over the internet. It is used for 
VoIP for transporting the voice while SIP or another signaling protocol negotiates param­
eters of the transport. More and more T V stations have been converting to the internet 
and they use R T P as means of distribution. R T P uses unicast as well as multicast when 
streaming to multiple subscribers1. 

R T P is used in conjunction with Real-time Transport Control Protocol. R T C P mon­
itors QoS, statistics of the transfer and helps with synchronization when streaming to 
multiple destinations. The volume of R T C P traffic should be around 5% of the volume of 
the stream [33]. 

Unlike the circuit switched network, where the QoS is ensured by it's nature, the packet 
switched network does not have a way of ensuring short or not even constant delay or 
sufficient bandwidth (it is possible, but very rarely and in private network with proper 
S L A 2 ) . R T P defines mechanisms for making the most of the packet switched network. It 
is important to note that in the internet packets of the same stream might take different 
path to their destination. That and network congestion are the reasons for varying delay 
commonly referred to as jitter. R T P labels all the packets with sequence numbers. The 
implementation of R T P at the destination has a buffer to compensate for jitter and out-of-
sequence delivery. If the packet arrives too late it is dropped. Dropping packets to some 
point might not even be noticeable by the user. 

R T P sends and receives data on even port numbers and the associated R T C P uses 
the next higher odd port number. A n example on an R T P packet follows. 

v p x cc M PT Sequence number 

Time5tamp 
Synchronization source (SSRC) identifier 

Contributing source (CSRQ identifiers (if mixers «ue used) 

Header extension (eptional] 

Payload header (paylaad format depende rat) 

Payload data 

_ l 1 I I I I a_ 
Paddin 

Figure 4.2: R T P packet [33] 

1 works only in local networks 
2 Service Level Agreement 
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Voice codecs 
Codec name Bitrate (kb/s) M O S 
G.711 64 4.1 
G.723.1 6.3 3.9 
G.726 32 3.85 
G.729 8 3.92 
Speex 8/16/32 unknown 

Table 4.1: Voice codecs [10] 

4.3 VoIP 

Realization of Voice over IP deals with many problems. Factors effecting voice quality 
are choice of voice codec, echo cancellation, packetization, packet loss, delay, jitter (delay 
variation). First the voice needs to be digitized. That is done by a microphone, which 
consists of analog-to-digital converter and a mechanism for generating current based on 
sound in it's proximity. It is important to note that human ear can hear sounds of frequency 
between 16 to 16000Hz, but only fraction of this spectrum is used when speaking. It is 
400 - 3500Hz to be concrete. By recording only a part of the spectrum lower sampling 
frequency might be used resulting in lower bitrate. The sampling frequency is determined 
based on Nyquist-Shannon sampling theorem. The A D conversion in digital telephone 
networks is for example in digital telephone networks done by P C M 3 , which takes 8000 
samples - discrete values on the A D converter. Each sample has 8 bits so the resulting 
bitrate is 64kbit/s. P C M is for it's high bandwidth consumption and low level of captured 
information not suitable for VoIP [25]. There are alternatives specialized for representing 
speech, which has certain characteristics whereas P C M is used for any type of sound. 

The next step is compressing the recorded voice. There are several compression algo­
rithms. First difference is in length of voice chunks they compress. G.729 takes 10ms as 
opposed to G.723.1 that takes 30ms. The longer the chunks of voice are the less overhead 
(IP and Ethernet headers) is sent over the transport media. On the other hand the shorter 
the length the smaller impact on the conversation should the packet get lost. The com­
pression algorithms used by the voice codecs should ideally lower the data size significantly, 
while causing short algorithmic delay and taking up insignificant amount of C P U time. 
Unfortunately there is no codec that would excel in all of the above. Good choice is thus 
a suitable compromise of the qualities. Since codecs are very hard to compare based on 
those qualities M O S 4 as means of comparison attribute. The M O S is a subjective eval­
uation of quality of voice encoded/decoded by the particular codec on a scale 1-5. The 
table 4.3 shows the most popular voice codecs with bitrates and MOS. 

Once the speech is digitized and encoded it needs to be sent over the network. Since 
VoIP is an interactive service the latency should be less than 150ms. If the delay is too long 
the users experience the two conversations effect. The types of delay that need to be taken 
into account at all times are processing delay, packetization delay serialization delay. The 
processing delay represents time needed for voice digitization and compression and is codec 
specific. Packetization delay occurres when the encoded voice is being loaded into packets 
and depends on how long chunks of speech the particular codec uses. Serialization means 

3Pulse-Code Modulation 
4Mean Opinion Score 
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sending off the data through the network link and the delay is dependent on the available 
bandwidth on that link. For links with low bandwidth it is recommended to use codecs 
with low bitrates. G.729 for example uses voice activity detection and silence suppression. 
The caller on the other side then is sent carefully generated comfort noise so that he does 
not think the call went down. The comfort noise however has much lower bitrate requiring 
lower bandwidth. 

Last and largest portion of the total delay is time of network delivery. We need to 
account for switching and routing delays, link transmission delays and also for jitter buffer 
delays. The routing protocols work based on destination address which may, and often 
does, result in packets of one conversation taking different routes to the caller. Different 
routes mean different delays - jitter. Jitter buffer is used to accumulate arriving packets 
and presenting them to the user in the correct order. Since R T P uses sequence numbers 
it is an easy task to reorder packets. The problem is when packets are delivered too 
long apart. In that case the missing packet is assumed to be lost for the resulting delay 
would have a worse effect than the missing packet. Network administrators may influence 
the network transmission delay using QoS mechanisms such as DiffServ 5. DiffServ allows 
the administrators to give the interactive data like voice and video a higher priority than 
traffic like emails or H T T P . In order to do so the traffic must be classified and then marked. 
IPv4 provides means for marking traffic and thus allows using QoS throughout the internet. 
The edge router through which the traffic enters the autonomous system either trusts 
the marking of data from a neighboring network or (re)marks the traffic itself. Although 
most of the networks utilize QoS there are still some that either don't or have incorrect 
setup. 

Overcoming NAT and firewalls 

First what is Network Address Translation (NAT) and what is it good for. The internet 
is based on Internet Protocol version 4. The IPv4 was designed in 1981, when internet 
was just a pack of machines mostly owned by universities and nobody could imagine IPv4 
address space6 could ever be used up. The enormous expansion of the internet cause that 
the IPv4 addresses were all used up in February of 2011[15]. This is where IPv6 comes 
in offering using 128 bit address and thus offering 3.4 • 10 3 8 cardinality of address space 
allowing anyone to have public IP address. The transition from IPv4 to IPv6 is however 
costly and complex due to the decentralized nature of the internet. 

To connect new devices to the internet without having to wait for/transition to IPv6 
N A T is used. It basically "hides" an entire network behind one IP address. This solves 
the problem problem with insufficient amount of addresses, but creates another problem. 
The devices behind N A T obtain a private address and can not be connected to directly 
from the internet. The only device that is directly visible from the internet is one with 
public IP address. Figure 4.3 shows the typical home network setup. 

If a user on the home computer wants look at a website, the home computer sends 
a request to the router, which performs translation of the home private address to a ISP's 
network's private address. And the same happens on edge of provider's network. The 
routers performing N A T create a mapping of source IP and source port to translated address 
and port. The web server sends a reply back to the ISP, with it's address and the translated 
port number. The edge router looks at mapping and translates back the address and port 

5 Differentiated Services 
6IPv4 address is a 32 bit number - 4,294,967,296 (2 3 2) addresses 
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Figure 4.3: Typical connection to the internet 

number and sends it the home router. Same action is performed by the home router and 
the packets are sent the home computer, which made the request. 

Accessing the home computer from the outside can not be done for two reasons. First 
private network is not present in the internet's routing tables. And second even if we knew 
the address of the ISP's edge router, without the dynamic mappings the router would not 
know which device in it's network to froward the packets to. To summarize it is only 
possible to send data to a device in a private network if it initiates the communication. 
More so that is possible only if the peer has a public address. Two computers behind N A T 
can not communicate directly 7. 

There are several solutions for overcoming N A T like S T U N or T U R N 8 (RFC 5766). 
S T U N is a client-server protocol where the server has a public address and client is behind 
N A T . Client contacts the server with a request and the server then tries acquire port and IP 
address, which translate to the client's address and a certain port number. S T U N however 
is not always successful as it can't work with all types of N A T . Next there is T U R N , which 
acts as a relay server and relays traffic from one client to another in case no other mechanism 
works. It is clear that this is a last resort. Maintaining such servers costs money for the have 
be connected through links with high bandwidth and the traffic first goes in and then out. 

Both of the above mentioned protocols are not universal enough for all kinds address 
translation systems. Interactive Connectivity Establishment (ICE) by I E T F defined in R F C 
5245 describes a methodology of taking the best of each N A T overcoming protocol to allow 
the clients with private addresses to communicate with each other either directly of through 
third party relay server. 

7It is possible through port forwarding, which is intentionally omitted 
traversal Using Relay NAT 
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Chapter 5 

Port to Telepathy 

Telepathy communication framework described in detail in chapter 3 is a logical choice of 
communication architecture if one wishes to create a powerful and easily maintainable I M 
application. A proof that porting to telepathy is a step in the right direction is for example 
a new client that is being developed by the K D E community and is supposed to become 
a default K D E I M application. The first release is expected any time now. At that point 
both main Linux window managers K D E and Gnome (Empathy) will have their default 
I M program based on telepathy. That fact alone promises great and lasting support of this 
architecture. This chapter talks about the porting of Makneto from iris library to telepathy 
and explains the design of the application and the reasoning behind it. 

The first important change in the architecture of makneto is separation of user interface 
from the communication backend. There were several reasons supporting this decision. 
First is that since Telepathy is quite complicated and it takes time to get familiar with it 
would be best if user interface used a simplified abstraction. And that is where the com­
munication backend comes in. Moreover the backend is the only piece of code that will 
have to be adjusted should Telepathy undergo any design changes or adjustments. The 
plan is to make the backend as portable as possible so it could run on most platforms pos­
sible. The user interface will be created specifically for the targeted platform. Wi th that 
in mind it makes sense to separate backend and frontend. For instead of adjusting user 
interfaces for all the platforms to the changes the backend will absorb it and frontends will 
stay unchanged. 

One of the aims of this work is to strip the current application of the iris library and 
implement the backend based on Telepathy. Qt4 bindings for Telepathy were chosen to be 
used simply because the rest of the application was implemented using this framework and 
it is overall very convenient to use with high level of abstraction. The following figure 5.1 
shows a diagram of the new Makneto architecture. 

5.1 Connection 

As mentioned earlier Telepathy communicates over D-Bus, which means that if the appli­
cation has to have a D-Bus well-known name in order for Telepathy to be able to address 
it. Namely the backend needs to implement Client Handler interface by subclassing 
AbstractClientHandler and register with D-Bus. Along with well-known name (in this 
case Makneto) the application lets telepathy know what channels it is capable of handling. 
Makneto backend is a Telepathy handler and at this point is able to handle text chat, multi-
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Signals, desktop GUI 
TelepathyQt4 methods MaknetoBackend «r 

_ Signals TelepathyQt4 MaknetoBackend «r 
_ Signals 

mobile GUI 

Figure 5.1: Simplified schema of Makneto components 

user chat, audio and file transfer. It is also prepared for video calls, which is functionality 
outside of the scope of this thesis. More on that in the following chapter. 

Client handler needs to be initialized and that is where the Telepathylnitializer 
class comes in. It merely needs a name of the client and sets up features for contact, 
connection, account and channel factories. The factories ensure that if the managed object 
like connection for example is ready it supports all the features specified upon the creation of 
the connection factory. That way the factories hold the desired features and once the object 
emits ready () signal there is no need to query the available features. The factories are 
supplied to constructor of Account Manager. Account Manager contains Account objects 
representing accounts of the user. To be able to use Account Manager becomeReady () 
method must be called and then wait for finished0 signal. Then the accounts may 
be accessed. The accounts we get from the Account Manager must also be made ready 
the same way as the manager. Once everything is ready to use the Initializer emits 
finished() signal. 

At this point nothing stands in the way of having the accounts go online. This is 
handled through a context menu of a contact list, that is described later in this chapter, on 
the frontend and by TelepathyClient. When an account is brought online the Connection 
Manager creates a Connection with features specified in the ConnectionFactory. If there 
is another telepathy application already running with the account online the Connection 
for that account will be shared to prevent wasting resources. 

Figure 5.2 shows classes of the Makneto backend that participate on the communication 
with Telepathy and through it with anyone else. TelepathyClient handles both incoming 
and outgoing Channels of types asked for upon registration with D-Bus. Once a Channel 
arrives the TelepathyClient checks if a session with the contact already exists and if it 
does the Channel is handed over to it. If not than new session is created and signal is 
emitted to inform the user interface. Session class encapsulates all of the communication 
of the user with the outside world. This is the main difference between iris and telepathy. 
Iris uses a single point of entry for all communication whereas with telepathy it is done 
via Channels. The session represents all kinds of interaction the user might have with 
the outside world through Makneto. 

It is important to note that outgoing channels even though requested via Session 
invoke handle Channels () method of the TelepathyClient. There is a flag present with 
the channel indication whether it has been requested or is coming from the outside. 
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MaknetoBackend::TelepathyClient 
- m sessions : 

Ma knetoBackend:: Session 
- m_textChannel : 
- m_streamedMediaChannel : 
- m fileTransferChannel : 

Ma knetoBackend: :Telepathylnitializer 

Figure 5.2: Makneto backend class diagram 

5.2 Whiteboarding 
Whiteboarding at this point is not supported by Gabble, connection manager for X M P P . 
Makneto itself the feature supports for it is Makneto's main feature. Until a plugin for 
whiteboard support is written for Gabble, the whiteboard messages will be tunneled through 
text messages. The main problem was sending S V G data to clients that would simply dis­
play the data to the user. Luckily X M P P offers resource parameter, which is used to check if 
the contact on the other side is using Makneto and thus can interpret the data correctly. Un­
fortunately this meant loosing the ability to whiteboard with clients implementing S V G W B 
by Joonas Govenius, though the J E P has not yet been approved. Whiteboard classes be­
long to the backend and once the functionality is added to Gabble it will be a simple task 
to make use of it and restore the lost compatibility. 

The main whiteboarding classes remained unchanged except for the S V G data delivery. 
The previous implementation based on the iris library supplied conveniently a X M L element 
containing the whiteboard information. Since telepathy does all the X M L parsing and 
interpretation for us, the only option was reconstruct the wb element from string. 

5.3 Contact list 

Makneto's contact list has been ported to telepathy and utilizes Qt model/view architecture. 
The model is a part of the backend and the view is a part of the user interface. The contact 
list model is based on a model from Telepathy-Qt4-Yell project [ ]. The model is connected 
to all the possible signals stating the item's properties have changed. Once the item has 
changed, the model's slot receives the signal and emits changed () signal, letting the view 
know it should update information showing to the user. 

One of the greatest benefits of telepathy - multi protocol support - is now present 
in Makneto. The new contact list model has two types of nodes (items) as shown in 
the class diagram in figure 5.3. Since it is a tree model we will start from the nodes. 
Nodes are individual accounts registered with telepathy. These accounts may used in other 
applications built on telepathy. Leaves are items representing contacts under each account. 
Although whiteboarding is supported only through X M P P , the other of the features like 
text chatting or file transfer are available over the other protocols. It must be of course 
supported by the client of the peer. 

As you can see from the class diagram the TelepathyClient has an instance of the con­
tact list model. This is useful for requesting sessions with contacts from the frontend -
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RosterWidget. It simply specifies the contact or account by sending index of currently 
selected item of the model. Any other way would require implementing special Makneto 
classes for contact and account in order to keep the frontend independent on telepathy 

MaknetoBackend::TelepathyClient 
- m accountsModel : 

RosterWidget 
m accountsModel : 

Ma knetoBackend:: AccountsModel 
m tree : 

J 

Ma knetoBackend: :TreeNode 
- mchildren : 
- mparent: 

Makneto Backend: :AccountModel Item MaknetoBackend::ContactModelltem 

Figure 5.3: Makneto contact list class diagram 

The user interface was kept almost the same even though both of the communication 
libraries have very different usage. Moreover this work does not aim at the frontend. One 
major change of the GUI is worth noting. The main class Makneto was an attribute in most 
of the classes and was passed along through all those classes. The singleton design pattern 
was utilized, for only one instance of the class exists. Makneto's Instance() method 
is static making it possible to get instance of the class anywhere within the application. 
TelepathyClient is also implemented as a singleton. 
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Chapter 6 

VoIP implementation 

The final chapter of this work contains details about implementation of VoIP into the appli­
cation Makneto. Frameworks GStreamer [8] and Farsight2 [ ] used for handling multimedia 
are described. And the last section talks about the implementation itself. Information in 
this chapter were found at [8, 30, 4]. 

Implementing an application handling multimedia means working with devices like 
sound card, camera, etc. There are several ways of doing so. First would be low-level 
access, which is platform and device specific. In G N U / L i n u x it requires using either Open 
Sound System (OSS) or Advanced Linux Sound Architecture (ALSA) . Both of those offer 
abstraction of hardware beneath, but very low and work only on U N I X like systems and 
G N U / L i n u x respectively. Since we are aiming at portability they are not a good choice. 
Next is using a multimedia framework with higher level of abstraction supported on multiple 
platforms such as GStreamer [8] or Phonon [30]. 

6.1 GStreamer 

GStreamer is a multimedia framework for writing streaming multimedia applications. It is 
based on GLib 2.0 and offers A P I for writing plugins and thus extending it's functionality. 
Programmers use A P I for creating applications handling audio, video or both. Recently 
a stable bindings for Qt have been released making the development even more convenient. 
Have a look at figure 6.1 to get an idea of what the framework consists of. GStreamer 
abstracts media sources (file, H T T P , A L S A , U D P , etc.), file formats (avi, ogg, mp4, etc.) 
and various filters, codecs and outputs. Moreover it has VoIP and video conferencing 
support. By using GStreamer the implementation does not have to deal with writing 
codecs or access to the system media sources. A l l of this is done by the framework. 

Building an application using GStreamer is done by chaining the basic objects - elements. 
Each element performs a specific function like encoding audio stream, displaying video on 
the screen on reading from a network stream. It has data inputs and outputs called pads. 
Depending on the element it might have just an output pad called source1. That might 
be for example one representing an audio file. If it contains just an input pad - sink, then 
it might be a sound card or screen. Elements containing two pads are filters, encoders, 
decoders, etc. and more than two would be muxers, demuxers, etc. 

Chaining elements to perform certain function means connecting their sources and sinks. 
The chain is called pipeline and there is an example of one in figure 6.2. There are several 

1Source because it is a source from the next element's point of view 
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gstreamer tools multimedia applications 
gst-inspect 
gst-launch 
gst-editor 

4 t i t t t 
gstreamer core framework media agnostic 

base- classes 
mes5age bus 
media type negotiation 
plugin system 
utility libraries 
language bindings 

media agnostic 
base- classes 
mes5age bus 
media type negotiation 
plugin system 
utility libraries 
language bindings 

media agnostic 
base- classes 
mes5age bus 
media type negotiation 
plugin system 
utility libraries 
language bindings 

^ 4 4 * 
protocols sources formats codecs filters sinks 
-file - alsa - ay - mp3 
- http: - V4I2 - mpeg4 
-rtspi - tcp/udp •°sg - verbis 

I . It J i ] 

gstreamer plugins 
gstreamer includes over 150 plugins plugins 

Figure 6.1: GStreamer architecture from [i] 

elements linked together starting with the file-source. The file contains both audio and 
video and thus a demuxer is used with two sources, one for each stream. Next there is 
decoding and presenting the result to the user. Wi th a large number of plugins supporting 
most of known codecs and devices this framework becomes a very powerful tool. 

Figure 6.2: Example of a GStreamer pipeline from [f. ] 

Pipeline is a special case of bin, which is a collection of elements. Since bin is also 
an element the programmer can create a pipeline consisting of several elements and per­
forming certain function and use it as element in a larger and more complex pipeline. This 
design allows abstraction on a very high level. When linking elements together the media 
type that one produces and the other consumes must be compatible. That is determined 
through elements' capabilities in a process called "caps negotiation". GStreamer provides 
a way of automatic linking of elements called autoplugging based on capabilities. 

When an element is created and linked there is no data flowing until it's state changed 
to play. The default state in which no resources are allocated is null. Next state is ready, 
when the element has all of it's resources allocated, but the stream is not opened yet. It is 
during this phase when the user finds out that the resource is unavailable or incompatible. 
From ready the elements go to paused by opening the stream a buffering it's contents. At 
this point the elements should be ready to switch state play instantly. Finally the play 
state is same as paused, but the data is actually flowing. 

36 



GStreamer is designed for high performance. Data between elements are copied only 
when absolutely necessary, otherwise pointer dereference is used. More so the stream pro­
cessing is running in separate threads. 

6.2 Farsight 

Farsight2 [4] is library implemented in C GLib based on GStreamer architecture. It eases 
transporting multimedia over the internet. It is meant to be used instant messenger appli­
cation for audio and video calls. Farsight is used by Telepathy via telepathy-farsight library 
for which there are even Qt bindings. Empathy utilizes farsight for it's audio and video 
calls and so does for example Nokia Internet Tablets. 

This library provides GStreamer elements for multimedia streaming protocols. The 
supported protocols are U D P , R T P and M S N . One of the farsight's features is N A T and 
firewall overcoming ability. It implements ICE for reaching into private networks and 
H T T P tunneling for breaching restrictive filters. Moreover farsight supports dynamic codec 
negotiation and switching. It also makes it possible to bridge incompatible protocols and 
conference with for example a GTalk and Yahoo user. 

Using farsight is consistent with using GStreamer, because it implements GInterface. 
FsConference represents a conference that can contain one or more sessions. FsSession 
corresponds to one R T P session and offers a sink and source pad. The sink pad should be 
connected to either microphone or video camera, generally an audio or video input device. 
The source pad would be linked to audio or video output device. One session has one media 
type and one sink pad, but can have more source pads in case of more participants 2 . For 
audio calls with video there will be two FsSession objects each for one type of multimedia. 
Each session has one or more transmitters. FsTransmitter abstracts the network layer. 
One transmitter serves for one transport method (UDP with ICE, U D P , H T T P tunneling, 
etc.). Finally there is FsStream object that represents a connection to one participant. The 
streams correspond with source pads in the session. Relationship among farsight objects 
are best seen in figure 6.3. 

[ Conference ] 

Figure 6.3: Farsight architecture 

If used with telepathy, farsight utilizes StreamedMediaChannel for signaling. The pro­
tocol used for signaling depends on the used connection manager. In case of Gabble Jingle 
is used and SIP in case of Sofiasip. Farsight first creates a session and it's type is estab­
lished. If there are more than just media types then sessions within this conference are 
created. Streams are built next. If the client allows user to specify his or her preferred 

2 one source for each participant 
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codecs it should be supplied to farsight when it emits stream-get-codec-conf ig signal. 
Once farsight has the preferences it creates the stream. In case of VoIP the streams are bidi­
rectional. At this point farsight negotiates the codecs. It goes through gstreamer plugins 
and looks for encoding and decoding elements. List of available codecs is sent to the re­
mote machine. Wi th codec negotiation finished the only thing left to is arranging a peer 
to peer transfer of the data through the stream. This is accomplished by using ICE . First 
remote candidates followed by local candidates are acquired. Candidate is an IP address 
and port where the participant might be able to receive data. Local and remote candidates 
are put in candidate pairs. Thanks to ICE farsight is able to determine whether the peers 
are on network and transfer data locally. When a working and suitable candidate pair is 
established the streaming begins. Farsight lets the application know by emitting signal 
src-pad-added of the stream object. That means the src pad of the stream is ready to 
supply data to a prepared GStreamer pipeline. Until this moment all the data transferred 
went through the signaling protocol. 

6.3 VoIP in Makneto 

The implementation of VoIP in Makneto is based on K D E Telepathy Call UI [24] by George 
Kiagiadakis. It uses telepathy farsight Qt4 bindings to create a TfChannel. The applica­
tion communicates with the farsight channel via GLib signals. Events the application 
checks for are creation of a session followed by creation of a stream, channel closure and 
codec configuration request. Once stream is created more signals need to be connected. 
These include stream source pad ready, stream closed and resource requested. By emitting 
resource-requested signal farsight lets the application know that the GStreamer pipelines 
for processing incoming and outgoing data should be created and put into playing state. 

The GStreamer pipeline used for audio data transmission is in figure 6.4. The chain 
starts with audio input representing either Pulse, A L S A or OSS input devices depending 
on what is available. The volume element is used for adjusting volume of the raw audio 
input. There is a volume widget available within the backend. Volume is linked to an audio 
converting element, which converts the raw audio between different formats. The follow­
ing element handles audio resampling. And the final element represents the R T P stream 
encapsulated by farsight. 

pipeline (GstPipeline) 

Audiolnput 
(GstElement) 

I Src 

AudioBin (GstBin) 

Volume 
(GstElement) 

Sink Src 

AudioConvert 
(GstElement) 

Sink Src 

AudioResample 
(GstElement) 

Sink Src 

FsStream 
(GstElement) 

Sink I 

Figure 6.4: GStreamer pipeline used for VoIP in Makneto 

The receiving pipeline is very similar. The AudioBin is used unchanged. The data 
however flow in the opposite direction. Moreover instead of audio input an audio output 
must be used. The process of acquiring it is the same. 
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Makneto is prepared for video calls as well. However there is a known problem when 
starting a second stream with farsight. Namely racing occurs when the new stream is 
created. Sometimes the packets of the new stream arrive before the src-pad-added signal 
of the stream is connected. This means the stream is not linked and thus no data get to 
the GStreamer pipeline. 

Testing 

Firstly we were unable acquire many test subjects, which makes the results less repre-
sentable. The main problem was the need for up-to-date software. TelepathyQt4 for 
example is required to be in a less than three weeks old version. That greatly reduces 
the number of possible test subjects to the ones capable of compiling various libraries from 
source and resolving dependencies. This is usually done by the package manager. In this 
case however the package managers offer versions that are too old for compilation. And 
even when successfully compiled outdated farsight will prevent successful cal establishment. 
The computers used for testing ran Fedora 15, Ubuntu and Kubuntu. A l l of them used 
the Farsight2 0.0.28, GStreamer at least 0.10.33, Telepathy-Farsight at least 0.0.17 and 
TelepathyQt4 0.5.16. 

The tests of VoIP functionality of Makneto have revealed that successful call establish­
ment depends on updated Farsight2 and telepathy-farsight. We were able to make a call 
from Makneto on one laptop to Makneto on another laptop with no problem. Another 
attempt however resulted in stream working in one direction only. Sometimes the call is 
not successful at all for no apparent reason. A l l the necessary steps finish with no error 
and yet there is no sound. Due to low number of test subjects we were unable to insolate 
the problem causing the call establishment to fail. 

Next set of tests was done using Makneto on one side and Empathy on other. In 
configurations where we were previously able to establish data flow in just one direction 
Empathy work in both. However not even Empathy work on hundred percent and calls did 
not succeed. 
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Conclusion 

The world of today can be described as one enormous network, to which everyone is or 
soon will be connected. One of the Internet's greatest features is bringing people together. 
People who hundred of years ago would have to travel sometimes even months to see each 
other or wait for a letter to get an opinion on an idea from a colleague. Today it is just 
a few clicks away through collaborative applications where Makneto undoubtedly has it 
rightful place. 

In this work the application Makneto was taken and ported the communication module 
from iris library to telepathy. Due to differences in the connection scheme of both libraries 
- centralized iris as opposed to distributed telepathy - the architecture of Makneto had to 
be adjusted. The removal of iris also simplifies the application deployment in the long run. 
Iris is not available via package managers whereas telepathy is. 

Makneto now thanks to telepathy supports most of the known instant messaging pro­
tocols. Depending on the protocol the application is able to provide file transfer and chat-
rooms. The whiteboarding is due to non existing plugin for Gabble now incompatible with 
clients other than Makneto. This is only temporary until the Gabble plugin is made. X E P 
describing the whiteboarding for X M P P is however not approved and Gabble developer 
might implement it only when approved. At this point the S V G data for whiteboard are 
transferred through text messages. 

VoIP functionality was added to Makneto using GStreamer and Farsight2. Adding 
a video support for the calls partially depends on the development of farsight as it tends to 
have problems with adding video stream. The current version supports one to one audio 
calls. Makneto is able to establish calls not only with itself but also with other applications 
such as Empathy. 

The application Makneto was described in detail in chapter 1 including the underlying 
architecture and the technologies it builds on. Makneto's architecture is shown and it's 
strengths and weaknesses pointed out. Makneto uses X M P P protocol for communication. 
Chapter 2 explains how it works and what it features. 

Existing whiteboarding and VoIP programs are listed and analyzed in chapter 4. Nu­
merous applications exist featuring whiteboard and VoIP and some of them even video 
conferencing. A l l of the programs unfortunately used proprietory protocols and do not 
provide any information about it at all. Then this chapter goes over some protocols used 
for streaming media. Lastly it mentions issues that must be overcome when implementing 
VoIP and how to deal with them correctly. 

Chapter 5 goes over the changes made in Makneto regarding the port to telepathy. The 
changes in Makneto's architecture and the reasoning behind them are discussed. Telepathy 
is very powerful as well as complex framework. It's architecture and qualities are described 
in chapter 3. 

Finally the chapter 6 explains how was the VoIP functionality implemented into Makneto. 
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It describes the used libraries including the way the entire process works. The application 
is included on C D enclosed in this work along with a manual containing install instructions. 

A l l the goals of this thesis were achieved. 
Makneto is a great application and there are many possible improvements that can be 

made. Firstly the GUI needs to be improved for not all the implemented functionality 
is well connected with it. Next it could offer conference calls since both the whiteboard 
and the text chat allow more participants. Video support for audio calls might added as 
well. The whiteboard could support various plugins such as chess or checkers that could be 
written in Q M L and thus sent over the application on the fly. Lastly there is no frontend for 
increasingly popular and common mobile devices, which would take Makneto to the next 
level. 
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Appendix A 

C D Content 

/Makneto/* - revision of program Makneto from May 23rd 2011 
/ M a k n e t o / R E A D M E - manual for compiling Makneto 
/thesis/* - source code of this thesis 
/projekt.pdf - text of this work 
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