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Abstrakt 

Summary 
The regression analysis is a modelling technique that establishes, mathematically, the 
relationship between entities of a particular subject. Al though the modelling is done in 
such a way that one variable is seen as a subject of the other(s), regression does not 
imply causation. The modeling has assumptions such as linearity, normality, little or no 
multicollinearity, homoscedasticity as conditions for optimal relationship establishment. 
The simplest of the regression technique is the linear regression which also is the most 
commonly used. It involves the use of a straight line model to define the best pattern 
of relationship. This best pattern is assessed by the measure of goodness of fit which 
describes the amount of variation in the response variable explained by the stimuli (or 
stimulus). Change-point regression is a type of linear regression that takes into account 
a change in course of the movement of the relationship under study. This type of change 
in course is taken into account by modelling the regression in segments to account for 
the entire relationship observable in the data at hand. This model was carried out using 
the least square method. The data upon which this methodology is applied is the Italy 
C O V I D - 1 9 data. The data was subjected to a linear regression and evaluated after which 
it was subjected to this change point test and the test shows the presence of a change in 
course. The sections which the test divides the data into two were modelled individually 
and their regression lines were obtained. The two sections were plotted on a graph wi th 
their regression lines intercepting at the crest of the plot. 
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1 D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

1 . DESCRIPTION 
ANALYSIS 

OF REGRESSION 

1.1 I N T R O D U C T I O N T O REGRESSION ANALYSIS 

Regression is a tools mathematician and statistician use to modal data. These tools are 
used in our daily activities such as finance, predictions about the future, investing, and 
other disciplines that attempts to determine the strength and character of the relationship 
between one or more dependent variable ( which is mostly denoted by Y ) and a series of 
other variables ( known as independent variables denoted as x) [17]. 
Regression analysis is a statistical system which helps us to dissect and understand the 
relationship between two or multiple variables of interest. The optimized process for 
performing regression analysis helps to understand which factors are important, which 
factors may be overlooked, and how they're affecting each other [ ]. Regression analysis 
is one of the most extensively habituated system among logical models of association em­
ployed in business exploration as spoken earlier. Regression analysis attempts to dissect 
the relationship between a dependent variable and a group of independent variables (one 
or additional variables). 

For better understanding we can describe this analysis has a set of statistical pro­
cesses for assessing the relationship between the dependent variable (often known as the 
'outcome/results variable') and one or multiples Independent variables (often referred to 
as 'predictors', 'covariates', or 'features/observations'). It's a method used for estimating 
relationships between a dependent variable and one or more independent variables, it can 
also be used for assessing the strength of relationships between variables and for future 
modeling relationship between them [16]. Regression analysis includes many variations, 
such as linear, Mult ip le linear and non-linear. 

Example: We can use regression model to analysis the age and height of people in a 
Community, because people's height increases wi th age and this shows that they have a 
linear relationship. 

In another scenario which was stated by Redman [ ]: Assuming you're an incoming 
supervisor attempting to predict the following monthly purchases. Y o u comprehend that 
dozens, possibly many variables from the climate to a contender's advancement to the 
talk of a better than ever model can affect the number. Maybe individuals in your as­
sociation even have a hypothesis regarding what wi l l have the greatest impact on sales. 
"Believe me. The more downpour we have, the more we sell." "a month and a half after 
the contender's advancement, deals bounce" . 

Regression analysis is a way to find out mathematically which of those variables/factors 
actually have an effect [ ]. 

This analysis gives answer to the following questions: 

1. Which variables make the biggest difference? 

5 



1.2. T Y P E S O F R E G R E S S I O N A N A L Y S I S 

2. Which could be able to disregard? 

3. How do those variables collaborate wi th one another? 

Concerning the Redman's scenario which was mentioned above, monthly purchases is our 
dependent variables and the suspected variable have an impact on it. 

We have many types of regression model but to talk of few starting from 

• Linear regression model: 
The linear regression method is also a simple regression type, although it includes 
dependant variable and predictor variable that connect to one another either directly 
or linearly. It can be determine which is the best fit line wi th linear regression then 
set up a predictor error among the predicted value and the main observed. The 
downside of linear regression is the responsiveness to outlier in the data, therefore 
it is regularly utilized for minor data or predictions [1]. 

The model of linear regression is utilized to portray a connection between factors 
which are relative to one another. Meaning, the reliant variable builds/diminishes 
with the autonomous variable [ ]. 

The linear regression graph has a straight direct line plotted between the factors. 
Regardless of whether the focuses are not actually in an orderly fashion (which is 
generally the situation) we can nonetheless see a sample and make sense out of it. 

Example: A s a person ages, the level of glucose in his body also increases. 

• Mult ip le regression model: 
The multiple regression technique helps to correspond the connection among a de­
pendant variable and two or more independent variable. When more independent 
variable is included it makes it a more complex regression analysis study. For in­
stance, the evaluation that if more rain coat sell in the meteorologist forecasts rainy 

1.2. T Y P E S OF REGRESSION ANALYSIS 

y = ßo + ßix + Si 

Figure 1.1: Sample graph of a Linear regression [ ] 
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1. D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

weather particularly in spring or across all seasons. Also, evaluation of salary in­
comes for education, experience and proximity to a city area [1]. 

U = A) + P1X1 + P2X2 + ^3X3 + ^ 

This model is also utilized when more than one free factor influences a dependent 
variable. Whi le anticipating result variables, it is essential to gauge how every 
independent variable moves in its current circumstance and what their progressions 
wi l l mean for the result or target variable [ ]. 

Example: The chances of a student failing in his test may depend on various input 
variables like hard work, family issues, health issues etc. 

Cliinstrap 

Snoot length [mm) 

Figure 1.2: Sample graph of a Mul t ip le linear regression [11] 

Non Linear regression model: 

The non linear regression is a mathematical expression that utilize a formed line 
usually a curve to suit an equation to some data [1]. 
For example: 

y = e/3oe/3ix ;i.2.2) 

The non linear regression model are utilized owing to the fact that their capacity 
to fit several mean functions [ ]. For the non linear, the diagram doesn't show a 
linear movement in the model. Contingent upon how the reaction variable responds 
to the input variable, the line do rise or fall showing the tallness or profundity of 
the impact of the reaction variable. 

Example: A patient's reaction to treatment can be fortunate or unfortunate relying 
upon their body inclination and resolve. 

7 



1.2. T Y P E S O F R E G R E S S I O N A N A L Y S I S 

Figure 1.3: Sample graph of a Non linear regression [ ] 

Some examples of Non-linear regression model 

1. Logistic regression model 

This model is most normally utilized when the objective variable or the reliant vari­
able is unmitigated [ ]. For instance, regardless of whether a tumor is threatening 
or harmless, or whether an email is valuable or spam. 

We have 3 types of logistic models 

• Binary logistic models 

This model only have two possible result. For example, a tumor is threat­
ening or harmless [12]. 

• Mul t inomia l logistic models 

These kinds of models have at least three potential results without really any 
request for inclination or positioning. For instance, what kinds of drinks are 
more preferred(smoothie, milkshake, juice, tea, espresso, and so on) [12]. 

• Ordinal logistic models 

These sorts of models have at least three potential results and these results 
have a request for inclination. For instance, Movie evaluations from 1 to 5 
stars [12]. 

2. Michaelis-Menten Regression model 

Michaelis-Menten Kinetics model serve as the highest prominent Kinetics model. 
In biochemistry, it is utilized for modeling enzyme kinetics. This model is tagged 
following a physician from Canada called M a u d Menten including a biochemist from 
Germany called Leonor Michaelis. This model report amount of enzymatic results 
ratio towards the attention regarding an underlayer. The equation appear as shown 
[12]. 
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1. D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

"Umax \p\ 
V = KM+[S] 

• Vmax - maximum rate achieved by the system 

• K M - Michaelis coefficient 

• S - concentration of the substrate 

• V - rate of the enzymatic reaction 

Generalized Addit ive Models 

These models fit non-parametric bends to given information without requiring a 
particular numerical model to depict the nonlinear connection between the factors. 
They are extremely helpful as they permit us to recognize the connections among 
reliant and autonomous factors without requiring a specific parametric structure 
[12]. 

T E R M I N O L O G I E S USED IN REGRESSION ANALYSIS 

Outliers: 
In a direct words, an outlier is an extreme value. Assuming there is an presumption 
in the data set that own a very high or very low value as contrast to the other 
observation in the data, i.e it does not belong to the population, observation like 
that is called an outlier. A n outlier is a problem because most times it hampers the 
outcome we generate. 

Multicollinearity: 
Multicollinear can be described as when the independent variables are extremely 
correlated to each other. Numerous types of regression techniques presume that 
multicollinear should not be available in the data set. The reason is because it 
makes the job difficult in choosing the most paramount independent variable, or it 
causes problems in ranking variables base on its importance. 

Heteroscedasticity: 
This is seen as when the variation between the target variable including the inde­
pendent variable is not constant. For example - The more one's income increase, 
the higher the variability of food consumption. A poor person wi l l spend constant 
amount by eating less expensive food always, while a wealthy person may sometimes 
purchase inexpensive food and some other times, consume expensive meals. Those 
with more income show a substantial variability of food consumption. 

Heteroscedasticity: 
This is seen as when the variation between the target variable including the inde­
pendent variable is not constant. For example - The more one's income increase, 
the higher the variability of food consumption. A poor person wi l l spend constant 
amount by eating less expensive food always, while a wealthy person may sometimes 
purchase inexpensive food and some other times, consume expensive meals. Those 
with more income show a substantial variability of food consumption. 
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1.4. D E S C R I P T I O N A N D D E R I V A T I O N O F R E G R E S S I O N F O R M U L A S 

• Undercut and Overfit: 
Overfitting is when our algorithm works well on training set but cannot perform 
better on the test sets. It can also be described as a problem of high variance. Also, 
when we use irrelevant explanatory variables, it may lead to overfitting. 

Underfit is when our algorithm works so poorly that is unable to fit even a training 
set. This is also known problem of high bias. 

.Values 

(I 

Time 

Good Fit/Robust 

Figure 1.4: Graphs [25] 

Knowing the variance between the variables is key factor that is examined as part 
of regression analysis. We need to understand the measures of variation in other to 
understand the variance [251. 

SST = 

Total Sum of 

Squares 

SSR + SSE 

Regression Sum Error Sum 

of Squares of Squares 

Figure 1.5: SST, SSR A N D S S E [25] 

• SST = Total sum of squares (Overal l /Total Variation) 
Calculate the variation of the Y{ values around a mean value of Y [25]. 

• SSR = Regression sum of squares (Explained Variation) 
Variation is traceable to the relationship between X and Y [25]. 

• S S E = Error sum of squares (Unexplained Variable) 
Variat ion in Y traceable to factors other than X [25]. 

After taking all these factor into consideration, before we can start obtaining if the 
model is performing well, we need to examine the assumption of Linear Regression. 

1.4. DESCRIPTION A N D DERIVATION O F REGRESSION FOR­

M U L A S 

From the general linear model of the form 

y = X/3 + St (1.4.1) 

where y is a N x 1 vector of noticed reactions, X is a matrix of fixed constants of 
N x p dimension, ft is a vector of fixed however obscure boundaries of p x 1 dimension, 
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1. D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

and e is a vector of (unnoticed) errors of N x 1 dimension wi th no mean. This model is 
known as a linear model since the mean of the reaction vector y is linear in the obscure 
boundaries (3. Our advantage is to appraise the boundaries of this model and test spec­
ulations in regards to direct blends of the boundaries. A few models normally utilized in 
statistical/mathematical techniques are instances of the general linear model (1.3.1). A s 
additional depicted in this section, these incorporate basic linear regression and multiple 
regression models, one-way examination of difference ( A N O V A ) , two-way crossed exam­
ination wi th or without collaboration, the analysis of covariance ( A N A C O V A ) model, 
blended impacts models, and some time series models. We wi l l examine these models and 
give a few instances of models that are not unique cases. 

1.5. T H E O R E T I C A L BASIS OF L I N E A R REGRESSION 

Let (Xi, • • • , Xk, Y)T = (X, Y)T be a random vector whose components have finite second 
moments. We are looking for the best linear approximation of the quantity Y using X. 
So we are looking for a random variable a and a random vector (3 : Y = a + 01X, where 
(3 = (/Si,-- - , (3k)T'. The best quality of the approximation is assessed by the standard 
deviation: 

E(Y - (a + (3TX)Y 

Holds: 

E (Y — (a + (3TX))2 > H(Y) - cov(F, X) var(X)" 1 cov(X, Y) 

and equality is achieved just when it is 

a = E(Y) - (3TE(X),f3 = var(X)" 1 cov(X, Y) 

Proof: 

Let's mark V = var(X). If Z has a finite variance, then we can write: 

D(Z) = E(Z2) - (E(Z))2 

, then E {Z2) = D{Z) + {E{Z))2. 

Accordingly for Z = Y — (a + /3 TX) 

we get: 

E(Y-(a + (3TX))2 = H(Y-(a + 0TX)) + {E (Y — (a + (3TX)))2 > H (Y — (a + (3TX)) 

Equali ty is achieved just when: 

11 



1.6. R E G R E S S I O N L I N E 

E(Y-(a + ßTX)) = E(Y) - (a + ßTE(X)) = 0, then E(Y) = a + ßTE(X) 

Holds: 

D(Y-(a + ßTX)) — D (Y — ßTX) = DiY) - C (Y, ßTX) - C (ßTX, Y) + H {ßTX) 

= D(Y) - cov(F, X)ß - ß T c o v ( X , Y) + ß T var(X)/3 = 

= D(Y) - cov(F, X)ß - ß T c o v ( X , Y) + ßTVß + cov(F, X) V " 1 c o v ( X , Y) — 

c o v ( y , x ) v _ 1 c o v ( x , y ) 
= D(Y) - cov(F, X)V'1 c o v ( X , Y) + 

( - cov(F, X)ß - ß T c o v ( X , Y) + ßTVß + cov(F, X) V " 1 c o v ( X , F ) ) 

where. 

Then. 

( - cov(F, X)ß - ß T c o v ( X , Y) + /3 TV/3 + cov(F, X)V'1 c o v ( X , Y) 

(ß - V'1 c o v ( X , Y)))TV(ß - V'1 c o v ( X , Y)) 

D(Y-(a + ßTX) = D(Y) - cov(F, X)V'1 c o v ( X , Y)+ 

(ß - V'1 c o v ( X , Y)))TV(ß - V-1 c o v ( X , Y)) 

and. 

If and only if, 

D(Y-(a + ßTX) = D(Y) - cov(F, X)V'1 c o v ( X , Y) 

ß-v&Y{X)-lcov{X,Y) = 0 (1.5.1) 

Then. 

ß = v a x ( X ) _ 1 c o v ( X , y ) 

1.6. REGRESSION LINE 
/ X\ \ 

Entered data: (x,y), where a; = ,y = 

y \ Vn I 

(1.5.2) 

Let 's mark: X = (l,cc), where 

/ 1 \ 

V 1 / 

Formulas: 

therefore X 
( 1 x, \ 

\ 1 Xn J 
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1. D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

0= (XTX) 1XTy [1.6.1) 

We use this equation to represent the two-dimensional vector (3 in connection wi th our 
normal or estimating equations (30 and f3\. Thus, it, too, is called an estimating equation. 

y = X(3 = X (XTX) lXTy, 

y is modeled or predicted regression equation. 

£ = y - XJ3 = y - y 

[1.6.2) 

(1.6.3) 

S is the error sum of squares. It measures the error/difference between the experi­
ment data/observation and the estimated model. 

Taking the expressions of the formulas given above 

En 
i=l X i II 

1. . a. D = XX 
n 2 

xi 

b.) XTy = 

Prove of (la) 

X T X 
x 

Note: 

E n 
1=1 

E n 

X 1 x ) 
l T x ^ 1 / 

I x T l x T x J 

E n 
i=lXi 

^2i=i xi S « = i xi 

1 T 1 1 ) 

/ 1 \ 

V 1 / 
= (1 X H 1 X 1) 

= n 

( X l \ 

l T x = ( 1 ••• 1 ) x j 

\Xn ) 

= (1 x xi H 1 x xn) 

i=l 
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1.6. R E G R E S S I O N L I N E 

( X l \ 

X T X = ( X\ • • • Xn ) X \ 

\ Xn ) 

= (x1 x x1-\ x „ x x„) 

i=l 
.7:7 

Prove of ( lb) 

X T y 

X 

1 

Í 1 / 1 \ 

r 
V Vn ) 

X 

\Vn ) 

Vi H 1" 2/n 

£Ci3/i H h 

En 
i=i 2/i 

En 
i=l ^iZ/i 

2. .) (a.) d e t ( J D ) = n E r = i ^ 2 - ( E r = i ^ 

-1 _ 1 

Prove of (2a) 

Z-ři=i Xi n 

Since X T X is 2 x 2, we obtain the determinant by subtracting the product of the 
elements of the secondary diagonal from the product of the elements of the main 
diagonal diagonal. 

Hence 

det ( X T X ) = n J > 2 - h T 
1=1 
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Prove of (2b) 

1. D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

Adjoint 
Inverse = — 

determinant 

But since X T X is 2 x 2, the inverse is computed by simply swapping the diagonal 
entries, putting negatives in front of the secondary diagonal entries (the swapped 
one), and dividing everything by the determinant of the original matrix. Hence, we 
have: 

(xTx)-
E i = l Xi E i = l x i 

E n 
i = l x i n 

det ( X T X ) 

3- •) /3 = ( ^ ° ) : f t = ď^H) ( n E r = i x i V i -EILixiEILiVi),Po = y - f t 

Prove of (3) 

^ = ( X T X ) " 1 ( X T y ) 

E n 2 \—^n \ / 

i = l — Z-í i=l \ / Z ^ n = l 2/i 

X d e t ( X T X ) I 
\ ~ Z-íi=i n J \ l^i=i xiV 

1 
det ( X T X ) 

E n 2 v - % n v"^ n 

j=i 2—ii=\ VÍ ~ 2—ii=\ xi 2—ii=\ xiVi 

i=i
x

* Ei=i í/í + n Ei=i ^ii/i 

Hence. 

det ( X T X ) 

Note, from 6 2 ) we have; 

i = l 1=1 j = l 

^ /I -, /I /I 

-ri 
d e t ( X T X ) ^ w ^ d e t ( X T X ) ^ 

v y i=i v 7 i=i i=i 

Also note that: 

Now, 

Xi = nx 

i 
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1.6. R E G R E S S I O N L I N E 

Yl Yl I Ii I Ii 
ß o = det ( X T X ) S $ S ^ ~ det ( X T X ) S Xi S XiVi  

v ' i=i i=i v I i=i i=i 

n n 

Then 

1 

^ d e t ( X T X ) S x,- — x det ( X T X ) 
n ^ Xiiji 

i=i 

«2/ 

^ n / ^ n n 

det ( X T X ) S X * " * | f t + det ( X T X ) S X i S : 

\ ' i=l v ' 1=1 

IX 

i=l 

1 n I n 1 

det ( X T X ) ^ I " 
i=l 

1 1 n / " 

det ( X T X ) n ^ .7:7 

=1 

E 

i 2 N 

ßiX 

- ßlX 

det ( X T X ) 
det ( X T X ) - ßxx 

V ~ ßix ;i.6.4) 

1.6.1. TOTAL SUM OF SQUARES 
In statistics, the total sum of squares (ST) describes the variation between the values of 
a dependent variable and the sample mean. 

;i.6.5) 
i=l 

Hi - the sample value, y - the sample mean 

Prove 

From 

ST = (y- ly)1 (y - ly) ;i.6.6) 
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Then, 

Note: 

Also, 

1. D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

ST = (j-ly)T(j-ly) 

= y T y - jTly - yTlTj + yTlTly 

n n n 
Y yi - y Y y* ~y Y y* + 
i=l i=l i=l 
n 

Y yi ~ ny2 ~nyl+nyl 

i=l 

Y yi ~nyl 

i=i 

ny2 

y y = ( v\ Vn ) X 

(y2i + --- + yl) 
n 

Yy" 

( j / i \ 

i=l 

;i.6.7) 

yT = y '1.6.8) 

1.6.2. RESIDUAL SUM OF SQUARES 
: Residual sum of squares (SE) measures the variability of model errors. Another way 
to explain it is that it shows how a regression model cannot explain the variation in 
the dependent variable. Regression models with lower residual sums of squares generally 
explain the data better, while regression models wi th higher residual sums of squares 
generally do not explain the data well. 

SE = Y (V* 
i=l 

SE = y yi - ßoYyi~ ^YXiVi 

i=i 

yi is the observation, y is the regression line estimated value 

Prove 

(1.6.9) 

'1.6.10) 

yy-y) yy-y) [l.Q.ll) 
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1.6. R E G R E S S I O N L I N E 

SE = y T y - y T ý - ý T y + ý T ý 

= y T y - y T ( x ( x ^ ) " 1 x T

y ) - y

T x ( x ^ ) " 1 x T

y + 

y T X ( X T X ) _ 1 X T X ( X T X ) _ 1 X T y 

= y T y - jTXf3 - jTXf3 + y T X I ( X T X ) _ 1 X T y 

= y T y - y T X / 3 - y T X / 3 + y T X / 3 

= y T y - jTX(3 

í 1 xl \ 
y T x = ( y i 

i=l 

Vn ) X 

\ 1 xn J 

2/1 H V Vn XlVl H h XnVn ) 

^2ví Y l X i V i 

i=l 

n n 

= A> ̂  Ví + Pi X ] X i V i 

i=l i=l 

Hence. 

SE = yTy-yTXf3 

£ r f - A > 5 > - / 3 i £ 
i=l i=l i=l 

[1.6.12) 

1.6.3. REGRESSION SUM OF SQUARES 
Regression sum of squares (SR) assesses the degree to which the modeled data is accurately 
represented by the regression model. Y o u can calculate regression sum of squares by using 
the following formula: 

i=i 

ny 

[1.6.13) 

[1.6.U) 

i=i 
yi is the regression line estimated value, y is the sample mean 

Prove 
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1. D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

SR = (y - ly)1 (y - ly) 

SR = (y-ly)T(y-ly) 

YTy-yTly-yTlTy + yTlTly 

i=l 
n 

i=l 

i=l 

i=l 
n 

i=l 

Then. 

ny2 

i=l 
n 

i=l 

Yjy2

i-2yYJ{Vi-^i) + ny 
i=l 

.i=l i=l 
n 

- 2y[ny - 0] +nf 

+ ny 

J2Vi-2ny2 + ny2 

[1.6.15) 

[1.6.16) 

1.6.4. RELATIONSHIP B E T W E E N (TOTAL, ERROR, AND REGRES­
SION) SUM OF SQUARES 

The following equation summarizes the relationship between the three types of sum of 
squares (i.e. the total sum of square (ST), regression sum of square SR and the residual 
sum of square SE) 

ST — SR + SE 

D(3 = XTy 

E n 
i=lX 

E n \r~\n 2 

i=l Xi l^i=l Xi 

00 
" ,.2 / \ Pi 

E n 
i=i Vi 

E n 

'1.6.17) 

Pon + Pi^2xi = ^2 X i + = X i V i 

i=l i=i i=l i=i i=l 

Prove 

We have already generated the following results 

'1.6.18) 

V% = Po + 
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1.7. S I M P L E L I N E A R R E G R E S S I O N 

ST = £ £ = 1 (y* - y ) 2 

S t = EILi — nV2 ~ (total variation) 

^ = z r=i (yi - y ) 2 

«Sr = XT=i %2 — n ^ 2 " (regression variation) 

^ = EILi (y* - y*) 2 

SE = EILi y*2 _ A) EILi y* _ & Z)"=i x*y* - (variation by linear model) 

So. 

i=l i=l i=l i=l 
n n n n n n 

yl -nf + YPi + Y + Y-foY,Vi-hY,^ = 
i=l i=l i=l i=l i=l i=l 

n n n n n 

S T + Y P I + Y ^ixi + y v\£ -PoJ2yi-PiJ2 x*y* 
i=l i=l i=l i=l i=l 

n n n n n 

PI + Y W i ^ + Y P& - P ^ Y ^ - P ^ Y X i V i = 
i=l i=l i=l i=l i=l 

n n n n 

= nfil + 2/So/3i YXi + Pi Y xi ~ P° Y Vi ~ P1 Y XiVi = 

i=l i=l i=l i=l 

( n \ / n n \ n n 

n(30 + Pi Y xi I + A I A> Y Xi + P1 Y ) ~ P° Y Vi ~ P1 Y XiVi = 

i=i / V i=i i=i / i=i i=i 
n n n n 

= PoYVi+^YXiVi ~ P° YVi ~ ̂ YXiVi =
 0 ( i .6 . i9) 

i=l i=l i=l i=l 

1.7. S IMPLE L I N E A R REGRESSION 
From the sample problem, The least complex form of the straight model emerges wi th 
one of the fundamental issues in rudimentary insights, where yi are haphazardly tested 
from a populace wi th obscure mean \x and fluctuation a2. For this situation, X/3 takes an 
extremely basic structure 

X(3 = l(/x) 
in order that the scalar \x is simply the unknown coefficient vector (5 
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1. D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

Appraise the model whereby the reaction variable yi is corresponding to an indepen­
dent variable Xi, stated by 

Vi = A) + PiXi + Si, i = l,...,n (1-7.1) 

Whereby S\,S2,... ,Sn are generally presumed to exist uncorrelation random vari­
ables accompanied by mean zero together wi th constant variance a2. Let 's presume that 
X\,x<i,... ,xn are set of constant variables, detected without inaccuracy, afterwards equa­
tion 1.2 is a unique case of equation 1.1 wi th 

yi 
y-2 Xß 

Xi 

x2 

Xn—1 

ßo 

ßl 
S 

Si 
s2 

£ 

In such a way that X i s n x 1, X is n x 2, /3 is 2 x 1, and S is n x 1. Observe that 
Xi were calculated wi th mistake, afterwards the model in equation (1.3.1) is not a unique 
case related to Model in equation (1.5.1), on account of this, the matrix X is random, not 
specified [39]. 

1.8. M U L T I P L E L I N E A R REGRESSION 

Let's take a look at this model whereby the result variable y^ is linearly connected to 
many independent variables Xn,xi2, • • •, x ^ , indicated 

Vi = ßo + ßixn + ß2Xi2 H h ßkXik + Si, i = l,...,n '1.8.1) 

Whereby once more again S\,S2,... ,Sn are regularly presumed as uncorrelation ran­
dom variables along mean zero including variance constant a2. 

Let's presume that xn, xi2, • • •, x^ are stable constants noticed without mistake/error, 
afterwards the regression model in equation (1.6.1) is not a unique case of the common 
linear model in equation (1.3.1) [39] 

y 

yi 

>J2 

yn 

Xß 

1 Xu Xl2 • • Xik 

1 X21 X22 • • X2k 

1 Xzi XZ2 • • X3k 

1 Xnl Xn2 • Xnk 

ßo 

ßl 
S 

Si 
s2 

y is an nxl vector of observations on the dependent variable. 

X is an nxfc matrix where we have observations on k independent variables for n 
observation. 

j3 is a kxl vector of unknown population parameters that we want to estimate. 
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1.8. M U L T I P L E L I N E A R R E G R E S S I O N 

• £ is an n x 1 vector of disturbances or errors 

y predicts X while (30 is the intercept terms and f3\ is the slope terms. 

There are some components errors £ we fail to observe or notice and this error result 
to the failure of data not falling on the straight line including representing the differ­
ence among the true and presumed realization of y. There are various reasons that cause 
this difference, for instance,, variables may be subjective, the outcome of all the deleted 
variables, and inherent randomness in the observation etc. We presume that error £ is 
detected as precisely distributed and independent random variable along constant vari­
ance and mean zero variance constants a2. Afterwards, we wi l l also presume that error £ 
is distributed normally [ ]. 

It is seen that the independent variable are being controlled by the experiment, there­
fore it is examined as non-theoretical while y is seen as a random variable wi th 

E{y) = A) + PiX (1.8.2) 

E(/3) = (3. Implies that (3 is an unbiased estimate of (3. 

and 

Var(y) = a2 (1.8.3) 

Var(/3) = a2 (X'X) 1 . Estimated coefficients are described by the variances and co-
variances. 

Variance of X can sometimes be a random variable. In situations like this, we consider 
the conditional mean and variance of y given X — X clS 

E(y\x) = pQ + p1x (1.8.4) 

and the conditional variance of y given X — X clS 

Var(y \x) = a2 (1.8.5) 

The model is fully set out, when the values of intercept (3o, slope (3\ and variance a2 are 
studied/known. The parameters (A),/3i and a2) are broadly not known in operation and 
error £ is not noticed. The calculation of the statistical model of y = (30 + (3ix + £ is base 
on the computation, for instance, estimation of intercept (3Q, slope @i and variance a2. 
To know the rate of these parameters, n pairs of observation p Q , y^) where % = 1 , . . . , n 
on ( X , y) are analyse and they are utilized to decide the unknown parameters [ ]. 

We decide the estimate of the parameters by uti l izing different methods, but the two 
popular methods are: 

• the method for least squares and 

• the maximum likelihood 
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1. D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

1.9. REGRESSION S Y M B O L S 

Before we go into more details of our analysis, we are going to address these symbols 
(P, Po, Pi, Po, (3I and SEP) that confuse students in regression analysis. 

• P, Po, Pi are the unstandardized beta 

• SEP the standard error for the unstandardized beta 

• P, Po, Pi are the standardized beta 

1.9.1. REGRESSION TABLE 
Let's take a look at this regression table as an example 

Source P SEB P 
Variable 1 1.35 0.34 .34 
Variable 2 1.10 3.41 .05 
Variable 3 -1 .83 0.11 - . 1 6 

The unstandardized beta (P) is the first symbol in our sample table and what it 
represent is the slope of the regression line between the dependent and the independent 
variables. Starting from the first variable which is variable 1 rise by 1.35 units together 
wi th variable 3, for every rise in variable 3, the dependent variable reduced by -1.83 units 
[18]. 

The standard error for the unstandardized beta (SEP) is the following symbol on the 
table. Standard deviation is similar to this value. A larger number indicates a more dis­
persed distribution of points from the regression line. Statistical significance is less likely 
to be found when the numbers are spread out [18]. 

The standardized beta (P) is the last symbol on the table. A correlation coefficient 
works in much the same way. If the relationship is positive, it wi l l range from 0 to 1. If it 
is negative, it wi l l range from 0 to -1 this depends on the direction. Values closer to 1 or 
-1 indicate stronger relationships. Since all the variables are on a scale of 0 to 1, it is easy 
to see which of the variables had the strongest relationship wi th the dependent variable. 
Among those variables in the table above, Variable 3 had the strongest correlation/rela­
tionship. The standardized beta (P) can also be described as when a predictor variable 
is changed by one unit, the standardized beta coefficient changes by the same amount in 
the outcome variable. In the case of negative beta coefficients, the outcome variable wi l l 
decrease by the beta coefficient value for every 1-unit increase in the predictor variable [18]. 

• W H A T IS R E G R E S S I O N C O E F F I C I E N T ? 
Estimates of the unknown population parameters, also known as regression coef­
ficients, show how predictor/independent variables and dependent/responses are 
related. A coefficient is the value that multiplies the value of an independent vari­
able in linear regression [26]. 
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1.9. R E G R E S S I O N S Y M B O L S 

• D I F F E R E N C E B E T W E E N B E T A A N D B E T A H A T : 
Beta is an non-standardized symbol ((3). A slope is the slope of a line connecting 
a independent variable with a dependent variable. We have the standardized beta 
(fa) [26]. It functions similarly to the correlation coefficient. B y comparing the beta 
hat coefficient /3 of each independent variable to the dependent variable, one can 
estimate the strength of the effect each of these independent variables have on the 
dependent variable [ ]. If the /3 coefficient is higher, then the effect is stronger. 
Standardized beta coefficients (3 determine effect and the strength of the data wi th 
standard deviations. A sample of a population is what we are working wi th [26]. 
A data cloud is formed by our sample, we fit the line that minimizes error terms 
along one dimension that corresponds to the dependent variable. In O L S , based on 
the column space of the model matrix, It represents a projection of the dependent 
variable onto that space. (3 symbol is used to denote the estimates of the popula­
tion parameters, when we have more data points our estimated coefficients (3i wi l l 
be more accurate, For each idealized population coefficient the greater the accuracy 
estimation can be made, fa [15]. 

The "hat" symbol represents an estimate, not the actual value. (3 is therefore an 
estimate of fa Symbols have their own conventions: one example is the sample 
variance, which might be written as. S2 and not a2. Nevertheless, some people 
distinguish between biased estimates and unbiased using both. According to the 
example we mentioned, the (3 values represent parameter estimates for a linear 
model. According to the linear model, a linear combination of the sample data 
values Xi generates the outcome variable y. fa value is assigned to each item (plus 
some error S) [15]. 

y = fa + faxi + fax2 + ••• + faxn + £ (1.9.1) 

A linear model can't always determine the "true" (3 values (possibly, Linear models 
aren't used to generate the data). From the data, we can still estimate approximate 
values for y, and these values are called (3 [15]. 

• W H A T IS B E T A [0] A N D B E T A [1]? 
A regression line's intercept is fa while the slope of the regression line is fa. In 
practice fa does not really exist, fa wi th values above and below it wi l l give us that 
optimal slope, this slice runs vertically from the dependent variable to the indepen­
dent variable [26]. If the Gauss-Markov assumption holds, then the residuals wi l l 
have a nice normal Gaussian distribution. According to the sample, fa represents 
a fit or estimate of fa [15]. 

In general, Stats can get confusing when different pronumerals are used to mean dif­
ferent things in different contexts! Based on the analysis we discussed earlier (3 means 
something different in power analysis compared to regression. In regression, the difference 
between (3 and (3 relates to whether the coefficients are standardised or unstandardised. 
(3 generally refers to the unstandardised coefficient. According to this, we can use the 
original measurement units to calculate the regression coefficient [3]. 
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1. D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

For example, imaging we are trying to predict a final exam score based on the number 
of hours spent studying. If I get (3 = 2, this tells me that for every 1 hours study time, I 
predict an increase in the final exam score of 2. This relationship is in the original units 
(hours of studying, and exam score). This is useful for predicting things in the real world, 
but it is difficult to compare different predictors. Predictors might have large beta values 
just because they are measured on a larger scale (compare minutes to hours in the above 
example). 

Standardised regression coefficients do a similar thing, but in a standardised way. The 
ft refers to the number of standard deviation changes we would expect in the outcome 
variable for a 1 standard deviation change in the predictor variable. For example, if I got 
ft — .5 for hours of study, this would tell me that for every 1 standard deviation increase in 
hours of study, We can expect .5 standard deviation increase in the exam score. Because 
this is standardised, ft make it easier to compare different predictors to see which is more 
important. 

1.10. F I T T E D V A L U E S A N D RESIDUALS 

Significant ideas in regression analysis are the fitted values and residuals . A s a rule, the 
information doesn't fall precisely on a line, so the relapse condition ought to incorporate 
an express error term £ 

y = ft0 + ft1x + S (1.10.1) 

We can express the fitted value as the predicted value which typically denoted as Y$ 
(Y-hat). W h i c h represented by this equation 

Vi = fto + ftm 

fto and fti demonstrates that the coefficients are estimated and known [2]. 
The "hat" documentation is utilized to separate among gauges and known qualities, 

therefore the symbol ft (/3-hat) is an estimate of the unidentified parameters ft. For what 
reason do an analysts separate between the estimate and the genuine value? The estimate 
lack certainty, while the genuine value is fixed [2]. 

The difference between the observation and the predicted values is the residual S 

Sii = yi-yi (1.10.3) 

1.11. T H E M E T H O D OF L E A S T SQUARES 

Simple linear model consist of two parameters fto and fti, they are to be evaluate from the 
data. A n y two data can be utilized to resolve explicitly for the values of the parameters 
if there are no random error in Y^. However, the random variation in Y, create individual 
pair of noticed data points to set out separate outcome. (If the observed data fell pre­
cisely on the straight line, then all estimates would be similar). A technique is required 

(1.10.2) 
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that wi l l unite all the information to give out one result that is "best" by several criterion. 

The least squares evaluation procedure utilize the criterion that the result should grant 
the slightest likely addition of squared deviations of the perceive Y{ from the estimation 
of the true model given by the results. Let (30 and f3\ be numerical/statistical evaluation 
of the parameters (30 and /3i, individually, then let 

yi = Po + PiXi (1.11.1) 

Be the evaluation mean of y for individual Xi, % = 1 , . . . , n. Beware that % is acquired 
by exchanging the evaluation for the parameters in the effective form of the model con­
necting £ (yi) to Xi, The least squares theory selected (3\ and f32 that reduce the addition 
of the residual squares, SS(Res) 

n 

SS(Res) = ^(yi -mf 
i=n ( l -H-2) 

= £ * 
i=l 

Whereby Si = (yi — yi) is the noticed residual for the % inspection. The summation 
which is stipulated by is a general observation in the data place as indicated along the 
Sr=r (The limits of summation are clear from the context when the index of summation 
is committed). The evaluation for f3\ and /32

 a r e acquired by uti l izing calculus to discover 
the values that reduce SS( Res ). 

1.11.1. LEAST SQUARE MODEL IN MATRIX FORM 
From the basic knowledge of regression analysis we implement the linear regression model: 
Y ~ £ (X(3, a21) 

Linear regression model: Y = Xf3 + S 

The vector Xf3 is non-random. 

Then 

E(Y) = E(X(3 + £) = E(X(3) + E(S) = X(3 + 0 = X(3 

var(Y) = var(X/3 + £) = v a r ( £ ) = a2I 
Y — (Yi, • • • , Yn)T is random vector and y = (y i , • • • , yn)T is its realization. 

The parameters /3 = (f3i, • • • , (3k)T are estimated using the least squares method - the 

sum of squares is minimized, so we look for the minimum: YL7=i — S j=i xi,jPj 

Then 

3 = arg min J 2 [ Y i ~ Y l Xi^3 = ^ S 1 ™ 1 1 _ = sngmm(Y-X/3)T(Y-X/3) 

2 
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0 2 
Figure 1.6: Sample diagram 

Holds: 

The statistics that estimate the parameters J3 = yfa,--- , fa J are marked: (3 = 

fa, • • • , ftk\ Statistics /3 = (fa, • • • , fa^j using least squares method can be expressed 

in the form: 

/3 = (XTX)~1 XTY 

Now to prove this let's consider the Sum of the Square Error (SSE). 

Each data point is subject to some error of prediction due to the coefficients fa which 
form a vector: 

£(J3)=y-xJ3 

(By checking this, you can verify that it subtracts the n x 1 matrix from the n x 1 
matrix.) Based on the mean squared error, we derived the least squares estimator, 

i=l 

Using our matrices, how can we express this? Let us claim that the appropriate form 
would be 

SSE(/3) = ST£ 

This can be seen by looking closely at what matrix multiplication truly entails: 

£2 

s s e = e\ + s\ 

Where, £ = y — y (i.e Residual vectors = vectors containing the value of independent 
variable - estimated y vectors contain estimated values) 

y = X(3 

so. 
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£ = y-Xß 

Consider 

implies 

SSE = ET£ = {y-Xß)T{y-Xß) 

(yT - (Xß)T)(y - Xß) 

SSE = (yT - X ^ i y - X ß ) 

yT{y-Xß)-XTßT{y-Xß) 

yTy - yTXß-XT^y + XT^Xß (1.11.3) 

N B : y X(3 is a scalar and any scalar or constant is a matrix of order l x l 
so, 

(yTXP) = (yTXP)T = ^XTy 

Recall from: 

y T y - y T X / 3 - X ^ y + XT^X(3 

putting 

( / X £ ) = (yTXP)T = FxTy 

into equ (1.11.3), we get 

S S E = y T y - / ? X T y - XT(3Ty + XTjrxp 

y T y - 2pTXTy + XT^Xp (1.11.4) 

Now, we have to minimize RSS in equ (2) both sides partially wi th respect to ft 

j-(SSE) = -t(yTy - 2$rXTy + X^XP) 

^LyTy - ^Lii?XTy + i l T ^ l f t (1.11.5) 

Note that: 

yTy = 0 
dp 

^ X T y ) = 2XTy 
aß 
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-^XTJ3TXJ3 = 2XTXJ3 
dp 

putting this values in equ (1.11.5), we get 

» ^ ^ _ A ( 2 m + A O T ? ( 1 , L 6 ) 

-^L(SSE) = 0 - 2XTy + 2XTX/3 
dp 

-^L(SSE) = 0 
ap 

-2XTy + 2XTXP = 0 

XTy = XTXP 

premultiplying both sides by ( X T X ) _ 1 

P = (XTX)~1XTy (1.11.7) 

Therefore 

(Po,Pi)T = (XTX)~1XTy (1.11.8) 

The matrix equation that we've gotten yields both coefficient estimates. Assuming 
this is correct, the equation above should in fact reproduce the least-squares estimates 
we've already obtained, so it follows that 

or 

E (XJ - x) (yj - y) 

Y.ixi-x 

and 

p ^ ^ ' t : J K y : , > ( i . n . 9 ) 

Po=y-Pix (1.11.10) 

The slope estimate can also implies that 

. . c; 
betai = —^ 

^xx 
where Sxy = Yn=i (xi ~ x) {Yi ~ Y) = YA=I x i Y i ~ n x Y a n c l where 

n n 

Sxx = ^2(xi- xf = ^2rf - n(xf 
i=l i=l 
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1.12. PROPERTIES OF L E A S T S Q U A R E E S T I M A T O R 

Least squares estimators are characterized by the ability to reduce total squared residuals. 
Nevertheless, there are more properties. If we compute these properties in the way just 
described, they are always true no matter what assumptions are made [33]. 

From equation (1.9.7) 

(XTX)P = XTy (1.12.1) 

Put y = Xj3 + S for substitution 

(XTX)f3 = XT{Xf3 + S) 

(XTX)[3= (XTX)ft + XT£ (1.12.2) 

XT£ = 0 

XTS seems to be the case of 

X\2 • • Xin ' ei " ' Xu x el + X12 x e 2 + • • + Xin X " 0 " 
X21 X22 • • x 2 n e 2 X21 x e1 + X22 x e 2 + • • + x 2 n 

X 0 

Xki Xk2 • • x k n _ _ xki x ei + Xk2 x e 2 + • • + x k n X _ _ 0 _ 

Number of properties we can derive from XTS = 0. 

1. Relative to the residuals, X values are uncorrelated: 

XTS = 0 For all columns, it means xk of X , xk£ = 0 A s a result, none of the re-
gressors and residuals exhibit sample correlations. The fact that X is not correlated 
along the disturbances does not mean it is uncorrelated; we wi l l have to presume 
that it is uncorrelated [33]. 

If there is a constant in X , the topmost column (i.e. Xi) wi l l be a row of ones. 

2. Zero is the result of the residuals sum: 

If there is a constant in X (i.e. Xi), then the topmost column is a column of ones. 
The first element of the XTS vector must be zero for X n x £ , X i 2 x S, ...X\n x Si 
to be true [33]. 

3. Relative residuals have a sample mean of zero: 

The former property is directly connected to this one Si = = 0 

4. In the regression hyperplane, the observed values pass through their means (X and 
V): 

This statement follows the fact that Si — 0 . Recall that S\ — y — xfi In other words, 
we get Si = y — x/3 = 0 when we mult iply by the number of observations. This 

30 



1. D E S C R I P T I O N O F R E G R E S S I O N A N A L Y S I S 

means that y = x/3 which display that the regression hyper plane pass through the 
point of means of the data [33]. 

5. There is no correlation between y and the residuals: 

This implies X/3 for y = X/3 Through this we obtain 

yTS = {X(3)TS = (3TXTS = 0 (1.12.3) 

In conclusion, XTS = 0 is considered in this final development [33]. 

6. It is predicted that the mean of the observed Y ' s wi l l equal the mean of the predicted 
Y ' s for the sample i.e. y = y: 

There is no exception to these properties. We minimize the sum of squared residuals, 
so you cannot infer the total disturbances or mean disturbances are zero based on 
the fact that the residuals are zero [33]. 

We do not know anything about (3 Besides fulfilling all the characteristics listed 
above, it also offers the following. 

For us to be able to draw any conclusions about (3 (the true population parameters) 
from (3 (our estimate of the true parameters), there are some assumptions we need 
to make about the true model. (3 comes from our sample, but we are interested in 
learning more about the true parameters. 

1.12.1. GAUSS-MARKOV THEOREM 
According to the Gauss-Markov Theorem, there is no linear and unbiased estimator of 
the f3 coefficients that has a small sampling variance. One of the best linear, unbiased, 
and efficient estimators is the least squares estimator 

Show that (3 is an unbiased estimator of (3: 

We notice from earlier that (3 = (XTX)~lXTy implies 

(3 = {XTX)~1XT{XP + E) (1.12.4) 

P = (3 + (XTX)~1XTE (1.12.5) 

The fact that (XTX) 1XTX = I immediately indicates that the least square esti­
mate is unbiased as long as X is fixed (non-stochastic), thus giving as: 

E[(3] =E[f3]+E \{XTX) 1XTE 

= (3+ (XTX)~1 XTE[E] 
'1.12.6) 

In other word E[E] = 0 by presumption or X is stochastic however independent of 
£ so that we have [33]: 
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• Show that 0 is a linear estimator of 0: From Equation. (1.10.12), we posses: 

(3 = (3 + (X1 X)~1XT£ [1.12.7) 

Since we can state 0 = (3 + AS whereby A = (XTX)-1XT 

Based on the disturbances, f3 is a linear function. B y using the explanation that we 
offer, we can determine that it is a linear estimator [33]. 

1.12.2. CONFIDENCE INTERVAL 
From the regression line: Y = fa + faX 

( 1 xi \ 
X 

X X = D 

XTy = g 

\ 1 xn J 

En 
i=lXi 

En 
i=i Vi 

En 
i=i XiVi 

det(D) = nJ2x2- E 
i=l .1=1 

D 1 

fa 

2j=l Xi Y2i=l Xi 

det(D) En 
i=l Xi n 

v ' \ i=í i=l i=l 

/3o = y - fax, y = 0o + fax 

^ = Z > - ( A > + Ä * ) ) S 

Smin = E ~ P° E V i ~ P1 E X i V i 

i=l i=l 

C* 
,2 ° m i n n-2 
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Interval estimate for the mean value of y wi th reliability 1 — a for XQ : 

where y0 = (30 + A ^ o , 

/yo - ti-a/2sy/v*; y0 + ti-a/2sy/v*\ 

1 n(x — x)2 

v — — I — — 
n de t (D) 

and ti_Q,/ 2 is a quantile of the Student 's distribution wi th n — 2 degrees of freedom. 
[40]. 

Confidence interval for individual value of y with reliability 1 — a for XQ : 

2/° - h-apsy/v* + 1; y° + tx-a^sVv* + 1 

where y 0 = + /Six 0 , 

- \ 2 1 n fx — x) 
v* = - + 

n de t (D) 

and ti_Q,/ 2 is a quantile of the Student 's distribution with n — 2 degrees of freedom 
[40]. 

i . 

(a) Sample of a Linear regression line 
(b) Sample of a Linear regression line and Con­
fidence interval 

1.12.3. MODEL ASSUMPTIONS 

After Linear Regression obtain whether one or more predictor variables describe the 
dependent variable and thus it include 5 assumptions: 

1. Linearity: The relationship between dependent variable, independent variable, and 
disturbance can be described by a linear function. [19] 

2. Random sample: we posses a random sample of size n (a;*, y*) : i = 1,.., n), Whereby 
the observations are independent to one another. [19] 

3. No perfect collinearity: A n y of the independent variables is constant, also there are 
no exact linear relationships between the independent variables. [19] 
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4. Exogeneity: Given any value of the independent variable the disturbance term has 
an expected value of zero. This is the case E(£\xi) = 0 [19] 

5. Homoscedasticity: Given any value of the independent variables the disturbance 
term has the same variance. That is to say Var(S\xi) = a2 [19] 

W i t h all these assumptions examined while building the model, the model can be bui ld 
and we can do our predictions for the dependent factor. For any k ind of machine learning 
model, we must know if the variable examine for the model are accurate and have been 
analysed by a metric. In the event of Regression analysis, the statistical measure that 
analyse the model is named the coefficient of determination that is represented as r 2 [25]. 

Coefficient of determination is the segment of the overall variation in the dependent 
variable which is described by variation in the dependent variable. A high value of r 2 

better is the model along the independent variables being examined for the model [25]. 

2 SSR 
r = 

SST 

Note: r 2 is the range of 0 < r 2 <1 

1.13. NON-LINEAR REGRESSION 

We have been uti l izing the linear least squares method to fit a straight line to data points 
that are informative, but our data is more focused on Non-linear model. Now and again 
the relationship that we want to genuinely model is curved rather than flat. For Example: 
Assuming something is developing dramatically, and that implies developing at a consis­
tent rate, the connection among the X and Y is the curve, similar to that displayed in 
Figure 2.2 [29]. 

Bui lding a new variables appropriately, the curved function of a unique variables can 
be communicated as a linear function of the new variables.To fit something like this, we 
really want non-linear regression. Frequently, you can adjust straight least squares to do 
this. The technique is to make new factors from your in. formation. The new factors are 
nonlinear elements of the variables in your information [19]. 

Looking into two famous non-linear model that are agreeable to this method: 

(1.12.8) 

Equation Interpretation Linear Form 
Y = Ae^S Y is developing (or contracting at a) ln (Y) = ln(A) + /3X + ln(£) 

consistent relative pace of (3. 
K^ra~ The versatility of Y with deference to , , , r , , / A N „ , , ,„,. 

Y = A X £ t o X i s a c o n s L n t , / * . k ( Y ) = ta(A) +/J • ln (X) + ln (£ ) 

Take into account the primary condition which describe the describes exponential 
growth 

Y = Ae^S 
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• ft is the rate of growth. 

• £ is an unexpected error 

Assuming you're taking the logarithm of the 2 aspects of that situation, you get 

ln(Y) = ln(A) + f3X + ln{£) 

This circumstance has logarithms in it, but they relate in an instant way. It is located 
within the structure 

y = (3 + (3X + error 
, then again, surely y, a, and the error are logarithms [19]. 

Closely, examine the second equation, Y = A X £ . This is a constant-elasticity equa­
tion (more reason why we call it that after), generally utilized for demand curves. Take 
the logarithm of the two sides of that equation then you get ln(Y) = In (A) + (3 ln(X) + 
ln (£ ) . For this equation, if you construct the variable ln (Y) including a variable for the 
base-e logarithm of X , written as ln (X) , you can utilize the regular least squares method 
to place the curve Y = A X to your data [19]. 

The evaluation of (3 in Y = Ae/3x£: 
(3 is the parameter you are mostly interested in, regularly. Your evaluation of (3 is your 

evaluation of the relative change in Y connected with a unit change in X . Mathematically, 
if X moves up by 1, Y is multiplied by e£ . The reason is Ae^^x+1^ equals Ae^xe^, which 
is Y is multiplied by e13 . That might not seems to resemble "relative change," however it 
is, if you are uti l izing continuous mix [19]. 

1.13.1. NON-LINEAR EQUATION IN LINEAR FORM UTILIZING THE 
NATURAL LOGARITHMS 

To change Y = Ae^x£ to a linear equation, take the natural log of the two sides: 

ln(Y) = ln{Ae^x£) Make use of the rules above and we obtain: 

ln(Y) = ln(A) + f3x + ln{£) 

To execute this, construct a new variable y = ln (Y) . (The Y inside the actual calcula­
tion is the 'big Y . ' The current variable is the 'little y.') In addition, interpret v as ln(£) 
and also as ln (A) . 

Concerning the non-linear model, to employing the least squares method, it is impor­
tant to presume that using v as an expression for errors and also as an expression for 
linear regression. One of these presumption is that v's expected value is 0. That is the 
reason we presume that the mean of 8 is 1. That suit because ln ( l ) = 0. £ wi l l never 
be 0 or negative, however v may take on positive or negative values, because if £ is lower 
than 1, v — ln (£) is lower than 0 [19]. 
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1.14. C H A N G E POINT ANALYSIS 

Numerous fields, including medicine, aerospace, finance, business, meteorology, and enter­
tainment rely on time series analysis. Observations of a system's behaviour over time are 
called time series data. A s external events occur, as well as structural changes wi thin dy­
namics and distribution, these behaviors may change over time. Detecting change points 
in a time series when one of its properties changes is the concept of change point de­
tection ( C P D ) . Change point detection is similar to segmentation, edge detection, event 
detection, and anomaly detection, which are occasionally applied. The search for change 
points is closely related to the problem of change point estimation and change point min­
ing. The emphasis of change point estimates, however, is to describe the nature and 
degree of known changes in time series instead of identifying the change itself. Change 
point estimation is concerned wi th modeling and interpreting known changes rather than 
identifying that one has occurred and it's also played an role in the model of statistical 
analysis. Throughout this thesis, we examine recent research in the area of change point 
detection/analysis [8]. 

Breakpoints segmentation, structural breaks, regime switches, and detecting disorder 
are another names for changing points while on the other hand In order to detect whether 
a change has occurred, change points are analysed on time ordered data. It further pro­
vides confidence levels and confidence intervals for changes and for time, and it determines 
the number of changes [21]. Change point analysis is a technique for identifying a point 
of entry or beginning in relationships between two variables. A n analysis of a distribution 
of values is intended to identify a point where values before and after the point differ. A 
change-point analysis can be carried out on the x axis of a stress or response relationship 
to find the point at which the characteristics of the y axis change - suggesting a shift in 
variance or a change in slope of the relationship [22]. 

To put it a bit more mathematically 

Let ip be a data set and let m be the point of the data, For data y i , • • • , ym, if a change 
point exists at ip, then y i , • • • ,yv differ from y^+i, • • • , ym in some way. 

1.14.1. TYPES OF CHANGE POINTS ANALYSIS 
Changes are typically detected using control charts. Control charts differ from change-
point analyses in that they are meant to be updated as data is gathered for each point. 
In contrast to a change-point analysis, a control chart is meant to be updated after each 
data point is collected. Bo th methods can be used in conjunction wi th each other [ ]. 

Change point analysis can take many different forms but the most common forms are 

• Change in mean 

• Change in variance 

• Change in trend 
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These 3 forms are given in the pictures below 

(a) Change in mean [ ] (b) Change in variance [Í ] (c) Change in trend [ ] 

1.14.2. AREAS OF APPLICATION of CHANGE POINT ANALYSIS 
Change point detection/analysis ( C P D or C P A ) has been studied in the fields of data 
mining, statistics and computer science for several decades. This problem has broad 
application in many fields. There are many real-world problems covered by this problem 
[21]. Let 's look at a few examples. 

1. Speech recognition: This is the process of transcribing utterances/spoken words into 
text. We are using change point detection methods to recognize silence, sentences, 
words, and noise boundaries among audio segments [8]. 

2. Human activity analysis: Based on characteristics of sensor-based data observed 
by smart homes or mobile devices. It can be formulated as detection of activity 
transitions or breakpoints. Human interaction can be enhanced by segmenting ac­
tivities based on these change points , and assessing health status-related behavioral 
changes [ ]. 

3. Climate change detection: Due to the possibility of climate change and the increase 
of greenhouse gases in the atmosphere, the use of change point detection to analyze, 
monitor, and predict climate has gained increasing importance in recent decades. [8]. 

4. Medical condition monitoring: Physiological variables like electroencephalograms 
(EEGs) , electrocardiograms ( E C G s ) , and heart rate are monitored constantly to 
identify trends automatically, in real-time. Studies examine changes in specific 
areas of medicine, such as sleep disorders, epilepsy, magnetic resonance imaging 
(MRI) interpretations, and understating brain activity. [8]. 

5. Image analysis: The purpose of video-based surveillance is to collect video data over 
time, or image data. A change-point problem can be formulated to detect abrupt 
events such as security breaches. A digital image is encoded at each time point as 
the observation [ ]. 
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1.15. L A G R A N G E M U L T I P L I E R A P P L I C A T I O N 

In this section, we are going to talk briefly on what Lagrange Mult ipl ier is all about. 
The problem of optimization that see to maximizing or minimizing a real function, play 
a key role in the physical world. This can be categorize into two which are constrained 
optimization problems and unconstrained optimization problems. Most practical that 
are used on economics, engineering, science also in our daily life can be considered as 
constrained optimization problems, like the minimizing of the energy of a particle in 
physics [22]. 

Unconstrained problems, the stationary points theory provides the important condi­
tion to get the utmost points of the objective function f(xi, • • • , xn) This stationary points 
are the point whereby the gradient V / Is zero which means each partial derivatives is 
zero. Every variables in f(xi, • • • independent, therefore they can be arbitrarily 
ready to search for the utmost of / However, the arbitration of the variable is nonexistent 
when it comes to constrained optimization problems. Optimizat ion can be prepared into 
an adequate form like 

As a result of: 

m i n / ( x i , • • • ,xn) (1.15.1) 

G ( £ ! , • • • ,xn) = 0 (1.15.2) 

H ( x i , - - - ,xn) < 0 (1.15.3) 

Whereby G , H are function vectors. Variables are restricted to the feasible range, 
based on the constraints satisfied [22]. 

The use of substitution can be a good approach to solving optimization problems. 
Nevertheless, it can only be taken advantage of when solving equality constrained opti­
mization problems and can be ineffective sometimes when solving nonlinear constrained 
optimization problems where it is difficult to get explicit expressions of variables that 
terminate in the objective functions. A method for solving constrained nonlinear opti­
mization problems is the Lagrange multiplier method, which is named after Joseph Loius 
Lagrange. It can be used when inequality and equality constraints are present [ ]. 

For nonlinear problems with equality constraints we examined the Lagrange multiplier 
method. The mathematical proof and geometry explanation are presented. In addition, 
the method is extended to include inequality constraints. Nonlinear optimization problems 
without inequality constraints have the standard form of 

m i n / ( x i , • • • ,xn) (1.15.4) 

As a result of: 
G ( £ ! , • • • ,xn) = 0 (1.15.5) 

Suppose, G = [G\ (xi, • • • , xn) = 0, • • • ,Gk (xi, • • • , xn) = 0 ] T , be the constraints vec­
tor. The Lagrange function F is constructed as: 

F ( X , A ) = / ( X ) - A G ( X ) (1.15.6) 
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Supposed, X = [xi,..., xn], are the variable vector, A = [Ai, • • • , A&], A i , • • • A& are 
refered to as Lagrange multipliers. 

If A and / satisfy the following extreme points: 

V F = 0 (1.15.7) 

then: 

9 f J T / \ m — = 0,i = l,...n (1.15.8) 
OXi ' X 

and 

G ( x i , - - - ,xn) = 0 (1.15.9) 

In the constrained nonlinear optimization problem, the Lagrange multiplier method 
describes important conditions. Economic, engineering, and scientific problems have been 
successfully resolved wi th the Lagrange multiplier method. In situations where the ob­
jective function / and constraints G have meaning, there is sometimes an identifiable 
significance to Lagrange multipliers. In economics, if profit subject is being maximize to 
a defined resources, the resources marginal value is A, which is occasionally refer to as 
shadow price, more specifically, the Lagrange multiplier is the ratio in which the opti­
mal value of the objective function / changes if the constraints are exchanged. Lagrange 
multiplier method plays a major role in power systems' economy dispatch, or the, or A 
dispatch problem, which is a cross between economics and engineering. This problem has 
the objective function of minimizing the generating costs, and the variables are subject 
to the constraint of power balance [22]. 

Nonlinear optimization problems can be dealt with efficiently using the Lagrange mul­
tiplier method since it can cope wi th both inequality constrained and equality constrained 
nonlinear optimization problems.Computational programming methods include the inte­
rior point method, the barrier, augmented Lagrange method, and penalizing.In economics, 
engineering, science and our daily lives, Lagrange multipliers methods and their extended 
methods are used widely [22]. 

1.16. L I T E R A T U R E R E V I E W 

Regression analysis is an important statistical tool to analyze the data and developed a 
meaningful and optimised relationship between the dependent and independent variables. 
In this study a relatively new approach is used to analyze the data of C O V I D - 1 9 deaths 
in Italy. The purpose of the study is to analyze the data in which the dependence of one 
variable on the other can not be simply explained or quantified by a simple regression 
function. The area of interest is to develop a method to quantify relationship between 
the variables especially when there are change points in the data. 

The history of regression analysis development starts wi th the method of least square 
approximation which was first mentioned by Legendre in his book [ ] published in 1805. 
The method was further developed by Gauss who published a Gauss-Markov Theorem 
[ l] in 1821. The major development of regression analysis took place in the 19th and 

39 



1.16. L I T E R A T U R E R E V I E W 

the 20th century which revolutionized the analysis of complex and huge data. Despite 
huge developments, regression analysis is stil l a growing and active area of research. The 
change point regression analysis is a relatively new area of regression analysis wi th on­
going research. 

Bhattacharya et al. [ ] worked on the aspects of change point analysis by dividing 
the data into homogeneous segments. He tested the concepts of no change, point and 
interval estimation of a change-point, non-parametric model changes, detection of change 
in distribution of sequential data and the changes in regression model. Jushan B a i [28] 
studied the change point estimation for least square method wi th multiple regressions. 
The method is used to analyze the response of market interest rates to discount rate 
changes.The approach is used to investigate the reaction of market interest rates wi th re­
spect to discount changes in rate. It included the derivation of analytical density function 
and the cumulative distribution function for the general distribution. 

Jie Chen [31] propose a new criteria called Schwarz Information Criterion (SIC), to 
locate change point within the straightforward simple regression model, further as in the 
multiple linear regression model, the tactic is then applied to a monetary information 
set, and a change point is detected wi th success. Mul ler et al. [31] considered a smooth 
regression model and proposed a two-step calculator for locating change point purpose 
and studied its straight line convergence properties.In a 1st step, ini t ial pilot estimates of 
the modification purpose and associated asymptotically shrinking intervals that contain 
actuality change point wi th chance convergence to one are obtained within the second 
step, a weighted mean distinction counting on the assumed location of the change point 
is maximized among these intervals and therefore the maximising argument is then the 
ultimate change point estimator. Godfrey et al. [ ] looked at the properties of various 
tests regarding logarithm and linear (or log-linear) regression models. The test procedures 
could also be classified as the tests that exploit the very fact that the 2 models are per 
se non-nested, tests supported the Box-Cox knowledge transformation and the diagnostic 
tests of purposeful type mis-specification against an any old alternative. The small-sample 
properties of many tests are investigated through a Monte Carlo experiment, as is their 
efficiency to non-normality of the errors. Andrews et al. [ ] considered checks for pa­
rameter instability and unknown change point. The results applied to a good category of 
constant quantity models that are appropriate for estimation by generalized technique of 
moments procedures. The paper considers Wald , Lagrange multiplier, and chance ratio­
like tests, every test implici t ly uses an estimate of a change point. The change point may 
be not known and exist between a fixed interval. The assessments were found to perform 
pretty well in a Monte Carlo test suggested someplace else. 

L i et al. [ ] used the saddle-point approximations to detect the change point in the 
data. Mean-shift problem was considered and the probability of change point was calcu­
lated for every point of location in the available data. The saddle-point approximation 
primarily based distribution of the test statistic which was worked out in the paper is of 
unbiased interest and attractive method. The results were also confirmed by the simu­
lations and the real world data.Julious et al [35] introduced a two-line model for known 
change point location to detect the change in the coefficient of regression using F-test. 
He concluded that that when the change point location is not known the resulting para-
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metric distribution from the F-test is not as expected. He proposed the non-parametric 
bootstrap methods to overcome the shortcomings in the method. 

A l l the above mentioned studies shows the fact that there are continuous advancements 
in improving the regression analysis methods especially when there are intervals in the 
data separated by the change point. The focus of this thesis is to present a method of 
analysing such data where single regression function is not enough to explain the inter-
dependencies of the variables involved. In this paper the data of C O V I D - 1 9 deaths in 
Italy over a period of time is analyzed by the application of regression analysis. The data 
is divided into two sections and two separate regression functions were found and then 
optimised under the condition that the two functions would become equal at the selected 
change point. This optimisation is achieved using Lagrange multiplier function which 
is applied in order to minimize the squared error of the two regression lines under the 
constraint that the two lines would meet at the arbitrary user selected change point. 
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2. DESCRIPTION OF P R O B L E M A N D 
IT'S SOLUTION 

2.1. S C O P E O F T H E S T U D Y 

When examining our data, we encounter situations where it is not appropriate to use 
a single expression to describe the dependence between variables, but it is necessary to 
divide the data into several sections and find an expression of the dependence for each of 
them. The problem is both to find the points at which the dependence changes and the 
expressions that describe these individual dependencies. 
The study is structured around the application of a change-point analysis methodology 
on linear regression to study if there is a change in the data as well as modelling the 
individual dependencies and showing the derived solution on a plot using the specific 
Covid-19 Italian Data. 

2.2. O B J E C T I V E OF T H E S T U D Y 

The specific objectives of this research are structured about four (4) major tasks which 
are: 

• F i n d a single line expression/model that describes the data 

• Evaluate the point of change in the data using the above stated model. 

• F i n d the individual expression/model that described the individual 

• Dependencies as evaluated in the change-point analysis 

2.3. DATA DESCRIPTION: The Italy covid-19 data 

Italy, is a part condition of the European Union and a famous vacationer location, joined 
the rundown of Covid impacted nations on 30 January when two C O V I D - 1 9 positive 
cases were accounted for in Chinese travelers. Italy C O V I D cases arrived at 59,138 on 23 
March, denoting the greatest Covid episode outside As ia . Italy is additionally the second 
most impacted Cov id country on the planet wi th the cases expanding at a higher rate 
than some other nation [13]. Italy was the main Western country to encounter a sig­
nificant Covid episode and therefore confronted enormous scope well being and financial 
difficulties. 

The Italian government upheld a wide arrangement of homogeneous mediations broadly, 
in spite of the contrasting occurrences of the infection all through the nation [5]. Li l iana, 
Antonio, Alessandra, & Saverio, (2020). Expounded on the circumstance and in their 
works, they said in the current environment, there is a lot of talk about "legends". "The 
legends of this conflict are the Doctors" is a repetitive figure of troop in Italy and the 
other part of the world these days. However basically as Medical workers, very much like 
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the nurses and all of the other health workers who continue to do their work well aware 
of the high risk of contagion in healthcare settings [6]. 

The impacts of the pandemic on Italy and the Italian public overall are huge. Italy is 
nineteenth among the main 30 nations getting carrier explorers from high-hazard urban 
communities from Covid in China, as indicated by Wor ld Pop's fundamental examination 
of the n C o V spread. The Italian government went to lengths, for example, screening 
and suspending significant local area occasions during early seasons of the Covid flare-up, 
and has at last reported conclusion of instructive foundations and cleanliness/sterilization 
measures at air terminals. The Italian National Institute of Health (Istituto Superiore 
di Sanita) suggested social removing and recognized that the country's bigger matured 
populace represents a test. Numerous different nations including the US have, in the in­
terim, encouraged to briefly keep away from movement to Italy, except if fundamental [13]. 

The data used for this research is the C O V I D - 1 9 new death data obtained from the 
Italian covid-19 outbreak data. The software used for the solutions of this work is the 
Excel programming tool. 

Figure 2.1: Italian Covid'19 Data 

The result of the connection of the "Order (22.2.2020 - 4.8.2020)" and "New Death 
(22.2.2020 - 4.8.2020)" data is a Non linear regression graph which is given below 
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Italy Covid'19 Data 
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Figure 2.2: Non Fi t ted Non-Linear Graph 

So this graph gave us a lead to talk more about Non liner regression, based on the 
result of the scattered plot above, we encounter situations where it is not appropriate to 
use a single expression to describe the dependence between variables. So the data was 
changed from non-linear to Linear and then both the changed data and the original data 
was divided into several sections in other to find an expression of dependence for each of 
them. 

2.4. L I N E A R REGRESSION F U N C T I O N USING E X P O N E N ­
T I A L M O D E L 

Occasionally linear regression can be utilized with relationships that are not inherently 
linear, however can be construct to be linear after a transformation. Particularly, we 
examine the next exponential model: 

Y = Aef)x (2.4.1) 

Taking the natural log (sight Exponential and Logs) of the two sides of the equation, 
we have the next equivalent equation: 

Y = Ae0x (2.4.2) 

Note: Aimpliese13 This equation has the structure of a linear regression model (where an 
error term is included). 

y = fi + fix + error (2.4.3) 

Now, back to the given data, we transform "New Death Order (22.2.2020 - 4.8.2020)" 
data corresponding to this model 7 = fie. So that we can use the linear regression form 
to find the linear relationship between "Order (22.2.2020 - 4.8.2020)" and "New Death 
Order (22.2.2020 - 4.8.2020)". Taking the natural log of both sides just as we've discussed 
earlier 

44 



2. D E S C R I P T I O N O F P R O B L E M A N D IT 'S S O L U T I O N 

ln(Y) = ln(A) + ln(eßx) (2.4.4) 

which implies. 

y = ß + ßx (2.4.5) 

then, 

U — ßo + ßx + error (2.4.6) 

(after introducing the linearization terminologies) 

where ln(Y) = y, ln(/3) = ß0, x = Order and y = ln(New Death) 
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order New Deaths In(NewUeathi) 
1 1 0 
2 1 0 
3 3 1.098612289 
4 4 1,386294361 
5 2 0.693147181 
6 5 1.609437912 
7 4 1.386294361 
S 3 2,079441542 
9 5 1,509437912 
ID 18 2.890371758 
11 27 3,295836866 
12 28 3,33220451 
13 41 3,713572067 
14 49 3,891820298 
15 36 3,533513938 
16 133 4,890349128 
17 97 4,574710979 
18 168 5,123963979 
19 196 5.278114659 
20 189 5,241747015 
21 250 5,521460918 
22 175 5,164785974 
23 368 5,908082938 
24 349 5.8550/1922 
25 345 5,843544417 
26 475 6,163314804 
27 427 6.056/84011 
28 627 6,440946541 
29 793 6,675823222 
30 651 6,478509542 
31 601 6,393594935 
32 743 6,610696045 
33 fiH3 6 52649486 

38 162 5,037596335 
89 161 5.081404365 
90 156 5.049856007 
91 130 4,86753445 
92 119 4,779123493 
93 50 3,912023005 
94 92 4,521788577 
95 78 4,356708827 
96 117 4,762173935 
97 70 4,248495242 
98 87 4,465908119 
99 111 4,209530201 
100 75 4,317488114 
101 60 4,094344562 
102 55 4,007333185 
103 71 4,262679877 
104 38 4,477336814 
105 85 4,442651256 
106 72 4,276666119 
107 53 3,970291914 
108 65 4,17438727 
109 79 4,369447852 
110 71 4,262679877 
111 53 3,970291914 
112 56 4,025351691 
113 78 4,356708827 
114 44 3,784189634 
115 26 3,258096538 
116 34 3.526360525 
117 43 3,761200116 
118 66 4.189054/4/ 
119 47 3,850147602 
120 49 3,891820298 
121 33 3,496507561 

51 431 6.06610809 
52 566 6,3185940/8 
53 602 6,400257445 
54 578 6.359573869 
55 525 6,263398263 
56 575 6,354370041 
57 482 6,177944114 
58 433 6,070737728 
59 454 6.118097198 
60 534 6,280395839 
61 437 6,079933195 
62 464 6.139884552 
53 420 6,040254711 
64 415 5,02827852 
65 200 5,560681631 
6li 333 5.80814249 
57 382 5,945420609 
08 323 5,777652323 
69 285 5,65245918 
70 269 3,594711.36 
71 474 6,161207322 
72 174 5,159055299 
73 193 3,2/2999539 
74 236 5,463831805 
75 369 5,910796644 
76 274 5,613128106 
77 243 5,493061443 
78 194 5,267858159 
n 165 3,105945474 
so 179 5,187385806 
81 172 5,147494477 

ÜJ 195 5272999559 
83 262 5,568344504 
84 242 5,488937726 

1 w 30 3,401197382 
133 15 2,708050201 
134 21 3,044522438 
135 7 1 945910149 
136 -• 2,079441542 
137 30 3,401197382 
138 15 2,708050201 
139 12 2,48431:655 
140 12 2.48490665 
141 7 1,945910149 
142 9 2,197224577 
14! 13 2 564949357 
144 17 2,833213344 
145 13 2,564949357 
146 20 2.995732274 
147 11 2,397895273 
148 14 2.63905733 
149 3 1.098612289 
1.30 13 2,66494935/ 
151 15 2,708050201 
152 9 2,197224577 
153 10 2.30/585093 
154 5 1,609437912 
155 5 1,609437912 
156 5 1,609437912 
157 5 1,605437912 
158 11 2,397895273 
159 6 1,791759469 
160 3 1,098612289 
161 9 2,197224577 
162 5 1,609437912 
163 8 2,079441542 
164 12 2,48490665 
165 5 1 609437917 

Figure 2.3: Linear Form 

Some part of the dataset is shown in the data displayed above, order is represented 
as x which is the independent variable and ln(New Death) being the dependent natural 
log of new death. We take the graph which seems to be non-linear as we can peruse in 
the graph below Assuming that the error in the transformed equation has the desired 
properties (normal distribution wi th mean null or 0). When we obtain our estimates 
from the transformed equation, going back to the original equation can be tricky. Some 
true-equation parameter evaluation are biased, however consistent, if the parameter was 
transformed (e.g. A in the models above). Confidence intervals surrounding predicted 
values are no more symmetrical. It is compulsory for us to get the confidence interval 
from the transformed equation and then transform the ends back. 
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2. D E S C R I P T I O N O F P R O B L E M A N D IT 'S S O L U T I O N 

Here is the scattered plot below after changing/transforming the original Non-linear 
equation into linear 

Italy Covid'19 Data 
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Figure 2.4: Non Fi t ted Linear Plot 

Before we begin to utilize a non-linear regression equation: we should have a better 
purpose for not uti l izing a linear model, like a theory of what way does the process that 
we are observing works, or a pattern we see on the graph or in the residuals from a linear 
regression, so, we decide which non-linear equation wi l l be best for our data. Could we 
construct a reasonable analogy wi th steady Non-linear? What about along demand or 
production? 

Moreover, the graph Figure 2.4 is not a fitted regression line, so therefore we must find 
the individual sections that are described by regression function, to find the appropriate 
regression functions for these sections we need to divide the data (i.e the Order, New 
deaths and In (New deaths)) into two parts/sections so that we can find the fitted regres­
sion line and the confidence interval following each other, then taken an area borders to 
minimize the model error. 

The procedure of least square model regression examine the total of the complete de­
viation of the observations from the line in the vertical direction in the scatter diagram 
as in the event of direct regression to get the estimates of (30 and f3\. 

No presumption is needed about the form of the probability distribution of Si in obtain­
ing the least squares estimates. For the a im of getting the statistical inferences alone, we 
presume that Si are random variable along E (Si) = 0, V a r (Si) = a2 and Cov (Si, Sj) = 0 
for a l l % 7̂  j(i,j — 1,2,... ,n). This assumption is required to look for the mean, variance 
including more properties of the least-squares estimates. The presumption that £j 's are 
usually distributed is utilized while building the tests of hypotheses including confidence 
intervals of the parameters. 

Depending on these approaches, separate estimates of (3o and (3\ are acquire which 
include separate statistical properties. Between them, the direct regression approach is 
more accepted. Commonly, the direct regression estimates are known as the least-squares 
estimates. 
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2.4.1. FINDING THE LEAST SQUARE REGRESSION LINE 

Figure 2.5: Regression line 

The scattered diagram and the plot in Figure 2:37 seems to be showing positive relation­
ship between x and y i.e as x is the order so thus y is the ln(New Death), and a fitted 
straight line. 

So, wi th the linear model, we can describe this relationship between x and y by finding 
the slope and the y-intercept that defines the line that fits this data perfectly using the 
sample data. We are going to get the line using the least squares method, what we are 
going to be doing is find the line that fit the data the best. The y regression line fits the 
data the best when the distance of each of the data points is at its minimum distance 
from the line. 

We wi l l be using the formula below to minimize the distance of each yi from each 
corresponding y 

n 

ss(Res) = Y^ ~y^2 

i=n (2-4.7) 

i=l 

Recall that we divided our transformed data into two parts. Now, we analyse the first 
part and the analysis is also applicable to the second part. 

Analyses from the first part of our sample data yi are the observed ln(New Deaths). 
For example, dividing our data into two at a particular point X° = 20, the first part is 
from (1 to 20) while the second part is from (21 to 165). Now, yi is minimized which 
formed the regression line and that would be the line that fits the data from the previous 
formula. 

• yi — observed value for the dependent variable for the ith observation. 

• y — predicted value of the dependent variable for the ith observation. 

So, from our sample table and diagram 
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let's take the "order" Xj where % — 1, , 20 . O n the graph we look at points in Xi 
and then look up to the line of regression and over to where all points are on the y axis, 
them we would get a predicted y value y for the observations. Once we get an equation 
for the regression line we wi l l be able to predict that value more exactly. 

Looking back at the previous study, we have an observation of "order" Xi and that 
observation have a corresponding observed y value of yj. In short, what least square 
method is saying is to define a straight line that minimize the difference or deviations 
from each of the dots to the line (i.e take each yi from each y and minimize that squared 
difference). Now that we understand what the best fitting line to the data would be, so , 
we need to calculate the slope and the y-intercept. 

2.4.2. TO C A L C U L A T E THE SLOPE 
We are going to use the following equation to obtain the slope 

o _ E?=i (gj - g) fa - y) 
Ei=i (xi - x) 

(2.4.8) 

• Xi — value of independent variable for ith observation (we have 2 0 observation) 

• Vi — value of dependent variable for ith observation 

• x — mean value of independent variable (i.e we wi l l add up all the x's and divide it 
by 20) 

• y — mean value of dependent variable (i.e we wi l l add up all the y's and divide it 
by 20) 

Once we plug in all the numbers and calculate the slope then we can calculate the 
y-intercept (3o by using the formula stated above 

2.4.3. TO C A L C U L A T E THE INTERCEPT 

A) = y - Ax- (2.4.9) 

Based on this formula, we must calculate the slope before the intercept 

Here are the results of the evaluation 

. Slope is 0,2905 

• Intercept is -0,2664 

The general equation is now given as 

y = - 0 , 2664 + 0, 2905a; (2.4.10) 

So, when x = 10 the predicted value is 2,6387. 
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• How good is this prediction (that turns out how good is the regression line to the 
data) 

• Anyone can draw a straight line through any data points and define it mathemati­
cally wi th a slope and y-intercept but that doesn't mean it's a good fitting model. 
So we need a measurement that tells us how well the regression line fits the data, 
that such measurement is called "Coefficient of determination " and it tells us how 
good a fit regression line is to our data. 

2.4.4. COEFFICIENT OF DETERMINATION 
How well does the regression line fit the data 

r> S S R , A _ _ , 
r = s s T < 2 A 1 1 ! 

• r 2 is the coefficient of determination and this is calculated by SSR and SST 

• SSR means sum of square due to regression = 

E(^-^)2 (2-4-12) 
i=l 

the way we calculated the SSR is the sum of the squared derivatives of each predicted 
value of y that's each y and subtract y which is the average y, so it 's between the 
predicted values and the average the denominator. 

• SST means sum of square of the total deviation and we find that value by taking 
the sum of the squared differences of each yi at each actual observation from y 

i=l 

Another means of getting SST is the sum of SSR and SSE 

• S S E means square of the error and that is calculated by taking the squared differ­
ences of each yi from each predicted value y. This is positioned on the scattered 
diagram at the deviation of the actual value of y and the predicted value of y and 
that is called unexplained variation, this is the variation of y that is not explained 
by the line of regression. 

T,(y-yf (2.4.14) 
i=i 

So from our sample data 

SSE = 2,4397 

SST = 58,5606 
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. SSR = 56,1209 

Which implies 

C C D 

r2 = | | p = 0,9583 (2.4.15) 

The coefficients of determination is 0, 9554. r 2 measures the present of variability in 
y can be explained by the x variable. 

Since r 2 is 95, 54% of the variability in ln(New Deaths) can be explained by the number 
of Orders (i.e the y explains 95% of the variation in ln(New Deaths) from the mean but 
5% of the variation is unexplained by the line of regression and that is the error.). Another 
measure of how well our line fits the data need to be discussed and that is the correlation 
coefficients. 

2.4.5. CORRELATION COEFFICIENT 
This measure the strength of association between x and y, the correlation coefficient is 
called r and it's values are between -1 and +1. 

• r = +1 means perfect positive linear relationship between x and y, so that means 
all the data points from the sample lie exactly on the line of regression wi th no 
deviation and the data points from the sample lie exactly on the line of regression 
with no deviation and the line slopes upward. 

• r = -1 means perfect negative linear relationship between x and y in this case all the 
data points line exactly on the line of regression but the line is sloping downward. 

• if r = 0, then it means there is no relationship x and y 

To calculate r, we simply take the square root of the coefficient of determination and 
we use the sign of the slope to calculate it. 

r x y = (sign of (2.4.16) 

We calculated the r has a subscript of x and y, it just tells us that the correlation 
coefficient is for the values of x and y. From our sample r 2 = 0, 9554. Taken the square 
root of the coefficient determination (0,9554). We don't know if it should be positive 
since the square number always loose their signs. So, in other to know if it 's positive or 
negative number. We have to look at the slope if it 's a positive slope or a negative slope 
and then we use the sign of our slope. In our sample data the slope is +0, 2404, so we use 
the positive sign and we get 

rxy = (sign of ft) V 0 , 9 5 8 3 

rxy = +0, 9789 

Recall that +1 would be a perfect linear relationship which is very rare. So, a +0, 9789 
wi l l be a very strong linear relationship between x and y. calculating the randr2 we see 
that the line is a very good fit to the data. 
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2.4.6. HYPOTHESIS TEST OF SIGNIFICANCE, T-TEST 

H0 : ft = 0 

Ha : ft + 0 

Starting wi th the null hypothesis i f 0 that the slope (ft) = 0 and the alternative Ha is 
to see if we find evidence that the slope is not equal to zero (i.e ft ^ 0). We can conclude 
that there is a linear relationship between x and y since we do not know the value of 
sigma for this distribution we wi l l be using a t-test and the test statistics would be: 

t = A (2.4.17) 

Spl is the standard error of the slope 

S01 = S = (2.4.18) 

and 

s ' S S E 

n - 2 

S is the standard deviation 

From the previous calculation, SSE = 2,4397, so to get S, We have 

/ M 3 9 7 
V 20 - 2 

Now, to find Spl (the standard error for the slope) and that is 

S f t = ^ S = 0,01428 
P \/665 

Now, we can finally calculate our test statistics as follows: 
ft = 0, 2905, 

0,2905 
t = — = 20,3431 

0,01428 

We tested to see if we have enough evidence to support the alternative hypothesis 
that the slope is not equal to zero, if we find this evidence we wi l l conclude that here is 
a linear relationship between x and y. We calculated our t test to be 20, 3431. 

Now, we are ready to use either the critical value approach or p-value approach to 
solve this problem. We wi l l begin wi th the critical value approach and let's use the alpha 
value (a) = 0.01, as seen this in two-tailed test we split alpha in half (i.e (a) /2 = 0 : 005). 
Since this is a t-test we looked up our critical value in t table under n — 2 degrees of 
freedom (i.e we have 18 degrees of freedom based on our sample data). So, with this we 
find the critical value of 2,1009. 
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2. D E S C R I P T I O N O F P R O B L E M A N D IT 'S S O L U T I O N 

From the t-distribution the critical value splits the distribution into rejection regions 
and non-rejection region and the statistic falls around 20, 3431 

Now, we are ready to come to a statistical conclusion and this of course wi l l be to 
reject the null . 

There is evidence that the slope is not equal to zero which there is a significant relationship 
between ln(New Death) y and number of Orders(x). We can also solve this problem using 
the p-value approach, to use the p-value approach. 

Using the t-statistic (20, 3431), looking up to this number in t-table under df = 18 using 
excel. For a two-tailed test we double the value (i.e for a two-tailed test: Double the area 
and compare to a). 

So the p-value is 8, 9 5 8 3 5 £ - 20 

Rejection rule is to reject the null hypothesis if the p-value is less that or equal to a. 
Since our a — 0.1 which is the value for this problem, then our p-value (8, 95835.E — 20) is 
less than our a value.(i.e 8, 95835.E — 20 < 0.1). Therefore, we reject the null hypothesis 
and find evidence that the slope is not equal to 0 which means that ln(New Death) and 
Order have a linear relationship. 

Note: When the p-value is less than the a value, then we have a linear relationship. 
Reject H0, there is evidence that f3\ is not equal to zero and that a significant relationship 
exists between In (New Death) and Order. 

Remember that y is a point estimate. Since we want more realistic estimate value, we 
would take y ± the margin of error. A confidence interval would be a more realistic way 
of expressing the ln(New Death). 

So, we obtain the result for the confidence interval for mean and individual value using 
the following equation: 

• Mean value formula 

2.4.7. STATISTICAL CONCLUSION 

2.4.8. PROBABILITY VALUE APPROACH 

2.4.9. REJECTION RULE 

2.4.10. CONFIDENCE INTERVAL 

• Predicted value formula 
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2.5. F I N D I N G T H E M I N I M A L 

So based on this results, wi th 95% confidence that for every individual of each Order 
(x) there predicted (y) is be between upper and the lower confidence limit displayed above. 

Whi le the confidence interval for the slope is 0,2605 for the upper l imit and 0,3205 
for the lower limit at 95% level of confidence. 

(a) a (b) b (c) c (d) d 
Figure 2.6: Linear Confidence Interval for Mean and Predicted Value 

2.5. FINDING T H E M I N I M A L 

From the sample data (Order (22.2.2020 - 4.8.2020), In (New Deaths (22.2.2020 - 4.8.2020))) 
we want to find the minimal point, The lower the SSE, the similar the result. 

• we select point x from set { 3 , 4 , . . . , 163}, then 

• we calculate the regression lines for area 1, ..,x and for area x,..., 165 and their 
residual sums 

n n n 

S e = ^2 Vi ~ ^2 Vi - Pi ^2 XiVi (2.5.1) 
i=l i=l i=l 

• So, we denote: S% - the residual sum for the and S§ for the 
x , . . . , 165. 

So, we can see the results in the figure below 
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2. D E S C R I P T I O N O F P R O B L E M A N D IT 'S S O L U T I O N 

X 
10 133,3196 
20 37,8550 
18 49,4444 
27 19,1714 
28 20,7336 

29 24,9321 
33 27,1433 
37 31,5923 
40 37,0382 
45 50,1604 
55 80,5164 
60 95,9290 
70 130,7016 

75 147,5689 
83 175,7109 

90 195,0916 
100 229,8477 
110 254,7596 

(b) Minimal Plot 

(a) Minimal Table 

Figure 2.7: Some M i n i m a l Points 
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3. A N A L Y T I C A L SOLUTION OF T H E 
M O D E L 

3.1. FINDING T H E A N A L Y T I C SOLUTION 

3.1.1. BACKGROUND 
To analyse the data of the C O V I D - 1 9 deaths in Italy in detail, the regression analysis is 
used. The purpose of the regression analysis is to understand the relation of the dependent 
variable on the independent variable. In our case the dependent variable is the amount 
of deaths with respect to independent variable time, represented in the form of dates 
(22.2.2020 - 4.8.2020). The data is converted from non-linear to linear form by taking 
the natural log of the number of deaths. The data seems to be divided in two parts or 
areas where the first area sees an increasing trend and then in the second area, there is a 
decrease in the number of deaths wi th respect to the independent variable i.e., time. So, 
there must be two separate expressions to show the dependence of variable on the other 
and there must be a point where this dependence is changing which can be denoted by 
xQ. 

3.1.2. ANALYTIC SOLUTION 
The regression analysis is used to find the expressions of the two separate areas under the 
condition that the two lines would meet at the point where dependence of the variables 
is changing. Let 's assume the independent variable i.e. the order (22.2.2020 - 4.8.2020) 
is denoted by x and the dependent variable i.e. the natural log of the number of deaths 
is denoted by y. If the first area is represented by 1, the independent variable values wi l l 
be, 

ryi 1 />-» 1 /-y» 1 
•M) • X j 2 i i 

The dependent variable values wi l l be, 

If the second area is represented by 2, the independent variable values wi l l be, 

2 2 2 
J J \ I J j 2 I i 

The dependent variable for second area wi l l be. 

2 2 2 
V \ i V 2 i i V n 

The linear regression model for first area is given by, 

y = fa + fax] + £ (3.1.1) 

The linear regression model for second area is given by, 

y = lo + lix2 + £ (3.1.2) 
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3. A N A L Y T I C A L S O L U T I O N O F T H E M O D E L 

In our case, the two regression lines are not meeting each other. To make the lines 
meet we need to optimize the values of slopes and y-intercepts of individual regression 
functions using Lagrange multiplier for squared errors of the combined regression lines. 
A Lagrange multiplier wi l l be used to minimize the squared error of the regression lines 
subject to the constraint that both lines would meet at an arbitrary point denoted by x°. 
The generalized form of the Lagrange function is given by, 

L(x,X) = f(x) + Xg(x) (3.1.3) 

In our case the function we want to minimize is the squared error of the two regression 
lines which is given below, 

nl n2 

/ (*) = E W - + P^\)f + E {Vj - (7o + 7 i ^ 2 ) ) 2 (3.1.4) 
i=i j=i 

The condition under which this function needs to be optimized is given by, 

g(x) = fa + fax0 - 70 - lix° 

So the Lagrange function of the squared error of the regression lines is given by, 

nl n2 

L (A), Pi, 7o, 7 i , A) = E W - (A) + Pix}))2+J2 fe2 - (7o + 7 i ^ 2 ) ) 2 + A (P0 + P,x0 - 7 o • 
i=i j=i 

The Lagrange multiplier estimates of p0, Pi, Jo, 71 and A can be obtained by minimiz­
ing L 70,71, A) 

The normal equations are obtained by partial differentiation of Lagrange multiplier 
wi th respect to Po, PI, 7O, 7 i and A and equating them to zero as follows to obtain 

o r / «1 \ "1 I n\ 

dßQ = 2 ( E W - A) - fe1)) (-1) + A = - 2 E ^ 1 + 2 m A + ( 2 E ^ 1 ) px + A = 0 

Denote 

61 := 2y~]yl, an — 2 m , a12 = 2^2x]or2n1x1 ,a13 = 0,aM = 0,a15 = 1 
i=l i=l 

Then, we have 

anPo + a12Pi + a13j0 + awfi + aibX = bj 

Similarly, we have 
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3.1. F I N D I N G T H E A N A L Y T I C S O L U T I O N 

dL 2 E W - a - ̂ J) (-̂ ) +Aa;C 

i=i 

v2 

i=l \ i=l / \ i=l 
Denote 

ni I m \ I ni 
, 2 &2 := 2 y-x- , % = 2 ^ i j L j ^ 2 E (xi) ' 0 2 3 = °' °24 = °' °25 = x°' 

i=l 

Then, we have 

Ö2lA) + Ö 2 2 Ä + Ö2370 + Ö2471 + « 2 5 ^ = &2-

Similarly, we have 

ri2 \ « 2 / " 2 
- = •> [ 

97i 
^ 2 ( ^ ( ^ - 7 l - 7 2 x | ) ) ( - l ) - A = - 2 ^ , | + 2 n 2 7 l + ( 2 ^ x J

2 ) 7 2 - A = 0 

o=i / i=i \ i=i 

Denote 

« 2 / « 2 

&3 := 2 E 2/j> °33 = 2n 2 , a 3 4 = I 2 ^ x\ J , a 3 i = 0, a 3 2 = 0, a 3 5 = - 1 
i=i V j=i J 

Then, we have 

asißo + Ö32Ä + Ö3370 + Ö3471 + «35^ = b3. 

Similary, we obtain 

dL_ 
<97i 

112 / « 2 \ / « 2 

- 2 E +2 E *5 -ft + 2 E W)21 -n -**" = <> 
i=i \ i = i / V i=i 

n 2 / « 2 \ I ni 
&4 := 2 y j x j , a 4 3 = 2 I x | J , a 4 4 = I 2 (x2)2 ) , a 4 i = 0, a 4 2 = 0, a 4 5 = - x c 

i=i \j=i J V i=i 

Then, we have 

Denote 
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3. A N A L Y T I C A L S O L U T I O N O F T H E M O D E L 

0>4lßo + CL^ßl + Ö4370 + Ö4471 + Ö4öA = &4-

Finally, we have 

dL 
ßo + ßlX° - 7o - 7ia:° 

Denote 

ö5i = 1, Ö52 = a:0, a 5 3 = - 1 , a 5 4 = a 5 5 = 0, b5 = 0. 

Then, we have 

Now, we have 

«51 A) + a 5 2 Ä + Ö5370 + Ö5471 + « 5 5 ^ = h 

A 

Which implies 

au Ö12 Ö13 «14 Ö15 /So, &i 

«21 Ö22 «23 Ö24 «25 /Si &2 
«31 «32 «33 Ö34 «35 , X = 7o, ,6 = h 
041 Ö42 Ö43 O44 Ö45 7 i , 
Ö51 «52 «53 «54 Ö55 A 

(3.1.5) 

" 2ni 2/iia; 1 0 0 1 • " ßo, ' " 6 1 , ' 
2niä; 1 

2 E £ i ( ^ ) 2 0 0 ßl 62, 
0 0 2 n 2 2n2x2 - 1 , x = 7o, ,6 = 6s, 
0 0 2 n 2 x 2 1 -x° 7 i , 64, 

1 x° - 1 0 A . &5, . 

Then, we can solve for A), A , 7o , 7 i , A by solving the following linear system of equa­
tions 

Ax = b (3.1.6) 

The above linear system of equations has a solution if an only if AATb = b. Let's 
assume that AATb = b holds, then let x* be such that Ax* = b. The vector x* is given by 

x* = ATb + (I - ATA) y 

where y is any arbitrary vector in M 5 . 

(3.1.7) 

We further denote 

x* = ( / ^ , 7 o , 7 i , A * ) . 

From the above calculations it is easy to deduce that 

(3.1.8) 

V L (ft, ft, 70,7 i , A) = Ax-b (3.1.9) 
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3.1. F I N D I N G T H E A N A L Y T I C S O L U T I O N 

W i t h A = A*, the Hessian is given by 

V 2 L ( / 3 0 , / 3 i , 7 o , 7 i , A * ) 

an 
Ö12 Ö13 a i 4 

Ö21 Ö22 Ö23 «24 

«31 «32 «33 Ö34 

Ö41 Ö42 Ö43 O44 

4 

Note that A is constant, as a l l the entries are constant. So, based on Sylvester Cri terion 
application; If A is positive (i.e greater than 0) semi-definite then we can conclude that 
(/So, PI, 7Q, 7 i ) is the minimizer of the primal problem, which is 

2 \ 2 
ni n 2 

/30+/3izu=7o+7ixu * ^—• 
1=1 j = \ 

(3.1.10) 

But if it 's negative (i.e less than 0) then it's a saddle point, indefinite and strict local 
maximizer. 

A minima or maxima value of zero is necessary for all partial derivatives, if Gradient 
is zero at a minima or maxima.The function always increases as we move away from 
the minimum which makes the Hessian matrix to be a positive definite.The function 
decreases as we move away from the maxima which makes the Hessian matrix to be a 
negative definite. In the situation where the Hessian has neither positive nor negative 
definite points, then the point is neither a minima nor a maxima, but It's more like a 
saddle (moving in some directions increases the function, while moving in others reduces 
i t ) .During our discussion about the Sylvester Criterion, we wi l l elaborate on this further 
[10]. 

3.1.3. APPLICATION OF SYLVESTER CRITERIA 
Sylvester criteria is an important method to find the local extrema of a function. The 
criteria is applied to the hessian matrix created from the function L . The matrix is given 
by, 

A 

Let A f c = det (A™). (So An = det(A).) B y examining A7s eigenvalues, we should be 
able to determine its determinant [20]. 

Since 

det (A — xl) = (Ai — x) (A2 — x) • • • (A„ — x). 

As a result of setting x = 0 then det (A) = X1X2 • • • Xn. When Ay 0, Each eigenvalue 
is positive, so det (A) > 0 Likewise. 

an 
Ö12 Ö13 Oi4 Ö15 

Ö21 Ö22 Ö23 «24 Ö25 

«31 «32 «33 Ö34 «35 

Ö41 Ö42 Ö43 O44 Ö45 

«51 «52 «53 Ö54 °55 

According to the Sylvester Criteria, the function to have a local minima then all of its 
principal minors of its hessian matrix have to be positive. 
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3. A N A L Y T I C A L S O L U T I O N O F T H E M O D E L 

According to Sylvester's criterion, such matrices are actually positive definite: From 
some of Sylvester's criterion theorems: suppose A is an n x n symmetric matrix [ ]. 
Then: 

. A y 0 if and only if A i > 0, A 2 > 0 , . . . , An > 0 [20]. 

. A -< 0 if and only if ( - F / A i > 0, ( - 1 ) 2 A 2 > 0 , . . . , ( - l ) n A n > 0 [20]. 

• A is indefinite if the first A& that breaks both patterns is the wrong sign [20]. 

• A can be either negative semidefinite or positive, or indefinite, so we can say that 
Sylvester's criterion is not conclusive when the result of the A& is 0 [20]. 

Another Sylvester's criterion theorem also state that; if / : M™ —> M. is a function wi th 
continuous Hf, and suppose x* 6 R n is a critical point of / [20]. 

• Assuming Hf (x*) y 0, in that case x* is a strict local minimizer [20]. 

• Assuming Hf (x*) -< 0, in that case x* is a strict local maximizer [20]. 

• The result from the previous theorem is further enhanced by this result: suppose 
Hf (x*) is indefinite, in that case x* is a saddle point [20]. 

Apply ing the criteria to the above matrix of our data of C O V I D - 1 9 deaths, 

As . 

General Hessian MATRIX General Hessian MATRIX 

2(nl) 2(n l ) (Meanof xl] 0 0 1 
2(n l ; (Mean of « I | 2(nl)((Meanof<xl) ' ,2] 0 0 xo 

c c 2(n2](Mean of x2) •1 
0 0 2(n2)(Mean of x2) 2(n2)((Meanof (x2)"2) - Xo 

- : ••-

1} det I 2(nl) I > 0 (SYLVESTER'S CRITERIA) 
1) n l > 0 
2) Mean ol (x 1 )M > (Mean of x l ) ' (Mean of xl) 
3) n2>0 
4) Mean of (x2) > Mean of (xl) 
5) Mean of (x2)"2 > (Mean of x2)'(Mean of i2) 

2) det 2|nl) 2|nl] |Meanof xl ] >0 

I 2 (n l | (Meano lx l ) 2(nl]HMeanof(xl)'>2) 

3) det I 2|nl) 2|nl] |Meanof x l | 0 
2(n l ) (Meanolx l ) 2(nl|(|Meanof (xl)»2) O > 0 

1 0 0 2|n2) I 

4) det I 2[nl] 2|i) l | |Meanof «1) O 0 
2(nl){Meanof xl) 2(nlj((Mean of (xl)"2| 0 O 
0 0 2|[>2) 2(n2)(Meanofi2) 

I 0 0 2{n2)|Mean of x2) 2(n2)[(Mean nf (xi)»2| 

SJdet 2(nl | 2(nl)(Mean of x l | D O 1 
2(nl)(Meanof xl) 2(nl)(|Mean of (xl)*2) 0 0 Xo 
0 0 2|n2) 2(n2)(Mean of x2) 1 
0 O 2|n2)(Mean ofx2| 2(n2)(|Mean of (x2)"2) -Xo 
1 Xo -1 -Xo 0 

H e n c e t h e f u n c t i o n h a s s a d d l e p o i n t a t X o 

Figure 3.1: Sylvester Criterion 

So. 

ni > 0 

det[ a n ] > 0 
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3.1. F I N D I N G T H E A N A L Y T I C S O L U T I O N 

As 
nl> 0 

in 

So, 

As 

So, 

As 

E ) >0 

i = l 

111 II I 

.i=i 

riet 

.4=1 

a n a i 2 

«21 «22 

nx > 0 

. n 2 

> 0 

E W) >0 

. i=i 

»1 " 1 

X-.1 • X*.')>0 

.1=1 ) \i=l 

n2 > 0 

a n ai2 013 
021 «22 «23 

a 3 i a 3 2 a 3 3 

n i > 0 

> 0 

So, 

ni 

,i=i 
«1 

i = l / \ i = l 

n2 > 0 
U2 \ / ni 

X>? > 5>.')>° 
n2 

,i=l i=l 
»2 

£(*?)') >|5>M-IE 
i = l 

.r 
1 = 1 

riet 

a n «12 «13 «14 
021 Ü22 «23 «24 

«31 «32 «33 «34 

041 042 «43 044 

> 0 
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As 

3. A N A L Y T I C A L S O L U T I O N O F T H E M O D E L 

rii > 0 

ni 

E (*.')' 
, i = i 

> 0 

E * ? > E * > ' > 0 

, i = i , i = i 

> E ^ • E 
, i = i , i = i 

So. 

XT 

, i = i 

a n Q12 Qi3 O14 ai5 
021 022 «23 a 2 4 «25 

de£ a 3 i a 3 2 a 3 3 a 3 4 a 3 5 < 0 
O4I O42 Ct43 G44 G45 

«51 «52 «53 «54 «55 

For x° > 0, this determinant is negative. Hence it is proved that the function L has 
the saddle point at XQ. It means that the function L has local minimum in one direction 
and has a local maximum in other direction.By looking at the data, it is clear that is the 
case. 

3.1.4. CHANGE POINT APPLICATION ON THE COVID-19 DATA 
The data of C O V I D - 1 9 deaths in Italy over a period of time shows the ini t ial trend of 
increase t i l l a point after that the decreasing trend can be observed. The point this change 
of behaviour occurs is the change point or in mathematical terms it is the saddle point. 
The significance of that point becomes clear when the squared error of the two regression 
lines needs to be minimized and the condition under which it can be minimized that the 
two lines would meet at an arbitrary point i.e. x° where the two regression functions 
become equal. The condition is defined as, 

0o + 0xx° = 70 + ixx° 

The Lagrange multiplier function is used to minimize the squared error under the con­
straint that the two functions would become equal at the change point x°. The Lagrange 
function helps optimize the values of the required regression parameters under a defined 
condition by introducing the Lagrange variable i.e.A whose value varies wi th the variation 
in the value of the change point i.e. x°. 
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3.1. F I N D I N G T H E A N A L Y T I C S O L U T I O N 

3.1.5. MODIFICATION OF SLOPES AND y-INTERCEPTS 
A s the function L has the saddle point at x° , so for every selected value of xo, there wi l l 
be new values of slopes and y-intercepts of the two regression lines under the condition 
that the two lines meet each other at x° . B y solving the system of linear equations for 
different values of x°, the different values of /30, 7o, 7 i , A wi l l be obtained. The system 
of linear equations is given by, 

A 

an Ö12 Ö13 «14 Ö15 /So, bi 
Ö21 Ö22 Ö23 «24 Ö25 ßl b2 

«31 «32 «33 Ö34 «35 , X = 7o, ,6 = b3 

041 Ö42 Ö43 O44 Ö45 7 i , b. 
«51 «52 «53 Ö54 ° 5 5 A h 

x = A-*b 
Solving for x is given by, 

where, 

b1:=2^2yl, a n = 2n i , a12 = 2 ^ x- , a13 = 0, a u = 0, a15 

(3.1.11) 

i=l i=l 

b2 •= 2 y- x- , a 2 i = 2 I ^ x H , a 2 2 = I 2 ) ' a 2 3 = ° ' ° 2 4 = ° ' ° 2 5 = 

i=l \i=i / \ i=l J 
ri2 / "2 \ 

b3:=2^2 Vj, a 3 3 = 2 n 2 , a 3 4 = 2 ^ x 2 , a 3 1 = 0, a 3 2 = 0, a 3 5 = - 1 

. 7 ; 

i=i i=i 

&4 := 2 y 2 x 2 , a 4 3 = 2 I x 2 ) , a 4 4 = I 2 (x 2 ) ) , a 4 i = 0, a 4 2 = 0, a 4 5 = - x ° . 
i=i \ i = i / V i=i / 

«5i = 1, «52 = x° , a 5 3 = - 1 , a 5 4 = - x ° , a 5 5 = 0, 65 = 0. 

B y solving this system of equations for a specific value of x° , the two transformed regres­
sion lines wi l l be obtained which are optimized under the condition that the two regression 
functions become equal at x° . 

3.1.6. CONFIDENCE INTERVAL FOR THE MODIFIED REGRESSION 
LINES 

The confidence interval wi l l be re-defined for the two transformed regression functions.The 
confidence interval for the mean of the two regression functions 0(x) is expressed as follows, 

ip(x) 
bo + ß\x x < xo 

( 7o + l\x x > x 0 

The mean value is given by: 

(<t){x) - ti-a/2s\/h*\0(x) + ti-a/2s\fh?\ 

while 

(3.1.12) 

(3.1.13) 
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3. A N A L Y T I C A L S O L U T I O N O F T H E M O D E L 

• The Predicted value is given by 

(<f>(x) - ti-c/isVh*; <f>(x) + t i _ a / 2 a V ^ * ) (3.1.14) 

{(j)(x) - tx_a/2s^h* + 1; <j>(x) + tl_a/2sVhr+l) (3.1.15) 

where, 

h*=[l,x,l,x][ XTX ] 

For variable estimation, the formula wi l l be modified as, 

n 

S*min = J2(y-<t,(xi)Y (3.1.16) 
i=l 

where, 

s2 = S*min/n-m (3.1.17) 

where, 
m = number of estimated parameters 

1 
x 
1 
X 
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4 . N U M E R I C A L SOLUTION OF T H E 
M O D E L 

4.1. B A C K G R O U N D 

This chapter deals with the application of the analytical solution to our data and finding 
the numerical solution of the problem. This chapter wi l l apply the solution to the data 
of C O V I D - 1 9 deaths in Italy.In Chapter 2 the data was transformed from non-linear to 
linear form by the use of natural logarithm function. The data seems to be divided into 
two parts for which separate regression functions and confidence intervals were found. 
The two separate regression lines were not meeting each other even by minimizing the 
squared errors of the two regression functions.In order to meet these two regression lines, 
modification of the regression analysis was needed. It was achieved by introducing the 
Lagrange multiplier under the constraint that the two regression functions become equal 
at an arbitrary point which was later proved to be the saddle point of the Lagrange 
multiplier function. In Chapter 3, the analytical solution is derived for optimization of 
the regression functions of the two separate lines. The Lagrange multiplier function was 
used to minimize the squared error of the two lines under the constraint that the two 
lines wi l l meet at a saddle point i .e.x 0 . The system of linear equations was found and by 
solving it, the new modified values of slopes and y-intercepts can be calculated. In this 
chapter these values of slopes and y-intercepts of each area wi l l be calculated for the data 
under consideration i.e. C O V I D - 1 9 deaths in Italy over a period of time. 

The data of C O V I D - 1 9 deaths in Italy is given in Figure 2.1. The transformed data in 
the natural logarithm is given in Figure 2.3. Figure 2.2 and Figure 2.4 shows the non­
linear data and linear data respectively. To optimize these two regression lines under the 
constraint that the two would meet at an arbitrary user selected point, the equation 3.1.3 
wi l l be solved for the data of C O V I D - 1 9 deaths to find the modified values of slopes and 
y-intercepts of the regression lines. 

In this section we optimized different points of x° , some of the points we optimized are 
x°=20 x°=29 x ° = 4 0 , and x°= 100 , 

Taken the expression on point x°=29 as follows 

Using Equation 2.4.8 and 2.4.9, 

4.2. N U M E R I C A L SOLUTION 

4.2.1. OPTIMIZED SOLUTION OF THE P R O B L E M 

ßo = y - ß\x. 
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4. N U M E R I C A L S O L U T I O N O F T H E M O D E L 

Xi = value of independent variable for ith observation (we have 29 observation) 

Hi = value of dependent variable for ith observation 

x = mean value of independent variable (i.e we wi l l add up all the x's and divide it 
by 29) 

y = mean value of dependent variable (i.e we wi l l add up al l the y's and divide it 
by 29) 

ßi 
£ £ = 1 (xi - x) (vi - y) 

zr=i (xi -x) 

The values of the slopes and y-intercepts of first regression line are calculated. 

(4.2.2) 

ill* (because of row gap] n Z = 1 3 6 

m e a n o f x = 97,5 

S U M S MEANS S U M S M E A N S 

IX|1) 435 15,0 i x p ) 13260 97,5 

IY(1) 1D9,3087 3,769265190 I V P ) 599,6330 4,4091 

EXY(1| 2127,6101 73,36586489 ZXY(21 49911,716 366,997912 

SX"2(1) 8555 295,0 1X2(2) 1502460 11047,5 

p i D,1635 8,38726001 

P2 0,2404 0,01080199 

Figure 4.1: Sum,mean, slope and intercept computation 

ßo = 0,1635 

ß x = 0,2404 

Here is the regression function, 

£ = 0,1635 + 0,2404a; (4.2.3) 

The values of the slope and y-intercept of second regression line are calculated as, 

7o = 8, 3873 

7 l = - 0 , 0408 

Here is the regression function for the second line, 

y = 8, 3873 + ( -0 , 040801986)x (4.2.4) 

The result of this is shown in the table below 
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4.2. N U M E R I C A L S O L U T I O N 

(a) a 

(b)b 
Figure 4.2: Non-optimized Table 

(c)c 

. Table (a) is X = l to 29 

• Table (b and c) is X=30 to 169 

In Figure 4.1 and Figure 4.2, it can be seen that the two regression lines for each area 
of the data. 

Figure 4.3: Non-optimized Scattered plot A , x = 1 to 29 

Figure 4.4: Non-optimized Scattered plot B , x = 29 to 165 
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4. N U M E R I C A L S O L U T I O N O F T H E M O D E L 

4.2.2. MODIFICATION OF SLOPES AND y-INTERCEPTS 
To optimize these two regression lines under the constraint that the two would meet at an 
arbitrary user selected point, the Equation 3.1.3 wi l l be solved for the data of C O V I D - 1 9 
deaths to find the modified values of slopes and y-intercepts of the regression lines. 

For x ° = 2 9 , 

The system of linear equations is given by, 

' 58 870 0 0 1 ' ßo, ' ' 218.62, 
870 17110 0 0 29 ßi 4255.22, 

A = 0 0 272 26520 - 1 ,x = 7o, ,b = 1199.27, 
0 0 26520 3004920 - 2 9 7 i , 99823.43, 
1 29 - 1 - 2 9 0 A o, 

From the excel output 

AX-B, X-AA.1*B 

MATRIX A of variables 

INVERSE OF MATRIX A 

0,057868 3 D7 -0,0022154 -0,00841102 7,OD92E-D5 -0,42896194 
•0,002215402 9,S388E-05 0,0008411 -7,OD92E-D5 0,04289519 
0,00S41101S 0,0008411 0,02156978 0,00019272 0,24391953 
7.00918E 05 7,0Q92E 06 -0,00019272 2,0532E-Q6 0,00203266 
0.42896194 0,04289619 -0,24391953 0,00203266 12,4398963 

218,517 

4255,220 

Figure 4.5: Ma t r i x Table 

Continuation from the excel output in Figure 4.1 we have, 
Solving for x is given by, 

x = A~lb (4.2.5) 

The values of the modified slopes and y-intercepts are calculated from the computation 
of the excel out in Figure 4.1 and Figure 4.5 and the results are 

C O R R E C T E D V A L U E S 

p i * 0,1338 

pz* 0,2434 

\1* 8,3703 

v z * -0,0407 

A -0,8628 

Figure 4.6: Optimized slope and y-intercept for the two separate regression lines 

of first regression line are calculated as, 

A , = 0,1338 
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4.2. N U M E R I C A L S O L U T I O N 

(3X = 0, 2434 

The values of the modified slope and y-intercept of second regression line are calculated 

7o = 8, 3703 

7 l = - 0 , 0407 

Here is the modified regression function for the first line. 

y = 0,1338 + 0.2434a; (4.2.6) 

pi* ß2* R L 
0,1333 0,2434 0,3772 
0,1338 0,2434 0,62 OS 
0,1333 0,2434 0,854 
0,1333 0,2434 1,1074 
0,1338 0,2434 1,3508 
0,1338 0,2434 1,5942 
0,1333 0,2434 1,8376 
0,1338 0,2434 2,081 
0,1338 0,2434 2,3244 
0,1333 0,2434 2,5678 
0,1338 0,2434 2,8112 

0,1333 0,2434 3,0546 
0,1338 0,2434 3,298 
0,1333 0,2434 3,5414 
0,1333 0,2434 3,7848 
0,1338 0,2434 4,0282 
0,1338 0,2434 4,2716 
0,1333 0,2434 4,515 
0,1338 0,2434 4,7584 
0,1338 0,2434 5,0018 

0,1333 0,2434 5,2452 
0,1333 0,2434 5,4886 
0,1333 0,2434 5,732 
0,1338 0,2434 5,9754 
0,1333 0,2434 6,2188 
0,1333 0,2434 6,4622 
0,1338 0,2434 6,7056 
0,1338 0,2434 5,949 
0,1333 0,2434 7,1924 

Figure 4.7: Optimized table for x=l to 29 

Linear regression line and mean va lue at X=29 first part 

• H 

— 

Figure 4.8: Optimized table for x=l to 29 

Here is the modified regression function for the second line. 

y = 8.3703 + -0.0407a; (4.2.7) 
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4. N U M E R I C A L S O L U T I O N O F T H E M O D E L 

1,1* V 2« R L 
8,3703 •0,0407 7,1493 8,3703 •0,0407 3,6084 
8,3703 •0,0407 7,1086 8,3703 •0,0407 3,5677 

8,3703 -0,0407 7,0679 8,3703 -0,0407 3,527 

8,3703 •0,0407 7,0272 8,3703 -0,0407 3,4863 

8,3703 •0,0407 6,9865 8,3703 •0,0407 3,4456 

8,3703 •0,0407 6,9458 8,3703 -0,0407 3,4049 

8,3703 -0,0407 6,9051 8,3703 •0,0407 3,3642 

8,3703 •0,0407 6,8644 8,3703 •0,0407 3,3235 

8,3703 •0,0407 6,8237 8,3703 -0,0407 3,2828 

8,3703 •0,0407 6,783 8,3703 •0,0407 3,2421 8,3703 •0,0407 6,783 
8,3703 •0,0407 3,2014 

8,3703 •0,0407 6,7423 
8,3703 •0,0407 3,2014 

8,3703 •0,0407 6,7423 
8,3703 -0,0407 3,1607 

8,3703 -0,0407 6,7016 
8,3703 -0,0407 3,1607 

8,3703 -0,0407 6,7016 
8,3703 -0,0407 3,12 

8,3703 •0,0407 6,6609 
8,3703 -0,0407 3,12 

8,3703 •0,0407 6,6609 
8,3703 •0,0407 3,0793 

8,3703 •0,0407 6,6202 
8,3703 •0,0407 3,0793 

8,3703 •0,0407 6,6202 8,3703 -0,0407 3,0386 
8,3703 •0,0407 6,5795 8,3703 -0,0407 2,9979 
8,3703 •0,0407 6,5388 8,3703 •0,0407 2,9572 
8,3703 •0,0407 6,4981 8,3703 •0,0407 2,9165 
8,3703 -0,0407 6,4574 8,3703 -0,0407 2,8758 
8,3703 •0,0407 6,4167 8,3703 -0,0407 2,8351 
8,3703 •0,0407 6,376 8,3703 •0,0407 2,7944 
8,3703 -0,0407 6,3353 8,3703 -0,0407 2,7537 
8,3703 •0,0407 6,2946 8,3703 •0,0407 2,713 
8,3703 •0,0407 6,2539 8,3703 •0,0407 2,6723 
8,3703 •0,0407 6,2132 8,3703 -0,0407 2,6316 
8,3703 •0,0407 6,1725 8,3703 •0,0407 2,5909 
8,3703 -0,0407 6,1318 8,3703 •0,0407 2,5502 
8,3703 •0,0407 6,0911 8,3703 -0,0407 2,5095 
8,3703 •0,0407 6,0504 8,3703 •0,0407 2,4688 
8,3703 •0,0407 6,0097 8,3703 •0,0407 2,4281 

8,3703 -0,0407 5,969 8,3703 -0,0407 2,3874 

8,3703 •0,0407 5,9283 8,3703 •0,0407 2,3467 

8,3703 •0,0407 5.887S 8,3703 •0,0407 2,306 

8,3703 •0,0407 5,8469 8,3703 -0,0407 2,2653 

8,3703 -0,0407 5,8062 8,3703 -0,0407 2,2246 

8,3703 -0,0407 5,7655 8,3703 •0,0407 2,1839 

8,3703 •0,0407 5,7248 8,3703 -0,0407 2,1432 

8,3703 -0,0407 5,6841 8,3703 -0,0407 2,1025 8,3703 -0,0407 5,6841 
8,3703 •0,0407 2,0518 

8,3703 •0,0407 5,6434 
8,3703 •0,0407 2,0518 

8,3703 •0,0407 5,6434 
8,3703 •0,0407 2,0211 

8,3703 •0,0407 5,6027 
8,3703 •0,0407 2,0211 

8,3703 •0,0407 5,6027 
8,3703 •0,0407 1,9804 

8,3703 •0,0407 5,562 
8,3703 •0,0407 1,9804 

8,3703 •0,0407 5,562 
8,3703 •0,0407 1,9397 

8,3703 •0,0407 5,5213 
8,3703 •0,0407 1,9397 

8,3703 •0,0407 5,5213 8,3703 •0,0407 1,899 
8,3703 •0,0407 5,4806 8,3703 -0,0407 1,8583 
8,3703 •0,0407 5,4399 8,3703 •0,0407 1,8176 
8,3703 -0,0407 5,3992 8,3703 •0,0407 1,7769 
8,3703 •0,0407 5,3585 8,3703 -0,0407 1,7362 
8,3703 •0,0407 5,3178 8,3703 -0,0407 1,6955 
8,3703 •0,0407 5,2771 8,3703 •0,0407 :,654S 
8,3703 •0,0407 5,2364 
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4.2. N U M E R I C A L S O L U T I O N 

B y drawing these regression lines, It can be observed that the two regression lines are 
meeting at x°=29. we can observed this in Figure 4.11 

In Figure 4.11, it can be seen that the two modified regression lines for each area of 
the data are meeting at the point x°—29. 

4.2.3. CONFIDENCE INTERVAL ESTIMATE OF THE MODIFIED RE­
GRESSION FUNCTIONS 

A confidence interval would be a more realistic way of expressing the ln(New Death). 
So, we calculated the result for the confidence interval for mean and individual value 

using the following equation: 

• Mean value formula 

So based on these results, wi th 95% confidence that for every individual of each Order 
(x) there predicted (y) is between upper and the lower confidence limit displayed above. 

For x°=29 

The Figure 4.3 and Figure 4.4 shows the confidence interval of each area. 

• Plot for the mean and predicted value 

Figure 4.11: Joined optimized linear regression line 

• Predicted value formula 

72 



4. N U M E R I C A L S O L U T I O N O F T H E M O D E L 

Figure 4.12: Mean and Predicted confidence Interval for Non-optimized linear regression 
lines 

For the modified regression functions, the formula for the confidence interval wi l l 
be modified using Equation 3.1.4, 

<p(x) 

- The mean value is given by: 

ß 0 + ßiX X < x0 

7o + 7 i x x > x0 

while 

The Predicted value is given by 

(4>(x) - ti_a/2sVh* + 1; 4>(x) + ti_a/2sVh* + lj 

where, 

h* = [ l , x , l , x ] [ XTX ] 

For variable estimation, the formula wi l l be modified as 

(4.2.8) 

(d>(x) - h-aftsVh?; (j){x) + h-aßsVh?) (4.2.9) 

(4.2.10) 

(4.2.11) 

i=l 
where, 

(4.2.12) 
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4.2. N U M E R I C A L S O L U T I O N 

S2 — Sminln m (4.2.13) 

where. 

m = number of estimated parameters 

So calculating the values for x ° = 2 9 from the excel computation 

able*Se 0,7788073 

Figure 4.13: Confidence Interval computation 

which give the following table. 

LC UC 
0,2858385 0,4685615 0,1016073 1,1560073 

0 77263852 0 95536148 • 08519273 1 64280727 

1 01603852 1 19876148 • 32859273 1 88620727 

50283852 68556148 • 81539273 2 37300727 

1 98963852 2 17236148 30219273 2 85980727 

2 
23303852 
47643852 2 

41576148 
65916148 ^ 

54559273 
78899273 3 

10320727 
31660727 

2 71983852 2 90256148 2, 03239273 • 59000727 

2 96323852 3 14596148 2, 27579273 3 83340727 
3 20663852 : 38936148 2, 51919273 4 07680727 

3 69343852 : 87616148 3 00599273 « 56360727 

« 18023852 4 36296148 3 49279273 5 05010727 

4 
42363852 
66703852 , 

60636148 
84976148 3 97959273 5 

29380727 
53720727 

4 91043852 5 09316148 1 22299273 5 78060727 

5,1538385 5,33656148 46639273 6,02400727 
5 39723852 5 57996148 70979273 t 26710727 

5 88403852 6 06676148 5 19659273 6 75120727 

6 37083852 6 55356148 5 68339273 7 21100727 

6 
61423852 
85763852 7 

79696148 
:-k 36 M 3 6 

92679273 
17019273 7 

48440727 
72780727 

7 10103852 7 28376148 6 41359273 7 97120727 

Figure 4.14: Optimized confidence interval table for mean and predicted values from x = l 
to x=29 
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4. N U M E R I C A L S O L U T I O N O F T H E M O D E L 

(a) a (b) b (c) c 
Figure 4.15: Optimized confidence interval table for mean and predicted value from x=29 
to x=165 

Figure 4.16: Mean and Predicted confidence Interval for optimized linear regression lines 

Joined confidence interval for optimized linear regression lines for mean value 
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• Joined confidence interval for optimized linear regression lines for predicted value 

Figure 4.18: Scattered plot of the optimized confidence interval of two linear regression 
line for the predicted value 
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Figure 4.20: Scattered plot and the joined optimized linear regression lines 

Figure 4.20-4.28 shows the results of modified regression lines and their corresponding 
confidence intervals for different values of x° ranging from x°=20 to x ° = 1 0 0 . 

(a) At X° = 20 ( b ) A t X° ~ 4 0 (c) At X° = 100 
Figure 4.21: Linear regression line at different X° for first part 

(a) At X° = 20 ( b ) A t X° ~ 4 0 (c) At X° = 100 
Figure 4.22: Linear regression line at different X° for second part 

Below are the joined linear regression line at X° = 20, X° = 40 and Xc 100 
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Figure 4.23: Joined Linear regression line at different X1 

Figure 4.24: Mean Value Linear Confidence Interval at different X° for first part 

(a) At X° = 20 (b) At X° = 40 ( c ) A t xo = lfJfJ 

Figure 4.25: Mean Value Linear Confidence Interval at different X° for second part 

(a) X° = 20 (b) Xc 40 (c) X' 100 
Figure 4.26: Joined Linear Confidence Interval for Mean Value at different X° 
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4. N U M E R I C A L S O L U T I O N O F T H E M O D E L 

(a) At X° = 20 (b) At X° = 40 ( c ) A t xo = m 

Figure 4.27: Linear Confidence Interval for Predicted Value at different X° for first part 

(a) At X° = 20 ( b ) A t X° = 4 0 (c) At X° = 100 
Figure 4.28: Predicted Value Linear Confidence Interval at different X° for second part 

(a) X° = 20 (b) X° = 40 (c) X° = 100 
Figure 4.29: Joined Linear Confidence Interval for Predicted Value at different X° 

4.3. MODIFIED NON-LINEAR REGRESSION LINES 

In this section we wi l l transform the optimized regression lines to an exponential form 
in order to have our original data of C O V I D - 1 9 deaths in Italy exactly the way it was 
explained in chapter 2.4. The transformation model wi l l be in the form. 

i / = e ™ e A l (4.3.1) 

Transforming the optimized regression lines for x ° = 2 9 by taking their exponential 
form, the excel computation output is shown below: 
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4.3. M O D I F I E D N O N - L I N E A R R E G R E S S I O N L I N E S 

Enter Xo (n l ) = 29 

(n2) = 138 

PI* 0,1338 | e A ß l * = 1 1,143164164 

ß2* 0,2434 

Y l * 8,3703 1 e A y l * = 1 4316,930948 

Y2* -0,0407 

A -0,8628 

Figure 4.30: Computat ion of the transformed model 

The model equation from the output of the first part can be writ ten mathematically 
as follows 

y = 1, U32e°>24Ux 

and the second part can be written as 

y = l , 1 4 3 2 e ° ' 2 4 3 4 ; c 

The results of the model are given in the table below 

S.494787964 

18,55612642 

49,1265 eesa 

269.94DOJ77 

i-V. UHU? *'•< 

1,360043733 

1,372632267 

4,924387986 

6,281444689 

21,21269875 

27,05846783 

91,37756602 

308,5858233 

640,4665386 

1884S19H6 

147651576 

.083517424 

1273,214393 

m3a,7-7fiR7 

997,3482132 

957,5711247 

720.179149G 

564,1386192 

20,0370193 

74,7377097 

07,3610936 

391,1143608 

(4.3.2) 

(4.3.3) 

0,00423001 

3,003491932 

0,00321895 

0,002521503 

lt,ü023243B5 

0,002057219 

Ü.Ü0197S172 

0,001820702 

0,0U148bi06 

0,001426259 

0,001369376 

0,001314761 

,8G01C5274 

)-tt4l:j) 

(a) a 

(b)b 
Figure 4.31: Transformed model 

c c 

Table (a)is X = l to 29 

Table (b and c) is X=30 to 169 
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4. N U M E R I C A L S O L U T I O N O F T H E M O D E L 

Transform regression line at X=29 first part 

1400 

Figure 4.32: Optimized Non-linear Scattered plot A , x = 1 to 29 

In Figure 4.34, it can be seen that the two modified Non-linear regression lines for 
each area of the data are meeting at the point x°=29. 
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4.3. M O D I F I E D N O N - L I N E A R R E G R E S S I O N L I N E S 

Joined transform regression line at X=29 

1400 

0 20 40 60 SO 100 120 140 160 180 
X 

• New Deaths y 

Figure 4.34: Joined Non-linear Scattered plot B , x = 29 to 165 

4.3.1. MODIFIED INTERVAL ESTIMATE FOR NON-LINEAR REGRES­
SION LINES 

The optimized confidence interval wi l l be transformed in an exponential form, (i.e taking 
the exponential form of lower and upper optimized linear confidence interval for the 
mean value and also applying the same computation to lower and upper optimized linear 
confidence interval for the predicted value). The results of each transformation is given 
in the following tables 

Figure 4.35: Non-linear confidence interval table for mean and predicted values from x = l 
to x=29 
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H.Dm*l!t !M5'5*"J IJJ.JC'JHHi 

(a) a (b) b (c) c 
Figure 4.36: Non-linear confidence interval table for mean and predicted values from x=29 
to x=165 

Figure 4.37: Mean and Predicted confidence Interval for Non-linear regression lines 

Joined confidence interval for Non-linear regression lines for mean value 
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4.3. M O D I F I E D N O N - L I N E A R R E G R E S S I O N L I N E S 

Joined transform regression line at X-29 

leaa , 

0 2D 40 60 BO ICO 120 140 160 160 

X 

• New Deaths y -m-LC - » - U C 

Figure 4.38: Scattered plot of the confidence interval of two Non-linear regression line for 
the mean value 

• Joined confidence interval for Non-linear regression lines for predicted value 

Joined transform regression line at X-29 

Figure 4.39: Scattered plot of the confidence interval of two Non-linear regression line for 
the predicted value 

Below is the graph of the scattered plot and the joined optimized non-linear regression 
lines 
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Joined transform regression line at X=29 

0 20 40 GO 100 1 20 140 1G0 180 

Figure 4.40: Scattered Non-linear regression plot 

Joined transform regression line at X=29 

20 40 60 100 120 140 160 180 

Figure 4.41: Scattered plot and the joined optimized Non-linear regression lines 

Figure 4.20-4.28 shows the results of modified Non-linear regression lines and their 
corresponding confidence intervals for different values of x° ranging from x°=20 to x ° = 1 0 0 . 

(a) At X ° = 20 ( b ) A t X ° = 4 0 

Figure 4.42: Non-linear regression line at different X° for first part 
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4.3. M O D I F I E D N O N - L I N E A R R E G R E S S I O N L I N E S 

(a) At X° = 20 ( b ) A t X ° = 4 0 

Figure 4.43: Non-linear regression line at different X° for second part 

Below are the joined Non-linear regression line at X° = 20, X° = 40 and X° = 100 

(a) X° = 20 (b) X° = 40 

Figure 4.44: Joined Non-linear regression line at different X' 

(a) At X° = 20 ( b ) A t X ° = 4 0 

Figure 4.45: Mean Value Non-inear Confidence Interval at different X° for first part 

(a) At AT° = 20 (b) At V ° = 40 

Figure 4.46: Mean Value Non-linear Confidence Interval at different X° for second part 
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(a) X° = 20 (b) X° = 40 

Figure 4.47: Joined Non-linear Confidence Interval for Mean Value at different X 

1 

(a) At X° = 20 ( b ) A t X ° = 4 0 

Figure 4.48: Non-linear Confidence Interval for Predicted Value at different X° for first 
part 

(a) At V ° = 20 (b) At V ° = 40 

Figure 4.49: Predicted Value Non-linear Confidence Interval at different X° for second 
part 

(a) X° = 20 (b) X° = 40 

Figure 4.50: Joined Non-linear Confidence Interval for Predicted Value at different X° 
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5. CONCLUSION 
The starting point of our analysis is the following expression at which the data was 

examined using the linear and non-linear model because we encounter situations where it 
is not appropriate to use a single expression to describe the dependence between variables, 
so the data was divided into several sections and the expression of the dependence for 
each of them was obtained. Regression is used in a broader sense, but it is mainly based 
on quantifying the amount of change in the dependent variable (regression variable) due 
to the change in the independent variable using the data of the dependent variable. This 
is because all regression models, whether linear or nonlinear, simple or multiple, involve 
dependent and independent variables. We found the points at which the dependence 
changes and the expressions that describe these individual dependencies in the data and 
therefore, a segmented or break-point analysis is appropriate for the data as it's been 
analyzed in Chapter 3 & 4. 

The data was then sectioned into two parts accordingly and regression lines were de­
veloped for each of the sections by minimizing the squared error of each of those regression 
lines under the condition that the two separated regression functions become equal at a 
certain arbitrary point i.e. the change point. For that the squared error function was 
modified using Lagrange Mult ip l ier under the constraint that the two regression lines 
shall meet at the change point. It does not only minimized the squared error but also 
fulfils our required condition i.e. meeting of the two regression lines at the change point. 
These modified lines were plotted using the regression parameters calculated from the 
Lagrange multiplier function on a graph to show the complete relationship of the entities 
under study. 

The data used for this research is a type of data that was observed over time, hence, 
it is safe to call it a time series data. Time series data are generally wi th auto correlation 
factor which is a disadvantage in change-point regression. We propose that in the future, 
further researches should be carried out using time series methods with the integration 
of change-point analysis. The integration of change-point analysis wi l l help identify the 
break or change in relationship in the data, while the time series analysis wi l l model the 
data wi th the inclusion of its auto-correlated factor for optimal relationship establishment. 
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