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Abstrakt a Klíčová slova 

Tato disertační práce se zabývá studiem moderních technik a teoretických výpočtů pře­

vážně z oblastí mult iparametr ických odhadů ze zašuměných dat, aplikaci neuronových sítí 

pro estimaci pa ramet rů kvantových stavů a kvantovou tomografii. Začátek práce je věno­

ván úvodu do s tudovaných problematik, po kterém následuje teoretický základ pro metody 

použité v hlavních publikacích autora. Dále potom práce představí hlavní výsledky základ­

ního výzkumu, kterých autor dosáhl bědem svých doktorských studií. 

V kapitolách 4 a 5 autor prezentuje výsledky dosažené v oblasti mult iparametr ické esti-

mace a estimace axiálního posunut í z intenzitní detekce. V těchto kapitolách byly odvozeny 

vztahy pro kvantové meze na přesnost odhadu daných parametrů . 

V kapitolách 6 a 7 jsme použili moderní metody neuronových sítí pro kvantovou tomo­

grafii ze zašuměných dat a také pro odhad kvantové provázanost i z neúplného měření . Náš 

teoretický výzkum ukázal, že neuronové sítě dokáží i z neúplných a zašuměných dat esti-

movat kvantové stavy či integrální veličiny s porovnatelnou nebo lepší přesnost í než štan­

dartní tomografické metody. Teoretické výsledky dosažené v kapitole 7 se podařilo ověřit 

experimentálně. 

Klíčová slova 

Klasické dvou-bodové rozlišení, Rayleighovo kritérium, superrozišení, Fisherova informace, 

kvantová Fisherova informace, kvantová tomografie, neuronové sítě, kvantová provázanost 
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Abstact and Key words 

This dissertation studies modern techniques and theoretical calculations, primarily in mul-

tiparametric estimation from noisy data, using neural networks to estimate quantum state 

parameters and quantum tomography The beginning of the dissertation is dedicated to an 

introduction to the studied issues, followed by the theoretical basis for the methods used 

in the author's main publications. The dissertation then presents the main results of the 

fundamental research achieved by the author during his doctoral studies. 

In chapters 4 and 5, the author presents results achieved in multiparametric and axial 

displacement estimations from intensity detection. In these chapters, relationships were 

derived for the quantum limits on the accuracy of the estimation of given parameters. 

In chapters 6 and 7, we used modern neural network methods for quantum tomography 

from noisy data and for estimating quantum entanglement from incomplete measurements. 

Our theoretical research has shown that neural networks can estimate quantum states or 

entanglement measures from incomplete and noisy data with comparable or better accuracy 

than standard tomographic methods. The theoretical results achieved in chapter 7 were 

experimentally verified. 

Key words 

Classical two-point resolution, Rayleigh criterion, superresolution, Fisher information, quantum 

Fisher information, quantum tomography, neural networks, quantum entanglement 
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Chapter 1 

Goal of the Thesis 

This dissertation thesis aims to present my theoretical research, which I have done during 

my Ph.D. studies. The first part of the thesis seeks theoretical calculations concerning op­

timal quantum measurements and calculating quantum and classical limits on the precision 

with which we can estimate parameters from noisy data. The second part presents the ad­

vantages of using deep neural networks for quantum tomography and estimating quantum 

correlations from incomplete measurements. 

This chapter aims to give you a short overview of the theoretical work I have done wi th 

my colleagues, based on four publications [1-4]. Chapter 2 briefly describes a contemporary 

state of the research, mainly dedicated to progress in superresolution and neural networks. 

Chapter 3 introduces the main theoretical tools and methods used in my work. Chapters 

4, 5, 6, and 7 introduce achieved theoretical results. A brief summary of the main results is 

at the beginning of each chapter, followed by a published paper. Finally, Chapter 8 reviews 

all results this thesis contains. The list of my publications, citation index, and bibliography 

sections are appended at the end of this thesis. 

In Chapter 4, we investigate the ultimate limits on the precision of simultaneous es­

timation of centroid, separation, and relative intensities of two incoherent point sources. 

By employing quantum estimation theory and the quantum Fisher information matrix, we 

construct optimal measurements that achieve the precision predicted by quantum theory. 

Our results indicate that the optimal sub-Rayleigh resolution limit can be achieved for any 

real-valued amplitude point spread function provided the system output is projected onto a 

suitable complete set of modes. This chapter includes publication [1] J. Řeháček, Z. Hradil, 

D. Koutný, J. Grover, A . Krzic and L. L. Sánchez-Soto. 'Optimal measurements for quantum 

spatial superresolution'. In: Physical Review A 98.1 (2018), p. 012103. 
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CHAPTER 1. GOAL OF THE THESIS 

Chapter 5 investigates the ultimate precision in axial localization using vortex beams, 

focusing on Laguerre-Gauss (LG) beams. We demonstrated that the quantum limit for axial 

localization can be achieved wi th an intensity scan, but only i f the detector is optimally 

placed. We showed that traditional intensity sensors are inadequate for estimating the axial 

distance from superpositions of L G beams, particularly those with rotating intensity pro­

files. We proposed replacing these sensors with advanced mode-sorting techniques to fully 

exploit the potential of vortex beams in microscopy, thereby significantly enhancing axial 

resolution and making 3D superresolution imaging more feasible. This chapter includes 

publication [2] D. Koutný, Z. Hradil , J. Řeháček and L. L. Sánchez-Soto. 'Ax ia l superlocal-

ization with vortex beams'. In: Quantum Science and Technology 6.2 (2021), p. 025021. 

In chapter 6, we explored the application of neural networks to quantum state tomo­

graphy, demonstrating that the positivity constraint can be effectively implemented wi th 

trained networks, enabling state-of-the-art deep learning methods for quantum state re­

construction under various types of noise. The neural network-based approach provides 

significant speed advantages over traditional methods like semidefmite programming and 

maximum likelihood estimation. Our work highlights the potential of deep learning tech­

niques in enhancing the efficiency and accuracy of quantum state tomography. This chapter 

includes publication [3] D. Koutný, L. Motka, Z. Hradil , J. Řeháček and L. L. Sánchez-Soto. 

'Neural-network quantum state tomography'. In: Physical Review A 106.1 (2022), p. 012409. 

Chapter 7 presents a novel approach for quantifying quantum entanglement using neural 

networks without requiring full knowledge of the quantum state. Our method significantly 

reduces the error of entanglement quantification compared to traditional quantum tomo­

graphy techniques by training networks on simulated data. The networks can independ­

ently process data from various measurement scenarios, making the approach versatile 

and robust. We demonstrated the effectiveness of our neural network-based methods using 

experimental data from nonlinear parametric processes and semiconductor quantum dots, 

showcasing its practical applicability in real-world quantum systems. This chapter includes 

publication [4] D. Koutný, L. Ginés, M . Moczala-Dusanowska, S. Höfling, Ch. Schneider, A . 

Predojevič and M . Ježek. 'Deep learning of quantum entanglement from incomplete meas­

urements'. In: Science Advances 9.29 (2023). 
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Chapter 2 

Contemporary state of research 

Optical resolution 

Optical resolution is an important feature not only in our lives but also in physical sciences. 

One can easily understand the concept of optical resolution wi th everyday experiences wi th 

optical imaging through the human eye. This is the most powerful tool for humans and 

animals to observe the surroundings to make appropriate decisions based on these obser­

vations. People spent centuries of theoretical and experimental advancements to improve 

the resolving power [5] of what we can see to understand our surroundings better, from 

visualizing small particles to extraterrestrial planets. In other words, the optical resolu­

tion limits the level of detail we can see. We cannot distinguish between bright atoms that 

act like point sources of light on surfaces surrounding us since the gap between them is 

far below the resolution limit of the human eye. As an optical example, let us consider a 

single-point source and a diffraction-limited optical imaging system described by a rectan­

gular aperture, which we w i l l discuss in more detail in the following chapter. The impulse 

response is described by a sine function, resulting in the main central lobe and an infinity 

of side lobes wi th decreasing intensity. The concept of single-point resolution translates to 

the determination of the position of the point source. This scenario can be applied to estim­

ating arbitrary parameters from noisy data, forming a baseline example for the two-point 

resolution criteria in the following text. 

Classical two-point resolution criteria 

Classical two-point resolution criteria in optics are fundamental principles that determine 

the minimum distance at which two closely spaced points can be distinguished as separate 

entities. The broad summary can be found in den Dekker and van den Bros [6] and Ramsay 

et al. [7]. The most well-known criterion is the Rayleigh criterion [8, 9], established by Lord 
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Rayleigh in the late 19th century. According to the Rayleigh criterion, two-point sources 

are resolvable when the principal maximum of one diffraction pattern coincides with the 

first minimum of the other diffraction pattern. This criterion is mathematically expressed 

as r = 1.22-^-, where r is the minimum resolvable distance, A is the wavelength of light, 

and NA is the numerical aperture of the imaging system. 

Another important criterion is the Abbe limit [10], named after Ernst Abbe, which 

relates the resolution to the wavelength of light and the numerical aperture of the optical 

system. The Abbe limit is given by d = where d is the minimum resolvable distance, A 

is the wavelength, and again NA is the numerical aperture. These criteria emphasize that 

higher resolution can be achieved wi th shorter wavelengths and larger numerical apertures. 

In addition to the Rayleigh and Abbe criteria, several other resolution criteria are used 

to define the resolving power of optical systems. One notable criterion is the Sparrow cri­

terion [11], which states that two-point sources are resolvable when the combined intensity 

distribution has a dip at the midpoint that is just perceptible. Mathematically, this criterion 

implies that the second derivative of the intensity distribution at the midpoint between the 

two sources is zero. The Sparrow criterion is particularly useful in cases where the sources 

are very close to each other, providing a more stringent resolution limit than the Rayleigh 

criterion. 

Another important criterion is the Houston criterion [12], which defines resolution 

based on the image's contrast. According to this criterion, two points are resolved i f the 

contrast at the midpoint of the combined intensity distribution is reduced to a specific frac­

tion of the peak intensity, namely to the full width at half maximum (FWHM) of either 

point source. The Houston criterion is often used in systems where contrast plays a crucial 

role, such as in imaging with limited signal-to-noise ratios. 

The Dawes criterion [13] is primarily used in astronomy. A n empirical formula gives 

the minimum angular separation at which two stars of equal brightness can be resolved 

using a telescope. The Dawes limit is given by 9 = ^p , where 9 is the angular separa­

tion in arcseconds and D is the diameter of the telescope's aperture in millimeters. This 

criterion is particularly useful for astronomers because it provides a practical guideline for 

the resolving power of telescopes based on real-world observations. 

These classical criteria have significantly guided the design and improvement of optical 

instruments such as microscopes and telescopes. They highlight the intrinsic limitations 

of diffraction, which causes light from a point source to spread out and form an A i r y disk 

pattern in the image plane. The central bright spot of this pattern, surrounded by concentric 

rings of decreasing intensity, represents the fundamental limit to the precision with which 

the position of a point source can be determined. Understanding and applying these diverse 

criteria can lead to more precise and effective imaging solutions across various scientific 
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and technical fields. 

Moreover, advancements in parameter estimation theory, such as Fisher information 

and the Cramer-Rao lower bound, have provided deeper insights into the fundamental l im­

its of optical resolution. These methods allow researchers to quantify the maximum achiev­

able precision for estimating the positions of closely spaced point sources, revealing that 

the Rayleigh limit is not an insurmountable barrier but a consequence of suboptimal meas­

urement strategies. By optimizing the imaging process and employing advanced statistical 

techniques, it is possible to enhance the resolution beyond the classical diffraction limits, 

paving the way for new discoveries in fields ranging from biology to nanotechnology. 

Parameter estimation aided by quantum theory 

As discussed in the previous paragraph, a mathematical approach based on estimation the­

ory is needed to precisely retrieve parameter values from noisy data. The parameter estim­

ation theory provides us with tools to quantify the precision wi th which we can infer, for 

example, the separation between two sources. Modern methods introduce the concept of 

superresolution, which states that with a given measurement, we can surpass the classical 

limits on resolution and thus provide more accurate estimators of parameters of interest. 

The choice of estimator w i l l determine the precision of estimated values. For example, 

one of the most common unbiased estimators, the maximum likelihood estimator, can be 

used, given that we know the probability density function for each detection. Every un­

biased estimator's variance is bounded from below by the Cramer-Rao lower bound (CRLB), 

which is a reciprocal value of the well-known Fisher information [14, 15]. The greater the 

value of the Fisher information, the greater the dependence of the measured statistics is 

on the estimated parameter. This allows us to distinguish between different measurement 

schemes to determine which allows us to determine parameter values precisely. For two 

separated but equally bright sources, the Fisher information about small separation goes 

quadratically to zero, and the CRLB grows beyond all limits i f we work wi th the standard 

intensity detection-based schemes. This behavior is called the Rayleigh's curse. 

However, Tsang et al. [16] showed that i f we treat the problem of separation estimation 

from the viewpoint of quantum theory, the Rayleigh's curse is dispelled. Authors derived 

the fundamental limit based on the quantum Fisher information, first introduced by Hel-

strom [17], whose reciprocal value consequently forms a quantum CRLB (QCRLB). The 

classical Fisher information is bounded from above by quantum Fisher information, which 

is optimized among all possible measurement schemes. The quantum Fisher information 

for two equally bright sources is constant for arbitrary small separations. The authors also 

proposed a measurement scheme based on spatial-mode demultiplexing that attains the 
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CHAPTER 2. CONTEMPORARY STATE OF RESEARCH 

quantum bound on precision on separation [18, 19]. The first experimental realization of 

the SPADE measurement scheme was performed by Paur et al. [20], where the authors 

considered two displaced Gaussian beams and used a digital holography setup to show that 

the Rayleigh criterion is violated. 

The task of simultaneously estimating multiple parameters is vastly more challenging. 

Realistically, considering two sources of light, we would have to determine not only the sep­

aration, but also the positions of centroids as well as the ratio of intensities of the sources. 

Generally, multiparametric estimation brings tradeoffs between precision wi th which we 

estimate different parameters. Řeháček et al. [1] showed that i f the intensities of the two 

sources are even very slightly unbalanced, the Rayleigh's course once again is retrieved. The 

information about separation goes to zero even in the quantum regime. Moreover, the au­

thors also calculated the quantum Fisher information matrix (qFIM), the central quantity for 

multiparametric estimation strategies, for separation centroid, and the ratio of intensities, 

which shows the interconnection between precisions of estimation of different parameters. 

Axial superresolution 

Axia l distance is a fundamental parameter in optical imaging systems, particularly in three-

dimensional microscopy, defining the ability to distinguish between two points along the 

optical axis. Traditional limits on axial resolution are governed by the diffraction limit, as 

described by the Abbe-Rayleigh criterion [9, 10], which sets a theoretical resolution limit 

based on the wavelength of light and the numerical aperture of the system. However, ad­

vancements in superresolution microscopy techniques have significantly extended these 

boundaries. Methods such as stimulated-emission-depletion microscopy [21], photoactiv-

ated localization microscopy [22], and point spread function engineering [23] have achieved 

resolutions that surpass conventional diffraction limits by orders of magnitude. These tech­

niques are particularly valuable in high-precision imaging fields, such as cellular biology, 

where understanding the fine structure of cells and tissues at the nanoscale is critical [24, 

25]. 

In the work [26] by Řeháček et al., the authors analyzed the estimation of axial dis­

placement from the point of view of quantum Fisher information. They showed that the 

quantum limit on precision can be attained using simple direct intensity detection i f placed 

in one of the two optimal transversal detection planes. Our work, discussed in chapter 5, 

further advances the analysis of vortex beams [2]. 
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Neural networks 

Before going through the applications of various types of neural networks in the quantum 

world, let us first talk about their history The history of neural networks dates back to the 

1940s wi th the pioneering work [27] of Warren McCul loch and Walter Pitts, who proposed 

the first mathematical model of a neural network in 1943. Their model laid the foundation 

for understanding how neurons could be used to perform logical operations. In 1958, Frank 

Rosenblatt developed the perception [28], an early type of neural network designed for 

image recognition tasks, which marked a significant milestone in the field. However, the 

limitations of the perceptron, particularly its inability to solve non-linear problems, as high­

lighted by Marvin Minsky and Seymour Papert in their 1969 book "Perceptrons," [29] led to 

a temporary decline in research interest. The field saw a resurgence in the late 1970s wi th 

the introduction of backpropagation [30] by Paul Werbos in 1975, which allowed neural 

networks to adjust their weights more effectively through multiple layers, setting the stage 

for the future development of deep learning. This period up to 1980 established the found­

ational concepts and challenges that would shape the evolution of neural networks in the 

subsequent decades. 

The period from 1980 to 2000 witnessed significant advancements in the field of neural 

networks, driven largely by the re-discovery and popularization of backpropagation. In 

1986, David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams published a seminal 

paper [31] that demonstrated the effectiveness of backpropagation in training multi-layer 

neural networks, leading to a resurgence of interest in the field. Researchers developed 

various network architectures during the 1980s and 1990s, such as convolutional neural 

networks by Yann LeCun and his colleagues in the late 1980s [32], which proved highly 

effective for image recognition tasks. The introduction of recurrent neural networks by 

John Hopfield [33] and their subsequent improvements by Jürgen Schmidhuber and Sepp 

Hochreiter [34], notably the development of Long Short-Term Memory networks in 1997, 

advanced sequential data processing. These innovations, coupled with increasing compu­

tational power and the availability of larger datasets, set the stage for the neural network 

boom in the 21st century, establishing foundational techniques and architectures still in use 

today. 

Neural networks in quantum physics 

In recent years, deep neural networks and convolutional neural networks have significantly 

contributed to quantum physics, addressing complex challenges in studying and manipu­

lating quantum systems. One of the notable advancements was the application of DNNs 
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to quantum many-body physics, where researchers have used these networks to recognize 

and classify different phases of matter. For instance, Carleo and Troyer [35] proposed the 

neural network quantum state approach, utilizing a restricted Boltzmann machine to ap­

proximate the wavefunction of quantum systems, thereby enabling efficient simulation of 

complex quantum states. Additionally, CNNs have been effectively used in quantum state 

tomography, reconstructing quantum states from measurement data. Torlai and Melko [36] 

demonstrated the use of neural networks to perform quantum state reconstruction, signific­

antly improving the accuracy and efficiency of the process. Moreover, CNNs have been em­

ployed in quantum error correction, where they help identify and correct errors in quantum 

computations [37], as shown by Krastanov and Jiang. These advancements highlight the 

transformative impact of DNNs and CNNs in quantum physics, offering powerful tools for 

analyzing and interpreting high-dimensional quantum data. 

Neural networks for quantum tomography 

The application of Boltzmann machines and other neural network architectures in quantum 

tomography has seen substantial progress over the past decade. Quantum tomography, 

which involves reconstructing quantum states from measurement data, has greatly be­

nefited from these advancements. Boltzmann machines, particularly restricted Boltzmann 

machines, have been employed to represent quantum states and facilitate their reconstruc­

tion efficiently. For example, Torlai et al. [38] demonstrated the use of restricted Boltzmann 

machines in quantum state tomography, where the network learned to represent quantum 

states from limited measurement data, providing accurate and scalable solutions to the re­

construction problem. Moreover, advanced deep learning techniques such as generative 

adversarial networks and variational autoencoders have shown promise in modeling and 

reconstructing quantum states. Gao and Duan [39] proposed a method using generative 

adversarial networks for quantum state tomography, showcasing the network's ability to 

learn complex quantum distributions. Additionally, Rocchetto [40] presented a variational 

autoencoder-based approach for quantum state reconstruction, highlighting its effective­

ness in dealing with high-dimensional quantum data. Neural network-based methods, in­

cluding feedforward neural networks and recurrent neural networks, have also been ex­

plored for their potential to enhance the precision and efficiency of quantum state tomo­

graphy. Carrasquilla et al. [41] utilized a combination of feedforward neural networks 

and PvNNs to improve the accuracy of quantum state reconstruction. These advancements 

underscore the powerful role of neural networks in advancing the field of quantum tomo­

graphy, enabling more precise and efficient reconstruction of quantum states. 
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Quantum entanglement 

Quantum entanglement, a fundamental concept in quantum mechanics, was first intro­

duced by Albert Einstein, Boris Podolsky, and Nathan Rosen in their famous 1935 paper 

[42], aiming to demonstrate what they considered the incompleteness of quantum mech­

anics by describing a scenario where two particles could instantaneously affect each other 

regardless of distance. This phenomenon, which Einstein famously referred to as "spooky 

action at a distance," was further explored by Erwin Schrodinger [43], who coined the term 

"entanglement" and emphasized its significance as a unique feature of quantum mechanics. 

The theoretical groundwork laid by these pioneers remained largely untested until John 

Bell formulated Bell's Theorem in 1964 [44], providing a concrete way to test the EPR para­

dox experimentally and showing that no local hidden variable theories could replicate the 

predictions of quantum mechanics. 

The first significant experimental tests of Bell's inequalities were conducted by John 

Clauser and Ala in Aspect in the 1970s and 1980s. Clauser and his colleagues developed the 

C H S H inequality [45], a practical version of Bell's inequality, which they used to test and 

confirm quantum entanglement. Aspect's experiments [46] in 1982 provided even more 

convincing evidence by demonstrating the violation of Bell's inequalities under strict con­

ditions, thus reinforcing the reality of entanglement. In the 1990s, quantum entanglement 

became a cornerstone of quantum information science, enabling groundbreaking devel­

opments in quantum cryptography and quantum computing. Charles Bennett and Gilles 

Brassard introduced the first quantum key distribution protocol [47], which utilized entan­

glement for secure communication. Meanwhile, Peter Shor's algorithm [48] demonstrated 

the computational advantages of quantum entanglement, showing how it could solve prob­

lems intractable for classical computers. Advances continued into the 21st century, wi th re­

searchers like Anton Zeilinger achieving quantum teleportation [49], a process that relies 

on entanglement to transfer quantum information between particles over a distance. Today, 

the study of entanglement continues to be a vibrant and critical area of research, exploring 

its potential in various applications such as quantum networks and quantum metrology 

[50, 51]. 

Entanglement witnessing 

Witnessing entanglement involves using specific criteria or measurements to verify the 

presence of entanglement in a quantum system. One of the most fundamental methods 

is the violation of Bell's inequalities, which provides a clear signature of entanglement by 

demonstrating correlations that classical physics cannot explain. Clauser, Home, Shimony, 
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and Holt [45] formulated a variant known as the C H S H inequality, which has been widely 

used in experiments to test for entanglement. Another important tool is entanglement 

witnesses, specific observables designed to detect entanglement. A n observable W is an 

entanglement witness i f Tr(Wp) < 0 for some entangled state p, while Tv{Wa) > 0 for 

all separable states a. This method was notably advanced by Terhal [52], who provided 

a framework for constructing and utilizing such witnesses. These techniques have been 

crucial in experimental quantum physics, allowing researchers to identify and quantify 

entanglement in various systems, from photonic qubits to trapped ions. Recently, neural 

networks have also been used for witnessing quantum entanglement [53-55] 

Direct detection of entanglement 

Direct detection of entanglement, including multicopy measurements, provides more nu-

anced and quantitative approaches to assessing entanglement. Multicopy measurements in­

volve using multiple copies of the same entangled state to estimate entanglement measures 

directly. This method allows for the computation of entanglement entropy and other meas­

ures without a complete state tomography. One prominent approach is using the SWAP test 

[56], which compares multiple copies of a quantum state to estimate the overlap and infer 

entanglement properties. Additionally, techniques such as quantum state tomography have 

been refined to utilize multicopy measurements effectively, as demonstrated by Audenaert 

et al. [57], who showed how these measurements could be used to estimate the logarithmic 

negativity, a quantifiable measure of entanglement, based on the partial transposition cri­

terion [58, 59]. More recently, methods involving machine learning and neural networks 

have been developed to analyze multicopy measurements [38], further enhancing the pre­

cision and efficiency of entanglement detection. These advancements highlight the import­

ance of direct detection techniques in providing deeper insights into the nature and extent 

of entanglement in complex quantum systems. 

Entanglement measures 

Entanglement measures are essential for quantifying the degree of entanglement in quantum 

systems, and various methods have been developed to address this challenge. One promin­

ent measure is concurrence [60], introduced by Wootters in 1998. Concurrence is used to 

quantify entanglement in two-qubit systems by analyzing the density matrix of the system 

and comparing specific derived values. This measure helps determine how intertwined the 

quantum states are, providing a clear metric for entanglement. For multi-qubit systems, 

the measurement of entanglement becomes more complex. One commonly used approach 
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is the multipartite entanglement measure, which includes methods such as the geometric 

measure of entanglement and negativity. Negativity, introduced by Vidal and Werner in 

2002 [61], is a practical way to quantify entanglement by evaluating the properties of the 

system's density matrix after a certain mathematical transformation. Additionally, entan­

glement entropy, particularly the von Neumann entropy, is used to measure entanglement 

across different parts of a multi-qubit system [62], allowing researchers to analyze how 

entanglement is distributed within the system. These measures are crucial for advancing 

quantum information science, providing the necessary tools to assess and utilize entangle­

ment in increasingly complex quantum systems [56, 63-66]. 
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Chapter 3 

Methods and Tools 

This chapter encompasses an introduction to the theory of parameter estimation, followed 

by basic concepts of topics related to quantum tomography associated with the main res­

ults of this thesis. We w i l l discuss the theory and applications of classical and quantum 

Fisher information, a standard mathematical tool for adequately dealing with parameter 

estimation from noisy data. Finally, we wi l l review the basic concepts behind deep learn­

ing as deep neural networks provide a different approach to parameter and quantum state 

estimation, a subject of the last two chapters. 

3.1 Rayleigh's criterion 

In 1903, lord Rayleigh published his famous discussion concerning the resolution of two 

incoherent sources. He stated that i f the light sources are separated at least by a diffraction-

limited spot size on the image plane, one can resolve them. This result found its applications 

in many fields of applied optics, mainly in microscopy and astronomy. However, Rayleigh's 

criterion is rather heuristical. In the early nineteenth century, the framework for adequately 

describing the errors in the estimation process from the noisy data, called Fisher informa­

tion, was established. This technique allowed us to surpass Rayleigh's criterion in distin­

guishing the separation of two light sources. For clarity, we w i l l briefly review the simple 

diffraction pattern that stems from illuminating the rectangular aperture. It is an excellent 

historical detour to how scientists initially approached two-point resolution problems. 

3.1.1 Rectangular aperture 

Let us consider an intensity distribution caused by uniformly irradiating a 1-D aperture 

with a half-width W. The transmittance function of the aperture is defined as 

12 
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Figure 3.1: Sketch of intensity profiles of two displaced incoherent sources propagated 
through rectangular aperture. In both panels, the red and the green curves represent the 
intensity patterns of individual sources, whereas the purple curve represents the sum of the 
intensities of those two sources. In the left panel, the sources are separated by a Rayleigh 
distance (3.4), whereas the right panel shows intensity profiles and their sum of sources 
that are no longer resolvable according to Rayleigh's criterion. 

tA{x) = rect (̂ ) , (3.1) 

where rect(a;) = 1 for |x| < 1/2 and rect(x) = 0 for |x| > 1/2. In this simple example, the 

amplitude in the image plane can be computed using the Fraunhofer diffraction integral 

and takes the following form 

U(x) = elkfel 2/ — s i n e — — (3.2) 
w V / / 

with the intensity distribution 

I{x) = U*(x)U(x) = \ j j ) s m c ( — — ) • (3-3) 

The width of the central lobe of the diffraction pattern is defined as 

(3.4) 

This defines Rayleigh's criterion on the minimum resolvable distance between two incoher­

ent sources. If the two sources are separated by a distance less than Rayleigh's diffraction 

limit, they become unresolvable. However, this criterion is rather heuristic, and in the next 

chapters, we w i l l see how we can surpass Rayleigh's limit and distinguish between two 

sources by applying proper statistical methods. 

13 
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3 . 2 Parameter estimation in signal processing 

Estimation theory, a branch of mathematical statistics, aims to determine the values of 

parameters based on measured empirical data, which often contains noise. Suppose that 

we want to estimate a set of parameters 9 = {9i, 92, • • •, 9M} given the data V. We start 

by constructing a function f(T>), known as an estimator, which takes the measured data V 

as input and produces the estimated parameters 9 as output. However, not all estimators 

have the same properties. For instance, some estimators may be biased, or the variance of 

the inferred values may vary. In the following discussion, we w i l l explore the theory of 

Fisher information and its quantum counterpart. These concepts help us identify the most 

accurate unbiased estimator. 

Classical estimation theory 

Suppose that we collect TV data points from the experiment x = {x[0}, x[l],..., x[N — 1]}, 

which are dependent on the true values of parameters 9. It is convenient to write estimated 

quantities via the formulae 

with the function / is called an estimator. Moreover, the elements of random vector x 

are possessed by an underlying probability density function (PDF) p(x\9), which can be 

deduced from the physics that underlies the experiment. The conditional probability p(x\9) 

tells us the probability of measuring x given the fixed set of parameters 9. Having the PDF at 

hand, we can define the unbiasedness of an estimator, the difference between the expected 

value of the estimator and the true value, as 

where -E^-jp^g) denotes the expected value over the distribution p(x\9). Unbiased estimat­

ors play a crucial role in the theory of Fisher information, which gives us a mathematical 

apparatus for how to differ between estimators based on the variance of 9. For example, 

the well-known maximum likelihood estimator is unbiased as the number of data points N 

approaches infinity. 

(3.5) 

E 9 (3.6) 
P(x\e) 
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3.2.1 Fisher information and Cramer-Rao bound 

Naturally, as the measured data x is burdened by randomness, estimates 9 w i l l have a spread 

A9 = 9 — 9. The standard measure of deviation is the mean squared error (MSE), defined 

as 

MSE(Ö) = E (A9)2 

= Var{9) + b2{9), 
(3.7) 

where Var(#) = E[92} — E[9}2 is the variance of the estimator and b = E[9] — 9 is a bias. 

As we can see, finding an estimator that minimizes MSE is not convenient, as it depends on 

the bias. However, i f we restrict ourselves to unbiased estimators, the task now translates 

to minimizing the variance, and one can show [67] that 

Var(ö) > 
1 

F{oy 
(3.8) 

also known as the Cramer-Rao lower bound for one detection event. The denominator of 

the righthand side of eq. (3.8) is the Fisher information, defined as 

F(9) = E 
dhap(x\9) 

89 
(3.9) 

and it serves as a method to determine the total amount of information measured data 

contains about parameter 9. 

Quantum estimation theory 

The mathematics behind quantum mechanics gives us interesting insights into the para­

meter estimation theory. First, in a quantum world, many quantities are not directly ob­

servable. For example, the measure of entanglement between two parties, represented by 

a nonphysical quantum map, is not a directly measurable quantity. We need to adopt tech­

niques of quantum tomography to surpass these obstacles, which allow us to determine the 

whole quantum state. Quantum theory provides us with a tool for mathematically describ­

ing the measurement process. It is possible to optimize further the classical CRLB (3.8) over 

all possible measurement settings to find the ultimate quantum CRLB (qCRLB). 

First, let us introduce a general description of quantum states and quantum measure­

ments. A general quantum state is represented as a statistical mixture of basis pure states 
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and therefore can be written as 

(3.10) 

where p^'s are probabilities that the system can be found in the state The relation 

between measurement, represented by positive operator-valued measures (POVMs) wi th 

elements {IIj} is given by a Born's rule 

P(X) = T r ^ r y . (3.11) 

Considering that the quantum state p carries information about parameter 9, we can also 

write the probabilities given by eq. (3.11) are dependent on the parameter 9, p(x\9). Recall­

ing the definition of the fisher information (3.9), we have to deal with the differentiation 

of a density operator pg wi th respect to parameter 9. We can do this by introducing the 

symmetric logarithmic derivative 

dpe _ Lepe + peLe 

89 _ 2 

which allows us to write the derivative of the probability as 

dep(x\9)=Re(Tr(peLeTlx)). 

Consequently, i f we plug this result into the eq. (3.9), we arrive wi th the formulae 

R e C T r ^ L . r y ) 2 

(3.12) 

(3.13) 

F(9) dx- (3.14) 
T r ( p 0 n a 

3.2.2 Quantum Fisher information and quantum Cramer-Rao bound 

Now, we are ready to optimize the eq. (3.14) over all possible measurements {Hx}. 

2 
Tv(peTlxL6 F{9) < j dx 

dx 

A / T r ^ I I j 

\y/TT(penx) 
(3.15) 

< j dxTx{UxLepeLb 

= Tr(p öLJj), 
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where we used the famous Cauchy=Schwartz inequality | T r ( A ^ 5 ) | 2 < Tr(A^A)Tr(B^B). 

Therefore, the classical FI is always constrained by a quantity Q: 

F(9)<Q(9)=Tr(peL2

d), (3.16) 

called the quantum Fisher information (QFI). This also defines the quantum Cramer-Rao 

lower bound for variance of an unbiased estimator 

V A R ( « > £ N W Y < 3 ' 1 7 ) 

where TV is the number of detection events. Even though calculating QFI can be mathem­

atically very challenging, let us consider the simple example of a single parameter 9 being 

encoded into the pure state pe = \ip(9)) {ip(9)\. the Fisher information can be written as 

F(9) = tr(pe(dpe)2) = 4<^(0)| (3-18) 

If we now use the fact the depe = \dei>{9)) (i>{9) \ + \ip(9)){dgip(9)\, the result simplifies to 

Q(9) = 4 « 0 0 ( 0 ) | 0 0 ( 0 ) > + \(m\dm)\2). (3.19) 

3 . 3 Quantum tomography 

So far, we have been interested in estimating signal parameters from noisy data. However, 

if we would like to know the whole description of the quantum system, it is no longer suf­

ficient to estimate only a few parameters. Quantum systems are mathematically described 

as density matrix p wi th the following properties; quantum states are positive semidefmite 

operators p > 0 with unit trace, Tr(p) = 1. From the positivity condition, density matrices 

are also hermitian, = p. Considering that the source's state spans d—dimensional Hilbert 

space, the density matrix p is fully described by d2 — 1 independent parameters. The goal of 

quantum state tomography is to estimate p from measurements performed on identical cop­

ies of the system. Generally, the measurement is represented by positive operator-valued 

measures (POVMs). They are a set of positive Hermitian operator {IIj} with the properties 

i. 

Each P O V M element represents a single output of a measurement apparatus. To de­

scribe the whole quantum state of the source, the number of linearly independent meas-

17 
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urements should be larger than the number of free parameters describing the state. Such 

a measurement is then informationally complete measurement. The connection between 

P O V M s and the output probabilities Pi is given by a Bom's rule defined in eq. (3.11). After 

choosing a set of traceless Hermitian operators {Tj} forming a basis in a d—dimensional 

Hilbert space, we can rewrite the Bom's rule into a set of linear equations 

p = C r , (3.21) 

where now the state is characterized by a real Bloch vector r wi th entries = Tr(pTk), 

whereas the = Tr( ILT f c ) is a measurement matrix describing the relation between 

quantum state p and the theoretical probabilities p. In the presence of noise and with a 

finite number of copies of a quantum state, the collected data f w i l l differ from the expected 

values p. A naive solution would be to perform a linear inversion of the measurement 

matrix C. However, the resulting estimated vector ř is no longer guaranteed to represent a 

positive semidefinite operator. To bypass this obstruction, another possibility how to solve 

the eq. (3.21) is to adopt a semidefinite program with the positivity constraint. The resulting 

estimator of r is then a solution of 

minimize | | f - C r | | 2 ; p > 0 and Tr(p) = 1. (3.22) 

Last, let us briefly discuss the maximum likelihood estimator (MLE). As the name of the 

procedure suggests, the quantum state is reconstructed via maximizing the log-likelihood 

function C(p) ~ YL% fi l°gPi(p)» which can be written [68] as the iterative map 

P(k+1) <- PkRp(k)R, (3.23) 

where pu is the normalization constant and the operator R is defined as R = Yli ^ n « . 

Usually, we start the iteration process from the maximally mixed state p^ = 1/d. The 

positivity constraint persists throughout the interaction process, and typically, we need to 

perform thousands of iterations to observe the stationary point of the map (3.23). 

3 . 4 Deep neural networks 

Artificial neural networks have recently revolutionized science, technology, and everyday 

life. As a few examples, they are used to classify images, translate texts, drive cars, or 

play complex games such as chess at a superhuman level. In our work, we explore the 

ability of neural networks to infer general quantum states from noisy data and their ability 
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to predict entanglement from informationally incomplete measurements. Let us introduce 

the basic concepts and theory behind the fully connected deep neural network, which forms 

a structure used in our scientific papers. 

3.4.1 Fully connected neural networks 

Essentially, deep neural networks can be viewed as powerful approximators of general func­

tions that can be trained using extensive data. Let's suppose that we want to approximate 

a function F, 

y = F(x), (3.24) 

which input a vector x and outputs vector y . In practice, we might have very little or no 

information about the function F, and thus we can only get a gist of it from a large number 

of samples, where each sample is given by an input-output combination (x, y ) . The neural 

network presents an efficient way of approximating the function F via 

y = ^(x), (3.25) 

where the parameters 6 = {9i, 02, • • • } are adjusted during the training process to match 

outputs with inputs precisely. Let us consider the following example. The vector x repres­

ents the intensity data of a beam that passes through an optical system. For example, the 

vector y stands for the first ten values of aberrations. The neural network then learns to 

predict imperfections caused by the system from just intensity scans, which allows us to 

calibrate the experiment more precisely. 

3.4.1.1 The layout of a neural network 

As in the human brain, neurons form the basis of artificial networks. In the case of a fully 

connected neural network, neurons are arranged in layers, where each neuron in a given 

layer is connected to every neuron in the next layer. To be more precise, suppose that the 

value of the fc* neuron in the (n)* layer is y^K Then, the transformation of the signal from 

the (n ) t h layer to the (n + l ) t h layer is described as 

y 

.(n+l) _ (n+l) (n) ,(n) 

(3.26) 
(n+l) 
.1 f i4'+") • 

The weight matrix ( W ( n + 1 ) ) . f c = w^1^ together with the bias vector ( £ ? ( n + 1 ) ) = 6^ n + 1^ 

forms a linear transformation from layer to layer. However, i f a deep neural network would 
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Figure 3.2: Schematic of a layout of a neural network. Panel (A) represents a sketch of a 
neural network with one deep layer. Each neuron from a deep layer is connected to every 
neuron in the next layer. Panel (B) shows the transition of information in a neural network, 
also called forward propagation. The value of a neuron in the second layer is a weighted 
sum of the values of all neurons in the previous layer plus bias. Furthermore, this number is 
fed to the nonlinear function of our choice, which finally gives us the value of the neuron in 
the second layer. Panel (C) shows the three most used nonlinear activation functions. The 
first one is the Rectified Linear Unit (ReLU) (3.27), the second one is the sigmoid function 
(3.28), and the third one is the hyperbolic tangent function (3.29). 

perform only subsequent linear transformations, the network would again perform only 

a linear transformation as a whole. For this reason, applying a nonlinear function /(•) , 

called the activation function, is key. As for a few examples of commonly used activation 

functions, let us mention the Rectified Linear Unit (ReLU) function, the sigmoid function, 

or the hyperbolic tangent function. The ReLU activation function is the simplest example 

of a nonlinear function defined as 

i f a; < 0 
(3.27) 

i f x > 0, 

and it is commonly used in hidden layers of the deep neural network. The second example 

is the sigmoid activation function defined by 

/sigmoid^) = zr~ -• (3.28) 
1 + e~x 

The sigmoid activation function maps the real axis to the interval [0,1], so we can use 

it as an activation function in the last layer of a deep neural network i f we estimate a 

quantity restricted to the same interval. In our work, we then use it in neural networks in 

/ReLU (x) 
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the last layer to estimate the quantum mutual information and the concurrence, measures 

of quantum entanglement. Finally, let us mention the hyperbolic tangent function 

/tanh(z) = tanh(x), (3.29) 

which is bounded from below by —1 and from above by 1. Once again, this activation 

function can find its place in the last layer of the deep neural network i f the estimated 

quantity has the same bounds. 

3.4.1.2 Training of a neural network 

The number of deep layers, the number of neurons in each layer, and the choice of activation 

functions on neurons determine the structure of the neural network. However, each neural 

network needs to be trained on prelabeled data. To do this, we w i l l need to choose a measure 

of deviation, or cost function, between the true data -F(x) and the predictions of the neural 

network Fg(x). In the simplest case, we might measure the quadratic deviation between 

the true answer F ( x ) and the network output Fe(x). First, we define a sample-specific cost 

function C x as 

Cx(0) = \F(x)-Fg(x)\2. (3.30) 

Then, by averaging over all data, we define the cost function as 

C(B) = (CX(B))X. (3.31) 

The choice of a cost function is essential for adequately training the neural network, and 

it varies depending on the data type and structure we are trying to predict. Wi th the cost 

function at hand, we aim to find its global minimum. A simple method would be to follow 

the negative gradient of the cost function and, in the k-th step of the training process, 

update the parameters of the neural network via 

9k+1 = 6k-r]^P-, (3.32) 

where i] is the learning rate. Once again, the value of r\ has to be chosen wisely to get 

the best performance of your neural network. The immediate challenge stems from the 

fact that the cost function is averaged over a large amount of data points, which is too 

expensive to compute in each step given that the number of parameters 9 describing our 

network is usually 10 5 and more. This issue can be resolved by averaging over only some 

randomly chosen subset of all data points. Suppose we average the cost function over N 
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training samples, also called a batch: 

1 N 

C ^ ^ E = (^(^))batch • (3-33) 

This defines the stochastic gradient descent method 

/dCJ6)\ n dC{6) , . 
9k+1 = 9k-r]{ _ v > =9k- + noise. (3.34) 

\ d(jk / b a t c h o9k 

The basic idea is that the noise averages out after sufficiently many learning steps, providing 

that r] is small enough. 

3.4.1.3 Backpropagation 

Finally, we are left wi th calculating the gradient of the cost function (3.34) with respect to its 

parameters 9. In the early days of neural networks, numerical differentiation was applied. 

However, this approach is time-consuming and inefficient. Here, we w i l l show that we can 

arrive at the formula for updating the parameters 9 involving only matrix multiplication. 

For a quadratic cost function, we have 

^ = S E W 4 - [ « ™ , (3-35) 

where [F^(x)]z = y^ is the value of the neuron / in the output layer (n). In other words, 

the task was reduced to finding the gradient of the neuron value for all possible parameters 

9 in previous layers. Recalling (3.26), we get 

8rf" _ f ^ f J l , ( 3 .36 , 

where we have 

d9k 

o z l _ ST^ (n,n-l) ay> 
E < ™ ^ - (3-37) d9k ^ l ' m 9k 

If we define the matrix m/^™-1-1 = ^ " ~ 1 ' / ' ( ^ m ~ 1 ^ ) , the equation (3.37) can be viewed 

as a matrix-vector product. Combining the above equations, we finally arrive at the final 

formula 
UZl = M(71,71-1)^(71-1,71-2) . . . M(n'+l,n') u z l / 3 3 G X 

d9k I ' ' J d9k ' 
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where the parameter 9k is found in the (n')-th layer. This leads to the famous backpropaga-

tion algorithm [31]. Let us point out that backpropagation is equally demanding as a for­

ward pass of a signal through the network. Thus, the backpropagation forms an effective 

algorithm for updating the neural network parameters by minimizing the cost function. 
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Chapter 4 

Optimal measurement for quantum 
spatial superresolution 

In this work, I helped carry out the calculations regarding the quantum Fisher information 

matrix (qFIM) and provided the subsequent analysis of the optimal measurement in the 

regime of small separations. I was also involved in the preparation of the manuscript. 

Metrology, the science of precise parameter estimation, relies on schemes that extract 

the most accurate estimates possible. The quantum Cramer-Rao lower bound (qCRLB) l im­

its estimation uncertainty and guides us in finding the optimal measurements. This work 

[1] explores the simultaneous estimation of centroid, separation, and relative intensities of 

two incoherent point sources using a linear optical system, addressing both theoretical and 

practical aspects of quantum-inspired imaging. 

The motivation behind this research is two-fold. First, it aims to provide a theoretical 

foundation for quantum-enhanced imaging techniques that can be practically implemen­

ted. Second, it aims to demonstrate that these techniques can achieve superresolution, 

significantly improving the precision of measurements in various applications, such as ob­

servational astronomy, biological microscopy, and quantum information processing. 

This work paves the way for future practical implementations of quantum-inspired ima­

ging by addressing the challenges of multiparameter estimation in quantum metrology. The 

results presented here have the potential to revolutionize high-resolution imaging, provid­

ing new tools for scientific discovery and technological innovation. 

The density operator for two incoherent sources of different intensities is given by 

Pe = qp+ + (l-q)p-, (4.1) 

where q and 1 — q are normalised intensities of the sources, and p± = \ip±){'4>±\ are the 

x—displaced PSF states, \ip±) = e~l^s°~s^p\ip). In this multiparameter scenario, the central 
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quantity is the quantum Fisher information matrix [17], defined as Qap{0) = ^Tr(pg{La, Lp}). 

After a lengthy calculation, we arrived with a compact expression 

Q = 4 

—iwp\ 

(4.2) 

where p2 = (IJJ\P2\IJJ), p = {ip\elsPP\ip), and w = {ip\etsP\ip). As one might expect, the 

measurement of separation is not correlated with the other two parameters for equally 

bright sources. In general and realistic scenarios, when q ^ 1/2, all three parameters are 

correlated. In general, finding an optimal measurement scheme in closed form is unattain­

able. However, considering only small separations, we can proceed as follows. First, we 

consider a specific basis in the signal space made up of spatial derivatives of the amplitude 

PSF (x\tyn) = -j^ty(x—Xo) for n — 0,1, 2 , . . . , where x0 is an arbitrary displacement in the 

x representation. The Gramm-Schmidt process can convert Such a basis into an orthogonal 

one. Using this basis, we can construct four linearly independent projectors IT,- = \T^J){^J\ 

by expanding the signal components in the small parameter. Lastly, we showed that i f we 

set the displacement precisely as 

We can saturate the quantum bounds with a resolution of all three parameters. This can be 

shown by evaluating the classical Fisher information matrix (3.9) with pj = q{^+ \Hj | + 

(1 — q)(fy-\Hj\ty-). The result (4.3) shows that the optimal choice of displacement is the 

weighted centroid rather than the geometrical centroid. In practice, we would have to 

use adaptive schemes to achieve multiparameter superresolution in the regime of small 

separations. 

In summary, we studied the ultimate limits for the simultaneous estimation of centroid, 

separation, and relative intensities of two incoherent light sources. We demonstrated that 

the quantum spatial superresolution of two incoherent unbalanced sources can be achieved 

by projecting the signal onto a suitable complete set of modes. These results pave the way 

for future experimental implementations and innovations in quantum-inspired imaging, 

particularly in observational astronomy and microscopy. 

(4.3) 
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I. INTRODUCTION 

Metrology is the science of devising schemes that extract 
as precise as possible an estimate of the parameters associated 
with a system. The quantum foundations of this field were 
laid years ago [1,2]; since then, most of the efforts have been 
devoted to single-parameter estimation, with a special empha­
sis in the prominent example of phase [3,4]. The quantum 
Cramer-Rao lower bound ( q C R L B ) then provides a saturable 
bound on the estimation uncertainty, and recipes for finding 
the optimal measurement attaining that limit are known [5]. 

The case of multiparameter estimation is considerably more 
involved [6-8]. Although the equivalent q C R L B was formu­
lated long time ago [9], this bound is not always saturable. The 
intuitive reason for this is the incompatibility of the measure­
ments for different parameters. The conditions under which 
the q C R L B can be saturated have been determined [10,11]. 
The associated optimal measurements have been worked out 
for pure states [12], but for mixed states the results are 
fragmentary [13-15]. 

In this work we wi l l address these problems in the context 
of the two-point resolution limit for an optical system. In 
classical optics several criteria exist [16-18] to quantitatively 
determine these limits, the most famous of which is due to 
Rayleigh [19]. 

Most of these criteria exploit properties of the point spread 
function (PSF) that specifies the intensity response to a point 
light source. This provides an intuitive picture of the mecha­
nisms limiting resolution, but also has several shortcomings. 
These mainly stem from the fact that these criteria were devel­
oped for the human eye as the main detector. For example, the 
Rayleigh limit is defined as the distance from the center to the 
first minimum of the PSF, which can be made arbitrarily small 
with ordinary linear optics, although at the expense of the side 
lobes becoming much higher than the central maximum [20]. 
This confirms that determining the position of the two points 
becomes also a question of photon statistics rather than being 
solely described by the Rayleigh limit. 

A careful reconsideration of this conundrum has 
been performed in the framework of quantum estimation 

theory [21-28]. This work showed that, in the case of two 
identical incoherent point sources with a priori knowledge of 
their centroid, the precision of an optimal measurement stays 
constant at all separations. A s a consequence, the Rayleigh 
limit is subsidiary to the problem and arises because standard 
direct imaging discards all the phase information contained 
in the field. These predictions fuelled a number of proof-of-
principle experiments [29-32]. 

While remarkable, this result does not hold in the more 
general case of two unequally bright sources. In a suitable 
multiparameter scenario [33], where simultaneous estimation 
of centroid, separation, and relative brightness was considered, 
it was found that their estimation precisions decreased with 
separation [34]. Nonetheless, an appropriate strategy was 
shown to lead to a significant improvement in precision at 
small separations over direct imaging for any fixed number 
of photons. The measurements attaining the ultimate quantum 
limits for this case are relevant to a number of applications, for 
example, observational astronomy and microscopy. 

II. MODEL AND ASSOCIATED MULTD7ARAMETER 
QUANTUM CRAMÉR-RAO BOUND 

To be as self-contained as possible, we first set the stage 
for our analysis. We assume a linear spatially invariant system 
illuminated with quasimonochromatic paraxial waves with one 
specified polarization. We consider one spatial dimension, x 
denoting the image-plane coordinate. 

We phrase what follows in a quantum language that w i l l 
simplify the following calculations. To a field of complex 
amplitude U(x) we assign a ket | U), such that U(x) = (x \ U), 
I*) being a pointlike source at x. The system PSF is denoted 
by I(x) = | { x | * ) | 2 = | * ( x ) | 2 , so that can be interpreted 
as the amplitude PSF. 

Two point sources, of different intensities and separated by a 
distance s, are imaged by that system. Since they are incoherent 
with respect to each other, the total signal must be depicted as 
a density operator, 

Qe = qe+ + (1 - q)Q-, (1) 
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where q and 1 — q are the intensities of the sources (the 
total intensity is normalized to unity). The individual com­
ponents Q± = l ^ i X ^ i l are just ^-displaced PSF states; that 
is, ( x | * ± > = (x —So =FS/2|*>, so that they are symmetrically 
located around the geometric centroid So- Note that 

l * ± ) = e x p [ - i ( s 0 ± s / 2 ) P ] | * } , (2) 

where P is the momentum operator, which generates displace­
ments in the x variable, and acts as a derivative P i-» —idx. 

The measured density matrix depends on the centroid So, the 
separation s, and the relative intensities of the sources q. This 
is indicated by the vector 0 = (so,s,q)'. Our task is to estimate 
the values of 0 through the measurement of some observables 
ong6. 

In this multiparameter estimation scenario, the central 
quantity is the quantum Fisher information matrix (qFIM) [35]. 
This is a natural generalization of the classical Fisher informa­
tion, which is a mathematical measure of the sensitivity of a 
quantity to changes in its underlying parameters. However, the 
q F I M is optimized over all the possible measurements. It is 
defined as 

Qap(0) = {Tv(Qg{La,Lp}), (3) 

where the Greek indices run over the components of the vector 
0 and {•, •} denotes the anticommutator. Here, La stands for the 
symmetric logarithmic derivative (SLD) [9] with respect the 
parameter 9a: 

k(LaQo + Q»La) = daQo, (4) 

with da = d/88a. 
The q F I M is a distinguishability metric on the space of 

quantum states and leads to the multiparameter q C R L B [5,8] 
for a single detection event: 

Cov(?) > Q-\0), (5) 

where Cov(0) is the covariance matrix for a locally unbiased es­
timator 0 of the quantity 0. Its matrix elements are Covap(0) = 
E[(J9a - &a)(&p - 6p)],E[Y] being the expectation value of the 
random variable Y. The above inequality should be understood 
as a matrix inequality. In general, we can write T r [ ^ Cov(0)] J? 
T r [ ^ Q~l(0)], where *i? is some positive cost matrix, which 
allows us to asymmetrically prioritise the uncertainty cost of 
different parameters. 

Unl ike for a single parameter, the collective bound in Eq. (5) 
is not always saturable, as the measurements for different 
parameters may be incompatible [2]. The multiparameter 
q C R L B can be saturated provided 

Ji(Q»[La,Lp]) = 0, (6) 

where [-,•] is the commutator. This condition is necessary and 
sufficient for pure states [10,11], upon which the criterion is 
equivalent to the existence of some pair of S L D s that commute. 
It is then possible to find an optimal measurement as the 
common eigenbasis of these S L D s . For mixed states, this 
criterion has been discussed by a number of authors [36] and 
has met some small inconsistencies in its usage, being variously 
identified as sufficient [37] or necessary and sufficient [38]. 
Reference [39] offers a clear account of this question. For our 
particular case, Eq . (6) is fulfilled whenever the P S F amplitude 

is real [34], * ( x ) * = * ( x ) , which wi l l be assumed henceforth 
ensuring that the parameters are therefore compatible. 

For the model we are considering, and after a lengthy 
calculation [34], we obtain a compact expression for the q F I M ; 

2 = 4 

/ V + 4 q ( l - q ) p 2 ( q - 1 / 2 ) / ? 2 

(q - l/2)p2 p2/A 

\ 
-iwp 0 

1 

-iwp \ 
0 

w2 

4 q ( l - q ) / 

(7) 

which depends solely on the quantities 

w = ( * ± | * T ) = ( * | e x p ( i s P ) | * ) , 

/ , 2 ^ ( * ± | P 2 | * ± ) = ( * | P 2 | * > , 

p = ± ( * ± | P | * T ) = ( * | e x p 0 s P ) P | * > . (8) 

The quantity p2 is determined by the shape of the PSF, whereas 
both w and p (which is purely imaginary) depend on the 
separation s. 

Only for equally bright sources, q = 1/2, the measurement 
of s is uncorrected with the other parameters. In general, when 
q ^ 1/2 the separation is correlated with the centroid (via the 
intensity term q — 1/2) and the centroid is correlated with the 
intensity (via p2). 

The individual parameter 0a can be estimated with a vari­
ance satisfying V a r ^ ) ^ (Q~1)aa(0)- It is convenient to use 
the inverses of the variances Ha = 1/Var(0„), usually called 
the precisions [40]. B y inverting the Q F I M and taking the limit 
s —>• 0, they turn out to be [34] 

H° ~ i 2 2 G 2 2 s 2 + 0 ( s 4 ) , 

£ 2  

Hi 4(1 - B2) 
1 

G 2 2 s 2 + 0 ( s 4 ) , 

H^—G22S

4+0(S

6), (9) 

where 

J22 = 4q( l - q) < 1, 

G2

22 = V a r ( P 2 ) = ( * | P 4 | * > - ( v I ' l P 2 ! * ) 2 . (10) 

The superscript Q indicates that the quantities are evaluated 
from the quantum matrix Q. 

III. OPTIMAL MEASUREMENTS 

We shall focus on finding measurements attaining the quan­
tum limit, thus offering significant advantages with respect to 
conventional direct intensity measurements. In the general case 
of unequally bright sources (q # 1 /2), the lack of symmetry 
makes this issue challenging and one cannot expect to find 
closed-form expressions for the optimal positive operator 
valued measures ( P O V M s ) for all the values of the source 
parameters. However, this becomes viable when separations 
get very small. As already discussed, this is the most interesting 
regime, where conventional imaging techniques fail. 

We start by specifying a basis in the signal space. A 
suitable choice is the set {|*„>} defined in terms of the spatial 
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derivatives of the amplitude PSF: 

= £ ^ * ( J C - Jt»0, « = 0 , 1 , 2 , . . . , (11) 

where xo is an arbitrary displacement in the x representation. 
We convert this set into an orthonormal basis {| <£„)} by the 
standard Gram-Schmidt process. In this basis, all results can 
be expressed in a PSF-independent form. Moreover, signals 
well centered on the origin and with small separation, are 
represented by low-dimensional states; i.e., Q» |<I>o}(*ol 
for s 0 *o» and s -> 0. 

To estimate three independent parameters, the required 
P O V M must have at least four elements. We therefore consider 
the following class of measurements n ; = \jtj)(jtj\, j = 
0 , . . . ,2 and ri3 = 1 — rio — O i — 112, so only three of these 
are independent. The first three P O V M elements are defined 
in a four-dimensional subspace, with basis (|<I>o).• • • ,1*3)}, 
wherein we expand \ jtj) (j = 0 , . . . ,2) as 

(12) 
k=0 

Obviously, the projectors \jtj){itj\ must be linearly indepen­
dent. In addition, we impose the following set of conditions 

l*o) 
|7T0> Coo = 0 Cm # 0, 

\iti) C 1 0 = 0 C n # 0 , 
\7Tl) C 2 0 # 0 C 2 1 # 0, 

(13) 

where the row index can be permuted. In this way, two of the 
three rank-one projectors are orthogonal to the signal PSF <t>o, 
a crucial factor boosting the performance of the measurement. 
We stress that, by changing the displacement XQ, the basis and 
the measurement itself is displaced. 

Next, we expand the signal components in the small pa­
rameter. We define a± = So ± s — XQ, SO we have ( x | * ± ) = 
* ( x — XQ — a±), and the expansion in a± gives 

(jc|*i 
^—' m' Arm —' ml 

m! 
(14) 

where Gnm = (<S>„ | * m ) [note that G22 in Eq. (10) is consistent 
with this general definition]. Keeping terms up to the fourth 
power, we get 

| * 4 G o o + y G o 2 + ^Go4 | |*o) 

a±G[ 1*1 

+ 1 
/a2 a4 \ a3 

\ 2 G l 2 + ^ | G 2 4 J l * 2 > + y G 3 3 l * 3 > - (15) 

Notice that for real amplitude PSFs, all Gs carrying both 
odd and even subscripts are zero. This follows from the 
fact that ( * „ | * m > = 0, and hence ( * | P m + " | * ) = 0 for any 
combination of odd and even subscripts, whenever the wave-
function is real. We also have Gnm = 0 for all n > m, by 

construction of the basis set, which makes a basis function 
orthogonal to all lower-order nonorthogonal functions, as the 
latter span a subspace that the former is orthogonal to. 

We are set to evaluate the probabilities, 

pj = q ( * + | n , - | * + ) + ( 1 - q ) ( * _ | n , | * _ (16) 

and the corresponding classical Fisher information matrix per 
detection event, 

Faß = £ 
(daPjKdßPj) 

Pj 
(17) 

The maximum of the classical Fisher information F is its 
quantum version Q, as Q is optimized over all P O V M s . The 
corresponding precisions are thus related by > Ha. 

Our initial strategy is to align the center of the measurement 
Eq. (12) with the signal centroid by letting xo = So- The 
calculation of the precisions turns out to be a very lengthy 
task, yet the final result is surprisingly simple: 

Ha = XHQ. (18) 

Therefore, Ha differs from the quantum limit precision by a 
factor 

(C01C12 — C02C11)2 

r 2 

"-01 
C2n 

< 1. (19) 

The coefficient A consists of the product of two factors: one 
depending solely on the intensities [as defined in Eq . (10)], 
the other depending on the measurement. The latter one w i l l 
be called the quality factor of the measurement. Conditions 
Eq . (13) are crucial for deriving relations Eqs. (18) and (19): 
Violating them makes the dominant terms of Ha disappear 
and kills the superresolution. One pertinent example would 
be projection on the basis set |$^}: Cji = Sjk as for example 
projections on a set of Hermite-Gauss modes for a Gauss 
PSF advocated in Refs. [21] and [25], among others. Such 
projections can be optimal for estimating separation, but 
ultimately fail when separation, centroid, and intensity are to 
be estimated together in a multiparameter scenario considered 
here. 

Going back to our result, two remarks are in order here. 
First, the performance of the measurement Eq . (12), when 
aligned with the centroid, scales with the same power of s 
as the quantum limit does. The quantum limit is attained, 
but for a separation independent factor. This is true for all 
real-valued PSFs, no matter how we set the remaining free 
parameters of the measurement. Second, by optimizing those 
free parameters, the separation-independent factor X can be 
made arbitrarily close to A . m a x = JS1. Hence, for balanced 
signals (q = 1/2), Xmax 1 and the measurement Eq . (12) 
becomes optimal. Conversely, for unbalanced signals, the 
measurement is suboptimal and its performance worsens with 
q, approaching the limit X —>• 0 when q —>• 0 and q 1. 

Next, we show that quantum limits can be saturated for any 
q by optimizing the displacement XQ. The key point is that 
in the limit s 1, the precisions Ha(xo), when considered 
as a function of the measurement displacement x 0 , take a 
Lorentzian shape, as can be appreciated in Fig . 1 for the 
particular case of Hs{XQ). O n decreasing the signal separation, 
the Lorentzian narrows down, with its center approaching the 
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x0 - S 0 

FIG. 1. The precision He of the separation for point objects 
with relative intensities q = 0.3 and s = 0.02 (red solid line), 
s = 0.014 (blue broken line), and s = 0.01 (green dots) as a 
function of misalignment x0 — s ( ) between the measurement dis­
placement and the centroid. The maxima of the Lorentzians are 
normalized to unity to make the changes in widths and centers 
apparent. 

10° -' 

10" 6 -

10" 2 10" 1 10° 

FIG. 2. The precision He(x0) for an optimally displaced mea­
surement Eq. (24) (blue lines) as compared to the quantum limit (9) 
(red broken lines). The lines are grouped by the intensity difference: 
q = 0.49 (top), q = 0.35 (middle), and q = 0.1 (bottom). Within each 
group (light to dark) </> = n/4,7ji/20, and 9TI/20, respectively. Notice 
the fast convergence towards the quantum limit as s —> 0. A Gaussian 
PSF of a unit width or = 1 is assumed. 

signal centroid. We therefore adopt the model 

Us1 

Hs(x0) 
1 

Mx0 - s0 + l3s) .2 • (20) 

The parameters can be identified by expanding Hs in s and 
Xo — So'. 

el5

2 = £/HQ, t2= 1 £ 3 = l ( l - 2 q ) . (21) 
q ( l - q ) 2 

This uncovers the optimal displacement and precisions 

xT = argmax Hs(x0) = s0 - ls(l - 2q), 

Ha(X;vt) =^H<?. (22) 

This is the central result of this paper. The optimal choice of 
displacement is precisely 

xT = (1 - q)(so - s/2) + q(s 0 + s/2), (23) 

so that the weighted centroid, rather than the geometrical 
centroid, is relevant to align the measurement. Note that the 
weighted centroid only coincides with the center of mass of 
the PSF when the PSFs are symmetric. B y optimizing the 
measurement displacement x0, the intensity dependent =S2 

term is removed from Eqs. (18) and (19) and the q C R L B s are 
saturated for al l the signal parameters simply by letting srf 
1. A s this can be done in infinitely many ways, we conclude 
there are infinitely many measurements attaining the quantum 
limit in multiparameter superresolution imaging. They can be 
constructed following our recipe for any real-valued amplitude 
PSF. 

IV. EXAMPLES 

To illustrate our result with a concrete example, we con­
struct three orthogonal vectors through 

/ 

F o , i ) 

-
V1+COS0 

_|_ cos(0/2) 
" VT+COS0 

COS0 
\ _ y 1+COS0 ) 

( I 2 cos 0 ^ 
1+3 cos I 

\7T2) = 

2 cos 0 
1+3 cos 0 

o 
(24) 

\ Y 1+3 cos 0 ) 

withO < <p < 7 r /2 in the | <t>jt>-representation, to build a family 
of P O V M s according to the recipe Eq. (12). This measurement 
satisfies all the requirements, and the quality factor becomes 

= 1, so that the quantum limit is attained for any real-valued 
PSF as long as s a. 

The theory thus far is largely independent of the actual form 
of the PSF. To be more specific, we adopt a Gaussian PSF, with 
unit width a = 1, which w i l l serve from now on as our basis 
unit length. The associated orthonormal basis is then a set of 
displaced Hermite-Gauss modes 

1 
Hn[(x - * 0

o p t ) / V 2 ] 
(27r)J22Vn! 

x e x p [ - i ( x -x°ptf], (25) 

where H„(x) are the Hermite polynomials. In this case, we 
have then G22 = 1/8. 

Figure 2 shows the resulting precision Hs as a function 
of s on a log-log scale for different intensities q and differ­
ent measurements of the family Eq . (24). Direct numerical 
evaluation of the Fisher information Eq . (17) was done using 
a computational basis {$„} of dimension 30 and no further 
approximation. Wi th s —>• 0 all precisions quickly converge 
towards the quantum limit and all the measurements Eq . (24) 
become optimal. Notice however that performances over a 
wider range of separations are sensitive to measurement 
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/ I 1 
T 1 r -0.4 -0.2 0.0 0.2 0.4 

FIG. 3. The precision Hs for misaligned measurements Eq. (24) 
(solid blue lines) compared to the corresponding quantum (top red) 
and direct imaging (bottom green) limits. The parameters of the 
measurements are 4> = it/20 (light blue), it/2 (light blue), and 9JT/20 
(dark blue). Observe the log vertical scale. A Gaussian PSF of a unit 
width a = 1 is assumed; and the sources satisfy s = 0.03 and q = 0.1. 

parameter </> and values close to (j> = jr/2 provide the best 
overall performance. 

Having potential applications of our proposed detection 
scheme in mind we realize that achieving the quantum limits 
requires knowing the true values of the measured parameters. 
In particular, the measurement must be optimally displaced 
to reach the quantum limits and this displacement, through 
Eq . (22), depends on all the unknown signal parameters. Con­
sequently different displacements should be used for different 
signals. 

Can one hope to saturate the quantum limits for all signals 
with a fixed measurement? Unfortunately, the answer is neg­
ative. Let us consider the estimation of a signal with strongly 
overlapping components s 1 of highly unequal intensities 
q -> 0 (the same analysis can be carried out for q -> 1), so that 
the weak component is outshined. To gain significant informa­
tion about the weak component, the bright one must be almost 
completely suppressed in one of the measurement outputs. This 
is ensured by projecting the signal on a state that is nearly 
orthogonal to the bright component. That crucial projection, 
though, depends on both the signal centroid and separation. 

Our optimal measurement also behaves in this way. Let us 
look at the value of x ( ° p t in the limit q 0; i.e., when |*_> 
is the bright component. In this case, X Q P ' —*• % — S coincides 
with the center of the bright component. But, this means that 
|q>0) = |*_> and the two outputs described by |7To) and 
project on subspaces orthogonal to the bright component, as 
anticipated. 

In practice, the performance w i l l be compromised by any 
misalignment with respect to X Q P \ This effect is examined 
in F ig . 3, where the quantum limit and the direct intensity 
imaging are compared with different misaligned measurements 
E q . (24). Being about two orders of magnitude below the 
Rayleigh limit, such imperfections cause a loss of precision. 
Even then, the advantage with respect to direct imaging persists 
over a wide range of displacements xQ, demonstrating the 
robustness of our detection scheme. Again, setting 0 « 7r/2 
seems to be the best option. For this particular example, the 

measurement can be misaligned by as much as 0.4er from x0 

and still beat the direct imaging limits in measuring separations 
two orders of magnitude below the Rayleigh limit. 

Such an inherent robustness of optimal detection schemes 
hints at using adaptive strategies to achieve the quantum limits. 
One plausible way would be to spend a portion of the photon 
pool to obtain a first estimate of the optimal displacement 
X Q P ' = So — 3(1 — 2q)/2. Since this quantity is closely related 
to the weighted centroid, direct imaging can be used in this 
step. Then, the estimated Xgpl can be used with the optimal 
measurement Eq . (24) in the next step to refine the estimates 
of the signal parameters and so forth. 

Having considered the fundamental aspects of the problem, 
how does one implement the optimal measurement in practice 
for one particular setting of the displacement? This amounts 
to performing simultaneous projections on three mutually 
orthogonal states. There exists a unitary transformation taking 
this triplet into another set of orthogonal vectors, where the 
latter set is experimentally feasible. For example, the optimal 
projections can be mapped on three different pixels of a C C D 
camera. Unitary transformations of this kind can be always 
realized with a set of nonabsorbing masks. Alternatively, giving 
up some performance, the implementation can be facilitated by 
splitting the signal beam and measuring the three projections 
separately. This leads to a photon loss and a threefold decrease 
of the precisions Ha, which can be tolerated for sufficiently 
small separations. 

V. CONCLUSIONS 

We have examined the ultimate limits for the simultaneous 
estimation of centroid, separation, and relative intensities of 
two incoherent point sources. Our results indicate that the 
optimal sub-Rayleigh resolution limit can be achieved for 
any real-valued amplitude PSF provided the system output is 
projected onto a suitable complete set of modes. Particularly 
useful modes can be generated from the derivatives of the 
system PSF, which in the limit of small separations can access 
all available information with a few projections. 

For equally bright sources, our proposed projection is 
optimal whereas, for unbalanced signals, its performance 
deteriorates with the parameter q. Whi le some of our 
findings were illustrated explicitly for Gaussian PSFs, our 
framework is general and can be applied to other relevant 
cases. 

A l l in al l , this constitutes an important application of 
multiparameter quantum estimation theory to a more realistic 
imaging setting. Our analysis provides a toolbox for achieving 
optimal resolution and paves the way for further experimental 
demonstrations and innovative solutions in scientific, indus­
trial, and biomedical domains. 
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Chapter 5 

Axial superlocalization with vortex 
beams 

In this work, I carried out theoretical calculations and numerical simulations presented in 

the paper. I was also involved in the preparation of the manuscript. 

This chapter presents a follow-up on the previous work [26], where we studied the 

superresolution of the axial distance considering Gaussian beams. Here, we introduced 

the higher-order beams, namely Laguerre-Gaussian vortexes, and analyzed their ability to 

recover information about the axial distance [2]. 

Achieving high precision in axial resolution is crucial for three-dimensional (3D) optical 

imaging systems. This work investigates the ultimate precision in axial localization using 

vortex beams. It focuses on Laguerre-Gauss (LG) beams and the potential improvements in 

microscopy methods by replacing traditional intensity sensors with advanced mode-sorting 

techniques. 

The complex amplitude of the L G beam reads 

W(r,<f>,z) = (r,(f),z\p,l) 
2p\ 1 / \ /2 r 

7r(p + \l\)\ w(z) \ w(z) 

1 k 

(5.1) 

w(z)2 2R(z) 

where (r, 0, z) are cylindrical coordinates, L^p(-') is the generalized Laguerre polynomial 

and (l,p) are azimuthal and radial mode indexes, respectively. We showed that OFT for 

pure L G modes reads 

2p(p+ | f | ) + 2 p + | f | + l 

4 
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We should note that in the case of the Gaussian mode LGoo, the QFI reduces to \ , which 

coincides wi th our previous result on axial resolution from propagating Gaussian beam. 

The QFI (5.2) is also linear in |/|, which means we can improve axial resolution using an L G 

beam with a higher azimuthal index. 

Interesting rotating behavior arises from superposing two L G beams (5.1) wi th different 

azimuthal indexes / and I', 

Figure 5.1: Sketch of the evolution of a superposition of two L G modes wi th azimuthal 
indexes /, /' = 0,2. During propagation, the intensity pattern rotates and diverges. 

The intensity pattern is sketched in the Fig. 5.1. QFI for such a superposed state reads 

Q = 4 > [ 4 + 2(|/| + |/'|) + ( | / | - | / ' | ) 2 ] . (5.4) 
ZR 

If the second component is left in the fundamental mode /' = 0, the QFI is maximal for 

the maximum available azimuthal index /, and the bound becomes quadratic. Even though 

the theory suggests that we should use higher-order superpositions for axial displacement 

estimation, as we w i l l see, we cannot access most information about the propagation dis­

tance just from simple intensity detection. Considering single parameres estimation, one 

can always find a von Neumann measurement projecting the signal onto eigenstates of 

the symmetric logarithmic derivative (5.1). However, such measurements can be imprac­

tical for implementation. Therefore, we analyzed the information we can gain about axial 

distance from simple intensity measurement. Since the detection can be considered as a 

random process, in consequence, normalized beam intensity can be viewed as a probability 

distribution 

p(r,<j)\z) = | # ( r ,0 |z ) | 2 . (5.5) 
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As the detection event follows Poissonian statistics, the classical Fisher information (3.9) 

^[dzp{rA\z)f 
T -rdrd0. (5.6) 

'o Jo P(r,(/>\z) 

Evaluation of the integral (5.6) for pure L G beams shows that we can indeed saturate the 

QFI (5.2), 

opt Q, (5.7) 

and that the optimal detection plane is located at zopt = ±zR. However, numerical analysis 

suggests that this result does not hold for superpositions of L G beams. As we can see 

from Fig. 5.2, where we plotted the ratio of QFI and numerically calculated FI for different 

superpositions, the optimal detection plane is no longer at z = zR and that the larger the 

azimuthal index / is, the smaller portion of the total QFI can be extracted from intensity 

measurement. 

0 . 2 0 

0 . 1 5 

O f 
0 . 1 0 

0 . 0 5 

0 . 0 0 

Figure 5.2: Fisher information normalized by a quantum Fisher information for different 
superposition of L G modes as a function of position z of the detection plane. Maximum 
information that we can extract from one intensity plane in no longer at the distance z = zR. 

In conclusion, this work establishes the quantum limits for axial localization using vor­

tex beams, showing that pure L G beams can achieve these limits with optimal intensity 

detection. For superpositions of L G beams, the benefits of rotating intensity profiles sug­

gest that microscopy methods could significantly improve by adopting advanced mode-

sorting techniques. This work underscores the inadequacy of simple intensity detection 

in capturing the full information about axial displacement. Instead, it advocates for using 

spatial-mode projections derived from quantum detection theory, unlocking the potential 

for axial superlocalization in 3D imaging. 
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Abstract 
Improving axial resolution is paramount importance for three-dimensional optical imaging 
systems. Here, we investigate the ultimate precision in axial localization using vortex beams. For 
Laguerre-Gauss (LG) beams, this limit can be achieved with just an intensity scan. The same is not 
true for superpositions of LG beams, in particular for those with intensity profiles that rotate on 
defocusing. Microscopy methods based on rotating vortex beams may thus benefit from replacing 
traditional intensity sensors with advanced mode-sorting techniques. 

1. Introduction 

Discerning the nanometer-scale details o f l iving cells, tissues, and materials is o f utmost importance for 
many modern research efforts. A trail toward to this holy grail was opened with the appearance of a set of 
methods, dubbed with the generic term of superresolution microscopy [1, 2], capable of bypassing the 
diffraction l imit [3-5]: a barrier that was traditionally thought to be impenetrable. 

A number of these techniques can also reveal three-dimensional (3D) structural details: relevant 
examples include stimulated-emission-depletion microscopy [6], PSF engineering [8-12], 
photoactivated-localization microscopy [7], and multiplane detection [13-15], to cite only but a few. A l l of 
them rely on a very accurate localization of point sources; they differ i n how point objects are excited and 
how the corresponding emitted photons are collected. 

For 3D imaging, the emitter is fluorescently labeled and determining its axial position is an 
indispensable ingredient. This problem has been throughly examined and some impressive results have been 
demonstrated so far [ 16]. However, the fundamental depth precision achievable by any such engineering 
method has been considered only lately [ 17-19]. The rationale behind is to make a systematic use of the 
quantum Fisher information (QFI) [20] and the associated quantum Cramer-Rao bound ( Q C R B ) to get a 
measurement-independent l imit [21, 22]. This is much along the lines of the work of Tsang and co-workers 
to quantify the transverse two-point resolution [23-27], which has led to the dispelling of the Rayleigh 
curse [28-31]. 

In a recent work [32], the ultimate precision i n axial localization using Gaussian beams has been 
established. This l imit can be attained with just one intensity scan, as long as the detection plane is placed at 
one optimal position. 

In this paper, we generalize those results and derive quantum limits for axial localization wi th 
Laguerre-Gauss (LG) beams, which carry quantized orbital angular momentum [33]. Here, the beam waist 
acts as a realization of the light emitted by a point source after e.g. mode conversion. Another relevant 
situation is the reflection of the beam from a surface i n surface topology measurements, etc. By linearly 
superposing different L G modes, one can realize beams with amplitude, phase, and intensity patterns that 
simply rotate, under free space propagation, maintaining the transverse shape. These rotating structures lie 
at the core of a variety of sensing techniques [34-37]. 

We demonstrate that a meager part o f the full (quantum) information is available i n intensity scans and 
only a small fraction of this can be attributed to the rotation. This clearly confirms the potential o f modal 

© 2021 The Author(s). Published by IOP Publishing Ltd 
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expansions inspired by quantum information protocols [38], which allow for reaching the Q C R B and thus 
can be considered as the optimal measurement. Our results make 3D superresolution imaging more feasible 
and potentially useful for improving the resolution of optical microscopes. 

2. Theoretical model 

The problem we address here is to estimate the distance traveled by a vortex beam from the beam waist to 
an arbitrary detection plane. We thus consider the beam waist as an object whose axial distance is to be 
determined. In what follows, we shall represent the fields using Dirac notation, for it makes it 
straightforward to expand the theory to other types of light states. 

We take the beam to be represented by the pure state | W(0)), where z = 0 denotes the position of the 
object plane. The axial displacement is thus characterized by a unitary operation 

|*(z)> AGz I (2.1) 

where the Hermit ian operator G is the generator. To pinpoint the specific form of G, it is appropriate to use 
the transverse-position representation ^{x,y\z) = (x,y\$f(z)). It then follows directly from equation (2.1) 
that 

idz$(x,y; z) = -GS>(x,y; z). (2.2) 

O n the other hand, vortex beams are solutions of the paraxial Helmholtz equation [39, 40] 

2ikdz^(x,y,z) = V2

T^(x,y,z), (2.3) 

where k is the wavenumber and Vf- = 8^ + dyy is the transverse Laplacian. A direct comparison leads us to 

2k 
V 2

T . (2.4) 

The detection plane is placed at z, wherein we perform an arbitrary measurement. Given the formal 
analogies between spatial modes i n wave optics and pure states i n quantum theory, and also the 
mathematical similarities i n describing evolution and detection of such objects, the amount of information 
about the axial distance z carried by the measured signal is quantified by the QFI . For pure states, as it is our 
case, the QFI reduces to [21] 

Q(z) = 4 Var(G). (2.5) 

Except for the factor 4, the QFI is the variance of the generator G computed i n the init ial state |W(0)). 
According to the time-honored Q C R B , the variance of any unbiased estimator z of the axial distance z 
satisfies 

Var(z) > (2.6) 

whose saturation provides the ultimate precision i n axial distance estimation. 
To proceed further, we take the structure of the transverse field to correspond with L G modes 

LGpi(r, < (r, <j),z\p, I) 

x Ll 
w(z) 

2p 1 

' TT(p+ |/|)! W(Z) 

( e " W 2 exp ( i 

\[2r 

w(z) 

kr2 

2R(z) 
(2.7) 

where (r, <f>,z) are cylindrical coordinates, L'p'(-) is the generalized Laguerre polynomial, I <G {0, ± 1 , ± 2 , . . . } 
is the azimuthal mode index and p € { 0 , 1 , 2 , . . . } is the radial index. The parameters R(z), w(z), and ippi(z) 
are 

R(z) = z [ l + ( z R / z ) 2 ] , 

1 + (Z/ZR) w2(z) 

4>Pi(z 

UJQ 

(2p 1) arctan(z/zR), (2.8) 

and represent the radius of curvature of the wave front, the beam radius, and the Gouy phase [41], 
respectively, at an axial distance z from the beam waist located at z = 0. Here, ZR = kw2/2 is the Rayleigh 
length and w0 the beam waist radius [42]. 
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Figure 1. Sketch of the evolution of the superposition of two LG modes, with / = 2 and t = 0. The interference pattern is 
subject to rotation as well as divergence during propagation. 

3. Quantum limit for axial localization with vortex beams 

To facilitate the derivation of the QFI corresponding to axial displacements of vortex beams it is 
advantageous to use an established correspondence between eigenstates of a two-dimensional harmonic 
oscillator and paraxial beams [43]. For the case of L G beams, one defines 

1 
(3.1) 

where and an are dimensionless bosonic operators for each independent amplitude of the oscillator and 
obey the standard commutation relations [as, a\, ] = Sssi (s, s' <G {£, t]}). Similar relations are obeyed by a±. 

The eigenstates of the harmonic oscillator \n+, n_), generated by the action of a\ and a ! on the 
vacuum, are nothing but L G modes wi th azimuthal and radial indices given by 

l=n+ — ti-, p = m i n ( « + , « _ ) . (3.2) 

Applying the usual definition of the momentum operator ps = (as — a\), we have 

v 2

r = p\ +p2

v = (pe + ip„)(pe - ipv) = («+ - «-)(«+ - «-)• 

If we recall (2.4), and take into account that, i n the proper units, (x,y) i-> (V2t;/w0, V2r]/w0}), we get 
V | >-> 2 V 2 - / W o - In this way, the QFI of a pure L G mode | « + , « _ ) reads: 

(3.3) 

Q{z) = 4(2«+«- + «+ + «_ + ! ) = ^[2p(p + \l\) +2p+ \l\ + 1]. (3.4) 

For the particular case of the Gaussian mode LG 0 o we get 

Q(z) (3.5) 

that is, the quantum bound (per single detection) is precisely the Rayleigh range [44]. Note that the QFI is 
linear i n |/|, which means that axial localization can be improved by using L G beams with large O A M . 

Other sets of Gaussian transverse modes can be characterized using the so-called Hermite-Laguerre 
sphere [45, 46]. These modes are represented by a point, of spherical coordinates (6, <j>), on that sphere, and 
they are generated by the rotated operators 

fli(0,<£) = a+e-i4,/2 cos 

a2{6,4>) = -a+e -\<j>/2 sin 

a-t^11 sin 

• a-t^l1 cos (3.6) 

In particular, 9 = TT/2 gives rise to Hermite-Gauss (HG) modes, and 9 = 0, TT to L G modes analyzed above. 
Combin ing equations (3.3) and (3.6), we get a direct generalization of (3.4); viz, 

Q= - U 4 + «i + « 2 ( 3 + « 2 ) + « i ( 3 + 4 « 2 ) + (m - «i + « 2 + 4 m « 2 - n^)cos(20)], (3.7) 
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Figure 2. Fisher information about axial distance (relative to the QFI) for different superpositions ( LG 0/) + LG 0 o))/i /2 as a 
function of the position z (relative to the beam waist) of the detection plane. 

where n\ and n2 denote the eigenvalues of the corresponding number operators. Notice that the QFI (3.7) is 
independent of <f> and is optimized by (3.4). This proves that L G modes are better than their H G 
counterparts, as axial localization is concerned. 

Apart from a trivial divergence, transversal intensity profiles of pure vortex beams do not change on 
propagation. More complex intensity transformations can be realized by superposing two or more vortex 
beams. In particular, rotating structures are of interest i n microscopy [34-37]. Rotation of highly 
symmetric spots is easily detected and the corresponding defocusing parameter can be estimated from the 
measured rotation angle. This is roughly sketched i n figure 1. 

To simplify the details as much as possible, we take the simple example of the superposition of two L G 
modes with different azimuthal numbers / =t I', and p = p' = 0 

|*if> = ^ ( | L G 0 z ) + | L G 0 ? ) ) = ^ ( | » + » 0 ) + | « + , 0 ) ) . (3.8) 

In this case, the QFI about the axial position of the source reads 

Q = ^ [ 4 + 2(|/| + |/'|) + ( | / | - | / ' | ) 2 ] . (3.9) 

Considering O A M as a resource for axial localization and using the max imum available O A M for one of the 
components of the superposition, / = ± | / m a x | , the QFI is maximized when the second component is i n the 
fundamental mode I' = 0, whereupon Q m a x = [4 + 2 | / m a x | + | / m a x | 2 ] / z | , a n d the quantum bound becomes 
quadratic i n |/|. At first sight, the better performance of vortex superpositions (3.9) over pure vortex beams 
(3.4) is somehow related to beam rotation. This might suggest a proxy for the measured axial distance 
traveled from the waist to the detection plane. However, as we show i n the next section, things are not that 
simple. 

4. Intensity detection 

In single-parameter estimation, the QFI can always be accessed and the corresponding Q C R B saturated 
with a von Neumann measurement projecting the measured signal on the eigenstates of the symmetric 
logarithmic derivative of the density matrix [21]. In our context, the practical implementation of such 
measurements requires a spatial mode demultiplexer/sorter that performs simultaneous projection of the 
signal onto a complete orthonormal set o f modes [47, 48]. Mode separation is usually achieved with a 
sequence of spatial light modulators implementing a suitable unitary transformation. Unavoidable 
systematic errors and losses introduced by such complicated experimental setups may ru in any theoretical 
advantage offered by optimal strategies. 

In consequence, we consider the performance of the possibly inferior, but much more robust intensity 
detection, because it is the simplest method at hand for the experimentalist. As the information (3.4) and 
(3.7) about the axial distance is carried by both intensity and phase of the measured beam, we might aptly 
ask how much information is sacrificed by completely ignoring the phase. 

As usual, due to the noise, the detection can be considered as a random process. In consequence, the 
(normalized) beam intensity, 

p(r,<f>\z) = | * ( r , ^ ; z ) | 2 , (4.1) 
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Figure 3. Red dots represent Fisher information about axial distance z for optimally placed intensity detections for the 
superpositions (|LG 0/) + |LGoo))/v/2- Blue squares are the same Fisher information, but normalized to the optimal QFI. 

can be seen as the probability density of a detection conditional on the axial distance z. We take the 
detection as dominated by shot noise, which obeys a Poisson distribution [49]: although this neglects 
nonclassical effects, it is still a suitable model for realistic microscopy. 

The classical Fisher information about z, per single detection, thus reads [50] 

[dzp(r, ( 

p(r,(j)\z) 
rdr d(j>, (4.2) 

and it is a suitable tool to quantify the information content about axial displacements accessible from the 
detected transversal intensity profile. For simplicity, we take the pixel size negligibly small, so that any 
sampling effect can be ignored. We also define the radial and azimuthal Fisher informations 

dzfo*' p{r,4>\z)A4> 

Jo*' P(r,<t>\z)d<t> 

[dzf™ p{r,cp\z)rdr] 

Jo°° P(r,<j>\z)rdr 

rdr, 

d<f>, (4.3) 

respectively. They quantify the information of the radial and the azimuthal intensity components due to 
the z-dependence. For example, beam rotation only contributes to whereas beam divergence contributes 
to Tr. 

For pure |LG p ; ) modes, W(r, <j>; z) = LG p / ( r , <j>, z), the classical Fisher information can be obtained i n a 
closed form. First notice the integrand of (4.2) is independent o f <f>. Carrying out z-derivatives of Laguerre 
polynomials using the relation dzLl

p(z) = —L^t\(z) , and changing the integration variable r yields 

T 
Ap\ 

{\1\+P)\ 

dzw(z) 

w(z) 
-*t\l\ 2tdl+1(t) + (t- D 4 1 (t) dt. (4.4) 

We are thus left with evaluating six different integrals involving products o f Laguerre polynomials. Compact 
expressions for each case can be obtained from the generalized orthogonality relation [51] 

mm(p/) 

- ' t ' L ' ^ m t = ( - i ) ^ ' r ( M + 1 ) £ 1 1 1 ' 
k=0 

v 
k 

Straightforward simplifications leave us with the final result 

F = A[2p{p+ \l\) + 2p- 1] 
dzw{z) 

w(z) 

2p(p + \l\) + 2p-

R(z)2/4 

For the planes of maximal wavefront curvature z o p t 

saturated with intensity sensitive detection 
± Z R , where -R(ZR) 2 = 4 z | , the quantum limit is 

opt Q . 

(4.5) 

(4.6) 

(4.7) 

Thus, for any pure L G beam and any beam waist location, two detection planes can be found, where 
complete information about the axial distance can be extracted with intensity-only detection. Hence, full 
potential o f high-order vortex beams for axial metrology can be exploited wi th direct detection techniques. 
This generalizes the results obtained for Gaussian beams [32]. 
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0.20 

Figure4. Radial (green), azimuthal (brown) and total (red) Fisher information T about axial displacement as a function of 
detector axial position z (in units of z R ) for the vortex superposition (| LG02) + LG 0 o) / V2. The sum of radial and azimuthal 
components is also shown (blue). A l l quantities are normalized to the corresponding optimal QFI. Notice that for small (large) 
propagation distances, most FI comes from azimuthal (radial) intensity distribution. Some information is stored in correlations 
between those two marginal distributions, as can be seen from the gap between the blue and the red curves. 

However, numerical analysis suggests that this result does not hold for superpositions of L G modes: a 
single transversal intensity scan is no longer optimal for any detector position z. In figure 2 we plot the 
classical Fisher information (normalized to the optimal QFI) for different vortex superpositions. First, 
notice that the optimal detector position is no longer at z = ± z R , as it was for pure L G beams. Second, the 
larger the angular momentum / carried by the signal, the smaller port ion of the total QFI can be extracted 
with intensity measurements. 

This is further illustrated i n figure 3. Locating intensity detectors at the optimal detection planes for 
every value of I, the classical Fisher information grows sublinearly wi th I, so that progressively smaller 
port ion of quadratic QFI is available from intensity data and the gap between the quantum bound and the 
performance of the best estimator from intensity data worsens wi th /. 

For example, for / = 2, only about 17% of the QFI is available from intensity scan at the optimal 
detector position, as we can see i n figure 4. O f this, only a small fraction is due to changes i n the azimuthal 
intensity profile, as arises, e.g., i n rotations, except for very small propagation distances, where azimuthal 
profile accounts for up to 10% of QFI . This ratio quickly approaches zero with increasing I. 

The information content of rotating beam intensity distributions is surprisingly low. As bad as it sounds, 
this is not a negative result, but encouraging news for quantum metrology. It highlights inadequacy of 
simple detection techniques i n this particular metrological scenario, where intensity detection fails to reveal 
all potentially accessible information about the parameter of interest. The hidden Information has to be 
accessed with advanced detection techniques. Here a generic tool is projecting/sorting the signal into 
optimal set of spatial modes derivable from the quantum detection theory. Hence, we uncover a huge 
potential of axial superlocalization based on spatial-mode projections applied to higher order vortex beam 
superpositions [44]. 

5. Concluding remarks 

We have established the ultimate quantum limits for axial localization using vortex beams. For pure L G 
beams, this l imit is attained with an intensity scan with the detector located at one of two optimal planes. 
For superpositions of L G beams, i n particular of those with intensity profiles rotating on defocusing, this is 
no longer true. This means that microscopy methods based on rotating vortex beams may benefit from 
replacing traditional intensity scans with advanced mode-sorting techniques. 
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Chapter 6 

Neural network quantum state 
tomography 

In this work, I was responsible for the structure of deep neural networks, data preparation 

for the training of neural networks, and numerical analysis of the results and their com­

parison to other tomographical techniques. I was also involved in the preparation of the 

manuscript. 

This chapter presents a neural network-based method of quantum state tomography 

[3]. Quantum state tomography is crucial for certifying and verifying quantum states in 

modern quantum technologies. The objective of quantum state tomography is to estimate 

an unknown quantum state through measurements performed on a finite set of identical 

copies of the system. Traditional methods, such as linear inversion and maximum likelihood 

estimation, have limitations regarding accuracy and computational efficiency, especially for 

large-scale quantum systems. 

Recent advancements in machine learning, particularly neural networks (NNs), have 

shown promise in addressing data-driven problems in quantum information. This study 

explores the application of NNs to quantum state tomography, confirming that the positiv­

ity constraint can be effectively implemented wi th trained networks, thus enabling state-

of-the-art deep learning methods for quantum state reconstruction under various types of 

noise. 

QST is an inverse problem to estimate a quantum system's density matrix p from meas­

urement outcomes. This work focuses on a cř-dimensional quantum system described by a 

d x d density matrix p. The measurement outcomes are represented by positive operator-

valued measures (POVMs), and the probability of detecting a specific outcome is given by 

Born's rule (3.11), Pi = Tr(LTjp). 
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The inversion of the linear equations given by Bora's rule provides an intuitive but non-

optimal solution, often resulting in non-physical states. Alternative methods like semidef-

inite programming (SDP) and maximum likelihood estimation (MLE) ensure positivity but 

are computationally intensive. This work introduces a NN-based approach to overcome 

these limitations, leveraging the efficiency and scalability of deep learning. 

input layer hidden layers output layer 

7*1 

Figure 6.1: Sketch of a N N for estimating the Bloch parameters or the elements of the 
Cholesky matrix from sampled statistics f. The blue circles form deep layers of a neural 
network, representing about 2 x 10 5 trainable parameters. To fulfill the bounds of the 
estimated parameters, the output layer has a hyperbolic tangent as an activation function. 

The proposed N N architecture, depicted in Fig. 6.1, for QST, consists of a feed-forward 

network with multiple layers. The input to the N N is the observed frequencies of measure­

ment outcomes, and the output is either the Bloch vector or the elements of the Cholesky 

matrix representing the quantum state. The network uses the rectified linear unit (ReLU) 

activation function in hidden layers and the hyperbolic tangent function in the output layer 

to ensure the outputs are within the appropriate bounds. The N N is trained using stochastic 

gradient descent wi th the Nadam optimizer, incorporating Nesterov-accelerated adaptive 

momentum estimation. The training dataset includes theoretical probabilities and sampled 

statistics to improve the network's handling of undersampled regimes and noisy data. 

The performance of the NN-based approach is benchmarked against traditional meth­

ods like linear inversion, SDP, and iterative M L E . Results are shown in Fig. 6.2. We evalu­

ated the average Hilbert-Schmidt distance between the true and estimated quantum states 

across different dimensions (3, 5, 7, and 9). NNs are about three orders of magnitude faster 

than SDP and about four orders faster than M L E . The average errors for both N N ap-
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proaches are similar to those of SDP and M L E in all dimensions considered. We also showed 

that NNs can efficiently learn the positivity constraint, resulting in a higher percentage of 

positive semidefinite states than linear inversion, particularly in the undersampled regime. 
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Figure 6.2: Average error in the means of the Hilbert-Schmidt distance for different estim­
ating strategies on the number of trials is shown. The upper left panel depicts errors in 
estimating quantum states in 3 dimensions. The upper right panel depicts results for di­
mension 5, and the lower left and right panels depict results for reconstruction errors in 
dimensions 7 and 9, respectively. The average errors for both NNs in the undersampled 
regime are in the same order as for SDP and M L E . Confidence intervals of 80% are depicted 
in respective colors. 

We confirmed that NNs can significantly enhance the efficiency and accuracy of QST By 

mapping input experimental data to valid density matrices, NNs provide a powerful tool for 

quantum state reconstruction, offering substantial speed advantages over traditional meth­

ods. This work opens up new possibilities for applying deep learning techniques to various 

quantum information tasks, potentially transforming how quantum states are analyzed and 

verified. Future research could extend the NN-based approach to larger quantum systems 

and explore its application in real-time quantum state estimation. Additionally, integrating 

advanced neural network architectures, such as variational autoencoders and generative 
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adversarial networks, could further improve the performance and scalability of quantum 

state tomography 
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We revisit the application of neural networks to quantum state tomography. We confirm that the positivity 
constraint can be successfully implemented with trained networks that convert outputs from standard feed­
forward neural networks to valid descriptions of quantum states. Any standard neural-network architecture can 
be adapted with our method. Our results open possibilities to use state-of-the-art deep-learning methods for 
quantum state reconstruction under various types of noise. 

DOI: 10.1103/PhysRevA.106.012409 

I. INTRODUCTION 

Modern quantum technologies exploit distinctive features 
of quantum systems to achieve performances unattainable by 
classical strategies. This potential advantage hinges on the 
capability to create, manipulate, and measure quantum states. 
A n y experimental procedure in this area requires a reliable 
certification of these steps: this is precisely the province of 
quantum state tomography (QST) [1]. 

The goal of Q S T is to estimate the unknown quantum state 
through measurements performed on a finite set of identical 
copies of the system. If the state is described by the density 
matrix Q, l iving in a d-dimensional Hilbert space, 0(d/e) 
copies are required to obtain an estimate of Q with an error 
(understood as total variation distance) less than e [2], This 
clearly illustrates the resource requirements of Q S T for large-
scale systems. 

In a broad sense, Q S T is an inverse problem [3-5]. As 
such, the linear inversion [6] is probably the most intuitive 
approach to the topic. Yet it has some cons too: it might 
report a nonphysical state and the mean squared error bound 
of the estimate cannot be determined analytically. To by­
pass these drawbacks a variety of useful Q S T methods, such 
as Bayesian tomography [7,8], compressed sensing [9,10], 
or matrix-product states [11,12], are at hand, although the 
maximum-likelihood estimation ( M L E ) is still the most com­
mon approach [13,14]. 

From a modern perspective, Q S T is fundamentally a data 
processing problem, trying to extract information from as 

Published by the American Physical Society under the terms of the 
Creative Commons Attribution 4.0 International license. Further 
distribution of this work must maintain attribution to the author(s) 
and the published article's title, journal citation, and DOI. Open 
access publication funded by the Max Planck Society. 

few noisy measurements as possible. Therefore, the estima­
tion algorithms used in Q S T can be easily translated into 
tasks in machine learning ( M L ) [15-17]. Actually, neural net­
works (NNs) have been used to address data-driven problems: 
examples in quantum information include identifying phase 
transitions [18], detecting nonclassical features [19-21], 
quantum error correction [22-25], calibrating quantum de­
vices [26,27], speeding up quantum optimal control [28], and 
designing quantum experiments [29-31], to cite only a few. 

Recently, M L has been applied to Q S T with very promising 
results [32^40]. In particular, generative models [41,42], usu­
ally restricted Boltzmann machines, have been used to treat 
the measurement outcomes on a quantum state [43]. These are 
N N s containing two layers, visible and hidden, with all-to-all 
connections between the neurons in different layers and none 
inside each layer. This technique, although powerful, suffers 
from difficulties with sampling and a lack of straightforward 
training for larger models. 

The use of feed-forward architectures, including recurrent 
N N s , has been recently advocated [44,45] because these ar­
chitectures are easier to train without any need for sampling 
steps, using gradient-based optimization with backpropaga-
tion. However, generative tasks in M L often use variational 
autoencoders [46] and generative adversarial N N s [47]. These 
are now being actively explored for learning quantum 
states [48-51]. 

Our motivation in this paper is to address the bene­
fits of NN-based reconstruction over standard techniques. 
To fairly benchmark the performance we pick three repre­
sentative estimators, namely, linear inversion, its positivized 
version, and M L E , and compare them with a typical N N 
estimator, obtained with a feed-forward architecture. As mea­
surement, we choose the so-called square root measurement, 
which was introduced as a "pretty good measurement" [52] 
for distinguishing possibly nonorthogonal states. Using the 
Hilbert-Schmidt distance between the true and the reported 
states as our main indicator, our results suggest that N N s 
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predict unknown quantum states about three orders of 
magnitude faster compared to linear and M L E estimates. In­
terestingly, the average errors are similar for al l the estimators 
considered in all dimensions. This confirms the power of 
deep-learning-based tools for the quantum realm. 

This paper is organized as follows. In Sec. II, we briefly 
discuss the basic tools of Q S T we need for our purposes. 
In Sec. I l l we describe the details of our N N architecture 
and training methods. Then, we present the performance of 
the different estimators in Sec. IV , while our conclusions are 
summarized in Sec. V . 

II. BACKGROUND 

We first set the stage for our model. We shall be consid­
ering a d-dimensional quantum system, described by a d x d 
density matrix Q, which requires n = d2 — 1 independent real 
numbers for its specification. 

The goal of Q S T is to estimate Q from measurements 
performed on identically prepared copies of the system. 
These measurements are, in general, represented by positive 
operator-valued measures ( P O V M s ) [53]: they are a set of 
positive Hermitian operators {Ue}, with the properties 

n, (2.1) 

Each P O V M element represents a single output of the mea­
suring apparatus. We take every measurement as yielding m 
distinct outcomes (which we assume to be discrete). Accord­
ing to Born's rule, the probability of detecting the Ith output 
is given by 

Pi = Tr(en ť). (2.2) 

To invert this equation, it is convenient to map both Q and 
{Elf} into a suitable vector form. To this end, we use a trace-
less Hermitian operator basis {Yk} (k = 0 , . . . , n) and r 0 = 1, 
satisfying Tr ( r ; ) = 0 and Tr(r ; T,t) = Sjk. In this way, we get 
the parametrization 

Q = r 0 r 0 + y ^ r k r k , n, 
k=\ k=\ 

(2.3) 

Although the condition T r g = 1 sets rn = \/d, we leave rn 
as a parameter to keep the same number of unknowns as for 
the approach using Cholesky decomposition to be described 
later. The important point is that the state is characterized 
by the Bloch vector [54-57] rk = Tr(QTk), whereas C« = 
Tr(Uerk) is a m x n real matrix describing the explicit re­
lation between the theoretical probabilities p and the state 
parameters r. 

In consequence, the inverse problem we have to solve turns 
out to be the linear system 

P = Cr, (2.4) 

where we have omitted an unessential constant term that can 
be incorporated into the following discussion in a straightfor­
ward way. 

In the presence of noise and with a finite number of copies, 
the collected data, we w i l l denote by f, deviates from the 
expected values p. The ultimate goal of Q S T is to infer the 

signal parameters r from the measured noisy data f. A naive 
solution is to use the estimator 

r L i = C"f, (2.5) 

where the C~ stands for pseudoinverse [58-60] and the sub­
script L I reminds us that this is a linear inversion approach. 

This i n is also known as the ordinary least-squares esti­
mator [61]. As heralded before, the resulting i n is no longer 
guaranteed to represent a positive semidefinite operator. One 
might ensure positivity by setting the negative eigenval­
ues to zero, which has been called the "quick and dirty" 
approach [62], although this performs poorly. 

Another alternative is to use instead the generalized least-
square estimator [63], defined as TGLS = [ (X _ 1 C) + X _ 1 ] f , 
where X is such that CC Ť is the data covariance matrix. 
Under the Gauss-Markov assumptions [64] it is the best linear 
unbiased estimator (usually known as BLUE) [65]. However, 
for small and medium sized datasets, a reliable estimation of 
the data covariances is not possible, and then ru turns out to 
be a handy estimator. 

To circumvent these obstructions we might follow yet an­
other route, introducing instead a semidefinite program that 
solves (2.4), together with the positivity constraint. The re­
sulting estimator, denoted by ÍSDP, is thus a solution of 

minimize llf — Cr II 

subject to e > 0 and T r g = l . 
(2.6) 

Finally, to make our analysis complete and consider a 
nonlinear estimator, we also incorporate the M L E , which 
guarantees positivity of the resulting quantum state. Although 
there is vast literature on the subject, the M L E estimate É>MLE 
can be seen as the fixed point of the iterative map [66] 

with 

Qk+l 

R : 
i PJ 

(2.7) 

(2.8) 

and Xk is a normalization constant. The resulting Bloch-vector 
ÍMLE estimate is asymptotically unbiased as /} pj. Usu­
ally, a few thousands of iterations are needed to observe the 
stationary point of the map (2.7). 

From a numerical point of view, an efficient way to deal 
with the positivity constraint is to directly decompose the 
density operator using the famous Cholesky factorization [67] 

AA 1 

Tr(AAt)' (2.9) 

where A is a complex lower triangular matrix and A* its Her­
mitian conjugate. Born's rule then turns to a set of nonlinear 
equations, which are rather complicated to solve. For this 
purpose, we adopt M L techniques. 

III. NEURAL-NETWORK ESTIMATORS 

Our goal is to build a N N that links the input observed 
frequencies f to either an output true Bloch vector "TNN or 
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a Cholesky matrix A N N . The sampled frequencies f serve as 
input to the N N , which transforms them into an output Bloch 
vector or a Cholesky matrix via a series of linear transforma­
tions, each followed by evaluation of some nonlinear function. 
The structure of such transformations is represented by neu­
rons ordered into deep layers. More precisely, the values z ( i ) 

of the neurons in kth layer are 

Z » = / ( Y C*)), 

W (* -1 ->* ) Z (* -D + b ( t - i ) (3.1) 

where W is a matrix of weights connecting neighboring layers 
that together with the vector of biases b forms a set of trainable 
parameters. The nonlinear activation scalar function / can be 
chosen arbitrarily, depending on the problem. In our case, the 
rectified linear unit function /R 6LUU) := max(0, x) is used 
in every deep layer except at the output layer, where we 
take f(x) = tanh(x). The hyperbolic tangent function maps 
real numbers into the (—1, 1) interval which coincides with 
restriction on elements of both Bloch vector and Cholesky 
matrix. Symbolically, we can express the Bloch vector (and 
similarly the elements of the Cholesky matrix) as 

r N N = / - o W ( " - 1 - ™ 1 » ' k u o W M o f , (3.2) 

where W is a shortcut for {W, b}. 
The N N learns by minimizing the loss function. We chose 

to work with mean squared error, which takes the form 

(3.5) 

n, <- vn ,_ i + (1 - v)gf, 
n, 

n, •< , 
1 - v* 

m, *- (1 - /z,)g, + fit+i&t-

Here, r\ represents the learning rate, /x the exponential de­
cay rate for the first moment estimates m , v the exponential 
decay rate for the weighted norm gf, and € is a parameter 
that ensures the numerical stability of the Nadam optimiza­
tion procedure. We set the numerical values {rj, /x, v, e} to 
{0.001,0.9, 0.999, 10" 7 }. 

A l l the above is implemented in the Keras [74] and Tensor-
flow [75] libraries for P Y T H O N . The corresponding code can 
be found in Ref. [76]. In every epoch, the training dataset is 
divided into 100 batches. The number of epochs needed to find 
a global minimum of the loss function varies across different 
deep NNs . In general, the training stopped after 400-2000 
epochs, depending on the dimension in which we estimate 
quantum states. We defined an early stopping after not finding 
the better minimum of the loss function in the 200 consecutive 
epochs. We stress that both r" N N and rL i estimates and the 
ensuing quantum states are Hermitian matrices but do not 
incorporate the positivity constraint, in contradistinction to 
f s D P and rMLE-

M E i'k 
out 

' zk ( W , / ) | (3.3) 
U=n 

where (•> denotes the average value in the state Q. Optimiza­
tion in the N N is done by backpropagating the error. This is 
arguably the workhorse of most M L algorithms and definitely 
the standard approach in most situations, which is working 
with batches of data. The term and its general use in N N s 
was coined in [68] and a modern overview is given in a 
textbook [69]. 

We minimize the value of the loss function C over all 
components of a given dataset to update weights and biases 
W , using a stochastic gradient-based optimization, which is 
of core practical importance in many fields [70]. A widely 
accepted algorithm is Adam [71], which is straightforward to 
implement, computationally efficient, and has little memory 
requirements. We use an improved version that incorpo­
rates Nesterov-accelerated adaptive momentum estimation 
(Nadam) [72], since recent results indicate that it has better 
performance [73]. A t the step t, the Nadam procedure updates 
parameters in the form 

W , <r- W,_ 
I " 

(3.4) 

with 

i - r c = i / * / 

m, <- /xm,_i + (1 - ß)gt, 

IV. RESULTS 

Our deep N N is built as follows: The input layer is fed by 
observed frequencies f for different quantum states, followed 
by eight layers consisting of (200, 180® 2 , 160® 4 , 100) neu­
rons with the R e L U activation function. The output layer, with 

input layer j hidden layers output layer 

FIG. 1. Sketch of a N N for estimating the Bloch parameters or 
the elements of the Cholesky matrix from the sampled statistics f. 
The filled blue ovals represent neurons in deep layers, representing 
about 2 x 105 trainable parameters. The output layer has a hyper­
bolic tangent as an activation function since it has the same bounds 
as the Bloch parameters and the elements of the Cholesky matrix. 
In the hidden layers, the rectified linear unit is used as an activation 
function. The structure of the N N is the same, independently of the 
dimension or specific parametric representation of quantum states. 
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FIG. 2. Average Hilbert-Schmidt distance for different estimating strategies on the number of trials with which we sampled the true 
probability distribution p in dimensions 3 (upper left panel), 5 (upper right panel), 7 (lower left panel), and 9 (upper right panel). The insets 
indicate the corresponding estimators. The average errors for both NNs in the undersampled regime are of the same order for SDP and M L E 
in all dimensions. When using highly sampled statistics, number of trials > 105, M L E starts to outperfonm both N N approaches. Confidence 
intervals of 80% are depicted in respective colors. 

a hyperbolic tangent activation function, serves as an estimate 
of B loch vector or the elements of a Cholesky matrix. 

The structure of the N N was adjusted heuristically, after 
having tried multiple settings with differing number of free 
parameters and deep layers. In terms of the distance between 
estimated and true quantum states, we got on average the same 
accuracy for a N N with two layers. However, it was observed 
that N N s are more likely to return parameters corresponding 
to positive semidefinite matrices, compared to, e.g., the L I 
method. 

The N N sketch is presented in Fig . 1. We trained in total 
eight NNs , each with the same structure, for the inference of 
quantum states in dimensions d = 3, 5, 7, and 9. A s our 
target states, we use random density matrices Q distributed 
according to [77] 

X X t 

e = T r ( X X T ) ' ( 4 ' 1 } 

with X pertaining to the Ginibre ensemble [78], that is, with 
real and imaginary parts of each matrix entry being inde­
pendent normal random variables. These are implemented in 
P Y T H O N using QUTIP [79]. 

As heralded in the Introduction, as our measurement 
scheme, we choose the square root measurement, defined by 
the rank-one P O V M 

n« = G - | / 2 | « ( ^ | G - | / 2 , G = J2\4>t)(4>t\, (4.2) 
I 

where \<j>i) are randomly generated Haar-distributed pure 
states [80] (£ = 0 , . . . , n). This P O V M is known to be opti­
mal, in the sense that the measurement vectors are the closest 
in the squared norm to the given states [81,82]. 

For each dimension, the training (validation) dataset con­
tains 8 x 10 5 (2 x 10 5) points. One-quarter of the data in the 
training dataset are probabilities pi = Tr (gn f ) sampled with 
a random number of trials, ranging from d2 up to 10 5 ; the 
rest are theoretical probabilities. Each input vector, containing 
either theoretical or sampled statistics, corresponds to dif­
ferent randomly generated quantum states (4.1), whereas the 
measurement (4.2) is fixed for al l states in each dimension. 

Ideally, all data points in the training dataset should consist 
of only theoretical probabilities, so that the N N can extract 
the appropriate transformation. However, in the undersampled 
regime, it turns out to be beneficial for the N N to see examples 
of the sampled statistics. In this case, with a training dataset 
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FIG. 3. Average time per state estimation for different tomo-
graphical methods, as indicated in the inset. The N N approach is 
about three orders faster than SDP and about four orders faster than 
M L E . 

containing only theoretical probabilities, the N N would lose 
the ability to predict positive matrices, while with only sam­
pled probabilities in the training dataset, the N N would have a 

hard time in correctly learning the mapping from probabilities 
to the Bloch vector or the Cholesky matrix. 

The output layer consists of true values of the Bloch vector 
or elements of the Cholesky matrix. A l l N N s are trained for at 
most 2000 epochs, which takes about 12 h for every N N when 
estimating density matrices in dimension 9. After the training 
procedure, we compared estimates of quantum states based on 
N N s with standard methods, namely, L I , S P D , and M L E . 

Results are shown in F ig . 2. For each dimension d, we 
generated 10 3 random density matrices and, using the same 
measurement scheme as for the training, we obtained a set 
of 10 3 probability distributions, often called a test set. After 
getting the test set, we sampled each probability distribution 
with a number of trials depicted on the horizontal axis. Then, 
we used trained NNs , L I , M L E , and the S D P to reconstruct 
density matrices from the sampled statistics. We plot the 
average Hilbert-Schmidt distance between true and inferred 
quantum states as a function of the number of trials. A s we 
can see, N N s outperform the fu estimator and are better or 
give errors in the same order of magnitude as rspD-

For a fixed number of trials, the NN-based Bloch vector 
has a better average error compared to the Cholesky one, 
but tends to report Hermitian matrices with nonpositive least 

FIG. 4. Quality of estimators based on linear inversion and N N . In all the panels, red diamonds, blue squares, green triangles, and yellow 
circles represent the results for estimators in dimensions 3, 5, 7, and 9, respectively. The upper plots show the dependence of the most negative 
eigenvalue on the number of trials for those dimensions and for the LI estimator (left) and the Bloch N N estimator (right). The bottom panels 
depict the percentage of positive semidefinite states amongst all the reconstructed states with LI (left) and Bloch N N (right). The results are 
obtained from datasets containing 104 statistics in each dimension. 
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eigenvalues. Moreover, N N s work relatively well in the un-
dersampled regime. Interestingly, N N s show the ability to 
extrapolate beyond the number of samples on which they were 
trained. This can be appreciated in the lower Hilbert-Schmidt 
distance for 10 6 trials, when only up to 10 5 trials were used to 
sample the true statistics. 

The combination of theoretical and sampled probabilities 
in the training set was balanced in such a way that the N N s 
work well in the undersampled regime, but also provide ac­
curate estimates when the number of trials is high. O f course, 
when the number of trials goes to infinity; i.e., when working 
with theoretical probabilities, the r u and ÍMLE estimators 
converge to the true state of the system. 

Figure 3 shows an analysis of the performance of different 
estimators. We depict the average time per single evaluation of 
r L i , ÍSDP, ÍMLE, a n c * ^ o m NNs . For the N N s , the times shown 
are only those associated with the prediction phase, not the 
training (which takes a lot longer). The semi definite program 
infers the quantum state from sampling statistics at around 
1 0 _ 1 s. M L E turns out to be the most time-consuming proce­
dure. Compared to linear inversion and both N N approaches, 
M L E predicts quantum states about 10 4 slower. A k i n to linear 
inversion, N N predicts unknown quantum states from the data 
about three orders faster compared to S P D estimates and about 
four orders faster compared to the M L E estimates. 

Figure 4 summarizes our performance analysis. We com­
pare the quality of r u and ÍNN in terms of the quantumness of 
the inferred states. We show the mean of the largest negative 
eigenvalues and ratio of positive semidefinite quantum states 
among the set of estimated Hermitian matrices on the mea­
sured statistics sampled with a given number of trials. Note 
that we have excluded results from M L E and SDP, for those 
estimators always reconstruct a positive matrix. 

A s one can see in Fig . 4, N N s can learn the positivity 
constraint. For example, in dimension 9, considering r u , 
only 1% of all Hermitian matrices are positive semidefinite, 
compared to 17% using N N , estimated from statistics sampled 

with 10 6 trials. In the undersampled regime, where the number 
of trials is in the order of the number of projectors, N N s in 
each dimension predict the higher number of positive quantum 
states compared to the r u estimator. 

The issue with predicting quantum states with negative 
eigenvalues is that it is more prevalent for states that are 
singular (i.e., with vanishing determinant), as these are the 
states that sit on the boundary in the generalized Bloch rep­
resentation. A s such, the results in Fig . 4 depend on the purity 
of the states to be reported. 

V. CONCLUDING REMARKS 

In summary, we have shown how N N can assist in the 
reconstruction of quantum states. The N N maps the input 
experimental data to a valid density matrix up to three orders 
of magnitude faster than the standard QST. This presents a 
significant advantage for data postprocessing during tomogra­
phy. The N N learns to represent the state in a way that is well 
suited for the problem. 

Our results confirm how some of the latest ideas from deep 
learning can be quite easily adapted and applied to quantum 
information tasks with just a few tweaks to incorporate the 
rules of quantum physics. This opens up a wealth of possible 
applications, which are the object of intense investigation. 
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Chapter 7 

Deep learning of quantum 
entanglement 

In this work, I was responsible for implementing neural networks, theoretical analysis, nu­

merical simulations, and experimental data analysis. I was also involved in the manuscript 

preparation process. 

This chapter presents a novel method of quantifying entanglement from incomplete 

measurements [4]. We showed that wi th the help of deep learning methods, we achieved a 

quantification error of up to an order of magnitude lower than the state-of-the-art quantum 

tomography. We aimed at the quantification of entanglement in two-qubit systems. How­

ever, we showed that we could recover the information about entanglement measures from 

incomplete data in the systems of up to five qubits. 

Quantifying quantum entanglement is critical in fundamental quantum research and 

practical quantum applications. Entanglement is a key resource for various quantum in­

formation processing tasks, including quantum communication, computation, and crypto­

graphy. Traditional methods for entanglement quantification, such as quantum state tomo­

graphy, require either detailed prior knowledge of the system or extensive experimental 

procedures involving complete sets of measurements. Due to their high computational 

and experimental demands, these methods are often impractical for complex or large-scale 

quantum systems. 

This work introduces an innovative approach leveraging deep learning techniques to 

quantify quantum entanglement from incomplete measurement data. Our method utilizes 

neural networks to directly estimate the degree of entanglement without necessitating the 

full reconstruction of the quantum state. This approach is particularly advantageous as 

it circumvents the need for full-state tomography, significantly reducing the experimental 
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Figure 7.1: Schematics of three different approaches to quantifying quantum entanglement. 
The maximum likelihood tomographical approach (A) infers the most likely state from data 
and initial guess p i n i t . The green deep neural network represents a fully connected neural 
network that infers quantum entanglement directly from specific measurements. In con­
trast, the blue convolutional deep neural network infers quantum entanglement from both 
measured data as the measurement description. 

and computational burden. 

We use three approaches to determine the concurrence and the mutual information 

from an incomplete data set. We show them schematically in Fig. 7.1. We use the maximum 

likelihood algorithm(MaxLik) (Fig. 7.1 A , red), measurement-specific deep neural networks 

(Fig. 7. IB, green), and a measurement-independent deep neural network (Fig. 7.1C, blue). 

The MaxLik algorithm iteratively finds the quantum state from which we can calculate the 

entanglement measure. On the other hand, measurement-specific networks take data from 

a given measurement and directly predict entanglement. The measurement-independent 

network works wi th an arbitrary measurement and directly infers the value of the quantum 

entanglement measure. 

number of projectors number of projectors number of projectors 

Figure 7.2: The mean absolute error (MAE) versus the number of measurement projectors 
for (A) two-qubit concurrence, (B) two-qubit mutual information, and (C) three-qubit mu­
tual information matrix. Red triangles depict M A E for the MaxLik; blue squares stand for 
the values of M A E computed from measurement-independent deep neural network, and, 
lastly, green circles represent the values of M A E computed from measurement-specific deep 
neural networks. The DNNs outperform the MaxLik approach regarding entanglement 
quantification accuracy and consistency, given by smaller errors and uncertainty intervals, 
even for incomplete measurements. 

We compared the three approaches based on how accurately they can infer entangle­

ment measures, namely the concurrence and the quantum mutual information from in-
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complete datasets. Results are shown in Fig. 7.2, where we plotted the mean average error 

(MAE) between the true value of the entanglement measure and the predicted one. In 

all panels, the red curve stands for M A E for MaxLik, the green curve for measurement-

specific DNNs, and the blue curve for measurement-independent D N N . The M A E depends 

on the number of measurement projectors. The lower amount of projectors leads to higher 

M A E . As we can see, the measurement-independent DNNs outperform the tomographical 

approach in estimating the concurrence (Fig. 7.2 A), the two-qubit quantum mutual in­

formation (Fig. 7.2 B) and three-qubit quantum mutual information (Fig. 7.2 C). We also 

generalized the estimation of a quantum mutual information matrix for the systems of up 

to five qubits. 

Moreover, we demonstrated the performance of our DNNs-based method on experi­

mental data. We collected data from two entangled photon sources: continuously pumped 

spontaneous downconversion and resonantly pumped semiconductor quantum dot. In 

both cases, measurement-specific DNNs outperformed the MaxLik approach and inferred 

quantum correlations wi th higher accuracy. 

In conclusion, by developing novel methods of neural networks and deep learning, we 

outperformed the traditional techniques for quantifying quantum correlations, such as state 

tomography. The best-performing approach is the measurement-specific DNNs, trained to 

predict concurrence or quantum mutual information from a fixed set of projectors. Further­

more, we generalized our approach to the systems of up to five qubits, where we showed 

that measurement-specific DNNs represent a more accurate method to quantify entangle­

ment measures. Furthermore, we demonstrated the ability of our approaches to predict 

quantum measures from noisy experimental data at higher accuracy than standard meth­

ods. 
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The quantification of the entanglement present in a physical system is of paramount importance for fundamen­
tal research and many cutting-edge applications. Now, achieving this goal requires either a priori knowledge on 
the system or very demanding experimental procedures such as full state tomography or collective measure­
ments. Here, we demonstrate that, by using neural networks, we can quantify the degree of entanglement 
without the need to know the full description of the quantum state. Our method allows for direct quantification 
of the quantum correlations using an incomplete set of local measurements. Despite using undersampled mea­
surements, we achieve a quantification error of up to an order of magnitude lower than the state-of-the-art 
quantum tomography. Furthermore, we achieve this result using networks trained using exclusively simulated 
data. Last, we derive a method based on a convolutional network input that can accept data from various mea­
surement scenarios and perform, to some extent, independently of the measurement device. 
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I N T R O D U C T I O N 

Physical measurements performed on individual parties of an en­
tangled system reveal strong correlations (1), which give rise to non-
classical and nonlocal effects (2, 3). Aforesaid effects are the 
essential element of fundamental tests of quantum mechanics, in­
cluding direct experimental verification of quantum nonlocality (4— 
6). The critical role of entanglement was demonstrated also on the 
opposite scale of the complexity spectra in macroscopic phase tran­
sitions (7-9). Besides the fundamental aspects, entanglement is an 
essential tool for quantum information processing, and it allows for 
reaching the quantum advantage (10, 11). Modern quantum com­
munication networks rely crucially on entanglement sources (12-
15). Consequendy, the characterization of entanglement is para­
mount for both fundamental research and quantum applications 
(16, 17). 

Here, we adopt methods of deep learning to tackle the long­
standing problem of efficient and accurate entanglement quantifi­
cation. Our approach determines the degree of entanglement of a 
generic quantum state direcdy from an arbitrary set of local mea­
surements. Despite the deep learning models being trained on sim­
ulated measurements, they excel when applied to real-world 
measurement data. We quantify photonic entanglement generated 
by two distinct systems: a nonlinear parametric process and a semi­
conductor quantum dot. 

Reliable entanglement quantification represents an open 
problem in quantum physics. Direct measurement of entanglement 
can be achieved by exploiting quantum interference of two (or 
more) identical copies of a physical system (18-22). This multicopy 
approach roots in measuring nonlinear functions of quantum states 
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(23, 24). However, such measurements are experimentally highly 
demanding, which has spurred the research of single-copy entan­
glement detection using only local measurements, such as 
quantum tomography. 

Quantum tomography provides the full description of a 
quantum state including the degree of entanglement (25, 26). 
However, the total number of measurements required for 
quantum tomography increases exponentially with the number of 
qubits or quantum degrees of freedom, which renders the approach 
inherendy not scalable (27-29). Several methods have been devel­
oped to make this scaling more favorable, nevertheless, by imposing 
an a priori structure or symmetry to the system (30-33). When a 
few-parameter model of quantum state is assumed, quantum esti­
mation can be used for optimal inferring of the state entanglement 
(34-36). Another approach to emulate quantum correlations (37) 
with fewer resources relies on neural network quantum states 
(38-42). However, this method suffers from the sign problem, 
solving of which requires further assumptions about the state (43, 
44). The neural network quantum state approach was used for 
quantum tomography under nonideal experimental conditions 
(45-49). However, how much information is needed for represent­
ing a generic quantum state at a given level of accuracy remains an 
open question (50, 51). 

Instead of characterizing the whole system, one might target only 
mean values of a set of selected observables, which substantially 
reduces the required number of measurements. This approach, 
termed shadow tomography (52), can also be applied to estimate 
entanglement entropy of a small subsystem, basically reconstructing 
its reduced quantum state (53, 54). A n alternative method uses 
random measurements to estimate the second-order Renyi 
entropy of a subsystem (55-58). However, quantification of entan­
glement distributed over the whole system lies beyond the scope of 
such methods. 

Entanglement witnessing seems to be a viable alternative to the 
tomographic methods, when we only aim at distinguishing between 
entangled and nonentangled states (or between entanglement 
classes) without quantifying the degree of entanglement and its 
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detailed structure. Nevertheless, the witnessing may still require the 
full knowledge of the underlying quantum state, as is the case of the 
positive partial transpose criterion (2). The witness cannot be di-
rectiy measured; however, it can be approximated using a complete­
ly positive map (59), which is equivalent to the full quantum state 
tomography (60, 61). Other witnessing methods are based on the 
minimum local decomposition (62, 63), semidefinite programming 
(SDP) (64, 65), entanglement polytopes (66), or correlations in 
random measurements (67, 68). Entanglement witnessing can 
also be facilitated by using neural networks classifiers (69-71). 
Despite the success of the entanglement witnessing, it provides 
only witnesses or lower bounds and often requires some a priori in­
formation about the state. 

In summary, the connection between the entanglement present 
in a physical system and the measurements of the correlations of its 
subsystems is highly nontrivial (72, 73). It seems that full entangle­
ment characterization using single-copy local measurements can 
only be accomplished with the complete quantum state tomography 
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Fig. 1. Schematics of the three methods that we used to infer the quantum 
correlations. (A) The maximum likelihood algorithm (MaxLik) finds the most likely 
quantum state p based on the measured data and an initial guess p i n i t . (B) Green 
DNN represents a fully connected neural network that infers directly the concur­
rence and the mutual information from specific measurements (specific measure­
ment projectors), whereas (C) the blue DNN works with an arbitrary measurement 
projectors. The input for the former is the measured data. The measurement-inde­
pendent DNN has a first layer convolutional, and it inputs both the data and the 
measurement description. 

and, consequendy, with exponential scaling of the number of re­
quired measurements (60, 61, 74, 75). The open question remains 
what one can learn about entanglement from an incomplete 
observation. 

In this work, we use deep neural networks (DNNs) to tackle the 
problem of entanglement characterization. We develop a method 
that allows us to quantify the degree of entanglement and 
quantum correlations in a generic partially mixed state using a set 
of informationally incomplete measurements. The entanglement 
quantifiers that we obtain using D N N approach are substantially 
more accurate compared with the values attainable using the 
state-of-the-art quantum tomography methods. In addition, we 
demonstrate a measurement-independent quantification of entan­
glement by developing a deep convolutional network that accepts 
an arbitrary set of projective measurements without retraining. 
The DNN-based approaches that we introduce here can be imme­
diately applied for certification and benchmarking of entanglement 
sources, which we demonstrate by using photonic sources of entan­
gled photons based on spontaneous parametric downconversion 
and a semiconductor quantum dot. 

RESULTS 
Even in a well-understood system, such as a pair of qubits, a reliable 
quantification of entanglement requires full state tomography (74). 
In other words, to infer the degree of entanglement, we need to de­
termine the quantum state. A common approach to implement 
photonic qubit tomography is to measure the full basis of three 
Pauli operators. Such a measurement for a two-qubit state consist 
of 6 2 = 36 local projectors (26). Omitting randomly some projectors 
in this measurement scheme decreases the accuracy of the quantum 
tomography and, consequendy, the entanglement evaluation. Here, 
we show that this problem can be overcome by using D N N s that 
allow us to gain knowledge on the degree of entanglement 
without the need to know the quantum state. 

To demonstrate the advantage of the D N N approach, we use two 
quantifiers: the concurrence (2) and the mutual information (76) 
for a two-qubit and a three-qubit system, respectively. The concur­
rence is widely used in experiments for characterization of entan­
gled photon pair sources. Its value is bounded from below by 0 
for separable states and from above by 1 for maximally entangled 
states. O n the other hand, the concurrence cannot be easily gener­
alized to higher-dimensional quantum systems and systems of more 
than two parties. Therefore, the second quantifier that we use is the 
mutual information, which can be generalized to multipartite 
systems of qudits, and its value reflects the information shared 
between the parties of a larger system. 

We use three different approaches to determine the concurrence 
and the mutual information from an incomplete set of data. We 
show them schematically in Fig. 1. We use the maximum likelihood 
algorithm (MaxLik) (Fig. 1A, red), measurement-specific D N N s 
(Fig. IB, green), and a measurement-independent D N N (Fig. 1C, 
blue). The maximum likelihood is an algorithm that finds the 
quantum state (p) iteratively, starting from an initial guess (p i n i t ) , 
which is typically set to maximally mixed state (77). Having at 
hand the quantum state p allows us to quantify the entanglement 
(see Materials and Methods). In contrast, the approaches based 
on D N N learn the concurrence and mutual information directly 
from the measured data. While the measurement-specific D N N is 
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designed for a predefined set of measurement projectors M m , the 
measurement-independent D N N relaxes the condition on measur­
ing the a priori known projectors and predicts concurrence and 
mutual information independently on the measurement settings. 
This approach has a convolutional first layer, and it inputs the mea­
sured data together with the description of the respective projectors. 
During the training, the D N N s are provided with the theoretical 
probabilities Tr{pM m } and, in the case of the measurement-inde­
pendent D N N , also the description of the measurement M m . For 
the detailed information about the structure of the D N N s , the 
dataset, and the training procedure, see Materials and Methods. 

We compare the three approaches on the basis of how accurately 
they can infer the concurrence (mutual information) from an in­
complete set of data. Here, the MaxLik serves as a benchmark to 
the other two methods that are DNN-based. We chose to evaluate 
the performance of all three approaches by computing the mean ab­
solute error (MAE) . The M A E is calculated as (\xt — yt\) with xt being 
the true value and yt being the predicted value of the concurrence 
(mutual information). To make our comparison universal, the 
average is taken over a set of states and several combinations of mea­
surement projectors, i.e., a test set. The total number of combina­
tions of k projectors from the maximum of 36 is M | - 3

3

6

6 1^| . As this 
number can be excessively high, we randomly selected a smaller 
subset of combinations. Therefore, to evaluate the performance of 
a measurement-specific D N N , we train 12 randomly selected net­
works for each fc-projector measurement and evaluate the average 
and SD of their M A E s . For the MaxLik and measurement-indepen­
dent D N N , the averaging is performed over hundreds of randomly 
selected measurements. 

The performance of the three approaches is presented in Fig. 2, 
where we show how M A E depends on the number of measurement 
projectors that we used to obtain the result. Figure 2 (A and B) 
shows the M A E for the concurrence and the mutual information, 
respectively, while Fig. 2C addresses the M A E of the three-qubit 
mutual information matrix. The M a x L i k approach is presented 
using the red triangles in all panels. For the informationally com­
plete data, i.e., when all 36 projectors are measured, the M a x L i k 
M A E is on the order of 10~ 5 to 10~ 4. In this scenario, MaxLik con­
verges to the true quantum state, and the error only reflects the nu­
merical errors caused by the computing precision. As we can see in 
Fig. 2 (A and B), the M A E of the MaxLik starts increasing i f only a 

few out of the 36 projectors are absent. In contrast to the MaxLik, 
D N N s perform well even for a severely reduced number of projec­
tors. The measurement-specific D N N s (shown in green circles) 
predict the concurrence and mutual information with the M A E 
of approximately 0.01 even when only 24 projectors are used. For 
the same number of projectors, MaxLik M A E is 0.1. Consequently, 
measurement-specific D N N s result i n a precision that is, on 
average, 10 times higher. If we further reduce the number of projec­
tors, then the M A E for the measurement-specific D N N s starts to 
increase; however, it keeps being substantially smaller compared 
to the M A E of the MaxLik . The uncertainty region of M A E also 
remains at least two times smaller (up to 10 times while working 
with more than 18 projectors). The measurement-independent 
D N N error is shown in Fig. 2 using the blue squares. Compared 
to the performance of the MaxLik, the measurement-independent 
D N N quantifies the concurrence and the mutual information with a 
lower M A E however worse than using the measurement-specific 
strategy. In practice, one can resource to the measurement-indepen­
dent D N N for preliminary detecting the entanglement in the 
system, even changing the measurement on the fly, and improve 
the entanglement quantification by training a particular measure­
ment-specific D N N later. 

To further validate our approach, we compare the values of the 
concurrence determined by MaxLik, measurement-specific D N N s , 
and measurement-independent D N N using a state that the network 
has never seen before, the Werner state pw(p) = PPy- + ^ 1 > 
where pv- is a projector into maximally entangled Bell state span­
ning the asymmetric subspace of two qubits. The parameter p runs 
from 0 (mixed state) to 1 (maximally entangled state). The concur­
rence for the Werner state is a piecewise linear function of the pa­
rameter p, and it takes the exact form C ( p w ) = max [0, (3p — l)/2]. 
The results are shown in Fig. 3. In the panels (A to D), we show the 
concurrence and the corresponding uncertainty regions for 36, 28, 
18, and 8 projective measurements, respectively. For 28 and 18 mea­
surement projectors, both the D N N approaches follow the ideal 
concurrence values, while the MaxLik deviates substantially. The 
measurement-specific D N N s yield nontrivial results even in the 
case of only 8 measurement projections. 

As mentioned previously, the mutual information can be gener­
alized to the systems of more than two qubits. To show that we can 
also generalize the DNN-based approach to larger quantum 
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Fig. 2. Entanglement quantification error for the two- and three-qubit systems. The mean absolute error (MAE) versus the number of measurement projectors for (A) 
two-qubit concurrence, (B) two-qubit mutual information, and (C) three-qubit mutual information matrix. Red triangles depict MAE for the MaxLik, blue squares stand for 
the values of MAE computed from measurement-independent DNN, and, lastly, green circles represent the values of MAE computed from measurement-specific DNNs. 
The uncertainty regions are depicted in the corresponding colors and may overlap. The DNNs outperform the MaxLik approach in terms of entanglement quantification 
accuracy and its consistency, given by smaller errors and uncertainty intervals, even for substantially incomplete measurements. 
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P P 
Fig. 3. Entanglement quantification error for the Werner state. The depen­
dence of values of concurrence for the two-qubit Werner state pw(p) characterized 
by the parameter p e [0,1]. Values of the concurrence determined from (A) 36, (B) 
28, (C) 18, and (D) 8 measurement settings. In each panel, the red triangles depict 
the average values of the concurrence determined by the MaxLik with correspond­
ing uncertainty region, the blue squares stand for the measurement-independent 
DNN predictions, and the green circles represent predictions given by measure­
ment-specific DNNs. The brown line shows the theoretical values of the concur­
rence for the Werner state. Both measurement-independent DNN and 
measurement-specific DNNs outperform the MaxLik in entanglement quantifica­
tion of the Werner state. 

systems, we apply our method to a three-qubit system. In such a 
system, the mutual information matrix has three independent 
entries J = (J'AB, . - ^ A G ^ B C L with subscripts referring to the 
three different ways of partition. To determine all three numbers 
S simultaneously, we have to perform a full tomographic measure­
ment on each qubit, which leave us with 6 3 = 216 projections. Fol­
lowing the procedure introduced for the two-qubit case, we built 
measurement-specific D N N s , each mapping measurement data to 

the three-component vector JF. Deep layers have the same structure 
as for quantification of mutual information in the two-qubit case. 
Final results are shown in Fig. 2C. The M A E of S is averaged over 
its three independent elements and over randomly generated 
quantum states. D N N predictions are, on average, akin to the 
MaxLik ones in the regime close to the complete data. However, 
with only about a third of all projections, measurement-specific 
D N N s predict the full mutual information matrix on average with 
a five times smaller error than the MaxLik. 

Our approach needs modest computational resources. In partic­
ular, the two- and three-qubit measurement-specific networks (for 
one-fourth of all Pauli projectors compared to the complete mea­
surement) have approximately 37,000 and 42,000 parameters, re­
spectively. The optimal performance of networks for three qubits 
does not require substantially more parameters than for two-qubit 
networks. We further verified this optimistic scaling by training 
four- and five-qubit measurement-specific networks (for one-
fourth of all possible Pauli projectors in each case). These networks 
require 69,000 and 231,000 parameters, respectively, and outper­
form the MaxLik even more than two-qubit and three-qubit net- O 
works; see Table 1. Namely, the measurement specific networks | 
reach 2.2, 3.0, 3.8, and 4.3 times lower M A E of mutual information ° 
matrix than the MaxLik for two, three, four, and five qubits, respec- " 
tively. On the basis of this finding, we expect that, by keeping the g5 

ratio of the MaxLik accuracy and the D N N accuracy constant, the § 
required fraction of the projectors with respect to the full tomogra- % 
phy wi l l decrease. i i 

Last, we demonstrate the performance of DNN-based entangle- | 
ment quantification using experimental data acquired under non- % 
ideal conditions and with l imited statistical sampling. We study g 
two distinct entanglement sources. The first one is based on contin- 8 
uously pumped spontaneous parametric downconversion. The d3 
photon pair generation process is inherently random, and the re- § 
suiting entangled state depends on the choice of the temporal coin- % 
cidence window and other experimental conditions such as | 
background noise. Adjusting of the experimental parameters g" 
affects the degree of entanglement in the produced state. We quan- ~ 
tify concurrence using the D N N s and the M a x L i k approach for to 
various experimental settings ranging from the maximally entan- w 
gled singlet Bell state to a noisy state with a negligible concurrence. 
Figure 4 (A and B) shows the results for an almost pure entangled 
state and a partially mixed state with the concurrence of 0.985 ± 
0.001 and 0.201 ± 0.002, respectively. In both cases, D N N approach­
es outperform the M a x L i k approach. The measurement-specific 
D N N s remain very accurate ( M A E <0.04) all the way down to 14 
projections. Even the measurement-independent D N N outper­
forms the MaxLik in the generic case of partially mixed state for 
any number of measurement projectors. The maximally entangled 
state represents the only case where the MaxLik performs slightly 
better than the measurement-independent D N N (but worse than 
measurement-specific D N N s ) . This behavior results from high 
purity and sparsity of the state and, consequently, from the sparsity 
of the measurement data. When randomly selecting a subset of pro­
jectors, there is a high possibility of having a majority or even all the 
measurements with a negligible number of detection counts. It 
seems that the predictive strength of the measurement-independent 
D N N is limited for such a scenario. However, the MaxLik approach 
is biased toward pure states in the case of heavily undersampled data 
(78, 79), and the positivity constraint tends to a sparse (low-rank) 

Table 1. The summary of the mutual information quantification from 
incomplete measurements consisting of one-fourth of all possible 
Pauli projectors in each case. The MaxLik and the measurement-specific 
DNNs are compared up to five-qubit quantum systems. The ratio of the 
mean absolute errors (MAEs) of the methods shows an increasing 
improvement in the performance of the DNN approach for entanglement 
quantification in higher-dimensional systems. 

Number MAE Ratio of MaxLik and 
of qubits MaxLik DNN DNN MAEs 

2 0.20 ± 0.16 0.09 ± 0.09 2.2 

3 0.068 0.023 3.0 
± 0.055 ± 0.020 

4 0.019 0.005 3.8 
± 0.014 ± 0.001 

5 0.039 0.009 4.3 
± 0.032 ± 0.001 

Koutný et al., Sci. Adv. 9, eadd7131 (2023) 19 July 2023 4 of 9 



SCIENCE ADVANCES RESEARCH ARTICLE 

Number of projectors Number of projectors 

C 0.5- 1 

Number of projectors 

Fig. 4. Performance of MaxLik and DNN-based approaches for an experimen­
tal datasets. We show the dependence of the MAE on the number of projectors. 
{A and B) Spontaneous parametric downconversion sources and (C) semiconduc­
tor quantum dot source. The concurrence of experimentally prepared quantum 
states was determined from the full MaxLik tomography to (A) 0.985 ± 0.001, (B) 
0.201 ± 0.002, and (C) 0.18 ± 0.01. The MAE for the measurement-specific DNNs is 
depicted in green circles, for measurement-independent DNN in blue squares, and 
for the MaxLik approach in red triangles. 

states (80). This bias artificially increases the resulting concurrence 
and reduces its error. 

The second experimental system consists of a semiconductor 
quantum dot resonantly pumped by picosecond pulses. The biexci-
ton-exciton cascade emission produces pairs of photons in a partial­
ly polarization entangled state. The degree of entanglement is 
reduced by the presence of the fine-structure splitting, reaching 
the concurrence of 0.18 ± 0.01. Figure 4C shows the M A E for 
such a mixed quantum state. As for the source based on spontane­
ous downconversion, both D N N approaches beat, on average, the 
MaxLik method in accuracy. Let us point out that the DNN-based 
approaches were trained to predict quantum correlations from the 
theoretical probabilities computed from the ideal quantum states 
and measurement. Figure 3 thus demonstrates the robustness of 
our approaches to noisy experimental data. 

D I S C U S S I O N 
We demonstrated that, by exploiting novel methods of neural net­
works and deep learning, we can outperform the traditional and 
commonly used techniques for quantification of quantum correla­
tions such as state tomography. For the systems of two qubits, we 
built two different neural network-based approaches, namely, mea­
surement-specific and measurement-independent D N N s . Both ap­
proaches predict concurrence and mutual information from data 
with a higher accuracy than the commonly used quantum state to­
mography. The best performing approach is the measurement-spe­
cific D N N s , which are trained to predict the concurrence or mutual 
information from a fixed set of projectors. Furthermore, we gener­
alized to the system of three qubits, where we show that the mea­
surement-specific D N N s represent a more accurate method to 

quantify the mutual information matrix than the maximum likeli­
hood one. We demonstrated the feasibility of the measurement-spe­
cific D N N s training up to five qubits. Our approaches not only 
benefit from a high accuracy when working with fewer measure­
ment projectors but also are substantially faster compared to the 
standard tomography-based methods. Furthermore, we demon­
strate the robustness of our approach using two experimental 
systems: a nonlinear parametric process and a semiconductor 
quantum dot. The D N N approaches can be further studied and 
modified to adaptively find a minimal set of projectors that infer 
the entanglement accurately. 

M A T E R I A L S A N D M E T H O D S 
Q u a n t i f y i n g q u a n t u m c o r r e l a t i o n s 
To quantify the quantum correlation, we use the concurrence and 
the mutual information, for the two- and three-qubit cases, respec­
tively. The concurrence is a two-qubit monotone entanglement 
measure (2) widely used for the characterization of bipartite entan­
glement commonly present in sources of entangled photon pairs. O 
Knowing the quantum state the concurrence is defined as 2 

^ ( p ) - m a x { 0 , X 1 - X 2 - X 3 - X 4 } (1) | 

with X i , X 4 being the eigenvalues (sorted in decreasing order) of g5 

the Hermitian matrix T = ^ / y p p y p , here p = ay ® ayp*ay ® ay, ^ 
where psup>/sup> standing for complex conjugate and ay is one .§ 
of the Pauli matrices represented i n a computational basis as =j 
oy = f'(|l)(0|—10)(1|). For an arbitrary mixed state, the value of con- s 
currence is saturated from below by 0 (1) for the separable states | 
PAB = SI'YI'PA ® PB a n d from above by 1 for the maximally entan- g 
gled states of two-qubits. ? 

Mutual information is a quantum correlation measure common- d3 
ly used in quantum cryptography or for quantifying complexity in o 
many-body systems. For an M-qubit quantum system, mutual infor- ^ 
mation matrix reads | 

cr 
CD 

z to 
o 

and is constructed from the one and two point von Neumann en- w 
tropies (76), .5^(p,) = -Tr{p, log d p,} and 
SP{pij) = — TrlptflogdPtf}, with pi and ptj standing for reduced 
density matrices, p,- = Trj. # ;{p} and py = Tr*. # y{p} respectively. 

Q u a n t u m s t a t e t o m o g r a p h y 
Quantum state tomography is a method to solve the inverse 
problem of reconstruction of an unknown quantum state. It uses 
the set of measurement operators (projectors) and relative frequen­
cies {ft) acquired in a measurement. To obtain an informationally 
complete measurement, we need the relative frequencies for at least 
D2 — 1 independent projectors {Mt}f=0. Quantum state is recon­
structed by maximizing the log-likelihood functional 
i f (p) oc X)fci/; l ogP|/(p)> w h i c h c a n b e written (77, 81, 82) as the it­
erative map p(k+1) <— \ikRp(k)R, where u is the normalization cons­
tant and R is an operator defined as R = J^t filpMi- Here,^ are the 
measured frequencies and pt are the theoretical probabilities given 
by the Born's rulep, = TrjpM,}. In the Results section of this paper, 
we address how the measurement being incomplete affects the 
quantification accuracy of the concurrence and the mutual 
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information. In such a case, the closure relation, J^t Mt= 1, is no 
longer fulfilled. The optimal strategy is to map the set of projectors 
{Mi} into a new set {M,<} via Mf = G~mMtG~m with G = Mi-
One can easily check that the {M,<} now fulfill the completeness re­
lation, J2t Mf = 1. The iterative map then updates to 

HkG-1/2Rp(k>RG -1/2 
(3) 

and represents a procedure that we follow in the main text. We con­
sider measurement settings to be the Pauli projectors, i.e., projectors 
into eigenstates of Pauli operators {ax> ay, az}. The MaxLik estimator 
pMaxLik is defined as a fixed point of the iterative map (Eq. 3). The 
iteration process starts from the completely mixed state p i n i t = 1/D 
and is stopped when the Hilbert-Schmidt distance between the 
subsequent iterations reaches 10~ 1 6 . In the case of encoding qubit 
states into the polarization degrees of freedom, Pauli measurement 
consists of projectors onto three mutually unbiased basis sets 
{\H)(H\, \V)(V\, \D)(D\, \A)(A\, \R)(R\, \L)(L\}. 

There are other methods for quantum state tomography such as 
maximum likelihood-maximum entropy (83), SDP (84), or com­
pressed sensing (30). These methods and their comparison to 
MaxLik and D N N s are presented in the Supplementary Materials. 

D N N m e t h o d s 
Neural networks are machine learning models that learn to perform 
tasks by analyzing data. A D N N model consists of multiple layers of 
interconnected artificial neurons and acts as a highly nonlinear 
transformation parameterized by a large number of trainable pa­
rameters (85). D N N s have the ability to generalize from learning 
stage, i.e., once trained they can perform unexpectedly well even 
for inputs that were not observed during the learning stage. The 
basic principles of D N N s operation are well known, but the full 
span of their generalization ability is the subject of current research 
(86, 87). In science and technology, neural networks have been suc­
cessfully applied to a wide range of problems, including predicting 
the behavior of complex systems and analyzing large datasets from 
experiments and simulations (88, 89). 

Let us first consider the D N N quantification of entanglement in 
a two-qubit system. The measurement-specific D N N s are fully con­
nected networks. The network has seven fully connected layers with 
a few dozens of thousands trainable parameters in total. The exact 
number of the free parameters differs between the networks that 
have different length of the input vector, dependent on the 
number of projectors measured. We trained 193 measurement-spe­
cific D N N s (12 per point except of full 36 projectors) with varying 
length of the input layer, starting with the full 36 input neurons 
down to 4 (with increment of 2). 

We construct a set of quantum states as follows: We generate 10 6 

random quantum states p of which four-fifths are randomly distrib­
uted according to the Bures measure induced by the Bures metric 
(90) 

(1 + (7 t)GG t(l + 17) 
Tr(l + tf)GG\l + 17) 

(4) 

To achieve this, we generate a Ginibre matrix G with complex 
entries sampled from the standard normal distribution, 
Gy ~ yy{0,1) + iJV{0,1), together with a random unitary U dis­
tributed according to the Haar measure (92). The remaining one-
fifth of the set consists of random Haar pure states mixed with white 

noise. The generation of the set aims at the most uniform and 
broadest coverage of partially mixed quantum states. The set of 
quantum states is randomly shuffled and split to two parts, i.e., 
the training and validation sets containing 800,000 and 200,000 
samples, respectively. The test set has 5000 states generated accord­
ing to the Eq. 4. 

For the quantum states, we prepare the corresponding datasets 
by computing the probability distribution with elements pt = 
TrjpM,} and evaluate the quantum correlation measure (concur­
rence or mutual information) using Eqs. 1 and 2. We trained the 
measurement-specific D N N s to predict the quantum correlations 
from the probability distribution p. The training and validation da­
tasets have the following structures 

^mput { T r { p M 1 } , . . . , T r { p M 3 6 } } 
^output = i J ( p ) } 

(5) 

where the length of the input vector £^ M P U T is different for various 
measurement-specific neural networks, ranging from full 36 projec­
tors down to 4. The output J (p) stands for either the concurrence 
or the mutual information. 

We achieve the learning of the neural networks by backpropagat-
ing the error through the use of chain rule of derivation. It minimiz­
es the loss function defined as the mean absolute difference between 
the true values of the quantum correlations measure J t m e and the 
values ^ p r e i j i c t e i j predicted by the networks. The loss function thus 
takes a form 

= \Mtme

 — -^predicted I (*>) 

and the minimum is found by minimizing the 5?over all compo­
nents of a training dataset to update weights and biases {0} using 
the Nesterov-accelerated adaptive moment estimation (NAdam) al­
gorithm. At the step t, the N A d a m procedure updates parameters 

with 

8 , « - V e , 

8 t i 

'"lift 
;'=i 

t <- nm f _! + (1 - u)g f . 
~ , 111-

(7) 

í + i ' 

- l i f t 

(8) 

;'=i 

n, <- vn f _! + (1 - v)gj\ 

m f <- (1 - \it)gt + u ( + 1 m ( 

The parameter n represents the learning rate, parameter u repre­
sents the exponential decay rate for the first moment estimates m, 
the parameter v is the exponential decay rate for the weighted norm 
gf, and £ is a parameter that ensures the numerical stability of the 
N A d a m optimization procedure. In our work, we set the numerical 
values of parameters {n, u, v, t} to {0.001,0.9,0.999,10~7}. The train­
ing takes over 2000 epochs with data further divided into 100 
batches to optimize the learning time and accuracy of the 
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predictions on the validation dataset. A l l above is implemented 
using Keras and Tensorflow libraries for Python. 

The measurement-independent D N N is a generalization to the 
measurement-specific D N N s , and, therefore, it consists of single 
network that predicts the concurrence and the mutual information 
from any set of projectors that we chose to work with. This function­
ality is accomplished by a restructuralization of the input layer that 
inputs not only the vector of probabilities p but also the description 
of the measurement {M,} itself 

^ i n p u , = { M l , T r { p M 1 } , . . . , M 3 6 , T r { p M 3 6 } } (9) 

The kernel of the first convolutional layer has a stride length 
equal to the length of the pair {M„ TrjpM,}} to prevent the 
network to see cross-talk between the adjacent input pairs. Each 
projector M , is vectorized using d2 trace orthonormal basis opera­
tors {r,|r, > 0, Tr{r ,r ; j = Sy V i, j}. For incomplete measurements 
containing less that 36 projectors, we set the values of missing mea­
surement probabilities and projectors to zero. 

For the three-, four-, and five-qubit systems, the structure, the 
loss function, and the optimization procedure of the measure­
ment-specific D N N s are the same as for the systems of two 
qubits. We trained 44 measurement-specific D N N s for three 
qubits. The length of the input vector is different for each measure­
ment-specific neural network, ranging from 6 3 = 216 down to 5. We 
also trained two specific networks for the four- and five-qubit 
systems with 325 and 1944 input measurements, respectively. The 
training and validation datasets are divided in a ratio of 4:1. They 
contain 100,000 measurement probability distributions (input) 
and values of the mutual information (output) computed from 
100,000 quantum states generated using the same process as for 
the two-qubit states. The number of training points in the dataset 
is lower than that in the two-qubit case due to memory limitations. 
For this reason, we adopted the incremental learning method (92). 
After the loss function on the validation dataset reaches minimum, 
which is not updated in the next 200 epochs, the training is stopped, 
and the best model is saved. Next, we generate different 100,000 data 
points and continue training. The test set consists of 500 states gen­
erated according to Eq. 4. 

The complexity of the developed D N N s is rather low, and their 
scaling to higher-dimensional systems is feasible. The largest 
network presented (two-qubit device-independent D N N ) has 
almost 460,000 trainable parameters. The five-qubit D N N has 
slightly more than 230,000 trainable parameters. Its training on 2 
mil l ion data samples takes 45 hours on a single consumer-grade 
graphics processing unit. Wi th larger computational resources 
(available today), we believe that training the networks for entangle­
ment quantification in systems with dozens of qubits should be fea­
sible. The conventional methods, such as MaxLik , are also 
computationally demanding and have to be evaluated for every 
new data. In contrast, our approach is computationally demanding 
only in the training stage. The forward evaluation (from data to en­
tanglement) is computationally easy. Specifically, the D N N entan­
glement quantification is, on average, four orders of magnitude 
faster than the M a x L i k and two orders of magnitude faster than 
the SDP. 

Experiment 
The spontaneous parametric downconversion source consists of a 
beta barium borate (BBO) crystal cut for type II colinear generation 
of two correlated orthogonally polarized photons with the central 
wavelength of 810 nm. The B B O crystal was pumped by a continu­
ous laser. A n entangled singlet polarization state was conditionally 
generated by interfering the correlated photons at a balanced 
beamsplitter. 

To achieve the complete set of data, we performed the full 
quantum state tomography. This was performed by measuring all 
36 projective measurements as combinations of local projections 
to horizontal, vertical, diagonal, anti-diagonal, right-hand, and 
left-hand circular polarizations. The polarization analyzer consists 
of a sequence of half-wave and quarter-wave plates followed by a 
polarizer, single-mode fiber coupling, and a single-photon detector. 
The detection events from the two detectors were taken in coinci­
dence basis. To obtain the datasets where the entanglement was 
reduced by noise, one of the pair photons was propagated 
through a noisy channel. The noise was implemented by injecting 

a weak classical signal from an attenuated laser diode. The concur- o 
o 

rence of the entangled state reached 0.98 for a short coincidence | 
window and no injected noise. However, for larger coincidence g 
windows and higher levels of injected noise, the concurrence of <» 
the detected state decreased. The experimental data for the entan- g5 

gled states with the concurrence of 0.985 ± 0.001 and 0.201 ± 0.002 3 
used in this work were acquired in (93). ,§ 

Semiconductor quantum dot source consists of a quantum dot =i 
embedded in a circular Bragg grating cavity (94) that enables high | 
photon collection efficiency. The quantum dot was excited via two- % 
photon resonant excitation of the biexciton (95). The excitation g 
pulses were derived from a pulsed 80-MHz repetition rate Ti:Sap- 8 
phire laser. The laser scattering was spectrally filtered, and the £j 
exciton and biexciton emission were separated ahead of single- § 
mode fiber coupling. The polarization state of the generated entan- % 
gled state was analyzed using two polarization analyzers in the 8 
process of full quantum state tomography in the same way as it g" 
was performed for the parametric downconversion source. The ob- ~ 
servable degree of entanglement was predominantly limited by the to 
nonzero fine structure splitting. w 

Supplementary Materials 
This PDF file includes: 
Supplementary Text 
Figs. SI and S2 
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Definitions of M L M E and S D P tomographic methods and their comparison with M a x L i k and D N N s : 

In the main text we compare the direct D N N approach to indirect quantum state reconstruction. We use the M a x L i k for 
the quantum state reconstruction and we describe it in the Methods. Here, we review other approaches for quantum state re­
construction, namely maximum-likelihood maximum-entropy ( M L M E ) and semidefinite programming (SDP). Furthermore, we 
discuss the convergence properties in the case of incomplete measurements and compare the performance of all methods for ideal 
probabilities and finite sampled data. 

The M L M E (81) is based on maximization of the log-likelihood functional together with the von Neumann entropy S(p) = 
—Trjplog p}. The total functional reads T(p, A) oc C(p) + \S(p). In a similar way as for the log-likelihood functional, one can 
derive from T an iterative map p ( f c + 1 ) <— pkTp^T. The operator T takes the form R — A (log pk — Tr{pfc log pk}), with R 
being the same as in Eq. (3) of the main text, R = fi/piMi, and pk is the normalization constant ensuring the unit trace of 
the estimator. The M a x L i k and the M L M E are both constrained to positive estimates, p > 0. 

In the SDP (30,82) the estimator is a solution to the constrained optimization problem, p e s t = m i n p ||-A(p) — p | | , such that 
p > 0. The operator A represents the action of projectors M j on the quantum state according to the Born's rule T r { p M ; } and 
p is the vector of probabilities. We considered two widely used norms || • || as a cost function, namely the l\ norm defined on 
elements of a vector space x as ||x|\i t = J2i \xi| and the I2 norm that acts on vectors as | |x|\i2 = \xi\2-

Let us comment on how the introduced quantum state reconstruction methods cope with incomplete data. The M a x L i k con­
verges to an estimate within a plateau, which is given by input data and an initial iteration. In our case, we start from a maximally 
mixed state, which spans the whole Hilbert space and allows the iteration process to go "anywhere". It was shown that the 
M a x L i k method represents an unbiased estimator except for very small amount of measurement data and states close to pure 
states (76,77). The M L M E converges to a state with maximum entropy within a plateau of states given by the measurement data 
likelihood. Here, we also start from a maximally mixed state for the same reason as given for the M a x L i k . The S D P solves a 
linear positive problem by the primal-dual interior-point method. Based on what cost function is used, the S D P tends to a more 
or less sparse solution. The sparse (low entropy) solution is usually connected to the L I norm. Finally, let us point out that 
minimizing any cost function subjected to the positivity constraint is a compressed sensing protocol (78). 

Here, we compare our novel D N N approach to quantification of entanglement with the four quantum state reconstruction 
methods we listed above. We compute the M A E between true and inferred values of the concurrence in the same way as in the 
main text. The results are plotted in Fig . SI for a two-qubit system and the ideal measurement probabilities (infinite sampled 
data). The D N N s outperform substantially the other methods. On average, the M a x L i k approach quantifies the entanglement 
with either better or similar accuracy when compared to the M L M E and SDP. The only exceptions are measurement with very 
low number of projectors, where the SDP methods slightly outperform the M a x L i k . However, considering their large uncertainty 
regions, all four quantum-state reconstruction methods perform on par. These results show that (0 the D N N approach is superior, 
and («') the M a x L i k can be used as an representative example of quantum-state reconstruction method. 

We compare the methods also for noisy data (finite sampled), see Fig. S2. The results remain on par with those obtained in the 
case of the ideal measurement probabilities (infinite sampled data). Moreover, for a small number of the total detections (e.g. one 
thousand samples), the measurement-specific D N N s outperform the other methods even for the full 36-projector measurement. 
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Fig . S I : Comparison of mean absolute error ( M A E ) of concurrence for different tested methods. The input simulated data are 
the ideal measurement probabilities. Green circles represent the values of M A E computed from measurement-specific D N N s , 
M A E for the measurement-independent D N N is depicted in blue squares, Max l ik in red triangles, M L M E algorithm in brown 
diamonds, the S D P with I2 norm in violet stars and the S D P with l\ norm in orange crosses. 
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Fig . S2: Comparison of mean absolute error ( M A E ) of concurrence for different tested methods. The input simulated data 
are finite sampled; two cases are shown with 10 3 and 10 4 total detections, respectively. Green circles represent the values of 
M A E computed from measurement-specific D N N s , M A E for the measurement-independent D N N is depicted in blue squares, 
Max l ik in red triangles, M L M E algorithm in brown diamonds, the S D P with I2 norm in violet stars and the S D P with li norm 
in orange crosses. Each point is averaged over 1000 randomly generated quantum states and uncertainty regions are depicted in 
corresponding colors. 



Chapter 8 

Conclusions 

This dissertation focuses on the theoretical analysis of approaches to parameter estima­

tion from data and processing noisy data using neural networks. During my research, we 

concentrated on theoretical calculations regarding optimal quantum measurements and the 

determination of quantum and classical limits on the accuracy with which we can estimate 

parameters from noisy data. Another part of the research was dedicated to the advant­

ages of using deep neural networks for quantum tomography and estimating quantum cor­

relations from incomplete measurements. The work was structured based on four main 

publications summarizing the most significant results of my doctoral studies. 

In this work, we employed a range of advanced methods and tools. Key methods in­

cluded Fisher information theory and its quantum counterpart, quantum Fisher informa­

tion, which serve as standard mathematical tools for adequately addressing the problem 

of parameter estimation from noisy data. Additionally, we applied quantum tomography 

methods, which facilitate the reconstruction of quantum states from measurements per­

formed on identical copies of the system. Deep neural networks also played a significant 

role, providing a new approach to estimating quantum entanglement and quantum states, 

where we achieved increased efficiency and accuracy. 

In the article [1], we focused on constructing optimal measurements for two light sources, 

specifically studying the simultaneous estimation of the centroid, separation, and relative 

intensities of two incoherent point sources. We calculated the quantum Fisher information 

matrix analytically for all three parameters. Our results showed that the quantum spatial 

resolution of two incoherent unbalanced sources could be achieved by projecting the signal 

onto a suitable complete set of modes. This approach significantly improves measurement 

accuracy in various applications, such as astronomical observations and microscopy. 

In the work [2], we addressed achieving maximum accuracy in axial localization us­

ing vortex beams, specifically Laguerre-Gaussian (LG) modes. We demonstrated that the 
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quantum limit for axial localization could be achieved using an intensity scan i f the de­

tector is optimally positioned and the mode is pure. Traditional intensity sensors proved 

inadequate for estimating the axial distance from superpositions of L G beams, leading to 

the proposal of using advanced mode sorting methods to fully exploit the potential of vortex 

beams in microscopy, thereby significantly improving axial resolution. 

In the third article [3], we explored the application of neural networks to quantum tomo­

graphy. We demonstrated that the positivity condition could be effectively implemented 

into the training set for neural networks, improving predictions using modern deep learn­

ing methods for reconstructing quantum states under various types of noise. The neural 

network-based approach offers significant speed advantages over traditional methods such 

as semidefinite programming and the maximum likelihood method. However, deep neural 

networks can also compete with these traditional methods regarding estimation accuracy, 

even in the presence of noise. 

The fourth article [4] presents a new approach to quantifying quantum entanglement 

using deep neural networks instead of complete quantum state characterization. We showed 

that even in the case of highly informationally incomplete measurements, neural networks 

could extract information about quantum entanglement from data compared to standard 

tomographic techniques. Our neural networks were further tested using experimental data 

from semiconductor quantum dots and SPDC light sources. For both types of sources, our 

proposed approach managed to handle the noise present in the experimental data and find 

an accurate estimate of the quantum entanglement between quantum states. 

The results of our research expand the available methods and understanding of fun­

damental questions in parameter estimation and state reconstruction in quantum physics. 

The advanced detection and data processing methods we developed represent key build­

ing blocks in quantum information processing and quantum communications. Applying 

deep neural networks in quantum tomography and estimating quantum correlations indic­

ates significant progress in quantum technologies and opens new possibilities for future 

research. Our work provides both theoretical and practical foundations for future exper­

imental implementations and technological innovations in quantum optics and quantum 

technologies. 
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Stručné shrnutí v češtině 

Tato disertační práce se zaměřuje na teoretickou analýzu odhadů paramet rů z dat a také 

zpracování zašuměných dat pomocí neuronových sítí. Během mého výzkumu jsme se za­

měřili na teoretické výpočty týkající se optimálních kvantových měření a stanovení kvan­

tových a klasických limitů na přesnost , s jakou můžeme odhadovat parametry ze zašumě­

ných dat. Další část výzkumu se věnovala výhodám použit í h lubokých neuronových sítí pro 

kvantovou tomografii a odhad kvantových korelací z neúplných měření . Práce byla struk­

turována na základě čtyř hlavních publikací, které sumarizují nej významnější výsledky do­

sažené během mých doktorských studií. 

V rámci této práce jsme použili řadu pokročilých metod a nástrojů. Klíčovými metodami 

byly teorie Fisherovy informace a její kvantový protějšek, kvantová Fisherova informace, 

které slouží jako standardní matematické nástroje pro adekvátní řešení problému odhadu 

paramet rů ze zašuměných dat. Dále jsme aplikovali metody kvantové tomografie, které 

umožňují rekonstruovat kvantové stavy z měření provedených na identických kopiích sys­

tému. Významnou roli hrály také hluboké neuronové sítě, které poskytly nový přís tup k 

odhadu kvantové provázanost i a kvantových stavů, kde jsme docílili zvýšené efektivity a 

přesnosti . 

V článku [1] jsme se zaměřili na konstrukci optimálního měření pro dva zdroje světla, 

konkrétně jsme studovali s imultánní odhad centroidu, separace a relativních intenzit dvou 

nekoherentních bodových zdrojů. Pro všechny tři parametry se n á m povedlo analzticky 

napočítat kvantovou Fisherovu informaci. Naše výsledky ukázaly, že kvantová prostorová 

rozlišovací schopnost dvou nekoherentních nevyvážených zdrojů může být dosažena pro­

jektováním signálu na vhodnou kompletní sadu módů. Tento přís tup výrazně zlepšuje přes­

nost měření v různých aplikacích, jako je astronomická pozorování a mikroskopie. 

V prácí [2] jsme se zabývali dosažením maximální přesnosti v axiální lokalizaci po­

mocí vírových svazků, konkrétně Lagguerreových-Gaussových (LG) módů. Ukázali jsme, 

že kvantový limit pro axiální lokalizaci může být dosažen pomocí intenzitního skenu, pokud 

je detektor optimálně umístěn a pokud je jedná o čistý mód. Tradiční intenzitní senzory se 

ukázaly jako nedostatečné pro odhad axiální vzdálenosti z superpozic L G svazků, což vedlo 

k návrhu použití pokročilých metod třídění módů pro plné využití potenciálu vírových pa-
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prsků v mikroskopii, čímž se výrazně zlepšuje axiální rozlišení. 

Ve třet ím článku [3] jsme zkoumali aplikaci neuronových sítí na kvantovou tomografii. 

Demonstrovali jsme, že podmínka pozitivity může být efektivně implementována do tré-

novací sady pro neuronové sítě, což zkvalitňuje predikce za pomocí moderních metod hlu­

bokého učení pro rekonstrukci kvantových stavů za různých typů šumu. Přístup založený 

na neuronových sítích poskytuje nejen výrazné výhody v rychlosti oproti t radičním me­

todám, jako je semidefinitní programování a metoda maximální věrohodnost i , ale hluboké 

neuronové sítě také dokážou i za př í tomnost i šumu konkurovat těmto tradičním metodám 

co se týče přesnost i odhadu. 

Čtvrtý článek [4] představuje nový přís tup ke kvantifikaci kvantového provázání po­

mocí hlubokých neuronových sítí, namísto úplné charakterizace kvantového stavu. Ukázali 

jsme, že i v případě silně informačně neúplného měření , neuronové sítě jsou schopny z dat 

získat informaci o kvantové provázanost i oproti s tandar tn ím tomografických technikám. 

Náše neuronové sítě byly dále testovány na experimentálních datech ze dvou typů zdrojů, 

polovodičových kvantových teček a SPDC zdrojů světla. Pro oba typy zdrojů se ukázalo, 

že námi navrhnu tý př ís tup si dokáže poradit i s šumem, k te rým jsou experimentální data 

zatížena a najít přesný odhad kvantové provázaosti mezi kvantovými stavy. 

Výsledky našeho výzkumu rozšiřují dostupné metody a porozumění základních otázek 

na odhady paramet rů a rekonstrukci stavů ve kvantové fyzice. Pokročilé metody detekce a 

zpracování dat, které jsme vyvinul i , představují klíčové stavební bloky nejen v kvantovém 

zpracování informace, ale i v kvantových komunikacích. Aplikace hlubokých neuronových 

sítí v kvantové tomografii a odhadu kvantových korelací přináší pokrok v oblasti kvan­

tových technologií a otevírá nové možnost i pro budoucí výzkum. Naše práce poskytuje 

teoretické i praktické základy pro budoucí experimentální implementace a technologické 

inovace v kvantové optice a kvantových technologiích. 
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