
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UCENI TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FREEIPA - URI BASED ACCESS MANAGEMENT
FREE IPA- SPRÁVA PŘÍSTUPU DLE URI

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. LUKÁŠ HELLEBRANDT
AUTOR PRÁCE

SUPERVISOR Ing. TOMÁŠ KAŠPÁREK
VEDOUCÍ PRÁCE

BRNO 2016

Master Thesis Specification/18243/2015/xhelle04

B r n o U n i v e r s i t y o f T e c h n o l o g y - F a c u l t y o f I n f o r m a t i o n T e c h n o l o g y
C o m p u t e r C e n t r e A c a d e m i c y e a r 2 0 1 5 / 2 0 1 6

Master Thesis Specification
For : H e l l e b r a n d t L u k á š , B e .
B r anch of s t u d y : I n f o r m a t i o n T e c h n o l o g y Se cu r i t y
T i t l e : F r e e l P A - U R I B a s e d A c c e s s M a n a g e m e n t
C a t e g o r y : O p e r a t i n g S y s t e m s

I n s t ruc t i ons for p ro jec t w o r k :
1. S t u d y the cen t ra l i den t i t y m a n a g e m e n t , open-sou r ce ident i t y and au then t i c a t i on p rov i de r

F r e e l P A and its hos t-based access con t ro l (H B A C) f e a t u r e , f o cus ing on its use for
a u t h o r i z a t i o n for W e b app l i c a t i ons .

2. D e s i g n an e x t e n d e d a c ces s con t ro l m e c h a n i s m wh i ch wi l l t a k e the URI be ing a c c e s s e d by
the u se r into c o n s i d e r a t i o n .

3. I m p l e m e n t th is e x t e n d e d access con t ro l m e c h a n i s m in F r e e l P A and o the r re l a ted
c o m p o n e n t s .

4 . D e m o n s t r a t e the so lu t i on on s o m e ex i s t i ng W e b app l i c a t i on and d i s cuss ga i ned
i m p r o v e m e n t s .

Bas i c r e f e r ences :
• F r e e l P A , h t t p : / / f r e e i p a . o r g /

R e q u i r e m e n t s for the s e m e s t r a l d e f e n s e :
I t ems 1 and 2.

De ta i l ed f o r m a l spec i f i c a t i ons can be found at h t t p : / / w w w . f i t . v u t b r . c z / i n f o / s z z /

The Master Thesis must define its purpose, describe a current state of the art, introduce the theoretical and
technical background relevant to the problems solved, and specify what parts have been used from earlier projects or
have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats
common at the FIT. In order to allow regular handling, the medium will be securely attached to the printed report.

S u p e r v i s o r : K a š p á r e k T o m á š , I n g . , C C FIT BUT
Beg inn ing of w o r k : N o v e m b e r 1, 2 0 1 5
Date of d e l i v e r y : May 2 5 , 2 0 1 6

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
Fakulta informafinícŕ technologií

Uetav informaftnrch systémů
612 i -N ^ /

Dušan Kolář
Associate Professor and Head of Department

http://freeipa.org/
http://www.fit.vutbr.cz/info/szz/

Abstract
The goal of this thesis is designing and implementing access management based on URI
of the requested resource. Host Based Access Control in the identity management tool
FreelPA was used as a basis for implementation. Furthermore, it was necessary to enhance
the related infrastructure, namely the SSSD tool. The authorization module for Apache
H T T P Server was used as an example of the application using URI-based H B A C . The
main solved problem was design of the infrastructure for communication of the necessary
parameters and strategy proposal for evaluating H B A C rules which define the access rights.
The complete solution was demonstrated on the example of securing an instance of the web
application Wordpress.

Abstrakt
Cílem práce je navržení a implementace řízení přístupu na základě URI požadovaného
zdroje. Pro implementaci bylo jako základ použito rozšíření Host Based Access Control v
nástroji pro správu identit FreelPA. Zároveň bylo třeba rozšířit související infrastrukturu,
především program SSSD. Jako příklad aplikace využívající H B A C na základě URI byl im­
plementován autorizační modul pro Apache H T T P Server. Zásadním řešeným problémem
byl návrh infrastruktury pro komunikaci nezbytných parametrů a návrh strategie vyhod­
nocení H B A C pravidel definujících přístupová práva. Kompletní řešení bylo předvedeno na
příkladu zabezpečení instance webové aplikace Wordpress.

Keywords
FreelPA, URI, SSSD, P A M , L D A P , authorization, access control, Host based access control

Klíčová slova
FreelPA, URI, SSSD, P A M , L D A P , autorizace, řízení přístupu, Host based access control

Reference
H E L L E B R A N D T , Lukáš. FreelPA - URI based access management. Brno, 2016. Master's
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Kašpárek Tomáš.

FreelPA — U R I based access management

Declaration
I hereby declare that I am the sole author of this master's thesis. I have written it under
supervision of Ing. Tomáš Kašpárek. I have cited all the sources I have used.

Lukáš Hellebrandt
May 20 2016

Acknowledgements
I would like to thank Ing. Tomáš Kašpárek for supervising my work.

© Lukas Hellebrandt, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author's explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 5
1.1 Motivation 5

1.1.1 General need for URI-based access management 5
1.1.2 Specific requests and needs 7

1.2 General requirements 7

2 Identity and access management 8
2.1 Roles 9
2.2 Example of use 9

2.2.1 Locally stored access rights 10
2.2.2 Central identity management 11

3 Technologies and terms used 14
3.1 URI 14

3.1.1 U R I parts 15
3.2 Authentication, authorization 16
3.3 Kerberos 16

3.3.1 Basic Kerberos protocol 17
3.3.2 Ticket granting service 18
3.3.3 Additional principal data and Kerberos 18

3.4 L D A P 19
3.4.1 Adding custom data 19

3.5 FreelPA 20
3.5.1 Architecture 20
3.5.2 Authentication, Kerberos in FreelPA 21
3.5.3 Host Based Access Control 22

3.6 SSSD 22
3.6.1 Architecture 22
3.6.2 H B A C rules caching and handling 23
3.6.3 InfoPipe 24

3.7 P A M 24
3.8 D-Bus 25
3.9 Apache H T T P Server and modules 25

3.9.1 Apache modules 25

I

4 Requirements specification 28
4.1 Use cases 28

4.1.1 Authorization 28
4.1.2 Administration 29

4.2 Functional requirements 29
4.3 Technological requirements 30

5 Existing solutions 31
5.1 Web application level authorization 31
5.2 mod_authnz_pam 32
5.3 mod_lookup_identity 32
5.4 Changing P A M service name based on location in Apache H T T P Server . . 33

6 URI-based access authorization in FreelPA 34
6.1 Current state 34
6.2 Enhancement of FreelPA and related applications - possible approaches . . 34

6.2.1 Using a Kerberos Authorization-data field 35
6.2.2 Using L D A P directly 35
6.2.3 Using FreelPA directly 36
6.2.4 Using SSSD over P A M 37
6.2.5 Using SSSD over D-Bus 38

6.3 Proposed approaches comparison 39

7 Concept 41
7.1 Conceptual problems and solutions 43

7.1.1 Semantics of URI in H B A C 44
7.1.2 Parts of URI to consider 50
7.1.3 Relationship to other attributes 50
7.1.4 Form and interpretation of URI attribute 51
7.1.5 Backwards compatibility 51

7.2 FreelPA side changes 53
7.3 Communication between FreelPA and SSSD 53
7.4 SSSD side changes 54
7.5 Communication between SSSD and Apache module 54
7.6 Client application 54

8 Implementation 55
8.1 FreelPA 55

8.1.1 L D A P 55
8.1.2 A P I , WebUI 57

8.2 SSSD 57
8.2.1 Getting rules 57
8.2.2 P A M responder 58
8.2.3 Evaluating rules 58

8.3 pam sss 59
8.4 Apache modules 59

8.4.1 mod_hbacauthz_pam 60
8.4.2 mod_authnz_pam 61

8.5 Differences for PCRE-based matching strategy 61

2

9 Testing 6 2

(JO
9.1 Functionality testing U Z l

9.1.1 Tools 6 2

9.1.2 U R I based H B A C 6 2

9.2 Performance
9.3 Example of use 6 3

9.4 How to setup WordPress with Kerberos and URI-based H B A C 65
9.5 Results 6 8

10 Conclusion ®®
10.1 Future work 6 9

70
Bibliography

3

List of Figures

1.1 Diagram showing a problem - authorization based on U R I 6

2.1 Conceptual model of an user connecting a webserver not using identity man­
agement system for authentication and authorization. This web application
uses its own database and user authenticates directly with it. 1, 2, 3 are
hosts; Alfons, Benny and Charlie are users 10

2.2 Conceptual model of an user connecting a webserver using identity manage­
ment system for authentication and authorization 12

3.1 Simplified model of basic Kerberos authentication request/response and ap­
plication request/response 18

3.2 Simplified model of basic Kerberos authentication request/response and ap­
plication request/response using Ticket Granting Ticket 19

3.3 FreelPA architecture [18] 21
3.4 SSSD schema 23
3.5 Communication between a PAM-enabled application and SSSD 24
3.6 Apache main loop - an Apache module can have a handler for each phase in

bold [10] 27

5.1 mod_authnz_pam usage 32

6.1 FreelPA contacted over L D A P 36
6.2 FreelPA contacted directly 37
6.3 SSSD, P A M 37
6.4 SSSD, D-Bus 39

7.1 High-level architecture - depth levels denote the "higher using lower" relation
(as a library), arrows denote inter-process communication (protocol shown
above the arrows) 42

8.1 Algorithm used for rule evaluation 59

9.1 H B A C rule list in WebUI 65
9.2 H B A C rule detail in WebUI 66

4

Chapter 1

Introduction

This thesis is about extending functionality of FreelPA [10] - an identity, policy and audit
management tool. Our goal will be adding support to manage access to resources in services
provided by FreelPA clients, based on the resources' U R L We will begin by describing our
motivation and goals before we can proceed to technical details and a concept.

The thesis and related work is being worked on in cooperation with Red Hat, Inc. [28].

1.1 Motivation

Before describing our exact requirements on the newly developed functionality, we will dis­
cuss our motivation. It highly affects the expectations on the new system and, together with
already existing solutions of subproblems, is the main contribution to the final specification.

Reasons to engage in extending FreelPA with URI-based access management can be
divided into two main categories:

1.1.1 General need for URI-based access management

General need for this tool stems from many existing services and their complexity. There
may be multiple different services running on a single host, just as there may be multiple
instances of the same service. Different services have different configuration format and
configuration tools. They also have different level of security and different (if any) options
of solving the access management on application level.

Furthermore, security should always be ensured on multiple levels. Adding service-level
authorization can add another layer of security. For example on a webserver, it might be
beneficial to check user permissions both on application level (the web application checks
user permissions which has to be ensured explicitly by its programmer, often based on local
application data rather than centrally managed data) and on service level (H T T P server
checking permissions on its own, regardless of application).

Due to this complexity, possible complications and high risk of them going unnoticed,
we identify general need to manage access rights accross different services. We need a
solution that can be configured consistently on different services or different instances of
a service. It also needs at least basic user friendliness and should be widely accepted and
accessible - at least the last two demands can be appropriately supported by using open
source [601 [501 solutions base for further work.

A typical use case can be the following: There is a service (for example a webserver) on
some host system. This host system is also registered as a client of the FreelPA identity

5

Webserver
http://web.net
/login

http://web.net
/whatever

http://web.net
/admin

http://web.net
/images

Can U s e r l look at
"http://web.net/
whatever " ?

YES, he can , I will
send h im the page

Figure 1.1: Diagram showing a problem - authorization based on URI

management tool, which is (usually) running on another system. Some user on some other
system wants to use this service (view a webpage). The server (webserver) needs to somehow
verify whether the user is authorized to access this resource (part of the web). The resource
is conventionally described by URI . Therefore, we need to determine whether a user can
access some U R I through some service on some host, as shown in figure 1.1. A typical
approach would be a database of users and their permissions, usually only used by that
application and being accessed on the (web) application level.

However, we want the authorization to happen against some centrally-managed
database, like FreelPA. We also do not want to handle authorization explicitly in each
(web) application. In our use case, we want the (web) server application (often Apache
H T T P Server []) to handle authorization against the FreelPA server which the server
system is registered to FreelPA client.

To achieve this, we are missing a feature on both ends - FreelPA does not currently
store URI-related information in its authorization rules and Apache H T T P Server is not
able to handle URI-aware authorization against FreelPA. Users can reasonably expect there
is a way to cover this use case and similar use cases in FreelPA - authorization is one of
its main goals. We have, therefore, a good reason to want to include this functionality in
FreelPA.

(i

http://web.net
http://web.net
http://web.net
http://web.net
http://web.net/

1.1.2 Specific requests and needs

Another reason to work on this problem - and for Red Hat to be involved - are needs of
specific users. These needs are expressed, among others, by Red Hat's customers requests.
Multiple companies demand that they are able to authorize access based on URI , as we
can see in the ticket [.] on the FreelPA Trac [37] ticketing system [11], which originates
from a R F E [36] requested by a Red Hat customer. The customer is using a third-party
authentication / authorization software and wants to replace it by FreelPA. Lack of this
specific functionality, however, keeps them from using FreelPA which illustrates real demand
for URI-based authorization.

There is demand for the URI-based authorization to work on basis of existing solutions,
such as FreelPA, on Red Hat's platform [55] [•']. If accepted by upstream, that also means
the improvement will be made available for broad audience as FreelPA is an open source
project compilable for multiple architectures and platforms [30] [23].

1.2 General requirements

Based on above, we can put together this very general and informal specification of require­
ments we will try to fulfil:

• Support authorization of user accessing certain part of service based on URI - store
necessary data, manage it in a user-friendly way, be able to decide based on it

• Accessible, accepted solution

• Usable on a typical Linux system used as a webserver

In the following chapters, we will describe existing technologies and protocols and formu­
late more exact specifications. Theoretic analysis and description of technologies (chapters
1 through 6) is mostly taken from the semestral project. Based on it, we will elaborate on
possible approaches, thoroughly describe the concept and ultimately show our implemen­
tation.

7

Chapter 2

Identity and access management

With rapidly growing usage of electronic services, such as information systems, cloud sys­
tems, and other means of accessing remote resources, together with growth of user base of
such services and companies using them, a need has arisen to manage these users' identities
and access rights externally. There are large-scale databases of users for enterprise-level
companies. There are also many services (or instances of service) used, sometimes on one
host, sometimes on many.

In such a large scale, it would be extremely inefficient and even insecure to store user
information (including data necessary to authenticate the users and for non-trivial applica­
tions to authorize their access to some resource) locally for each service (or each host) that
needs it. It would require too much time and effort to maintain this data and keep it up
to date. It would also be easier for an unauthorized user to secretly alter it, perhaps with
malicious intent. Just mere unauthotrized access (without modifying anything) to this data
can pose a security risk, too. Unnecessarily consumed resources are one more reason why
this could be considered inefficient.

Rather than storing user data on multiple places without any central management, or­
ganizations choose to use centralized identity and access management applications. Purpose
of those is to centrally store data necessary for authentication of users and, using network
connection to hosts of resources, provide authentication services. While there is a system
for remote authentication of users, it is reasonable to require another functionality closely
related to authentication - these systems can also store data necessary for authorization
of users. This data can sometimes be exposed to anyone, sometimes the only application
that has access to it is the identity management system itself, which then autonomously de­
cides to authorize or not authorize a user to certain resource and merely answer the result.
Identity and access management systems may also store some additional data so they can
provide more information about user, which can be used for example for automated regis­
tration of the new user based on this data - the user does not need to fill them manually.
These identity management applications are designed for easy maintenance (usually with
some GUI). Being centralized also makes updating the data easier and increases security -
data kept in just one place is easier to be kept safe. It is also easier to audit such a system
and verify its data is in expected state.

8

2.1 Roles

To understand the benefits of an identity management system, it is important to understand
three basic roles an entity can appear in with regards to that system. These are the main
entity types used in an abstract, simplified schema of an identity management system:

• User - information about many users is stored in the databse of the identity man­
agement server and is a basic entity in the schema. The whole system is here for
maintaining and sharing some information about users. User has some identity and
the means of proving it. User also has access rights assigned to certain resources.

Users can be divided into groups. Groups can have some attributes of a user, like
access rights. Every user in this group then posesses these attributes. In some con­
figurations like trust or federalized setups, groups may be the only entities avaialable
to the access management system.

• Service - the resource. Usually runs on some host and asks the identity manage­
ment server to authenticate the user. Also usually asks the server to authorize the
authenticated user, although in some cases, mere authentication can be considered
sufficient to be authorized to access, based on the application. We will later use the
word "principal" for users together with services.

Particular service can be identified by multiple means (tuples), where Host is the
host providing the service, Port is the number identification of a port the service is
running on, PAM service is an identifier of a service by P A M standard, andURI is a
resource identifier:

- (Host, Port)

- (Host, Port, P A M service)

- (Host, Port, P A M service, URI) - can identify particular part of service, like
"Webserver on system www.host.net with the U R L of http://www.host.net/
login/page. php".

• Administrator - the person responsible for the identity management system. He is
the one who benefits from centralization because he does not need to update the data
on every host with some resource requiring authentication or authorization. Also, the
system is less prone to administrator mistakes. Administrator's job is keeping the
user information and access rights up to date.

2.2 Example of use

Imagine there is a large organization with a lot of users. The organization uses many
computers, some of them serving as a host of some services. Some of these services (or
parts of services) are only to be accessible by certain users. Permissions of users can vary
accross hosts and services. The following examples are what a simple use case scenario
would mean if the organization stored the user data locally on each host (depicted in fig­
ure 2.1), compared to the organization using central identity management service (depicted
in figure 2.2):

9

http://www.host.net
http://www.host.net/

Access management server!
Alfons - 9fa87d98da8 - web2, sshl
Benny - e234b32aflf - webl, web2
Charlie - 7aa8f87f9ff - webl

Charlie

Benny

Alfons 1: Show me your web Alfons 2: 1 need you to authent icate 2 3: Al fons / i d s f 9 0 8 F l 2
6: Fine. Here is the homepage .

5: Yes, Al fons
can access my
homepage

Figure 2.1: Conceptual model of an user connecting a webserver not using identity man­
agement system for authentication and authorization. This web application uses its own
database and user authenticates directly with it. 1, 2, 3 are hosts; Alfons, Benny and
Charlie are users.

2.2.1 Locally stored access rights

• When user U (his service client) connects host H requesting access to service S:

1. H looks into its internal database and searches for the user. If it can find him,
the host H verifies the user's identity based on some attribute of the user (Which
means H has access to this attribute - not only may it be stored in H's database,
U provides it to H on every authentication. Even if, for example, a password is
not stored in plaintext, the user must be careful to not use the the same password
on multiple services as they receive it every time the user authenticates).

2. If the user is authenticated, the host looks up its internal database to verify the
user is authorized to access the service. These two things can also happen on
service level but the important part is that the database is stored on the host H.

3. If U is authorized by H, U accesses S on H.

The communication is depicted in figure 2.1. No communication with any central
management server is required. A l l the communication, including authentication, is
carried out directly between U's client and H.

10

• The above example is as simple as it can get. Consider, however, another example -
when an administrator A needs to change user U's password. In that case, A needs to
modify databases on every single host, for every single service (if they do not share
the database), changing U's password in that database.

forall Hosts do
forall Services on Host do
| update password

end
end

2.2.2 Central identity management

• When user U (his service client) connects host H requesting access to service S:

1. U connects H
2. Service S on host H authenticates U based on some information on the identity

management server. No user information (not even a password hash) is stored on
H, the identity management server merely informs H that a user has been authen­
ticated and provides H U's identity. This conceptual model is usually achieved
via a ticket - a proof that a user has authenticated against the identity manage­
ment server, signed by that server. It means that the server does not provide
the information directly, it is a job for the user's client instead to authenticate
against the server and provide this ticket. We will describe this process more
thoroughly in the section about Kerberos.

3. If S requires specific user rights for U to access, H (usually on service S's level) asks
the identity management server for authorization of U to the given resource S.
Again, this information is not stored locally, so the identity management server
does one of the two things:

— It either merely responds "authorized"/"unauthorized". No data are let out
whatsoever and there is minimal overhead on H's side. However, H is in no
way aware of what the identity management server's response is based on
and needs to always ask it; it can not do any decision locally.

— Or the identity management server sends non-sensitive data H needs to decide
itself. This can be practically achieved (and it is the case of our work) by
direct communication between the identity management server and the host
providing the service, in contrast with authentication where a user's client
and a ticket are involved. This can have performance implications as the
data necessary for authorization are let out, thus they can be cached by S
and in some cases, S does not need to always ask the identity management
server for authorization.

4. U, if authorized, gets required resource from S.

A n example of communication is depicted in figure 2.2. This scheme is somewhat more
complicated than in the first case, it involves one more side - identity management
server. It has security advantage, though: no data is stored locally, not even password
hashes, they are just in one place. That place is easier to secure and only lets out
the information that accessing hosts necessarily need to know: user's identity and
whether he is authorized to access some resource.

11

Access management server
Alfons - 9fa87d98da8 - web2, sshl
Benny - e234b32aflf - webl, web2
Charlie - 7aa8f87f9ff - webl

Charlie

01
>-
E
01 >
0 -(-»

~o

01
o
l/l
c
o

Alfons
1: Show me your web

2: I need you to authent icate
5: Here is the t icket s igned by server

8: Fine. Here is the homepage

Figure 2.2: Conceptual model of an user connecting a webserver using identity management
system for authentication and authorization

12

• When administrator wants to change a password, he simply changes it in the only
location it is stored in: on the identity management server. From that time on, the
password is updated and every host is affected - the hosts do not verify the password
locally, they just receive information about authentication or authorization from the
identity management server that is up to date.

In conclusion, we can say that identity management systems improve security, save
maintenance effort and while setup might be harder for a single host, they save a lot of
time and even disk space when used in enterprise-level environments. They achieve this
by centralizing information about users and their permissions. They are designed never
to disclose sensitive information and are an important part of enterprise-level companies'
security measures.

13

Chapter 3

Technologies and terms used

Here, we will describe some terms and technologies necessary to understand the rest of the
work.

3.1 URI

The "URI" abbreviation stands for "Uniform Resource Identifier". It is specified by the
I E T F [16] R F C 3986 [43] from year 2005 which updates an older R F C 1738 [] specifying
U R L ("Uniform Resource Locator").

It is a compact set of characters that identify an abstract or physical resource. It can be
either an U R L ("Uniform Resource Locator", as in the updated R F C 1738), U R N ("Uniform
Resource Name") or both. [43]

• URL is a way of providing means of locating some resource by its primary access
mechanism. [43] A n example could be an U R L of some web page - the usage mostly
known even to unskilled users. U R L "http://www.fit.vutbr.cz" provides a way of
locating the FIT V U T B R web page rather than describing what it is or naming it.

• URN is used to provide name of some resource. It is URI that is required to remain
globally unique and persistent even when the resource ceases to exist or becomes
unavailable, and any other URI with the properties of a name. [43] Its syntax is
specified by R F C 2141 [52]. For example an ISBN number of a book is an U R N -
a unique identification of a book. It is not an U R L because it does not in any way
show us how to locate the book.

Therefore, we can say that URI is a way of identifying some resource either by its
location (URL) or its name (URN) or both.

In our work, we use URI as an attribute for deciding whether particular authenticated
user is authorized do access the resource identified by the given URI . We do not need to
differentiate between U R L and U R N . In most of the services, however, it is customary to
use U R L . This has a practical reason - it tells us exactly where and how to find a resource.

Our mostly used example, a web server, identifies its resources by URLs (the "address").
This is also the case for which we will - as described later - develop a service-side module.
The enhancement is, however, in no way limited only to web servers or URLs and is more
general.

14

http://www.fit.vutbr.cz

3.1.1 U R I parts

The R F C specifies a U R L using grammar in Augmented Backus-Naur Form [45]. We will
show the basic parts of URI in a more informal and incomplete way.

Generally, URI can consist of these main parts:

• Scheme - a specification for assigning identifiers to be used. In case of webserver, it
is usually either http or https.

• Hier-part - which consists of:

— Authority - the authority that governs the name space in the rest of URI, del­
egated to that authority. If URI contains some authority, the hier-part of URI
must start with " / / " , otherwise it must not start with " / / " .

* userinfo@ - username and scheme-specific information about how to gain
authorization to access to the resource. It can be omitted.

* host - the identification of a system - IP literal ("IPv6 address"), IPv4
address or a hostname.

* :port - decimal number identifying a port the service is running on. Can be
omitted and the scheme can specify default port.

— Path - data - usually hierarchical - identifying the resource withing the scope
of URI scheme and a naming authority, if it exists.

• Query - non-hierarchical data identifying the resource within the scope of URI scheme
and a naming authority, if it exists.

• Fragment - identification of certain part of a resource.

[43] These parts form URI in the following way:
URI = scheme : hier-part [? query] [# fragment] As examples, we show one
U R N and one U R L and how they are divided into these mentioned parts:

• Example of an URN is urn :isbn: 0-330-25864-8, identifying a book by its ISBN.
The part before the first colon is scheme, saying that the following is an U R N . The
rest is a path part, identifying that book.

• In our case, however, we are mostly going to work with URLs. These are used to
identify a web server and certain web page on that server. A n example U R L is
https://www.youtube.com/watch?v=oHg5SJYRHAO.

— https is scheme. It can also be http for a webserver.

— : delimits scheme from the rest.

— / / must be in URI because it contains authority.

— www. youtube. com is authority - a web server identification using hostname.

— /watch is a path, it must start with / and specifies the part of web we require.

— ?v=oHg5SJYRHA0 is a query - the data that further identifies the resource in a
non-hierarchical manner. In this case, the query specifies a video the user wants
to view.

15

https://www.youtube.com/watch?v=oHg5SJYRHAO

This U R L is missing some parts that are not mandatory, but can be specified. We
used a default port, so we did not have to specify it. A default port is specified by the
https scheme and is 443. We also did not specify fragment. We wanted to specify a
web page as a whole, not some part of it.

3.2 Authentication, authorization

Authentication and authorization are the terms used in a general " A A A " security model.
A A A stands for Authentication, Authorization and Accounting. It is an abstract model
of verifying who the user is, what resource he can access and what he did with that re­
source [59]. We are, in this work, interested mainly in the second A , supposing the first
A has already been completed at point the service starts to act on authorization. More
formally, authentication and authorization are:

• Authentication is a process of verifying a user's identity. Authentication is usually
based on:

— What we know (e.g., a password)
— What we have (e.g., a token)
— What we are (e.g., a fingerprint)

For example, showing your ID to the gate keeper so he can verify that you actually
are who you claim to be is authentication.

• Authorization is a process of verifying whether a user is allowed to access some re­
source. A n example could be the gate keeper from the previous example looking
through a list of people allowed to enter the building. As you can see, to authorize an
user to access some resource, the authorization authority also needs to authenticate
the user in some way or have information about user's identity from trusted third
party.

In our work, we do not solve anything authentication-related as we expect the user is
authenticated already. There are multiple ways to achieve this, particularly for the Apache
H T T P Server we can mention Kerberos authentication and user/password authentication.
Given the authenticated user's identity, we will have to decide whether he is allowed to
access some resource identified by an U R L

3.3 Kerberos

Kerberos is not a key feature for this work. We have, however, mentioned it multiple times,
it is used in FreelPA and we are going to use it as the authentication step we will expect
to be done already before authorization. Also, we might later decide that Kerberos will
carry some of the authorization data, albeit it is not capable of handling authorization on
its own.

Kerberos started as MIT's Project Athena [44]. The current version of Kerberos is
Version 5 [49], development of which began in 1989. It is a distributed authentication service
that allows a process of a principal (user) to prove its identity to a server [53]. It prevents
authentication data from being discovered by any party except for user and Kerberos server.
It optionally provides integrity and confidentality of communication between client and
server.

16

3.3.1 Basic Kerberos protocol

In this simplified version of a basic Kerberos protocol, we will show how a user can authen­
ticate in cooperation with a Kerberos server. We will also learn how a user proves he has
been authenticated to the server he requests a resource from and that a server can prove
its own identity back to user.

Parties:

• Principal is a party whose identity is being verified [53].

• Verifier is a party who demands to authenticate principal.

• Authentication service is a party who authenticates principal for verifier.

The basic protocol consists of two parts. The first one is authenticating principal with
authentication service, the second one is using the fact principal has authenticated to ac­
tually prove the principal's identity to the verifier.

• Authentication request and response - the phase where a principal communicates with
the Kerberos authentication service. It proves its identity using its password. The
authentication service, upon successfull authentication, responds with a ticket

A Kerberos ticket certificate from the authentication server contains, among other
information, a random session key, a checksum and the name of the principal to whom
the ticket has been issued [53]. It can also contain some additional information about
the principal. It is encrypted using a key shared only between the verifier requesting
the authentication and the Kerberos authentication service. It is a property of the
used encryption algorithm [53] that when a message has been changed or a key is
different than the key that has been used for encryption, the resulting decrypted data
will not make sense and the checksum will not fit. A verifier can thus believe this
ticket even if it does not receive it directly from the Kerberos authentication service.
In fact, the ticket is merely responded back to the principal (which can not modify
it in any way as the encryption key used is only shared between the authentication
service and the verifier) and the principal can further send it to the verifier to prove
its identity.

In figure 3.1, in phase 1, the principal sends an authentication request to the Kerberos
authentication service. In phase 2, the principal receives the authentication response,
including its ticket and a session key.

• Application request (and response) - when the principal receives its ticket, it uses it
to prove its identity to the verifier. The ticket includes the principal name and a
session key. Additionally, there is also current time, checksum and some other data
sent. Thus, verifier knows the identity and can communicate with the principal in
a safe manner. Due to cryptographical properties of the data included in ticket and
authenticator, the verifier can actually trust the ticket data and consider the principal
authenticated. There can be an optional application response that is used in cases
where a verifier also needs to authenticate to the principal.

After these steps (optionally omitting the response), the two parties can further com­
municate safely as their identities have been verified. The authentication request is
shown in figure 3.1 in step 3, the authentication response is in step 4.

17

Kerberos - authentication service

1: U s e r n a m e / p a s s w o r d

2: T i c k e t
i

Principal - user

3: T i c k e t , a u t h e n t i c a t o r

4: A u t h e n t i c a t i o n of t h e v e r i f i e r
1

Verifier - webserver

Figure 3.1: Simplified model of basic Kerberos authentication request/response and appli­
cation request / response

3.3.2 Ticket granting service

Mainly for user convenience, the scheme above is not actually how Kerberos works nowa­
days. Instead of user providing a password each time he needs to access some service to
get a ticket, user provides another ticket - a ticket granting ticket - which is the only ticket
initially received from the Kerberos server using user/password authentication.

The user receives a ticket granting ticket (TGT) when he first needs a service ticket,
after explicitly asking for it or after logging in, depending on his system. He contacts a
Kerberos Authentication Service and gets the T G T based on user and password provided.
This ticket can then be used to obtain another ticket, a service ticket, from Kerberos Ticket
Granting Service, whenever the user needs to access some specific service. He then receives
a ticket as shown in figure 3.2, which means he uses the T G T instead of a password in
figure 3.1 in the previous section. This is possible until the T G T expires, after that it must
be renewed.

3.3.3 Additional principal data and Kerberos

A Kerberos ticket contains, among other fields, the optional field Authorization-Data [12].
Different implementations of Kerberos use this field differently. The Kerberos service itself
does not try to interpret it; interpretation is left up to the service requesting credentials [12].

We could use this Authorization-Data field as a carrier of data that is important to
us, because - as we will learn - Kerberos is used in FreelPA. After all, the field is named
as to serve the purpose of containing authorization data. That would mean the service
does not even need to be aware of FreelPA - mere Kerberos-awareness would be enough.
Changing the field's content may, however, be a big problem for implementations using
this optional field and this change might impact a lot of applications. There are also some

18

Kerberos -
authenti­
cation
service

Kerberos - Ticket Granting Service Kerberos -
authenti­
cation
service

y

1: T i cket G ran t ing T icket

\ \&
V \ \ %

V \ \ %
2: Serv ice T icket

^\ Principal - user

3: Serv ice Ticket , au thent i ca tes

4: Au then t i ca t i on of the ver i f ier

Verifier - webserver

Figure 3.2: Simplified model of basic Kerberos authentication request/response and appli­
cation request/response using Ticket Granting Ticket

FreelPA-related problems with this approach, as we will discuss in further parts of this
text.

3.4 LDAP

L D A P is a directory service. Directory service is a central repository for storing and man­
aging information [17]. It is often hierarchical. Directory service is similar to database, but
typically contains more descriptive, attribute-based data - the data that are more often
read than written [39].

The data in L D A P is hierarchically organized and has its object type. L D A P provides
a way to read, write, modify and search data in the directory. The object type is similar
to "data types" in databases. They define the interpretation (and very often semantics) of
attribute value. The object type is identified unambiguously by OID (Object Identifier).
The OID's are defined as hierarchically structured integers, defined in X.690 standard [].

3.4.1 Adding custom data

To add an attribute type, we use the attributetype directive. We can specify description,
matching, syntax etc.. Matching specifies how different entries of this attribute should
be interpreted in certain situations, for example how they should be tested for equality
(EQUALITY caselgnoreMatch, for example). The SYNTAX specifies how the value should
be represented. For example, the syntax with OID of 1.3.6.1.4.1.1466.115.121.1.15
denotes a directoryString (UTF-8 string) [31].

19

To specify a new object class (and possibly use the newly specified attribute in that
class), we use the objectclass directive. It specifies its position in hierarchy (SUP, DESC),
attributes, whether they are mandatory (MAY, MUST) etc.

To save and exchange the data and schema between L D A P servers, we can use LDIF
files [1].

3.5 FreelPA

FreelPA is an integrated security information management solution combining Linux, 389
Directory Server, M I T Kerberos, N T P , DNS, Dogtag (Certificate System). Its interface
consists of a web interface and command-line administration tools. [2]

The IPA abbreviation stands for Identity, Policy, Audit:

• Identity in the name means it is an implementation of the Identity management server
concept described in chapter 2.

• Policy basically means authorization of access to some service based on some infor­
mation about the service itself, the client etc. This will be described later. A key
term for the "policy" part are sudo rules, Host Based Access Control (HBAC) rules
and authorization based on these.

• Audit essentially means logging and viewing the history of actions of entities. This
component is deferred and unrelated to our work.

FreelPA's goals are providing an identity management solution on enterprise level, with
user-friendly web interface, consisting of open-source projects. It stores data related to user
authentication, authorization, H B A C rules, and others.

3.5.1 Architecture

High-level architecture of FreelPA is shown in figure 3.3. FreelPA is a set of multiple
applications used together to make an easy-to-use, robust solution for identity and policy
management. It consists of the following parts:

• 389 LDAP directory server serves as a backend. It contains information about users,
machines, domain configuration, policy rules etc. Various ipalib plugins are used to
expose and modify the data in the directory, either by means of console commands
or through WebUI.

• Kerberos KDC is used for authentication handling in FreelPA. It uses the data in
L D A P directory and is a classical Kerberos, just configured for FreelPA. It is managed
through FreelPA means, Kerberos tools are unaware of FreelPA! [22].

• Apache HTTP server is used for WebUI and A P I . While it is possible to maintain
FreelPA solely by command line tools, a WebUI is more intuitive. The WebUI is
modular and massively utilizes Javascript and X M L - R P C A P I to manage L D A P
directory's content.

• DNS serves as a typical DNS for the domain. SSSD clients are configured to use it
for service discovery [22]. DNS is not interesting for our purposes.

20

Figure 3.3: FreelPA architecture [18]

• NTP is used to synchronize time within domain, which is required by some services
- for example, Kerberos uses time stamps in tickets. N T P is not interesting for our
purposes.

• Samba implements M S - R P C services and is not interesting for our purposes.

• Dogtag Certificate System is a P K I service. It includes a certificate authority [14]
issuing certificates to services and C R L and OCSP services. It is not interesting for
our purposes.

FreelPA defines a domain of controlling servers and client machines. A l l its compo­
nents work together as a compact tool with unified interface (either console commands or
WebUI). As these components are aware of each other, it allows for more consistency, less
administrative overhead and predictable environment through servers and enrolled clients,
which are part of the domain.

It is also still possible to access each part of this infrastructure separately - for example
a service can only use Kerberos or you can access L D A P data directly.

3.5.2 Authentication, Kerberos in Free lPA

The / part is ensured mainly by Kerberos. Kerberos uses data from L D A P for authenti­
cation. The L D A P itself defines and enforces access controls for the Kerberos data stored
within it [14].

21

The services which only need authentication do not need to be aware of FreelPA at
all and they can use Kerberos transparently. They can get additional (e.g., authorization)
data directly from L D A P , for example H B A C rules.

3.5.3 Host Based Access Control

The P part - policy, which can also be understood as authorization - is represented by a
feature called Host based access control (HBAC) . This is the key functionality of FreelPA
for our purposes and is most likely to be modified.

Host Based Access Control is a way of defining and enforcing permissions of users. The
key entity in H B A C is a HBAC rule, which specifies which user can access which service
on which machine. On authorization request, these rules are evaluated one by one and if
any of them matches, the action is authorized [3].

There used to be deny rules, too. They have been dropped, however. Reasoning behind
this is that in every sane environment, all access rules should be defined by whitelist [27].
This might be a complication in case of adding URI to the rule. A typical example could
be a need to allow access to the whole web except the administration part which contains
"/admin/" somewhere in the path. In some cases, that can be worked around by whitelisting
every other possible path. This might benefit from interpreting an URI in the rule as prefix,
not the whole URI . In other cases, number of these workaround rules might be infinite, even
if we interpret the specified URI as a prefix. This might be a major limitation or might
become a cause to re-evaluate the reasoning behind dropping deny-rules.

HBAC rules

H B A C rules themselves are very simple entries. They specify access permissions based on
3-tuple (User,Host,Service). When all of these match, the rule as a whole is matched and
access is allowed.

To take URI into consideration, we will need to add at least the URI into this tuple,
making it a 4-tuple (User,Host,Service, URI). It might be necessary to add some more data
if we decide to interpret URI's in the rule as prefixes.

3.6 SSSD

System Security Services Daemon (SSSD) is a system deaemon intended for providing ac­
cess to different remote authentication/authorization services consistently. It also provides
caching [33]. To access different services, SSSD uses provider plugins specific to the identity
management service.

SSSD has P A M (section 3.7) and NSS [61] interfaces [I] and also a public D-Bus [51]
interface InfoPipe [].

3.6.1 Architecture

SSSD is a daemon running on a machine that requests authentication/authorization, com­
municating with an identity management server. It consists of these main parts:

• SSS client application is the application that intends to use SSSD for authentica­
tion/authorization. It uses SSS Client Library to communicate with SSSD. For ex­
ample, Apache H T T P Server using a SSS Client Library in its module 3.9.

22

Local machine
Services
using
SSS
Client
Library
Apache

Murmur

Respon­
d e d

D-Bus
responder

PAM
responder

SSSD
Backend

Cache

Free I PA

Provider
plugins

I PA
plugin

Active
Directory
plugin

Figure 3.4: SSSD schema

• Responder is a process that communicates with the SSS client through SSS Client
Library. They usually retrieve data from the Backend's Cache, if available, after
checking they are current. Responders run in their own processes. For example,
P A M responder or a D-Bus responder.

• Backend represents a domain and uses Provider Plugins to communicate with remote
identity management services. Upon receiving a request from the Responder, the
Backend performs communication with remote server, updates Cache and responds
to the Responder. Each domain has its own process.

• Provider Plugin is a library used for communication between Backend and the identity
management server. It is specific for the service it is communicating with. For
example, IPA provider.

[35]

This schema is also shown in figure 3.4

3.6.2 H B A C rules caching and handling

H B A C rules are addressed by the IPA provider plugin. A l l the rules related to particular
host and service are downloaded using L D A P and evaluated on the SSSD side. That means:

• More data than necessary might be transfered

• This data can be cached and SSSD can only download them from FreelPA the first
time for each host

23

Application

libpam
pam_sss

Figure 3.5: Communication between a PAM-enabled application and SSSD

After getting authorization request, SSSD updates the Cache if necessary (downloading
information about host, service and all rules related to the host), and then, based on the
cached data, responds either authorized or not-authorized.

3.6.3 InfoPipe

SSSD InfoPipe (or D-Bus responder) is a responder for communication between applica­
tions and the SSSD backend using D-Bus. It is in a separate package, sssd-dbus. It
solves a problem with reaching additional information about entities in FreelPA. Instead
of applications connecting to FreelPA directly, they can use SSSD which has acces to this
information already. It uses both cache and online-lookup [8].

It does not allow access to all the data, instead, it provides object-oriented access to
only users, groups, services and domains []. To use it for user authorization, we would
need to add this functionality.

3.7 P A M

P A M is a unified way to authenticate/authorize users. Rather than implementing dif­
ferent identity management providers, the verifying application uses P A M as an interface.
That allows applications to be independent on the underlying authentication/authorization
scheme [58].

The application uses P A M library [] (libpam), using header file
security/pam_appl .h. The library invokes a P A M module. A P A M module is the
implementation of some authentication/authorization schema and is selected based on
P A M configuration files. Modules can also be stacked one on another. One of these
modules is a pam_sss module allowing to authenticate/authorize based on information
from SSSD (shown in figure 3.5).

Both D-Bus and P A M can be used by application to communicate with SSSD. While
P A M is easier to use for its higher level of abstraction, the P A M A P I is very rigid. While
there are pam_get_item and pam_acct_mgmt functions in the P A M A P I , they might not
allow us to retrieve authorization information based on U R L It would also probably be a
problem to change a very widely used P A M A P I . It may be more acceptable to modify
InfoPipe's behavior than P A M A P I .

24

3.8 D-Bus

D-Bus is an inter-process communication mechanism. Its basic unit is a message including
both metadata and data. It is binary and typed. Processes can talk one-to-one or to
multiple processes. Processes can listen to events on the bus without being contacted
directly. D-Bus messages are sent to objects which are addressed by their path names.
Messages can be of multiple types, like signals, method calls, etc. The messages are very
simple, there is no communication but one single message. They can request some action,
data etc. If some return value is requested, it gets sent by another message. Data can be
of a limited number of types resembling C types [51].

Objects are identified by:

• Bus identification; only one per bus and there is usually only one bus for application
lifetime

• Well-known name of the service. It is a string consisting of lower and
uppercase characters, separated by at least one dot. It should be unique, it is
recommended to start it with a reversed DNS domain of the owner. For example,
org.freedesktop.sssd.infopipe.Users is a valid well-known name.

• Object path within the service. It is denoted like a classical Unix-type system
file path. There may be multile objects withing one service. For example,
/org/freedesktop/sssd/infopipe/Users.

• Interface used. It specifies the method calls, their parameters etc.. It uses the same
syntax as a well-known name. In smaller applications (like SSSD), it is ususally the
same as the well-known name [].

• Member name, which is the method to call / signal to emit.

There is a C D-Bus A P I . The header file to be included is dbus/dbus.h. There are
multiple functions of sending, receiving, broadcasting and listening to signals.

3.9 Apache H T T P Server and modules

The Apache H T T P Server project is the most widely used web server daemon [47]. It is
also our service of choice to show the functionality of our URI-based access control end-to-
end, i.e. we are going to implement the functionality of a URI-based-access-control-aware
FreelPA client to the Apache H T T P Server. Due to architecture of Apache H T T P Server,
it is not necessary to do any changes in the core project (which would probably not be
accepted anyway). We can, instead, write a completely new Apache module to add this
functionality when required.

3.9.1 Apache modules

Apache modules are pluggable objects used to extend Apache H T T P Server's functionality.
They get executed using handlers. A handler is called on specified event. For example, an
initialization handler called child_init is called on initialization of child Apache processes.
If there is no module handling an event to enhance or change Apache's behavior, Apache's
default handler is used. Modules are often written in Perl or C.

25

The handlers occur in the Apache main loop in different phases of H T T P request han­
dling, as shown in figure 3.6. They are the following []:

• URI translation phase evaluates what the request is for

• Access control phase evaluates whether connection from the origin of the request is
allowed

• Authentication phase authenticates the user

• Authorization phase determines whether the authenticated user is allowed to view the
resource

• MIME checking phase determines how to handle the file requested

• Response phase sets H T T P headers and serves or interprets the file

• Logging phase logs the transaction

• Cleanup phase gets rid of resources allocated during request handling

Apache handler is a Perl or C function returning integer (a result of the operation). It
can also change environment variables that can be available in later phases or they can issue
internal requests, such as internal_redirect which processes another request instead of
the one the module is called from. Handlers can even abort request handling completely.

The handler function is called with a single parameter, the request record
(request_rec), that contains all the Apache's information about the transaction currently
known, in a structure. Based on information from the request record, the handler does
some action and when it is finished, it returns some status code.

26

post read request

URI translation

Header parsiig

access control

I
authentication

I
authorization

MIME type checking

fixups

document

Figure 3.6: Apache main loop - an Apache module can have a handler for each phase in
bold []

27

Chapter 4

Requirements specification

As we justified in the introduction, there is a need for a solution that can serve as a global
access and authorization manager. It should be widely accessible and supported. The tool
should be able to authorize authenticated client accesses based on URI of the resource on
a given host.

Wi th knowledge of specific requirements and global community expectations, we can
specify our requirements more exactly. As first step, we will describe typical use cases.
After that, we need to define what the improved system needs to be capable of and how it
is expected to be used. We can also specify a typical installation and environment to assert
our performance and optimization requirements.

4.1 Use cases

First, let us think about what the basic purpose of the R F E and the global community
expectations are. Let us describe the reasons for R F E , current ways of substituting this
functionality and typical use cases.

Multiple people in the Trac ticket have mentioned their need to use H B A C to autho­
rize access not only by a 3-tuple (User,Host,Service), but also by U R I of the requested
resource. They need to be able to set the rules centrally, using their current environment.
That means the rules should be stored on FreelPA server's side and modifiable through
FreelPA command line tools and WebUI. They need to keep the current infrastructure, the
performance requirements should not be much higher than until now. They need to keep
the same client tools if possible. They need to be able to decide whether user is allowed
to access some URI on some service on some host. A useful property of this URI-based
H B A C would be interpreting the URI as prefix, not merely testing for equality, as shown
in the following use-case.

4.1.1 Authorization

A typical use case is a webserver service W on host H. The host is a client of a FreelPA server
F. A n user U wants to access W's resource identified by URI . W needs to decide whether to
allow access or deny it, based solely on information from F (without using any local data,
without running anything on the level of web application on W).

The mentioned entities are part of a big, enterprise-level infrastructure. The decision
must be almost immediate as authorization will often be used in interactive applications.

28

The FreelPA server must, after addition of this functionality, still be able to evaluate rules
in environments with thousands of users and systems.

4.1.2 Administration

The decision from previous section should be based on some rules defined on FreelPA side.
These rules should be easily added, modified or deleted by current tools - the console tools
and WebUI. This should be possible whenever a user is logged in with account that is
allowed to do that.

4.2 Functional requirements

Based on the above, we can specify the requirements on functionality more formally:

• H B A C rules include information about URI

• The U R I part of H B A C rule is modifiable by the same means as the rest of H B A C
rule:

— Command line tools

* Add H B A C rule with certain U R I
* Change URI in H B A C rule
* Delete H B A C rule including the URI part

— WebUI

* Add H B A C rule with certain U R I
* Change URI in H B A C rule
* Delete H B A C rule including the URI part

• Allow read access to the URI part of H B A C rule at least by:

— Command line tools

— WebUI

— L D A P

— Other tools using the above

• Allow caching and evaluating by SSSD

• Do not raise performance requirements significantly for:

— FreelPA host

— FreelPA clients

— The domain network infrastructure

• Do not raise significantly:

— Time to allow access
— Time to deny access

• Keep backwards compatibility:

29

— When URI is not manually set, the default authorization behavior should be the
same as it used to be

— WebUI does not require the administrator to enter URI

— Command line tools do not require the administrator to enter URI

• Works for at least the Apache H T T P Server and can be further developed for other
services

4.3 Technological requirements

We defined what FreelPA should be capable of after the improvement, let us define some
technological requirements.

At this point, it is clear we are going to change at least one existing project, potentially
more. These projects are in use for a long time by many users. We must not "break" them
in any way, e.g. narrowing a set of platforms they run on.

The projects are open-source and must remain that way. This has practical reasons and
as we need our solution to be accepted by upstream, this is really the only way. Another
reason for open source base is also the fact that for a security-targeted application, it is
beneficial (and, for many users, crucial and essential) property of the application to be
open source []. It means higher level of trust of the user to the application as they can
examine their source code to learn how it works and ultimately even verify if there are
backdoors, given the user is willing to compile the application on their own. It also brings
an opportunity to easily (compared to closed source software) further adjust the application
to user's needs.

Based on the above, we specify the following technological requirements:

• FreelPA and any other potentially involved software must run on the same platform
as it used to.

• FreelPA and any other potentially involved software must run in the same environ­
ment as it used to.

• Newly developed software must run on the same platform as software it is by design
expected to run with on the same host. We will perform tests at least on Fedora 23
with Apache H T T P Server in version currently in the Fedora 23 repository.

• A l l the software must be (and remain) open-source.

30

Chapter 5

Existing solutions

In the further text, we will analyze possible existing solutions or workarounds for autho­
rization based on URI , specifically for a webserver. There are multiple partial solutions,
they are, however, not general enough, or would break some standards or interfaces, or are
plainly not based on identity management (i.e., they are too local).

5.1 Web application level authorization

We could, of course, just resign on any service-level authorization against some identity
management server. The user would be either authenticated locally or against the identity
management server. Wi th this authenticated user's identity, we could decide, based on
local information, whether the user is allowed to connect the required resource.

This is, in fact, a valid approach, but it is not the solution of our problem. Actually,
this approach is complementary to the solution we are seeking for:

• Security should always come on multiple levels. Both on service level and on web
application level, as mentioned in the introduction.

• This approach is capable of deciding with greater granularity.

• The application may consider the facts not globally stored on the identity management
server.

• The application may consider the facts that are only specific for that single applica­
tion.

• The application may further limit user's access rights. That means, even if the service
allows the user to connect certain URI, the application might decide not to allow him,
based on some fact mentioned above. It could even display some better explanation
of why the user is not authorized to perform the action, as opposed to plain "access
denied" from the Apache H T T P Server that would abort the request before the web
application gets any chance to change something.

That being said, the approach of handling authorization on the web application level
is valid, but is not the solution we are looking for. It is further good to mention it might
be better not to handle authorization on the web application level only, despite it being a
wide spread practice.

31

Local machine
Apache

Web appl icat ion

m o d a u t h n z p a m

libpam

pa m s s s

Free I PA
SSSD

PAM responder

Figure 5.1: mod_authnz_pam usage

5.2 mod authnz pam

There is already an Apache module that handles authentication/authorization called mod_-
autlmz_pam [7]. It can communicate with FreelPA through SSSD. Communication with
SSSD is done via P A M . The whole Apache «->• FreelPA communication is shown in figure 5.1.

The mod_authnz_pam module is a small-scale tool that would be easy to change. It
should also be possible to do changes to SSSD so that it allows authorization based on
U R L The only changes required in FreelPA would be storing URIs in the rules as the
evaluation of these rules happens on SSSD's side already.

As mentioned, however, the module uses P A M to communicate with SSSD. And as
mentioned in section 3.7, the P A M protocol is not easy to be changed. Many applications
rely on P A M API 's consistency and we would need to find a way to communicate some
additional data, like URI , without doing changes to this A P I . This is a complication while
extending mod_authnz_pam to be URI-aware.

That being said, this approach is interesting to work with, but P A M A P I is a big
limitation.

5.3 mod lookup identity

Another interesting Apache module is mod_lookup_identity. It is able to retrieve some
additional information about the user.

The module has nothing to do with authorization. It is, however, interesting for its way
of retrieving the information. It communicates with SSSD through InfoPipe 3.6.3. As we
mentioned in the section about InfoPipe, however, InfoPipe only allows getting information
about certain elements, none of which is a H B A C rule. If we wanted to use an approach

32

similar to InfoPipe, we would need to do one of the following:

• Add the ability to list H B A C rules (all or related to the host) to InfoPipe and handle
the rule evaluation on Apache module's side. That would be a less general approach
as every service would need to handle this on their own, our solution would be only
useful for services which have a module similar to our new Apache module designed.

• Add the ability to authorize user over D-Bus. We could perhaps consider this a user's
property - thus using existing User interface and extend it with a function evaluating
authorization based on 4-tuple (User,Host,Service,URI). That would mean only the
yes/no answer would ever be responded to the query over D-Bus. Implementing a
function that merely asks for authorization over D-Bus would be easy.

Using some module similar to mod_lookup_identity seems like a feasible approach,
despite the module itself being unable to solve our problem.

5.4 Changing P A M service name based on location in
Apache H T T P Server

It is possible, in Apache H T T P Server's configuration files, to divide a web application into
locations. These locations are based on U R I prefix. It is possible to specify a distinct P A M
service name for each of the locations.

That would allow us to allow the user to only access certain parts of the web, depending
on URI . The available part would be in one location and the part which can not be accessed
would be in another location. There might be multiple locations if there needs to be more
fine-grained distinction, for example if there are multiple user groups with distinct access
rights. For example, we could do the following:

• Map the http://web.net/users URI prefix to location with P A M service set to
http-users

• Map the http://web.net/admin URI prefix to location with P A M service set to
http-admin

• In FreelPA, allow user U to access this host's service http-users

• In FreelPA, do not allow user U to access this host's service http-admin

This way, the user U would be able to access URIs with prefix /users, but not /admin,
which is the URI-based authentication we want. However, while the data in FreelPA
is indeed managed by the identity management service, the data in an Apache H T T P
Server's configuration file is purely local. In this case, the result would be FreelPA knowing
it does not allow connections to the service named http-admin, but having no information
whatsoever about the relation between URI and the service name; every service in the
domain could have different local mapping and would need to specify it, which would
effectively degrade this solution to local access management.

33

http://web.net/users
http://web.net/admin

Chapter 6

URI-based access authorization in
FreelPA

In the previous chapters, we have thoroughly described the requirements on the results
of this work. We have summarized our motivation to engage in it. Thus, we know the
intended purpose of the new functionality and we know the target users and system and
platform specifications.

We have shown the technological background and described terms we are going to
operate with further in this text. We have mentioned multiple applications, protocols and
standards and shown how they make sense together. We also demonstrated the current
solutions and shown that they are either not sufficient or useful for our specific purpose,
and why.

In this chapter we will come with a concept of our own enhancements to current solutions
in order to support the requirements defined.

6.1 Current state

Currently, neither FreelPA, SSSD or Apache H T T P Server is aware of authorization's
relation to U R I of the requested resource. FreelPA can not store the information necessary
in its L D A P backend, SSSD can not either store it in its cache nor can it get this data
from FreelPA, and there is no Apache module that takes URI of the required resource into
account.

There are multiple possible workarounds, most notably the one described in section 5.4
- that would not even require changes in the projects involved, only changes in the Apache
H T T P Server's configuration files would be necessary. Neither of them, however, fulfils all
the requirements and they do not really solve our problem.

6.2 Enhancement of FreelPA and related applications — pos­
sible approaches

Now that we have defined what needs to be done and why it can not be solved by current
tools, let us show some ways the problem could be solved:

34

6.2.1 Using a Kerberos Authorization-data field

As we mentioned in section 3.3.3, there is a field in a Kerberos ticket called "Authorization-
Data". This field is optional and the standard does not define what it is supposed to
contain.

This field could be used to store some data about what actions the user is allowed to
perform. It could contain information about all the URI prefixes the user whose ticket is
being used is allowed to access. This approach would have some benefits:

• The service would not need to be IPA-aware at all; mere Kerberos-awareness would
be enough

• There would be almost no changes in the service necessary; it would have all the
information it needs and would only evaluate whether the requested URI matches
some of the listed prefixes

This approach, however, has some serious problems:

• The access rights are not, in FreelPA schema, a property of the user. They are derived
from the H B A C rules.

• There is a big potential of colliding with some standard/expectation. While contents
of this field is not specified by the Kerberos standard, both M I T and Microsoft Ker­
beros implementations use this field for their own implementation-specific data. Even
if some service would not use this data and therefore would be capable of using our
newly defined data, some other service might rely on this Kerberos implementation-
specific data. The solution would not be universal and might potentially break a lot
of existing infrastructure.

• This approach would not be consistent with current approach to evaluating H B A C
rules and authorization at all. So far, FreelPA uses another approach described in
section 6.1. While the current state would theoretically be achievable by the approach
of putting the authorization data in the Authorization-Data field in the Kerberos
ticket, the FreelPA engineers decided not to. It would be wise to use and enhance
their current approach instead of redefining H B A C architecture completely.

• The evaluation would need to be on both sides - the service and FreelPA. As access
rights are not a property of the user, FreelPA server would need to, upon request,
look at all the H B A C rules, from these, make a set of URIs related to the user that is
being authenticated/authorized while connecting to the verifying host's service, and
put this set to the Authorization-Data field of the Kerberos ticket. The service would
then need to match some of the allowed URI prefixes to actual URI being used, or
decide that none of them matches.

• There might be no Kerberos ticket at all during authorization - authentication could
have happened by method other than Kerberos.

6.2.2 Using L D A P directly

We could instead design an Apache module that would have an authorization handler. This
handler would connect the FreelPA's L D A P directly (figure 6.1). After contacting L D A P ,

35

Apache
module

1: Send me
HBAC rules

2: HBAC rules
Free I PA

Figure 6.1: FreelPA contacted over L D A P

it would download all the H B A C rules related to the user, host and service (the Apache
H T T P Server itself) being run.

As this data would be accessible to the module, it could evaluate the rules on its own,
deciding whether any of the URIs in the rules are prefixes of the URI of the resource
requested. If they were, the access would be allowed; if none of them matched, the access
would be denied.

The benefits of this approach would be:

• This approach would be very easy to implement. It would be just an Apache module
hook connecting to L D A P directly and acting upon received data.

• The service would have full control over any thinkable aspect of the problem. It would
have full information accessible.

The problems of this approach would be:

• A lot of data being transfered more times than necessary - the module would not
cache anything and would require all the data needed to evaluate the rules being
sent. If we actually tried to implement this functionality to counter this effect, we
would be re-inventing SSSD.

• While this approach is possible and easy to implement, it has no other real advantages
over the approach explained in section 6.2.5.

6.2.3 Using Free lPA directly

Another possible approach is making FreelPA itself evaluate the H B A C rules and merely
respond with "authorized" or "not authorized" answers to the service that is asking (fig­
ure 6.2). That would require using some FreelPA public A P I . The authorization function
would be called by a remote service with User, Host, Service and U R I as parameters. It
would go through H B A C rules, try to match them and if some of them matched, allow ac­
cess. The service-side functionality would be mere asking and receiving a boolean answer.
Therefore, the good thing about this approach would be easy extendability of other services
by this functionality. The bad properties of this approach would, however, be:

• Evaluation would happen on FreelPA's side. That would mean heavy load in bigger
domains with many services that are being accessed frequently.

• It would not be possible to cache anything other than response for the exact input pa­
rameters because the application would only receive binary authorized/unauthorized
response.

36

Apache
module

pam_sss

Apache
module

1: Can User a c c e s s B
Service on Host? P|-gg|

2: Yes

Figure 6.2: FreelPA contacted directly

1: User, Host,
Serv ice, URI

4: Yes, User
is author ized

SSSD

PAM
r e s p o n d e r

IPA p l u g i n
2: Send me
HBAC rules

FreelPA

LDAP

3: HBAC rules

Figure 6.3: SSSD, P A M

• We would need to always ask FreelPA for authorization. The request would go through
network (as FreelPA will be almost always on a remote system) and that would be a
big problem, especially for interactive applications.

6.2.4 Using SSSD over P A M

In another approach, we would use SSSD to evaluate H B A C rules it gets from FreelPA
(which is the solution currently frequently used for authorization) and Apache modules
would ask SSSD for authorization using the P A M library (figure 6.3).

Here, FreelPA would merely store and manage the H B A C rules, not evaluate them.
SSSD would download them from the FreelPA's L D A P backend and cache them. The
service (e.g., Apache H T T P Server) would contact SSSD and SSSD, upon receiving the
necessary information (User, Host, Service, URI) would evaluate the cached H B A C rules
and if any of them matches, allow access; if none of them matches, deny it. The response
would be a mere yes/no response. The request would be repeated many times as the re-

37

sponse would not be cached and the service would always only receive this boolean response.
It is, however, not a problem as SSSD is supposed to run on service's local system. This
approach is also the current way of handling H B A C .

Communication between the service (in our case, the Apache module) and SSSD would
happen over P A M in a way similar to how mod_authnz_pam described in section 5.2 works.
It might even be a good idea to just use this module as a basis and improve it to be URI-
aware. That would require using P A M to somehow send additional data to the SSSD: the
U R L We would also need to extend a P A M module used for communication with SSSD's
P A M responder - pam_sss, to send this data further to SSSD. After that, SSSD would
evaluate the request as described in the previous paragraph and respond yes/no - this
response would eventually get through P A M back to the Apache module.

This approach has multiple advantages:

• A big part of it is already part of FreelPA. We already have the H B A C infrastructure,
it is just not aware of resource U R L

• Very easy to implement in the service - it only needs to issue a P A M request with
necessary information and receive the yes/no response, it does not evaluate anything.

• For larger-scaled domains with multiple frequently accessed services, the FreelPA
server's performance will not significantly drop compared to the current state. There
is no evaluation taking place on FreelPA's side.

Compared to the approach described in section 6.2.3 (getting the yes/no answer directly
from FreelPA), this would generate more network traffic as SSSD would download all the
related data needed for evaluation of the request as opposed to only receiving a boolean
yes/no answer.

6.2.5 Using SSSD over D-Bus

The last proposed solution is very similar to the approach described in the previous sec­
tion 6.2.4. The FreelPA part would be absolutely the same. Also, SSSD part used for
communication with FreelPA would not need to be changed comparing to that previous
proposal.

However, communication between the service (in our case, the Apache module) and
SSSD would happen over D-Bus (figure 6.4) (in contrast to way mod_authnz_pam described
in section 5.2 or the solution proposed in the previous section handles communication with
SSSD - over P A M) . That means the Apache module would need to use D-Bus (as opposed
to merely calling a P A M library), and SSSD would need to understand the data on D-Bus
as request for authorization and handle it and reply accordingly. SSSD's D-Bus Responder
is Infopipe (described in section 3.6.3). InfoPipe does not currently have such a call and
does not even allow access to H B A C rules, that would need to be implemented. While
addressing a different problem, the approach described in section 5.3 is technically very
similar in its part related to communication between Apache H T T P Server and SSSD.

This approach has multiple advantages, very similar to the one using SSSD over P A M :

• A big part of it is already part of FreelPA. We already have the H B A C infrastructure,
it is just not aware of resource U R L

38

Apache
module

dbus.h 1: User, Host,
Serv ice, URI

4: Yes, User
is author ized

SSSD

Infopipe

IPA plugin

Free I PA

2: Send me
HBAC rules

3: HBAC rules

LDAP

Figure 6.4: SSSD, D-Bus

• Very easy to implement in the service - it only needs to send a D-Bus request with
necessary information to SSSD and receive the yes/no response, it does not evaluate
anything. However, this is still harder than merely calling a P A M library function.

• For larger-scaled domains with multiple frequently accessed services, the FreelPA
server's performance will not significantly drop compared to the current state. There
is no evaluation taking place on FreelPA's side.

Compared to the approach described in section 6.2.3 (getting the yes/no answer directly
from FreelPA), this would generate more network traffic as SSSD would download all the
related data needed for evaluation of the request as opposed to only receiving a boolean
yes/no answer.

6.3 Proposed approaches comparison

While all of these options are possible, they all have certain drawbacks. Some of them are
so dire that we can immediately decide not to use these solutions if we find better ones:

• Firstly, we can reject using Kerberos Authorization-data field. While it might be
possible to communicate authorization data using Kerberos ticket, there might be
no Kerberos ticket at all while we are authorizing a user. We merely expect some
authentication has happened before authorization, but some other means might have
been used.

39

• Also, while using L D A P directly would be possible and easy to implement for sure,
there are performance issues (all the H B A C data would need to be downloaded on
each request) and it is not consistent with any of the approaches already used.

• While using FreelPA directly is possible, for larger environments, this would mean
excessive load of the FreelPA host. Also, this approach is never used, canonically,
SSSD is used for both evaluating and caching rules.

The other two solutions are both suitable. They use SSSD which is a good and used
practice, they solve performance problems, they partly use existing infrastructure.

They are very similar and the difference lies in communication between Apache module
and SSSD. One would require the Apache module to use P A M and to extend pam_sss and
SSSD's P A M responder, the other would require module to use D-Bus directly and extend
Infopipe to understand it.

Standard P A M does not use U R I item in its request, however, it is possible to use
environment variables. Infopipe does not currently allow access to H B A C rules, but it
can be extended. From the two almost equally suitable solutions, we choose the one de­
scribed in section 6.2.4 where FreelPA is used to store authorization information, SSSD
evaluates it and Apache module communicates with SSSD using P A M , mainly for ease of
implementation and its usage of a wide-spread P A M interface.

40

Chapter 7

Concept

After mentioning and comparing multiple possible approaches, we decided to use the solu­
tion described in this chapter. It is one of the two feasible solutions and while another one
is also a valid option, the chosen solution is more consistent with existing tool usage, easier
to implement and more reusable thanks to usage of P A M .

The high level architecture is shown in figure 7.1. It shows different parts of the infras­
tructure in context of URI-based H B A C :

• FreelPA, the identity management server, as a part for storing and manipulation of
H B A C rules. Adding, deleting and modifying H B A C rules can be done both by means
of WebUI and command line. The data is stored in FreelPA's L D A P where it can be
accessed either by FreelPA's tools or directly using L D A P tools or libraries, limited
only by access rights of the requesting L D A P user.

• A link between FreelPA and SSSD. SSSD uses pure L D A P to get H B A C rules from
FreelPA. That means FreelPA is not the part making any decision in phase of us­
ing/evaluating H B A C rules in this schema and only serves for their management.

• SSSD side, consisting of these important parts:

— IPA provider plugin which is the part that actually decides whether user is autho­
rized to access based on (user,hostname,service,URI). It uses S D A P [] ("SSSD
L D A P ") plugin to get this data from FreelPA which in turn uses L D A P plu­
gin. IPA provider plugin receives authorization requests from P A M responder
through S-Bus (SSSD's partial implementation of D-Bus). Based on informa­
tion specified in this request and information received from FreelPA, it decides
whether to allow access or not and responds back to P A M provider, also through
S-Bus.
A benefit of evaluating rules on SSSD's side is less load of the FreelPA server.
SSSD caches the H B A C rule data so there is almost no increase in data traffic.

— A link between the IPA provider and P A M responder, S-Bus.

— P A M responder which is a tool listening for P A M requests on a AF_UNIX socket.
When it receives a request from some application, in our case some application
using pam_sss library, it forwards this request to IPA provider plugin, waits for
its response and responds back to the application.

41

Local machine
Apache
mod_hbac
au thz_pam

A

Figure 7.1: High-level architecture - depth levels denote the "higher using lower" relation (as
a library), arrows denote inter-process communication (protocol shown above the arrows).

42

• A link between SSSD and application, AF_UNIX socket. It is used by pam_sss, the
applicaiton does not need to be aware of this communication as it is encapsulated by
P A M interface.

• The application side - the service requesting authorization. Specifically, Apache
H T T P Server using the mod_hbacauthz_pam module which is using P A M interface,
with pam_sss being specified as provider.:

— Apache H T T P Server is the service we are going to use as a an example as it is
one of the most basic and known services identifying its content by U R L Fur­
thermore, web applications have some specifics that are important to consider
while thinking of a suitable strategy of evaluating H B A C rules. We will cre­
ate an Apache H T T P Server authorization module which will have the role of
application requesting user authorization based on H B A C .

— mod_hbacauthz_pam is the module using an Apache H T T P Server hook for au­
thorization. It uses P A M to communicate with SSSD using pam_sss library.

— pam_sss is the library which is part of the SSSD project and joins the P A M inter­
face on one side with SSSD's P A M responder on the other side using A F U N I X
socket.

Together, these tools are a way to store and manipulate H B A C rules in FreelPA, request
authorization based on these rules in some applicaiton (namely Apache H T T P Server) and
evaluate the rules to get the answer.

This high-level design has multiple advantages:

• Utilization of existing infrastructure to achieve new functionality. Many parts can be
reused and there are standardized interfaces used.

• Very easy implementation in applications. The application does not need to know
the actual rules nor does it need to use some new protocol. The application merely
needs to send an authorization request using standard P A M interface and receive the
answer which is only authorized or not authorized.

• There is no evaluation happening on FreelPA server - applying rules are evaluated on
client side, in SSSD's FreelPA plugin. This is important in environments with many
clients.

• There is no excessive data usage - only rules that have chance to be matched are
transfered to SSSD and they are cached. They are, however, checked for change to
keep them up to date.

Before describing implementation, we will show a concept of some important parts of
the schema in detail and justify some choices that have been made.

7.1 Conceptual problems and solutions

We need to implement a way to store and manage URI of the resource in FreelPA. We
will add it as an attribute of already existing entity: H B A C rule. We also need to add
URI evaluation functionality to SSSD, enhance pam_sss to handle URI data and create a
sample client application using this functionality.

43

There are multiple decisions that need to be made. Mainly format of the URI - what
exactly it should express. There are also concerns with case sensitivity of the URI, which
parts of the URI exactly should be stored, and what is the relationship to other attributes
of the H B A C rules. Backwards compatibility is another important issue that needs to be
addressed.

7.1.1 Semantics of U R I in H B A C

URI is another attribute of the H B A C rule. A n attribute (or group of attributes) is a way
to constrain a set of requests the rule applies to. If all of the attributes are met, then the
H B A C rule is considered matched. These attributes are: service (service group), hostname
(host group), user (user group), and URI .

That means, even if user, hostname and service match, we have to decide whether URI
matches or not - if it does, the whole rule matches, if it does not, the whole rule does not
match for sure. There are multiple ways of interpreting URI attribute and the right choice
is not obvious - it is important to keep in mind that URI has some properties that change
throughout different applications, e.g.:

• Some services consider URI case sensitive, some do not.

• Some services have hierarchical URIs: parts are often divided by slash. This is not,
however, by definition of URI.

• Often, each part of the hierarchically-interpreted URI means more and more strict
access rules to the resource specified by that URI . This is the case of web applications,
for example. Some applications, however, might use completely different addressing
structure.

Case sensitivity

Case sensitivity influences whether certain URI attribute, whatever its exact semantics is,
is matched to requested URI or not. URI's case-sensitivity question is not trivial as there
are multiple documents related to it:

Generally for URI, RFC-3986 [] specifies in its 6.2.2.1 part that scheme and host are
case-insensitive but the other generic components are assumed to be case-sensitive unless
specifically defined otherwise by the scheme. RFC-2616 [] in its 3.2.3 part (named URI
comparison states that a client SHOULD use a case-sensitive octet-by-octet comparison,
and further enumerates exceptions, some of these being that comparisons of host names
MUST be case-insensitive and comparisons of scheme names MUST be case-insensitive;.
RFC-2616, however, speaks about http client comparison - although in our case the URI
comparison happens on client-side (meaning a FreelPA client - SSSD), it does not happen
on a http client. This means the rule does not really cover our case, it is just something
that is good to keep in mind. Furthermore, RFC-7230 [56] in its part 2.7.3 again specifies
that scheme and host are case-insensitive and all other components are compared in a
case-sensitive manner.

From these, we can conclude we should compare scheme and host ctS C c t S 6 - insensitive
and we should normalize them to lower-case [42] [56]. A l l other parts should be left as they
are and compared in case-sensitive manner.

44

Hierarchical interpretation of URI, typical address structure of web applications

In many applications, URI is structured hierarchically. While it is possible to have URI as
a seemingly random string (except for scheme and authority parts), it is usually preferrable
to give it some clearly-defined structure. In web applications, it is often so that parts of
URI divided by slash symbol can be mapped to directories and the part after authority
defines path from some root directory to the source of the page. In other cases, often when
using some web frameworks, this part after authority can not be mapped to some path on
filesystem, however, it is some logical path in the application/framework.

Typical for these "path" interpretations is that usually, the longer the URI is, the more
specific part of the web is being shown. Consider this example:

http://hostname.net/app

http://hostname.net/app/users

http://hostname.net/app/users/user42

Clearly, the longer URI (with the same prefix) means more specific page. This is de
facto standard in web applications and is rarely not the case.

Another typical thing is that the more specific the URI is, the stricter access rights
are expected to be set. This is a very important finding because it has dire implications
on how we can interpret the URI parameter in H B A C rule. There are multiple possible
approaches and some of them might make sense for other applications, but if we consider
web applications (and as we will see, this will lead us to more general approach), we
neccessarily need to find out some of them are simply not feasible from web-administrator
point of view and that they can not be used for general URI as they pose expectations on
the URI structure that might not be always true. Consider this (web) application structure:

http://hostname.net/app/public

http://hostname.net/app/auth/user1

http://hostname.net/app/auth/user42

http://hostname.net/app/auth/admin

We see that the more specific page, the stricter the access rights should be, as long as
prefix is the same. We want to set the following access rights:

• Anyone (even unauthenticated user) can access http://hostname.net/app/public.

• Any authenticated user can access http://hostname.net/app/X for X being any
user's name except admin.

• Only admin can access http://hostname.net/app/auth/admin (so: while any user
can access anything with prefix http://hostname.net/app, only admin can access
http://hostname.net/app/admin).

As the number of users of the application might be very large, unknown, or infinite, it
is not easy to find a way to interpet the URI so that it is not hard or impossible to come
up with rules achieving the above mentioned goal. There are multiple ways of interpreting
URI, the considered ones are the following:

45

http://hostname.net/app
http://hostname.net/app/users
http://hostname.net/app/users/user42
http://hostname.net/app/public
http://hostname.net/app/auth/user1
http://hostname.net/app/auth/user42
http://hostname.net/app/auth/admin
http://hostname.net/app/public
http://hostname.net/app/X
http://hostname.net/app/auth/admin
http://hostname.net/app
http://hostname.net/app/admin

• Exact URI: Two URIs match if and only if they are exactly the same. This is the
simplest approach, but is very user unfriendly and most importantly, it is not even
capable of achieving the goal for most of the dynamic web applications: they usually
have dynamically changing number of URIs that can be legally accessed. In the
example it would be sufficient to allow registration of new users to make this approach
completely useless.

How the rules would look (omitted HOST any SERVICE any everywhere):

ALLOW any URI http: ://ho stname.net/app/auth/user1/a

ALLOW any URI http: ://hostname.net/app/auth/user1/b

ALLOW any URI http: ://ho stname.net/app/auth/user1/x

ALLOW any URI http: ://hostname.net/app/auth/user2

ALLOW any URI http: ://hostname.net/app/auth/user42

ALLOW admin URI http://hostname.net/app/auth/admin

There is no problem with giving some user too much access rights, but there are as
many rules as there are URIs with prefix http://hostname.net/app/auth/.

• Prefix interpretation allowing access when any rule matches: As we see, the longer the
URI, the stricter access control rules. This leads us to a concept of prefix-matching
the URIs: whenever the URI in rule is a prefix of the requested resource's URI , the
rule matches in terms of URI.

The way H B A C rules are interpreted, however, is currently such that whenever any
H B A C rule matches, the access is allowed. It is a correct behavior when only con­
sidering (user,service,host), but it causes a problem when trying to include URI as
a matching parameter. As shown in the last item of a goal list, we need to have a
way to allow every URI with certain prefix A except URIs with certain prefix B where
A is a prefix of B. In other words, we need to exclude a subset from a set of URIs
described by certain H B A C rule. This is not possible when matching any one rule
causes access authorization.

How the rules would look (omitted HOST any SERVICE any everywhere):

ALLOW any URI http://hostname.net/app/auth/

ALLOW admin URI http://hostname.net/app/auth/admin

This solves the problem of too many rules. However, it does not workl While the sec­
ond rule only allows admin to access http://hostname.net/app/auth/admin, the
first rule allows any user to access everything with prefix http: //hostname, net/
app/auth/, including http: //hostname, net/app/auth/admin. While the prob­
lem of too many rules is solved, there has arisen a new problem: we can accidentally
allow access to larger set than intended and there is no way to set exceptions from
that set. In this example, there is actually no way to set the rules correctly so they
achieve the goal, except using every possible prefix other than the intended exception,
effectively making this approach as bad as the first one: while it is not possible to
have a rule for every possible URI with given prefix (in the example, we would not
need the parts after usernames), there is still potentially infinitely many rules:

46

http://hostname.net/app/auth/admin
http://hostname.net/app/auth/
http://hostname.net/app/auth/
http://hostname.net/app/auth/admin
http://hostname.net/app/auth/admin

ALLOW any URI http://hostname.net/app/auth/userl

ALLOW any URI http://hostname.net/app/auth/user2

ALLOW any URI http://hostname.net/app/auth/user42

ALLOW admin URI http://hostname.net/app/auth/admin

• Prefix interpretation utilizing DENY rules: To solve the problem of exception from a
set of allowed URIs, we could come up with a concept of D E N Y rules. The approach
would mean allowing access when any A L L O W rule matches and no D E N Y rule
matches. A D E N Y rule would otherwise be the very same rule as an A L L O W rule.
That would not be completely new for FreelPA - at certain point in time, there
actually were both A L L O W and D E N Y rules.

D E N Y rules were, however, dropped from FreelPA. The reason for this is that we
believe that access rules should always be described positively - listing all accesses
that are allowed, rather than listing what is not allowed and thus risking we forget
something or make a mistake that would allow access that should not be allowed.
Another reason is that when we, for some reason, do not evaluate an A L L O W rule,
the result is denial of service at worst, while failing to evaluate a D E N Y rule could
allow access that should not be allowed. After consulting with upstream, it seems
D E N Y rules are absolutely not intended to be added again.

Furthermore, merely adding D E N Y rules would not be sufficient; for example, there
would be no easy way to come up with rules for our example. We would need to deny
access to http: //hostname. net/app/auth/admin to large or infinite number of users
as the access would be allowed by the first rule. The rules would look something like:

ALLOW any URI http://hostname.net/app/auth/

DENY userl URI http://hostname.net/app/auth/admin

DENY user42 URI http://hostname.net/app/auth/admin

This could be solved by only matching the user-wise most specific rule or giving the
rules some order, e.g.:

1 ALLOW any URI http://hostname.net/app/auth/

2 DENY any URI http://hostname.net/app/auth/admin

3 ALLOW admin URI http://hostname.net/app/auth/admin

This would be a fully working solution, allowing exceptions, describing infinite number
of cases (both URI- and user- wise) in a relatively small number of rules, and relatively
readable. Still, there are drawbacks:

— It is not easy to determine a rule to compare which one of the rules is more
specific user-wise. It would also be very error-prone.

— Adding order to rules would mean a significant change in their semantics which
would be hardly accepted by upstream.

47

http://hostname.net/app/auth/userl
http://hostname.net/app/auth/user2
http://hostname.net/app/auth/user42
http://hostname.net/app/auth/admin
http://hostname.net/app/auth/
http://hostname.net/app/auth/admin
http://hostname.net/app/auth/admin
http://hostname.net/app/auth/
http://hostname.net/app/auth/admin
http://hostname.net/app/auth/admin

— D E N Y rules will probably never be accepted by upstream.

— There are better and simpler solutions, described further in this text.

• Longest-prefix matching: Using the previous notion, we would in many cases create
a pair of rules for subsets we wish to exclude some users from - an A L L O W rule
allowing access to certain subset of users, and a D E N Y rule which is the same except
it denies any user access to the same location (which is necessary in case there is an
A L L O W rule allowing access to some URI which is a prefix of this location's URI).
The more specific or latter of those (depending on which approach we would choose)
two rules would be the A L L O W rule and the result would be only allowing access to
that URI to certain users.

In previous example, this exactly happens: rule 1 allows access to http: //hostname.
net/app/auth to anyone and to allow access to http://hostname.net/app/auth/
admin to admin only, we first need to deny everyone access there by rule 2 before
allowing it again for admin only by rule 3.

It is easy to understand why the D E N Y rule could be there implicitly - when admin
allows access to some resource to some user, he means that user only and all other
users should be denied. However, there is another rule that allows access to anyone -
the first one. To solve this problem, we can state that we only want to decide based
on the rule with longest prefix match. Even if there are multiple rules matching, we
are only interested in the most specific one. This allows us not to use D E N Y rules at
all because when there is no A L L O W rule, access is denied implicitly, and the more
general rule allowing access to a superset of the more specific rule would be ignored.

When searching for the longest prefix, we should only take into account the rules that
match in terms of host, service and schemeAndHost (section 7.1.2) because finding
longest URI match usually makes sense in the same application and once allowed
access should not be denied based on rule intended for another host or service. For
example, when we allow anyone access to the webserver A with URI /auth, we do not
expect another rule allowing admin access to F T P server B with URI /auth/user to
also deny access to the webserver A with URI /auth/user to anyone but admin. The
only attribute that can not match for the rule to deny access to the same URI for
users not listed in it is user because only this attribute does not change the context
of URI to some completely different application.

In longest-prefix case, we could use the same rules as in the previous example, just
ignore the ordering and drop the D E N Y rule (because there will be no D E N Y rules):

ALLOW any URI http://hostname.net/app/auth/

ALLOW admin URI http://hostname.net/app/auth/admin

The first rule allows anyone access to URI's beginning with http://hostname.net/
app/auth, except for longer URIs which have URI http: //hostname/app/auth as
a prefix. The first rule's URI is the second rule's URI's proper prefix, thus the first
rule is ignored for any URI matching URI of the second rule, regardless whether the
first rule's URI matches or not. This serves as implicit deny for everyone accessing the
resource identified by an URI which is a prefix of second rule's URI attribute if their
access does not match rule 2, regardless whether it would match rule 1 or not. Rule

18

http://hostname.net/app/auth/
http://hostname.net/app/auth/
http://hostname.net/app/auth/admin
http://hostname.net/

2 then allows admin access to http://hostname.net/app/auth/admin, the implicit
D E N Y making this the exclusive access right for admin.

• Regular expression matching: A completely different approach would be to give admin
more control over what exactly the rule should match. Rather than merely deciding
that the URI is to be interpreted as a prefix, we could use the requested resource's
URI as a string that we try to match against a URI regular expression stored in the
H B A C rule. If the regular expression matches, the rule matches. Another benefit is
that we do not need rule ordering or D E N Y rules and we do not need to order rules
by anything at all, not even prefix length.

This approach is strictly more powerful than any of the above mentioned - when using
Perl compatible regular expressions [26], we can still use prefix matching (using . * at
the end), we can easily specify exceptions (using lookarounds - see the next example
using negative lookahead), and we can even use more advanced matching not based
on length or hierarchical URI structure (for example, we can grant access to pages of
all users starting with example-user-, followed by a number). The goals specified
for our example could then be easily achieved by (using P C R E) :

ALLOW any URI "http://hostname.net/app/auth/(?!admin).*

ALLOW admin URI "http://hostname.net/app/auth/admin.*

We use negative lookahead in rule 1 to except the case where http: //hostname .net/
app/auth/ is immediately followed by admin. We also use . * to match the URI as
a prefix. The second rule then allows admin's access to every resource starting with
http://hostname.net/app/auth/admin.

P C R E library is already used in SSSD so this approach would not add any dependency.

While the regular expression is more powerful, it is also less user-friendly:

• Admin needs to write a correct regular expression. It might not be easy in some cases
and is error-prone.

• When adding a rule for a subset of URIs of another rule, it is necessary not only to add
one rule, but also to change another - the rule matching the superset of rule being
added, making an exception from that rule. This is another opportunity to make
a mistake and forgetting this step would mean granting access to more users than
should be granted access. This approach therefore leads to worse maintainability.
For example, when we have rules:

ALLOW any URI "http://hostname.net/app/auth/(?!admin).*

ALLOW admin URI "http://hostname.net/app/auth/admin.*

... and we want to add a rule granting access to http://hostname.net/app/auth/
privileged-user to privileged-user, we must add a rule allowing privileged-user to
access that URI and also change rule 1 so that contains an exception (in our case, a
negative lookahead) for that URI.

49

http://hostname.net/app/auth/admin
http://hostname.net/app/auth/(?!admin).*
http://hostname.net/app/auth/admin.*
http://hostname.net/app/auth/admin
http://hostname.net/app/auth/(?!admin).*
http://hostname.net/app/auth/admin.*
http://hostname.net/app/auth/

ALLOW any URI ~http://hostname.net/app/auth/(?!admin)(?!privileged-user

ALLOW admin URI "http://hostname.net/app/auth/admin.*

ALLOW privileged-user URI "http://hostname.net/app/auth/privileged-user

• Also after consulting with upstream, this seems like less-favorable solution than
longest-prefix matching.

Therefore, we choose longest-prefix matching as an approach to interpret and match
URIs in H B A C rules. It is more user-friendly and less error-prone. Also, while being
strictly less powerful than the regular expression approach, it is not missing any important
capability, especially with mainly web applications in mind - we usually only need to decide
based on strict equality in each hierarchy level of URI.

7.1.2 Parts of U R I to consider

As we described earlier, there are multiple parts of U R I and some of them need to be
matched in a way other than the others. The above-described longest prefix matching
makes sense for the hier-part, query and fragment parts of URI (further referred to as
path). It is considered case-sensitive by the standard, as also shown earlier. However, the
scheme, host and port parts of URI should be matched differently in two ways:

• Comparison should be case-insensitive, as defined by standard, rather than case-
sensitive rest of URI

• We do not want longest-prefix matching. It makes sense in a hierarchically structured
path part of URI, but not for scheme, host and port. For example, http://host.
net is completely different to http://host.net.com and these two should never be
matched.

Therefore, we want to add attributes for two parts of URI, one with case-insensitive
strict equality (scheme, host and port - schemeAndHost) and one with case-sensitive prefix
matching (rest of the URI - URI). Also, when the schemeAndHost attribute is empty, we
match it to any schemeAndHost in request - empty value serves as "any" because often, it
is not desirable to only limit a rule to one schemeAndHost.

7.1.3 Relationship to other attributes

There are multiple attributes of the H B A C rule by which we match the rule to a request.
So far, there are user, user group, host, host group, service, and service group categories.
There are also name and description attributes which are not used for matching, they only
serve for rule identification. After adding URI attributes, we want a rule to match if and
only if it would match based on the old attributes and it matches in terms of both newly
added attributes, both scheme, host and port attribute and rest of URI attribute, in the
way we described they should be matched.

This means the new attributes do not affect H B A C rule evaluation in any way other than
possibly making a rule that would otherwise match not to match, and the new attributes can
be matched only after other attributes are matched if the only result expected is whether
the sole rule matches or not. There is no dependency between these attributes at all.

50

http://hostname.net/app/auth/(?!admin)(?!privileged-user
http://hostname.net/app/auth/admin.*
http://hostname.net/app/auth/privileged-user
http://host
http://host.net.com

7.1.4 Form and interpretation of U R I attribute

As a result of discussion of mentioned problems, we conclude that:

• We will add two new attributes to the H B A C rule.

• One of them will be scheme, host and port part of the URI - it will be matched as
case-insensitive strict equality.

• Another one will be the rest of URI . It will use property of URIs in many services -
the fact that they are hierarchical. Only the rule with longest matching prefix will
match whole rule.

• We only take in consideration the H B A C rules that would match if there were not for
the new attributes.

7.1.5 Backwards compatibility

When using the old versions of the application, there is a problem: The old applications
are not aware of URI-based authentication and that can not be changed by now, however,
the new attributes can make the set of matching rules a subset of rules matching without
them (while the rule not matching without the new attributes can never match with them).
This makes the old application's behavior problematic: when they evaluate the rule, they
will ignore the new attributes and can possibly match rules that should never be matched
for the particular URI.

The same applies to the old versions of SSSD because while the P A M request contains
the new attributes, SSSD does not know it should decide based on them and the situation
is effectively the same as with the URI-based HBAC-unaware application.

When the P A M request does not contain the new attributes or there is an old version
of SSSD used, there are two possible interpretations:

"Do not care" interpretation

We evaluate the rules as if the application did not care about the attributes value:

• If a request does not contain some of the new attributes, we understand that the
client application either does not support URI-based H B A C or does not care about
these arguments.

If the application does not care about the new attributes, the result is simple - we
do not try to match the attributes and only match the other ones. If they match, the
rule matches. This also applies if just one of the new attributes is set - we ignore
that one and only use another.

If an application does not understand URI-based H B A C at all, we can only provide
answer whether the triplet (user,service,hostname) matches. This is the way rules are
evaluated now. If the rule matches based on these attributes, we consider it a matching
rule. This notion should not cause any problem because the application unaware of
the URI-based H B A C could only decide based on this triplet and the answer does
not change with adding URI-based H B A C . It is, however, important that the client
application that performs URI-based HBAC does indeed include schemeAndHost and
URI PAM parameters lest the result can be allowing more access than should be

51

allowed because SSSD will expect that the client application does not want URI and
schemeAndHost to be considered during evaluation.

• If the H B A C rule does not contain some of the new attributes because SSSD is running
against some older version of FreelPA which does not support URI-based H B A C , we
do not care about that attribute. If the rule would match with other attributes, it
still matches, if it would not match, it still does not match. It is important that the
admin is aware that the client application is running against some older version of
FreelPA. That is, however, not a problem because if they do not set rules for URI
(which they do not as it is not possible in older FreelPA versions), they naturally can
not expect URI-based H B A C .

If schemeAndHost attribute is empty, anything matches because we expect the at­
tribute not set means it is not important, rather than scheme and host being empty.
If the rest of URI is empty, it matches everything because an ampty string is prefix
of every string.

• The same applies if both the request and the rule misses some or all of the new
attributes or some of the attributes is empty.

When using this interpretation, however, there can be more rules matched than specified
in FreelPA: any rule that would match in URI-unaware H B A C matches here, too. When
the cause of missing attributes is an application that is aware of URI-based H B A C and uses
the lack of attribute to indicate - correlating to the specification - that it does not care
about the attribute's value, this interpretation is fine. The problem is when there is an old
version of the application or SSSD, together with a new version of FreelPA, involved. While
there is a rule in FreelPA present that only allows access to certain (user,host,service,URI),
the SSSD evaluates H B A C rules only by (user,host,service), potentially matching a rule
that is not intended by admin to match. Consider, for example, the rule:

ALLOW anyone HOST any SERVICE any URI http://host/login

With this rule and the old version of SSSD or application, the P A M request would
not contain any of the new attributes and consistently with URI-unaware H B A C , the rule
would match while the actual URI accessed might have been http://host/admin. This
behavior is not what FreelPA admin obviously intended by that rule.

"Empty value" interpretation

Rather than expecting the application not to care about the unset attributes, we should
consider the possibility of the application being simply unaware of URI-based H B A C and
administrator willing to set fine-grained URI-based H B A C with some applications running
their old versions. In that case, we should design the changes in a way ensuring lack of
attributes in the authorization request will not lead to matching more rules that intended
by administrator.

We will do this by having actually two types of rules in FreelPA: those for URI-aware
H B A C and those for URI-unaware H B A C , while the latter will keep the same form as they
had in the previous versions and the former will be made in such a way that they will be
ignored by older versions of SSSD. The new version of SSSD must be able to handle both
these types.

52

http://host/login
http://host/admin

This makes URI-based H B A C behavior backwards compatible with behavior of URI-
based H B A C unaware older versions (as we can not change the old applications' behavior)
while preventing situations when the rules matched by the new infrastructure are a proper
subset of those matched by the old infrastructure for the same resource access.

This approach is also very consistent with the meaning of empty attribute if we did not
do any special interpretation (i.e., we did not care about backwards compatibility at all)
- in case of empty attribute, we would only match rules with their URI attribute being a
prefix of the empty string, that means only rules with URI attribute empty.

7.2 FreelPA side changes

On FreelPA side, we need to:

• Allow storing of the two additional attributes - schemeAndHost (scheme, host and
port part of URI) and URI (the rest of URI). These two attributes should be orthog­
onal - they do not depend on each other and one, both or neither of them can be set.
The data types should allow correct handling (namely comparison) of each of them
to support L D A P search in them.

Because of backwards compatibility (as discussed in section 7.1.5), there will be ac­
tually two types of H B A C rules: those for URI-unaware H B A C (the same as until
now) and those for URI-aware H B A C . This H B A C rule duality means adding another
entity and changing its type according to value of the new attributes.

• Make the attributes accessible via L D A P .

• Allow manipulating attributes:

— Setting schemeAndHost attribute.

— Setting URI attribute.

— Modifying schemeAndHost attribute.

— Modifying URI attribute.

— Removing (setting to empty) schemeAndHost attribute.

— Removing (setting to empty) URI attribute.

Using:

— A P I

— WebUI

7.3 Communication between FreelPA and SSSD

L D A P protocol is used for communication between FreelPA and SSSD because it is just
getting some data from FreelPA's L D A P . Nothing is being evaluated or changed on FreelPA
side. SSSD's IPA provider uses S D A P [32] provider which uses L D A P provider to get the
data.

We only need to allow SSSD's access to the attributes (set correct acces rights for these
attributes) in FreelPA and do changes on SSSD's side so that it requests the new attributes
over L D A P .

53

7.4 SSSD side changes

We need L D A P to get the H B A C rule information from FreelPA, get the authorization
request with necessary data from some client application, and evaluate the request based
on H B A C rule information available. We also want the SSSD with this change implemented
to be backwards compatible.

H B A C rules are received through L D A P so we must make sure we request the new
attributes as well as the old ones. For backwards compatibility, we must correctly handle
the response not containing these new attributes. For the same reason, we also must be
able to decide based on both the rules for URI-unaware H B A C and for URI-aware H B A C .

Request from client should be received over P A M responder, so we must make sure it
understands the new request parameters containing schmemeAndHost accessed and URI
of the requested resource. We must make sure this P A M responder forwards the request
with the new attributes correctly to be evaluated. For backwards compatibility, we must
not require the new attributes to be set in P A M request and correctly interpret the request
while matching rules when the new attributes are indeed not present. This means we must
understand both forms of rules and when the request contains some of the new attributes,
act on all of them, otherwise only use the rules for URI-unaware H B A C .

7.5 Communication between SSSD and Apache module

The client application will communicate with SSSD using P A M . The P A M service must
be configured to use pam_sss library. This library must be changed so that it supports
URI-based H B A C . pam_sss is part of SSSD project.

The new request attributes will be sent as P A M environment variables (schemeAndHost
and URI) because there are no suitable P A M items for this purpose [25]. The client applica­
tion must therefore set the right values to these P A M environment variables and pam_sss
must read them and send them further to SSSD's P A M responder. These environment
variables are not the standard P A M fields - they will be ignored by applications unaware
of URI-based H B A C .

7.6 Client application

URI-based H B A C functionality is not limited to one particular application. However, we
have mainly web applications in mind when proposing it. For this reason, we will use the
Apache H T T P Server as an example for this thesis. We will write an Apache module that,
after being called from Apache H T T P Server's authorization hook, uses pam_sss (using
P A M interface) to verify user's access rights to the requested resource.

Because of how we designed the feature, the application does not need to evaluate any­
thing, it merely asks for authorization through a standardized P A M interface and receives
the authorized/unauthorized response. The only difference to current usage of H B A C is
that it also needs to set schemeAndHost and URI P A M environment variables if we want
them to be taken into consideration.

54

Chapter 8

Implementation

In this part, we will describe some technical details and difficulties of implementing the
concept described in the previous chapter.

While also the version with matching using regular expressions has been implemented,
we focus mainly on the longest prefix matching version as it is easier to maintain, less
error-prone and better acknowledged by upstream.

8.1 FreelPA

On FreelPA side, we must do changes to L D A P schema to add data types for the new
attributes and make them part of H B A C rule. We then need to change A P I and WebUI so
that it makes these attributes available and modifiable.

8.1.1 L D A P

FreelPA's L D A P schema is defined in install/share/60basev2.1dif. It is an L D I F
file [1]. L D I F files (L D A P Data interchange Files) are plaintext files intended for exporting
and importing L D A P directory data. The file is used on directory server initialization.
We must change the ipaHBACRule object to contain additional URI and schemeAndHost
attributes and define these attributes to have suitable data types.

To add attributes, we use the attributeTypes statement. For each of the attributes,
we must specify:

• OID - Object Identifier number

• NAME - Name of the attribute

• DESC - Description of the attribute

• EQUALITY - How two attributes of this type are checked for equality

• ORDERING - How attributes of this type are ordered

• SUBSTR - How an attribute of this type is checked for being substring of another
attribute of the same type

• SYNTAX - How the attribute is represented

• X-ORIGIN - Defining where the attribute was originally defined

55

Attribute URI Scheme, host and port
DID 2.16.840.1.113730.3.8.11.73 2.16.840.1.113730.3.8.11.74

NAME uri schemeAndHost

DESC Path part of URI Scheme, host and port part of URI
EQUALITY caseExactMatch caselgnoreMatch

ORDERING caseExactOrderingMatch caselgnoreOrderingMatch

SUBSTR caseExactSubstringsMatch caselgnoreSubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 (UTF-8 string) 1.3.6.1.4.1.1466.115.121.1.15 (UTF-8 string)
X-DRIGIN IPA v3 IPA v3

These parameters define how the attribute should be represented, what is its semantics
and lets us use L D A P ' s functions to process, filter or order the attributes in an L D A P
request.

We want to add an URI attribute with UTF-8 string syntax because URI is expressed
as such a string []. Contents of the attribute should be handled in case-sensitive manner,
thus the caseExact* definitions for EQUALITY, ORDERING and SUBSTR. We will use OID
from IPAv3 space (2.16.840.1.113730.3.8.11.*).

We also want to add a schemeAndHost attribute using the same syntax but using the
case-insensitive options for EQUALITY, ORDERING and SUBSTR because, as we described in
chapter 7.1, it should be understood cts ct c£tse~ insensitive string. Both attribute types'
parameters are shown in table 8.1.1.

To make the attributes part of the ipaHBACRule object, we use the objectClasses
statement. We will use the following parameters [21]:

• OID - Object Identifier number

• NAME - Name of the object class

• SUP - Superior object classes

• TYPE - Type of object class

• MUST - Required attributes

• MAY - Allowed attributes

• X-0RIGIN - Defining where the object class was originally defined

To add the two attributes to the existing ipaHBACRule class, we can keep most of
the parameters intact. We only add the URI and schemeAndHost objects to the allowed
attributes list, i.e. the MAY part, because these two attributes are not supposed to be
mandatory (missing attributes shall be handled as described in section 7.4).

Because of H B A C rule duality as described in section 7.1.5, we actually need one more
object class. The ipaHBACRule class will represent old URI-unaware H B A C rules while the
new class ipaHBACRuleURI will represent the new rules only available to SSSD versions that
are URI-aware, i.e. the first version of SSSD capable of accessing these rules is the very
version we are designing in this work.

Creating another class will work because SSSD gets the H B A C rules based on their
class - ipaHBACRule. The older versions will not ask for the rules of class ipaHBACRuleURI
and therefore will not see them and will not have opportunity to falsely match them to the
request while they should not be matched.

56

8.1.2 A P I , WebUI

We need to add ways to add, delete and modify URI and schemeAndHost attributes
using both A P I and WebUI. FreelPA's A P I is implemented in ipalib which is a Python
module. We extend hbacrule class (a subclass of LDAPObject) by these attributes
and new methods. A P I is generated based on this object, thus it has commands ipa
hbacrule-add, ipa hbacrule-del, ipa hbacrule-mod, ipa hbacrule-find and ipa
hbacrule-show with proper parameters (exactly described in command's help).

Wi th adding the new class for the URI-aware H B A C rules, we also need to make sure
the A P I can correctly work with it, especially:

• On modifying the rule, change its objectClass according to values of URI and
schemeAndHost attributes: set it to ipaHBACRule when they are both empty and
to ipaHBACRuleURI when some of them is not.

• When searching for or listing H B A C rules, search or list both the new and old class
rules.

• Correctly modify, delete etc. rules of both types

We will base these modifications on the old class hbacrule and will not add any other
class, keeping the A P I unchanged (except for adding two new attributes) and making the
H B A C rule duality transparent - the user will never know there are two types of H B A C
rules in the first place.

FreelPA's WebUI uses Freeipa's A P I to manage L D A P ' s content. It is based on
Javascript and uses J S O N - R P C to communicate with A P I [38] [19]. User interface is
modular and consists of facets built of widgets. To add ways for user to manipulate new
attributes using WebUI, we must therefore create new widgets for manupulating the
attributes and use the widgets in the H B A C rule's facet. Because WebUI uses A P I , we do
not need to modify add/mod/delete/list operations specifically for WebUI as we have
already done this in A P I .

8.2 SSSD

We need to make SSSD capable of getting H B A C rules from FreelPA, receiving authoriza­
tion request from the client application and evaluate the request based on data provided
by the client applicaiton and H B A C rules.

8.2.1 Getting rules

URI and schemeAndHost are attributes of the ipaHBACRule object in FreelPA's L D A P . We
need to make these data available to H B A C rule evaluator. H B A C rules are evaluated in
SSSD's IPA provider plugin.

The IPA provider plugin, upon receiving authorization request, gets the H B A C rules
from SSSD's cache. The cache is updated during this request so it is up to date. To receive
an attribute of ipaHBACRule object, the IPA provider plugin must ask for it excplicitly
so we need to add URI and schemeAndHost to the requested attributes. We need to ask
for data both of class ipaHBACRule and of class ipaHBACRuleURI so we change the filter
accordingly. When the data in cache is not present or not up to date, S D A P provider
plugin [«] is used to get the data. S D A P provider plugin is itself a wrapper over L D A P
provider plugin which gets the data directly from FreelPA's L D A P using standard L D A P .

57

8.2.2 P A M responder

P A M responder is a part responsible for receiving P A M requests from the application
(pam_sss library), processing them and calling proper routines to evaluate the request.
It listens on AF_UNIX named pipe ${localstatedir}/lib/sss/pipes/pam [15] where
${localstatedir]- is prefix, typically /var.

We extend the application protocol used between pam_sss and P A M responder to be
able to carry the two additional attributes. We make P A M responder understand URI and
schemeAndHost so that it saves them upon receiving rather than throwing protocol error.
We also change the interface between P A M and IPA provider plugin so that it is called with
additional data.

URI and schemeAndHost attributes should be set to empty string when they are missing
in the request, ensuring backwards compatibility - older pam_sss versions do not send the
attributes but P A M responder makes the interface with rest of SSSD consistent for both old
versions and new versions, both sending and not sending the attribute data (even requests
from the new versions of pam_sss need not contain the new attributes).

Upon receiving the request, the request is forwarded to the correct provider plugin -
IPA provider plugin in this case. The communication between P A M responder and IPA
provider plugin is done using S-BUS (which is a subset of D-Bus protocol using libdbus-1
library and implementing a subset of its features) listening on U N I X socket /var/lib/sss/
pipes/private/sbus-dp_${domain_name} [15].

8.2.3 Evaluating rules

When we call ipa provider with requested values and it downloads rules from FreelPA, we
have all the information necessary to decide whether we should authorize the access or not.
We compare each part - schemeAndHost and URI - separately.

We compare rule by rule, taking into account rules both of class ipaHBACRule and of
class ipaHBACRuleURI. We try to find the longest-prefix match of URI therefore, while
cycling through rules, we remember the result of every comparison of a rule URI attribute
of which is longer prefix of the requested URI than the previous remembered rule. If the
prefix length is equally as long as of the previous remembered result, and either the previous
remembered result or the result of last comparison is A L L O W , then we remember A L L O W
as the new result. This is because the same length combined with case-sensitive prefix
matching means that URI attributes in those rules are equal and the semantics of H B A C
rules is that when at least one of the rules allows access, the access is to be allowed.

The matching is done in manner justified in the previous chapter:

• We only attempt to match schemeAndHost if the rule matches in terms of host and
service.

• When comparing schemeAndHost, we do so using SSSD's function
sss_utf8_case_eq. This function does exact match comparison except it is
case-insensitive. We check whether the currently compared rule's schemeAndHost
attribute matches the schemeAndHost specified in request, according to this
function.

• We only attempt to match URI if the rule matches in terms of schemeAndHost.

58

result i- DENY:
long est Pre fix Length <— 0:
forall rules do

inter mediateResult, prefixLength <— evaluateRule{rule);
if intermediateResult = UNMATCHED then

if prefixLength > longestPrefixLength then
longestPrefixLength <— prefixLength:
result <- DENY;

end
else

if prefixLength > longestPrefixLength then
longestPrefixLength <— prefixLength:
result <- ALLOW;

end
end

end
return result

Figure 8.1: Algorithm used for rule evaluation

• When comparing URI, we check whether the currently compared rule's URI attribute
is a prefix of the URI specified in request. As empty string is a prefix of every string,
the rule with empty URI attribute matches any request regarding its URI.

As the result of rule evaluation, we return the last remembered value. The algorithm
can be also described by algorithm 8.1.

8.3 pam sss

pam_sss is a part of the SSSD project. We need to change it so that application using
P A M with service that has defined pam_sss as a provider is able to send request containing
the new parameters to the running SSSD daemon. As we described earlier, the application
uses standard PAM request for this task, but also specifies non-standard PAM environment
variables understood by applications aware of URI-based H B A C . We therefore need to make
pam_sss understand these additional arguments: URI and schemeAndHost.

When pam_sss receives a request, it uses pam_getenv call to get values of these at­
tributes. They are set to empty if they are not set by the aplication - for backwards
compatibility, they are not required.

Upon receiving all the information necessary, pam_sss uses AF_UNIX socket to com­
municate with FreelPA's P A M responder and request authorization, using the parameters
received from the application. We therefore make sure we extend the communication pro­
tocol by these two new arguments and actually send them.

8.4 Apache modules

To have a working example of application using URI-based H B A C , we have made a module
for Apache H T T P Server which will enhance its authorization capabilities by URI-based

59

H B A C . The module implements authz_provider interface meant for authorization-related
Apache modules.

8.4.1 mod hbacauthz pam

As a solution meant solely for URI-based H B A C , we have made a new module which
presumes the authentication has already taken place and the authenticated user's name is
saved in its r->user variable where r is a request_rec type variable passed automatically
to the called Apache modules. To keep the module as simple as possible, we only make it
compatible with Apache H T T P Server 2.4. That is because Apache A P I changed for A A A
in this version. It should not pose a problem because Apache H T T P Server 2.4 is a version
from beginning of year 2012 [5].

The application's (module's) only tasks are to gather information necessary to send
a P A M request (user, host, service, scheme, port, URI), send this request with properly
set P A M items and PAM variables with the new attributes, and receive the binary autho­
rized/unauthorized answer. The sources for information we need are:

• User: r->user

• Host: There are two different "Host" parameters:

— The Host corresponding to Host attribute of H B A C rule. Its value is implicitly
decided by the hostname of machine asking for P A M authorization - which is,
from the point of SSSD, hostname of the very machine SSSD is running on. This
item does not therefore need to be sent as a part of the P A M request.

— The Host that will be part of the schemeAndHost attribute. It could be the
hostname that client (the web browser requesting the page) actually used in URI
or canonical hostname of the virtual host handling the H T T P request. The Host
header is, however, not mandatory in H T T P / 1 . 0 [20]. Furthermore, this header
can be spoofed and should not be relied upon for security applications. For this
reason, we use the second option. We get this value using ap_get_server_name
which returns the canonical name of the virtual host handling the H T T P request.
Often, these two notions of Host result in the same value, sometimes, however,
they do not, e.g. when there are multiple virtual H T T P servers running on a
single machine (which has multiple DNS records pointing to it).

• Service: Specified in the conf /http. conf file or in some of the . conf files in conf . d/
directory in Apache's settings directory (typically /etc/httpd/). It is available in the
Apache modules using ap_getword_conf (r->pool, &require_args).

• Scheme: ap_http_scheme (r)

• Port: ap_get_server_port (r)

• URP. r->uri which already contains only the path part (it is stripped of scheme, host
and port)

This information is then sent using P A M interface - either its standard items or P A M
environment variables (the pam_putenv call) in case of URI and schemeAndHost attributes.
Upon setting all the data necessary, pam_acct_mgmt call is executed which returns either
A U T H O R I Z E D or N O T A U T H O R I Z E D and this is also returned as the result of module's
call.

60

8.4.2 mod authnz pam

We can also enhance the existing module mod_authnz_pam to send the new attributes and
therefore make its built-in authorization part into URI-aware H B A C . We will do this very
similarly to mod_hbacauthz_pam.

8.5 Differences for PCRE-based matching strategy

We decided not to use the regular expression approach to interpretation and comparison
of U R I paths. However, changing this decision and making URI-based H B A C based on
P C R E would be very easy.

The only part that would need to be changed is the SSSD evaluation part. As P C R E
library is already used in SSSD, this would not add any dependences. The evaluating
strategy would be the same, except that we would not need to find the longest-prefix match
and we could A L L O W access whenever we find the first rule that matches. Matching
would be very straight-forward, instead of checking whether URI path attribute of the rule
is a prefix of the requested URI path, we would check whether it is a regular expression
describing a set of strings such that the requested URI path is part of this set.

61

Chapter 9

Testing

After implementing the whole URI-based H B A C infrastructure, we need to make sure that:

• The solution works - we can indeed control access based on URI

• It works reasonably fast

• Other requirements specified in chapter 4 are satisfied

9.1 Functionality testing

We can divide functional requirements to two parts. Whether URI-based H B A C , once
properly set, works, and whether it is possible to manage the H B A C rules using proper
tools.

9.1.1 Tools

By inspecting help of the ipa command on FreelPA server, we can conclude we are able to
add, change and delete both URI and schemeAndHost attributes of a H B A C rule. It can be
done by commands ipa hbacrule-add, ipa hbacrule-del and ipa hbacrule-mod with
proper parameters (exactly described in command's help).

In the same way, by inspecting the FreelPA WebUI, we see we can do the very same
operations using webUI, which itself is using IPA A P I . It is in the Policy / Host Based
Access Control section.

We can as well see that the new arguments are readable (and not modifiable) using
L D A P tools against FreelPA's L D A P .

9.1.2 U R I based H B A C

Given the rules are properly set, we want to test that URI-based H B A C actually works.
Unit tests are part of the SSSD and FreelPA projects and are easily understandable from
the source code. We have, however, manually tested the basic cases:

• There is a rule allowing access to certain user, host, service and URI and there is no
other rule with its URI attribute being a longer prefix of the requested resource's U R I
than that rule. We expect access to be allowed. For requested resource's URI /ap­
plication/login, the used rules were (host and service and schemeAndHost attribute
omitted and expected to match):

62

ALLOW anyone URI /application

ALLOW anyone URI /whatever

• There is a rule allowing access to certain user, host, service and URI but there is
another rule with its URI attribute being a longer prefix of the requested resource's
URI than that rule and not allowing that user to access and there is no other rule
that would in the similar manner allow that user's access again. We expect access to
be denied for the user. We also expect access to be allowed to the user specified in
that second rule. Example of such rules (for user not being admin):

ALLOW anyone URI /application

ALLOW admin URI /application/login

• There is a rule with matching schemeAndHost but not matching URI . There is no
other matching rule. We expect access to be denied.

• There is a rule with matching URI but not matching schemeAndHost. There is no
other matching rule. We expect access to be denied.

• There is a rule matching without URI-wise H B A C and without any of the new argu­
ments specified. We expect access to be allowed based on such a rule.

9.2 Performance

To test whether the changes did not slow down evaluation too much, we test authorization
20 times against FreelPA with 256 rules specified, first using the old URI-based H B A C -
unaware software and then using software modified for URI-based H B A C together with
mod_hbacauthz_pam module, on the same machine and OS. We make an average of time
of those 20 tries for each version and compare the averages.

For standard H B A C unaware of URI, the average time to access (or get access denied)
the mod_authnz_pam secured page was 165 ms. For URI-based H B A C , the average time to
access the mod_hbacauthz_pam secured page was 166 ms. We see the difference is insignif­
icant and it is less than measuring error. From that, we can conclude that performance is
not largely affected by URI-based H B A C .

9.3 Example of use

We can furthermore demonstrate usability of the example on securing a well-known real-
world application. For its widespread use, we have chosen to secure a WordPress in­
stance with URI-based H B A C . We will use clean WordPress installation (with address
http://$(hostname)/wordpress), add a plugin ensuring that WordPress respects the
REM0TE_USER server variable and set up Kerberos authentication for the site with Ker-
beros server being the one running as part of FreelPA. Such a WordPress instance has
three important parts from security point of view:

• Public part (/wordpress) which anyone can access, even unauthenticated user

• Maintenance part /wordpress/wp-admin which any authenticated user can access to
add and edit posts etc., except for parts which are meant for admin only

63

http://$(hostname)/wordpress

• Admin part /wordpress/wp-admin/X for X being some of admin-specific parts of
maintenance part - only admin (in our example, user wpadmin) can access here

After installing the WordPress instance, setting up authentication and authorization
and setting proper rules in FreelPA, we will check for unauthenticated user, non-admin
and wpadmin whether they can access exactly what they should be able to access. The
rules are the following (we can - but do not have to - also setup schemeAndHost values to
http: //$ (hostname): 80 if we want to set these rules for one specific H T T P host, otherwise
they match access to any H T T P host with the same path):

ALLOW <anyone> SERVICE wordpress URI /wordpress/wp-login.php

ALLOW <anyone> SERVICE wordpress URI /wordpress/wp-admin/

FOR X in themes,customize,widgets,nav-menus,theme-editor,plugins,

plugin-install,plugin-editor,users,user-new,options-general,

options-writing,options-reading,options-discussion,options-media,

options-permalink

ALLOW admin SERVICE wordpress URI /wordpress/wp-admin/X

ENDFOR

We can add these rules by using the following A P I calls:

add the HBAC service

ipa hbacsvc-add wordpress

add the rule for wp-login.php, any authenticated user can access

on any machine

ipa hbacrule-add /wordpress/wp-login.php —url='/wordpress/wp-login.php'

—usercat=all —hostcat=all

the rule is only valid for wordpress HBAC service

ipa hbacrule-add-service /wordpress/wp-login.php —hbacsvcs=wordpress

add the rule for wp-admin, any authenticated user can access

on any machine

ipa hbacrule-add /wordpress/wp-admin/ —url='/wordpress/wp-admin/'

—usercat=all —hostcat=all

the rule is only valid for wordpress HBAC service

ipa hbacrule-add-service /wordpress/wp-admin/ —hbacsvcs=wordpress

i f wp-admin/ is followed by one of these, use stricter rules

for admincat in {themes,customize,widgets,nav-menus,theme-editor,plugins,

plugin-install,plugin-editor,users,user-new,options-general,

options-writing,options-reading,options-discussion,options-media,

options-permalink>.php; do

create a HBAC rule for admin-only parts

ipa hbacrule-add /wordpress/wp-admin/$admincat

64

HBAC Ru les

Search Q S Refresh ft Delete + A d d - D i s a b l e ^ E n a b l e

• Rule name Status Descr ipt ion

Scheme and host part

o fURI Path part of URI (prefix}

• /wo r d p re s s/wp-a d in i n/

Enabled

/wo rd p re s s/wp-a d m i n/

• /wordpress/wp-

•dmin/customize.php Enabled

/wordpress/wp-

admiiVcustomize.php

• /wordpress/wp-

aclmiiv'Lhemes.php Enabled

/wordpress/wp-

admiiv'themes.php

• /wordpress/wp-

adm in/widgets, p hp Enabled

/wordpress/wpr

adnnin/widgets.php

• /word p res s/wp-login.php

Enabled

/wo rd p re s s/wp-l ogi n, p h p

Figure 9.1: H B A C rule list in WebUI

—url="/wordpress/wp-admin/$admincat" —hostcat=all

the rules are only valid for wordpress HBAC service

ipa hbacrule-add-service /wordpress/wp-admin/$admincat

—hbacsvcs=wordpress

the rules only allow wpadmin user, no one else,

even i f he is authenticated

ipa hbacrule-add-user /wordpress/wp-admin/$admincat —user=wpadmin

done

The resulting list of rules in WebUI is shown in figure 9.1 and rule detail page is shown
in figure 9.2.

We will set up Apache H T T P Server to use Kerberos authentication on
/wordpress/wp-login.php and /wordpress/wp-admin/*. We will use WordPress's
http-authentication plugin to understand the REMOTE_USER variable and log in the
user based on their Kerberos ticket. We will setup the Apache H T T P Server to use
mod_hbacauthz_pam module for authorization. We do not need to setup anything for
public part because users are not required to be authenticated nor authorized there and
anyone can access it.

9.4 How to setup WordPress with Kerberos and URI-based
H B A C

In this section, we will describe the steps to setup the WordPress instance in manner
described above. To make it easier, a few scripts are included to automate things such as
FreelPA server installation or securing WordPress with proper H B A C rules. These scripts
are:

• make. sh - compiles FreelPA if run with first argument ipa, SSSD if run with sssd
or both if run with both

65

Ru le n-a me /word press/wp-admin/cuitorn ize.ph p

Description

Scheme and host part of URI

Path partof URI (prefix) /V«r^pret£/wp-admin/custoiiiize.php

Who
User category thr rueapp rsto:0 Anyone ® Specified Uiersand Groups

• Uisri t *Add

•

T Diets +Add

Accessing
Host category the ru eapp £-Mo:Q Any Hdit O Specified Hoitsand Groups

H OE-LE- 8 Delete
• Add 1

HostGroupi 8 Delete • Add 1

Via Service
Service category the ruleappliestoiü AnyService ® Specified Servicesand Groups

• Services TDE£lE +Add
D word press

• Service Groups HDtttE *Add

Figure 9.2: H B A C rule detail in WebUI

66

• install_server. sh - based on information set in scripts. conf, installs the FreelPA
server

• install_client. sh - based on information set in scripts. conf, installs the FreelPA
client (sets up SSSD, Kerberos etc.)

• install.sh - runs make.sh with first argument equal the script's first argument,
install_server. sh and install_client. sh

• secure_wordpress. sh - when run on FreelPA server, adds the rules securing a Word-
Press instance with P A M service name equal to the first argument and using the
second argument as WordPress administrator's login (other authenticated users will
have access rights corresponding to Author privileges in WordPress)

The scripts. conf file is used to set some necessary information to perform installation,
mainly FreelPA server's hostname and the client's hostname. These tests should be run
from the freeipa-scripts directory. These tests have not been tested extensively but
should work fine on Fedora 23. Using these scripts, we can make the described setup by
executing these steps:

1. Install modified versions of FreelPA and SSSD (you can use the install.sh script)

2. Setup a WordPress instance on client's Apache H T T P Server in /wordpress

3. Add the users you want to use to both WordpPess and FreelPA (do not forget to
include domain in WordPress)

4. Setup http-authentication plugin in the WordPress instance [13]

5. Install mod_hbacauthz_pam plugin in the Apache H T T P Server's module directory if
not done by the install script before, and restart Apache H T T P Server

6. Setup Apache H T T P Server to use mod_hbacauthz_pam in the correct Apache Loca­
tions (/wordpress/wp-login.php and /wordpress/wp-admin/*) by using require
pam-account <pam_service_name> directive

7. Setup Kerberos authentication in the same Locations

8. Configure P A M to use pam_sss for authorization for chosen P A M service name in
/etc/pam.d/<pam_service_name>

9. Run secure_wordpress. sh script on the FreelPA server to add correct H B A C rules

Now, with Kerberos ticket other than wpadmin's, user can not access admin-only parts
of WordPress:

[rootOhost -]# kinit user42

[rootOhost -]# curl - i -u : —negotiate http://$(hostname)/wordpress/\

wp-admin/customize.php

HTTP/1.1 401 Unauthorized

Date: F r i , 20 May 2016 13:15:01 GMT

Server: Apache/2.4.18 (Fedora) mod_auth_kerb/5.4

WWW-Authenticate: Negotiate

67

http://$(hostname)/wordpress//

Content-Length: 63

Content-Type: text/html; charset=iso-8859-l

<htmlxbody>Unauthorized. </body></html>

9.5 Results

With not much effort, we were able to secure a WordPress instance on webserver level,
without needing any application-level access management. We can use FreelPA's abilities
of identity management, grouping services and hosts etc. for easier maintenance and to
efficiently centrally manage access rights. We can see that URI-based H B A C can serve as
a solution adding one more level of security to the system or can even be used standalone,
while being able to determine not only based on the fact that the service is WordPress
running on some host, but to provide fine-grained access control on level of exact address
of the required resource.

Prefix matching makes it easy to use rules for large parts of the web, not needing to
make a rule for every resource specifically, while longest-prefix matching allows for intuitive
setting of exclusive access rights for some users, even if the part of web in consideration is
a subpart of a larger part that, generally, allows more users' access.

To secure WordPress, just a few rules are necessary and their maintenance is made easy.
Also, URI-based H B A C did not make system noticeably slower. Overally, the system seems
to work in this case and can be expected to work in most scenarios.

68

Chapter 10

Conclusion

I created a set of tools together supporting identity management and access control based on
URI of the requested resource. This allows for centralized management of access privileges,
authorization based on request of providers of services and security on multiple levels. I
use FreelPA for management and storing of access rules with URI-related objects and their
attributes. I use SSSD as an evaluating and caching service allowing for more efficient use
and easier implementation of service-side part. I use P A M interface to further simplify
the interface for the application, thus making it easier to implement URI-based access
control in applications currently not supporting it. Using rule duality, I ensured backwards
compatibility. I also created an Apache module demonstrating use of the tools and showed
the configuration and usage example using a well-known web application, WordPress.

These tools together make a great improvement to current state of access-control in
environments using FreelPA identity management tool. Currently, the patches are being
reviewed by upstreams. In conclusion, the solution seems to be useful and rigid enough and
after being acepted by FreelPA upstream, it can be used by wide audience.

10.1 Future work

Most of the future work should focus on further improving the tool based on the knowledge
gained from usage in production environments. Also, before distributing the new version
of FreelPA containing the tool to enterprise environments (e.g., using it in the new version
of Red Hat Enterprise Linux), more thorough user documentation should be written.

69

Bibliography

[1] A L D I F File Format, h t tps :
/ /docs.oracle.com/cd/E10773_01/doc/oim.1014/el0531/ldif_appendix.htm.
Online; Accessed: 2015-12-28.

[2] About - FreelPA. ht tps: / /www.freeipa.org/page/About. Online; Accessed:
2015-12-26.

[3] About Host-Based Access Control, ht tps: / /access . redhat .com/documentat ion/
en-US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_
Authent ica t ion_and_Pol icy_Guide/conf igur ing-host -access .h tml . Online;
Accessed: 2015-12-27.

[4] Addressing and names in D-Bus.
http://maemo.org/maemo_training_material/maemo4.x/html/maemo_Platform_
Development_Chinook/Chapter_01_DBus_The_Message_Bus_System.html. Online;
Accessed: 2015-12-30.

[5] [A N N O U N C E M E N T] Apache H T T P Server 2.4.1 Released.
http://marc.info/?l=apache-httpd-announce&m=132983471818384&w=2. Online;
Accessed: 2016-04-28.

[6] Apache - H T T P server project, h t tps : / /h t tpd .apache .o rg / . Online; Accessed:
2015-12-13.

[7] Apache module mod_authnz pam.
https://fedorahosted.org/webauthinfra/wiki/mod_authnz_pam. Online;
Accessed: 2015-12-30.

[8] D-Bus Interface: Users and Groups.
ht tps: / / fedorahosted.org/sssd/wiki/DesignDocs/DBusUsersAndGroups.
Online; Accessed: 2015-12-29.

[9] DBus responder design.
ht tps: / / fedorahosted.org/sssd/wiki/DesignDocs/DBusResponder. Online;
Accessed: 2015-12-29.

[10] FreelPA - identity | policy | audit, h t tp : / /www.freeipa .org . Online; Accessed:
2015-11-15.

[11] FreelPA Trac. h t tps : / / f edorahos ted .o rg / f r ee ipa / . Online; Accessed: 2015-11-16.

70

https://www.freeipa.org/page/About
https://access.redhat.com/documentation/
http://maemo.org/maemo_training_material/maemo4.x/html/maemo_Platform_
http://marc.info/?l=apache-httpd-announce&m=132983471818384&w=2
https://httpd.apache.org/
https://fedorahosted.org/webauthinfra/wiki/mod_authnz_pam
https://fedorahosted.org/sssd/wiki/DesignDocs/DBusUsersAndGroups
https://fedorahosted.org/sssd/wiki/DesignDocs/DBusResponder
http://www.freeipa.org
https://fedorahosted.org/freeipa/

[12] How the Kerberos Version 5 Authentication Protocol Works.
h t tps : / / technet .microsof t . com/en-us / l ibrary/cc772815°/ 0 28v=ws. 10°/029. aspx.
Online; Accessed: 2015-12-25.

[13] H T T P Authentication.
h t t p s : / / w o r d p r e s s . o r g / p l u g i n s / h t t p - a u t h e n t i c a t i o n / i n s t a l l a t i o n / . Online;
Accessed: 2016-04-29.

[14] Identity Management Guide.
ht tps: / /access.redhat .com/documentation/en-US/Red_Hat_Enterprise_Linux/
6/html/Ident i ty_Management_Guide/ ipa- l inux-services .html . Online;
Accessed: 2015-12-27.

[15] Inter-process communication between SSSD processes.
h t tps : / / f edorahosted. org/sssd/wiki /DesignDocs/ IPC. Online; Accessed:
2016-04-10.

[16] Internet Engineering Task Force, h t t p s : / / w w w . i e t f . o r g / . Online; Accessed:
2015- 11-17.

[17] Introduction to Directory Services and Directory Server .
h t tps : / /docs .orac le .com/cd/E19396-01/817-7619/ in t ro .h tml . Online;
Accessed: 2015-12-27.

[18] IPAv3 Layout. h t tp : / /www.f ree ipa .Org / images /7 /72 / IPAv3-Layou t .png . Online;
Accessed: 2015-12-27.

[19] J S O N - R P C . h t tp : / /www.jsonrpc .org / . Online; Accessed: 2016-04-10.

[20] Key Differences between H T T P / 1 . 0 and H T T P / 1 . 1 .
h t tp : / /www8.org/w8-papers /5c-protocols /key/key.html . Online; Accessed:
2016- 04-29.

[21] L D I F Format for Adding Schema Elements. h t tps : / /docs .oracle .com/cd/B14099_
19/idmanage. 1012/bl5883/ldif_appendix003.htm. Online; Accessed: 2016-04-10.

[22] Linux Domain Identity, Authentication, and Policy Guide, h t tp s : / / access .redhat.
com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_
Iden t i ty_Authen t i ca t ion_and_Pol i cy_Guide / ipa - l inux-se rv ices .h tml .
Online; Accessed: 2015-12-27.

[23] Package: freeipa-server. h t tps : / /packages .deb ian .o rg / s id /ne t / f r ee ipa - se rve r .
Online; Accessed: 2015-11-16.

[24] P A M Documentation. http://uw714doc.sco.com/en/SEC_pam/pamintro.html.
Online; Accessed: 2015-12-30.

[25] pam_set_item - set and update P A M informations .
h t tp : / / l inux.d ie .ne t /man/3/pam_set_ i tem. Online; Accessed: 2016-04-09.

[26] P C R E - Perl Compatible Regular Expressions, h t tp : / /www.pcre .org/ . Online;
Accessed: 2016-04-09.

71

https://wordpress.org/plugins/http-authentication/installation/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/
https://www.ietf.org/
https://docs.oracle.com/cd/E19396-01/817-7619/intro.html
http://www.freeipa.Org/images/7/72/IPAv3-Layout.png
http://www.jsonrpc.org/
http://www8.org/w8-papers/5c-protocols/key/key.html
https://docs.oracle.com/cd/B14099_
https://access
https://packages.debian.org/sid/net/freeipa-server
http://uw714doc.sco.com/en/SEC_pam/pamintro.html
http://linux.die.net/man/3/pam_set_item
http://www.pcre.org/

[27] Proposal: drop D E N Y rules from H B A C .
https:/ /www.redhat.com/archives/freeipa-users/2011-June/msg00256.html.
Online; Accessed: 2015-12-27.

[28] Red Hat: The world's open source leader, http://www.redhat.com. Online;
Accessed: 2015-11-16.

[29] [RFE] Add a way to store and manage URLs/resources for applications.
h t tps : / / f edorahos ted .o rg / f r ee ipa / t i cke t /5030 . Online; Accessed: 2015-11-16.

[30] R P M resource freeipa-server.
h t tp: / / rpmfind.net / l inux/rpm2html/search.php?query=freeipa-server .
Online; Accessed: 2015-11-16.

[31] Schema Specification, http://www.openldap.org/doc/admin24/schema.html.
Online; Accessed: 2015-12-28.

[32] S D A P . h t tps : / / fedorahosted. o rg / sssd /wik i / In te rna l sDocs#a5 . 2 . SDAP.
Online; Accessed: 2016-04-09.

[33] SSSD. h t tps : / / f edorahos ted .o rg / s ssd / . Online; Accessed: 2015-12-29.

[34] SSSD InfoPipe responder.
h t tps : / / jh rozek . fedorapeople .o rg / s ssd /1 .12 .0 /man/sssd- i fp .5 .h tml .
Online; Accessed: 2015-12-29.

[35] SSSD Internals. h t tps : / / f edorahos ted .o rg / s s sd /wik i / In te rna l sDocs . Online;
Accessed: 2015-12-29.

[36] The Request for Feature Enhancement (RFE) Process for Red Hat product suite.
ht tps: / /access . redhat .eom/solut ions/73513#. Online; Accessed: 2015-11-16.

[37] trac - integrated S C M & Project Management, h t t p : / / t r a c . e d g e w a l l . o r g / .
Online; Accessed: 2015-11-16.

[38] Web UI. http://www.freeipa.org/page/Web_UI. Online; Accessed: 2016-04-10.

[39] What is a Directory Service? h t tps : / /msdn .mic rosof t . com/en-us / l ib ra ry /
windows/desktop/aa367035°/o28v=vs.85°/o29.aspx. Online; Accessed: 2015-12-27.

[40] Writing Apache Modules with Perl and C.
h t tp : / / docs to re . mik. ua/orelly/apache_mod/24. htm. Online; Accessed:
2015-12-30.

[41] T. Berners-Lee, C E R N , L . Masinter, Xerox Corporation, M . McCahill , University
of Minnesota, and Editors. Uniform Resource Locators (URL) . R F C 1738, I E T F ,
December 1994.

[42] T. Berners-Lee, W 3 C / M I T , R. Fielding, Day Software, L . Masinter, and Adobe
Systems. Uniform Resource Identifier (URI): Generic Syntax. R F C 3986, I E T F ,
January 2005.

[43] T. Berners-Lee, W 3 C / M I T , R. Fielding, Day Software, L . Masinter, Adobe Systems,
and Editors. Uniform Resource Identifier (URI): Generic Syntax. R F C 3986, I E T F ,
January 2005.

72

https://www.redhat.com/archives/freeipa-users/2011-June/msg00256.html
http://www.redhat.com
https://fedorahosted.org/freeipa/ticket/5030
http://rpmfind.net/linux/rpm2html/search.php?query=freeipa-server
http://www.openldap.org/doc/admin24/schema.html
https://fedorahosted.org/sssd/
https://jhrozek.fedorapeople.org/sssd/1.12.0/man/sssd-ifp.5.html
https://fedorahosted.org/sssd/wiki/InternalsDocs
https://access.redhat.eom/solutions/73513%23
http://trac.edgewall.org/
http://www.freeipa.org/page/Web_UI
https://msdn.microsoft.com/en-us/library/

[44] G . A . Champine, Jr. D . E . Geer, and Will iam N . Ruh. Project Athena as a
distributed computer system. IEEE computer, 23(9):40-51, Sept 1990.

[45] Ed . D. Crocker, Internet Mai l Consortium, P. Overell, and Demon Internet Ltd.
Augmented B N F for Syntax Specifications: A B N F . R F C 2234, I E T F , November
1997.

[46] R. Fielding, U C Irvine, J . Gettys, Compaq/W3C, J . Mogul, Compaq, H . Frystyk,
W 3 C / M I T , L . Masinter, Xerox, P. Leach, Microsoft, T. Berners-Lee, and W 3 C / M I T .
Hypertext Transfer Protocol - H T T P / 1 . 1 . R F C 2616, IETF , June 1999.

[47] R .T . Fielding and G . Kaiser. The apache http server project. Internet Computing,
IEEE, l(4):88-90, Jul 1997.

[48] ITU-T. Information technology - A S N . l encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER) . X . 690, ITU-T, July 2002.

[49] J . T. Kohl, B . C. Neuman, and T. Y . T'so. The evolution of the Kerberos
authentication system. Distributed Open Systems, pages 78-94, 1994.

[50] Josh Lerner and Jean Tirole. The Economics of Technology Sharing: Open Source
and Beyond. Working Paper 10956, National Bureau of Economic Research,
December 2004.

[51] Robert Love. Get on the d-bus. Linux Journal, 2005(130):3, 2005.

[52] R. Moats and A T & T . U R N Syntax. R F C 3986, I E T F , May 1997.

[53] B . C . Neuman and T. Ts'o. Kerberos: an authentication service for computer
networks. Communications Magazine, IEEE, 32(9):33-38, Sept 1994.

[54] Ellen Newlands. Who Goes There? Identity Management in Red Hat Enterprise
Linux 7 Beta, ht tp: / / rhelblog.redh.at .com/2014/01/20/who-goes-there/ , 2014.
Online; Accessed: 2015-11-16.

[55] Dmitri Pal. Overview of Direct Integration Options, h t t p : / / r he lb log . r edha t . com/
2015 /02 /04 /overv iew-of -d i rec t - in t eg ra t ion -op t ions / , 2015. Online; Accessed:
2015-11-16.

[56] Ed . R. Fielding, Adobe, Ed . J . Reschke, and greenbytes. Hypertext Transfer Protocol
(HTTP/1.1) : Message Syntax and Routing. R F C 7230, I E T F , June 2014.

[57] Eric Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy,
12(3):23-49, 1999.

[58] Vipin Samar. Unified login with pluggable authentication modules (pam). In
Proceedings of the 3rd ACM Conference on Computer and Communications Security,
CCS '96, pages 1-10, New York, N Y , USA, 1996. A C M .

[59] V . Santuka, P. Banga, and B . J . Carroll. 4̂̂ 4̂ 4 Identity Management Security.
Networking Technology: Security. Pearson Education, 2010.

73

http://rhelblog.redh.at.com/2014/01/20/who-goes-there/
http://rhelblog.redhat.com/

[60] Eric Von Hippel. Learning from open-source software. MIT Sloan management
review, 42(4):82-86, 2001.

[61] Wikipedia. Name service switch, ht tps : / / en .w ik iped i a .o rg /w / index .php? t i t l e=
Name Service_Switch&oldid=670365245, 2015. Online; Accessed: 2015-12-29.

74

