
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF CONTROL AND INSTRUMENTATION
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

THE LIBRARY FÜR MÜDBUS RTU IN FÜRTH LANGUAGE
KNIHOVNA PRO MODBUS RTU V JAZYCE FÖRTH

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR Jakub Kouřil
AUTOR PRÁCE

SUPERVISOR prof. Ing. Pavel Jura, CSc.
VEDOUCÍ PRÁCE

BRNO 2022

T B R N O F A C U L T Y OF E L E C T R I C A L |

U N I V E R S I T Y E N G I N E E R I N G |

OF T E C H N O L O G Y A N D C O M M U N I C A T I O N

Bachelor's Thesis
Bachelor's study program Automat ion and Measurement

Department of Control and Instrumentation

Student: Jakub Kouřil ID: 220992

Year of
3 Academic year: 2021/22

study:

TITLE O F THESIS :

The library for MODBUS RTU in FORTH language
INSTRUCTION:

F O R T H is the minimalist programming language, the operating system and the development kit designed by Ch .

Moore. F O R T H supported multi-tasking and multi-users also in time when computers was single-task capable.

This system could work with minimal system resources so it can run in small M C U s .

M O D B U S RTU is well known open protocol mainly used in industry.

The implementation of library for working with M O D B U S RTU slave device in F O R T H language is the main goal

of this bachelor thesis. The functionality of this library will be demonstrated on few units.

1. Study of F O R T H language.

2. Make research of F O R T H variants designed for M C U s and compare theirs properties.

3. Study of M O D B U S RTU.

4. Implement the library for M O D B U S RTU slave device in F O R T H language.

5. With usage of library make few slave nodes on M O D B U S RTU bus.

R E C O M M E N D E D L I T E R A T U R E :

[1] BRODIE, Leo. Starting F O R T H : an introduction to the F O R T H language and operating system for beginners

and professionals [online]. Englewood Cliffs, N.J.: Prentice-Hall, c1981 [cit. 2019-09-13]. ISBN 01-384-2930-8.

Dostupne z: https://www.forth.com/wp-content/uploads/2018/01/Starting-FORTH.pdf

Date of project Deadline for
7.2.2022 23.5.2022

specification: submission:

Supervisor: prof. Ing. Pavel Jura, C S c .

Consultant: Ing. Vilém Kárský

doc . Ing. Václav Jirsík, C S c .

Chair of study program board

WARNING:

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technicka 3058/10/616 00 / Brno

https://www.forth.com/wp-content/uploads/2018/01/Starting-FORTH.pdf

ABSTRACT
The goal of this thesis is to develop a library for Modbus RTU communication using
the Forth programming language. A demonstration unit is also to be created. The
resulting library can be used for example in hobby projects in the field of data acquisition
and automation. The thesis also contains chapters dedicated to the Modbus protocol
and the Forth language itself, including descriptions of several Forth implementations
for various microcontrollers. The library was developed according to the assignment
using FlashForth, a Forth implementation for the Atmega and PIC microcontrollers.
The demonstration unit consisting of several Arduino NANO boards was constructed,
proving the library functionality.

KEYWORDS

Modbus, Forth language, library, Atmega328p, Arduino

ABSTRAKT
Cílem této práce je vyvinout knihovnu pro Modbus RTU komunikaci v programovacím
jazyce Forth a vytvořit demonstrační jednotku pro ověření funkčnosti vytvořené knihovny.
Tato knihovna může být využita například v projektech převážně hobby povahy v oblasti
sběru dat a automatizace. Práce také obsahuje kapitoly věnující se Modbus protokolu
a jazyku Forth samotnému včetně popisu několika implementací jazyka Forth pro různé
mikrokontroléry. Knihovna byla dle zadání úspěšně vyvinuta za použití systému Flash­
Forth, implementace Forth jazyka pro mikrokontroléry Atmega a PIC. Byla taktéž sesta­
vena demonstrační jednotka skládající se z několika Arduino NANO desek pro prokázání
funkčnosti knihovny.

KLÍČOVÁ SLOVA

Modbus, jazyk Forth, knihovna, Atmega328p, Arduino

Typeset by the thesis package, version 4.07; ht tp: / / la tex.feec.vutbr .cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Tato práce má za cíl vytvořit knihovnu slov v programovacím jazyce Forth, která

bude implementovat komunikaci pomocí protokolu Modbus R T U pro server zařízení.
Tato knihovna následně může být použita pro vytváření server jednotek pro účely
automatizace a sběru dat v malých projektech či hobby aplikacích. Za tímto účelem
má práce také popsat protokol Modbus, samotný programovací jazyk Forth a také
jeho implementace pro různé mikrokontroléry. Pro demonstraci fungování hotové
knihovny je také dalším úkolem zhotovit demonstrační jednotku obsahující několik
Modbus server jednotek na sběrnici.

Forth je programovací jazyk, Forth systémy však mají vlastnosti operačních sys­
témů a vývojových prostředí. Jedná se o interpretovaný jazyk zaměřený na operaci
na zásobnících. Programování nových funkcí (slov) je realizováno skrze komunikaci
se systémem přes terminál. Tento jazyk a systém je používaný převážně pro em-
bedded zařízení vzhledem k jeho malé velikosti a také k rychlosti vykonávání kódu
kterou nabízí.

Modbus R T U je jednoduchý komunikační protokol modelu server/klient. Tento
protokol je založený na využití funkčních kódů pro specifikaci požadavku od klienta
pro server a umožňuje především jednoduché čtení dat ze serverového zařízení a
zápis dat do něj.

Tato práce se zabývá samotným protokolem Modbus a jeho specifikací se za­
měřením na variantu R T U implementace na sériové sběrnici, která je využita při
řešení. Ostatní verze protokolu (ASCII a T C P / I P) jsou taktéž zmíněny, ne však
v rozsahu v jakém je popsána R T U varianta. Jsou uvedeny algoritmy důležité pro
vývoj samotné knihovny, jako je stavový diagram operace Modbus R T U serveru a
algoritmus výpočtu C R C hodnoty používané k detekci chyb při přijímání zpráv.

Práce také popisuje programovací jazyk Forth. Jedná se o velmi netradiční jazyk
a v práci je proto popsán podrobně včetně ukázky kódu a vnitřní struktury slovníku
který Forth systémy používají pro ukládání funkcí (slov). Jsou také popsány vlast­
nosti jazyka důležité pro vývoj samotné knihovny: vektorové spuštění slov a mod­
ifikace kompilátoru za pomocí vytváření definujících slov. Práce obsahuje popis a
ukázku zásobníkové aritmetiky a předávání parametrů které jsou integrální součástí
operace Forth systémů. V práci jsou taktéž v krátkosti popsány kompilátory Forth
jazyka pro mikrokontroléry: FlashForth, AmForth, 328eForth a ESP32forth. Z kom­
pilátorů byl zvolen FlashForth pro svou schopnost definovat přerušovací rutiny čistě
v jazyce Forth a pro podporu čipu Atmega328p přítomného na zařízeních Arduino
UNO a N A N O .

Značná část textu práce se zabývá samotnou výslednou knihovnou a jejím vývo­
jem. Knihovna byla vyvinuta za pomoci desky Arduino UNO, na kterou byl nahrán
modifikovaný systém FlashForth s uvolněným časovačem pro potřeby knihovny.

Tento modifikovaný systém byl zkompilován pomocí kompilátoru XC8 programu
M P L A B ze zdrojových souborů obsažených v distribuci systému FlashForth. Kni ­
hovna byla otestována také na desce Arduino N A N O , která je poté využita pro kon­
strukci demonstrační jednotky. V práci je popsána struktura zdrojových souborů
a také styl zápisu kódu obsaženém v nich. Sekce práce jsou věnovány jednotlivým
oblastem knihovny jako je zpracování zpráv, způsob volání funkcí (slov) na zák­
ladě funkčních kódů obsažených ve zprávě či nastavování časovačů. Popsáno je také
mapování paměťových oblastí protokolu Modbus.

Při vytváření knihovny byly použity materiály společnosti Modbus organization,
popisující protokol Modbus stejně jako dokumentace k mikrokontroléru Atmega328p
společnosti Atmel.

Během vývoje byl předefinován hlavní způsob řízení stavu server zařízení ze
stavového automatu na řízení vnořenými cykly, jelikož stavový automat kladl vysoké
nároky na obsluhu přerušením, vedl k časté modifikaci vektorů pro spouštění Forth
slov a byl obecně komplikovaný pro účely ladění. Implementace kontroly stavů po­
mocí vnořených cycklů je rychlejší a neklade takové nároky na přerušení generované
časovači. Obě tato řešení jsou v textu práce popsána.

Při vývoji byla funkčnost ověřována za pomocí Modbus master emulátoru Mod-
poll. Byl také využit program Wireshark pro kontrolu USB packetů obsahujících
zprávy cestujících do zařízení a z něj. Takto byly diagnostikovány chyby v obsluze
jednotlivých požadavků master zařízení.

Byla zhotovena demonstrační jednotka skládající se ze tří Arduino N A N O desek,
popisu této jednotky je věnována poslední kapitola této práce. Je udeveno také
elektrické schéma pro celou jednotku.

Cílů práce tedy bylo úspěšně dosaženo a výsledná knihovna je funkční. Výsledná
knihovna se sestává ze 3 souborů které je možné interpretovat na zařízení se sys­
témem FlashForth. Tyto soubory jsou strukturovány tak, že vyšší logika knihovny
nezávislá na použitém mikrokontroléru je ponechána ve zvláštním souboru a při za­
vádění knihovny na čip jiný než Atmega328p je potřeba předefinovat pouze funkce
(slova) obsažená v souboru specifickém pro mikrokontrolér Atmega328p a mapování
Modbus paměťových oblastí. Samotná knihovna je po modifikaci použitelná s
jakýmkoli zařízením se systémem FlashForth. Je možné j i použít i pro jiné Forth
systémy, její portování pro jiné implementace jazyka Forth by však bylo značně
náročnější. Součástí příloh je také soubor s ladicími funkcemi použitý při vývoji.
Demonstrační jednotka prokazující funkčnost knihovny byla taktéž úspěšně zkon­
struována.

Všechny zdrojové soubory pro knihovnu a demonstrační jednotku jsou obsaženy
v elektronické příloze A .

KOUŘIL, Jakub. THE LIBRARY FOR MODBUS RTU IN FORTH LANGUAGE. Brno:

Brno University of Technology, Faculty of Electrical Engineering and CommunicationF,

Department of Control and Instrumentation, 2022, 47 p. Bachelor's Thesis. Advised by

prof. Ing. Pavel Jura, CSc.

Author's Declaration

Author: Jakub Kouřil

Author's ID: 220992

Paper type: Bachelor's Thesis

Academic year: 2021/22

Topic: T H E L IBRARY FOR M O D B U S RTU IN

FORTH LANGUAGE

I declare that I have written this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and/or ownership rights.

In this context, I am fully aware of the consequences of breaking Regulation § 11 of the

Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.

of the Czech Republic, Section 2, Head VI, Part 4.

Brno 23.5.2022
author's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I wish to show my appreciation to prof. Ing. Pavel Jura CSc. for taking the role of the

supervisor of this thesis.

I would like to thank my consultant, Ing. Vilem Karsky for his enthusiastic support and

valuable input during the creation of this thesis and the development of the resulting

library.

I would also like to extend my gratitude towards the bands Nightwish and Rammstein

for making the countless hours spent working away at this project more enjoyable.

D 23.5.2022
Brno . . : . 7 . : . 7

author's signature*

*The author signs only in the printed version.

Contents

Introduction 12

1 M O D B U S 13
1.1 M O D B U S server data model 14
1.2 M O D B U S over serial communication 15

1.2.1 M O D B U S R T U 15
1.2.2 M O D B U S ASCII 18

1.3 M O D B U S T C P / I P 18

2 Forth 19
2.1 Forth operation 19

2.1.1 Interpreter 20
2.2 The Dictionary 21

2.2.1 Dictionary entry 21
2.2.2 Defining Words 22

2.3 The stacks 23
2.4 Forth libraries 25
Forth compilers 26

3 Forth compilers 26
3.1 FlashForth 26
3.2 AmForth 26
3.3 328eForth 27
3.4 ESP32forth 27

4 Forth M O D B U S Slave Library 28
4.0.1 Stylistic choices and appearance of the code 28

4.1 Structure of the library 30
4.2 Communication 30
4.3 The workings of the library 31

4.3.1 Message handling 31
4.3.2 Slave device state control 34
4.3.3 Timer management 36

4.4 Supported function codes 37
4.5 Modbus memory space mapping 37
4.6 Verifying the functionality of the library 38

5 Demonstration unit

5.0.1 Code for the server units

Conclusion

Bibliography

List of appendices

A Contents of the digital appendix

List of Figures
1.1 M O D B U S function codes 13
1.2 M O D B U S R T U frame 16
1.3 M O D B U S R T U message handling diagram 16
1.4 M O D B U S R T U C R C algorithm 17
1.5 M O D B U S ASCII frame 18
2.1 Hello world word execution 20
2.2 Forth dictionary entry example 21
2.3 FlashForth stack arithmetic example 24
4.1 modpoll successful write operation 39
5.1 Electrical schematic for the demonstration unit 42

Introduction
This thesis pertains to the usage of the Forth programming language in microcon­
troller software development with the goal to create a library of forth words imple­
menting Modbus R T U slave/server unit behaviour. The devices utilising this library
then could be used in applications primarily focused on small-scale automation and
data collection projects.

The Forth language itself is a minimalist programming language used primarily in
embedded systems. Its simplicity and other properties such as the ability to readily
modify and extend the program on the go simply by connecting to the device via a
terminal make it an excellent tool for many hobby applications as well as making
it a valuable learning tool. Forth has however also been used in many commercial
applications because of its small size and the execution speed of Forth code. N A S A
for example has used Forth systems on several of their projects [9] [10]. FlashForth,
a Forth implementation for PIC and Atmega microcontrollers was used during the
development of the library.

Modbus was chosen as a suitable communication protocol, owing to its simple
nature suitable for hobby implementations and the fact it is an open protocol having
documentation and implementation guides openly available. A host of Modbus
master implementations also exist, providing easy access to a way to communicate
with the device running the library.

This document contains the theoretical section spanning the first three chapters
containing the descriptions of the Modbus protocol (with emphasis on the R T U
variant of the serial line implementation), the Forth programming language and the
basics of Forth system operation. The various Forth compilers are also described
with FlashForth being described in further detail. A chapter is dedicated to the
resulting library, describing its workings as well as the process of its development in
detail. The last chapter deals with the construction of a small demonstration unit
using Arduino N A N O boards running the FlashForth system and making use of the
library, presenting its funtionality.

12

1 MODBUS
This section is built upon the information contained within the protocol specification
documents [1], [2].

MODBUS is an industry communication protocol created in 1979 by Modicon.
Modicon was later acquired by a company known today as Schneider Electric. [7]
In 2004 the Modbus organization was created to manage the protocol, congregating
information about the protocol and providing implementation guides as well as links
to useful resources pertaining to the protocol on their website.

MODBUS itself is an easy-to-implement, open communication protocol. Many
manufacturers of industry automation devices use M O D B U S as one of the available
interfaces for their devices since the cost to do so is minimal with no licensing fees
or royalties. With M O D B U S not being a proprietary communication protocol it is
also often used to interconnect devices from multiple manufacturers and it became
a standard for Fieldbus communications. For the year 2020 roughly 10% of newly
installed devices in factory automation were installed on a MODBUS network (with
5% for both M O D B U S R T U and M O D B U S T C P / I P) [8].

The M O D B U S protocol encompasses two major variations, the M O D B U S over
serial communication and M O D B U S T C P / I P . M O D B U S over serial-line also pro­
vides two transmission modes, R T U and ASCII detailed in their sections below.

The protocol itself is a structure providing the connected devices with an ability
to exchange data via a client-server communication. The protocol data unit (PDU)
contains a function code spanning one byte and a data field of variable size, depend­
ing on the used function code. This P D U can then be expanded by adding more
fields for server device address, error checking, etc. creating an application data unit
(ADU), which is bus-specific.

127
PUBLIC function codes

1 III
1410

User Defined Function codes

72
65

PUBLIC function codes
72
65

User Defined Function codes
72
65

PUBLIC function codes

1

Fig. 1.1: Mapping of the M O D B U S function codes [1]

13

The M O D B U S function codes range from 0 - 255 as allowed by the allotted
8 bits. Code 0 is however not valid and the upper half of the range is reserved
for exception responses, leaving the range of 1 - 127 for function codes, the avail­
able function codes can be seen in the figure 1.1 . Most of these codes are Public
function codes with pre-defined behaviour described by the Protocol Specification.
Function code ranges of 65 - 72 and 100 - 110 are reserved for User functions and
are implementation-dependent or left unused. Some of the function codes are also
reserved for legacy applications still in use by some companies, for detailed list see
the Protocol Specification, Annex A. [1]

Not all of the public function codes have to be supported by any given M O D B U S
device, the selection of which function codes to support is application-specific. Some
of the basic function codes to be supported by the device are the four data read codes
displayed in the table 1.1.

function code function

01 Read Coils
02 Read Discrete Inputs
03 Read Holding Registers
04 Read Input Registers

Tab. 1.1: Table of example function codes

The data field in a message from a M O D B U S client contains additional informa­
tion for the server, such as addresses to read from/write to, quantity of items to be
read/written or subcodes specifying the client's request further. The field can also
be empty in case the function code does not call for additional parameters.

A regular M O D B U S server response message contains the original function code
and the data requested by the client in the data field. If an error occurs during the
handling of the request, the server sends a response containing an error function
code (the original code with highest bit set to '1') and the data field represents
the exception code. M O D B U S exception codes are listed in a table in the Protocol
Specification. [1], (pg. 48,49).

The size of a M O D B U S P D U is limited to 253 bytes in order to ensure backwards-
compatibility with the first MODBUS serial line implementations.

1.1 MODBUS server data model

MODBUS protocol differentiates between 4 data spaces. The mapping of said spaces
can however overlap in the server device memory. The Discrete Inputs represent

14

read-only elements spanning a single bit, such as digital device inputs. The Coils
are individual bits that can be both read from and written to, usually represent­
ing device digital outputs. Input Registers and Holding Registers and both
the size of a W O R D (2 bytes) with the Input Registers being read-only for stor­
ing of digitized analog values or for grouping of bit-sized elements. Each of these
data spaces can contain up to 65536 elements addressed from 0 to 65535 as per
the protocol specification. The exact size and layout of the data space is however
implementation-specific and not all four data spaces have to be implemented.

1.2 MODBUS over serial communication

MODBUS networks are realized using a Master-Slave architecture on serial lines such
as RS232 and RS485, with a sole master device representing the M O D B U S client
and multiple slave units working as servers. The slave devices do not communicate
outside of responding the the master's requests and the master can thus control the
traffic on the bus.

The serial line P D U contains an address and error checking fields on top of he
MODBUS P D U . The master can send a broadcast message to all the slave devices
by using the address of '0' in the request P D U , the slaves cannot respond to a
broadcast message, doing so would result in congestion on the bus with all the slave
devices trying to access it at once.

MODBUS over serial communication offers two transmission modes, R T U and
ASCII, detailed below.

1.2.1 MODBUS RTU

The R T U transmission mode is the default mode for M O B U S devices communicat­
ing over serial buses and it has to be supported by each M O D B U S device for use
on a serial bus. In this transmission mode each byte represents two hexadecimal
characters. The message frame can be seen in figure 1.2. The individual bytes of
the message are transmitted over the serial bus using 11 bits. C R C (Cyclical Re­
dundancy Check) is generated for each transmitted message and spans the last two
bytes of the transmission. In case the C R C the recipient of the message calculates
differs from the one contained within the transmission itself, an error specifying
message corruption is generated.

As per the Specification and Implementation Guide for MODBUS over serial
line, the delay between frames must be at least 3.5 character times with individual
bytes within the frame being separated by no more than 1.5 character times. In
case a byte within a single frame is delayed by more than 1.5 character times but

15

Slave
Address

Function
Code

Data C R C

1 byte 1 byte 0 up to 252 byte(s) 2 bytes
CRC Lo\V| CRC Hi

Fig. 1.2: M O D B U S R T U message frame [2]

no more than 3.5 character times, the entire frame is declared as incomplete and
ignored by the receiving device.

The document also contains a state diagram describing the process of handling
MODBUS messages by the R T U devices, the diagram can be seen in figure 1.3

C
aracfeřrece

Initial State

CharacíěTřéceived
/ init. and start t3.s

t3 s expired

Idle
(read^to receive or to efnit)

Character received
/ flag = frame NOK

Comment
If frame OK
•=a processing frame
If frame NOK
c5 delete entire frame

Demand of emission t 3 5 expired

Emission

Comment

Control and
Waiting

control frame (CRC, Parity, Slave addr)
flag = frame OK or NOK

First character received
/ init. and start t 1 5,t 3 5

t, s expired

Reception

Emitted character
[if last emitted character]

/ init. and start t 3 5

Character received
init. and start t15. ti.5

Legend

t i ib . s : timers
t 3 5 : 3.5 character times
Its '• 1-5 character times

Fig. 1.3: M O D B U S R T U message handling diagram [2]

CRC

MODBUS R T U uses a C R C (cyclical redundancy check) system in order to detect
message corruption. The C R C field spans the last two bytes of any M O D B U S R T U
message.

The receiving device calculates the C R C value based on the bytes of the received
message and compares it to the actual C R C value received as part of the trasmission.
In case the two values are not equal, the message is declared corrupted and discarded.

16

The C R C itself is calculated using an algorithm described within the Specification
and Implementation Guide for MODBUS over serial line. A calculation is executed
for each of the transmitted bytes.

OxFFFF -» CRC1-6

CRC 16 XOR BYTE -» CRC16

I
N = 0

M o w to (he righit CRC16

Nc I
Carry over

Yes

CRC16XQR POLY • CRC 16

N = N +1

H > 7
Yes

Following BYTE

End of message
Yes

END

Fig. 1.4: M O D B U S R T U C R C algorithm [2]

The algorithm is shown in figure 1.4 with C R C 16 being a 16-bit register used
to store the intermediate results between operations and P O L Y marking a constant
C R C value of OxAOOl. B Y T E marks the individual bytes of the M O D B U S message.

17

1.2.2 MODBUS ASCII

In the ASCII transmission mode, the messages are sent as a stream of ASCII char­
acters delimited by colon as a character indicating the start of a transmission and
C R / L F character marking the end of the message. This transmission mode is less
efficient than R T U with each byte of the message being represented by two charac­
ters (thus making each byte twice as long to transmit) and the ASCII mode is thus
used for devices unable to process faster R T U communication. The data frame for
the ASCII transmission mode is displayed in the figure 1.5

Start Address Function Data LRC End
1 char 2 chars 2 chars 0 up to 2x252 char(s) 2 chars 2 chars

CR,LF

Fig. 1.5: M O D B U S ASCII message frame [2]

1.3 MODBUS TCP/ IP

This variant of the M O D B U S protocol encapsulates the M O D B U S P D U within a
T C P / I P packet to be sent over an Ethernet network. This allows M O D B U S de­
vices to be connected into and to communicate over an existing Ethernet network
alongside other non-MODBUS devices, making the cost to implement such commu­
nication minimal when an existing Ethernet network is present. While useful, this
version of the protocol is not the focus of this work and any further mentions of
the M O D B U S protocol pertain to the serial-line version of M O D B U S (RTU variant
specifically).

18

2 Forth
This chapter contains information sourced from the book Starting F O R T H [3]

Forth (or FORTH) is a programming language developed in 1970 by Charles H.
Moore. The driving principles behind Forth are simplicity and the ability to add/-
modify code 'in situ' without the need to recompile the entire program. Another
advantage of Forth systems is their size, with simplicity of the system comes small
space needed to implement it. The language itself consists of individual words, the
definitions of which is kept in a dictionary. A Forth program is created by defining
words in a hierarchical manner, with higher-level words combining previously de­
fined words to achieve more complex tasks. The user program itself then becomes
the highest-level word within a given project.

By building the application from smaller words it also becomes easier to individ­
ually test and debug them before combining their functionality in other, higher-level
words. This can significantly speed up the development of embedded software. Some
of the low-level words can also be defined directly using A S S E M B L Y language fur­
ther speeding up the execution, but tying the Forth system to the processors whose
A S S E M B L Y was used.

The simplicity of the programming language along with its readability also makes
Forth a good choice for beginner programmers to learn on (though the Reverse Polish
Notation takes time to adjust to). As Forth operates very closely with hardware it
lends itself to people learning the basics of embedded systems as well.

Forth is primarily used in embedded applications, especially those closely inter­
acting with hardware. It is suited for those applications due to the small size of
the Forth system and the speed of execution it offers. N A S A particularly has used
Forth in multiple applications over its history. [9] [10]

2.1 Forth operation

A terminal is used to communicate with a Forth system. The user types commands
for the Forth interpreter, which searches the dictionary for words with the typed
identifier to execute them. If no word is found the input is assumed to be a number
and pushed onto the Parameter Stack. A select number of commands switch to com­
pilation time, e.g. commands beginning with a colon denote a new word definition
and the new word is compiled and a new dictionary entry is created.

The dictionary is searched from the newest entry to the last, allowing for a word
to be re-defined simply by creating a new entry (word) with an identical identifier
as it will be found and executed first. The ability to add Forth words through a

19

terminal without the need to recompile the entire program makes it easy to modify
existing code and to extend it.

To accomplish this a Forth system runs a cycle handling the input stream from
a terminal. The word QUIT accepts the data passed though the terminal and calls
the word I N T E R P R E T to handle the input string. QUIT can thus be used to
terminate the execution of an application and return to processing the input from
the terminal.

Code example: a 'hello world' program written in Forth can be written as follows:

Listing 2.1: Forth hello world word

: HELL0_W0RLD ." H e l l o w o r l d . " ;

The interpreter will create a new dictionary entry for a word called H E L L O W O R L D
which will use the word ." to print a string of characters to the terminal, the ; word
finalises the creation of a new definition and exits the compilation mode. (Both
the interpreter and the dictionary are described in further detail in the following
subsections)

The defined word can then be executed by calling its name from the terminal,
doing so on a FlashForth system produces a result visible in figure 2.1. (Flash-
Forth also appends the information that the command was executed successfully
the current contents of the parameter stack and the selected memory type)

HELLO WORLD Hello world. ok<#,ram>
I

Fig. 2.1: Hello world word execution

2.1.1 Interpreter

Forth systems usually contain two interpreters, the text interpreter and address
interpreter.

Forth text interpreter takes a sequence of words the user entered through the
terminal using the word I N T E R P R E T which executes the word in case a definition
is found in the dictionary using the word E X E C U T E . If no such dictionary entry
is found, the input is parsed as a number according to the current set number base
and pushed onto the Parameter Stack.

20

The address interpreter is used when a word in the dictionary is called, using
E X E C U T E . It sequentially executes the words/code (once again using the address
interpreter) specified by the executed word in the code field.

Vectored Execution

By storing an address of a word inside a variable we can use the word E X E C U T E
to execute the code of the addressed word. The stored word address can then be
changed later on, altering the behaviour triggered by executing the original variable.
This mechanism can be compared to a pointer to a function. Variables containing
word addresses for vector execution are conventionally named with first character
being ' as the ' word [tick] is used to retrieve a word address (['] has to be used
inside of a definition instead.

2.2 The Dictionary

The Forth dictionary contains the definition of every word in any given Forth system.
A new entry is created using a defining word. Data structures like variables and
arrays are also stored as dictionary entries. Dictionary entries can be organized into
vocabularies and the order in which the individual vocabularies are searched can be
changed.

The dictionary takes up most of the memory in the Forth system.

2.2.1 Dictionary entry

The dictionary entry has the following structure:

precedence bit

nane

code pointer

Fig. 2.2: Forth dictionary entry example [3],
redrawn to achieve satisfactory image quality

21

Forth systems can differ in the number of dictionary entry fields and their order,
the four basic field are shown in the example entry 2.2 .

The name field contains the ASCII character identifier of the word, though a
number of characters and only the first X characters of the word name can be used
instead (this may lead to unintentional re-definition of words and should be looked
out for). A precedence bit is also stored as the first bit of the name field, specifying
whether the word inside the dictionary entry should be executed during compilation
or not, the significance of this is detailed in the Defining Words section further.

The example shown in figure 2.2 uses the first 7 characters and a the total number
of characters in the name field (as well as a precedence bit), as the words used in
the example is D A T E , only four of the 7 stored characters are used and the rest is
padded with zeros.

The dictionary is a singly linked list and the link field is used to store the address
of the previous word in the dictionary.

The code pointer/code field contains either the address of the run-time code to
be executed when the word is executed or the code itself. This can be the code for
handling variable entries, constants, the code for user-defined words set to execute
the words listed in the data field, etc.

The data field is of varying size depending on the dictionary entry. For variables
it contains the actual value of a variable, as it does for arrays. For user-defined
words it contains the list of addresses of words comprising the definition with the
last address being of the word E X I T which stops the execution of the word and
returns the execution to the word, the address of which is stored on the return stack.

2.2.2 Defining Words

Defining words in Forth are used to create new dictionary entries. Defining words
are marked by a precedence bit in their dictionary entry. A number of different
defining words are implemented, such as : for creating 'colon definitions' for defining
a new word, or V A R I A B L E for creating a new variable. Defining words can also
have different behaviour depending on whether the system is in compile-time or
interpret-time, e.g. V A R I A B L E will create new dictionary entry for a variable
during compile time, but it will instead push the address of a specified variable onto
the Parameter Stack during interpret-time.

The definition of the defining word is split into two parts, one defining the
compile-time behaviour and the other specifying the run-time behaviour of the word.
These two sections are delimited using the word DOES> in the manner that the
compile-time code precedes the word DOES> and the run-time code follows it.

22

New defining words can be implemented by the user to for example create more
complex data structures needed for specific application. The Forth compiler can be
extended in this way.

Compiling words also exist, while not making new dictionary entries, they still
possess different code to execute depending on whether the system is in compile-time
or run-time. These words are usually used inside a colon definition while defining
a new word, for example for filling out the data fields of the newly created word
definition in the dictionary.

2.3 The stacks

Forth uses several stacks. The most important one is the Parameter/Data Stack
(or simply the Stack as it is the most used one) used to pass parameters to words
and to execute arithmetic operations. Forth uses Reverse Polish Notation (RPN) so
all arguments (and operands) have to be pushed onto the stack prior to executing
a word requiring said parameters. The words will use the parameters and can also
push a return value onto the stack.

It is this principle that makes the Forth code fast to execute, the stack-oriented
operation and R P N are efficient and close to how the processor handles operations.
It also makes each words naturally re-entrant, pushing the parameters onto the
stack and executing the word will not lead to problems even when the same word is
mid-execution (unless the stack should run out of space).

Words should not leave their parameters on the stack after they are executed
to prevent accidental leaks leading to the stack growing over time and eventually
overflowing. It has become a standard to define the expected parameters and return
values for any given word using the following notation:

(P-R)

where P is an ordered array of parameters to be passed into the word and R is an
ordered array of its return values. This notation essentially describes the state of the
stack before executing the word and the state after the execution concludes. A word
described by (nl n2—n3) would expect two numbers to be passed as parameters
through the stack and would leave a number on the stack as a return value (it is
also customary to define the type of said parameters and return values, n = integer,
d = double, ...). Forth provides a set of words manipulating with the values on the
stack. Most of these words are however limited to affecting only to the top three
values at most so there should not be too great a number of values being handled
on the stack at any given moment.

23

The items on the stack occupy either one or two stack positions, with the latter
being double-cell numbers. In case of double-cell numbers, the most-significant cell
is stored on top of the least-significant on the stack. The words in Forth that work
with double-cell numbers are conventionally prefixed with '2', such as 2 0 V E R to
distinguish them from their counterparts operating on single-cell numbers.

The Parameter stack can be used to carry results from one words as parame­
ters for another, eliminating the need to define variables to temporarily store data
between function calls in conventional programming languages.

The Return Stack is used to store return addresses when entering a lower-level
word, much like call stacks in other programming languages. It can also be used to
temporarily store values within a single defined word. Loop control stack also exists
in order to store the start and stop indexes of Forth loops, it can however be stored
on the Return stack.

Forth stack arithmetic example:

Listing 2.2: Example of Forth stack arithmetic

12 5 + 14 -

Forth will interpret the numbers being passed through the terminal as numeric
values and push them onto the parameter stack, the + and - words will consume
the topmost parameters on the stack and push the result of the operation back onto
the stack.

A n example of this simple stack arithmetic operation sequence in listing 2.2 per­
formed on a system running FlashForth can be seen in figure 2.3. Since FlashForth
lists the parameter stack contents after each operation is performed, each number
and operation is performed individually to improve clarity.

ok<#, ram>
12 ok<#,ram> 12
5 ok<#,ram> 12 5
+ ok<#,ram> 17
14 ok<#,ram> 17 14

ok<#,ram> 3

I

Fig. 2.3: FlashForth stack arithmetic example

24

2.4 Forth libraries

Forth compilers can support a single microcontroller only up to a range of micro­
controller families, depending on the compiler. Given how close to hardware Forth
operates (for the purpose of speed of execution of Forth programs) it can be diffi­
cult if not outright impossible to develop a universal library for each of the devices
supported by the given Forth compiler (if the compiler does in fact support multiple
microcontroller at all). To combat this issue, Forth libraries can be hierarchically
split into several libraries, grouping up device-specific code into standalone 'low-
level' library and the high-level logic into another library.

In this way the user only has to re-implement the lowest level library himself
in order to make use the original higher-level library. The device-specific code may
then not be included with the library at all, leaving only a description of functions
with names expected by the existing library for the user to implement on his own
device.

Forth systems themselves can work similarly, eForth for example requires around
30 words to be implemented using code specific to the target device, with the rest
of the system being device-agnostic and built upon these 30 basic words.

25

3 Forth compilers
A number of Forth implementations have been created over the course of Forth's
history, Forth Interest Group (FIG) keeps a list of notable non-commercial Forth
compilers on their webpage (as well as a list of commerical Forth system vendors).

[11]
Following are the sections dedicated to the individual Forth compilers:

3.1 Flash Forth

This section is based on the information contained within the FlasForth Guide. [5]
Flashforth is a Forth compiler for the PIC18F, PIC24, PIC30 and PIC33 as well

as the Atmel Atmega microcontrollers. It allows the user access to all types of
memory: R A M , E E P R O M and F L A S H . FlashForth provides words for switching
between memory types and it also states current memory type after the execution
execution of every command.

FlashForth is a robust system striving for stability. In order to preserve a working
core of the system that the user can revert to in a case of need, it prevents the user
from executing potentially harmful code, such as redefining a word not located in the
user dictionary or overwriting the FlashForth Kernel.While this makes the system
more stable it also denies the user access to some of the F O R T H programming
tools, such as redefining existing words by creating a new definition further down in
the dictionary. FlashForth also provides the words F L + and F L - to allow/prevent
attempts to write to F L A S H or E E P R O M memories, these words can be used in
an application to 'lock' the F L A S H and E E P R O M outside of words dedicated to
storing data in these memory types.

A turnkey word is provided, allowing for a word to be executed upon startup of
the device.

FlashForth also provides the ability to write interrupt routines in F O R T H , ab­
stracting the user from the need to write in A S S E M B L Y entirely.

3.2 Am Forth

The following section contains information from the AmForth Technical Guide. [12]
AmForth is a Forth compiler for the A V R ATmega microcontrollers adhering

to the Forth ANS94 standard. AmForth, similarly to FlashForth allows for the
development of interrupt routines directly in Forth language. Most of Amforth
application resides within the flash memory of the device, with variables and stacks

26

being stored in the R A M . AmForth also provides the ability to generate and handle
exceptions.

Given that the AmForth system is written using Assembly language, some Am­
Forth words in user applications may need to be defined in Assembly by the user.
A n example of this can be found in the documented Amforth project. [4] This may
potentially make the development of a Forth library using Amforth troublesome, as
the system itself might need to be modified in order to make use of the final library."

3.3 328eForth

This section is built upon the defining document of 328eForth. [6]
328eForth is based on the eForth standard, a minimalistic Forth implementation

created by Dr. C .H. Ting, a promoter of Forth language. As such it is highly
optimised and tied to a single microcontroller.

This Forth compiler for the Atmega328P microcontroller (present on the Arduino
UNO and N A N O boards) was created as a way to get closer to the bare metal than
one would with regular C language. It was also created in order to interactively teach
people the basics of the Forth language and the Atmega328P workings, so a host of
examples and learning lessons are available for the system. The documentation for
this compiler is also extensive.

328eForth does not allow for the creation of interrupt routines using Forth and
does not provide the ability to work with the E E P R O M memory.

3.4 ESP32forth

This section is based on the information contained on the ESP32forth website. [13]
ESP32forth is a Forth compiler for a variety of ESP32 boards. It allows the user to
modify and work with the Forth system by using Arduino IDE. Additional words
can be defined using C functions.

ESP32forth also provides a degree of support for floating point numbers, which
may be relevant to some applications. This feature is currently work in progress
though.

This compiler also provides the ability to handle interrupts using wholly Forth
words similarly to FlashForth.

27

4 Forth MODBUS Slave Library
The entire library was developed on an Arduino board with Atmega328p micro­
controller running the FlashForth system. A build of FlashForth with C P U load
measurement disabled must be used in order for the library to function properly for
reasons further explained in section 4.3.2.

The source files as well as all associated files are included in the digital appendix
A.

Code modifications within this chapter

The original source files were written with only the limitations of the T C L terminal
emulator provided with FlashForth distribution in mind. This was the primary way
of interfacing with the FlashForth system during development, providing a way to
automatically interpret entire files instead of manually interfacing with FlashForth
each time the library words need to be refactored or fixed. Since FlashForth does not
allow for duplicate word definitions, the original word needs to be removed using the
word marker before interpreting the definition again. This would be quite laborious
to do by hand and the emulator played a big part in the process of the development.

Said emulator allows for up to roughly 80 characters per line, so any comments
or lines approaching this length were broken up over several lines. This still leads
to some issues while displaying the code within this document and thus any Forth
code contained in listings inside of this chapter may have been modified in order to
better fit the page, such as wrapping comments that are too long over to the next
line.

In the source files, I have chosen to write logical expressions on standalone line
before a branching word, such as if, which consumes the produced flag. In some
instances, the code examples have been modified so that the branching word is
included on the line with the logical expression so save space taken up by the listing,
such as with listing 4.5.

Certain comments or their parts are also entirely omitted in this document as
opposed to the actual source files. This is done both to cut back on some of the more
detailed explanations and mainly to remove comments that are in length discussing
issues covered by the scope of this document itself to prevent needless repetition of
information already discussed.

4.0.1 Stylistic choices and appearance of the code

Although Forth systems are usually case-insensitive and Forth code is commonly
written using only capital letters, FlashForth is an exception with it being case-

28

sensitive. Since essentially all predefined words are in lowercase, I have kept most
of the word names lowercase as well, with a few exceptions to help readability.

The source files are thoroughly commented and described. The notation for
stack operations described within section 2.3 was used with words that consume
or produce values, but it is omitted with most of the words that do not modify
the values on the stack in order to avoid unnecessary clutter. Comments at the
beginning of a word definition that are indented twice pertain to the word as a
whole while comments that are either indented on the same level as code or are
written at the end of the line (in case the space left after the words on said line
allows to do so) describe individual operation within the word.

As for the code itself, words that together constitute a logical operation are
written on a single line to preserve the readability of the code. This aids to separate
the words into clusters that are easier to comment as well and seems to be the
default way to structure Forth source files used in FlashForth source files and many
projects. In case of more complex words, they were often defined by first defining
words handling sub-tasks of the final word, as is common during development using
the Forth language. A clear example of this can be viewed in the section 4.3.1
describing C R C calculation.

The principles described above can be observed in code example listing 4.1.

Listing 4.1: Code and comment structure

: m b s _ g e t D i s c r e t e (n f)
\ r e a d s s p e c i f i e d d i s c r e t e i n p u t and l e a v e s f l a g
\ on t h e s t a c k e q u a l t o t h e v a l u e r e a d

mbs_diMap c@ \ r e a d b y t e c o n t a i n i n g i n p u t b i t
and \ r e a d i n p u t u s i n g mask
0 <> ; \ c o l l a p s e masked v a l u e i n t o f l a g

As for the naming of the words themselves, FlashForth uses the first several
characters of a word's name as well as the name's total length as a unique identifier
for the word (described in section 2.2.1 including an example). This led to some
words having to be renamed over the course of the development. It is also the reason
why most of the words begin with mbs_ or similar in order to try and prevent any
naming conflicts with end user application.

Being fairly new to Forth programming, my own skills grew considerably over
my time spent coding with it, this has lead to a certain degree of discrepancy of code
quality between portions of the library written at different times. Though words
were refactored during the development of the library, some still are containing
sub-optimal code that could be further optimised.

29

4.1 Structure of the library

The FlashForth words the library consists of are split among three files:
• library, fs

This file holds the majority of the words defined during the development.
A n effort has been made to make words contained within this file be
system-agnostic and they should work on microcontrollers other than
Atmega328p which was used during the development and testing.

• Atmega328p.fs
Words in this file are specific to the Atmega328p and they would need
to be re-implemented in their entirety should the library be used with
another microcontroller as they pertain to the setup and handling of
timers and timer registers.

• config.fs
The Modbus server configuration words are contained within this file.
The device ID, the communication speed which affects the timer intervals
allowed between characters during transmission and memory mapping are
handled by words from this file. The word defining device ID will need
to be modified for each device connected to a single serial line.

In order to preserve dependencies of words, the files must be interpreted in a
specific order when using a terminal to upload them to the device. The order
should be the following:

1. config.fs
2. Atmega328p.fs
3. library, fs

A fourth file: debug.fs is provided alongside the library source files. This file
contains words assisting with verifying the functionality of the library, such as pre­
defined test Modbus messages. The words within proved essential during the devel­
opment and may be useful when/if the library is tested on another microcontroller.

4.2 Communication

The M O D B U S communication is making use of a serial port on the board running
a Forth system, as such a way to control the traffic on the port may be needed on
devices with only a single serial port used by the Forth terminal by default.

To this end, the words emit+ and emit- are provided, with the former enabling
the functionality of the word emit to transmit data on the serial port and the latter

30

disabling it. This is done using vector execution with the help of the predefined
word 'emit

Listing 4.2: Words emit+ and emit-

: e m i t - ()
\ d i s a b l e s t h e a b i l i t y of t h e d e v i c e
\ t o e m i t d a t a o n t o t h e s e r i a l p o r t
['] d r o p ' e m i t ! ;

: e m i t + ()
\ e n a b l e s t h e a b i l i t y of t h e d e v i c e
\ t o e m i t d a t a o n t o t h e s e r i a l p o r t
['] txO 'e m i t ! ;

The definitions of words emit+ and emit- can be seen in listing 4.2. Modifying
the execution token stored in word 'emit alters the behaviour of vectored word
emit, with emit- using the execution token of the word drop. This makes it
so that emit discards a value rather than actually transmitting it over the serial
port. The word emit+ then restores the original functionality of emit by having
it transmit a character over serial port txO.

By using the serial port, other system words could also be utilised, such as type
which transmits contents of a specified buffer over the serial port or key and key?
which facilitate reading characters from serial port buffer. It also comes with the
limitation of using the port as-is with settings FlashForth uses, though these can
be changed by recompiling FlashForth with modified values if necessary. By default
the port is set to 38400 baudrate, 8 data bits and no parity.

4.3 The workings of the library

The following subsections pertain to the individual facets of the library and its
development.

4.3.1 Message handling

A n In-Out message buffer is used to store the received Modbus messages and to then
modify them before transmitting the modified message as a response since Modbus
responses echo the device address and function code (in case of a correct request).

A defining word was set up for the buffer and when it is interpreted later on it
leaves the starting address of the buffer as well as the length of the currently stored

31

message (which is kept in the byte preceding the beginning address of the message
itself, a technique of constructing data structures common to Forth) as words such
as type use these parameters in said order. Deleting bytes also becomes as easy as
decreasing the stored message length. The defining word as well as the creation of
the buffer can be observed in listing 4.3.

Listing 4.3: Buffer defining word

: m b s _ b u f f e r (a d d r n)
\ s e t s up a b u f f e r of a s p e c i f i e d s i z e , w h i c h
\ w i l l l e a v e i t s a d d r e s s and c u r r e n t
\ number of o c c u p i e d b y t e s on t h e s t a c k

c r e a t e
0 c, a l l o t

does >
1 + dup 1 - c@ ;

ram #256 m b s _ b u f f e r m b s _ m s g B u f f e r

A suite of buffer operation words is included within the library in order to help
with common operations from the simple ones such as writing to individual bytes
or bits or resetting the buffer to zero size to more complex operations like loading
computed C R C values into the buffer or modifying the buffer contents to assemble
an error response with given error code.

When a byte of a Modbus message is received, it is pushed into the buffer. The
buffer is reset between each message.

CRC calculation

A word calculating the C R C value was defined using the algorithm from figure
1.4. First a crc cycle word was set up, this word handles a single byte of the
Modbus message, with all 8 associated shifts and X O R operations with a preset
value. This way, the debugging of the words was significantly easier. The Modbus
documentation [2] includes an example of the C R C value calculation algorithm with
intermediate values in the C R C register listed, which came in useful during the
debugging of the words. A wrapper word initializing the C R C value and iterating
over each message byte was then defined. Both words are contained within listing
4.4.

FlashForth does not by default contain the definition for the words DO and
L O O P which set up a cycle with loop index counting upwards from one specified
value to another, implementing a F O R ... N E X T loop instead. This construction

32

has a loop index counting downwards to 0 from a passed value which unfortunately
proves to be an obstacle when an index counting upwards is required. The DO ...
L O O P cycle for FlashForth can be loaded from a separate file provided with the
distribution, but I wanted the library to have no external dependencies and thus
opted to calculate the index instead.

FlashForth uses the same little-endian way of storing data as the C R C value in
Modbus messages, eliminating the need to swap the bytes and write them into the
message individually and the final 16-bit C R C value can be directly written to the
address of the first byte using the word !.

Listing 4.4: Words handling C R C calculation

: c r c _ c y c l e (CRC16 CRC16')
\ an i n n e r c y c l e h a n d l i n g t h e s h i f t i n g and x o r w i t h
\ p r e s e t v a l u e f o r a s i n g l e b y t e of a MODBUS message

$8 f o r
dup %1 and
\ e x a m i n e s t h e s h i f t e d o ut b i t and p r o c e e d s
\ t o e i t h e r x o r w i t h a p r e s e t v a l u e o r c a r r y on
\ w i t h t h e n e x t s h i f t
swap 2/ °/„0111111111111111 and swap
i f

$a001 x o r
t h e n

n e x t ;

: m b s _ c r c (msg_addr m s g _ l e n g t h msg_addr m s g _ l e n g t h c r c)
\ computes t h e c r c f o r a s p e c i f i e d MODBUS message

$ f f f f \ c r c v a l u e i n i t i a l i z a t i o n
o v e r
f o r

\ l o o p i n d e x c a l c u l a t i o n
o v e r r@ 1 + - >r >r o v e r r> swap r> + c@
x o r
c r c _ c y c l e

n e x t
r> d r o p ;

33

Function code execution token table

A n array of execution tokens is created as a part of the library. Since it will only be
modified during the programming of the device, it was placed into the flash memory
in order to save 512 bytes of ram memory. Execution token for a word handling
Modbus message with a given function code lies at the index of the array equal to
the function code. At the point of creation of the array, it is filled with execution
tokens of the default response sending error message stating that an unsupported
function code was requested. The default response is vectored in case it needs to be
modified in an application without the need to rewrite the values in the table itself.

Support for additional function codes can be implemented simply by defining
a word to handle the messages with the new function code and then inserting its
execution token at the appropriate index within the function table. Given the nature
of Forth. This can also be done after the initial act of programming and deploying
a device simply when support of new function codes becomes necessary.

4.3.2 Slave device state control

The original design of the library operation included a state machine. This idea
was later abandoned in favor of a far simpler approach of using nested cycles, which
proved easier to develop and debug as well as being quicker to execute.

The state diagram calls for the use of two timers. Atmega328p provides three
timers: 8-bit timers TimerO and Timer2 and then a 16-bit timer Timerl. [14]
By default, TimerO is used by the FlashForth word ms to pause execution for a
defined time period. Timerl is then used for C P U load measurement and Timer2
is left unused. In order to make use of two timers for the library, the C P U load
measurement must be disabled. FlashForth provides the ability to do so by altering
the config-xc8.inc file. A new FlashForth build will then have the C P U load mea­
surement disabled. It is also possible to have the ms word use a different timer,
though this was not necessary for the development of this library.

A FlashForth image with the C P U load measurement disabled was compiled
using the M P L A B program with the XC8 compiler from the source files from the
FlashForth distribution. This file: ff.hex is included in the digital appendix A

Failed state machine

Originally, the reception and handling of the Modbus transmissions was supposed
to be governed by a state machine implemented according to the state diagram de­
scribed by the figure 1.3. This state machine was programmed as a word mbs main
which would cyclically call vectored word mbs state. The word which is called by

34

mbs state was swapped during timer interrupts as described by the state transi­
tion conditions in 1.3. The transition from Idle state was an exception in this regard
as the transition happens after reception of the first transmission byte.

One of the transition handling words was set up as vectored word as well in order
to break the cyclical dependency of the state machine words. This works akin to
declaring a function prior to defining it in traditional programming languages like
C.

This solution however proved to be impractical, requiring frequent modifications
of the interrupt vectors and vectored words, costing processing time. It also proved
challenging to properly debug and further develop and it was entirely scrapped later
on. The source code can be seen as part of the digital appendix A .

States governed by cycles

A new, far simpler approach to controlling the slave device state was used, utilising
three nested cycles. The outermost cycle represents the program loop itself. The first
nested cycle is the de facto idle state of the server, awaiting the first message byte.
The innermost nested cycle takes care of receiving the remainder of the transmission.
Timers are used to set flags indicating the end of the message transmission and if
the received message is valid, as described by the original state diagram in figure
1.3. The inner cycles are exited once the flag indicating the end of the message is
set and the message is then processed before re-entering the outermost cycle and
waiting for the following transmission. The cycles handling a single message can be
viewed in listing 4.5

Listing 4.5: cycle handling messages

b e g i n
m b s _ m s g B u f f e r b u f f e r _ r e s e t
k e y ? i f

key
m b s _ m s g B u f f e r b u f f e r _ p u s h
1 t i m e r l 5 e n \ s e t u p t i m e r s and p r e p a r e t o r e c e i v e
1 t i m e r 3 5 e n \ t h e r e s t of t h e message
b e g i n

k e y ? i f

key
m b s _ m s g B u f f e r b u f f e r _ p u s h
t i m e r 1 5 r e s e t
t i m e r 3 5 r e s e t

t h e n

35

mbs_endedMsg c@ u n t i l
m b s _ m s g B u f f e r b u f f e r _ a d d r _ g e t \ c h e c k t h e d e v i c e add
m b s _ d e v i c e _ I D c@ = i f

m b s _ c h e c k _ c r c i f

m b s _ p r o c e s s \ p r o c e s s t h e r e c e i v e d messa
m a p _ r e g i s t e r

t h e n
t h e n

t h e n
mbs_endedMsg c@ u n t i l

This approach also places little emphasis on the role of Timer 1,5, using it only to
mark the message as not valid as opposed to having it govern the state transitions
like it was supposed to do with the previous design. It would thus be possible to
remove the timer from the library entirely, should one desire to do so. This would
allow the user to sacrifice the ability to detect message defects but would free up one
of the timers for use within the final application. The C R C calculation would then
be the only factor detecting transmission errors, but having a timer available might
be worth doing so for certain applications. It may also be possible to use both the
A and B compare registers of a single timer in place of using the A register of each
of the two. This is something worth looking into in the future.

4.3.3 Timer management

The library currently makes use of two timers with Timer2 representing timer 1,5
from Modbus documentation [2] and Timerl serving as timer3,5. Both timers
run in Output Compare mode, with the value to compare to (written to registers
OCRxA) being calculated with the help of a formula sourced from the Atmega
datasheet [14] (page 101, C T C timer operation) and the period to time being given
by Modbus documentation [2]. A word setting up each of the timers with regard to
the serial port baudrate is provided. The value to store in the register is calculated
using the following formula:

baudrate 2 • prescaler

OCR1A = ii^222 « ! _ _ . 3.5

baudrate 2 • prescaler
The first fraction represents the interval of 1 character transmission on a serial

port in microseconds. The second fraction is based on the formula of timer interrupt
frequency sourced as described above. The 1.5 and 3.5 constants are used as the

36

timers are supposed to time 1.5 and 3.5 character transmission times. Both timers
run at prescaler of 256 in C T C mode.

These expressions were then simplified as to not waste time evaluating them each
time the word is called. The final implementation used in the library then contains
only a single division:

OCR2A 3 4 3 7 5 0

OCR1A

baudrate
1203125
baudrate

FlashForth, while operating with 16-bit values normally, provides math words
for certain 32-bit math operations, making this an easy process.

As per the Modbus serial line documentation [2], fixed values for the Output
Compare registers are used if the communication speed exceeds 19200 baud in order
to not generate excessive load on the C P U by creating interrupts in quick succession.
For Timer2, the value 23 is used, while the value 55 is utilised for Timerl.

A n interrupt word has been defined for each of the timers, with Timer2 interrupt
marking the currently received message as invalid and Timerl interrupt signaling
the end of a message. Each of the timer interrupt words also disables the timer
associated with the interrupt in order to prevent the needless generation of multiple
interrupts while handling a single message.

4.4 Supported function codes

The library currently contains the support for 6 function codes:
• Read Coils
• Read Discrete Inputs
• Read Holding Registers
• Read Input Register
• Write Single Coil
• Write Single Register
These words operate using memory mapping defined in config.fs.

4.5 Modbus memory space mapping

Modbus memory spaces are mapped to physical memory with the words in config.fs.
The memory space mapping can be redefined to fit any particular needs of the user
application. The fact that Modbus registers are 16-bit and most of Atmega328p
registers, such as port registers, are 8-bit introduces slight issues with mapping of
the registers to physical memory.

37

In order to circumvent this issue, a separate 16-bit register is defined within ram
memory, the contents of which can then be mapped to any address. As for the
default configuration of the library, a word mapping the LSB of the register to port
D data register and the MSB of the register to port B data register is provided.
The word also avoids modifying the bits 0 and 1 of the D port as these are mapped
to the RXO and TX1 pins of the Arduino board and are utilised in communication
with it.

A l l of the memory spaces span this register only by default, leaving the server
with one holding/input register and 16 coils/discrete inputs. A n example of mapping
words can be observed in listing 4.6. For the words mapping single-bit values such
as coils, the mapping words provide both a memory address as well as a bit mask,
where the register mapping words only provide the address of the lower-end byte of
the register, which FlashForth can use to write/read a 16-bit value value using the
predefined words ! /@.

The mapping words are also defined with modification in mind, the word register
can be swapped to a starting address of any memory block allocated for Modbus
memory space providing an easy way to modify the library to the needs of any
particular application.

Listing 4.6: Memory mapping words

: mbs_diMap (d i l n d e x mask A d d r)
\ word m a p p i n g Modbus d i g i t a l i n p u t a d d r e s s t o a
\ r e a l a d d r e s s and b i t a c c e s s mask i s p r o v i d e d

#8 u/mod swap 1 swap l s h i f t r e g i s t e r r o t + ;

: mbs_hrMap (h r l n d e x A ddr)
\ word m a p p i n g Modbus h o l d i n g r e g i s t e r a d d r e s s
\ t o a r e a l c e l l a d d r e s s

c e l l s r e g i s t e r + ;

4.6 Verifying the functionality of the library

A Modbus master emulator sourced from www.modbusdriver.com/modpoll.html
was used in order to communicate with the device running the library code and
to verify its correct behaviour. This emulator supports all of the function codes
the library recognizes, though it does not provide support for broadcast mode. The
master also provides support for function codes 15 and 16 which write multiple coils
and registers but are not supported by the library. By sending messages with these

38

http://www.modbusdriver.com/modpoll.html

function codes, the correct generation of error responses was confirmed. A n example
of the modpoll emulator use can be seen in figure 4.1.

jakub(3jakub-Aspire-A715-72G:~$ n o d p o l l -a 1 -m r t u - t 4 - r 1 -c 1 -o 0,5 -1 -b 38409 -p none
n o d p o l l 3.10 - F l e l d T a l k (t n) Modbus(R) Master S l n u l a t o r
Copyright (c) 2002-2621 proconX Pty Ltd

V i s i t https://www.nodbusdriver.con f o r Modbus l i b r a r i e s and t o o l s .

P r o t o c o l c o n f i g u r a t i o n : Modbus RTU, FC6
Slave c o n f i g u r a t i o n . . . : address = 1, s t a r t reference = 1, count = 1
Connunlcatlon : /dev/ttyUSBl, 38400, 8, 1, none, t/o 0.50 s, p o l l r a t e 1000 ns
Data type : 16-blt r e g i s t e r , output (h o l d i n g) r e g i s t e r t a b l e
W r i t t e n 1 re f e r e n c e .

Fig. 4.1: modpoll successful write operation, parameters path to device and write
value cropped out due to size constraints

Wireshark was also used over the course of the development, especially in the
later stages. It provided the ability to monitor and display the individual messages
with the help of usbmon module. This proved exceptionally useful as any defects
in messages could be quickly diagnosed and patched out by modifying the words
responsible for the incorrect behaviour.

39

https://www.nodbusdriver.con

5 Demonstration unit
The demonstration unit consists of three Arduino N A N O boards powered by a 5V
power supply module (Which can be supplied by 12V from a transformer or via
USB). Each of the Arduino units' serial port is connected to a RS485 bus via a
transceiver module. The entire unit has been constructed on a breadboard, so that
it can be later dismantled and the individual components used in other projects.

The RS485 bus is represented by a simple two-wire configuration with two of the
breadboard channels being used as the bus itself. Since the project is contained on
a small breadboard, this has proven to be a sufficient solution. Though for other
projects and actual deployments of the devices with the bus spanning significantly
larger distances a more robust implementation of the RS485 physical layer, such as
CAT5 cable variant described by the protocol specification, will likely be needed.

A USB cable is connected to an additional transceiver and onto the RS485 bus.
the emulated Modbus master requests are sent over this USB port using the Modpoll
Modbus master emulator from a computer. Wireshark can also be utilized in case
the messages themselves are to be observed.

Port B and D pins that are available for each of the units are connected to an
L E D with an appropriate resistor in place to limit the current. This serves as a
simple way to indicating the Modbus register state. The L E D used is a generic L E D
(Dl) with forward voltage of 1.9 - 2.1 V and forward current of 20 mA. A 150 Q
resistor (Rl) was utilised to limit the current through the L E D .

The wiring diagram for the demonstration unit can be seen in figure 5.1.

5.0.1 Code for the server units

The units are running code using the library, with a word mapping the defined
register in ram to ports B and D injected into the main cycle of Modbus operation
in order to avoid the need to define an entire new task within FlashForth solely for
this operation.

using the port C instead of the D port was originally considered, but ultimately
decided against in order to make the demonstration unit more compact as port C
pins are on the opposite side of the board than the port B pins, requiring a larger
breadboard to properly connect to the resistors and LEDs.

A unique device ID is written to each of the device by storing the unique ID
within the appropriate variable. The IDs used are 1,2, and 3 for simplicity.

A word is defined, which sets up both ports B and D as output upon startup,
with the exception of the bits of port D used by the serial port as mentioned in the
previous chapter. Main word is then defined, calling mentioned setup word before

40

entering the loop of Modbus server operation. Both of these words are contained
within the file application.fs which can be viewed in listing 5.1. The modified
library file library.fs is included in the digital appendix A. The files config.fs and
Atmega328p.fs were left unchanged for the purposes of the demonstration unit.

Listing 5.1: Application words

: a p p _ s e t u p
\ s e t b o t h p o r t s as o u t p u t
\ and i n i t i a l i z e r e g i s t e r

$ f f DDRB c!
'/.II111100 DDRD mset
$0000 r e g i s t e r ! ;

: main
\ s e t s up t h e a p p l i c a t i o n and r u n s t h e
\ Modbus s e r v e r

a p p _ s e t u p
mbs_main ;

The main word is then declared the turnkey word by interpreting a command
shown in listing 5.2. With doing this, the device programming is finished. The
device will execute the main word after each startup. Each of the Arduino units
thus behaves like a simple remote output module.

Listing 5.2: defining turnkey word

' m a i n i s t u r n k e y

41

D13 D12

3V3 D i l

REF D10

AO D9

A l D8

A2 D7

A3 D6

A4

A5
Arduino
NANO

D5

D4

A6 D3

A7 D2

5V GND

RST RST

GND RXO GND RXO

VIN TX1 VIN TX1

D13 D12

3V3 D i l

REF D10

AO D9

A l D8

A2 D7

A3 D6

A4 Arduino D5

A5 NANO D4

A6 D3

A7 D2

5V GND

RST RST

GND RXO GND RXO

VIN TX1 VIN TX1

D13 D12

3V3 D i l

REF D10

AO D9

A l D8

A2 D7

A3 D6

A4

A5
Arduino
NANO

D5

D4

A6 D3

A7 D2

5V GND

RST RST

GND RXO GND RXO

VIN TX1 VIN TX1

USB A

+5V

DATA-

DATA+

-5V

USB to UART TTL to RS485

+5V GND

DATA- RXD

DATA+ TXD

-5V Vcc

GND A+

RXD
MAX485

TXD

B-

Vcc

TTL to RS485

GND

RXD
MAX485

TXD

< C
D

Vcc

TTL to RS485

GND A+

RXD
MAX485

TXD

B-

Vcc

TTL to RS485

GND A+

RXD
MAX485

TXD

B-

Vcc

5V power
_5V supply module

5V
GND

Fig. 5.1: Schematic for Demonstration unit

42

Conclusion
The preliminary research was conducted in preparation for the development of a
Forth library implementing M O D B U S R T U slave behaviour. Both the Modbus
protocol and the Forth language were researched and are described as part of the
theoretical portion of the thesis.

The M O D B U S protocol is described in the first chapter of this document, focus­
ing on the R T U variant implemented in the library.

The description of the basics of the Forth programming language lies in the
second chapter. The Starting F O R T H [3] book was an excellent introduction to both
the programming in the Forth language as well as Forth system inner workings.

A selection of Forth compilers are listed and described in the third chapter. For
the development of the library itself, FlashForth was chosen. It differs from the
Forth language standard, mostly in order to provide a more robust system that
is less susceptible to user errors. Some of the differences proved to be challenges
during the development, such as the missing DO ... L O O P cycle FlashForth does
not implement by default. A l l of these issues were addressed over the course of
the development and none of them held up the creation of the library for too long.
Furthermore the robust nature of FlashForth proved quite useful, especially in the
early stages of the development when I was still acquainting myself with Forth
programming in general as multiple erroneous operations were prevented, such as
writes to FlashForth kernel by passing the address and value to memory write words
in the wrong order.

The library itself was successfully developed. The development brought chal­
lenges, many of which are described in the last to final chapter of the thesis. Both
the inner workings of the library itself as well as the process of its creation are
described in this chapter. The resulting library is a part of the digital appendix A .

A demonstration unit was constructed using the library in order to prove the
library is functioning as intended. Three Arduino N A N O boards running a slightly
modified library were used as part of the unit. The code for the units is also included
in the digital appendix A.

43

Bibliography
[1] Modbus organization: MODBUS APPLICATION PROTOCOL SPECIFICA­

TION VI.Ib3 [online]. 2012 [cit. 19.10.2021]. Available from U R L :
<https://modbus.org/docs/Modbus_Application_Protocol_Vl_lb3.
pdf>.

[2] Modbus organization: MODBUS over Serial Line Specification and Implemen­
tation Guide VI.02 [online]. 2006 [cit. 15.11. 2021]. Available from U R L :
<https://modbus.org/docs/Modbus_over_serial_line_Vl_02.pdf >.

[3] BRODIE, L.: Starting FORTH:an introduction to the FORTH language and
operating system for beginners and professionals [online]. Englewood Cliffs.
N.J. : Prentice-Hall, ©1981 [cit. 11.10. 2021]. Available from U R L :

<https://www.forth.com/wp-content/uploads/2018/01/
Starting-FORTH.pdf >.

[4] W A L D E , E.: Nodes on a RS485 Bus [online]. 2015 [cit. 18.11. 2021]. Available
from U R L :
<http://amforth.sourceforge.net/Proj ects/RS485/RS485Bus.html#
i d l > .

[5] [NORDMAN, M.]: FlashForth Guide [online], [cca 2015] [cit. 12.11.2021].
Available from U R L :
<https://flashforth.com/index.html>.

[6] TING, C.H. : Tao of Arduino [online]. 2011 [cit. 30.12.2021]. Available
from U R L :
< h t t p s : / / g i t l a b . c o m / j j o n e t h a l / e f o r t h 3 2 8 / - / b l o b / m a s t e r /
F o r t h A r d u i n o _ l . p d f >.

[7] Schneider Electric: Modicon is now Schneider Electric [online],
[cit. 20.11. 2021]. Available from U R L :

<https://www.se.com/uk/en/about-us/company-profile/brands/
modicon.jsp>.

[8] HMS: Industrial network market shares 2020 according to HMS Networks
[online]. May 29, 2020 [cit. 20.11. 2021]. Available from U R L :
<https://www.hms-networks.com/news-and-insights/news-from-hms/
2020/05/29/industrial-network-market-shares-2020-according-to-hms-networks>.

[9] M P E Microprocessor Engineering: Comet Landing - a triumph for Forth in
Hardware and Forth in Software [online]. November 13, 2014 [cit. 6.12.2021].

44

https://modbus.org/docs/Modbus_Application_Protocol_Vl_lb3.?pdf
https://modbus.org/docs/Modbus_Application_Protocol_Vl_lb3.?pdf
https://modbus.org/docs/Modbus_over_serial_line_Vl_02.pdf
https://www.forth.com/wp-content/uploads/2018/01/?Starting-FORTH.pdf
https://www.forth.com/wp-content/uploads/2018/01/?Starting-FORTH.pdf
http://amforth.sourceforge.net/Proj%20ects/RS485/RS485Bus.html%23?idl
http://amforth.sourceforge.net/Proj%20ects/RS485/RS485Bus.html%23?idl
https://flashforth.com/index.html
https://gitlab.com/jjonethal/eforth328/-/blob/master/?ForthArduino_l.pdf
https://gitlab.com/jjonethal/eforth328/-/blob/master/?ForthArduino_l.pdf
https://www.se.com/uk/en/about-us/company-profile/brands/?modicon.jsp
https://www.se.com/uk/en/about-us/company-profile/brands/?modicon.jsp
https://www.hms-networks.com/news-and-insights/news-from-hms/?2020/05/29/industrial-network-market-shares-2020-according-to-hms-networks
https://www.hms-networks.com/news-and-insights/news-from-hms/?2020/05/29/industrial-network-market-shares-2020-according-to-hms-networks

Available from U R L :

<http://www.mpeforth.com/press/MPE_PR_From_Telescope_to_Comet_
2014_ll_13.pdf >.

[10] F O R T H , Inc.: Forth in Space Applications [online]. ©2022 [cit. 3.1. 2022]. Avail­

able from U R L :

<https://www.forth.com/resources/space-applications/>.

[11] Forth Interest Group: Forth Compilers Page [online], [cca 2013]
[cit. 12.12. 2021]. Available from U R L :

<http://www.forth.org/compilers.html>.

[12] AmForth Technical Guide [online], [cca 2014] [cit. 29.12.2021]. Available

from U R L :

<http://amforth.sourceforge.net/TG/TG.html>.

[13] ESP32forth website [online], [cit. 29.12. 2021]. Available from U R L :

<https://esp32forth.appspot.com/ESP32forth.html>.

[14] Atmel: ATmega328p DATASHEET [online]. January ,2015 [cit. 17.5.2022].
Available from U R L :

<https://wwl.microchip.com/downloads/en/DeviceDoc/
Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.
pdf>.

45

http://www.mpeforth.com/press/MPE_PR_From_Telescope_to_Comet_?2014_ll_13.pdf
http://www.mpeforth.com/press/MPE_PR_From_Telescope_to_Comet_?2014_ll_13.pdf
https://www.forth.com/resources/space-applications/
http://www.forth.org/compilers.html
http://amforth.sourceforge.net/TG/TG.html
https://esp32forth.appspot.com/ESP32forth.html
https://wwl.microchip.com/downloads/en/DeviceDoc/?Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.?pdf
https://wwl.microchip.com/downloads/en/DeviceDoc/?Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.?pdf
https://wwl.microchip.com/downloads/en/DeviceDoc/?Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.?pdf

List of appendices

A Contents of the digital appendix 47

46

A Contents of the digital appendix
The attached digital medium contains the following files:

/
l i b r a r y

c o n f i g . f s
Atmega328p.fs.
l i b r a r y . f s
debug.fs

a p p l i c a t i o n
l i b r a r y . f s
a p p l i c a t i o n . f s

root folder of attached medium
library source files

memory mapping and device configuration
words specific to Atmega328p

device-agnostic words
words useful for debugging

. . . . source files for the demonstration unit
. . . .modified library with injected mapping

application words
F l a s h F o r t h
| _ f f .hex.. FlashForth image compiled using XC8 in M P L A B
Failed_State_machine
L s t a t e machine.fs.. scrapped implementation of Modbus server

The library folder contains all the files constituting the finished library itself,
ready to be interpreted on an Atmega328p. The files used for the demonstration unit
are placed in the application folder. A FlashForth image with C P U load measure­
ment disabled that was used in the development is present in the FlashForth folder.
It was compiled using the XC8 v2.36 compiler in M P L A B v6.00 from the Flash-
Forth v5 source files. The Failed State_Machine folder contains a Forth source
file implementing the state machine design that was ultimately aborted during the
development.

In the physical rendition of the thesis, the digital appendix is contained on a C D
along with the digital version of this thesis as well.

47

