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Abstract 

The aim of the study is to verify the validity of the master curve concept for evaluation 

of the dissimilar weld joint and/or thermally aged weld joints. In addition, the thesis is 

focused on development of quantitative models for the prediction of reference temperature 

characterising position of the fracture toughness transition on the temperature axis using 

experimental data collected from tensile tests, together with a powerful computational 

technique known as neural network. 

This study focuses on the evaluation of the fracture behaviour of welds carried out by 

fusion welding. It aims to investigate the fracture behaviour in transition region of the 

structural steels and welds with ferritic basic microstructures by means of reference 

temperature. In order to obtain the reference temperature artificial neural network is used 

exploring tensile test and hardness test data. 

Creating a model using neural network method requires a sufficient amount of data 

and it is sometimes not possible to accomplish easily. Creating a truly general model 

requires a combination of data and metallurgical knowledge. So, the aim of this work is also 

to develop artificial neural network enabling to predict the reference temperature. In total 29 

experimental data sets from low alloy steels have been applied to validate the model of 

reference temperature prediction. The tensile tests have been done at general yield 

temperature of circumferential notched tensile tests (purely general yield temperature) and at 

room temperature (purely ductile fracture temperature). To build the model all parameters of 

tensile test and hardness values were used as input variables. 

The study indicated that the reference temperature characterizing the fracture 

toughness transition behaviour in low alloy steels with predominantly ferritic structure is 

predictable on the basis of selected characteristics of tensile test. 

Keywords: Steels; Fracture toughness; Tensile test; Artificial neural networks; 

Reference temperature, Master curve. 
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Abstrakt 

Práce byla zaměřena na ověření platnosti koncepce master křivky pro hodnocení 

heterogenních svarových spojů, resp. teplotně stárnutých svarů. Současně bylo cílem 

disertace vyvinout kvantitativní model pro predikci referenční teploty lokalizující tranzitní 

oblast na teplotní ose za použití dat získaných z tahové zkoušky, a to za použití metody 

umělých neuronových sítí. 

Studie je současně zaměřena na heterogenní svarový spoj připravený tavným 

svařováním. Je zacílena na hodnocení lomového chování v tranzitní oblasti nejméně odolné 

části svaru, tj. tepelně ovlivněné zóny ferritické oceli v blízkosti zóny natavení 

s vysokolegovaným materiálem. Pro predikci referenční teploty master křivky je použita 

zmíněná metoda neuronových sítí, a to za použití dat z tahových zkoušek a měření tvrdosti. 

Predikovaná referenční teplota byla ověřována na základě výsledku experimentálních 

měření. 

Vytvoření modelu za použití neuronových sítí vyžaduje dostatečné množství dat a není 

vždy snadno tuto podmínku splnit. V případě sledovaného problému to znamenalo použití 

dat z dostatečně věrohodných zdrojů (skupiny Křehký lom U F M A V C R ) a se známou 

metalurgickou historií. Smysl práce je tak možno spatřovat ve vývoji modelu neuronové sítě, 

která bude dostatečně přesně predikovat referenční teplotu. 

Celkově byla pro tyto účely použita data z 29 nízkolegovaných ocelí. Pro účely vývoje 

byly použity kromě hladkých zkušebních tyčí, rovněž tahové zkoušky s obvodovým vrubem 

testované při kritické teplotě křehkosti (mez makroplastických deformací) a při teplotě 

pokojové. Při tvorbě modelu byla postupně v různých kombinacích využita všechna data 

z uvedených zkoušek. 

Studie ukázala, že referenční teplota charakterizující tranzitní chování lomové 

houževnatosti oceli s převažující feritickou strukturou je jedinečným parametrem 

predikovatelným na základě vybraných charakteristik tahových zkoušek. 

Klíčová slova: Oceli, Lomová houževnatost, Tahová zkouška, Referenční teplota, 

Umělá neuronová síť, Master křivka. 

2 



Bibliographie citation 

A l Khaddour, S. Fracture behavior of steels and their welds for power industry. Brno: 

Brno University of Technology, Faculty of Mechanical Engineering, 2017. PhD Thesis 131 

pp. Supervisor Prof. Ing. Ivo Dlouhý, CSc. 

3 



Claim 

I hereby confirm that I am the sole author of the written work here enclosed and that I 

have compiled it in my own words. The work was made under the supervision of 

Prof. Ing. Ivo Dlouhý, CSc. 

Brno, 19.01.2017 

Ing. Samer A l Khaddour 

4 



T A B L E OF CONTENTS 

1 INTRODUCTION 6 
2 THEORETICAL BACKGROUND 8 

2.1 Fracture Mechanics Background 8 
2.1.1 Linear Elastic Fracture Mechanics (LEFM) 8 
2.1.2 Elastic Plastic Fracture Mechanics 10 
2.1.3 Experimental Determination of the Fracture Toughness 11 
2.2 Brittle Fracture of Low Alloyed Steels 13 
2.3 The Ductile-Brittle Transition 17 
2.3.1 Master Curve 18 
2.3.2 Local Brittle Zones Concept 19 
2.4 Possibilities for Simplification of Fracture Toughness Estimation 21 
2.4.1 The Small Punch Test 21 
2.4.2 Tensile Test 22 
2.4.3 Instrumented Indentation Test 23 
2.5 Miniaturized Test Specimens for Fracture Toughness Determination 25 
2.5.1 KLST Specimen 25 
2.5.2 Miniaturized Compact Tension Specimen 27 
2.5.3 Miniaturized Disc Shape Compact Tension Specimen 28 
2.6 Neural Networks in Material Science 28 
2.6.1 Bayesian Neural Network 31 
2.6.2 Structure of the Neural Network 32 

3 THE AIM OF THE THESES 35 
4 MATERIALS, TEST SPECIMENS AND METHODS 36 

4.1 Investigated Materials 36 
4.1.1 Weld Joints 36 
4.1.2 Materials for Data Sets of A N N Development 43 
4.2 Mechanical and Fracture Mechanical Testing 45 
4.2.1 Experimental Determination of the Fracture Toughness KK and KJC using CT 

specimen 46 
4.2.2 Experimental Determination of the Fracture Toughness Using Three-Point 

Bend Specimens 49 
4.3 Tensile Tests 51 
4.3.1 Tensile Test of Smooth Bars 51 
4.3.2 Tensile Test of Notched Bars 53 
4.4 Neural Network Application 55 

5 RESULTS 58 
5.1 Fracture Toughness of Weld Joints (as Received and Aged) 58 
5.2 The Neural Network Results 68 
5.2.1 The First Model 68 
5.2.2 The Second Model 81 
5.2.3 The Third Model 85 
5.2.4 The Fourth Model 89 

6 DISCUSSION 93 
7 SUMMARY AND CONCLUSIONS 100 
BIBLIOGRAPHY 102 
AUTHOR'S PUBLICATIONS 109 
LIST OF FIGURES 110 
LIST OF TABLES 114 
TERMS AND DEFINITIONS 115 
LIST OF ABBREVIATIONS 118 
ANNEX: 119 

5 



1 I N T R O D U C T I O N 

Mechanical testing is important for evaluating the main properties of engineering 

materials during service and for developing new materials. Evaluating the characteristics of 

a material during the application of a load helps us to know if the material is strong enough 

and rigid enough to resist the loads that it will experience in service. In this sense, a specific 

role belongs to the evaluation of the material's response to an external load with the 

presence of opening cracks, defects and or sharp notches. A number of experimental 

techniques for the mechanical testing of engineering materials have been developed, such as 

fatigue testing, fracture toughness determination, hardness testing, impact and tensile testing. 

In the frame of these mechanical tests, a specific role belongs to fracture toughness 

determination. Fracture toughness, which is a very important property of any material in 

design applications, is described as a stress intensity factor quantifying a stress field required 

to force a pre-existing defect/flaw to propagate. The linear-elastic fracture toughness of a 

material is determined from the critical value of stress intensity factor Klc at which a crack 

in the material begins to grow, whereas elastic- plastic fracture toughness includes a 

determination of energy required for the crack propagation. 

For transition behaviour characterisation of low-alloy steels in various structural 

applications master curve concept is rapidly becoming an essential part. It is based on the 

finding that most ferritic steels with yield strength up to 750 MPa are characterized by the 

same shape of the fracture toughness transition curve, including the scatter band. The 

transition behaviour characterizing the particular steel is then defined by the position of this 

transition curve on the temperature axis. A reference temperature Tq has been introduced for 

the positioning the transition region. In order to determine the reference temperature and the 

position of the fracture toughness transition curve on the temperature axis, it is essential to 

carry out a minimum number of valid standard fracture toughness tests. It is often difficult to 

use these tests for the purposes of estimating embrittlement during exploitation due to a lack 

of material or due to need to characterise selected location of the component e.g. highly 

dissimilar materials like weld joints. For similar case the master curve concept brings one 

very unique advantage. Only one parameter, the reference temperature, is needed for full 

quantification of fracture toughness transition region. So the effort may be concentrated on 

how to obtain the reference temperature by procedure other than direct standard 

measurement. 
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This study focuses on the evaluation of the fracture behaviour of welds carried out by 

fusion welding. It aims to investigate the fracture behaviour in transition region of the 

structural steels and welds with ferritic basic microstructures by means of reference 

temperature. In order to obtain the reference temperature artificial neural network is used 

exploiting tensile test and hardness test data on the input side. 

Creating a model using neural network method requires a sufficient amount of data 

and it is sometimes not possible to accomplish easily. Creating a truly general model 

requires a combination of data and metallurgical knowledge. So, the aim of this work is also 

to develop artificial neural network enabling to predict the reference temperature. The 

design of the model is described and to test its validity, prediction is compared with 

experimental values and expectations; in total 29 data sets from low alloy steels are applied 

for the analysis. 

The study is organized as follows. In section 2, a background of fracture mechanics is 

presented, and the determination of fracture toughness parameters in terms of Klc, X j C with a 

description of corresponding fracture behaviour in ductile to brittle transition region. Master 

Curve concept is used in order to quantify the fracture toughness temperature dependence in 

the transition region. Miniaturized test specimens for fracture toughness determination have 

been also included in the theoretical part of the study. The aims of thesis are included in 

section 3. Section 4 is devoted to the selected experimental details, e.g. the material 

description of the experimental specimens and test methods applied. Finally selected results 

of experimental investigation are presented in section 5. After section 6 dealing with 

discussion of results conclusions are summarised in section 7. 
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2 T H E O R E T I C A L B A C K G R O U N D 

2.1 Fracture Mechanics Background 

2.1.1 Linear Elastic Fracture Mechanics (LEFM) 

Consider a plate subjected to a remote stress where the plate width is larger than the 

length of crack, see Fig. 1, the stress field at the crack tip in linear elastic material behavior 

is given by the following equation [1]: 

0y = -l=fij(e) + T 5 n 5 i j + Cij2(.G>1/2 + -+ Cijn{B)r^ + . . . (D 

r, 6 Polar coordinate system 

dij Stress tensor component 

fij(6) Dimensionless angular function 

K Stress intensity factor 

T Constant stress in the x-direction 

Crack 

Stress Element 

Point at the 
Crack Tiu 

Fig. 1 Definition of the coordinate axes ahead of a crack tip [2], 

Dimensionless functions fij(6) and gij{6) depend on the mode of loading, gij(6) 

which depend on the geometry of the cracked body [3, 4]. The separate components of the 

stress tensor/stress field could be then quantified using the stress intensity factor in the 

following way: 

f0\ K, ,6\ 
aYY = . cos 

I2nr 

3 0 j 
(2) 

a y y = 
'2nr 

:COS {-2)l1 + Sin{2)Sint 
30 \ 

(3) 
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a77 = , cos — sin — sin — . v*) 
V2ttt \2J \2J \ 2 / 

In the crack plane for 9 = 0 the shear stress is zero, the normal stress for Mode / 

loading in a linear elastic material is given by: 

°xx = °yy = - f = ( D > 

Eq. 5 is only valid near the crack tip, where the 1/Vr singularity dominates the stress 

field. Stresses far from the crack tip are governed by the remote boundary conditions [5]. 

Irwin introduced three different loading modes classification. In the first mode of 

loading, also known as the opening mode, the load is normal to the crack plane [6]. 

Fig. 2 describes a schematic model of the plastic zone and the stresses ahead of the 

crack tip. The elastic stress distribution indicates that oy -> oo as r -> 0. Actually, oy is 

limited to oys as shown by the elastic-plastic stress distribution. This means that oy -> oo 

occurs mathematically, not physically. 

Fig. 2 Crack tip plastic zone model [2], 

It is recognized that plastic deformation will occur at the crack tip as a result of the 

high stresses that are generated by the sharp stress concentration. To estimate the extent of 

this plastic deformation, Irwin [7] equated the yield strength to the y-direction stress along 

the x-axis and solved for the radius. The radius value determined was the distance along the 

9 



x-axis where the stress perpendicular to the crack direction would equal the yield strength; 

thus, he found that the extent of plastic deformation, i.e. radius of the plastic zone rywas: 

2.1.2 Elastic Plastic Fracture Mechanics 

L E F M applies when the nonlinear deformation of the material is confined to a small 

region near the crack tip [2]. Thus an important restriction to the use of L E F M is that the 

plastic zone size at the crack tip must be small. There are two elastic-plastic parameters 

introduced quantifying describing the crack tip stress field in elastic-plastic materials, the 

first parameter is the crack tip opening displacement CTOD and the second one is the / 

contour integral [8]. 

Wells [9] performed an approximate analysis that is related to CTOD, which is the 

displacement at the original crack tip. He observed that blunting of initially sharp cracks 

occur prior to fracture. The degree of crack tip blunting increases in proportion to the 

toughness of the material. Thus he proposed the crack tip opening displacement {CTOD) as 

a measure of fracture toughness [10]. 

Irwin [7] showed that crack tip plasticity makes the crack behave as if it were slightly 

longer. Alternatively, CTOD can be related to energy release, and it is given as following 

where S is CTOD, mis a dimensionless constant, which is approximately 1.0 for plane stress 

and 2.0 for plane strain. 

The /-integral concept has been introduced by R. Rice for two dimensional domains 

containing cracks. For an arbitrary counter clockwise path T around the crack tip as shown 

in the Fig. 3 the strain energy density is given as [4, 11], where otj and £tj are the stress and 

strain tensor components. 

(6) 

[4]: 

5 = 
Kf G (7) 

moYS E maYs' 

w = 
o 

(8) 

Following, /-integral can be given by definition as: 

(9) 

where Tt = <7j .n,- is traction vector, ut displacement vector. 
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Input Work 

Fig. 3 Crack tip coordinate system and typical line integral contour [2], 

Rice [11] proved that in case of nonlinear elastic material the /-integral does not 

depend on the path of integration around the crack tip. The single parameters K,J or CTOD 

are valid under small scale yielding conditions, where these parameters can describe the 

crack tip conditions, but single parameter approach becomes invalid in the case of excessive 

plasticity, where the size and geometry of the test specimens affected the fracture. Rice [11] 

proved that for the special case of a linear elastic material, the stress energy release rate G is 

equal to the value of the /-integral, and therefore, the stress intensity factor can be evaluated 

by the following equations [12-14]: 

J.E (10) 
,2 ' 

where E* = for plane strain and E* = E for plane stress. 
l-v2 

2.1.3 Experimental Determination of the Fracture Toughness 

A l l brittle materials contain a population of small cracks and flaws that have different 

sizes, geometries and orientations [4]. When the value of tensile stress at the crack tip 

exceeds the value of critical stress, a crack forms and then propagates, causing a fracture. 

The crack tip stress intensity factor describing the stress field depends on load and crack vs 

specimen geometry/configuration, its critical value, i.e. fracture toughness then depends on 

the material, temperature, environment and rate of loading [15]. 

For determining fracture toughness, standard testing conditions and test specimens 

geometry and dimensions have to be used. The compact test (CT) specimens and the single-

edge notched bend specimens (SENB) that are usually used to characterize fracture initiation 

and crack growth are permitted in ISO 12135 and similar standards [16]. The stress intensity 

factor corresponding to the (CT) specimens is obtained from the following expression: 
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where the crack length should be about ^ ~ 0.5, g is a geometrical function of 

dimensionless crack length of ^ , B and W are the thickness and the width of specimens 

respectively, are a 0 is the initial crack length. The function and g y^j is given by the 

following expression: 

(12) 

The force F Q is a critical force of load determined by corresponding way [16] force 

load-load displacement force. 

In order to validate KQ as KIC values the following requirements according the 

standard A S T M E399 [15] must be fulfilled: 

B,a,(W-a)>2.5(^-)2, <13) 
\aYSJ 

0.45 < — < 0.55, ( 1 4 ) 
W 

Fmax < 1.1QFQ, (15) 

where aYS represents the yield stress at the test temperature applied. That means, the value 

of KIC is not valid if the plastic zone at the crack tip is too large. The plastic zone has to be 

very small when compared to zone of elastic singularity and relevant dimensions (thickness) 

of specimens Thus, KIC is a function of applied force and test specimen size, geometry, and 

crack size. The validity of the KIC value determined by this test method depends upon the 

establishment of a sharp-crack condition at the tip of the fatigue crack in a specimen having 

a size adequate to ensure predominantly linear-elastic, plane-strain conditions. Once the 

conditions (13) and (15) have not been met, the fracture toughness must be determined 

according to E P F M concept. 

Practically, the /-integral calculation consists of an elastic and plastic component 

determination. This is given by the following equation: 

JQ=Je+JP- W 
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The elastic component Je is calculated using the value of linear elastic stress intensity 

factor Ke as calculated from fracture load according to the expression: 

_KJ(l-v2) ( 1 7 ) 

Je~ E 

In general, the plastic component JP is calculated as follows 

J p (BN.b0y 

where Up is the plastic part of the area under curve of force versus load line displacement, 

BN is the specimen net thickness, b0 is the uncracked ligament. Here r\v = 2 + 0.522 b0/ 

w for a compact specimen; r]p is a dimensionless constant which depends only on the crack 

length and geometry of the specimen [17]. 

The values of /-integral are usually converted to their equivalent values in terms of stress 

intensity factor Kjc from the following expression: 

JcE 
(1 - v2) = VP7- (19) 

2.2 Brittle Fracture of Low Alloyed Steels 

Two types of brittle fracture can be can be distinguished by the fracture path. In 

transgranular fracture, the fracture travels along specific crystallographic planes [18]. That 

means the fracture prefers the path of least resistance against deformation. Intergranular 

fracture is the crack traveling along the grain boundaries, and not through the actual grains 

[19]. In this case, the grain boundaries are the preferred fracture path, e.g. taking place when 

the phase at the grain boundary is weak and brittle. 

Cleavage fracture occurs by direct separation along specific crystallographic planes by 

means of a simple rupturing of atomic bonds. Alfa iron, basic lattice of ferritic steels, 

undergoes cleavage along its cubic planes (100). This gives the characteristic flat surface 

appearance within a grain on the fracture surface. As in polycrystalline material, the adjacent 

grains have different orientation (Fig. 4), the cleavage crack changes direction at the grain 

boundary in order to continue along the given crystallographic planes. 

Since the cleavage fracture involves braking of atomic bonds, sufficient stress is 

needed to overcome the cohesive strength of the material. This cohesive strength is related 

to microscopic cleavage fracture stress. Once the local stress component of the applied stress 

is higher than the cleavage fracture stress the cleavage fracture nucleation can occur. The 
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cleavage fracture stress is a material property which is generally defined based on tensile test 

of smooth specimen as the lowest fracture stress value on its temperature dependence. 

Fig. 4 Cleavage spreading through grains [4], 

There are different models describing this event on a microstructure level. Thus, from 

micromechanical view point, two conditions for cleavage fracture at the crack tip are 

needed: certain level of the effective strain and a load stress higher than the cleavage 

(critical) fracture stress oCF over some microstructurally important distance. 

Stroh [20] suggested that the dislocation pile-up causes the condition of the shear 

stress to nucleate a microcrack. He also suggested inclusion of the effect of the grain size in 

his model. Cottrell [21] proposed that the fracture process should be controlled by the 

critical crack growth stage through applying tensile stress, which needed higher stress than 

the crack nucleation. Zener and Stroh [20] suggested that the crack nucleation of cleavage 

fracture occurs when the shear stress created by pile-up of n dislocations of Burgers vector 

at a grain boundary reaches a critical value. Carbides and/or other hard particles could cause 

the cleavage fracture, if a macroscopic crack provides sufficient stress concentration to 

overcome the atomic bonds, the micro crack propagate into the ferrite matrix. The fracture 

stress for a penny-shaped crack produced by a spherical particle is given by the following 

expression [8]: 

where yP represents the plastic work which is required to create a unit area of fracture 

surface in the ferrite, and C0 represents the particle diameter. Suitable models for ferritic 

steel have been studied in order to understand the relationship between the cleavage fracture 

stress and microstructure. In tempered alloy steels for example, the spherical carbide usually 
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play the critical role, and in mild steels, cleavage fracture usually initiates at grain boundary 

carbides. These models are given at the end of the section [3]. 

These above described concepts were accepted also in Ritchie Knott and Rice model 

[22] often used for quantification of initiation condition for cleavage brittle fracture, see 

Fig. 5. Firstly, they postulated that the critical distance in which the cleavage nucleation 

condition must be fulfilled is equal to two grain diameters for mild steel material. Later, they 

found there is not a consistent relationship between the critical distance and the grain size. 

Curry and Knott found that the critical sample volume of material must be higher for those 

having local stress higher than oCF [22]. The relationship between the critical volume of 

material and critical distance may depend on the average spacing of cleavage nucleation 

sites [4]. This model also enables us to explain why cleavage fracture toughness data tends 

to be widely scattered. The statistical models of Curry and Knott were treated as a weakest 

link phenomenon. The probability of fracture is equal to the probability observing at least 

one critical fracture-triggering particle [23]. The probability of fracture can be obtained by 

the following equation: 

where the crack tip conditions are defined by K or J, and 6K or 6j are material properties 

that depend on microstructure and temperature. 

— — — DISTANCE 

Fig. 5 Initiation of cleavage fracture at a microcrack that forms in a second phase particle 

ahead of a macroscopic crack [4], 

(21)a 

(21)b 

4 
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Cleavage fracture is always preceded by local plastic deformation. The first necessary 

condition for cleavage fracture is plastic deformation, but it is not a sufficient condition. 

According to RKR, the local stress value must be higher than the critical oCF value. If the 

stress ahead of the macroscopic crack is sufficient, the microcrack propagates into the ferrite 

matrix [24]. 

2Gv.Ym -1/ 

Ky 

Note that in real ferritic steels, and in their weld joints in particular, different cleavage 

fracture nucleation micromechanisms and fracture initiation can take place. Observed 

micromechanism thus may change from the weakest link behaviour to accumulation of 

damage sites, both showing typical fracture patterns on fracture surfaces (Fig. 6). 

m a c h i n e d notch 

c leovage origin 

secondary c l e a v a g e 
origins 

c l e o v a g e f r a c t u r e 

m a c h i n e d n o t c h 

\ 

^cleavage o r i g i n s 

c l e a v a g e f r a c t u r e 

Fig. 6 Typical fracture patterns on fracture surfaces for weakest link behaviour (left) and 

accumulation of damage sites concept (right) [24], 

The particular micromechanical behaviour of the given steel is then affected by 

different effects. Both the external factors (loading rate, temperature, structural defects and 

notches as stress concentrators) and the internal factors (chemical composition, 

microstructure including grain size, and impurity effects, operational degradation effects 

onto microstructure, including e.g. the carbide coarsening or impurity diffusion to grain 

boundaries or selected cleavage planes) affect the cleavage fracture and also affect the brittle 

to ductile transition. 

In contrast, there are cases of unsuccessful cleavage fracture events. Unsuccessful 

event means that cleavage crack nucleation does not cause brittle fracture initiation. The first 

case occurs when a microcrack ahead of the macroscopic crack has been arrested at the 

particle/matrix interface, as shown in Fig. 7a). The second case happens when a microcrack 

is arrested at the grain boundary as shown in Fig. 7b), where the crack is unable to propagate 
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because the applied stress is insufficient. Fig. 7c) shows that the crack is unable to 

propagate, if there is a steep stress gradient ahead of the macroscopic crack [4]. 

a. arrested at the particle/matrix 

interface 

b. arrested at grain boundary c. arrested due to a steep stress 

gradient 

Fig. 7 Examples of unsuccessful cleavage fracture event [4], 

2.3 The Ductile-Brittle Transition 

The fracture toughness of ferritic steels hardly differs over a small temperature 

interval, see Fig. 8. At low temperatures, steel is brittle and cleavage fracture usually occurs. 

At high temperatures, steel is ductile and fracture occurs by microvoid coalescence. The 

temperature dependence of fracture toughness is divided to three main regions [25]. In the 

lower shelf region the steel is brittle and the fracture mechanism is almost cleavage [26]. 

In the transition region between ductile and brittle behavior, both micro-mechanisms 

of fracture, i.e. ductile microvoid coalescence and brittle cleavage fracture take place and 

can be present at the same fracture surface [24]. In the upper shelf transition region, the 

crack initiates and propagates by microvoid coalescence, but ultimately failure may occur by 

cleavage see Fig. 8. 

According to the mechanisms preceding the fracture initiation, the following fracture 

toughness parameters may be used for quantification of the critical conditions. Klc represents 

plane-strain fracture toughness according to linear elastic concept, Kjc represents elastic-

plastic fracture toughness converted from critical / c-integral value set for the moment of 

unstable fracture initiation, K]u represents fracture toughness converted from the critical Ju-

integral value set for the moment of unstable brittle fracture initiation after a certain ductile 

crack propagation Aa at the root of the original crack prior to fracture cleavage, K]m 

represents informative values of fracture toughness at the moment of ductile fracture 

initiation at the crack tip, converted from critical /m-integral value [27]. 
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Fig. 8 Temperature dependence of fracture toughness [24], 

2.3.1 Master Curve 

The fracture toughness is a property which describes the resistance of a material 

containing a crack to fracture initiation, and is one of the most important properties of any 

material for structural applications [28-30]. As described in previous chapter steels with 

ferritic microstructure are possessing transition behaviour. Then a master curve is a 

statistical model based on the engineering analysis of data and following the quantification 

of the dependence, where the fracture toughness at a particular temperature in the transition 

region depends on three parameters Weibull distribution. It is shown by the following 

equation [31]: 

where K0 is the size-scale parameter, and Kmin is the minimum fracture toughness, which is 

assumed to be equal to 20 MPaVrn. 

For the median value of fracture toughness equalling to 100 MPaVm, the reference 

temperature T0 is defined. The relationship between the median fracture toughness and 

temperature in the ductile-brittle transition temperature region of ferritic steels is given by 

the fracture toughness master curve [32, 33] in accordance with the following equation: 

(23) 

where Pf represents a probability of brittle fracture for the arbitrarily selected specimen, 

K, = 30 + 70 exp[0.019(7 - T0)]. (24) 
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There are two methods to estimate the master curve reference temperature T0. The first 

one is called the single temperature method where T0 is calculated from size adjusted K0 

values by using Eq. 24. And the second one is called the multi-temperature method. This is 

given in the following equation [33-35]. 
N N s \ 4 

y exp[0.019(T - T 0 ) ] = y (KJci0 - 20) exp[0.019(T - T0)] ( 2 5 ) 

Zj 111 + 77 exp[0.019(T - T0)] Zj [11 + 77exp[0.019(7 - T 0 ) ] ] 5 ' i=i i=i 

At least six valid values of KJC(q must be available to establish the T0 temperature, 

where the temperature is units of °C, and Kjc in units of MPaVm. The A S T M standard 

El921 [36] includes the determination of a reference temperature T0 for ferritic steels in the 

transition region, where the yield strengths are ranging from 275 to 825 MPa. The 

temperature dependence of fracture toughness is given to conform to a standard shape 

known as the master curve. The temperature T0 is obtained from the median (50% fracture 

probability) corresponding to 100 MPaVm of the Kjc distribution from IT size specimens. 

2.3.2 Local Brittle Zones Concept 

There are many factors affecting the fracture behavior of the weld joints, for example, 

weld groove geometry, crack length to width ratio a/W, crack location, thickness of the 

weld joint, the loading rate, and so on. One of the main factors visible when looking at the 

fracture behavior of welded joints containing cracks is the heterogeneity of the joint. The 

weld width influences the fracture toughness of the weld joint, because of the plastic zone 

which is developed in front of the crack tip. In addition, the geometry of the specimen 

significantly affects the crack resistance curve. The fracture behavior of weld joint is 

determined by using the lowest yield strength value, when the structure is subjected to the 

nominal stress. 

Determining the fracture toughness of welded joint by using a small number of 

specimens and obtaining a suitable statistical distribution function is a problematic issue. 

Consequently, estimating the fracture toughness value from this statistical distribution is an 

incorrect thing to do. This problem can be solved by evaluating the probability of fracture 

according to the Weibull model, based on the weakest link theory. The following relation 

gives the distribution for a ferritic steel as described in [24]: 

P(KJC) = l-ex P(-Ĥ f) ™ 
where P{Kjc) represents the cumulative probability of fracture toughness, K0is the scale 

parameter (the 63 r d percentile of the distribution), 20 is the shift parameter in the Weibull 
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distribution, 4 is the value of the shape parameter in the Weibull distribution for the small 

scale yielding. 

In order to provide an estimate of Kc with a given probability, if the K0 value is 

known the last equation can be re-written as follows: 

Kc = 20 + (K0 - 20) { - In ( l - P(KJC))f25. ^ 

The fitting distribution procedure is based on the determination of an optimum value 

of K for a particular set of data. Unfortunately, the results of the test may be diverted when 

specimens are taken from non-homogeneous materials, such as weld metals and heat 

affected zones (HAZs) containing local brittle zones (LBZ). The fracture toughness 

distribution will be diverted to the higher toughness regions, because it is not probable that 

every specimen in a series of tests will contain local brittle zones (LBZ). In order to 

overcome this problem, Wallin [37] proposed a maximum likelihood estimation procedure 

(MML). The Weibull distribution in the SINTAP is used to provide conservative and 

realistic evaluations of the defects in a component [24, 37]. 

The M M L procedure includes a series of stages. The first stage in the procedure is to 

check whether all of the data meets the validity criteria of the relevant testing standard. The 

limit of valid value of fracture toughness Kjc(limit) is determined by the following equation 

[38]: 

Kjc«imit) = (E'b0Ry/30)°-5, (28) 

where b0 represents the initial ligament below the notch (W — a0 ) in the test specimen, Ry 

is the yield strength of a selected zone of the welded joint, and K0 is obtained by the 

following equation [24]: 

\Zi=i(Kci ~ 20) 4"" 
Kn = 20 + (29) 

N is the number of results in the data set, and i is the ith result. 

The M M L procedure involves censoring all data with value greater than the 50 t h 

percentile. Censored data is assigned the median value of toughness as follows [37]: 

K = 20 + (tf 0

( 1 ) - 20) * 0.91. ( 3 ° ) 

The final step requires an estimation of K0 by using the minimum fracture toughness 

value which is measured in the data set. This is given by: 

20 



Komin = 20 + ( K 2 5 m i n - 20) ( ^ ) ° ' 2 5 - ( 3 1 ) 

The M M L procedure can be applied to data in the fracture toughness transition regime. 

The advantage of this method is that the estimation of the scale parameter is confidence, 

especially when there are a limited number of tests, for instance, in inhomogeneous 

materials such as welded joint [24, 37]. 

2.4 Possibilities for Simplification of Fracture Toughness Estimation 

These approaches are most needed when the sample size needs to be minimized, and 

materials under development are available only in a limited amount. A typical example: 

welded joints are mostly measured by using more simple techniques, such as the uniaxial 

tensile test, impact testes of Charpy type specimens and the ball indentation test or the small 

punch test [39]. 

2.4.1 The Small Punch Test 

The Small Punch Test (SPT) is currently used and under further developments to 

estimate the mechanical properties and fracture characteristics in the transition region of 

ferritic steels. The specimen for SPT has commonly a disc shape with dimensions about 

8 mm (Fig. 9). The specimen is punched by using a ball until the disc is broken. During this 

process, the force-displacement curve is recorded [40-42]. The typical test record is shown 

in Fig. 9. 

This technique has been developed to characterize the ductile-brittle transition 

behavior of ferritic steels and obtain information about the toughness value of the materials 

such as Klc and Jlc by using critical strain energy density in the small punch specimen as a 

fracture criterion [43]. However, there is disadvantage: there is biaxial stress state in the 

specimen during the test, which causes complications in the determination of the correct 

material properties [44, 45]. It is thus necessary firstly to correlate the results of SPT with 

data from the standards test procedures and develop databases of mechanical properties 

which are determined by SPT and/or to develop correlation equation for the particular steel. 

Because of the biaxial stress in the specimen during loading, an interpretation of the results 

of the test against the results of the standard fracture specimen is thus not straightforward 

[40, 46]. 
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Fig. 9 Schematic setup of small punch test [47], 

We can obtain the mechanical properties, such as fracture strain, transition 

temperature, and the crack initiation point by analysing load-displacement curves in SP tests. 

The stress-intensity factor and its critical value can be obtained through the analysis of the 

stress fields at the crack tip for sharp-notched SP specimens [48]. In order to identify the 

initiation, a supporting technique is needed, e.g. a micro-camera, located at the bottom 

tensile side of the fixture. 

2.4.2 Tensile Test 

Uniaxial tensile test is known as a basic and universal engineering test which enables 

obtaining the material properties such as the ultimate tensile strength, yield strength, 

maximum elongation and reduction in area, and Young's modulus. These important 

parameters can be achieved from the tensile test sample and load curve and are not only 

useful for the selection of engineering materials for any required applications, but also for 

the interpretation of the fracture behavior [49, 50]. 

An engineering stress-strain curve can be constructed from load-elongation curve. A 

typical engineering stress-strain diagram and main parameters are shown in the Fig. 10. In 

order to estimate the fracture toughness from tensile test data, it is possible to use the critical 

fracture strain model for ductile fracture prediction given by [51]: 

Kjic = Constant (eu- l*0

m E • cry)°5, 

Kjic represents the fracture toughness calculated from Jic, Eu is the uniform strain, value of 

strain corresponding to maximum load, Zq is the characteristic distance ahead of the crack 

tip, E is the elastic modulus, oy is the yield strength. The critical characteristic distance, l*0 is 
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a multiple of the planar inclusion spacing (spacing between major voids on a fracture 

surface) and is obtained empirically. 

Plastic 

Ultimate 
stress 

F.lastic 

E 

Yield 
stress 

Rupture strength 
it is the stress at failure 

0 S t r a i n 8 

Linear range 

Fig. 10 Schematic engineering and true stress-true strain diagram for tensile test [51]. 

It is also generally known that true strain corresponding to fracture is necking area of 

the tensile test. Sample can be taken as characteristics relevant to fracture toughness. For this 

particular case it was calculated directly from reduction in area at fracture. Direct correlation 

has not been found however thus it can be used only after obtaining correlation equation for 

the particular steel. 

2.4.3 Instrumented Indentation Test 

In order to estimate the mechanical properties of a material, the instrumented 

indentation test is often taken as a semi non-destructive test. The advantage of this method is 

that it is simple and fast in its application. This technique uses a very small volume of the 

material [52]. For estimating the mechanical properties, multiple indentation with a spherical 

indent or called in this case as ball indentation test, or with Vickers indenter are used in the 

selected test location on metal surface. Fig. 11 shows the indentation test profile, the 

indentation depth trace and diameter, and a typical load indentation depth. The relationship 

between the load and depth is linear. During the multiple indentations, several loading and 
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unloading cycles are done at the same location on the work piece surface [53] as shows 

in Fig. 11. 

Fig. 11 Schematic setup of Ball Indentation Testing [53], 

When the maximum stress underneath the ball indenter equals the critical fracture 

stress (at a critical indentation depth), the deformation energy represents the temperature 

dependent part of the fracture toughness of the test material [53]. There are two methods that 

can be used to estimate the mechanical properties: either by empirical equations or by using 

the finite elements calculation method. In the first case, the analysis are based on Meyer's 

equation correlating data from unloading part of the indentation loading and geometry of the 

indent with empirically determined yield strength and Young's modulus. In the second case 

indentation curve is computed by means of finite element model into which tensile curve is 

parametrically implemented. Then based on iterations in accordance between computed and 

experimentally measured indentation curve is find out and parameters of tensile curve is 

evaluated. 

For brittle materials a method based on the Vickers indentation, can be also used to 

assess the fracture toughness directly from indent cracks. Lawn modelled the elastic-plastic 

behavior under indent [54]. Supposing the median/radial crack system is created due to 

tensile stresses created during unloading, the following expression can be used to assess the 

fracture toughness by implementing the Vickers indentation [55]: 

*c = a |4, (33) 

where F stands for the applied force, H is the hardness, C is the length of the surface trace of 

the half penny crack which is measured from the centre of the indent, E is Young's 

modulus. 
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2.5 Miniaturized Test Specimens for Fracture Toughness Determination 

The miniaturized specimens offer a possibility to evaluate the fracture behavior by 

using a limited amount of test material. The motivation for their applicability can be found 

in processes of material development, monitoring of degradation of mechanical properties 

and in characterization of local mechanical properties, e.g. in weld joint. These specimens 

usually do not meet the size requirements of a valid determination of fracture characteristics. 

Small loaded volumes at the crack tip under the fracture initiation conditions in these 

specimens are usually not sufficient to maintain the SSY conditions and the loss of crack tip 

constraint then occurs [56]. That results in size and geometry dependence of measured 

fracture characteristics. The stress-strain fields at the crack tip in the miniaturized specimens 

which is different from small scale yielding (SSY) conditions can even result in the change 

of fracture micro-mechanisms. Comparison of data sets of standard and miniaturized test 

specimens results in lower transition temperature, steeper transition curve and larger scatter 

for miniaturized specimens. The main reason for this reduced correlation is seen in the loss 

of the crack tip constraint, both in-plane and out-of-plane. The important issue is therefore 

the interpretation and transferability of fracture characteristics measured on miniaturized 

specimens [24, 57]. 

There are several types of miniaturized specimens. In this chapter, miniaturized 

specimens with geometries parametrically developed from the geometries of standard test 

specimens (KLST, M C T and DCT specimen) are briefly introduced. Their performance in 

comparison to standard test specimens is also described. 

2.5.1 KLST Specimen 

The KLST specimen, from the German Kleinstprobe, or "small specimen", is a 

rectangular bar for three-point-bend loading. It was introduced in DIN standard [58]. Its 

dimensions are 3X4><27 m m 3 (thicknessxwidth><length), enabling to manufacture the KLST 

specimen from the half of Charpy type specimen. Modifications of K L S T specimen with 

V or U notch are used for impact tests [56, 57], whereas pre-cracked modification is used to 

measure the fracture toughness data. See Fig. 12. 

KLST Response in Transition Region 

Wallin has carried out a validation study about the applicability of miniaturized bend 

specimens, among them also KLST specimen in order to determine the reference 

temperature T0 according to the master curve concept to A S T M E1921 [36, 59]. This 

standard introduces "validity window" in order to determine valid test data, which are then 
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used to estimate T0. The "validity window" is restricted by temperature range and validity 

limit for Kjc fracture toughness KjcUrnit. Due to the low values of Kjclimit for miniaturized 

specimens, Wallin proposed a narrower "validity window" for these specimens in the range: 

—50 °C < T — T0 < — 20 °C. That measure involves testing the miniaturized specimens at 

very low temperatures, where more specimens have to be tested to obtain the same 

probability contrary to the temperature around T0. When fracture toughness data keeps all 

described conditions, no differences can be detectable in estimated values of T0 between 

investigated bend geometries. Standard uncertainty of T0 estimation is ±10 °C. Specimens 

without side-grooving show by about 40 °C higher estimation of T0 compared to pre-cracked 

Charpy type specimens [60]. The difference of T0 estimation is about -9 °C compared to 

standard specimens mentioned [61]. 

13,5 X X 

27 

[ 

"X" main notch Y side groove 

Fig. 12 The geometry of pre-cracked K L S T specimen (top), main notch (left) and side 

groove (right) [62]. 
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Fig. 13 The geometry and dimensions of M C T specimen used in [63], 
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Behavior in Upper Shelf Region 

In fully ductile behavior, the KLST specimens show a very strong size effect [62]. For 

example, comparison of the results determined on Eurofer 97 steel indicate that KLST 

specimens have by about 30% and 60% lower values on J-R curve than 3><6><30 m m 3 and 

9x18x92 m m 3 specimen, respectively [64]. 

2.5.2 Miniaturized Compact Tension Specimen 

Miniaturized CT specimen (MCT) was designed to be manufactured from Charpy 

specimen cross-section 10x10 mm 2 . With its thickness of 4.2 mm (0.16T), it is possible to 

machine out four M C T specimens from the half of Charpy specimen [63]. Due to its 

dimensions, grooves for clip-gauge are placed on its side, see Fig. 13. 

Behavior in Transition Region 

M C T specimen seems to be the most suitable test specimen, from the point of view of 

limited amount of tested material and constraint level at the crack tip, e.g. for application in 

hot-cells facilities [63]. It shows about 8.5°C lower systematic deviation of T0 comparing to 

1T-CT specimens apparently because of both in-plane and out-of-plane constraint loss. 

For practical applications, there is still uncertainty in interpretation of data generated 

using these samples. Because of crack tip constraint effect, the difference between obtained 

reference temperature for the miniaturized compact CT and the standard specimen will 

change for different steels and, thus standardized procedure is not available. 

Behavior in Upper Shelf Region 

With fully ductile behavior of material, the J-R curves determined on M C T specimens 

were significantly lower when compared to 1T-CT [65, 66]. The observed difference in the 

initiation values of J-integral between the above mentioned specimens was approximately 

300 kJ/m 2. This means the JIC value is by about 50% lower for mini type of specimens 

comparing to standard one. This trend was verified in the case of six steels that are used in 

the application for pressure vessels and pipes [65]. However, tests performed on a material 

with low toughness (KV at USE = 70 J) had not revealed any observable difference in 

fracture characteristic between subsized out standard specimens [65]. Described behavior of 

specimens for different materials is apparently closely connected with the actual level of 

toughness of the material and with its ability to plastic deformation and to constraint loss 

respectively. The application of side-grooving is favourable for miniaturized specimens. Its 

introduction decreases the length of the crack-tip through thickness/dimension, but on the 
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other hand, it increases the level of stress triaxiality along specimen thickness. Thus, side-

grooving helps to maintain out-of-plane constraint. 

From the point of view of the applicability of the described miniature specimens, CT 

specimens are favourable, as they take into consideration the amount of tested materials and 

the level of crack tip constraint. However, bend geometry of KLST specimen is more 

suitable for dynamic loading. 

2.5.3 Miniaturized Disc Shape Compact Tension Specimen 

Another modification of miniaturized CT specimen is the disc shape specimen (DCT) 

which is developed in Oak Ridge National Laboratory (USA) in order to characterize the 

fracture behavior of irradiated materials [67]. The specimen was designed to take full 

advantage of the available space of the testing capsules in nuclear power reactors, which are 

dimensionally identical to fuel rods (Fig. 14). In literature, only limited information about 

the behavior of DCT specimens can be found. Most of them are related to individual tests of 

irradiated materials and their degradation states, usually with no corresponding results from 

larger type of cracked specimens [68, 69]. Due to the similarity between DCT and M C T 

specimens, both in dimensions and volume of the tested material, the same size effects on 

measured values of the fracture toughness can be expected. 

2.6 Neural Networks in Material Science 

Artificial neural networks (ANNs) are an information processing model that is inspired 

by the biological nervous systems work, such as the brain, on a computer. The concept was 

introduced by McCulloch and co-workers beginning in the early 1940s [70]. ANNs have 

thickness 4.6 
Fig. 14 Geometry and dimensions of DCT specimen (in mm) [68], 
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been intensively used for solving regression and classification problems in many fields. 

Nowadays, ANNs have been used in the areas that require computational techniques, such as 

pattern recognition, optical character recognition, predicting outcomes, and problem 

classification. In materials science and engineering fields, A N N modelling techniques have 

been used to predict the properties of materials including the toughness. Several researches 

explored the potential use of artificial neural networks (ANNs) in the field of fracture 

mechanics [71]. 

Guan and co-workers applied an artificial neural network (ANN) to predict the 

fracture toughness of directionally solidified Nb-silicide in in/situ composites. Both 

microstructural features and composition of the constituent phases were employed as inputs 

of the A N N model while the output was fracture toughness of the composites [72]. 

Partheepan and co-worker applied feed-forward neural networks to investigate the 

fracture toughness value of in-service materials. The A N N trained with comprehensive 

dataset collected from various sources of literature and also from the load-elongation 

computed from the finite element (FE) simulation. The input of the A N N was the miniature 

test load-elongation diagram while the fracture toughness value of the materials was used as 

output. His study showed that neural network model predicted the fracture toughness value 

close to the standard test value [73]. 

Seibi and co-workers applied ANNs to predict the average fracture toughness, Kc, of 

7075- T651 aluminium alloy under uni- as well as biaxial loading at the room and higher 

temperatures. The fracture toughness prediction follows from the evaluation of critical 

values of /-integral from experimental data. The model was based on the parameters that 

affect the fracture toughness value. And he showed that A N N is an excellent analytical tool 

that, if properly used, can reduce cost, time and enhance structure reliability [74]. 

Col and co-workers developed a generalised regression neural network to predict the 

impact energy as a function of experimental-test conditions. The predicted values of the 

impact energy using the A N N were found to be in good agreement with the actual values 

from the experiments [75]. 

A N N back-propagation model was used [77] to investigate the fracture toughness 

behaviour and tensile strength as a function of steel microstructure. The primary objective of 

their model was to validate and extend the application of microalloy steels for various 

engineering applications. A N N back-propagation training model was found to be in good 

agreement with the experimental results [76]. Kang and co-workers used a back-propagation 

neural network to predict the KIC values using tensile test data. His study showed that the 
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A N N can be a good tool to predict Klc values according to the variation of the temperature 

and the crack plane orientation using tensile test results [77]. 

Dunne and co-workers used an artificial neural networks (ANNs) to the predict the 

Charpy impact toughness of quenched and tempered (QT) steels [78]. In his study he 

showed that the capacity of ANNs to handle the problems involving large sets of input 

variables to predict the impact energy of weld metal (WM) produced by flux cored arc 

welding (FCAW). 

Abdulbaky and co-workers developed quantitative models for the prediction of 

fracture toughness using experimental data collected from the literature, together with an 

A N N . They proposed model of fracture toughness, based on chemical composition, heat 

treatment and mechanical properties. The predictions of fracture toughness were generally 

acceptable but the uncertainties have been found to be high and more input data need to be 

collected (for super-bainitic steels) to improve the predictions by using this model [79, 80]. 

Abendroth and co-workers used artificial neural networks to identify the ductile 

damage and fracture parameters from the small punch test experimental data [81]. Mac Kay 

[82] developed a particularly useful treatment of Bayesian framework for back-propagation 

feed-forward ANNs, which allows calculation of error bars for model predictions and 

quantifies the significance of each input parameter automatically. This method has 

advantages in investigating the influence of many input parameters on a specific output. Pak 

and co-workers used artificial neural network to investigate Charpy toughness of steel welds 

[83]. 

Ichikawa et al. [84] applied a classification A N N with a Bayesian framework to 

predict occurrence of solidification cracking in low alloy steel welds. Cool and co-workers 

[85] applied a committee of A N N within a Bayesian framework to predict strength of weld 

joints. This approach was found to improve quality of prediction once the input data are 

sparse and reliability of prediction is low. Bhadeshia [86] in general has reviewed the 

applicability of neural networks to materials science problems and has highlighted 

recommendations on how ANNs theory can be applied. 

As already mentioned (in chapter 2.3) thanks to master curve concept the evaluation of 

differences in transition behavior of steels caused by microstructural changes e.g. (due the 

operational degradation) is possible based on one parameter - reference temperature T0 

[87, 88]. Only one parameter, i.e. the reference temperature, is thus needed in order to 

describe the transition region of fracture toughness values quantitatively. Except for standard 

determination procedures of this parameter there are different approaches under 
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development how to estimate it indirectly. There is a unique opportunity to employ ANNs to 

predict this temperature on their output side looking for suitable parameters on their input 

side [89]. 

2.6.1 Bayesian Neural Network 

Artificial neural network (ANN) is an information processing model derived from the 

human brain processes information treatment [90]. An A N N consists of interconnected 

nodes that work together to perform an output function. The connections between nodes 

have numeric weights that can be adjusted based on experience enabling the network to be 

adaptive to inputs and capable of learning. Neural networks can be used to model complex 

relationships between inputs and outputs or to fit a function to a number of points in the data 

space. Neural networks are powerful non-linear regression methods, especially when the 

underlying data relationship is poorly understood. ANNs can identify and learn correlated 

patterns between input data sets and corresponding target values. Neural networks have been 

studied intensively [91]. 

In the present work, a Bayesian technique has been used for learning or training ANNs 

because it offers as few assumptions as possible about the form that fits the data, while 

trying to simulate its shape [92]. The Bayesian method assumes that the function modelled 

should be continuous and differentiable. The method has an outstanding treatment of 

uncertainties. Also, this method can find the significance of each input which refers to the 

amount of variation in the output that can be caused by a particular input. 

Bayes' Theorem 

Bayes theorem provides a direct method of calculating the probability of a hypothesis 

based on its prior probability, the probabilities of observing various data given the 

hypothesis, and the observed data itself. The Bayes' rule can be used to determine the 

posterior probability of hypothesis h given data D: 

s P(D/h)PQi) 
P(h/D)= y (34) 

in this formula, P(h/D) is the posterior probability of h given data D. P(h) is the prior 

probability of h before having seen the data D. P(D) is the prior probability of D 

(probability that D will be observed). P(D/h) is the probability of the data D for given h and 

is called the likelihood. 

Acquiring the weights in the Bayesian neural networks means changing the weights 

from the prior P(w) to the posterior P(w/D), as a result of observing data [93, 94]. Error 
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bars can also be placed on the output of the network, by considering the shape of the output 

distribution, P(y/D), with this method. 

It was assumed that the material property of interest in this case was the reference 

temperature T0 of a particular steel, and that it can be expressed as a non-linear function / , 

of a number of experimental variables in the database: 

where Rm refers to the ultimate tensile stress, Re represents the yield stress of the steel, am 

is the true stress at ultimate stress, ou is fracture stress, and all the other parameters that 

might influence the T0. 

2.6.2 Structure of the Neural Network 

In the three-layer feed-forward neural network the first layer consists of the inputs to 

the network, the next layer consists of a number of non-linear operators ht which form the 

hidden layer, and the third layer consists of the output function (z), see Fig. 15. Data moves 

in only from the input nodes, through the hidden nodes and to the output node. There are no 

loops in the network; every node in a layer is connected with all the nodes in the previous 

layer, hence called feed-forward A N N . Each connection may have a different weight. The 

activation function for ith node is given by following equation [95]: 

where xt are inputs, and wtj are the weights which define the network. The superscripts 1 ' 

and ( 2 ) denote weights and biases in the hidden layer and in the output layer. The optimum 

value for w is obtained through training a network. The parameters 6 are known as biases. 

The complexity of any A N N increases by increasing the number of hidden units. 

During the training phase the inputs are known, the output is known, and the weight can be 

examined. In order to find the interactions between inputs and output a model makes 

predictions and visualises the behaviour which emerges from various combinations of inputs 

To = f(Rm.Re.°m.°u. •••). 
(35) 

(36) 

The output is given by equation: 

(37) 

[95]. 
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Input layer Hidden units 

Fig. 15 Atypical three-layer feed-forward artificial neural network architecture. 

One of the problems that can occur during neural network training is called overfitting, 

which leads to an unjustified level of accuracy and thus, a high level of complexity. If a 

model is too complex it may give poor generalization (overfitting). Overfitting occurs when 

a network has memorized the training set but has not learned to generalize to new inputs. 

Overfitting produces a relatively small error on the training set but a much larger error when 

new data is presented to the network. Training a network includes finding a set of weights 

and biases which balances between complexity and accuracy as illustrated in the following 

equation [95, 96]: 

M(w)=aEw+pED, (38) 

where Ew is an organizer of the complexity. It forces the network to use small weights and 

limited number of hidden units: 

ED is the overall error between target output values and network output values: 

ED=\Ystk~yk)2 • (40) 

k 

where tk represents the set of targets for the set of inputs xk, and yk represents the set of 

corresponding network outputs, a and /? represent control parameters which define the 

balance between complexity and accuracy of the model. The training algorithm updates the 

33 



weights and biases to minimise a combination of squared errors and weights and then 

determines the correct combination so as to produce a network that generalizes well. 
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3 T H E A I M OF T H E THESES 

Due to cost considerations and small amounts of available material, it can be important 

to identify the properties of materials using simplified methods. Similar need is evident 

when characterising local fracture behaviour in (heterogeneous) weld joints. Artificial neural 

networks (ANNs) can be used to model the complex relationship between inputs and 

outputs, and fit a function to a number of points in the data space. For quantification of the 

fracture toughness transition behaviour this is unique opportunity because only one value 

(on the output side) is enough. Artificial neural networks are powerful non-linear regression 

methods, especially when the underlying data relationship is poorly understood. ANNs can 

identify and learn correlated patterns between input data sets and the corresponding target 

values. 

Following the recent stage of the art the purpose of study is twofold: (i) experimental 

evaluation of fracture toughness transition evaluation of the dissimilar weld joints and (ii) 

artificial neural network development for reference temperature and transition behaviour 

prediction. 

The aim of the study is to verify the validity of the master curve concept for evaluation 

of the dissimilar weld joints and/or thermally aged weld joints. In order to solve the problem 

the following sub tasks have been formulated: 

• Verification of the applicability of the master curve concept for the weld material 

evaluation, in particular when dissimilar steels are used. 

• Determination of the reference temperature for purpose of the fracture toughness 

transition evaluation and its prediction. 

In addition, the thesis is focused on development of quantitative models for the 

prediction of reference temperature characterising position of the fracture toughness 

transition on the temperature axis using experimental data collected from tensile tests, 

together with a powerful computational technique known as artificial neural network. In 

order to solve this problem the following subtasks must be addressed: 

• Collection and completion if needed of data sets for suitable steels for A N N training. 

Note that for purposes of A N N training the data generated by different tests must be 

evidently from the same steel batch. 

• Selection of the corresponding neural network, computing tools and settings for 

development of A N N enabling T0 prediction. 
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4 M A T E R I A L S , TEST SPECIMENS AND M E T H O D S 

4.1 Investigated Materials 

4.1.1 Weld Joints 

The experimental material used was low carbon steel from dissimilar weld joints of 

low carbon ferritic steel and austenitic steel. Two locations were selected for experimental: 

basic material (C20) and the same material very near to fusion line (see Fig. 16). The 

original material was cut from a dissimilar weld joint of a steam generator. The chemical 

analysis was done by Leco, Spectrumat GDS 750 spectrometer. For investigated materials, 

i.e. low carbon steel C20, the chemical analysis is presented in Table 1. For the other 

materials of the weld joint only nominal compositions are supplied. The chemical 

composition of type W7 austenitic heat resistance steel is presented in Table 2. The weld 

joint was further made by overlay material using electrode of the type EA395/9, the 

chemical composition is shown in Table 3. The weld material itself was formed by electrode 

FOX SAS2, chemical composition is shown in Table 4. 

Table 1 The chemical composition of low carbon steel C20 in [wt%] 

Material C M n S i C u N i C r P S 

C20 0.21 0.60 0.34 0.20 0.23 0.25 0.015 0.012 

Table 2 The chemical composition of type W7 austenitic heat resistance steel in [wt%] 

Material C M n S i C r N i T i 

W 7 max 0.10 max 2.00 max 1.00 17.0-19.0 9.00-12 0.80 

Table 3 The chemical composition of the overlay formed by EA395/9 [wt%] 

Material C M n S i N i C r M o C o 

EA395 /9 0.10 1.86 0.51 24.5 16.2 5.80 0.05 

Table 4 The chemical composition of the weld metal F O X SAS2 [wt%] 

Material C M n S i C u N i C r 

F O X S A S 2 0.21 0.60 0.34 0.20 0.23 0.25 

The basic material C20 and weld joint was tested in as received conditions. In 

addition, thermal ageing was applied at 450 °C for 500, 700 and 1000 hours respectively in 
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order to simulate long term operational degradation of the material. Samples for 

metallographic observations and mechanical testing have been cut from the pieces after heat 

treatment. 

Fig. 16 Macrograph showing different location of the weld joint. 

The microstructure of the base material, low carbon steel C20, consisted of basic 

ferritic microstructure with pearlitic island in fraction corresponding to carbon content. The 

ferritic grain size was lower than 19 um (Fig. 17). The location very near to fusion line is 

formed by ferritic microstructure containing transformed mixture of bainitic, ferritic 

Widmanstatten and martensitic microstructure (Fig. 18) 

Fig. 17 Microstructure of the base material - low carbon ferritic steel C20 (Nital etching). 
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Fig. 18 Microstructure of the low carbon ferritic steel C20 very near in location about 100 

um from fusion line (Nital etching). 

In order to characterise state of the steel across the weld joint, as well as across the 

thickness of the plate, hardness HV1 was tested. Fig. 19 shows locations in which the 

hardness was obtained. 

Fig. 19 Positioning of the indentations lines. 

Fig. 20 to 23 show the dependences of hardness HV1 on the position of the hardness 

tester indenter. The first red line represents about the fusion line i.e. the boundary between 

the base material (C20) and its heat affected zone on the left side and overlay material. The 

second red line represents the boundary between the overlay and weld metal. In the row 1 

(Fig. 20), the average value of hardness for the base material is 177 HV1, in the area of 

overlay is 234 HV1, and average value of hardness for the weld metal is 238 HV1. 
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Fig. 20 The dependence of hardness HV1 on the position of the hardness tester indentor 

(Row 1). 

In the row 2 (Fig. 21), the average value of hardness for the base material is 176 HV1, 

in the area of overly is 243 HV1, and average value of hardness for the weld joint is 

241 HV1. 
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Fig. 21 The dependence of hardness HV1 on the position of the hardness tester indentor 

(Row 2). 

In the row 3 (Fig. 22), the average value of hardness for the base material is 164 HV1, 

in the area of overlay is 243 HV1, and average value of hardness for the weld joint is 

248 HV1. 
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Fig. 22 The dependence of hardness HV1 on the position of the hardness tester indentor 

(Row 3). 

In the row 4 (Fig. 23), the average value of hardness for the base material is 167 HV1, 

in the area of overlay is 240 HV1, and average value of hardness for the weld joint is 

243 HV1. 

Schematics in Fig. 24 shows location of hardness measurements on piece that was 

subject to simulation of thermal degradation at 475 °C. 
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Fig. 23 The dependence of hardness HV1 on the position of the hardness tester indentor 

(Row 4). 
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Fig. 24 Position of the indentations lines. 

Fig. 25 to 28 show the dependence of hardness HV1 on the position of the hardness 

tester indenter. The first red line represents about the fusion line, i.e the boundary between 

the base material (C20) and its heat affected zone on the left side and overlay. The second 

red line represents the boundary between the fusion line and weld joint. In the row 1 

(Fig. 25), the average value of hardness for the base material is 166 HV1, in the area of 

overlay is 247 HV1, and average value of hardness for the weld joint is 250 HV1. 
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Fig. 25 The dependence of hardness HV1 on the position of the hardness tester indentor 

(Row 1). 
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In the row 2 (Fig. 26), the average value of hardness for the base material is 169 HV1, 

in the area of overlay is 255 HV1, and average value of hardness for the weld joint is 

251 HV1. 
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Fig. 26 The dependence of hardness HV1 on the position of the hardness tester indentor 

(Row 2). 

In the row 3 (Fig. 27), the average value of hardness for the base material is 173 HV1, 

in the area of overlay is 260 HV1, and average value of hardness for the weld joint is 

256 HV1. 
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Fig. 27 The dependence of hardness HV1 on the position of the hardness tester indentor 

(Row 3). 
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For the row 4 (Fig. 28), the average value of hardness for the base material is 

167 HV1, in the area of overlay is 258 HV1, and average value of hardness for the weld 

joint is 253 HV1. 

300 
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Fig. 28 The dependence of hardness HV1 on the position of the hardness tester indentor 

(Row 4). 

4.1.2 Materials for Data Sets of ANN Development 

A set of 29 steels containing material from various origins was also completed if when 

needed additional tests were carried out. The steels were predetermined for the development 

of A N N , involving the strict application of the following rules [89]: (i) the steels are used 

primarily in power engineering, (ii) the origin of the material has been well guaranteed, 

where possible by a certificate of history or manufacturing and a known geometry of the 

semi-finished product from which the specimens are made, and (iii) the properties of steel 

cover the range of the most common microstructures and yield strengths. For the purposes of 

this project, a total of 29 steels and states of steel of the following types (see Table 5) were 

collected and generated: 

• Arema steel (a-iron) and ferritic cast steels (further labelled as A, S, C, E); 

• low-carbon low-alloy steels commonly used e.g. for rotors of steam power 

generation, in microstructural experimental state and in states following operational 

exposure (c, d, F, G); 

• low-allow (Cr)NiMo(V) steel in their original state and following operational 

exposure (s, t, M , V , D); 

• advanced steels under-development for thick-walled forgings (K, L); 

• ferritic weldable sheet steels (N, O, p); 
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• nuclear reactor pressure vessel steels for VVER-440 and VVER-1000 power station 

in basic state and model states (J; X ; Y ; Z); 

• boiler and pipe steels with increased yield strength (T, I, H , a); 

• pearlitic and bainitic steels applied in railway components (P, B, R) to cover the high 

yield strength end of the steels scale. 

Table 5 Set of 29 tested steels containing material of various origins. 

Indica t ion M e t a l l u r g i c a l m a r k Descr ip t ion / o r ig in Mic ros t ruc tue 

A Fe arema ferrite 

N F e M n sheet material-as received ferrite-pearlite 

O F e M n sheet material-as received ferrite-pearlite 

P F e M n sheet material-as received ferrite-pearlite 

S F e M n cast steel for thick walled container ferrite 

c F e M n cast steel for thick walled container ferrite 

E F e M n cast steel for thick walled container ferrite 

S C r V cold end of rotor-Steti pearlite-ferrite 

L 4 2 C r M o 4 thick walled forging-axial part pearlite-ferrite 

R 4 5 M n railway wheelset steel R 7 T pearlite 

H C r M o V pipes from P91 temp, mart.-bainite 

t N i W V hot end from rotor-Steti temp, bainite 

a steel TRIP-as received state temp, bainite 

d C r M o V cold end of rotor-Porici temp, bainite 

c C r M o V hot end of rotor-Porici temp, bainite 

G C r M o V carbide triggered cleavage temp, bainite 

F C r M o V dislocation triggered cleavage temp, bainite 

J 1 0 C h 2 M F A R P V steel V V E R 440 temp, bainit e-martensite 

T C r N i boiler steel temp, bainite 

I C r N i boiler steel aged temp, bainite 
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x 1 5 C h 2 N M F A A R P V steel V V E R 1000 temp, bainite-martensite 

Y 1 5 C h 2 N M F A A R P V steel V V E R 1000 - model temp, bainite-martensite 

Z 1 5 C h 2 N M F A A R P V steel V V E R 1000 - model temp, bainite-martensite 

V 20 C r N i M o V rotor steel 500 M W - axial part temp, bainite-martensite 

M 20 C r N i M o V rotor steel 500 M W - surface temp, bainite-martensite 

B L o 8 C r N i M o cast bainitic steel bainite 

K 4 2 C r M o 4 thick walled forging - surface bainite 

P L o l 7 C r N i M o cast bainitic steel bainite 

D C r M o V rotor steel bainite-martensite 

4.2 Mechanical and Fracture Mechanical Testing 

For mechanical testing the tensile test samples were cut according to schematics 

shown in Fig. 29. There were two locations from which the material has been selected: the 

base material, steel C20, having homogeneous ferritic microstructure and location very near 

to fusion line, about 100 um from the fusion line (Fig. 29). This location has been selected 

as the most brittle part of the weld joint. 

C 2 0 U n d e r fusion l ine O v e r l a y W e l d 

Fig. 29 Cutting plans, samples preparation. 

45 



The compact tension and bend samples have been oriented in order to get through 

thickness crack propagation. For base material this orientation was kept exactly, for the 

location near the fusion line the crack propagation in distance from 30 to 100 um was 

expected and the crack propagation plane was slightly declined as it follows for tensile test 

samples from Fig. 29. 

4.2.1 Experimental Determination of the Fracture Toughness Kic and Kjc using 

CT specimen 

For compact tension samples taken from the vicinity of the fusion line the initial crack 

was located into distance 50 to 80 um from the fusion line seen on the specimen surface. 

This localisation followed from hardness measurements showing that there is highest 

hardness and thus predisposition to brittle fracture behaviour has been expected. Before final 

machining of the compact tension sample the semifinished piece was slightly etched by 

Nital agent to show the fusion line between steel C20 and overlay alloy, then the axial plane 

of the initiating chevron notch was located into the particular piece and sample was then 

finished to its final dimensions. During fatigue pre-cracking it was good chance to get the 

crack tip into expected distance from the fusion line, the example of real crack tip 

configuration is evident from Fig. 30. Note however that the fusion line is not straight and it 

was very often observed that the crack was propagating partly also through the locations 

corresponding to overlay material. 

Fig. 30 Example of the fatigue crack tip localisation near the fusion line (overlay below the 

fusion line, steel C20 above the fusion line. 

In order to determine the fracture toughness, standard testing conditions and test 

specimens were used in accordance with the A S T M E 399 [15]. The test was completed at 

the laboratory of the Institute of Physics of Materials at the Academy of Sciences of the 

Czech Republic. The compact tension (CT) specimen used had dimensions of 
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25x62.5x60 m m 3 and its geometry is shown in Fig. 31. Cyclic loading was applied to 

achieve the pre-cracked condition with a ratio of the crack length to specimen width of 

approximately a/w « 0.5. The specimens were tested on mechanical screw driven machine 

Zwick 1380, with a maximum loading capacity of 200 kN. The fracture toughness tests were 

performed at different temperatures, where the specimens were cooled down to a stable 

temperature in a cryogenic chamber using liquid nitrogen and the temperature was 

controlled by thermometers couple spot welded to the sample. The crack opening was 

measured by an external displacement-measuring clip on gage at the load line. An optical 

microscope was used on the fracture surfaces of broken samples to measure the initial crack 

lengths a 0 of the tested specimens. The value of fracture load FQ was obtained from a plot of 

load vs. load displacement curves according to [16]. The stress intensity factor for the 

fracture conditions was obtained by the following equation: 

F 
KQ = 

B.W li 

where B and W are the thickness and the width of specimens respectively, a 0 is the initial 

crack length, and function g represents the geometrical function given by the following 

equation: 

(2 + ^ ) [0.886 + 4 . 6 4 $ - 13.32 ($f + 14.72 (%f - 5.6 
(42) 

In order to validate the values of KQ as KIC the following requirements have been 

checked according the standard A S T M E399 [15]: 

B,a>2.5{^-)\ (43) 

0.45 < — < 0.55 , ( 4 4 ) 
W 

Fmax < 1.1QFQ, (45) 

where aYS is the yield stress. 
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Fig. 31 The compact tension CT specimen. 

For tests that did not reached the above conditions, i.e. the crack tip plasticity was too 

extensive, the /-integral concept was used to evaluate the fracture behaviour according to 

ISO 12135 [16]. The /-integral value was obtained by the following equation: 

J=Je+Jp-
(46) 

The elastic component was calculated using the following equation: 

Je = 
(47) 

The plastic component was obtained from plastic deformation energy Up as follows: 

]p = 

11 u PUP (48) 
(.BN.b0) 

After checking the validity condition for Jq -integral the value of K ] C was then 

calculated for each individual specimen depending on the corresponding JC value as follows: 

Kjc -
JcE 

(1 - v2) 
(49) 
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4.2.2 Experimental Determination of the Fracture Toughness Using Three-Point 

Bend Specimens 

Test specimens measuring 25 x50><240 mm (Fig. 32), produced from a single sheet, 

were also used to determine the fracture toughness. The specimens crack planes were 

oriented in direction corresponding about to realistic loading conditions. 

Fig. 32 The geometry of the test specimen used for determination of fracture toughness. 

After checking the specimens dimensions, surface quality etc., the test specimens were 

finished by standard procedures, and after polishing the surface, sharp crack was introduced 

by cyclic loading in accordance with the standard [16]. Based on published data to particular 

steel the position of the transition region was estimated and the tests were conducted at 

selected three different test temperatures on a Zwick 1382 testing machine in the cryogenic 

chamber, and also on the Instron 8862 machine in a temperature chamber, in both cases at a 

loading rate of 1 mm/min. The temperature was measured by a thermocouple spot welded on 

the surface of specimens for all tests. Before the test, all specimens were tempered for 15 

min at the test temperature. The air was circulated in the temperature chamber in the case of 

heating. Results were recorded during the tests for later evaluation by standard procedures 

(e.g. in accordance with ISO 12135 [16]) using L D C home-made software or Instron 

BlueHill commercial software. This approach allowed the same evaluation procedures for all 

steels and facilitated the presentation of results, including qualification and control of the 

validity of calculation values of fracture toughness. The calculated values of fracture 

toughness were obtained using the equation: 

KQ = 
(B2.W)/2 

•9i (50) 
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3.93. a0 2.7. a0 

W W (51) 

where 5, 14̂  are the dimensions of the test specimen, S is the distance of loading rollers 

(standard flexure specimens 200 mm), a 0 is the initial length of crack measured on 9 

locations at a cross of specimen thickness. FQ is the calculation force representing either 

load defined by 5% deviation of the tangent slope of the linear part of the record, or the 

fracture force. 

If the data fulfilled the following validity conditions: 

Pmax < 1-10F Q , (52) 

a0,B, (W - a0) > 2.5 ( ^ - ) (53) 

the calculated value of the fracture toughness was qualified as Klc. In the case that any of 

these conditions were not fulfilled, it was necessary to proceed to the evaluation of elastic-

plastic fracture toughness KJc. 

In this case, firstly the evaluated value of the /-integral was obtained, in accordance 

with the following relation in which UP is a plastic work to fracture: 

Jc = 
Fr.S 

B.W /: 

,21 

+ 
2. Up 

B(W - a j 
(54) 

Assuming the validity of the relation 

Aa < 0.2 + 
Jc 

3.75.RJ 
(55) 

the /-integral values were converted into the values of elastic-plastic fracture toughness Kjc, 

in accordance with the relation: 

Kjc -
E.J (56) 

The data that do not fulfil the conditions 

Jc(limit) 
E.b0.RP02 (57) 

30. (1 - V2)' 

where eliminated from further evaluation because they depends on the crack tip constraint. 

Uncorrected, these values do not represent the real behaviour of the material. 
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To determine the reference temperature T0, it was necessary to determine at least 7 

significant values of fracture toughness Klc or K^c. In most cases, the reference temperature 

was determined by the multi temperature method, according to the following basic equation: 
N N s \ 4 

y exp[0,019(T-T0)] y (KJci0 - 20) exp[0,019(T - T0)] ( 5 g ) 

Z - . l l + 77exp[0 ,019(T -T0)] Zj (11 + 77 exp[0,019(T - T 0 ) ] ) 5 

(=1 i = l 

In adequate cases, the reference temperature T0 was determined by the single 

temperature method (ASTM E 1921 [36]), defined by the equation: 

fKjc(med) — 30 l 1 
0 0.019 70 

(59) 

Despite the relatively small number of measurements, the reference temperature was 

determined with very high reliability. 

4.3 Tensile Tests 

4.3.1 Tensile Test of Smooth Bars 

Bars were used for the purpose of the standard tensile test, the geometry of which is 

shown in Fig. 33. The bars were produced by the institutional workshops. Bars for the 

tensile test were cut from the fracture halves of the bending specimens. Bars with a smaller 

cross-section (5mm) and shorter lengths were produced. 

A 1,6 CSN 014915 <2x) — - + • 

I 
35 

70±0,02 
1x45 s 

Fig. 33 The geometry of the test bar used for tensile test. 

The bars were measured before the test and assigned to a surface length L 0 (30, and/or 

25 mm). The tests were conducted at a loading rate of 2 mm/min using a extensometer. 

Room temperature tests were performed on a Zwick Z050 testing machine using a 

51 

http://Z-.ll


macrosensor and TestXpert evaluation software. The lower temperature tests were 

performed in a cryogenic chamber on a Zwick 1382 test machine using the extensometer 

MTS with home-made measurement program (running in Lab View environment). The 

higher temperature tests were performed in the appropriate temperature chamber on the 

Instron machine using the same sensor and BlueHill measurement program. The sensor was 

not used in tests where there was a risk of damage as a result of impact from the bar. 

The primary data from the test machines and measurements of the test bars on the 

Mitutoyo microscope were inserted into the pre-programmed spreadsheets in MS Excel; 

these were a load of yielding of strength of F e , F e L , F P 0 2 respectively, maximum load Fm 

and fracture load F u . Furthermore, dimensions of the test bars were measured; the diameter 

outside of neck Dr, the diameter in the narrowest part of the neck Du, the distance of the 

marks L u , etc. According to the standard, following engineering characteristics were 

evaluated from the primary data: 

Re = "f, <«» 

_ Fmax (61) 

The total elongation A 5 was determined as follows: 

i u ^ o ( 6 2 ) 

In 

Reduction in area was calculated by using equation: 

S o _ J r ( 6 3 ) 

So 

They were also evaluated following physical parameters characterizing the 

dependence of the true stress vs true strain curve: 

True stress on the plastic instability limit at o~m was obtained from equation: 

a =R ^ (64) 
AY 

True deformation on the limit of elasticity £ p n 

(65) 

And similar characteristics were evaluated for fracture condition, i.e. true stress at 

fracture as 
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Ft 

° u = š 
u (66) 

And true strain at fracture as 

ri ~t r C T 
(67) EU = 2. In = In 

Then the true stress at fracture was corrected for the stress triaxiality effect by means 

of Bridgman correction. 

auB=au. (0.83 - 0.1786 log ef). (68) 

The slope of a line characterizing the tensile diagram beyond the plastic instability 

limit was suggested as one of new parameters and calculated using the equation: 

tga = ^—^L. (69) 

Temperature dependences were compiled and the scattering of data at room 

temperature and at the critical brittleness temperature of embrittlement were evaluated for 

parameters selected for neural analysis. The test was repeated in the case of anomalous 

scattering or values deviating significantly from the hypothetical level projected by 

temperature dependence. 

4.3.2 Tensile Test of Notched Bars 

The geometry of the used test bars with a circumferential notch is shown in Fig. 34. 

The geometry of notch was chosen so that embrittlement occurred even for the toughest 

materials at temperatures higher than the temperature of liquid nitrogen. These two steels of 

the class 16 were excluded from further experiments because of the high plasticity at the 

temperature of liquid nitrogen. 

The longitudinal axis of the notched bars was chosen to be coincident with the 

longitudinal axis of the smooth bars. Based on the F E M calculations, a relatively 

homogeneous distribution of tensile stress was found in the cross-section of notched bars, 

maintaining the reproducible conditions of this non-standardised test. 

The aim of the test was to determine the general yield temperature tgy for the used 

geometry of the test specimen and loading conditions. This temperature is defined as the 

temperature at which fracture occurs at the moment achieving macroplastic deformation 

(plasticization of the whole cross-section under the notch), i.e. as the temperature at which 

the force on the limit of macroplastic deformations coincides with the fracture strength. The 
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critical brittleness temperature except of material behavior, is dependent on the geometry of 

the test bar. To estimate the force (stress) corresponding to this limit of macroplastic 

deformations, it would be necessary to perform calculations by the finite element method for 

each test bar. 

A 1.6 CSN 014915 (2x)> -

1x45 ' 

Fig. 34 The geometry of test specimen used for the tensile test of notched bars. 

The initial diameter D0 at the narrowest location of the notch was measured before the 

test. Tests were conducted at a loading rate of 2 mm/min in a cryogenic chamber on the test 

machine Zwick 1382. The temperature was measured by a thermocouple fixed to the surface 

of the test bar. The diameter in the neck du and the distance of the lines Lu were measured 

after the test. This type of testing is not standardized; nevertheless, the general guidelines 

specified by standards for tests on smooth bars were followed. Additionally, the nominal 

fracture stress Ru was determined from a load at fracture Fu and corresponding cross 

sectional area Su in the narrowest location of the bar. 

R (70) 

The total elongation A* was determined for the unstable fracture of the notched bar: 

A , = L u z h A Q Q i (7 i ) 

where L0 and Lu are specimen gauge lengths, the initial one and at fracture, respectively. 
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Additionally, the total reduction of area at the narrowest location (necking area) on the 

bar Z* was obtained by using equation: 

So ' ' 

4.4 Neural Network Application 

The purpose of the research has been to develop quantitative model for the prediction 

of reference temperature using experimental data collected from the tensile test, together 

with a powerful computational technique known as neural network. Creating a truly general 

model required a combination of available data and metallurgical knowledge. 

General tool/software developed for adequate purposes by [82] was used for the A N N 

development, i.e. for the data set evaluation, A N N training step and verification stage. The 

software has a set of separate functions that are controlled through model manager so 

different alternatives and parameters are available for the A N N settings. 

Model Manager provides a graphical interface to David MacKays [82] big back 

program, used extensively in the Phase Transformations and Complex Properties group at 

the University of Cambridge. Model Manager implements a system following the work of 

MacKay, who applied neural networks models in a Bayesian framework. Model Manager 

also incorporates further practical methods which further contribute to the successful 

completion of modelling. The database is randomly divided into training and testing sets, to 

ensure that both the half used for training and testing contains similar information. 

Model Manager enables to form final model. This final model is built from a 

committee of multiple submodels. The optimum number of submodels to form the 

committee is determined depending on the combined test error of all the members of the 

committee. These methods are further attempts to find the appropriate level of complexity 

from the data, and to ensure a robust solution is found. The used approach has been applied 

previously in solutions of materials science problems [79, 80, 86]. 

The applied three layer feed-forward neural network has been characterised in chapter 

2.6.2. In the A N N the data moves in only from the input nodes, through the hidden nodes 

and to the output node. Numerical inputs from smooth tensile test specimen and notched 

tensile test specimen and hardness measurement have been available from 29 data sets of 

different steels according to Table 6. The upper layer contained the output neuron, whose 

activity represents the output quantity - the reference temperature TQ of the fracture 

toughness temperature dependence. 
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There were tested four models differing by the selection of parameters on the input 

side: 

• The first model used the hardness value as an input variable, but did not include the 

temperature value as an input variable; all parameters of the tensile test and hardness 

value were used as input variables. 

• The second model used all parameters of tensile test that were measured only at 

room temperature. This model also included hardness values and temperature as 

input variables. 

• The third model used all parameters at both temperature (purely general yield 

temperature and purely ductile fracture temperature) excluding hardness values and 

temperature. 

• The fourth model used all parameters of the tensile test at both temperatures as input 

variables. In this model, temperature was added as an input variable but hardness 

was in excluded. 

Table 6 shows one example of the data set available for one steel (a iron - steel A). 

Similar data tables have been available for all 29 steels tested containing material of various 

origins see the Table 5 in chapter 4.1.2 [89]. Four or five tensile specimens were tested for 

each steel. For example for steel A , three specimens were tested at room temperature and 

two specimens were tested at general yield temperature. So the averaged values of the 

tensile test have been used for the A N N development. 

For completing training without overfitting, the reference temperature model prepares 

the database before training as follows: 

• The database is randomly divided into training and testing sets to ensure that data 

used for training and testing contains similar information. 

• The minimum and maximum of each variable and the target are searched. 

• The inputs are normalized within a range of +0.5 as follows: 

where x is the unnormalised input, x m i n and x m a x are the minimum and maximum values in 

the database for a particular input, and xt is the normalized value. The aim of normalizing is 

to compare the sensitivity of the prediction results for different inputs without biasing the 

comparison because of the different magnitudes of the set of inputs [96]. 
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Table 6 The average values of tensile test for steel A (Fe). 

The input variables Units 
R o o m 

temperature 
General yield temperature 

Temperature T [K] 295 173 

Hardness H V 1 0 [HV] 90.3 -

Y i e l d strength Re [MPa] 194 401 

Ultimate stress R-m [MPa] 309 440 

Elongation As [%] 40.8 42.8 

True stress at plastic instability °m [MPa] 386 563 

True strain at plastic instability £pn [-] 0.221 0.222 

Fracture stress uncorrected °u [MPa] 889 1004 

Fracture deformation £u [-] 1.577 1.428 

Fracture stress corrected [MPa] 707 806 

Slope tan a [-] 370 374 

The weight estimates are made of the uncertainty of the submodel fit. The fitting 

method infers a probability distribution for the weights from the data presented instead of 

identifying one best set of weights. The performance of different submodels is the best 

evaluated using the log predictive error (LPE) instead of the test error [97]. The LPE is 

calculated as follows: 

\tk - y k ) 2 

L P E = l l 
k 

log {2n(o*)2) (74) 

where Oy is related to the uncertainty of fitting for the set of inputs xk. This error penalizes 

unexpected predictions to a lesser extent when they have large error bars (uncertainties). The 

test error does not have this advantage. 
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5 R E S U L T S 

Eight sets of specimens cut from the dissimilar weld joint were tested in the transition 

region in order to determine the fracture toughness. As a result, the reference temperature 

was obtained. 

5.1 Fracture Toughness of Weld Joints (as Received and Aged) 

The specimens of base material C20 without thermal ageing showed a very high 

scatter of fracture toughness behaviour in the transition region (see Fig. 35). The master 

curve concept describes well the large database of RPV steel, where the master curve 

methodology has been developed for low alloy steels. It includes data from 72 MPam 1 / 2 , at 

—30 °C up to 213 MPam 1 / 2 for 0 °C. These data show that both the upper bound and lower 

bound of fracture toughness scatter band increases with increasing the test temperature, as a 

result of the transition behaviour. Relating to master curve concept the 5 and 95% 

probability scatter band represents well experimental data. Note the reference temperature is 

showed by blue dashed line in Fig. 35. 

Table 7 Base material C20 in as received conditions 

Specimen 
t 

[°C] 

a0 

[mm] [kN] 

FC 

[kN] 

FJFQ 

H 

upl 

[J] 

uel 

[J] 

Kic, KE 

[MPa. m 0 5 ] 

KJC 

[MPa. m 0 5 ] 

C20-108 0 26.30 32.88 42.11 1.28 44.9 34.51 79.0 213.6 

C20-405 -30 26.44 33.33 38.42 1.15 5.11 12.63 72.8 99.0 

C20-214 -30 26.45 31.82 38.26 1.20 6.61 12.95 72.5 105.3 

C20-101 -20 26.43 33.29 39.85 1.20 15.93 19.06 75.5 140.5 

C20-115 -40 26.30 37.63 37.63 1 0 11.77 70.8 -

C20-401 -40 26.49 36.51 36.51 1 0 10.56 69.4 -

C20-105 -30 26.46 31.53 39.49 1.25 7.62 14.33 74.9 111.1 

Table 7 shows that only two specimens (of the base material without thermal ageing) 

have linear elastic behaviour, because the ratio FC/FQ is less than 1.1, according to the 

condition given in Eq. 45. The critical stress intensity factor is calculated directly as KQ in 
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accordance with Eq. 41. The rest of the specimens displayed elastic-plastic behaviour, where 

the values of /-integral at cleavage instability Jc, were converted to their equivalents in terms 

of stress intensity factor K]c as given in Eq. 49. 

Similar observations was recognised for the base material after thermal ageing, see 

the Fig. 36 to 38. In addition, these figures illustrate fracture behaviour of the base material 

C20 for different delays at thermal ageing temperature of 450 °C (from 500 to 1000 hrs). 

Note also, that all experimental data obtained are lying within 5 and 95% probability scatter 

band calculated for the obtained reference temperature. This shows good susceptibility of 

the master curve concept for transition behaviour prediction for this particular steel. Almost 

all fracture toughness values represent elastic-plastic behaviour (Kic). This behaviour reflects 

well the resistance of the steel C20 against embrittlement caused by thermal ageing. It is also 

evident that for the fracture toughness data shown in Figs. 35 to 38 nearly the same 

reference temperature has been reached independently of thermal ageing time. 

Figs 39 to 42 shows temperature dependences of fracture toughness for the region very 

near to fusion line in as received condition and after ageing at 450 °C. Comparing to base 

material we can observe that the transition is occurring at lower temperatures and, in 

addition it appears very steep. This behaviour is caused by very large scatter of the data 

observable at one temperature as it is evident mainly for states after thermal ageing 

(Figs. 40, 41 and 42 respectively). The scatter of data is caused by very different fracture 

behaviour, in the upper part corresponding to elastic-plastic performance of the material, in 

the lower part, corresponding more to very brittle behaviour and fracture without any 

preceding plastic deformation, see the data at -30°C in Fig. 40 for material after thermal 

ageing for 500 hrs. The same material fracture performance is observable also for longer 

ageing times, as it is seen for data at -30°C in Fig. 41 and data at -40 °C in Fig. 42. 

Figs. 40 to 42 also illustrate the temperature dependences of the transition fracture 

toughness data in transition region relative to their master curves including 5 and 95% 

tolerance bounds. While 5 and 95% tolerance bounds provide a reasonable description of the 

transition fracture toughness data, there were some outliers in each data set. A l l corresponds 

to linear elastic fracture toughness, i.e they were calculated directly in order to obtain the 

stress intensity factor KQ using Eq. 41. The other ] c values were converted to their stress-

intensity factor equivalent using Eq. 49 (elastic-plastic fracture toughness data KJC). 

As example, Table 8 shows that five specimens have linear elastic behaviour, because 

the ratio FC/FQ is less than 1.1. In addition, plastic deformation UPi is equal to zero for these 
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samples. The other specimens behaved in an elastic-plastic manner, where the values of the 

/-integral at cleavage instability, Jc, were converted to their equivalent values in terms of 

stress intensity factor KJc. 

Table 8 Steel C20 from fusion line region near weld joint after ageing at 450 °C for 700 
hours 

Specimen 
t 

[°C] 

a0 

[mm] [kN] 

FC 

[kN] 

FC/FQ 

[-] 

upl 

[J] 

uel 

[J] 

Kic, KE 

[MPa. m 0 5 ] 

KJC 

[MPa. m 0 5 ] 

W7-111 -30 26.91 38.78 42.36 1.09 0 15.28 82.79 -

W7-305 -30 26.07 44.41 66.41 1.5 91.57 76.97 122.88 307.69 

W7-207 -30 26.15 26.09 26.09 1 0 4.57 48.51 -

W7-212 -40 25.75 33.9 33.9 1 0 7.72 61.56 -

W7-307 -30 25.95 37.8 37.8 1 0 10.55 69.5 -

W7-303 -20 25.93 35.29 35.29 1 0 10.21 64.8 -

W7-105 -30 26.6 44.49 53.34 1.2 19.05 33.13 102.35 165.61 

W7-115 -20 26.09 38.99 52.24 1.34 13.52 27.2 96.95 145.53 
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Fig. 35 Experimental data, master curve and 90% probability scatter band obtained using 

base material C20 without thermal ageing. 
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Fig. 36 Experimental data, master curve and 90% probability scatter band obtained using 

base material C20 after thermal ageing at 450 °C for 500 hours. 

61 



Fig. 37 Experimental data, master curve and 90% probability scatter band obtained using 

base material C20 after thermal ageing at 450 °C for 700 hours. 
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Fig. 38 Experimental data, master curve and 90% probability scatter band obtained using 

base material C20 after thermal ageing at 450 °C for 1000 hours. 
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Fig. 39 Experimental data, master curve and 90% probability scatter band obtained for 

transition region W7 without thermal ageing. 
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Fig. 40 Experimental data, master curve and 90% probability scatter band obtained for 

transition region W7 after thermal ageing at 450 °C for 500 hours. 
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Fig. 41 Experimental data, master curve and 90% probability scatter band obtained for 

transition region W7 after thermal ageing at 450 °C for 700 hours. 
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Fig. 42 Experimental data, master curve and 90% probability scatter band obtained for 

transition region W7 after thermal ageing at 450 °C for 1000 hours. 
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The reference temperatures TQ for the base steel C20 and location very near to fusion 

line with overlay, both in as received condition and after thermal ageing, are summarised 

in Table 9. 

Table 9 Summary of reference temperatures T 0 obtained experimentally for the investigated 
materials 

as received state 450°C/500 hrs 450°C/700 hrs 450°C/1000 hrs 

steel C 2 0 -32.9 -34 -30.8 -34.4 

near fusion line -73.5 -63.7 -36 -47.5 

Fig. 43 shows comparison of reference temperatures obtained for as received 

materials and materials obtained by thermal ageing at 450°C for 500, 750 and 1000 hrs 

respectively, namely for the base steel C20 and material very near to fusion line. There are 

evident differences in the materials performance for these two locations. 

The base material, steel C20, shows no changes with the thermal ageing, the reference 

temperature is lying very near to -30°C. This means very good evaluation for this material 

showing very stable microstructure as well as resistance to carbide precipitation reactions 

and good metallurgical quality. In addition, all fracture toughness data lying in 5 and 95% 

probability scatter band reflect the same fracture mechanism in all samples independently 

they revealed the fracture in elastic-plastic or linear elastic regime. 

The material very near to fusion line is affected by diffusional processes running 

during fusion welding and later during thermal ageing. As a consequence even if it is 

initially the same steel (C20) after these changes it is becoming into another composition 

and microstructural state. Due to these changes the experimentally determined reference 

temperature for this location is lower (less than -70 °C) comparing to the base material and it 

is still keeping this low value for the thermal ageing for 500 hrs, but for longer ageing times 

To is rapidly increasing. These changes reflect very well material embrittlement due to long 

term diffusion processes of carbon and alloying elements leading to carbide coarsening. 

Fig. 44 and 45 show comparison of all experimentally determined fracture toughness 

values in dependence on difference between test temperature and reference temperature for 

both materials locations. This diagram is commonly taken as evidence of validity of the 

master curve concept for the given fracture toughness set. For the base material, see the 
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Fig. 44, all fracture toughness data are lying in the 5 and 95% probability scatter band 

showing good relevance of the master curve concept for evaluation and prediction of 

fracture toughness in transition region. 

But this is not the case for the location near the fusion line, see the Fig. 45. There are 

systematically outlying fracture toughness data below the lower bond corresponding to 95 % 

fracture probability. Relating to master curve concept applicability, this finding does appear 

no serious problem, mainly because of experimental error associated with the low number of 

experimental data (the estimated experimental error of TQ determination from 7 valid 

samples is about ±10 °C [24]). Almost all these data have been obtained after linear elastic 

history of loading, some of them are showing very low fracture toughness level being 

around and bellow 50 MPam 1 / 2 . This may be associated with the change of the fracture 

mechanism disqualifying the data for the master curve concept, e.g. due to change of the 

weakest link behaviour to accumulation of damage sites fracture performance. 
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Fig. 43 Changes of reference temperature with simulated ageing. 

66 



250 

in 
© 200 
< 
Ö 

§: i5o 

tu e si 
bü 
3 100 
o 
3 

U 

[in 

50 

X C20 without thermal ageing 
/ 

• C20 after thermal ageing 500 / * 
/ 

+ C20 after thermal ageing 700 
• 

S 

• C20 after thermal ageing 1000 
• X 

+ ' + J 

+ 
• . - *~ — **• 

i i i i 
-50 -30 -10 10 

Temperature °C 
30 50 

Fig. 44 Experimental data, master curve and 90% probability scatter band in dependence on 

difference between test temperature and reference temperature. 
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Fig. 45 Experimental data, master curve and 90% probability scatter band in dependence on 

difference between test temperature and reference temperature for fusion line region. 
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5.2 The Neural Network Results 

Different sets of mechanical parameters have been tested on the input side of A N N . 

Each test set consisted of training stage including the data analysis (as shown for the first 

model) followed by prediction of reference temperature. As mentioned 29 data sets from low 

alloy steels were applied in the experimental tests to validate the models of reference 

temperature prediction. For purpose of the theses, four models of the reference temperature 

with different parameters of input are characterised in this section. These four A N N models 

have been developed for parameters combinations shown in Table 10. 

Table 10 The models of the reference temperature with different parameters on input. 

Tensile 

data at r.t. 

Tensile data 

atTgy 

Hardness 

H V 1 0 

Value of R o o m 

temperature [K] 

First model X X 

Second model X X X 

Third model X X 

Fourth model X X 

5.2.1 The First Model 

The first model used the hardness HV10 value as an input variable, but did not 

included the temperature value as an input variable. In addition all parameters of the tensile 

test at room temperature were used as input variables. The minimum and maximum of each 

variable and the target data are shown in Table 11. 

Parameters applied and results obtained are characterized for the first model in more 

detail. When the data are uniformly distributed, it minimizes the uncertainties for 

interpolation and extrapolation, thus such data are providing a better model. Table 12 shows 

the input parameters used to develop the reference temperature model. Most of the 

parameters thought to affect the reference temperature are included: temperature, hardness, 

yield strength, ultimate stress, elongation, true stress at ultimate tensile stress, true strain at 

ultimate tensile stress, fracture stress uncorrected, fracture deformation, fracture stress 

corrected, slope. Fig. 46 illustrates the data distribution for different input variables that are 

used to develop the model. It is intended only to show the distribution of the data without 

correlation between the different variables. A l l variables are not clustered, they are 
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homogeneously distributed. Nonetheless, the Bayesian framework of the A N N recognizes 

this by associating large modelling uncertainties with sparse or noisy domains. 

The Bayesian method can find the significance of each input, thus there is no need to 

exclude any variable prior to the analysis. The variables which have little effect in 

explaining the output will be linked to small weights. 

After analysing and preparing the database, many submodels have been developed. 

Each submodel contained a set of parameters which defined the function that best fits the 

data with which the submodel has been developed. The neural network captured interactions 

between the parameters. Each submodel had a given number of hidden units, thus different 

results were obtained by the particular submodel. Nevertheless, such submodels sometimes 

had domains in which they displayed good prediction, and others in which they did not. It is 

important to mention that a set of submodels with a given numbers of hidden units and 

different seed is called a model or a committee of multiple submodels. Their predictions are 

combined to give the best overall result possible. Seeds are the initial weights which have 

been used as guesses. In the training phase, one hundred networks were trained with hidden 

units ranging from one to twenty and five seeds in each case. Each submodel made a 

prediction differently and these submodels were sorted according to the log predictive error 

(LPE), the submodel with the highest log predictive error is the best one (Fig. 47). 
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Fig. 46 Visual illustration of the distribution of data used to create the model. 

The time required to train a submodel grows exponentially with the number of hidden 

units (typically, training a submodel with one hidden unit took a few seconds, while many 

hours were required for 20 hidden units). 

Fig. 47 shows the changing of LPE with the number of hidden units. The LPE has an 

optimum value at about one hidden unit (the red point in Fig. 47), as the test error has a 

minimum value at about one hidden unit (the red point in Fig. 48) 
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The submodel with a given number of hidden units and different seed made 

predictions differently (see the annex Table 18). The best submodel according to the LPE 

was then selected and tested on the output side for accordance with experimentally 

determined reference temperature. 

Table 11 The minimum and maximum values for the first database 

Inputs M i n M a x M i n N o M a x N o Average StDev 

Hardness 90.2 406 1 20 223 78.0691 

Y i e l d strength 194 934 1 24 527 206.6631 

Ultimate tensile stress 309 1306 1 29 699 220.271 

Elongation 10.81 44.8 24 11 26.6 9.2857 

True stress at ultimate stress 386 1353 1 29 776.4 211.3358 

True strain at ultimate stress 0.036 0.238 29 3 0.118 0.0589 

Fracture stress 889 2011 1 29 1359.103 260.4535 

Fracture deformation 0.369 1.929 24 14 1.118 0.3433 

Fracture stress corrected 707 1727 1 29 1122.9 225.226 

Slope 370 1002 1 29 595.2 136.8604 

Reference temperature 108 364 20 18 233.4 74.7298 

The database was randomly divided into training and testing sets to ensure that the 

data used for training and testing contains similar information. The Model Manager makes 

predictions using the whole database, comparing them with the actual target values. It 

divides the results into a training set and testing set as illustrated in Fig. 49 here in 

normalized variables, the result of the testing set is worse because it is unseen data. These 

procedures have been done during the training phase. 

The final A N N model has been built from a committee of multiple submodels. The 

optimum number of submodels to form the committee is determined depending on the 

combined test error of all the members of the committee. These methods were further 

attempts to find the appropriate level of complexity from the data, and to ensure a robust 

solution is found. 
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Fig. 47 The log predictive error during the training phase in dependence on the number of 

hidden units. 

0.7 

0.65 

0.6 

0.55 

u 0.5 
O 
t 
° 0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

: • : • • i • * 1 i 
• • • • • 

• 
• 

• 
• 

< 

• 
» 

• 

• 

• 

• 

• (1, 0.2363) 

10 15 

Number of hidden units 
20 
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Fig. 49 Predictions by the submodel corresponding to three hidden units: a) Training set, b) 

Testing set. 

The prediction or the output of a committee of submodels is the mean prediction of its 

members. For the committee, the uncertainty is given by equation: 

(75) 

where y represents the mean prediction of submodels which form a committee, A is the 

number of submodels in the committee and the exponent I refers to the submodel used to 

give the corresponding prediction yl. In the training phase, it is usual to compare the 

performance of an increasingly large committee on the testing set. 

Usually, the error is minimized by using more than one submodel in the committee. 

However in our case, the optimum number of submodels to form the committee was found 

to be one as shown in Fig. 50 (the red point). Therefore the test error for the best submodel 

is 0.2363, and the combined test error of the committee is 0.2393; this is test error estimated 

just for committee containing only one submodel. It is important to note that the test error 

for the best submodel and the combined test error of the committee are the same. 

To build a reliable model with an A N N structure, a few important points need to be 

followed. First of all, it is necessary to collect a data set containing variables which have a 

relevant effect on the output. For the data set used this aspect also means, that all the 

mechanical tests have been carried out with the same steel batch in the same state etc. 

Anything missing in the input variables means that there is additional noise in the model. 
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Fig. 50 The combined test error for the committees of different sizes. 

When a neural network is used, it is important to distinguish between the two types of 

error. Noise means little changes in the results when the experiment is repeated a number of 

times due to uncontrolled variables. The noise is constant, so it does not contribute to the 

evaluation of the behaviour of the model. The second type of error is uncertainty, which 

refers to doubtfulness in the mathematical functions capable of representing the same data. 

Once more data are observed, the uncertainty can decrease, allowing the predictions made 

by the network to become more accurate. Modelled uncertainties are presented as error bars. 

The average of the error bars is calculated as follows: 

-•bar 

N 
(76) 

where N represents the total number of predictions and Et the error accompanying each 

prediction. The root mean square residual (RMS) was used to evaluate the final model and it 

was calculated as follows: 

Rtest — 

PI 

i = l 

where tt and yt are the target value and network output respectively. 

(77) 
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Fig. 51 Model perceived significance for the committee of submodels. 

Table 12 The average values of inputs 

Hardness 29.2828 [-] True strain at ultimate stress 0.119 [-] 

Y i e l d strength 649.155 [MPa] Fracture stress 1423.759 [MPa] 

Ultimate stress 810.466 [MPa] Fracture deformation 18.401 [-] 

Elongation 25.313 [%] Fracture stress 1197.724 [MPa] 

True stress at ultimate stress 904 [MPa] Slope 658.483 [-] 

As mentioned previously, the Bayesian method can find the significance of each input, 

see Fig. 51. A high value of significance means that the input parameter concerned explains 

a relatively large amount of the variation in the output and it is not an indication of the 

sensitivity. To determine the significance of individual input parameters relating to the 

model, prediction processes must be made by changing one parameter only while keeping all 

the others constant. The network structure allows the assessment of input parameters to be 

included in the training data, and those parameters which have little effect on the output will 

have much lower significance than those with a greater effect. In this study, hardness and 

fracture deformation had the most significant effect, while other inputs were of low 

significance. In order to study the effect of each input on the behaviour of the model, each 

specific input was varied while all others were kept constant. The constant value for each 

input is shown in Table 12. 
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The reference temperature changes when the hardness varies while all other inputs are 

constant. Fig. 52 shows that the reference temperature decreases with an increase in the 

hardness from approximately 100 to 400. The error bars look almost constant, i.e. they come 

from noise from uncontrolled variables. 

Fig. 53 shows the effect of yield strength on the reference temperature. The yield 

strength may not influence the reference temperature as the error bars look almost 

constant. Fig. 54 shows that the ultimate stress may also not affect the reference 

temperature. The reference temperature looks constant with an increase in the ultimate stress 

and the error bars look almost constant. In Fig. 55, the reference temperature is also constant 

as the elongation increases and the error bars are approximately constant. Fig. 56 illustrates 

that there is no change in error bars when the reference temperature slowly decreases while 

the true stress at ultimate tensile stress (plastic instability point) increases from 386 [MPa] to 

1353 [MPa]. 

The reference temperature is constant (239.7494 [K]) as the true strain at ultimate 

stress increases from 0.036 to 0.238 (see Fig. 57), whereas the reference temperature 

decreases from 241.369 [K] to 237.498 [K] as the fracture stress increases from 889 [MPa] 

to 2011 [MPa] (see Fig. 58 ). The error bars start with a high error bar at about 889 [MPa] of 

fracture stress and then slowly decreasing to a minimum at about 1289 [MPa] of fracture 

stress and then increasing again up to 2011 [MPa] of fracture stress. In Fig. 59, the error bars 

change when the fracture deformation increases, with the minimum value of error bars at 

0.769 of true fracture strain. The reference temperature decreases as the true fracture strain 

increases. 

-o 
& 150 1 1 

50 150 250 350 450 
Hardness [-] 

Fig. 52 Prediction of reference temperature in [K] against hardness HV10 [-] with error bars. 
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The reference temperature slowly decreases as the corrected fracture stress increases 

(see Fig. 60). The error bars are approximately constant. Fig. 61 illustrates that the error bars 

look almost constant. The reference temperature has constant value (239.749 [K]), as the 

slope increases from 370 to 1002. 

Fig. 53 Prediction of reference temperature in [K] against yield strength in [MPa] with error 

bars. 

Fig. 54 Prediction of reference temperature in [K] against ultimate stress in [MPa] with error 

bars. 
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Fig. 55 Prediction of reference temperature in [K] against elongation [%] with error bars. 

Fig. 56 Prediction of reference temperature in [K] against true stress at ultimate tensile stress 

[MPa] with error bars. 
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Fig. 57 Prediction of reference temperature in [K] against true strain at ultimate tensile stress 

[-] with error bars. 
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Fig. 58 Prediction of reference temperature in [K] against true fracture stress [MPa] with 

error bars. 

Fig. 59 Prediction of reference temperature in [K] against true fracture strain [-] with error 

bars. 
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Fig. 60 Prediction of reference temperature in [K] against corrected fracture stress [MPa] 

with error bars. 
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Fig. 61 Prediction of reference temperature in [K] against slope [-], a) with error bars, b) 

general trend. 

The best way to evaluate the committee of submodels is by making predictions and 

comparing predictions with experimental data. Fig. 62 shows a plot of measured versus the 

predicted output using the selected committee; predictions are made by using all variables 

measured at both temperatures without including the temperature as an input variable. 

400 

^ 300 

100 150 200 250 300 

T0 measured [K] 
350 400 

Fig. 62 Prediction of reference temperature in [K] against the measured reference 

temperature in [K]for the model of tensile properties and hardness on the input and 

reference temperature on the output side of A N N developed. 
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• Predicted value Confidence interval linear regression 
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Fig. 63 The confidence band of linear regression at confidence level 95%. 

In Fig. 63, we used confidence intervals to characterize the results. It was performed 

the linear regression of data (T0 measured and T0 predicted). The linear regression line has 

an equation of the form: 

y = 0 .6152* + 92.374, R2 = 0.666, ( 7 8 ) 

where y refers to T0 predicted, x refers to T0 measured and R is the correlation coefficient 

which measures the goodness of fit of the data to the regression equation. 

The confidence level used is 95% around the average. This means that there is a 95% 

probability that the true linear regression line of the population will lie within the confidence 

interval of the regression line calculated from data. The confidence interval of the prediction 

presents a range for the mean rather than the distribution of individual data points. It does 

not tell the likely range of all values, just how much the average value is likely to fluctuate. 

5.2.2 The Second Model 

The other submodels were trained using all parameters at room temperature including 

hardness values and temperature value as input variables. The minimum and maximum of 

each variable and the target are shown in Table 13. 

After preparing the database, the submodels were trained differently and sorted 

according to the log predictive error. Fig. 64 shows the LPE with the number of hidden 
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units. The LPE has an optimum value at about two hidden units. In Fig. 65, the test error has 

the minimum value at one hidden unit. 

The best submodel was selected according to the L P E and tested. The Model Manager 

makes predictions using the whole database, comparing them with the actual target values 

before forming a committee of submodels. 

Table 13 The minimum and maximum values for the second database 

Inputs M i n M a x Average St Dev 

Hardness 90.2 406 223 78.0691 

Temperature 295 295 295 0 

Y i e l d strength 194 934 527 206.6631 

Ultimate stress 309 1306 699.3 220.271 

Elongation 10.81 44.8 26.5 9.2857 

True stress at ultimate stress 386 1353 776.4 211.3358 

True strain at ultimate stress 0.036 0.238 0.118 0.0589 

Fracture stress 889 2011 1359.1 260.4535 

Fracture deformation 0.369 1.929 1.118 0.3433 

Fracture stress 707 1727 1122.9 225.226 

Slope 370 1002 595.2 136.8604 

Reference temperature 108 364 233.4 74.7298 

As mentioned previously, the optimum number of submodels to form the committee is 

determined depending on the combined test error of all the members of the committee. In 

this case, it was found to be 13 as shown in Fig. 66. This reduces the error and is the reason 

why the committee of submodels is used instead of the best submodel. The test error for the 

best submodel is 0.1335, while the combined test error of the committee is 0.1142. The 

selected committee makes predictions on the whole database. 

Fig. 67 shows a plot of measured versus the predicted output. It is clear that this 

committee has less outliers than the previous committee which was formed for all 

parameters at room temperature, including hardness values without temperature value as an 

input variable. 
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Fig. 64 The log predictive error during the training phase (second model). 
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Fig. 65 The test error during the training phase (second model). 
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Fig. 66 The combined test error for committees of different sizes (second model). 
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Fig. 67 Prediction of reference temperature in [K] against the measured reference 

temperature in [K] for the model of room temperature tensile properties, hardness, and 

test temperature (second model). 
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Fig. 68 shows the confidence band of linear regression of data (T0 measured and T0 

predicted) at confidence level 95%. The linear regression line has an equation of the 

following form: 

y = 0.8286* + 36.127, R2 = 0.8234, ( 7 9 ) 

where y refers to T0 predicted, x refers to T0 measured and R is the correlation coefficient. 

• Predicted value Confidence interval Linear regression 

400 -| 

100 150 200 250 300 350 400 

T0 measured [K] 

Fig. 68 The confidence band of linear regression at confidence level 95%. 

5.2.3 The Third Model 

In the third model, all measured parameters were used except the hardness values and 

temperature value. The input variables are shown in Table 14. The database was prepared 

and many submodels were trained and sorted according to the log predictive error. Fig. 69 

shows the L P E with the number of hidden units. The L P E has an optimum value at one 

hidden unit. The test error has the minimum value (0.575) also at one hidden unit, as 

illustrated in Fig. 70. Fig. 71 shows the combined test error of committees. The best 

committee contains seven submodels. 

Fig. 72 shows a plot of measured versus the predicted output. It is clear that this 

committee has more outliers than the previous models. 
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Table 14 The minimum and maximum values for the third database 

Inputs M i n M a x Average St Dev 

Y i e l d strength 194 1018 649.2 227.3949 

Ultimate stress 309 1469 810.5 242.5946 

Elongation 10.81 44.8 25.3 8.5697 

True stress at ultimate stress 386 1581 904 246.2912 

True strain at ultimate stress 0.036 0.238 0.1192 0.052 

Fracture stress 720 2011 1423.8 288.3218 

Fracture deformation 0.0919 1014 18.4 133.0226 

Fracture stress 707 1727 1197.7 249.3268 

Slope 370 1062 658.4 156.6532 

Reference temperature 108 364 232.9 73.9672 

0 

-10 

-20 

g-30 
CD 
CD 

.> -40 

CD -50 

O -60 

-70 

-80 

-90 

(1,-3.143) 

• • 
• • : • 

• • ! • • i • • • • • • • t 

• • 
• 

• 

• • • 
• • 
• • • . m • 

• • • 

10 15 

Number of hidden units 
20 25 

Fig. 69 The log predictive error during the training phase (third model). 
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Fig. 70 The test error during the training phase (third model). 
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Fig. 71 The combined test error for committees of different sizes (third model). 
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Fig. 72 Prediction of reference temperature in [K] against the measured reference 

temperature in [K] for the model of tensile properties and reference temperature (third 

model). 
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Fig. 73 The confidence band of linear regression at confidence level 95%. 
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Fig. 73 shows the confidence band of linear regression of data ( r 0 measured and T0 

predicted) at confidence level 95%. The linear regression line has an equation of the 

following form: 

y = 0.4346* + 135.88 , R2 = 0.5766, ( 8 0 ) 

where y refers to T0 predicted, x refers to T0 measured and R is the correlation coefficient. 

5.2.4 The Fourth Model 

The fourth model exploited findings from investigation related to reference 

temperature used only part of tensile test parameters (hardness, true stress at ultimate stress, 

fracture deformation, slope) at room temperature. Table 15 shows the input variables. The 

database was prepared and many submodels trained and sorted according to the log 

predictive error. Fig. 74 shows the LPE with the number of hidden units, with an optimum 

LPE value at two hidden units. The test error has the minimum value also at two hidden unit 

as illustrated in Fig. 75. The optimum number of submodels to form the committee was 

found to be one, as shown in Fig. 76. 

Table 15 The minimum and maximum values for the fourth database 

Inputs M i n M a x Average StDev 

Hardness 90.2 406 217.5 77.68 

True stress at ultimate stress 360 1359 760 218.28 

Fracture deformation 0.35 1.15 1.15 0.37 

Slope 362 1034 590.5 150.59 

Reference temperature 108 364 229.4 75.76 
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Fig. 74 The log predictive error during the training phase (fourth model). 
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Fig. 75 The test error during the training phase (fourth model). 
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Fig. 76 The combined test error for committees of different sizes (fourth model). 
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Fig. 77 Prediction of reference temperature in [K] against the measured reference 

temperature in [K] for the model of selected room temperature tensile properties (fourth 

model). 
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Fig. 78 The confidence band of linear regression at confidence level 95%. 

Fig. 77 shows the plot of measured reference temperature versus the predicted 

reference temperature on output side and shows that this model also has more outliers than 

the previous models. 

Fig. 78 shows the confidence band of linear regression of data (T0 measured and T0 

predicted) at confidence level 95%. The linear regression line has an equation of the 

following form: 

y = 0.7018* + 69.756 , R2 = 0.6603, (81) 

where y refers to T0 predicted, x refers to T0 measured and R is the correlation coefficient. 
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6 DISCUSSION 

One of aims of the study has been to verify the validity of the master curve approach 

for evaluation of the dissimilar weld joint and/or thermally aged weld joints. Solution of this 

problem consisted from several subtasks: (i) Determination of the reference temperature for 

the base material, steel C20, and for the most brittle location very near the fusion line 

between steel C20 and overlay layer of the dissimilar joint; (ii) Verification of the 

applicability of the master curve concept for the weld material evaluation, in particular when 

dissimilar microstructures are playing a role; and, (iii) completion of data for reference 

temperature prediction by applying artificial neural network model developed for this 

particular case. 

Obtained results have shown that for more or less homogeneous microstructures of the 

low alloy low carbon steel C20, either in as received condition or after thermal ageing 

applied, as expected, there is no problem related to the applicability of the master curve 

concept even if the number of fracture toughness values is relatively small. The minimum 

number of the experimental values recommended is seven [36], the reference temperature 

determination error is in this particular case usually around ±10 °C [24]. Note that for the 

investigated steel C20 it was no matter if the fracture toughness parameter was obtained in 

linear elastic or elastic plastic regime, all fracture toughness values are lying in the 90% 

probability scatter band. This is important finding, in particular in relation to critical 

application condition, e.g. in power industry including nuclear power stations, and the 

master curve approach can be thus applied for residual life predictions etc. 

For the location very near to fusion line of the steel C20 with overlay alloy (50 to 80 

um from the fusion line as described in methodology description - chapter 4.1) the results 

have shown much more complicated figure. As described in chapter 5.1, the number of 

fracture toughness values lying below the lower 90% probability bound is comparably 

higher than 10 % of the entire data set. This means that the fracture of some of these samples 

occurred by micromechanism different form the remaining samples keeping the master 

curve definition conditions. This is typically an effect of local brittle zones (LBZ) that are 

often present in weld joints, both homogeneous and heterogeneous, and that control the 

crack initiation and development. For this particular case special, so called SINTAP 

procedure has been introduced as discussed in theoretical part of the thesis and based on 

overview [98]. Note that for application of this probabilistic approach comparably larger set 

of data is necessary because a number of them are step by step rejected from assessment and 
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the master curve may be quantified based on remaining data. Another possibility how to 

evaluate the outlying data can be based on identification of the fracture initiation mechanism 

acting for the particular samples. It has been shown in Fig. 6, that there are in principle two 

types of brittle fracture initiations mechanisms controlling the steel facture performance: 

Weakest link mechanism and accumulation of damage sites. The first type of fracture is 

identifiable in fracture surface by one initiation location from which the brittle cleavage 

fracture is propagating into different directions. This micromechanism has been identified in 

a part of the specimens lying outside the probability scatter band (see example in Fig. 79). 

The other type is typical by larger initiation region but it is not possible exactly to specify 

one initiation origin (cleavage facet) or there are several initiation origins from which the 

fracture propagates (Fig. 80). 

Fig. 79 Example of the fracture surface with linear elastic history showing one initiation 

origin (sample 103). 

Fig. 80 Example of the fracture surface with linear elastic history showing unclear (several) 

initiation origins (sample 202). 

After reassessment of fracture toughness data having linear elastic loading history and 

rejecting the values corresponding to accumulation of damage sites mechanism of initiation 

94 



the number of values lying outside the 90% probability scatter band dropped to only a few 

ones lying outside the probability scatter band. This approach appears to be good for 

explanation of the increased number of outlying data below the 95% bond of the scatter 

band, but the data cannot be simply rejected from consideration. On the contrary, for 

evaluation of fracture resistance of weld joint the most conservative values are the most 

important ones to be accounted because the fracture is controlled primarily by local brittle 

zones and presence/distribution of which in the particular sample is quite random. The 

SINTAP iteration process has been suggested to include this aspect into consideration [98] 

but, as above mentioned, the number of material and samples available did not enabled to 

apply this approach in our case. 

Nevertheless, the experimental data and their good agreement with master curve and 

90% probability scatter band clearly showed applicability of the M C concept for evaluation 

and prediction of fracture toughness data from dissimilar weld joint region showing the 

lowest fracture resistance. 

When developing A N N models one of the intentions was to include the tensile 

specimens with circumferential notches into the analyses. The main reason was to get purely 

brittle performance characteristics into the data set of 29 steels predetermined for A N N 

modelling. This cannot be obtained for smoothed samples. Only with bars of the selected 

geometry was it possible at a quasistatic loading rate to reach two limit fracture mechanisms 

- transcrystalline cleavage and ductile tearing. At the reference temperature to be obtained 

on the output side of the neural analysis there is a predominant occurrence of transcrystalline 

cleavage fracture, in some cases with small areas of ductile fracture and ductile fracture pre-

cracking preceding to cleavage. One of the expected properties of artificial neural network 

should be its ability to predict the parameter corresponding to the transition area from limit 

parameters corresponding with lower and upper threshold values, i.e. purely brittle cleavage 

and purely ductile microvoid coalescence fracture. For this purpose, the selected property of 

pure cleavage fracture was the general yield temperature Tgy determined as the temperature 

of coincidence of fracture force and force at the limit of macroplastic deformations. The 

fracture data determined at this temperature were then used, at very beginning of A N N 

development, as input parameters. Later this intention has been abandoned because of 

promising results/findings with reference prediction from smoothed samples. 

When analysing the accuracy of Tgy determination, it was interesting to compare this 

general yield temperature (for tensile test bars with circumferential notches) with the 
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reference temperature (determined on the basis of fracture toughness measurement). The 

data are summarized in Fig. 81. The solid line shows the linear dependence gained by 

regression analysis (with the correlation coefficient 0.85). The correlation of both values is 

quite evident, but it was no ambition of authors to analyse this relation more deeply at this 

stage of investigation. Only in cases where the artificial neural network showed a 

remarkable deviation between the predicted and experimentally determined reference 

temperatures this correlation was used to discover whether the deviation was caused by 

some error in experimental determination of data or not. 

100 200 
genera l yield temperature T g y [ K ] 

300 

Fig. 81 Reference temperature To correlated to general yield temperature T&, of tensile test 

specimen with circumferential notch. 

The thesis project has been also focused on development of quantitative model for the 

prediction of the reference temperature by means of artificial neural network. In order to 

fulfil this aim, it was necessary to carry out: (i) Collection and completion of data sets for 

suitable steels that could enable A N N development; (ii) Selection and development of the 

corresponding A N N model suitable for prediction of reference temperature including 

computing tools; and (iii) verification of the optimised model for the developing data set and 

for data sets characterising the dissimilar weld joint. 
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Note that for purposes of A N N training the data generated by different tests must be 

evidently fully compatible, i.e. made from the same steel batch, analogous orientation. 

That's why the data set used was relatively limited, only data measured by Brittle Fracture 

Group during last three decades have been used and when needed completed by additional 

tensile, fracture toughness and hardness tests. Data from literature are not having 

corresponding certainty regarding the same material, crack orientation etc. In addition, 

because of wrong results data sets have been rejected from evaluation based in 

incompatibility of results. Note that before the incorporating data into training they have 

been checked in similar way as shown in detail for the first model. 

Four models have been investigated in this work. For evaluation of the relevancy of 

the predicted data two approaches have been applied. As shown in chapter 5.2, e.g. Fig. 47 

and Fig. 48, log predictive error and test error during the training phase have been taken as 

parameters for selection of the right model (including number of hidden units etc.). For 

evaluation of prediction accuracy standard correlation analysis has been carried out for each 

of four models developed as shown in corresponding Figs. 63, 68, 73, 78, respectively. 

Comparison of all parameters is available from Table 16. 

Table 16 The log predictive error and test error from A N N training stage and correlation 
coefficient for reference temperatures TQ predicted and experimentally measured 

log predictive error test error correlation coefficient (R) 

first model -1.113 0.2363 0.82 

second model -0.1242 0.1335 0.91 

third model -3.143 0.575 0.76 

fourth model 4.4025 0.1294 0.81 

Based on the comparison of accuracy parameters from the four models investigated the best 

one appears to be the second one, i.e. model incorporating on the input side room 

temperature tensile test parameters, hardness and general yield temperature for notched 

tensile specimens. Because the notched tensile specimens are not commonly available (here 

this sample geometry was used for investigation purposes) the first model is giving also 

acceptable accuracy. It is the model working with room temperature tensile properties and 

hardness on the input side. 
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The analyses showed reliably which input parameters unambiguously influence the 

prediction of reference temperature. As mentioned nine different properties/numerical inputs 

of the smoothed and notched tensile specimens were investigated. Nevertheless, the notched 

bar tensile test and the general yield temperature proved to be exceptionally significant. So 

the best predictions were achieved by data set containing any parameter associated with the 

general yield temperature. Among the best predictions (generated for different combinations 

of input parameters), not one failed to include at least one of the following parameters: 

general yield temperature To, nominal fracture stress Ru, or reduction in area of notched bars 

Z*. A surprising result was that in smooth bars, local material properties such as true fracture 

strain or slope of line beyond the plastic instability limit do not belong among the 

descriptors with a significant influence on prediction. 

Having verified A N N models available the tensile test data from dissimilar weld joint 

dissimilar weld joint can be used to predict reference temperature of the master curve for the 

location near to fusion line. Because of material limitation only data from flat tensile test and 

hardness measurement have been available thus first model was used for these purposes. 

Steel C20 in as received and thermally aged condition (450°C/700 hrs) and, in addition, 

material from location very near to fusion line, also in as received and thermally aged 

conditions, were applied. 

The results of these predictions are shown in the Table 17; note that these data have 

not been included into the training and verification phase of the A N N model development. 

Correlation of measured and predicted through the first A N N model reference temperatures 

has been found quite acceptable. 

Table 17 Reference temperatures TQ of the base material C20 and location near to the fusion 
line 

T0 measured TQ predicted (2st model) 

C20 as rec -32.9 -27.1 

C20 450°C/700 hrs 30.8 -33.3 

W7 as rec 73.5 -64.9 

W7 450°C/700 hrs 36 -25.7 
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It is evident that a limiting factor in the data processing was the limited number of data 

sets in the training set. This problem was addressed by selecting a prediction model that was 

suitable for small training sets - regularization neural networks. Additionally, the data sets 

were not divided into the usual training and testing sets as commonly; this problem was 

solved by using an iterative division method, i.e. each training set progressively became a 

testing set. 

It is a justifiable assumption that increasing the number of input data sets (i.e. sets of 

mechanical parameters of steels included in the investigation) enable to develop and use a 

more complex A N N . This will improve the network's ability to generalize, and it will be 

possible to predict the reference temperature for the currently problematic steels with greater 

accuracy. 
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7 S U M M A R Y AND CONCLUSIONS 

Following the above results, a Bayesian neural network model based on tensile test of 

smoothed and notched samples and mechanical properties from these tests has been 

proposed and verified to predict the reference temperature of applied steels group. In total 29 

experimental data sets from low alloy steels each containing up to twenty different 

parameters are applied to learn four models of reference temperature prediction. A limiting 

factor in the data processing was the small number of data sets in the training set. However, 

it possible to get good generalization from models trained on small data sets. Bayesian 

regularization does not require that a validation data set be separate from the training data 

set; it uses all the data. The general performance of the models can be tested by predicting 

on all data. These were grouped into those within the range of data used for training and 

those outside the range (unseen data). The Bayesian approach offers a number of advantages 

including a solution to the problem of over-fitting. Since it finds the significance of each 

input and the variables which have little effect in explaining the output will be linked to 

small weights, there is no need to except any variable prior to the analysis. 

This study indicated that the reference temperature T0 of the master curve is 

predictable using Bayesian neural network models based on tensile test and mechanical 

properties. But the uncertainty characterizing the accuracy of the model tends to be large. 

One of way how to increase the accuracy is more input data need to be collected to improve 

the predictions of the model. 

The best model was achieved when all the parameters were used as input variables 

(test temperature, hardness, yield strength, ultimate stress, elongation, true stress at ultimate 

stress, true strain at ultimate stress, fracture stress, fracture deformation, fracture stress 

corrected and slope). In this case, it is no need to exclude any parameter. 

From this part of the present study, the following conclusions may be drawn: 

1. Neural network models have been developed for the estimation of reference 

temperature based on tensile test and mechanical properties. The work has been 

applied to set of 29 steels containing material of various origins. 

2. A neural network model has successfully been used to predict the reference 

temperature for a wide range of steels, and the model gave satisfactory predictions. 

3. A neural network model based on the selected characteristics of a tensile test alone or 

hardness value alone did not give a satisfactory prediction for reference temperature. 
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4. For dissimilar weld joint material the prediction based on model including room 

temperature tensile parameters test parameters only supplied acceptable accuracy, 

however, a neural network model based on the selected characteristics of tensile test 

and hardness properties has been proposed to predict the reference temperature 

characterizing the fracture toughness transition behaviour in low alloy steels with 

predominantly ferritic structure. In general, the predictions are acceptable but the 

modelling uncertainty tends to be large. More input data is required for ferritic steels 

and further published research will improve the predictions of the model. 

Eight sets of specimens cut from the dissimilar weld joint being in as received and 

thermally aged conditions were tested in the transition region. A l l of these specimens have 

been tested to obtain fracture toughness data and the results were evaluated relative to the 

fracture toughness Master Curve. The reference temperature was then calculated from the 

sets, based on this temperature 90% probability scatter band was then compared with 

experimental data. Importance of the Master curve concept for quantification of the fracture 

toughness temperature dependence has been also underlined. 

It has been shown that for quantification of the fracture toughness temperature 

dependence in transition region of ferritic steels the Master curve concept is very useful tool 

and the transition behaviour can be characterised by single parameter, which is the reference 

temperature T0 localizing the transition region on temperature axis. In addition, this concept 

enable to characterise the steel transition behaviour including the probability scatter band 

based on limited number of experimental values which is important aspect for designing 

structures and components 

The main conclusions from this part of experimental works can be characterise as 

follow: 

1) The master curve concept in the transition region of dissimilar weld joint materials is 

verified. 

2) This work shows that use of compact tension specimens is possible producing valid 

results for reference temperature evaluation of ferritic steels as well as for weld 

metals. 

3) The multi-temperature method for evaluating the T0 has been confirmed as the most 

effective way to capture the scatter and temperature dependent of fracture toughness 

when limited number of samples is available. 
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ANNEX: 

Table 18 The ranking of the submodels depending on the LPE. 

Number of submodel Number of hidden units Test error L o g predictive error 

1 1 0.236 -1.11 

2 2 0.353 -1.23 

3 2 0.361 -1.33 

4 2 0.332 -3.13 

5 1 0.345 -3.69 

6 1 0.346 -3.69 

7 1 0.343 -3.71 

8 1 0.347 -3.72 

9 3 0.381 -6.43 

10 3 0.519 -11.76 

11 3 0.526 -13.02 

12 2 0.603 -13.06 

13 2 0.621 -14.22 

14 4 0.63 -17.17 

15 7 0.646 -17.84 

16 5 0.649 -17.98 

17 11 0.644 -18.15 

18 5 0.662 -18.19 

19 10 0.647 -18.36 

20 16 0.647 -18.36 

21 17 0.653 -18.63 

22 17 0.644 -18.82 

23 7 0.641 -18.89 

24 15 0.642 -19.09 
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25 20 0.643 -19.09 

26 13 0.642 -19.15 

27 6 0.641 -19.17 

28 14 0.63 -19.25 

29 20 0.641 -19.32 

30 13 0.639 -19.57 

31 7 0.638 -19.72 

32 8 0.64 -19.8 

33 12 0.643 -19.83 

34 18 0.633 -19.94 

35 9 0.636 -20.08 

36 11 0.637 -20.11 

37 9 0.641 -20.2 

38 5 0.636 -20.21 

39 8 0.636 -20.21 

40 11 0.641 -20.42 

41 15 0.635 -20.6 

42 12 0.629 -20.7 

43 6 0.521 -20.79 

44 6 0.609 -20.8 

45 6 0.622 -20.81 

46 19 0.635 -20.88 

47 17 0.629 -20.9 

48 5 0.61 -20.95 

49 16 0.63 -20.96 

50 16 0.617 -21 

51 14 0.62 -21.03 
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52 14 0.634 -21.03 

53 7 0.576 -21.07 

54 4 0.586 -21.14 

55 9 0.588 -21.14 

56 14 0.625 -21.17 

57 17 0.569 -21.25 

58 15 0.61 -21.27 

59 18 0.589 -21.31 

60 10 0.624 -21.31 

61 7 0.62 -21.32 

62 19 0.598 -21.33 

63 19 0.624 -21.41 

64 11 0.622 -21.43 

65 12 0.617 -21.5 

66 16 0.579 -21.53 

67 18 0.638 -21.56 

68 13 0.586 -21.57 

69 10 0.607 -21.59 

70 18 0.599 -21.72 

71 15 0.616 -21.78 

72 12 0.573 -21.86 

73 10 0.615 -21.88 

74 9 0.621 -21.98 

75 12 0.632 -21.99 

76 10 0.613 -22.26 

77 4 0.495 -22.32 

78 13 0.508 -22.41 
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79 8 0.495 -22.47 

80 11 0.544 -22.83 

81 9 0.541 -22.87 

82 16 0.536 -22.89 

83 8 0.49 -23.6 

84 20 0.519 -23.93 

85 6 0.529 -23.94 

86 3 0.517 -24.2 

87 4 0.504 -25.25 

88 8 0.511 -25.4 

89 4 0.493 -27.99 

90 5 0.464 -28.55 

91 3 0.497 -33.54 
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