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Abstrakt

Tato prace se zabyva extrakci vhodnych priznakt pro rozpoznavani fe¢nika z delsich ¢asovych
usekl. Po predstaveni soucasnych technik pro extrakci takovych pfiznak navrhujeme
a popisujeme novou metodu pracujici v ¢asovém rozsahu fonému a vyuzivajici znamou tech-
niku i-vektorti. Velké tusili bylo vynaloZeno na nalezeni vhodné reprezentace temporalnich
priznakt, diky kterym by mohly byt systémy pro rozpoznavani recnika robustnéjsi, ze-
jména modelovani prosodie. Nas pristup nemodeluje explicitné zadné specifické temporalni
parametry feci, namisto toho pouziva kookurenci fe¢ovych ramct jako zdroj temporalnich
priznakt. Tuto techniku testujeme a analyzujeme na fecové databazi NIST SRE 2008.
7 vysledki bohuzel vyplyva, Ze pro rozpoznavani fecnika tato technika nepfinasi ocekavané
zlepseni. Tento fakt diskutujeme a analyzujeme ke konci prace.

Abstract

This work deals with temporal features for automated speaker recognition. We give overview
of currently known temporal feature extraction methods and afterwards, we propose and
preliminarily evaluate a general phoneme-level temporal feature extraction scheme based on
factor analysis i-vector paradigm. Much effort has been made to reasonably represent tem-
poral context and make speaker recognition systems more robust, namely speech prosody
modeling. Our approach does not explicitly model any temporal parameters of speech,
rather it uses the occurrence of neighboring frames as a source of temporal information.
We test and analyze this method on standard evaluation database NIST SRE 2008. The
results indicate, however, that for speaker recognition, no useful gain can be obtained using
this technique. We describe and discuss this discovery at the end.
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Chapter 1

Introduction

1.1 Motivation

In the last decade, the speaker recognition technology has undertaken a big development.
Performance of state-of-the-art systems has been drastically improved and the processing
speed-up is by several orders of magnitude. More or less successful techniques were de-
veloped to make the technology robust against the biggest obstacle in the field of speaker
recognition —session mismatch. The methods for fusing different systems were explored and
heterogeneous systems are now de-facto the standard. Also, new speech processing toolkits
and speech data were released, which makes the technology more available.

Many applications of speaker recognition technology can be found. Telephone compa-
nies, banks and others (including police and intelligence agencies of course) would like to
use speaker recognition systems for different purposes: voice verified authentication, call
tracking or automatic labeling of voice data (speaker diarization), etc. The development of
speaker recognition technology goes side by side with the development of language identi-
fication (LID), so this can be also a motivation.

In this work, we develop a general data-driven temporal feature extraction technique.
The scope of currently used features used in speech processing tasks is far from being truly
general in a sense of explicitly emphasizing all the relevant aspects of speech signal. In-
stead, based on the knowledge, that some speech phenomena contain speaker discriminative
information, different features are extracted from signal on such levels and information is
merged by fusing the output scores. The scope of our approach is limited to the temporal
information contained in speech segments of length around 100 ms.

1.1.1 Organization of this work

For this work to be self-introductory and comprehensible also for the people not familiar
with speaker recognition, we present fundamental concepts of speaker recognition later
in this chapter. The currently used and documented temporal features are described in
Chapter 2. Afterwards, in Chapter 3, we give a short introduction to speaker modeling
methods and channel compensation. In our work, we use heavily the concept of i-vectors,
so this chapter is mainly written as an introduction to this topic. In Chapter 4, we present
our proposal of feature extraction technique based on i-vector paradigm. Experimental
results are presented in Chapter 5, with a separate discussion and work conclusions in
Chapter 6.



1.2 Fundamental concepts of speaker recognition

Speaker recognition is very suitable for commercial biometric purposes because it does not
need any additional hardware and in the case of text-independent recognition, it can be
performed transparently, i.e. without user even knowing that verification of his voice is
in progress. In this work, we deal with automated speaker verification (ASV). This is a
problem of deciding the question ,,Is this a voice of person X7“. It differs slightly from the
task of speaker identification, where the question is put in the following way: ,For a given
list of persons, who is speaking?“. The important difference between the two is that the
speaker detection task does not depend on the number of target speakers.
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Figure 1.1: Automatic speaker identification (ASI) and verification (ASV).

1.2.1 Feature extraction

The first step for any speech-related pattern matching task is to extract features from the
input signal in a form suitable to computers and classification algorithms. Humans, during
their lives, learn differences in voice of other people using well-known characteristic features
of individual, that can be obtained from his/her speech — pitch, timbre, speaking rate,
intonation, selection of specific words, voice abnormalities etc. Ideal speaker recognition
system should utilize all of them. The process of extraction of such information from raw
speech is called feature extraction. This is not an easy task, because this information is
mixed up with the other information present in speech signal, like speaker mood, channel
information, linguistic content, noise and so on.

1.2.2 Speaker modeling

After that, different pattern matching algorithms are used to create speaker models, classify
test utterances and, at the end, make decisions. The modeling techniques can be divided
into generative and discriminative ones. Generative techniques model the distribution of
training features, whereas the discriminative techniques do not make any assumption on
the feature distribution and model rather the boundary between speakers. The examples
of generative and discriminative models are Gaussian Mixture Model (GMM) and Support
Vector Machine (SVM), respectively.

Special attention has to be typically dedicated to good session compensation. Simple
speaker models without this stage take all the signal variability to create speaker models,
which is obviously wrong. The session compensation methods are designed to filter out
the unwanted session variability and to keep the speaker variability that we can use to
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Figure 1.2: Block diagram of general automatic speaker verification system. There are two

phases depicted —enrollment of target speakers and verification.

distinguish between speakers. By the term session wvariability we mean any variation in
signal characteristics caused by different conditions (mismatch) between the recordings of

the same speaker, for example:

e different type of microphone and transmission channel—this is jointly called channel

mismatch and it is the most important variability to compensate for.

e ambient noise and different room acoustics.

e different phonetic content (in the case of text-independent ASV).

e intra-speaker variability —caused by variations of speaker voice as time passes. This
can be short-term, e.g. different speaker mood or variation caused by illnesses, or

long-term deviation influenced mainly by speaker aging.

Because both speaker and session variability share a common feature space, they affect
each other and thus a mismatch in session conditions can confuse a speaker recognition
system based on features from this common space.
feature representation space only affected by speaker variability. Then it would be easy
and straightforward to model this distribution and make optimal decisions (in a Bayesian

sense). This is the role of session compensation.

The ideal case would be to find a



1.2.3 Scoring and decision making

At the end of the processing chain lies scoring and decision making module. This module
accepts a trial as an input. A trial is a pair of test utterance and claimed identity. This
module takes the utterance, extracts the features from it and compares them to the saved
speaker model. Typically, likelihood ratio for the following two hypotheses is computed

[11]:
® Higrget — The test segment was generated by this speaker-specific model,

® Hyontarget — The test segment was generated by a speaker-independent background
model.

The bigger the number, the more probable is the first hypothesis. This is also called a soft
decision. To make a hard decision, this score has to be thresholded by some fixed value. We
give more details on this later in this chapter when discussing how to evaluate recognition
performance.

1.2.4 Running a speaker recognizer

During the lifetime of classical ASV system, we recognize three phases:

e System building and training — This is the first phase. It typically involves training
a background model and running the whole recognition process on some supervised
development database. The system parameters are tuned to the best performance
with respect to the target application needs. From a practical point of view, the
processing toolkit and development data have to be selected/created.

e Enrollment of target speakers—In this phase, the target speakers to be later
recognized are registered to the system using their enrollment data. The speaker
model is internally created and stored in the system. This is also often termed as
creating each speaker’s voiceprint.

e Verification— An unknown utterance to be verified together with claimed speaker
identity is presented to system and the system should correctly answer the question,
if the utterance was really pronounced by this speaker or not.

Nowadays, systems often use a so called symmetric scoring. In this case, there is no
difference between enrollment and test data, as the trial is formed by two utterances and
the system has to decide, whether the two were spoken by the same person or not. The
two hypotheses are then [11]:

e H;—Both utterances were spoken by the same (one) speaker,
e H,—Each utterance was spoken by a different speaker.

In fact, no speaker model is created, because both utterances are handled in the same
way —they are transformed to some space, where we can use directly some similarity mea-
sure. In such case, the phases of enrollment and verification are merged together.



1.3 Evaluation metrics

In this section, we describe standard measures and tools commonly used to evaluate speaker
recognition system performance. Those are: Equal error rate (EER), Detection cost func-
tion (Cpet) and Detection error tradeoff (DET) curve.

The importance of common evaluation database should be noted here. Direct compar-
ison of evaluation metrics is only possible for the same database, as the datasets differ in
difficulty. For a long time, this common evaluation data is governed by the NIST in the
scope of Speaker Recognition Evaluation (SRE) campaign®.

Speaker verification is in general a binary classification task with four possible outcomes

[28]:

Table 1.1: Possible outcomes for speaker verification

Client Impostor
Impostor predicted | False rejection (FR) True rejection
Client predicted True acceptance False acceptance (FA)

Sometimes, false rejection is referred as a miss or nondetection and false acceptance as
a false alarm. Probabilities of these events are defined:

Nmiss P, = Nfa
s L fa — 5
Ntzzr Nmm

where Nyiss, Niary Nyq and Ny, are number of false rejections, number of target trials,
number of false acceptances and number of false trials, respectively.

Pjq and P55 are dependent on each other and the trade-off between them is called op-
erating point of system and can be set by altering system’s detection threshold. Commonly
used fixed operating point is called Equal error rate (EER), and is defined as a point,
where Ppiss = Pyq.

EER treats the two kind of errors equally, but Py, and P,;ss are usually not equally
expensive. For example, in access applications, false acceptances are much more expensive
than false rejections. Thus, operating point sits typically in the area of low false accep-
tances. This is taken into account in the detection cost function Cp.; used in NIST
speaker recognition evaluations. This function sets the operating point with respect to
target detection prior probability and costs for the two errors:

Pmiss =

CDet = CMiss X PMiss|Target X PTarget

+ CFaiseAlarm X PFalseAlarm|NonTa7‘get X (1 - PTarget)

The parameters of this cost function are the relative costs of detection errors, Cpyyiss
and CrajseAlarm, and the a priori probability of the specified target speaker, Prarger [34].
The values for these parameters are summarized in Table 1.2. Note, that recent NIST SRE
evaluations use a different cost model. In this work, we do not use such recent evaluation

!National Institute of Technology Speaker Recognition Evaluations (NIST SRE) are held regularly to
drive the technology forward and measure the state-of-the-art of text-independent speaker recognition,
http://www.itl.nist.gov /iad /mig/tests/spk/



Table 1.2: Parameter values for detection cost function used for NIST SRE evaluations
(prior to 2012).

CMiss CFalseAlarm PTarget
10 1 0.01

data, so we use the old cost model. To have more interpretable numbers, it is common
technique to normalize C'p.;. As a normalization constant, performance of default system
is used. Default system has no discriminative power, and its Cpe; is constant for given
relative costs and target prior:

. C Miss X PT
Cefauty = min g -0 2 Heacl
FalseAlarm X ( - Target)

CYDet

CNorm = =
Cdefault

The symbol Cp; is often used for normalized cost function in place of Cnorm. We use
this practice also—by Cp.; we automatically mean the normalized version of detection cost
function later in our text.

The Cp.t metric is used to measure the performance of the system given hard decisions.
If we have access to true labels for the evaluation data, we use optimized metric minimum
detection cost C’gei;‘, that minimizes the cost function by setting optimal threshold on
scores.

To visualize overall system behavior, the Detection Error Tradeoff (DET) curve
[28] can be used. It shows system performance for all operating points in terms of both
Piriss and PpgjseAlarm- Both axes are logarithmic. An example of such curve can be seen
in Figure 5.1.

Later we will use the Receiver Operating Characteristic Convex Hull (ROCCH)
curve. This is obtained by interpolating between the discrete points of the ROC curve,
which is basically the same as DET curve, but plotted using linear axes. This curve is used
to compute a well defined EER from an otherwise ,steppy“ ROC/DET curves [9]. We use
the ROCCH curve as a smoothed version of the DET curve.

1.4 Score fusion

As we mentioned in previous sections, there are multiple kinds of speech features. We
can combine these complementary sources of discriminative information on feature level
by stacking all possible feature vectors. This is called feature-level fusion, but it can not
be always used, as the features can be very different in nature and with different frame
rates. Instead, several separate classifiers are trained side by side and the outputs of
these subsystems are merged on score level —score-level fusion. Usually, final decision of
state-of-the-art speaker recognition system is a combination of many subsystems. The
same approach is also used when combining several biometric modalities, like iris patterns,
fingerprints and speaker recognition in security applications.

Each subsystem outputs a score when given a test trial. By convention, higher score
values favor true target hypothesis and lower values the opposite. Scores from several



subsytems are then combined using weighted sum [12]:

N
scores = s(x, w) = wo + Zwisi(x), (1.1)

n=1

where scorey is fused output score, IV is the number of subsystems and w are the fusion
weights. These weights are used to reflect the fact, that some subsystems are weaker than
others. They are found via logistic regression wrt. some objective function. This is usually

convex function and local minimum can be found easily, for example with conjugate gradient
methods [12].



Chapter 2

Feature extraction

In this chapter, we give overview of feature extraction techniques currently used for speech
processing tasks. We concentrate on features, that incorporate a temporal context, as it is
the main topic of this work.

There are many levels of information available in speech waveform and there is no uni-
versal feature extraction technique, so each speech processing task uses its own best-suiting
subset of these features. Strictly speaking, different features carry different complementary
information, so the best systems are made up of many fused subsystems, each of them
utilizing diverse features.

2.1 Information available in speech

From the point of view of speaker recognition, [26] gives the following list of different
features available in speech signal.

e Short-term spectral and voice source features —spectrum, glottal pulse features.
These features are sometimes called ,acoustic“ as they describe the voice character-
istics corresponding to given vocal tract state. Features are computed from 20ms
long signal segments. It is assumed, that for such time the signal remains stationary
and the spectrum can be accurately estimated. The most often used features from
this category are Mel-Frequency Cepstral Coefficients (MFCC) and Linear Prediction
Cepstral Coefficients (LPCC). These features are very popular, because they are easy
to extract and contain most of the discriminative information [27] (based on a fact,
that different people have different vocal tract characteristics).

e Spectro-temporal and prosodic features— pitch, energy, duration, rhythm, tem-
poral features. Prosodic features (or prosodic patterns) describe speech in supra-
segmental regions. Time context in several hundreds of milliseconds is taken into
account. Prosodic features of speech are considered as a learned habit and include
intonation patterns, speaking rate, pause durations etc. The most important prosodic

parameter is the fundamental frequency (or F0) [26] and how it evolves in time. These
features are more robust to channel effects, as they do not work directly with signal
spectrum.

e High-level features - phones, idiolect (personal lexicon), semantics, accent, pro-
nunciation. Extraction and modeling of such features is the most complex one. The



speech recognition backend is needed and also a lot of training data to well estimate
speaker models.

In this work, we put special attention on features with temporal context, so we are
not going to describe the details of low-level (acoustic) and high-level features in this text.
More information can be found in [26] or any literature about speech processing [3]. Note,
that feature extraction is in development on all levels. New features like Multitaper MFCC
or Spectral Centroid Magnitude and Frequency are being investigated and incorporated to
todays speaker recognition systems with benefit of greater robustness. Recent overview of
the development can be found in [21].

Besides the above-mentioned speaker-dependent variability, there is also unwanted vari-
ability caused by several reasons, mainly by noise and channel effects. ASV system must
take this into account either at feature extraction stage (use features less affected by such
variability) or at the following stages by different kinds of normalization and compensation
techniques.

2.2 Application specific temporal features

Speaker recognition domain

Many temporal feature extraction techniques were proposed to be used in the domain
of speaker recognition. Except already mentioned delta coefficients, that are somewhere
in between the acoustic and temporal paradigm, we can mention the Temporal DCT
(TDCT) [27][26], Temporal Patterns (TRAP) [20][5], Modulation Frequency [25] and Time-
Frequency Principal Components (TFPC) [29]. Higher level of temporal features is mod-
eling prosodic feature trajectories, like features based on Nonuniform Extraction Region
Features (NERF) [22].

Language identification domain

In the domain of language identification (LID), there are also several levels of available
information and two different main approaches — acoustic and phonotactic. The later
involves phoneme recognition followed by a comparison with a language model. Although
the phonotactic approach gives better results, it was shown, that incorporating temporal
information from context of around 200 ms greatly reduces the difference in performances
of the two paradigms [410]. The Shifted Delta Coefficients (SDC) are typically used for this
purpose.

Speech recognition domain

The systems for automatic speech recognition (ASR) usually use the features covering
longer time span because it is more convenient for phone recognition. The TRAP feature
or more recent bottleneck features [19] are commonly used for phoneme recognition. These
features are extracted from several stacked acoustic features by a neural network. It was
experimentally shown, that the best context size for such features is about 310 ms [32].

10



2.3 Selected temporal feature extraction methods

In this section, we give a list of feature extraction methods, that make use of temporal
context. This added information is known to contain another speaker specific information,
complementary to acoustic features. So even if the acoustic features carry the greatest por-
tion of speaker discriminative information [21], temporal features are of great importance.

Delta and acceleration coefficients

For a long time [38], most of the acoustic ASV systems have been making use of the local
temporal derivative estimates to capture local speech dynamics. Adding time derivatives
to the cepstral feature vector improves recognition performance [42].

Computing the A and AA coefficients is commonly implemented as a least-square ap-
proximation of the local slope and calculated over multiple frames (typically window of 5-9
frames [2]).

The regression formula for computing delta coefficient A; for a feature C; is given by

[42][2]:

% kCi(t-l—k) % k[Ci(t+k:)—Ci(t—k:)]
Ai(t) = = == : (2.1)
> k2 23 k2

k=—N k=1

where N determines size of the window across which the regression is computed.

Often, also the second order derivatives are computed. These are called double-delta
coefficients or acceleration coefficients. They are computed using the same formula from
the first order coeflicients. Special handling is needed at the beginning and end of signal.

Shifted Delta Cepstral coefficients (SDC)

Described in [40][14], Shifted Delta Cepstral features are a way, how to incorporate even
longer temporal context. Although these features are mainly used for LID, there were some
attempts [14] to use it for speaker verification.

In principle, the SDC feature vector is constructed by stacking the delta features sampled
from context of about 200 ms.

The SDC feature extraction is parametrized by 4 coefficients [14]:

e N: number of cepstral coefficients (typically 12)
e d: spread of the delta computation
e P: gaps between successive delta computations
e k: number of delta vectors for concatenation
For given time ¢, the difference vectors are computed:
Ac(t,i) =c(t+iP+d) —c(t+iP —d)
and the final SDC feature vector is then formed by stacking k of these differences:

SDCO(t) = [Ac(t,0)" Ac(t,1)! ... Ac(t,k—1)"] (2.2)

11



Many combinations of these parameters are possible, we found usage of N-d-P-k = 7-1-
3-7 [14] , 10-1-1-3 [40] and many others. For example, with the 7-1-3-7 configuration, the
features have dimensionality of 49 and timespan of 220 ms (for frame length 20 ms and time
shift of 10 ms [27]).

It was shown [40], that GMM-based LID systems utilizing SDC features can perform as
well as phonetic LID systems with greatly reduced computational cost.

Temporal DCT (TDCT)

Temporal Discrete Cosine Transform [27][26] extracts speech dynamics from the same space
as SDC does—from the trajectories of cepstral coefficients. Compared to SDC, it employs
different way to reduce dimensionality of final features. Instead of sampling this space
(see SDC parameter P), the DCT transform is applied to a vector of consecutive cepstral
coefficients and only the low-frequency components are retained and then stacked together
from all filterbank bands. That is because low-frequency components contain most of the
energy.

TDCT features are extracted for each frame. The use of DCT rather than DFT mag-
nitude retains also relative phase, so it can preserve both phonetic and speaker-specific
information. Improvement over the cepstral systems by fusing the match scores of the
cepstral and temporal features is rather modest and more research is required [26].

Results in [27] observed on the NIST 2001 corpus indicate, that SDC and TDCT features
perform similarly and outperform the MFCC+A+A front-end.

Block size = B vectors
A

» Hamming —p oct Retain K
= window coeffs
(] | 1 1 1 1 1 T
2 %‘ ™ 1 1 1 ] [| TDCT vector (dimensionality = M x K) ™""%
+ N [ I I N B S ) S
<45 [ | | I | ]
] = = H H
st HEHHHAE :
w £ N [ N A S () S .
=70 .
» Hamming —p| oct Retain K
ind coeffs
MFCC+A+ AA vectors window
time

Figure 2.1: Hlustration of the TDCT feature computation. Image taken from [27].

Temporal Patterns

The TempoRAI PatternS (TRAPS), proposed in [20] for phoneme recognition, later inves-
tigated also for ASV [5] is yet another approach, how to extract temporal context from
frequency band trajectories.

Extraction procedure for ASV described in [5] is very similar to the TDCT one. Time
trajectories of 18 Mel-filter banks (150ms in length) are processed in parallel firstly by
applying Hamming window and then computing Discrete Fourier Transform (DFT). The
magnitudes are then filtered by cancelling all frequencies except the interval 1 to 16 Hz.
The final feature vector is obtained by stacking these outputs and applying dimensional-
ity reduction procedure—either LDA or PCA —to squeeze highly dimensional space to 24
dimensions.

12



In [5] they compare the performance of TRAPS with classical acoustic MFCC+A /GMM
approach and some results are given. No information is given about possible fusion of these
features, as this could be in our opinion more beneficial than using either cepstral features
or temporal ones. They also mention that using TRAPS is beneficial especially for noisy
conditions.

Modulation Frequency

To extract features like speaking rate, similar approach to TDCT was proposed in [25],
called Joint acoustic-modulation frequency. This method extracts frequency content of
sub-band amplitude envelopes.

The final feature vector is obtained per-utterance by averaging frame-wise feature vec-
tors computed over 300 ms window. Only modulation frequencies 0—20 Hz are kept, as they
are linguistically and perceptually the most relevant modulation frequencies of speech [25].

The difference from TDCT is that trajectory processing is computed over spectral sub-
bands instead of cepstral sub-bands using DFT rather than DCT. Also, local information
for the whole utterance is averaged to form one feature vector per utterance.

Time-Frequency Principal Components

We end this (incomplete) list of feature extraction techniques with Time-Frequency Prin-
cipal Components (TFPC) [29] as it can be seen as a generalization of many of above-
mentioned techniques. Authors of this method developed a formalism called filtering of
spectral trajectories that allows to describe several feature extraction techniques like cep-
stral analysis or A coefficients computation by means of matrix multiplication (note, that
multiplication in spectral domain is actually convolution/filtering in time domain).

Common characteristic of above-mentioned feature extraction methods is that they
process each sub-band trajectory independently (i.e. component by component). The
TFPC instead takes the spectro-temporal matrix as a whole, counting with possible inter-
component correlations. The dimensionality reduction is accomplished by PCA, thus the
name Time-Frequency Principal Components.

2.4 Feature normalization

The objective of feature normalization is to compensate for the effects of session mismatch
and to enable more effective modeling of speaker differences by scaling or warping the fea-
ture vector [1]. Some channel compensation is convenient on feature level for two reasons:
Firstly, many channel effects can be handled, because of their nature. For example, convo-
lutional noise can be by reduced by Cepstral Mean Subtraction, because this noise becomes
additive in frequency domain and so centering features effectively ,normalizes“ the utter-
ances. Secondly, such signal enhancement is independent of speaker modeling stage, so it
is applicable to any speaker recognition system.

Most of the conventional feature normalization techniques are normally applied in the
cepstral domain, as a post-processing of extracted MFCC features [1]. This is depicted in
Figure 2.2.

13
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Figure 2.2: Feature extraction chain of a typical acoustic ASV system.

Cepstral Mean and Variance Normalization (CMVN)

Sometimes also referred as Cepstral Mean Subtraction (CMS), CMVN [17][1] is an efficient
method to remove mismatch between recordings caused by convolutive channel noise. In
the log-spectral and cepstral domains, convolutive channel noise becomes additive [26] and
so subtraction of the mean cancels out such mismatch. In [17], the authors note, that it is
also effective in reducing long-term intra-speaker spectral variability.

Variance normalization is performed to equalize feature variances by dividing each fea-
ture by its standard deviation.

Although convolutive channel noise is in most cases constant for the whole utterance,
often sliding-window variant of CMVN, Short-Time Mean and Variance Normalization
(STMVN) is used. This is motivated by real-time applications, where the whole utter-
ance is not available ahead and by the fact, that the mean can change in time. In [1],
the authors compare different feature normalization methods including STMVN conclud-
ing that STMVN, with an i-vector system, provides comparable speaker verification results
to that of Short-Time Gaussianization (described later).

Feature Warping and Short-Time Gaussianization

Feature Warping [35] and Short-Time Gaussianization [41] are similar feature normalization
techniques. The normalization is done by ,warping“ the cumulative feature distribution
to follow a reference distribution (simply a Gaussian). This should result in cepstral fea-
ture representation more robust to additive noise and linear channel effects. Histogram
equalization of pixel intensities is a similar technique known from image processing.

The difference between the two is in a preprocessing by global linear transformation in
the case of STG, used to decorrelate the features.

It was shown [11], that STG outperforms Feature Warping. On the other hand, it is
more complex to implement [26].
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Chapter 3

Speaker modeling and session
compensation

This chapter gives an introduction to generative speaker modeling and session compensation
techniques. A nontrivial math is needed to compensate for the different kinds of variabilities
in speech signal that cause significant problems for simple speaker models.

Prior to subspace models, the speaker modeling was performed by simply MAP adapting
the world background model [37] using speaker enrollment data, which does good job for
clean ,laboratory“ conditions, but it does not perform well on mismatched data. This
mismatch often arises in real world applications and so more sophisticated models were
proposed.

Session variability compensation can be applied on different levels of speaker recognition
system. There are ways to compensate for channels effects in feature space, to compensate
for session variability in model space and often, some sort of score normalization is also
needed to mitigate the scoring offset arising from session mismatch. In this chapter, we will
describe model level session compensation, as the most complex one. We start by describing
a basic UBM-GMM model, to introduce the main principles and symbols.

3.1 Gaussian Mixture Model

To model multimodal data, like different kinds of speech features, the Gaussian Mixture
Model (GMM) can be used. GMM is defined as a weighted sum of Gaussian functions [4]:

C
pl@) = 3 mel (|, ) (3.1)

C
Z =1, (3.2)
c=1

where 7; is a weight for a Gaussian i (0 < m; < 1). Together with mean vector p; and
covariance matrix X;, those are the parameters of GMM, that has to be estimated on
training data using iterative algorithm, like EM (Expectation Maximization) algorithm.
The covariance matrix ¥; is often restricted to be diagonal, especially for high-dimensional
data. Parameter C', the number of mixture components, has to be chosen with respect to
the data distribution.

15



80

70+

60

50

40+

30

20+

Figure 3.1: Two-dimensional example of a mixture of two Gaussian distributions. The
ellipses show component contours. In real data, the assignment of data points to mixture
components is not given and that is why we must use EM iterative algorithm to fit the
GMM onto multimodal data.

Given some GMM with parameters ® = {m, u, X}, we can compute the likelihood of

data x, given this model. To compute the likelihood on speech utterance X = {x1,x1,...,znN},

the average computed over all the frames is used. For practical reasons, the log of the like-
lihood function is taken:

N
log p(X[©) = %Z log p(zn|©). (3:3)
n=1

Typically, the GMM for acoustic speaker recognition purposes contains 512, 1024 or 2048
components.

3.1.1 Background model and MAP adaptation

It was shown [39], that it is convenient to adapt specific models from one ,mean model®,
called UBM (Universal Background Model), trained with a big amount of exemplary data.
With this approach, specific models are more robust and we can perform the adaption
even with a limited amount of target data. The adaptation is also quicker than training
a new GMM iteratively. There are several adaptation techniques, like MAP (Maximum A
Posteriori) or MLLR (Maximum Likelihood Linear Regression) adaptation.

For the MAP adaptation, the model parameters are shifted towards the target data,
depending on their occupation probabilities. This is important, because we modify only the
parameters, for which there are some target data examples, leaving the parameters without
adaptation data untouched. For the task of speaker recognition, it suffices to adapt only
the means of UBM mixtures. The whole process is explained in detail in [39].
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3.2 Subspace modeling

When considering a typical GMM with 512 components and 60 dimensional features, the
number of parameters of such model is very large. This has many drawbacks like the curse
of dimensionality problem, impossibility to use some standard machine learning methods
and big computing costs. The subspace methods are based on an assumption, that all
the parameters lies in fact in a parameter subspace (i.e. there is some latent variable).
Moreover, using subspaces, we can separately model the speaker and session variability.
All these methods work with the term supervector, so we start by introducing this.

3.2.1 Concept of supervectors

When doing adaptation from UBM, we can adapt mixture weights, means and variances.
As discussed in [39], for speaker recognition task, just the means can be adapted with
no accuracy lost. So the speaker model if fully described only by means of all mixture
components. For a GMM with C' components and input feature vector of size F', we can
concatenate individual mean vectors together to obtain a vector of dimension C'F, which
is called supervector [20].

Thus, using this approach, we transformed the variable sized speaker representation in
the form of sample speech data into fixed length supervector. Fixed length representation
allows us to use directly general pattern matching algorithms and classifiers, for example
discriminative classifier Support Vector Machines (SVM).

To compensate for channel effects in supervector space, different methods were proposed
based on the same idea, that the total variability can be decomposed into speaker variability
and session variability components. The problem of finding and modeling corresponding
subspaces is analyzed further in the following text.

3.2.2 Joint Factor Analysis of speaker and session variability

In the Joint Factor Analysis (JFA) [23] model, the speaker and channel variability are
modelled separately by two low-dimensional latent variables. The supervector space is
assumed as a linear combination of these latent variables. The supervector space can be
thought as sum of orthogonal speaker dependent and channel dependent components s and
c:

M=s+c (3.4)

These components can be expressed in terms of latent variables:
s=m+Vy+ Dz (3.5)
c=Uz, (3.6)

where m is now channel and speaker independent mean, V is a rectangular matrix of
low rank that defines a speaker subspace, D is C'F' x C'F' diagonal residual matrix which
captures the residual variability, U is a rectangular matrix of low rank that defines a session
subspace and «, y and z are normal distributed random vectors.

The complete model is then:

M=m+Vy+Dz+Uz. (3.7)

Training of this model is not an easy task and we refer to the original paper [23].
Scoring is done by computing the likelihood of the test utterance feature vectors against a
session-compensated speaker model (m — Ux).
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3.2.3 Total variability subspace and i-vectors

During the summer 2008 JHU workshop on Robust Speaker Recognition it was shown, that
the JFA does not fully separate the speaker and session subspaces, as using the channel
factors has fairly big discriminative power [18]. After that, it was proposed in [15] to merge
the two subspaces and perform channel compensation on the total factors, called i-vectors.

The i-vector approach has become a popular technique for speaker recognition with later
applications also for language identification [16][30] and other speech related tasks. This
technique offers a way to transform high dimensional sequential data into low dimensional
(order of hundreds of dimensions) fixed length vectors, called i-vectors.

The generative factor analysis model is used to model the supervector variability in a
low-dimensional subspace. The total variability subspace model is defined by:

p=m+ Tw, (3.8)

where the factor w is commonly referred as the i-vector, m is the channel and speaker
independent mean supervector (simply the UBM) and T is a matrix of bases spanning the
subspace with important speaker and channel variability. We assume, that w is distributed
normally among A (0, I).

This technique reduces the number of parameters of the speaker model. Instead of
having C'F' variables in case of full supervector space, now only components of w have to
be estimated. This is important especially when there is not enough training data available.
Moreover, compared to the JFA processing needs, the extraction of i-vectors is much faster.

The analytical solution for this model does not exist and the model parameters has to
be estimated using iterative algorithm. A possible approach to estimate the i-vectors can
be found in [31].

With this technique, the variable length session is transformed into compact fixed-
length and low-dimensional representation and it can be seen just as an input data re-
parametrization.

Because i-vectors still contain all the variability, session compensation has to be per-
formed on this level. Because of the small size of i-vectors, this can be very quick process.
The simplified version of JFA is commonly used for this purpose, called Probabilistic Linear
Discriminant Analysis (PLDA) [36][13].

Projection onto

Factor analysis
i-vector extraction :I:

i-vector

A B

Speech frames

=

Figure 3.2: Simplified diagram showing the i-vector method of transformation variable
length feature vector into fixed length i-vector.
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3.2.4 I-vector space scoring and session compensation

There are currently two main scoring techniques in i-vector space. Note, that when using
i-vectors, symmetric scoring is used, i.e. there is no difference between training and test.
The question is stated as: do these utterances come from the same speaker or not?

The first method uses cosine similarity scoring with session compensation performed by
Linear Discriminant Analysis (LDA) followed by Within-Class Covariance Normalization
(WCCN). The second, probabilistic approach, is called Probabilistic Linear Discriminant
Analysis (PLDA).

Cosine distance scoring

Proposed in [15], cosine distance is an efficient method how to compare two i-vectors.
Defined as: ( >
w1, w2

SCOT€cosine (W, W) = ———————— 3.9

cosine U1 02) = T [ (39

it effectively measures the angle between the two vectors. This score can be used directly as
a soft decision. Because i-vectors still contain the session information, the session compen-
sation has to be performed before this step. This is usually done by projecting the i-vectors
using LDA followed by WCCN [15][18].

Probabilistic Linear Discriminant Analysis

The Probabilistic Linear Discriminant Analysis (PLDA) [36] was originally developed for
face recognition purposes and then adopted by speaker recognition community. In face
recognition, there is also useful variability caused by differences in faces of different persons
and nuisance variability caused by different lightning conditions and pose. The relation
between PLDA and LDA is analogous to the relation of Factor analysis and PCA. It is a
generative model, where i-vector is modelled as [15]:

w=p+Vy+Uzx+e, (3.10)

where the terms pu, Vy and Uz have the similar meaning as for JEA and the e represents
residual data noise with diagonal covariance 3. The latent variables are assumed to be
Gaussian with zero mean and unit variance.

When given two test i-vectors, trained PLDA model can be used to evaluate the likeli-
hood ratio score:
p(wy, wa|Hi)
p(wy, we|Hy)

Both nominator and denominator can be evaluated analytically. The equations for
numerator and denominator are, respectively [18]:

scoreprpa(wy, ws) = log (3.11)

wi| [p] [VVI+UU!+ X vvt
N < [wJ ’ M ! [ % VVILUUt + 3 (312)
wy| [p] [VVI+UUt+ X 0
N <['w2] 7 M ’ [ 0 VViLUUt+3|) (3.13)
It was shown [24], that using heavy-tailed prior distribution like student’s t-distribution

increases performance and thus the assumption of i-vector gaussianity was invalidated.
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Later, it was shown [3], that length normalization can be used to effectively gaussianize the
i-vectors to be used with gaussian-prior PLDA. Length normalization is defined as:

, w w

= = 3.14
ol ~ Varw (314
The two-covariance model
There is a simplified version of PLDA called two-covariance model [10] which we use in our
work, where the model is decomposed into:
w = Ys + €, (3.15)
and the priors are defined as:
P(ys) = N(p, B), (3.16)
P(wlys) = N(ys, W). (3.17)

Since (3.16) is conjugate prior to (3.17), the posterior probability of this model can be
directly evaluated, see [10]. The matrices B and W are between-speaker and within-
speaker covariance matrices:

B=Y "y, — )y, —n (3.18)

S ns
W= S -y (w! - ) (319)
s=1 i=1
where ng is the number of utterances for speaker s, n is the total number of utterances, w;
are the i-vectors of sessions of speaker s, y, is the mean of all the i-vectors of speaker s and
p represents the overall mean of the training dataset [7].
The difference between general PLDA is, that covariance matrices are full-rank, as
opposed to possible subspaces in general PLDA model [18].
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Chapter 4

Capturing temporal context
using i-vector paradigm

Here we present a possible application of the i-vector paradigm to the task of temporal
feature extraction. We start by a discussion of interesting aspects of the i-vector paradigm
that led us into this.

4.1 Motivation

We think, that the concept of i-vectors (i.e. the factor analysis applied on the adapted
UBM supervector) is a very good information extractor in general. Speech frames are firstly
projected into high dimensional space (MAP adaptation of UBM) to form a supervector,
that is then reduced by the factor analysis into a vector of small size. From a variable
length input it is possible to obtain one vector with hopefully all the relevant information.
This elegantly solves the data redundancy problem, which all the spectro-temporal feature
extraction methods have to struggle with, because consecutive speech frames have generally
a lot of in common.

4.1.1 Possible pitfalls

One problem that could arise when using this technique for temporal feature extraction
from short speech segments is, that it does not retain the information of the frame order.
The i-vector extracted from speech segment parametrized by frames [a, b, c] will be the
same also for the cases [c, b, a] or [c, a, b]. This problem is illustrated in Figure 3.2. So,
in the final feature vector, there will be information about frames present in the segment,
but without taking into account their relative configuration. In this work we assume, that
from a statistical point of view, such sources of possible misclassification are rare in real
data.

Normally, for speaker verification task, the i-vector is extracted from the whole ut-
terance. The resulting i-vector then carries information about the utterance as a whole,
because local phonetic content is ,,averaged out“. If we will gradually reduce the length of
the utterance, local phonetic content will become more visible. Of course, the data used to
train the total variability matrix has to follow the same path. Also, the i-vectors can not
be considered anymore as speaker and channel factors only, as the factor loadings matrix
is not being trained on variability between utterances, but rather on variability between
short segments, that vary a lot with respect to phonetic content.
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The common size of the i-vector used to represent the whole utterance is 400. This
work tries to answer the question, what is the dimensionality of subspace, where lies the
main variability amongst very short segments of speech. Naturally, we want this number
to be as low as possible.

4.2 System design

The original idea is depicted in Figure 4.1. After classical signal parametrization (like
MFCC or PLP features), the features are re-parametrized by extracting i-vectors over the
sliding window. There are two parameters, window size and shift. The total variability
matrix used during i-vector extraction is trained on the variability between many exemplary
speech segments of given size from development data. By choosing specific exemplary speech
segments to train the total variability matrix (like speech segments aligned to phonemes
in our case), we can extract features (i-vectors) with different properties. This process is
computationally very demanding and some optimizations or approximations are needed for
practical use.

Acoustic feature extraction short-term i—vector extraction
(window 20ms, shift 10ms) (window 100ms, shift 10ms)

0.1 @ ‘ =
. - | c
[} 5 | g
° 0 © £
2 © I 5}
= o Q
S 0.1 o ‘ s
g Original O | S —vector based
-0.2 speech @ | § reparametrization
s , — —
—o3tl | I
0 50 100 150 5 10 15

Time [ms] Speech frames i-vectors

Figure 4.1: Overview of the proposed approach.

4.2.1 Classification and scoring

For a classical GMM-UBM system, the class models are created by MAP adaptation of
UBM using enrollment data. The UBM is trained beforehand to represent the overall
distribution of features. The scoring of the utterance is then done frame-wise, i.e. if the
model parameters are ® and testing utterance is X = x1,x2, - ,x,, we compute the
model log-likelihood given the data as:

N

£(OX) = 3" logp(i[©). (4.1)
=1

We can use the same approach also for the re-parametrized features. But in this case,
instead of computing the probability of some speech segment as an average probability of
its (independent) frames, we use one frame that represents the segment as a whole. Also,
the structure of the UBM that is trained on such features is different. In this work, we
assume, that the distribution of the re-parametrized features is again multi-modal with
similar distribution, that can be again modeled by GMM-UBM.
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Chapter 5

Experimental results

This chapter describes the work we have done to verify benefits of the proposed approach.
The experiments are divided into two parts.

Firstly, we evaluate our approach on phoneme verification task. As this is a brand
new concept in the field of speech feature extraction, we use phoneme verification as a
benchmark, to evaluate the characteristics of newly extracted features. We had to do that,
as the first experiments on speaker verification task were unexpectedly bad.

After that, we try to apply this approach to speaker verification task, evaluating its
performance on the widely used database NIST SRE 2008.

These two evaluations have big differences in their experimental setups and evaluation
criteria, so we describe the systems and evaluation databases separately for each set of
experiments. We start with the first set of experiments realized on ESTER speech database
in the next section.

5.1 Preliminary study of i-vector based feature
reparametrization

Here we present the preliminary experiments that we conducted on annotated speech
database ESTER after we had obtained very poor results with the original idea described
in Section 4.2 on the NIST SRE 2008 speaker recognition evaluation task. The bad results
were caused probably by the fact, that we did not know suitable values for system param-
eters yet. We chose the annotated (i.e. with phoneme segmentation) database to analyze
the behavior of i-vector extraction from very short speech segments of defined content.
On this database, the contextual phoneme verification task was evaluated, to have more
interpretable results and to get more insight into the re-parametrization step. Contextual
phonemes are units of the time span that is close to our first experiments (segment size
of around 10 frames). The window size used in the following experiments is thus variable,
according to the phoneme length.

5.1.1 Contextual phoneme verification task

For this set of experiments, verification task was selected. There are generally many thou-
sands contextual phoneme classes and so the verification task is more practical than clas-
sification task.
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We used contextual phoneme classes instead of classical single phonemes because the
labeling was available for the ESTER database. The contextual phonemes are used mainly
because they offer higher resolution that can handle coarticulation effects.

Contextual phoneme is defined using its central phoneme and a left and right neigh-
borhood. We use the notation using colons: « : pp : 3, where @ and [ are left and right
neighboring phonemes and pp is the central phoneme.

Phoneme verification is the process of checking a claimed phoneme label against some
test speech segment. Phoneme boundaries are given, so this is only a pattern matching
problem. It is very similar and analogous to speaker verification described in introduction.
We can use the EER to measure system performance. An example of results file augmented
with a key is in Table 5.1.

Table 5.1: Illustrative example of the results file for phoneme verification task.

Test segment | Claimed class | System output | Key
seg01l.wav ss:yy:on 0.46 true
seg02.wav pp:aa:rr -2.46 false
seg03.wav aa:ss:yy -3.12 false

5.1.2 ESTER database

The ESTER database contains broadcast recordings in French, that were collected from
different radio stations to serve as an evaluation database for campaign of Broadcast News
enriched transcription systems using French data. The orthographical transcription and
segmentation is available'.

We used the 2000 hours part of the non transcribed broadcast news shows data from the
ESTER with the automatic contextual phoneme transcription available at LIA to create the
database subset divided into 11201 parts. Each part was represented by different examples
of given contextual phoneme. We limited the amount of examples for each contextual
phoneme to maximum of 1000 (randomly selected) examples. We also filtered out the
classes of contextual phonemes with less than 30 examples and the class for silence. The
reason of limiting the database was to have the balanced number of examples for each class.

This subset contains 11201 contextual phonemes with average length of 8.46 frames and
average number of examples for contextual phoneme class 400. There are approximately
100 hours of speech.

This data was used to train the UBM and the total variability matrix. To create the
target training and test data (the evaluation data), we chose 90 contextual phoneme classes
with 1000 examples from the development data. The 1000 examples were divided randomly
into test and training sets. For each contextual phoneme class, 10 examples were used for
testing and 990 examples for training (as an adaptation data). To create the trial definition
file, for each of the 90 modeled phonemes, the 10 test examples were taken to represent
target trials and 100 examples were randomly selected from the test examples of other
phonemes to represent non-target trials. Total number of trials is thus 9900. The testing
and training data were disjoint, but they were part of the development data used to train
the frame-level UBM and the total variability matrix (re-parametrization process).

"http://catalog.elra.info/product_info.php?products_id=999
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Evaluation data summary:

e number of contextual phoneme models: 90
e adaptation data: 990 examples for each phoneme

e test data: 10 target trials and 100 non-target trials for each phoneme, 9900 trials in
total

5.1.3 Contextual phoneme verification using ESTER database

In this set of experiments, we wanted to find reasonable size of i-vectors that we can use
for further experiments. Another question was if we loose the information during proposed
feature re-parametrization. In theory, the i-vectors are projections of supervectors to low-
dimensional space, where the supervectors are MAP adapted versions of the UBM. We have
therefore compared the recognition performance of contextual phoneme models created by:

1. MAP adaptation of the UBM means using PLP features — baseline system

2. MAP adaptation of the UBM means on the level of re-parametrized features (an i-
vector extracted for each contextual phoneme example from training data) — i-vector
system

To train the total variability matrix, we used available examples of different contextual
phonemes from development set.

5.1.4 Baseline system: GMM-UBM on acoustic feature level

For a comparison, we firstly evaluate our task using basic GMM-UBM approach. The aim
is not to create the best phoneme verification system, but our aim is rather to find, how
much information is transferred from frames into adapted supervector and after, in the
following experiments, how much we can reduce its size using factor analysis.

The speech signal was parametrized into 39 dimensional frames using PLP features with
13 coefficients and the delta and acceleration coefficients. By using the delta coefficients, we
already add some temporal information into features, but because this is de facto standard
in acoustic speaker recognition, we kept this practice.

The UBM was trained on pooled data for all contextual phonemes and then specific
models were created with MAP adaptation of means, using the training examples for a
given contextual phoneme (about 80 seconds of data). Note, that any information of the
frame order within the phoneme example (normally modeled by a 3-state HMM) is not
used here. The performance in terms of %EER is given in Table 5.2.

Table 5.2: The results of the baseline system (GMM-UBM PLP+A+AA features) with
different GMM sizes. (%EER)

Number of mixtures 64 128 256 512

GMM-UBM 5.57 5.32 4.57 4.53

For further experiments, we chose to use the number of mixture components to be 128
for practical reasons (speed and amount of available training data) and also because the
same number was used in [6] for similar purposes of representing the HMM states. This
results in a supervector size of 4992.
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5.1.5 i-vector system: GMM-UBM using re-parametrized features

To create phoneme models based on i-vector features, we used firstly the speaker recogni-
tion approach, i.e. scoring one i-vector against another one using some metric (Euclidean
distance or cosine similarity). This did not bring good results. We think this was caused
partly by insufficient amount of training data used to train the total variability matrix
and partly by large variation of training segments for each class. We also tried to use the
average i-vector to represent each class, without much gain. So we model the intra-class
i-vector feature variability explicitly by GMM.

The total variability matrix was trained using all the examples for all the phonemes.
After extraction, resulting i-vectors were normalized to have globally zero mean and unit
variance, as this condition was not satisfied.

The phoneme models were then created in the same way as for the baseline system
(GMM-UBM), except for the difference that we used extracted i-vectors instead of PLP
frames as features. The results are shown in Table 5.3.

Table 5.3: Contextual phoneme recognition performance (%EER) for i-vector based system.
Both mixture models (i.e. UBM on PLP frames used to extract i-vectors and the secondary
mixture model for i-vectors) had 128 components.

TV matrix rank 10 20 30 40 45 50 60 80 100

i-vector GMM 844 6.22 503 4.78 489 553 5.11 5.22  5.12

These results show, in comparison to the baseline system, that for this task it is possible
to re-parametrize the speech signal using small i-vectors, which are extracted from segments
only a few frames long.

In comparison with the simpler baseline system, the results are slightly better. It is
clear, that this is caused by added temporal context.

5.1.6 System combination

We present the last results in Table 5.4. It is the weighted score fusion of the baseline
reference system and the i-vector GMM system. As this is a preliminary study, the mixing
weights were simply set to be equal. The results of the individual systems are shown also
for reference.

Table 5.4: Score level fusion of the baseline system and the i-vector GMM system. If not
stated otherwise, the size of used i-vectors was 30.

System \ %EER ‘
Baseline GMM (baseline) 5.32
i-vector based GMM (iGMM) 5.03
baseline + iGMM 3.64
baseline + iGMM (rank 60) 3.11
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Figure 5.1: DET curves for selected phoneme verification systems and for their score level
fusion. By the term iGMM we mean GMM using i-vectors as features.

5.1.7 Discussion

The results obtained using scores fusion show, that our i-vector GMM system offers some
complementary information that can be explained as an additional discriminative informa-
tion extracted from temporal context.

The last line of Table 5.4 presents the results of fusion of baseline system with the
i-vector GMM system that uses the i-vectors of size 60. Even if the performance of this
individual system (EER=5.11) compared to the best i-vector GMM system is lower, the
amount of useful complementary information is higher, probably because of higher subspace
dimensionality. Thus, the best size of the i-vectors used to describe the segments with
examples of contextual phonemes seems to be around 30-60.

Note on MAP adaptation of means

We presented these experiments on meeting of speech@FIT group at BUT. We were told,
that for such task (phoneme recognition), adapting only the means does not make sense, as
this is commonly applied only to speaker models. This was at the end of our work, so we
did not repeat the experiments. Note however, that both systems had such disadvantage,
so this effect should be minor.
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5.2 Application to speaker verification task

Motivated by the results obtained on phoneme verification task presented in previous sec-
tion, we applied our feature extraction technique to speaker recognition. We assume, that if
the features are useful in speech recognition, they should be also beneficial in this domain.
Note, that it was also our first motivation —to come up with some general temporal feature
extraction method for speaker recognition.

5.2.1 Database description

To test our hypotheses, we selected the NIST SRE 2008 evaluation data. Complete de-
scription of the data and evaluation conditions can be found in [34]. We have chosen only
the male part, as all the state-of-the-art systems are using gender-dependent models. We
could have used the female part, as this is more common due to the fact, that females are
generally harder to recognize, but it was more convenient for us to choose the male part.
In the core test of SRE 2008 evaluations (short2-short3) male part, there are 39433 trials,
1270 target speakers, 3798 evaluation utterances. All trials from the core test have to be
evaluated by an evaluee, but the system performance is measured from the conditional
subsets of the trials. All the conditions are described in [34], we will highlight here the
following ones:

e detl—Interview Training and Test
o det4—Interview Training, Telephone Test

o det6—Telephone Training and Test

det7 - English Language, Telephone Training and Test

det0— All trials (unofficial condition)

As development data, we used the male part from the following databases: NIST SRE
2004, 2005, 2006, Switchboard II Phase 2 and 3, Switchboard cellular part 1 and 2. In
total, there were 15660 development utterances.

5.2.2 Experimental setup

Complete system diagram is depicted in Figure 5.2. The figure shows, that only the fea-
tures are reparametrized, without any changes to the baseline system. Note also, that the
reparametrization module is morphologically the same as the final i-vector system. The
difference is, that reparametrization module works on segments rather than on utterances
and that it uses only the subset of the whole development data. For practical reasons, we
had to use only the 1% (215 000 segments) of the whole development data to train the
reparametrization module (total variability matrix).
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Input signal parametrization

The parameters for the MFCC feature extraction are as follows (default LIA configuration):
e no preemphasis
e frame length 20 ms with 10 ms shift

e MFCC with 19 coefficients, log-energy, delta and double delta coefficients, frequency
band 300Hz - 3.4kHz

e feature mask?: 0-18,20-50

After MFCC extraction, voice activity detection (VAD) was performed, followed by utterance-
level CMVN and feature warping.

Voice activity detection was performed using freely available phoneme recognizer from
BUT®. Speech labels were created by merging all the segments belonging to phonemes.

MEFCC features
(Devel+Eval)

reparametrized
features

SPHERE files
(Devel+Eval)

subsampling

Devel training
subset (segments/)

UBM on frames

Factor analysis
(segments)

TV matrix
(segments)

Factor analysis
(utterances)

TV matrix
(utterances)

BUT Phoneme
recognizer

segmentation
(.lab files)

iVector extractor iVector extractor
(per segment) (per utterance)

l l

iVector featqres PLDA scoring
postprocessing

MFCC
extraction

Figure 5.2: Flow-chart for the whole system.

2This mask defines which indices from feature vector should be used for further processing. Our mask
selects all 19 MFCC coefficients, all delta coefficients, delta log-energy coefficient and first 11 acceleration
coefficients.

3http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
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I-vector based feature reparametrization

Those are the main parameters used in this experiment:

e number of UBM components: 512 —this is common value of UBM size — supervector
of size 25600.

e total variability matrix rank: 40—this value seemed to be the best in the preceding
experiments on phoneme verification task.

e number of segments used to train total variability matrix: 215k —this is around 1% of
all development data. We could not use more data for practical reasons.

These parameters were fixed for all the experiments described later in this chapter.

Conditions for i-vector extraction

The main goal of this experiment was to find, how well our proposed system behaves in
speaker recognition task. In addition, we wanted to see, whether the phoneme recognition
backend is needed also for the evaluation data. This is the main criterion of all feature
extraction techniques—if they depend on phoneme recognizer or not. This is depicted in
Figure 5.2 by a dotted line. The two conditions are:

e fixed —no phoneme segmentation is used. The segments to be reparametrized are
created from VAD segments by a fixed sliding window with parameters size and shift.

e phnrec—phoneme recognizer output is used. The segments to be reparametrized are
the phonemes themselves.

These two conditions can be applied in two places. The first place is training the first
i-vector extractor. As we describe in Section 4.2, by using different training data to estimate
the total variability matrix, we can extract different features. In our experiments, we used
only the phnrec condition to train total variability matrix. The second place is the feature
reparametrization process itself, where the reparametrization of training and evaluation
data is needed, based on some segmentation.

Last stage

In the last stage, the classical i-vectors are extracted from the reparametrized features and
the session compensation technique using the two-covariance model. Main parameters:

e number of UBM components: 512—we use in this place the same number of Gaus-
sians as for the UBM trained on MFCC features. We assume, that distribution of
reparametrized features will be again multimodal.

e size of i-vectors: 400—we use this value as it has proven to be a good for i-vectors
extracted from acoustic features.

e two-covariance model with length normalization
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Reference baseline system

For a comparison, we used state-of-the-art i-vector system developed at LIA. In our ex-
periments, we used exactly the same parameters and procedures for both baseline and the
proposed system, except for the added feature reparametrization step in case of the new
system. This means, that the reference baseline system should use also the phoneme rec-
ognizer based VAD. But as we will see in results, baseline system with energy based VAD
(LIA baseline) performed better in general, so the primary baseline system uses the
energy based VAD and it is the secondary baseline system that uses exactly the same
portion of frames (phoneme recognizer based VAD) as uses the newly developed system.

5.2.3 Experimental results

In this section, we summarize the results of experiments performed using above mentioned
systems —two baseline systems (baseline, baseline2) and our proposed system using i-vector
feature reparametrization with two variants for segmentation speech (fixed, phnrec). The
results from score level fusion are also presented to show, whether the reparametrized
features are helpful or not.

Overall behavior for selected core conditions is depicted in Figure 5.3. We can see, that
the systems using i-vectors as features are far behind the purely acoustic systems. In general,
the i-vector reparametrization performs better for fixed condition than for phoneme aligned
segmentation. All fused systems are drawn with dashed lines in Figure 5.3. We can see,
that fusing our new system with baseline system improves the performance. Unfortunately,
such gain can be obtained also by fusing the two versions of baseline system (black dashed
line). The two baseline systems differ only in VAD —energy based or phoneme recognizer
based. We try to explain this failure of our new system to capture temporal information
useful for speaker discrimination in the next section.

5.2.4 Discussion

The results obtained on speaker verification task are disappointing, and here we try to
analyze, why the new system does not outperform the baseline, as expected. Our initial
idea after having success with preliminary experiments on phoneme verification was, that
if there is a gain for phoneme verification, we can expect also a gain for speaker recognition
task. This was probably the main mistake.

Normally, there are mainly two variabilities in the space of i-vectors —session variability
and speaker variability. For the i-vectors extracted from short segments (like we did in
our experiments), there is in addition also the phonetic variability and it is clear that this
is the largest one. If we use the i-vector paradigm to compress the segment information
into 40 dimensional vector, maybe the useful speaker discriminative temporal information
is completely outvoiced by the acoustic and phonetic variability.

There are studies [33] which show the proportions of different variabilities in spectral
domain. The biggest portion of variance belongs to phoneme and context variability. For
the channel and speaker variability there is 16% and 10 %, respectively. In our work, we
wanted to make use of temporal speaker variability, that is probably too small to be even
visible for our classifier.

We show the results of the reparametrization process for one NIST utterance in Figure
5.4 to present the nature of extracted features. We can see that the features are highly
uncorrelated. Note however, that every frame in this figure corresponds to one segment
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(WEER/Cpet). Dashed vertical and horizontal lines define the area, where there are at
least 30 classification errors for the baseline system (Doddington’s rule of 30).

32



(i.e. approximately to one phoneme) and so this can be expected, as the phoneme class
changes radically for each frame.

From this picture it is also clear, that the feature distribution has changed a lot. We
expected this behaviour, as there is an assumption of gaussianity in total variability model —
the i-vectors are assumed to be normally distributed among A (0, I'). We thought, that using
segments of defined content for total variability matrix training, we can achieve that after
extraction, the distribution of the i-vector based features will be again multimodal. This
was probably not fulfilled and so it explains also the problems we had with training the
UBM model on such features.

We spent a lot of time examining, why the single systems based on reparametrized
features are not performing at least as good as baseline. We conclude, that this is caused
by a combination of previous imperfections.

Feature reparametrization for file 2004/tjda - fixed condition
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Figure 5.4: Visualization of the reparametrized features for NIST 2004 /tjda utterance. The
image is similar also for the phnrec condition.

Computational complexity

From the practical point of view, proposed feature reparametrization process requires very
high demands for computation power. We realized this limitation in the beginning of our
work. Please note, that this is a research project, so speed was not the main evaluation
parameter.

Firstly, our system has to run phoneme recognizer or some pseudo-phoneme segmenta-
tion. Thanks to this, our approach places itself into the category of ,,slow* feature extraction
methods that requires segmentation.

During the development phase, the UBM and total variability matrix has to be trained.
This is comparable to standard i-vector system, but the number of training sessions (and
thus the memory complexity of this step) is much bigger, as the segments are considered
as utterances.

The reparametrization process itself takes also a good amount of time, even if the frame
rate is lowered (wrt. acoustic features). One iteration of i-vector estimation procedure has
to be run for each segment.

33



Chapter 6

Conclusions and future work

In this work we proposed new approach to temporal feature extraction using the i-vector
paradigm. Preliminary experiments were presented to show, that such parametrization is
possible and could be beneficial for phoneme verification task. By using our approach on this
task, in comparison with the baseline acoustic frame level system, significant improvement
was obtained. This also corresponds with the success of similar method [6], where the
i-vectors were used to represent HMM-states.

On the other hand, our main objective —to develop temporal feature extraction method
suitable for speaker verification —has not been really resolved. The experiments on NIST
SRE 2008 database have shown, that such features are not suitable for further speaker
modeling, as they convey mostly the phonetic variability, which is not very useful for
speaker discrimination. Even more, we think, that such features are even worse, as their
distribution is no longer multimodal and without feature clusters corresponding to broad
acoustic classes. Such clusters are essential to be able to use speaker models based on
GMM.

Future work

As there are always new possibilities and ideas, we would like to give some directions
of future work on this subject. Firstly, it could be interesting to try lower the unneeded
variability from segmental i-vectors somehow. We think that phoneme dependent extraction
or Joint Factor Analysis could be used for this purpose. Secondly, the chance should be given
to the results obtained on phoneme verification task. Maybe our feature reparametrization
can not be used for directly for speaker recognition, but is more interesting for speech
recognition, as a context-capturing mechanism.

We realize, that we do not give any comparisons with conventional temporal feature
extraction methods. This could be easy and straightforward, to compare the i-vector based
representation of short segments with other methods, where the analysis window ranges
over multiple speech frames, like in the case of bottleneck features.
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Appendix A

Implementation detalils

A.1 Libraries and toolkits used

We used the following toolkits to run and evaluate our experiments:
e ALIZE —toolkit for biometric authentication'

e Bosaris Toolkit —-MATLAB code for calibrating, fusing and evaluating scores from
binary classifiers?

e SPro—signal processing toolkit, feature extraction®

We also used the MATLAB® for visualization purposes.

A.2 DVD contents

Here we highlight the important content of the DVD attached to this thesis:
experiments/ main directory containing source code and scripts
ester/ scripts and some data (indexes, models) used in experiments with
phoneme verification on ESTER database. Three main directories
are data/, baseline/ and iGMM_suite.

sre08/ scripts used in experiments with speaker verification on SRE 2008.
TV_x/ total variability matrix training (fixed, phnrec)
reparam */ feature reparametrization (fixed, phnrec)

FA_reparam fixed/ second stage i-vector extraction and PLDA scoring (fixed).
Analogous directory for phnrec condition can be found in
reparam_phnrec/ folder.

tools/ general purpose scripts (UBM training, reparametrization)
iVector_intro.MOV short video created as an introduction to iVectors
poster/ poster source files
tex/ IXTEX sources for this thesis

http://alize.univ-avignon.fr/index_en.html
Zhttps://sites.google.com/site/bosaristoolkit/
Shttp://www.irisa.fr/metiss/guig/spro/
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A.3 How to use it?

The main objective for us were the results, and how to get them quickly, so we apologize
for dirty and messy code, with only a little documentation. There is nothing like graphical
front-end. Everything is done by calling scripts from command line.

If there is someone interested in this feature extraction technique, we advise him to
start coding from scratch, as this will be definitely faster than analyzing and adapting our
scripts. We have not created any form of ready to use toolkit.

We use heavily the ALIZE toolkit. For the needs of i-vector reparametrization, we have
created two additional tools that can be used directly:

e iXallseg—feature reparametrization based on segments from external label file.

e iXwindow—feature reparametrization based on segments selected using sliding window
mechanism.

Except ordinary command line parameters®, these tools expect filename of saved total
variability matrix. These tools can be found in experiments/tools/LIA_SpkDet/ folder.
The process of reparametrization together with short description of related scripts can be
found in file experiments/tools/reparametrization/README. txt.

“http://mistral.univ-avignon.fr/mediawiki/index.php/Config_file_guide
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