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Abstrakt 
Tato p r á c e se zabývá ex t rakc í v h o d n ý c h p ř í z n a k ů pro rozpoznáván í řečn íka z delších časových 
úseků . P o p ř e d s t a v e n í současných technik pro extrakci t a k o v ý c h p ř í z n a k ů navrhujeme 
a popisujeme novou metodu pracuj íc í v časovém rozsahu fonémů a využívaj íc í z n á m o u tech­
n iku i -vektorů . Velké úsilí bylo vyna loženo na na lezení v h o d n é reprezentace t e m p o r á l n í c h 
p ř í znaků , d íky k t e r ý m by mohly bý t s y s t é m y pro r o z p o z n á v á n í řečníka robus tně j š í , ze­
j m é n a mode lován í prosodie. N á š p ř í s t u p nemodeluje expl ic i tně ž á d n é specifické t e m p o r á l n í 
parametry řeči, n a m í s t o toho použ ívá kookurenci řečových r á m c ů jako zdroj t e m p o r á l n í c h 
p ř í znaků . Tuto techniku testujeme a analyzujeme na řečové d a t a b á z i N I S T S R E 2008. 
Z výs ledků bohuže l vyp lývá , že pro rozpoznáván í řečníka tato technika nepř ináš í očekávané 
zlepšení . Tento fakt diskutujeme a analyzujeme ke konci p ráce . 

Abstract 
This work deals w i th temporal features for automated speaker recognition. We give overview 
of currently known temporal feature extraction methods and afterwards, we propose and 
prel iminari ly evaluate a general phoneme-level temporal feature extraction scheme based on 
factor analysis i-vector paradigm. M u c h effort has been made to reasonably represent tem­
poral context and make speaker recognition systems more robust, namely speech prosody 
modeling. Our approach does not expl ic i t ly model any temporal parameters of speech, 
rather it uses the occurrence of neighboring frames as a source of temporal information. 
We test and analyze this method on standard evaluation database N I S T S R E 2008. The 
results indicate, however, that for speaker recognition, no useful gain can be obtained using 
this technique. We describe and discuss this discovery at the end. 
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Chapter 1 

Introduction 

1.1 Motivation 
In the last decade, the speaker recognition technology has undertaken a big development. 
Performance of state-of-the-art systems has been drastically improved and the processing 
speed-up is by several orders of magnitude. More or less successful techniques were de­
veloped to make the technology robust against the biggest obstacle in the field of speaker 
recognition - session mismatch. The methods for fusing different systems were explored and 
heterogeneous systems are now de-facto the standard. A l so , new speech processing toolkits 
and speech data were released, which makes the technology more available. 

M a n y applications of speaker recognition technology can be found. Telephone compa­
nies, banks and others ( including police and intelligence agencies of course) would like to 
use speaker recognition systems for different purposes: voice verified authentication, cal l 
t racking or automatic labeling of voice data (speaker diarization), etc. The development of 
speaker recognition technology goes side by side wi th the development of language identi­
fication (L ID) , so this can be also a motivat ion. 

In this work, we develop a general data-driven temporal feature extraction technique. 
The scope of currently used features used i n speech processing tasks is far from being t ru ly 
general i n a sense of expl ic i t ly emphasizing a l l the relevant aspects of speech signal. In­
stead, based on the knowledge, that some speech phenomena contain speaker discriminative 
information, different features are extracted from signal on such levels and information is 
merged by fusing the output scores. The scope of our approach is l imi ted to the temporal 
information contained i n speech segments of length around 100 ms. 

1.1.1 O r g a n i z a t i o n of this work 

For this work to be self-introductory and comprehensible also for the people not familiar 
w i th speaker recognition, we present fundamental concepts of speaker recognition later 
in this chapter. The currently used and documented temporal features are described in 
Chapter 2. Afterwards, in Chapter 3, we give a short int roduct ion to speaker modeling 
methods and channel compensation. In our work, we use heavily the concept of i-vectors, 
so this chapter is mainly wri t ten as an introduct ion to this topic. In Chapter 4, we present 
our proposal of feature extraction technique based on i-vector paradigm. Exper imenta l 
results are presented i n Chapter 5, w i th a separate discussion and work conclusions in 
Chapter 6. 
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1.2 Fundamental concepts of speaker recognition 
Speaker recognition is very suitable for commercial biometric purposes because it does not 
need any addi t ional hardware and i n the case of text-independent recognition, it can be 
performed transparently, i.e. without user even knowing that verification of his voice is 
in progress. In this work, we deal w i th automated speaker verification ( A S V ) . Th is is a 
problem of deciding the question „Is this a voice of person X ? " . It differs slightly from the 
task of speaker identification, where the question is put in the following way: „For a given 
list of persons, who is speaking?". The important difference between the two is that the 
speaker detection task does not depend on the number of target speakers. 

Figure 1.1: Au tomat i c speaker identification (ASI) and verification ( A S V ) . 

1.2.1 Fea ture ex trac t ion 

The first step for any speech-related pattern matching task is to extract features from the 
input signal in a form suitable to computers and classification algorithms. Humans, during 
their lives, learn differences i n voice of other people using well-known characteristic features 
of ind iv idua l , that can be obtained from his /her speech - pitch, t imbre, speaking rate, 
intonation, selection of specific words, voice abnormalities etc. Ideal speaker recognition 
system should uti l ize a l l of them. The process of extraction of such information from raw 
speech is called feature extraction. This is not an easy task, because this information is 
mixed up wi th the other information present i n speech signal, like speaker mood, channel 
information, l inguistic content, noise and so on. 

1.2.2 Speaker m o d e l i n g 

After that, different pattern matching algorithms are used to create speaker models, classify 
test utterances and, at the end, make decisions. The modeling techniques can be divided 
into generative and discriminative ones. Generative techniques model the d is t r ibut ion of 
t ra ining features, whereas the discriminative techniques do not make any assumption on 
the feature dis t r ibut ion and model rather the boundary between speakers. The examples 
of generative and discriminative models are Gaussian M i x t u r e M o d e l ( G M M ) and Support 
Vector Machine ( S V M ) , respectively. 

Special attention has to be typical ly dedicated to good session compensation. Simple 
speaker models without this stage take a l l the signal var iabi l i ty to create speaker models, 
which is obviously wrong. The session compensation methods are designed to filter out 
the unwanted session variability and to keep the speaker variability that we can use to 
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Figure 1.2: B lock diagram of general automatic speaker verification system. There are two 
phases depicted - enrollment of target speakers and verification. 

distinguish between speakers. B y the te rm session variability we mean any var ia t ion in 
signal characteristics caused by different conditions (mismatch) between the recordings of 
the same speaker, for example: 

• different type of microphone and transmission channe l - th i s is jo int ly called channel 
mismatch and it is the most important var iabi l i ty to compensate for. 

• ambient noise and different room acoustics. 

• different phonetic content (in the case of text-independent A S V ) . 

• intra-speaker var iabi l i ty - caused by variations of speaker voice as t ime passes. Th is 
can be short-term, e.g. different speaker mood or variat ion caused by illnesses, or 
long-term deviation influenced mainly by speaker aging. 

Because both speaker and session var iabi l i ty share a common feature space, they affect 
each other and thus a mismatch i n session conditions can confuse a speaker recognition 
system based on features from this common space. The ideal case would be to find a 
feature representation space only affected by speaker variabil i ty. T h e n it would be easy 
and straightforward to model this dis t r ibut ion and make opt imal decisions (in a Bayesian 
sense). Th is is the role of session compensation. 
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1.2.3 S c o r i n g a n d decis ion m a k i n g 

A t the end of the processing chain lies scoring and decision making module. This module 
accepts a trial as an input . A t r i a l is a pair of test utterance and claimed identity. Th is 
module takes the utterance, extracts the features from it and compares them to the saved 
speaker model. Typical ly , l ikel ihood ratio for the following two hypotheses is computed 
[11]: 

• Htarget - The test segment was generated by this speaker-specific model, 

• Hnontarget-Th.e test segment was generated by a speaker-independent background 
model. 

The bigger the number, the more probable is the first hypothesis. Th is is also called a soft 
decision. To make a hard decision, this score has to be thresholded by some fixed value. We 
give more details on this later i n this chapter when discussing how to evaluate recognition 
performance. 

1.2.4 R u n n i n g a speaker recognizer 

Dur ing the lifetime of classical A S V system, we recognize three phases: 

• System building and training - Th is is the first phase. It typical ly involves t raining 
a background model and running the whole recognition process on some supervised 
development database. The system parameters are tuned to the best performance 
w i t h respect to the target application needs. F r o m a pract ical point of view, the 
processing toolkit and development data have to be selected/created. 

• Enrol lment of target speakers - In this phase, the target speakers to be later 
recognized are registered to the system using their enrollment data. The speaker 
model is internally created and stored i n the system. This is also often termed as 
creating each speaker's voiceprint. 

• V e r i f i c a t i o n - A n unknown utterance to be verified together w i t h claimed speaker 
identity is presented to system and the system should correctly answer the question, 
if the utterance was really pronounced by this speaker or not. 

Nowadays, systems often use a so called symmetric scoring. In this case, there is no 
difference between enrollment and test data, as the t r i a l is formed by two utterances and 
the system has to decide, whether the two were spoken by the same person or not. The 
two hypotheses are then [11]: 

• Hi - B o t h utterances were spoken by the same (one) speaker, 

• # 2 - E a c h utterance was spoken by a different speaker. 

In fact, no speaker model is created, because both utterances are handled in the same 
w a y - t h e y are transformed to some space, where we can use direct ly some similar i ty mea­
sure. In such case, the phases of enrollment and verification are merged together. 
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1.3 Evaluation metrics 
In this section, we describe standard measures and tools commonly used to evaluate speaker 
recognition system performance. Those are: E q u a l error rate ( E E R ) , Detect ion cost func­
t ion (Coet) and Detect ion error tradeoff ( D E T ) curve. 

The importance of common evaluation database should be noted here. Direct compar­
ison of evaluation metrics is only possible for the same database, as the datasets differ in 
difficulty. For a long time, this common evaluation data is governed by the N I S T in the 
scope of Speaker Recognit ion Eva lua t ion ( S R E ) campaign 1 . 

Speaker verification is i n general a binary classification task wi th four possible outcomes 
[28]: 

Table 1.1: Possible outcomes for speaker verification 

Client Impostor 
Impostor predicted 

Client predicted 
False rejection ( F R ) True rejection 

True acceptance False acceptance (FA) 

Sometimes, false rejection is referred as a miss or nondetection and false acceptance as 
a false alarm. Probabil i t ies of these events are defined: 

rmiss — —Tj j "fa — ~jT? ) 
1 v tar 1" non 

where Nmiss, Ntar, Nfa and Nnon are number of false rejections, number of target trials, 
number of false acceptances and number of false trials, respectively. 

Pfa and Pmiss are dependent on each other and the trade-off between them is called op­
erating point of system and can be set by altering system's detection threshold. Commonly 
used fixed operating point is called E q u a l error rate ( E E R ) , and is defined as a point, 
where P m i s s = Pfa. 

E E R treats the two k ind of errors equally, but Pfa and Pmiss are usually not equally 
expensive. For example, i n access applications, false acceptances are much more expensive 
than false rejections. Thus, operating point sits typical ly i n the area of low false accep­
tances. This is taken into account in the detection cost function Coet used i n N I S T 
speaker recognition evaluations. This function sets the operating point w i th respect to 
target detection prior probabil i ty and costs for the two errors: 

Coet = CMISS x PMiss\Target x PTarget 

+ CFalseAlarm x PFalseAlarm\NonTarget x (1 ~~ PTarget) 

The parameters of this cost function are the relative costs of detection errors, CMISS 
and CFalseAlarm-, and the a pr ior i probabil i ty of the specified target speaker, PTarget [ ]• 
The values for these parameters are summarized i n Table 1.2. Note, that recent N I S T S R E 
evaluations use a different cost model . In this work, we do not use such recent evaluation 

1National Institute of Technology Speaker Recognition Evaluations (NIST SRE) are held regularly to 
drive the technology forward and measure the state-of-the-art of text-independent speaker recognition, 
http://www.itl.nist.gov/iad/mig/tests/spk/ 
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Table 1.2: Parameter values for detection cost function used for N I S T S R E evaluations 
(prior to 2012). 

CMZSS CFalse Alarm PTarget 
10 1 0.01 

data, so we use the o ld cost model . To have more interpretable numbers, it is common 
technique to normalize Coet- A s a normalizat ion constant, performance of default system 
is used. Default system has no discriminative power, and its Coet is constant for given 
relative costs and target prior: 

Cd i ~ m i n I ^ M i s s x ^>Tar9et' 
\ CFalseAlarm x (1 — PTarget) 

^ Cuet 
Norm 

efault 

The symbol Coet is often used for normalized cost function i n place of C^orm • We use 
this practice a l s o - b y Ccet we automatical ly mean the normalized version of detection cost 
function later i n our text. 

The Cr>et metric is used to measure the performance of the system given hard decisions. 
If we have access to true labels for the evaluation data, we use opt imized metric m i n i m u m 
detection cost C^*™, that minimizes the cost function by setting opt imal threshold on 
scores. 

To visualize overall system behavior, the Detection E r r o r Tradeoff ( D E T ) curve 
[ >] can be used. It shows system performance for a l l operating points i n terms of both 
PMISS and PFaiseAiarm- B o t h axes are logari thmic. A n example of such curve can be seen 
in Figure 5.1. 

Later we w i l l use the Receiver Operat ing Characteristic Convex H u l l ( R O C C H ) 
curve. Th is is obtained by interpolating between the discrete points of the R O C curve, 
which is basically the same as D E T curve, but plotted using linear axes. Th is curve is used 
to compute a well defined E E R from an otherwise „ s t e p p y " R O C / D E T curves [ ]. We use 
the R O C C H curve as a smoothed version of the D E T curve. 

1.4 Score fusion 
A s we mentioned in previous sections, there are mult iple kinds of speech features. We 
can combine these complementary sources of discriminative information on feature level 
by stacking al l possible feature vectors. This is called feature-level fusion, but it can not 
be always used, as the features can be very different in nature and wi th different frame 
rates. Instead, several separate classifiers are trained side by side and the outputs of 
these subsystems are merged on score level - score-level fusion. Usually, final decision of 
state-of-the-art speaker recognition system is a combination of many subsystems. The 
same approach is also used when combining several biometric modalities, like iris patterns, 
fingerprints and speaker recognition i n security applications. 

Each subsystem outputs a score when given a test t r ia l . B y convention, higher score 
values favor true target hypothesis and lower values the opposite. Scores from several 
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subsytems are then combined using weighted sum [12]: 

N 
score f = s(x, w) = wp + WjSj(x), (1-1) 

n=l 

where scoref is fused output score, N is the number of subsystems and w are the fusion 
weights. These weights are used to reflect the fact, that some subsystems are weaker than 
others. They are found v i a logistic regression wrt . some objective function. Th is is usually 
convex function and local m i n i m u m can be found easily, for example wi th conjugate gradient 
methods [12]. 
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Chapter 2 

Feature extraction 

In this chapter, we give overview of feature extraction techniques currently used for speech 
processing tasks. We concentrate on features, that incorporate a temporal context, as it is 
the ma in topic of this work. 

There are many levels of information available in speech waveform and there is no uni­
versal feature extraction technique, so each speech processing task uses its own best-suiting 
subset of these features. S t r ic t ly speaking, different features carry different complementary 
information, so the best systems are made up of many fused subsystems, each of them 
ut i l iz ing diverse features. 

2.1 Information available in speech 

From the point of view of speaker recognition, [ ] gives the following list of different 
features available in speech signal. 

• Short-term spectral and voice source features-spectrum, glot tal pulse features. 
These features are sometimes called „ a c o u s t i c " as they describe the voice character­
istics corresponding to given vocal tract state. Features are computed from 20 ms 
long signal segments. It is assumed, that for such t ime the signal remains stationary 
and the spectrum can be accurately estimated. The most often used features from 
this category are Mel-Frequency Cepst ra l Coefficients ( M F C C ) and Linear Predic t ion 
Cepstral Coefficients ( L P C C ) . These features are very popular, because they are easy 
to extract and contain most of the discriminative information [27] (based on a fact, 
that different people have different vocal tract characteristics). 

• Spectro-temporal and prosodic features -p i tch , energy, duration, rhy thm, tem­
poral features. Prosodic features (or prosodic patterns) describe speech in supra­
segmental regions. T ime context i n several hundreds of milliseconds is taken into 
account. Prosodic features of speech are considered as a learned habit and include 
intonation patterns, speaking rate, pause durations etc. The most important prosodic 
parameter is the fundamental frequency (or F0) [ ] and how it evolves in time. These 
features are more robust to channel effects, as they do not work directly wi th signal 
spectrum. 

• High-level features - phones, idiolect (personal lexicon), semantics, accent, pro­
nunciation. Ex t rac t ion and modeling of such features is the most complex one. The 
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speech recognition backend is needed and also a lot of t ra ining data to well estimate 
speaker models. 

In this work, we put special attention on features w i th temporal context, so we are 
not going to describe the details of low-level (acoustic) and high-level features i n this text. 
More information can be found i n [ ] or any literature about speech processing [ ]. Note, 
that feature extraction is in development on a l l levels. New features like Mul t i t ape r M F C C 
or Spectral Centroid Magni tude and Frequency are being investigated and incorporated to 
todays speaker recognition systems w i t h benefit of greater robustness. Recent overview of 
the development can be found in [21]. 

Besides the above-mentioned speaker-dependent variability, there is also unwanted vari­
abi l i ty caused by several reasons, mainly by noise and channel effects. A S V system must 
take this into account either at feature extraction stage (use features less affected by such 
variabi l i ty) or at the following stages by different kinds of normalizat ion and compensation 
techniques. 

2.2 Application specific temporal features 

Speaker recognition domain 

M a n y temporal feature extraction techniques were proposed to be used in the domain 
of speaker recognition. Except already mentioned delta coefficients, that are somewhere 
in between the acoustic and temporal paradigm, we can mention the Temporal D C T 
( T D C T ) [27] [26], Temporal Patterns ( T R A P ) [20] [5], Modu la t i on Frequency [25] and Time-
Frequency P r inc ipa l Components ( T F P C ) [29]. Higher level of temporal features is mod­
eling prosodic feature trajectories, like features based on Nonuniform Ex t rac t ion Region 
Features ( N E R F ) [ ]. 

Language identification domain 

In the domain of language identification ( L I D ) , there are also several levels of available 
information and two different main approaches - acoustic and phonotactic. The later 
involves phoneme recognition followed by a comparison wi th a language model. A l though 
the phonotactic approach gives better results, it was shown, that incorporat ing temporal 
information from context of around 200 ms greatly reduces the difference i n performances 
of the two paradigms [ ]. The Shifted De l ta Coefficients ( S D C ) are typical ly used for this 
purpose. 

Speech recognition domain 

The systems for automatic speech recognition ( A S R ) usually use the features covering 
longer t ime span because it is more convenient for phone recognition. The T R A P feature 
or more recent bottleneck features [19] are commonly used for phoneme recognition. These 
features are extracted from several stacked acoustic features by a neural network. It was 
experimentally shown, that the best context size for such features is about 310 ms [32]. 

10 



2.3 Selected temporal feature extraction methods 

In this section, we give a list of feature extraction methods, that make use of temporal 
context. Th is added information is known to contain another speaker specific information, 
complementary to acoustic features. So even if the acoustic features carry the greatest por­
t ion of speaker discriminative information [ ], temporal features are of great importance. 

Delta and acceleration coefficients 

For a long t ime [38], most of the acoustic A S V systems have been making use of the local 
temporal derivative estimates to capture local speech dynamics. A d d i n g t ime derivatives 
to the cepstral feature vector improves recognition performance [ ]. 

Comput ing the A and A A coefficients is commonly implemented as a least-square ap­
proximat ion of the local slope and calculated over mult iple frames (typically window of 5-9 
frames [2]). 

The regression formula for computing delta coefficient A j for a feature C j is given by 
[42] [2]: 

N N 
E kd(t + k) J2 k[Ci(t + k) - Ci(t - k)] 

Mt) = = ^ £ , (2-1) 

£ k2 2J2k2 

k=-N k=l 

where N determines size of the window across which the regression is computed. 
Often, also the second order derivatives are computed. These are called double-delta 

coefficients or acceleration coefficients. They are computed using the same formula from 
the first order coefficients. Special handling is needed at the beginning and end of signal. 

Shifted Del ta Cepstral coefficients ( S D C ) 

Described i n [40] [14], Shifted De l ta Cepstra l features are a way, how to incorporate even 
longer temporal context. A l t h o u g h these features are mainly used for L I D , there were some 
attempts [ ] to use it for speaker verification. 

In principle, the S D C feature vector is constructed by stacking the delta features sampled 
from context of about 200 ms. 

The S D C feature extraction is parametrized by 4 coefficients [ ]: 

• iV : number of cepstral coefficients ( typically 12) 

• d: spread of the delta computat ion 

• P: gaps between successive delta computations 

• k: number of delta vectors for concatenation 

For given t ime t, the difference vectors are computed: 

Ac(t, i) = c(t + iP + d)- c(t + iP -d) 

and the final S D C feature vector is then formed by stacking k of these differences: 

SDC(t) = [Ac(t,0)t A c ( t , l ) ' . . . Ac(t, k - 1) '] ' (2.2) 
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M a n y combinations of these parameters are possible, we found usage of N - d - P - k = 7-1-
3-7 [ ] , 10-1-1-3 [40] and many others. For example, w i th the 7-1-3-7 configuration, the 
features have dimensionality of 49 and timespan of 220 ms (for frame length 20 ms and time 
shift of 10 ms [27]). 

It was shown [40], that G M M - b a s e d L I D systems ut i l iz ing S D C features can perform as 
well as phonetic L I D systems w i t h greatly reduced computat ional cost. 

Temporal D C T ( T D C T ) 

Temporal Discrete Cosine Transform [27] [26] extracts speech dynamics from the same space 
as S D C d o e s - f r o m the trajectories of cepstral coefficients. Compared to S D C , it employs 
different way to reduce dimensionality of final features. Instead of sampling this space 
(see S D C parameter P ) , the D C T transform is applied to a vector of consecutive cepstral 
coefficients and only the low-frequency components are retained and then stacked together 
from al l filterbank bands. Tha t is because low-frequency components contain most of the 
energy. 

T D C T features are extracted for each frame. The use of D C T rather than D F T mag­
nitude retains also relative phase, so it can preserve both phonetic and speaker-specific 
information. Improvement over the cepstral systems by fusing the match scores of the 
cepstral and temporal features is rather modest and more research is required [26]. 

Results i n [ ] observed on the N I S T 2001 corpus indicate, that S D C and T D C T features 
perform similar ly and outperform the M F C C + A + A front-end. 
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Figure 2.1: I l lustrat ion of the T D C T feature computat ion. Image taken from [27]. 

Temporal Patterns 

The T e m p o R A l Pat ternS ( T R A P S ) , proposed in [20] for phoneme recognition, later inves­
tigated also for A S V [ ] is yet another approach, how to extract temporal context from 
frequency band trajectories. 

Ex t rac t ion procedure for A S V described i n [ ] is very similar to the T D C T one. T ime 
trajectories of 18 Mel-fi l ter banks (150 ms in length) are processed in parallel firstly by 
applying H a m m i n g window and then computing Discrete Fourier Transform ( D F T ) . The 
magnitudes are then filtered by cancelling a l l frequencies except the interval 1 to 16 H z . 
The final feature vector is obtained by stacking these outputs and applying dimensional­
i ty reduction procedure - either L D A or P C A - t o squeeze highly dimensional space to 24 
dimensions. 
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In [5] they compare the performance of T R A P S wi th classical acoustic M F C C + A / G M M 
approach and some results are given. N o information is given about possible fusion of these 
features, as this could be i n our opinion more beneficial than using either cepstral features 
or temporal ones. They also mention that using T R A P S is beneficial especially for noisy 
conditions. 

Modula t ion Frequency 

To extract features like speaking rate, s imilar approach to T D C T was proposed in [25], 
called Joint acoustic-modulation frequency. Th is method extracts frequency content of 
sub-band amplitude envelopes. 

The final feature vector is obtained per-utterance by averaging frame-wise feature vec­
tors computed over 300 ms window. O n l y modula t ion frequencies 0 - 2 0 H z are kept, as they 
are l inguist ical ly and perceptually the most relevant modula t ion frequencies of speech [25]. 

The difference from T D C T is that trajectory processing is computed over spectral sub-
bands instead of cepstral sub-bands using D F T rather than D C T . Also , local information 
for the whole utterance is averaged to form one feature vector per utterance. 

Time-Frequency Pr inc ipal Components 

We end this (incomplete) list of feature extraction techniques wi th Time-Frequency P r i n ­
cipal Components ( T F P C ) [29] as it can be seen as a generalization of many of above-
mentioned techniques. Authors of this method developed a formalism called filtering of 
spectral trajectories that allows to describe several feature extraction techniques like cep­
stral analysis or A coefficients computat ion by means of mat r ix mul t ip l ica t ion (note, that 
mul t ip l icat ion in spectral domain is actually convolution/f i l ter ing in t ime domain). 

C o m m o n characteristic of above-mentioned feature extraction methods is that they 
process each sub-band trajectory independently (i.e. component by component). The 
T F P C instead takes the spectro-temporal mat r ix as a whole, counting wi th possible inter-
component correlations. The dimensionality reduction is accomplished by P C A , thus the 
name Time-Frequency P r inc ipa l Components. 

2.4 Feature normalization 

The objective of feature normalizat ion is to compensate for the effects of session mismatch 
and to enable more effective modeling of speaker differences by scaling or warping the fea­
ture vector [ ]. Some channel compensation is convenient on feature level for two reasons: 
Firs t ly , many channel effects can be handled, because of their nature. For example, convo-
lut ional noise can be by reduced by Cepstra l M e a n Subtraction, because this noise becomes 
additive in frequency domain and so centering features effectively „ n o r m a l i z e s " the utter­
ances. Secondly, such signal enhancement is independent of speaker modeling stage, so it 
is applicable to any speaker recognition system. 

Most of the conventional feature normalizat ion techniques are normal ly applied i n the 
cepstral domain, as a post-processing of extracted M F C C features [ ]. This is depicted in 
Figure 2.2. 
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Figure 2.2: Feature extraction chain of a typ ica l acoustic A S V system. 

Cepstral M e a n and Variance Normalizat ion ( C M V N ) 

Sometimes also referred as Cepst ra l M e a n Subtract ion ( C M S ) , C M V N [17][1] is an efficient 
method to remove mismatch between recordings caused by convolutive channel noise. In 
the log-spectral and cepstral domains, convolutive channel noise becomes additive [ ] and 
so subtraction of the mean cancels out such mismatch. In [17], the authors note, that it is 
also effective in reducing long-term intra-speaker spectral variabili ty. 

Variance normalizat ion is performed to equalize feature variances by d iv id ing each fea­
ture by its standard deviation. 

A l though convolutive channel noise is in most cases constant for the whole utterance, 
often sliding-window variant of C M V N , Shor t -Time M e a n and Variance Normal iza t ion 
( S T M V N ) is used. Th is is motivated by real-time applications, where the whole utter­
ance is not available ahead and by the fact, that the mean can change i n time. In [ ], 
the authors compare different feature normalizat ion methods including S T M V N conclud­
ing that S T M V N , w i th an i-vector system, provides comparable speaker verification results 
to that of Shor t -Time Gaussianizat ion (described later). 

Feature Warp ing and Short -Time Gaussianization 

Feature Warp ing [ ] and Shor t -Time Gaussianizat ion [ ] are similar feature normalizat ion 
techniques. The normalizat ion is done by „ w a r p i n g " the cumulative feature dis t r ibut ion 
to follow a reference dis t r ibut ion (simply a Gaussian). Th is should result in cepstral fea­
ture representation more robust to additive noise and linear channel effects. His togram 
equalization of pixel intensities is a similar technique known from image processing. 

The difference between the two is in a preprocessing by global linear transformation in 
the case of S T G , used to decorrelate the features. 

It was shown [41], that S T G outperforms Feature Warping . O n the other hand, it is 
more complex to implement [26]. 
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Chapter 3 

Speaker modeling and session 
compensation 

This chapter gives an introduct ion to generative speaker modeling and session compensation 
techniques. A nontr iv ia l math is needed to compensate for the different kinds of variabilit ies 
in speech signal that cause significant problems for simple speaker models. 

Pr io r to subspace models, the speaker modeling was performed by s imply M A P adapting 
the wor ld background model [ ] using speaker enrollment data, which does good job for 
clean l a b o r a t o r y " conditions, but it does not perform well on mismatched data. Th is 
mismatch often arises i n real wor ld applications and so more sophisticated models were 
proposed. 

Session var iabi l i ty compensation can be applied on different levels of speaker recognition 
system. There are ways to compensate for channels effects i n feature space, to compensate 
for session var iabi l i ty i n model space and often, some sort of score normalizat ion is also 
needed to mitigate the scoring offset arising from session mismatch. In this chapter, we w i l l 
describe model level session compensation, as the most complex one. We start by describing 
a basic U B M - G M M model , to introduce the ma in principles and symbols. 

3.1 Gaussian Mixture Model 

To model mul t imoda l data, like different kinds of speech features, the Gaussian M i x t u r e 
M o d e l ( G M M ) can be used. G M M is defined as a weighted sum of Gaussian functions [ ]: 

C 

p(x) = J2*cM(x\»i,Vi) (3.1) 

c=l 
C 

J > c = l , (3.2) 
c=l 

where 7Tj is a weight for a Gaussian i (0 < 7Tj < 1). Together w i th mean vector /x^ and 
covariance mat r ix S j , those are the parameters of G M M , that has to be estimated on 
t ra ining data using iterative algori thm, like E M (Expectat ion Maximiza t ion) algori thm. 
The covariance mat r ix S j is often restricted to be diagonal, especially for high-dimensional 
data. Parameter C , the number of mixture components, has to be chosen wi th respect to 
the data distr ibut ion. 

15 



10 -

0 
10 20 30 40 50 60 70 80 90 

Figure 3.1: Two-dimensional example of a mixture of two Gaussian distributions. The 
ellipses show component contours. In real data, the assignment of data points to mixture 
components is not given and that is why we must use E M iterative algori thm to fit the 
G M M onto mul t imoda l data. 

Given some G M M wi th parameters 0 = J7 r , / i , £ } , we can compute the l ikel ihood of 
data x, given this model . To compute the l ikel ihood on speech utterance X = {xi, xi,..., Xn} 
the average computed over a l l the frames is used. For pract ical reasons, the log of the like­
l ihood function is taken: 

Typical ly , the G M M for acoustic speaker recognition purposes contains 512, 1024 or 2048 
components. 

3.1.1 B a c k g r o u n d m o d e l a n d M A P a d a p t a t i o n 

It was shown [39], that it is convenient to adapt specific models from one „ m e a n model" , 
called U B M (Universal Background Mode l ) , trained wi th a big amount of exemplary data. 
W i t h this approach, specific models are more robust and we can perform the adaption 
even wi th a l imi ted amount of target data. The adaptation is also quicker than training 
a new G M M iteratively. There are several adaptation techniques, like M A P ( M a x i m u m A 
Posteriori) or M L L R ( M a x i m u m Like l ihood Linear Regression) adaptation. 

For the M A P adaptation, the model parameters are shifted towards the target data, 
depending on their occupation probabilit ies. This is important , because we modify only the 
parameters, for which there are some target data examples, leaving the parameters without 
adaptation data untouched. For the task of speaker recognition, it suffices to adapt only 
the means of U B M mixtures. The whole process is explained in detail in [39]. 

(3.3) 
n=l 
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3.2 Subspace modeling 

W h e n considering a typica l G M M wi th 512 components and 60 dimensional features, the 
number of parameters of such model is very large. This has many drawbacks like the curse 
of dimensionality problem, impossibi l i ty to use some standard machine learning methods 
and big computing costs. The subspace methods are based on an assumption, that a l l 
the parameters lies in fact in a parameter subspace (i.e. there is some latent variable). 
Moreover, using subspaces, we can separately model the speaker and session variabili ty. 
A l l these methods work wi th the term supervector, so we start by introducing this. 

3.2.1 C o n c e p t of supervectors 

W h e n doing adaptat ion from U B M , we can adapt mixture weights, means and variances. 
A s discussed in [ ], for speaker recognition task, just the means can be adapted wi th 
no accuracy lost. So the speaker model if fully described only by means of a l l mixture 
components. For a G M M wi th C components and input feature vector of size F, we can 
concatenate ind iv idua l mean vectors together to obtain a vector of dimension CF, which 
is called supervector [26]. 

Thus, using this approach, we transformed the variable sized speaker representation in 
the form of sample speech data into fixed length supervector. F i x e d length representation 
allows us to use direct ly general pattern matching algorithms and classifiers, for example 
discriminative classifier Support Vector Machines ( S V M ) . 

To compensate for channel effects i n supervector space, different methods were proposed 
based on the same idea, that the to ta l var iabi l i ty can be decomposed into speaker var iabi l i ty 
and session var iabi l i ty components. The problem of finding and modeling corresponding 
subspaces is analyzed further i n the following text. 

3.2.2 J o i n t F a c t o r A n a l y s i s of speaker a n d session var iab i l i ty 

In the Joint Factor Analys is ( J F A ) [23] model, the speaker and channel var iabi l i ty are 
modelled separately by two low-dimensional latent variables. The supervector space is 
assumed as a linear combination of these latent variables. The supervector space can be 
thought as sum of orthogonal speaker dependent and channel dependent components s and 
c: 

M = s + c (3.4) 

These components can be expressed i n terms of latent variables: 

s = m + Vy + Dz (3.5) 

c = Ux, (3.6) 
where m is now channel and speaker independent mean, V is a rectangular mat r ix of 

low rank that defines a speaker subspace, D is CF x CF diagonal residual mat r ix which 
captures the residual variabili ty, U is a rectangular matr ix of low rank that defines a session 
subspace and x, y and z are normal distr ibuted random vectors. 

The complete model is then: 

M = m + Vy + Dz + Ux. (3.7) 

Tra in ing of this model is not an easy task and we refer to the original paper [23]. 
Scoring is done by computing the l ikel ihood of the test utterance feature vectors against a 
session-compensated speaker model ( m — Ux). 
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3.2.3 T o t a l var iab i l i ty subspace a n d i-vectors 

Dur ing the summer 2008 J H U workshop on Robust Speaker Recognit ion it was shown, that 
the J F A does not fully separate the speaker and session subspaces, as using the channel 
factors has fairly big discriminative power [ ]. After that, it was proposed i n [15] to merge 
the two subspaces and perform channel compensation on the to ta l factors, called i-vectors. 

The i-vector approach has become a popular technique for speaker recognition wi th later 
applications also for language identification [16] [30] and other speech related tasks. This 
technique offers a way to transform high dimensional sequential data into low dimensional 
(order of hundreds of dimensions) fixed length vectors, called i-vectors. 

The generative factor analysis model is used to model the supervector var iabi l i ty i n a 
low-dimensional subspace. The to ta l var iabi l i ty subspace model is defined by: 

where the factor w is commonly referred as the i-vector, m is the channel and speaker 
independent mean supervector (simply the U B M ) and T is a matr ix of bases spanning the 
subspace wi th important speaker and channel variabil i ty. We assume, that w is distr ibuted 
normally among jV (0 , I). 

This technique reduces the number of parameters of the speaker model . Instead of 
having CF variables i n case of full supervector space, now only components of w have to 
be estimated. This is important especially when there is not enough t ra ining data available. 
Moreover, compared to the J F A processing needs, the extraction of i-vectors is much faster. 

The analyt ical solution for this model does not exist and the model parameters has to 
be estimated using iterative algori thm. A possible approach to estimate the i-vectors can 
be found i n [31]. 

W i t h this technique, the variable length session is transformed into compact fixed-
length and low-dimensional representation and it can be seen just as an input data re-
par ametrization. 

Because i-vectors s t i l l contain a l l the variabili ty, session compensation has to be per­
formed on this level. Because of the smal l size of i-vectors, this can be very quick process. 
The simplified version of J F A is commonly used for this purpose, called Probabi l i s t ic Linear 
Discr iminant Analys is ( P L D A ) [36] [13]. 

Figure 3.2: Simplified diagram showing the i-vector method of transformation variable 
length feature vector into fixed length i-vector. 

fj, = m + Tw (3.8) 

Speech frames 
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3.2.4 I-vector space scor ing a n d session c o m p e n s a t i o n 

There are currently two main scoring techniques in i-vector space. Note, that when using 
i-vectors, symmetric scoring is used, i.e. there is no difference between t ra ining and test. 
The question is stated as: do these utterances come from the same speaker or not? 

The first method uses cosine s imilar i ty scoring wi th session compensation performed by 
Linear Discr iminant Analys is ( L D A ) followed by Wi th in -Class Covariance Normal iza t ion 
( W C C N ) . The second, probabil ist ic approach, is called Probabi l i s t ic Linear Discr iminant 
Analysis ( P L D A ) . 

Cosine distance scoring 

Proposed i n [ ], cosine distance is an efficient method how to compare two i-vectors. 
Defined as: 

(wl,w2) . . 
SCOrecosine{Wi, W2) = T. TTT, 77, (3.9) 

\\wl\\ \\w2\\ 

it effectively measures the angle between the two vectors. Th is score can be used directly as 
a soft decision. Because i-vectors s t i l l contain the session information, the session compen­
sation has to be performed before this step. Th is is usually done by projecting the i-vectors 
using L D A followed by W C C N [15] [18]. 

Probabilistic Linear Discriminant Analysis 

The Probabi l is t ic Linear Discr iminant Analys is ( P L D A ) [36] was originally developed for 
face recognition purposes and then adopted by speaker recognition community. In face 
recognition, there is also useful var iabi l i ty caused by differences i n faces of different persons 
and nuisance var iabi l i ty caused by different l ightning conditions and pose. The relation 
between P L D A and L D A is analogous to the relation of Factor analysis and P C A . It is a 
generative model, where i-vector is modelled as [18]: 

w fj, + Vy + Ux + e, (3.10) 

where the terms fi, Vy and Ux have the similar meaning as for J F A and the e represents 
residual data noise w i t h diagonal covariance X . The latent variables are assumed to be 
Gaussian wi th zero mean and unit variance. 

W h e n given two test i-vectors, trained P L D A model can be used to evaluate the l ikel i ­
hood ratio score: 

p(w1,w2\Hi) 
scorepLDA(w1,w2) = log ; (3.11) 

p(w1,w2\H1) 

B o t h nominator and denominator can be evaluated analytically. The equations for 
numerator and denominator are, respectively [18]: 

and 

; J 

Wl 

W'2 1 

vv* + uu* + s vv* 
vv* vv* + uu* + s 

0 
v v * + uu* + s 

(3.12) 

(3.13) 

It was shown [24], that using heavy-tailed prior dis t r ibut ion like student's t -dis tr ibut ion 
increases performance and thus the assumption of i-vector gaussianity was invalidated. 
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Later, it was shown [8], that length normalizat ion can be used to effectively gaussianize the 
i-vectors to be used wi th gaussian-prior P L D A . Length normalizat ion is defined as: 

, w w , 
w' = —- = . (3.14) 

T h e two-covariance model 

There is a simplified version of P L D A called two-covariance model [10] which we use i n our 
work, where the model is decomposed into: 

w = ys + e, (3.15) 

and the priors are defined as: 
P(ys)=M(fi,B), (3.16) 

P(w\ys)=M(ys,W). (3.17) 

Since (3.16) is conjugate prior to (3.17), the posterior probabil i ty of this model can be 
directly evaluated, see [10]. The matrices B and W are between-speaker and wi th in-
speaker covariance matrices: 

s 
B = Y^{ys-»){ys-n)t (3.18) 

n s = l 

S ns 

W = " E X > ? " Vs)(wi - VsY, (3-19) 

where ns is the number of utterances for speaker s, n is the tota l number of utterances, wf 
are the i-vectors of sessions of speaker s, ys is the mean of a l l the i-vectors of speaker s and 
fj, represents the overall mean of the t ra ining dataset [7]. 

The difference between general P L D A is, that covariance matrices are full-rank, as 
opposed to possible subspaces in general P L D A model [18]. 

20 



Chapter 4 

Capturing temporal context 
using i-vector paradigm 

Here we present a possible application of the i-vector paradigm to the task of temporal 
feature extraction. We start by a discussion of interesting aspects of the i-vector paradigm 
that led us into this. 

4.1 Motivation 

We think, that the concept of i-vectors (i.e. the factor analysis applied on the adapted 
U B M supervector) is a very good information extractor i n general. Speech frames are firstly 
projected into high dimensional space ( M A P adaptation of U B M ) to form a supervector, 
that is then reduced by the factor analysis into a vector of smal l size. F r o m a variable 
length input it is possible to obtain one vector w i th hopefully a l l the relevant information. 
This elegantly solves the data redundancy problem, which a l l the spectro-temporal feature 
extraction methods have to struggle wi th , because consecutive speech frames have generally 
a lot of in common. 

4.1.1 Poss ible pitfalls 

One problem that could arise when using this technique for temporal feature extraction 
from short speech segments is, that it does not retain the information of the frame order. 
The i-vector extracted from speech segment parametrized by frames [a, b, c] w i l l be the 
same also for the cases [c, b, a] or [c, a, b]. Th is problem is i l lustrated i n Figure 3.2. So, 
in the final feature vector, there w i l l be information about frames present i n the segment, 
but without taking into account their relative configuration. In this work we assume, that 
from a statist ical point of view, such sources of possible misclassification are rare i n real 
data. 

Normally, for speaker verification task, the i-vector is extracted from the whole ut­
terance. The resulting i-vector then carries information about the utterance as a whole, 
because local phonetic content is „averaged out". If we w i l l gradually reduce the length of 
the utterance, local phonetic content w i l l become more visible. O f course, the data used to 
t ra in the to ta l var iabi l i ty matr ix has to follow the same path. A l so , the i-vectors can not 
be considered anymore as speaker and channel factors only, as the factor loadings matr ix 
is not being trained on var iabi l i ty between utterances, but rather on var iabi l i ty between 
short segments, that vary a lot w i th respect to phonetic content. 
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The common size of the i-vector used to represent the whole utterance is 400. This 
work tries to answer the question, what is the dimensionality of subspace, where lies the 
main var iabi l i ty amongst very short segments of speech. Natural ly, we want this number 
to be as low as possible. 

4.2 System design 

The original idea is depicted i n Figure 4.1. After classical signal parametrization (like 
M F C C or P L P features), the features are re-parametrized by extracting i-vectors over the 
sliding window. There are two parameters, window size and shift. The to ta l var iabi l i ty 
matr ix used during i-vector extraction is trained on the var iabi l i ty between many exemplary 
speech segments of given size from development data. B y choosing specific exemplary speech 
segments to t ra in the to ta l var iabi l i ty mat r ix (like speech segments aligned to phonemes 
in our case), we can extract features (i-vectors) w i th different properties. Th is process is 
computat ional ly very demanding and some optimizations or approximations are needed for 
practical use. 

Acoustic feature extraction shor t - term i-vector extraction 
(window 20ms, shift 10ms) (window 100ms, shift 10ms) 

0 50 100 150 5 10 15 5 10 15 
Time [ms] Speech frames i-vectors 

Figure 4.1: Overview of the proposed approach. 

4.2.1 Class i f i cat ion a n d scor ing 

For a classical G M M - U B M system, the class models are created by M A P adaptation of 
U B M using enrollment data. The U B M is trained beforehand to represent the overall 
dis t r ibut ion of features. The scoring of the utterance is then done frame-wise, i.e. i f the 
model parameters are 0 and testing utterance is X = xi,X2,-- - ,xn, we compute the 
model log-likelihood given the data as: 

N 1 
£(&\X) = J2^ogp(xi\&). (4.1) 

i=l 

We can use the same approach also for the re-parametrized features. B u t i n this case, 
instead of computing the probabil i ty of some speech segment as an average probabi l i ty of 
its (independent) frames, we use one frame that represents the segment as a whole. A l so , 
the structure of the U B M that is trained on such features is different. In this work, we 
assume, that the dis t r ibut ion of the re-parametrized features is again mul t i -modal w i th 
similar dis t r ibut ion, that can be again modeled by G M M - U B M . 
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Chapter 5 

Experimental results 

This chapter describes the work we have done to verify benefits of the proposed approach. 
The experiments are divided into two parts. 

Firs t ly , we evaluate our approach on phoneme verification task. A s this is a brand 
new concept in the field of speech feature extraction, we use phoneme verification as a 
benchmark, to evaluate the characteristics of newly extracted features. We had to do that, 
as the first experiments on speaker verification task were unexpectedly bad. 

After that, we t ry to apply this approach to speaker verification task, evaluating its 
performance on the widely used database N I S T S R E 2008. 

These two evaluations have big differences i n their experimental setups and evaluation 
criteria, so we describe the systems and evaluation databases separately for each set of 
experiments. We start w i th the first set of experiments realized on E S T E R speech database 
in the next section. 

5.1 Preliminary study of i-vector based feature 
reparametrization 

Here we present the prel iminary experiments that we conducted on annotated speech 
database E S T E R after we had obtained very poor results w i th the original idea described 
in Section 4.2 on the N I S T S R E 2008 speaker recognition evaluation task. The bad results 
were caused probably by the fact, that we d id not know suitable values for system param­
eters yet. We chose the annotated (i.e. w i th phoneme segmentation) database to analyze 
the behavior of i-vector extraction from very short speech segments of defined content. 
O n this database, the contextual phoneme verification task was evaluated, to have more 
interpretable results and to get more insight into the re-parametrization step. Contextual 
phonemes are units of the t ime span that is close to our first experiments (segment size 
of around 10 frames). The window size used i n the following experiments is thus variable, 
according to the phoneme length. 

5.1.1 C o n t e x t u a l p h o n e m e veri f icat ion task 

For this set of experiments, verification task was selected. There are generally many thou­
sands contextual phoneme classes and so the verification task is more pract ical than clas­
sification task. 
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We used contextual phoneme classes instead of classical single phonemes because the 
labeling was available for the E S T E R database. The contextual phonemes are used mainly 
because they offer higher resolution that can handle coart iculation effects. 

Contextual phoneme is defined using its central phoneme and a left and right neigh­
borhood. We use the notat ion using colons: a : pp : /?, where a and j3 are left and right 
neighboring phonemes and pp is the central phoneme. 

Phoneme verification is the process of checking a claimed phoneme label against some 
test speech segment. Phoneme boundaries are given, so this is only a pattern matching 
problem. It is very similar and analogous to speaker verification described in introduction. 
We can use the E E R to measure system performance. A n example of results file augmented 
wi th a key is i n Table 5.1. 

Table 5.1: Illustrative example of the results file for phoneme verification task. 

Test segment Cla imed class System output K e y 
seg01.wav ss:yy:on 0.46 true 
seg02.wav pp:aa:rr -2.46 false 
seg03.wav aa:ss:yy -3.12 false 

5.1.2 E S T E R database 

The E S T E R database contains broadcast recordings in French, that were collected from 
different radio stations to serve as an evaluation database for campaign of Broadcast News 
enriched transcript ion systems using French data. The orthographical t ranscript ion and 
segmentation is avai lable 1 . 

We used the 2000 hours part of the non transcribed broadcast news shows data from the 
E S T E R wi th the automatic contextual phoneme transcript ion available at L I A to create the 
database subset divided into 11201 parts. Each part was represented by different examples 
of given contextual phoneme. We l imi ted the amount of examples for each contextual 
phoneme to m a x i m u m of 1000 (randomly selected) examples. We also filtered out the 
classes of contextual phonemes wi th less than 30 examples and the class for silence. The 
reason of l imi t ing the database was to have the balanced number of examples for each class. 

This subset contains 11201 contextual phonemes wi th average length of 8.46 frames and 
average number of examples for contextual phoneme class 400. There are approximately 
100 hours of speech. 

This data was used to t ra in the U B M and the total var iabi l i ty matr ix . To create the 
target t ra ining and test data (the evaluation data), we chose 90 contextual phoneme classes 
wi th 1000 examples from the development data. The 1000 examples were divided randomly 
into test and t ra ining sets. For each contextual phoneme class, 10 examples were used for 
testing and 990 examples for t ra ining (as an adaptation data). To create the t r ia l definition 
file, for each of the 90 modeled phonemes, the 10 test examples were taken to represent 
target trials and 100 examples were randomly selected from the test examples of other 
phonemes to represent non-target trials. Tota l number of trials is thus 9900. The testing 
and t ra ining data were disjoint, but they were part of the development data used to t ra in 
the frame-level U B M and the to ta l var iabi l i ty matr ix (re-parametrization process). 

xhttp://catalog.elra.info/product Jnfo.php?products_id=999 
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Evalua t ion data summary: 

• number of contextual phoneme models: 90 

• adaptation data: 990 examples for each phoneme 

• test data: 10 target trials and 100 non-target trials for each phoneme, 9900 trials in 
total 

5.1.3 C o n t e x t u a l p h o n e m e veri f icat ion us ing E S T E R database 

In this set of experiments, we wanted to find reasonable size of i-vectors that we can use 
for further experiments. Another question was if we loose the information during proposed 
feature re-parametrization. In theory, the i-vectors are projections of supervectors to low-
dimensional space, where the supervectors are M A P adapted versions of the U B M . We have 
therefore compared the recognition performance of contextual phoneme models created by: 

1. M A P adaptation of the U B M means using P L P features - baseline system 

2. M A P adaptation of the U B M means on the level of re-parametrized features (an i -
vector extracted for each contextual phoneme example from training data) - i-vector 
system 

To t ra in the to ta l var iabi l i ty matr ix , we used available examples of different contextual 
phonemes from development set. 

5.1.4 Base l ine system: G M M - U B M o n acoust ic feature level 

For a comparison, we firstly evaluate our task using basic G M M - U B M approach. The a im 
is not to create the best phoneme verification system, but our a im is rather to find, how 
much information is transferred from frames into adapted supervector and after, i n the 
following experiments, how much we can reduce its size using factor analysis. 

The speech signal was parametrized into 39 dimensional frames using P L P features w i th 
13 coefficients and the delta and acceleration coefficients. B y using the delta coefficients, we 
already add some temporal information into features, but because this is de facto standard 
i n acoustic speaker recognition, we kept this practice. 

The U B M was trained on pooled data for a l l contextual phonemes and then specific 
models were created wi th M A P adaptation of means, using the t ra ining examples for a 
given contextual phoneme (about 80 seconds of data). Note, that any information of the 
frame order wi th in the phoneme example (normally modeled by a 3-state H M M ) is not 
used here. The performance in terms of % E E R is given in Table 5.2. 

Table 5.2: The results of the baseline system ( G M M - U B M P L P + A + A A features) w i th 
different G M M sizes. ( % E E R ) 

Number of mixtures 64 128 256 512 

G M M - U B M 5.57 5.32 4.57 4.53 

For further experiments, we chose to use the number of mixture components to be 128 
for pract ical reasons (speed and amount of available t ra ining data) and also because the 
same number was used in [6] for similar purposes of representing the H M M states. This 
results in a supervector size of 4992. 
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5.1.5 i -vector system: G M M - U B M us ing r e - p a r a m e t r i z e d features 

To create phoneme models based on i-vector features, we used firstly the speaker recogni­
t ion approach, i.e. scoring one i-vector against another one using some metric (Euclidean 
distance or cosine s imilar i ty) . Th is d id not br ing good results. We think this was caused 
part ly by insufficient amount of t ra ining data used to t ra in the to ta l var iabi l i ty matr ix 
and par t ly by large variat ion of t ra ining segments for each class. We also tr ied to use the 
average i-vector to represent each class, without much gain. So we model the intra-class 
i-vector feature var iabi l i ty expl ic i t ly by G M M . 

The to ta l var iabi l i ty matr ix was trained using a l l the examples for a l l the phonemes. 
After extraction, resulting i-vectors were normalized to have globally zero mean and unit 
variance, as this condit ion was not satisfied. 

The phoneme models were then created i n the same way as for the baseline system 
( G M M - U B M ) , except for the difference that we used extracted i-vectors instead of P L P 
frames as features. The results are shown i n Table 5.3. 

Table 5.3: Contextua l phoneme recognition performance ( % E E R ) for i-vector based system. 
B o t h mixture models (i.e. U B M on P L P frames used to extract i-vectors and the secondary 
mixture model for i-vectors) had 128 components. 

T V mat r ix rank 10 20 30 40 45 50 60 80 100 

i-vector G M M 8.44 6.22 5.03 4.78 4.89 5.53 5.11 5.22 5.12 

These results show, i n comparison to the baseline system, that for this task it is possible 
to re-parametrize the speech signal using smal l i-vectors, which are extracted from segments 
only a few frames long. 

In comparison w i t h the simpler baseline system, the results are slightly better. It is 
clear, that this is caused by added temporal context. 

5.1.6 S y s t e m c o m b i n a t i o n 

We present the last results i n Table 5.4. It is the weighted score fusion of the baseline 
reference system and the i-vector G M M system. A s this is a prel iminary study, the mix ing 
weights were s imply set to be equal. The results of the ind iv idua l systems are shown also 
for reference. 

Table 5.4: Score level fusion of the baseline system and the i-vector G M M system. If not 
stated otherwise, the size of used i-vectors was 30. 

System % E E R 

Baseline G M M (baseline) 5.32 
i-vector based G M M ( i G M M ) 5.03 

baseline + i G M M 3.64 
baseline + i G M M (rank 60) 3.11 
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Figure 5.1: D E T curves for selected phoneme verification systems and for their score level 
fusion. B y the term i G M M we mean G M M using i-vectors as features. 

5.1.7 D i s c u s s i o n 

The results obtained using scores fusion show, that our i-vector G M M system offers some 
complementary information that can be explained as an addi t ional discriminative informa­
t ion extracted from temporal context. 

The last line of Table 5.4 presents the results of fusion of baseline system wi th the 
i-vector G M M system that uses the i-vectors of size 60. Even i f the performance of this 
ind iv idua l system (EER=5 .11) compared to the best i-vector G M M system is lower, the 
amount of useful complementary information is higher, probably because of higher subspace 
dimensionality. Thus, the best size of the i-vectors used to describe the segments w i th 
examples of contextual phonemes seems to be around 30-60. 

Note on M A P adaptation of means 

We presented these experiments on meeting of speech@FIT group at B U T . We were told, 
that for such task (phoneme recognition), adapting only the means does not make sense, as 
this is commonly applied only to speaker models. This was at the end of our work, so we 
d id not repeat the experiments. Note however, that both systems had such disadvantage, 
so this effect should be minor. 
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5.2 Application to speaker verification task 

Mot iva ted by the results obtained on phoneme verification task presented i n previous sec­
t ion, we applied our feature extraction technique to speaker recognition. We assume, that i f 
the features are useful i n speech recognition, they should be also beneficial in this domain. 
Note, that it was also our first mot ivat ion - to come up wi th some general temporal feature 
extraction method for speaker recognition. 

5.2.1 D a t a b a s e descr ip t ion 

To test our hypotheses, we selected the N I S T S R E 2008 evaluation data. Complete de­
scription of the data and evaluation conditions can be found i n [34]. We have chosen only 
the male part, as a l l the state-of-the-art systems are using gender-dependent models. We 
could have used the female part, as this is more common due to the fact, that females are 
generally harder to recognize, but it was more convenient for us to choose the male part. 
In the core test of S R E 2008 evaluations (short2-short3) male part, there are 39433 trials, 
1270 target speakers, 3798 evaluation utterances. A l l trials from the core test have to be 
evaluated by an evaluee, but the system performance is measured from the condit ional 
subsets of the trials. A l l the conditions are described in [34], we w i l l highlight here the 
following ones: 

• d e t l - I n t e r v i e w Training and Test 

• det4 - Interview Training, Telephone Test 

• det6 - Telephone Training and Test 

• d e t 7 - E n g l i s h Language, Telephone Training and Test 

• d e t O - A l l trials (unofficial condition) 

A s development data, we used the male part from the following databases: N I S T S R E 
2004, 2005, 2006, Switchboard II Phase 2 and 3, Switchboard cellular part 1 and 2. In 
total , there were 15660 development utterances. 

5.2.2 E x p e r i m e n t a l setup 

Complete system diagram is depicted in Figure 5.2. The figure shows, that only the fea­
tures are reparametrized, without any changes to the baseline system. Note also, that the 
reparametrization module is morphologically the same as the final i-vector system. The 
difference is, that reparametrization module works on segments rather than on utterances 
and that it uses only the subset of the whole development data. For pract ical reasons, we 
had to use only the 1 % (215 000 segments) of the whole development data to t ra in the 
reparametrization module (total var iabi l i ty matr ix) . 
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Input signal parametrization 

The parameters for the M F C C feature extraction are as follows (default L I A configuration): 

• no preemphasis 

• frame length 20 ms wi th 10 ms shift 

• M F C C wi th 19 coefficients, log-energy, delta and double delta coefficients, frequency 
band 300 H z - 3.4 k H z 

• feature mask 2 : 0 - 1 8 , 2 0 - 5 0 

After M F C C extraction, voice act ivi ty detection ( V A D ) was performed, followed by utterance-
level C M V N and feature warping. 

Voice act ivi ty detection was performed using freely available phoneme recognizer from 
B U T 3 . Speech labels were created by merging al l the segments belonging to phonemes. 

Signal parametrization 
and segmentation 

Feature 
reparametrization 

Classical i-vector 
system 

SPHERE files 
(Devel+Eval) 

BUT Phoneme 
recognizer 

segmentation 
(.lab files) 

label 
fusion 

V A D 

M F C C 
extraction 

MFCC features 
(Devel+Eval) 

subsampling 

U B M on frames Devel training 
subset (segments/) 

Factor analysis 
(segments) 

y 
iVector features 
postprocessing 

iVector features 
postprocessing 

reparametrized 
features 

Factor analysis 
(utterances) 

\ 

PLDA scoring 

Figure 5.2: Flow-chart for the whole system. 

2 This mask defines which indices from feature vector should be used for further processing. Our mask 
selects all 19 M F C C coefficients, all delta coefficients, delta log-energy coefficient and first 11 acceleration 
coefficients. 

3http://speech.fit. vutbr.cz/software/phoneme-recognizer-based-long-temporal-context 
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I-vector based feature reparametrization 

Those are the main parameters used in this experiment: 

• number of U B M components: 5 1 2 - t h i s is common value of U B M size —> supervector 
of size 25600. 

• total var iabi l i ty matr ix rank: 4 0 - t h i s value seemed to be the best i n the preceding 
experiments on phoneme verification task. 

• number of segments used to t ra in total var iabi l i ty matr ix : 2 1 5 k - t h i s is around 1% of 
al l development data. We could not use more data for pract ical reasons. 

These parameters were fixed for a l l the experiments described later i n this chapter. 

Conditions for i-vector extraction 

The main goal of this experiment was to find, how well our proposed system behaves in 
speaker recognition task. In addit ion, we wanted to see, whether the phoneme recognition 
backend is needed also for the evaluation data. Th is is the main cri terion of a l l feature 
extraction techniques - if they depend on phoneme recognizer or not. This is depicted in 
Figure 5.2 by a dotted line. The two conditions are: 

• f ixed -no phoneme segmentation is used. The segments to be reparametrized are 
created from V A D segments by a fixed sl iding window wi th parameters size and shift. 

• phnrec - phoneme recognizer output is used. The segments to be reparametrized are 
the phonemes themselves. 

These two conditions can be applied i n two places. The first place is t ra ining the first 
i-vector extractor. A s we describe i n Section 4.2, by using different t ra ining data to estimate 
the to ta l var iabi l i ty matr ix , we can extract different features. In our experiments, we used 
only the phnrec condit ion to t ra in total var iabi l i ty matr ix . The second place is the feature 
reparametrization process itself, where the reparametrization of t ra ining and evaluation 
data is needed, based on some segmentation. 

Last stage 

In the last stage, the classical i-vectors are extracted from the reparametrized features and 
the session compensation technique using the two-covariance model . M a i n parameters: 

• number of U B M components: 5 1 2 - w e use i n this place the same number of Gaus-
sians as for the U B M trained on M F C C features. We assume, that dis t r ibut ion of 
reparametrized features w i l l be again mul t imodal . 

• size of i-vectors: 4 0 0 - w e use this value as it has proven to be a good for i-vectors 
extracted from acoustic features. 

• two-covariance model w i t h length normalizat ion 
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Reference baseline system 

For a comparison, we used state-of-the-art i-vector system developed at L I A . In our ex­
periments, we used exactly the same parameters and procedures for both baseline and the 
proposed system, except for the added feature reparametrization step i n case of the new 
system. This means, that the reference baseline system should use also the phoneme rec­
ognizer based V A D . B u t as we w i l l see i n results, baseline system wi th energy based V A D 
( L I A baseline) performed better i n general, so the pr imary baseline system uses the 
energy based V A D and it is the secondary baseline system that uses exactly the same 
port ion of frames (phoneme recognizer based V A D ) as uses the newly developed system. 

5.2.3 E x p e r i m e n t a l results 

In this section, we summarize the results of experiments performed using above mentioned 
sys tems- two baseline systems (baseline, baseline2) and our proposed system using i-vector 
feature reparametrization wi th two variants for segmentation speech (fixed, phnrec). The 
results from score level fusion are also presented to show, whether the reparametrized 
features are helpful or not. 

Overal l behavior for selected core conditions is depicted in Figure 5.3. We can see, that 
the systems using i-vectors as features are far behind the purely acoustic systems. In general, 
the i-vector reparametrization performs better for fixed condit ion than for phoneme aligned 
segmentation. A l l fused systems are drawn wi th dashed lines i n Figure 5.3. We can see, 
that fusing our new system wi th baseline system improves the performance. Unfortunately, 
such gain can be obtained also by fusing the two versions of baseline system (black dashed 
line). The two baseline systems differ only in V A D - e n e r g y based or phoneme recognizer 
based. We t ry to explain this failure of our new system to capture temporal information 
useful for speaker discr iminat ion i n the next section. 

5.2.4 D i s c u s s i o n 

The results obtained on speaker verification task are disappointing, and here we t ry to 
analyze, why the new system does not outperform the baseline, as expected. Our in i t i a l 
idea after having success w i th prel iminary experiments on phoneme verification was, that 
if there is a gain for phoneme verification, we can expect also a gain for speaker recognition 
task. This was probably the main mistake. 

Normally, there are mainly two variabilit ies i n the space of i-vectors - session var iabi l i ty 
and speaker variabil i ty. For the i-vectors extracted from short segments (like we d id in 
our experiments), there is i n addit ion also the phonetic var iabi l i ty and it is clear that this 
is the largest one. If we use the i-vector paradigm to compress the segment information 
into 40 dimensional vector, maybe the useful speaker discriminative temporal information 
is completely outvoiced by the acoustic and phonetic variabili ty. 

There are studies [33] which show the proportions of different variabilit ies i n spectral 
domain. The biggest por t ion of variance belongs to phoneme and context variabil i ty. For 
the channel and speaker var iabi l i ty there is 16% and 10%, respectively. In our work, we 
wanted to make use of temporal speaker variabili ty, that is probably too smal l to be even 
visible for our classifier. 

We show the results of the reparametrization process for one N I S T utterance in Figure 
5.4 to present the nature of extracted features. We can see that the features are highly 
uncorrelated. Note however, that every frame in this figure corresponds to one segment 
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ROCCH curves - deti ROCCH curves - det4 

Figure 5.3: R O C C H curves for single and fused systems on different core test conditions 
(%EER/Coet)- Dashed vert ical and horizontal lines define the area, where there are at 
least 30 classification errors for the baseline system (Doddington's rule of 30). 
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(i.e. approximately to one phoneme) and so this can be expected, as the phoneme class 
changes radical ly for each frame. 

F rom this picture it is also clear, that the feature dis t r ibut ion has changed a lot. We 
expected this behaviour, as there is an assumption of gaussianity in to ta l var iabi l i ty m o d e l -
the i-vectors are assumed to be normal ly distr ibuted among M(0,1). We thought, that using 
segments of defined content for to ta l var iabi l i ty mat r ix t raining, we can achieve that after 
extraction, the dis t r ibut ion of the i-vector based features w i l l be again mul t imodal . This 
was probably not fulfilled and so it explains also the problems we had w i t h t ra ining the 
U B M model on such features. 

We spent a lot of t ime examining, why the single systems based on reparametrized 
features are not performing at least as good as baseline. We conclude, that this is caused 
by a combination of previous imperfections. 

Feature reparametrization for file 2004/tjda - fixed condition 
40 

_ 3 5 

1 30 
0 
§ 25 

1 20 

1 15 
.1 1 0 

5 

i i i 1 i f f 1W 1 l1 ''' W'l' 1 llii' ' ''ll nil''' 'ill "''' 'i ll'"' ' "'" 

V ,i, i, i 
i l 'T i l ' l i i l ' i i l f ! 

j , ! , If, I ''ll i l l 

'.'I jjQ ;''7'?'i'''', i',1/ i l'i^lM' l
l' li'' l!j l

ii l | l |i | l |
l
l ''i'i 

iii'1 'V i i 1 1 1 " 1 ' i ' ' ''/I'j'j1'11 " i ' 1 ' 1 'V/Jj'll"' 

I'l i 

1 In'l "I'I 1 I I" ' i 1 i ' i ' 1 ' "mill' ''"i V'l'l l i ' l ^ 

; / ' / ' ; i ' ,yul i ' l ' i ' l ' l ' i , , ' 1 ! 1 \\''fi^,!i'r'l"; 

500 1000 1500 
Segment 

2000 2500 

Figure 5.4: Visua l iza t ion of the reparametrized features for N I S T 2004/tjda utterance. The 
image is similar also for the phnrec condit ion. 

Computat ional complexity 

From the pract ical point of view, proposed feature reparametrization process requires very 
high demands for computat ion power. We realized this l imi ta t ion i n the beginning of our 
work. Please note, that this is a research project, so speed was not the m a i n evaluation 
parameter. 

Firs t ly , our system has to run phoneme recognizer or some pseudo-phoneme segmenta­
t ion. Thanks to this, our approach places itself into the category of „s low" feature extraction 
methods that requires segmentation. 

Dur ing the development phase, the U B M and tota l var iabi l i ty mat r ix has to be trained. 
This is comparable to standard i-vector system, but the number of t ra ining sessions (and 
thus the memory complexity of this step) is much bigger, as the segments are considered 
as utterances. 

The reparametrization process itself takes also a good amount of t ime, even if the frame 
rate is lowered (wrt. acoustic features). One i teration of i-vector estimation procedure has 
to be run for each segment. 
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Chapter 6 

Conclusions and future work 

In this work we proposed new approach to temporal feature extraction using the i-vector 
paradigm. Pre l iminary experiments were presented to show, that such parametr izat ion is 
possible and could be beneficial for phoneme verification task. B y using our approach on this 
task, in comparison wi th the baseline acoustic frame level system, significant improvement 
was obtained. This also corresponds wi th the success of similar method [6], where the 
i-vectors were used to represent H M M - s t a t e s . 

O n the other hand, our main ob jec t ive - to develop temporal feature extraction method 
suitable for speaker verification - has not been really resolved. The experiments on N I S T 
S R E 2008 database have shown, that such features are not suitable for further speaker 
modeling, as they convey mostly the phonetic variabil i ty, which is not very useful for 
speaker discr iminat ion. Even more, we think, that such features are even worse, as their 
dis t r ibut ion is no longer mul t imoda l and without feature clusters corresponding to broad 
acoustic classes. Such clusters are essential to be able to use speaker models based on 
G M M . 

Future work 

A s there are always new possibilities and ideas, we would like to give some directions 
of future work on this subject. Fi rs t ly , it could be interesting to t ry lower the unneeded 
variabi l i ty from segmental i-vectors somehow. We think that phoneme dependent extraction 
or Joint Factor Analys is could be used for this purpose. Secondly, the chance should be given 
to the results obtained on phoneme verification task. Maybe our feature reparametrization 
can not be used for directly for speaker recognition, but is more interesting for speech 
recognition, as a context-capturing mechanism. 

We realize, that we do not give any comparisons wi th conventional temporal feature 
extraction methods. This could be easy and straightforward, to compare the i-vector based 
representation of short segments w i th other methods, where the analysis window ranges 
over mult iple speech frames, like in the case of bottleneck features. 
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Appendix A 

Implementation details 

A . l Libraries and toolkits used 

We used the following toolkits to run and evaluate our experiments: 

• A L I Z E - t o o l k i t for biometric authent icat ion 1 

• Bosaris Toolkit - M A T L A B code for calibrating, fusing and evaluating scores from 
binary classifiers 2 

• S P r o - s i g n a l processing toolki t , feature ext rac t ion 3 

We also used the M A T L A B ® for visualizat ion purposes. 

A.2 DVD contents 
Here we highlight the important content of the D V D attached to this thesis: 

experiments/ main directory containing source code and scripts 

ester/ scripts and some data (indexes, models) used i n experiments w i th 
phoneme verification on E S T E R database. Three main directories 
are data/, baseline/ and iGMM_suite. 

sre08/ scripts used in experiments w i th speaker verification on S R E 2008. 

T V _ * / to ta l var iabi l i ty matr ix t raining (fixed, phnrec) 
reparam_*/ feature reparametrization (fixed, phnrec) 
FA_reparam_f ixed/ second stage i-vector extraction and P L D A scoring (fixed). 

Analogous directory for phnrec condit ion can be found in 
reparam_phnrec/ folder, 

tools/ general purpose scripts ( U B M training, reparametrization) 
iVector_intro.MOV short video created as an introduct ion to iVectors 
poster/ poster source files 
tex/ D T g X sources for this thesis 

xhttp://alize.univ-avignon.fr/index_en.html  
2 h t t p s : / / s i t e s . g o o g l e . c o m / s i t e / b o s a r i s t o o l k i t /  
3http://www.irisa.fr/metiss/guig/spro/ 
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A.3 How to use it? 

The main objective for us were the results, and how to get them quickly, so we apologize 
for d i r ty and messy code, w i th only a l i t t le documentation. There is nothing like graphical 
front-end. Every th ing is done by cal l ing scripts from command line. 

If there is someone interested i n this feature extraction technique, we advise h i m to 
start coding from scratch, as this w i l l be definitely faster than analyzing and adapting our 
scripts. We have not created any form of ready to use toolkit . 

We use heavily the A L I Z E toolki t . For the needs of i-vector reparametrization, we have 
created two addi t ional tools that can be used directly: 

• i X a l l s e g - feature reparametrization based on segments from external label file. 

• iXwindow-feature reparametrization based on segments selected using sl iding window 
mechanism. 

Except ordinary command line parameters 4 , these tools expect filename of saved total 
var iabi l i ty matr ix . These tools can be found i n experiments/tools/LIA_SpkDet/ folder. 
The process of reparametrization together w i th short description of related scripts can be 
found in file experiments/tools/reparametrization/README.txt. 

4http://mistral.univ-avignon.fr/mediawiki/index.php/Config_file_guide 
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