	(

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING

ENERGETICKÝ ÚSTAV

ENERGY INSTITUTE

ROŠTOVÝ KOTEL NA SPALOVÁNÍ KONTAMINOVANÉHO DŘEVA

GRATE BIOMASS BOILER

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Ondřej Dražka

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Martin Lisý, Ph.D.

BRNO 2020

Zadání diplomové práce

Ústav:	Energetický ústav
Student:	Bc. Ondřej Dražka
Studijní program:	Strojní inženýrství
Studijní obor:	Energetické inženýrství
Vedoucí práce:	Ing. Martin Lisý, Ph.D.
Akademický rok:	2019/20

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Roštový kotel na spalování kontaminovaného dřeva

Stručná charakteristika problematiky úkolu:

Práce je zaměřena na návrh kotle na spalování kontaminované biomasy. Bude obsahovat stechiometrický a tepelný výpočet kotle dle detailního zadání a rozměrový návrh kotle, včetně základní výkresové dokumentace kotle. Množství vzduchu a umístění sekundárního vzduchu ve spalovací komoře je dáno dodavatelem roštu.

Parametry kotle: výkon kotle 35 t/h, tlak přehřáté páry 4,1 MPa, teplota přehřáté páry 430 °C, teplota napájecí vody 115 °C. Bližší specifikace paliva bude provedena v rámci vypracování DP.

Cíle diplomové práce:

Provést stechiometrický a tepelný výpočet kotle. Provést základní rozměrový návrh kotle. Stanovit dosaženou účinnost kotle. Vypracovat základní schema kotle.

Seznam doporučené literatury:

ČERNÝ, Václav, Břetislav JANEBA a Jiří TEYSSLER. Parní kotle. Praha: SNTL-Nakladatelství technické literatury, 1983. Technický průvodce

DLOUHÝ, Tomáš: Výpočty kotlů a spalinových výměníků, ČVUT v Praze, 2007, ISBN 978-80--1-03757-7

BUDAJ, Florian: Tepelný výpočet kotle, VUT Brno 1983,

BALÁŠ, Marek: Kotle a výměníky tepla, Brno 2009, ISBN 978-80-214-3955-9

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2019/20

V Brně, dne

L. S.

doc. Ing. Jiří Pospíšil, Ph.D. ředitel ústavu doc. Ing. Jaroslav Katolický, Ph.D. děkan fakulty

ABSTRAKT

Tato práce je zaměřena na návrh roštového parního kotle o výkonu 35 t/h spalujícího kontaminované dřevo a sloužící k výrobě páry o teplotě 430 °C a tlaku 4,1 MPa. První část práce je věnována stechiometrickým výpočtům a stanovení účinnosti kotle. Hlavní část práce je tvořena tepelnými výpočty a rozměrovými návrhy jednotlivých teplosměnných ploch. Práce zohledňuje specifika při spalování daného paliva. Výkres základního schématu kotle je nedílnou součástí práce.

Klíčová slova

Roštový kotel, biomasa, kontaminované dřevo, vysokoteplotní koroze, tepelný výpočet

ABSTRACT

The aim of the thesis is a design of a grate steam boiler with capacity of 35 t/h and output steam parameters with temperature 430 °C and pressure 4,1 MPa. The first part of the thesis deals with stoichiometric calculations and boiler efficiency. The theses mainly focuses on the heat transfer calculation and the geometric design of individual heat transfer surfaces. The specifics of fuel are taken into consideration. The drawing of the basic boiler scheme is a part of the thesis.

Key words

Grate boiler, biomass, contaminated wood, high temperature corrosion, heat transfer calculation

BIBLIOGRAFICKÁ CITACE

DRAŽKA, Ondřej. *Roštový kotel na spalování kontaminovaného dřeva*. Brno, 2020. Dostupné z: <u>https://www.vutbr.cz/studenti/zav-prace/detail/121481</u>. Diplomová práce. Vysoké učení technické v Brně, Fakulta strojního inženýrství, Energetický ústav. Vedoucí práce Martin Lisý.

PROHLÁŠENÍ

Prohlašuji, že jsem diplomovou práci na téma **Roštový kotel na spalování kontaminovaného dřeva** vypracoval samostatně s použitím odborné literatury a pramenů, uvedených v seznamu, který tvoří přílohu této práce.

Datum

Jméno a příjmení

PODĚKOVÁNÍ

Děkuji tímto Ing. Martinu Lisému, Ph.D. za vedení v průběhu vypracování této diplomové práce. Dále děkuji odbornému konzultantovi za nespočet cenných rad a zejména jeho ochotu a možnost s ním konzultovat práci kdykoli jsem potřeboval. Také děkuji své rodině, která mě celý život podporuje a bez ní bych nebyl tam kde jsem nyní.

OBSAH

ÚV	OD		13
1	CÍL PRÁ	CE	14
	1.1 1.2	Způsob návrhu kotle Koncepce a konstrukční provedení kotle	14 15
2	PŘÍPRAV	/NÉ VÝPOČTY	16
	2.1 2.2 2.3 2.4	Přepočet paliva Stechiometrické výpočty Součinitel přebytku vzduchu a objemy vzduchu a spalin Entalpie vzduchu a spalin	
3	TEPELN	Á BILANCE KOTLE	22
	3.1 3.2	Teplo přivedené do kotle Ztráty a tepelná účinnost kotle	22
	3.2. 3.2. 3.2. 3.2. 3.2. 3.2. 3.2.	 Ztráta hořlavinou v tuhých zbytcích (mechanický nedopal) Ztráta fyzickým teplem tuhých zbytků Ztráta hořlavinou ve spalinách (chemický nedopal) Ztráta citelným teplem spalin (komínová ztráta) Ztráta sdílením tepla do okolí Tepelná účinnost kotle 	23 24 25 25 25 25 25 26
	3.3	Výrobní teplo páry a množství paliv	
4	VÝPOČE	T SPALOVACÍ KOMORY	27
	4.1 4.2 4.3	Návrh rozměrů spalovací komory Teplota nechlazeného plamene (adiabatická teplota) Tepelný výpočet ohniště	27 28 29
	4.3. 4.3.	 Výpočet skutečné teploty na konci ohniště Tepelný výkon ohniště 	
5	BILANČ	NÍ TEPELNÝ NÁVRH TEPLOSMĚNNÝCH PLOCH	
	5.1 5.2 5.3 5.4 5.5 5.6	Přehřívák P3 Přehřívák P2 Přehřívák P1 Výparník Závěsné trubky Ekonomizér	
6	NÁVRH	II. TAHU	40
	6.1 6.2	Návrh rozměrů II. tahu Tepelný výpočet	40 42
7	NÁVRH	III. TAHU	46
	7.1 7.2	Návrh délky III. tahu První část III. tahu – obratová komora	
	7.2.	1 Tepelný výpočet membránové stěny	49
	7.3	Druhá část III. tahu – Výparník	

	7.3.1 Výparník7.3.2 Membránová stěna	54 56
	7.4 Třetí část III. tahu – závěsné trubky	58
	 7.4.1 Příčné závěsné trubky 7.4.2 Podélné závěsné trubky 7.4.3 Membránová stěna 	58 62 65
	7.5 Čtvrtá část III. tahu – přehřívák P2	67
	 7.5.1 Část s přehřívákem 7.5.2 Část s membránovou stěnou 7.5.3 Část se závěsnými trubkami 	68 71 73
	7.6 Pátá část III. tahu – přehřívák P3	76
	 7.6.1 Část s přehřívákem 7.6.2 Část s membránovou stěnou 7.6.3 Část se závěsnými trubkami 	77 80 82
	7.7 Šestá část III. tahu – přehřívák P1	85
	 7.7.1 Část s přehřívákem 7.7.2 Část s membránovou stěnou 7.7.3 Část se závěsnými trubkami 	86 89 91
	7.8 Sedmá část III. tahu – ekonomizér E7	94
	 7.8.1 Část s ekonomizérem 7.8.2 Část s membránovou stěnou 7.8.3 Část se závěsnými trubkami 	95 98 100
	7.9 Osmá část III. tahu – ekonomizér E6	103
	 7.9.1 Část s ekonomizérem 7.9.2 Část s membránovou stěnou 7.9.3 Část se závěsnými trubkami 	104 107 108
8	NÁVRH OHŘÍVÁKU VZDUCHU	112
	 8.1 Návrh rozměrů OVZ 8.2 Tepelný výpočet OVZ 	112 114
9 10 11	NÁVRH IV. TAHU KONTROLA TEPELNÉ BILANCE Kontrola nízkoteplotní a vysokoteplotní koroze	118 122 124
	 11.1 Nízkoteplotní koroze – rosný bod 11.2 Vysokoteplotní koroze 	124 125
12 13 14 15	ZÁVĚR SEZNAM POUŽITÝCH ZDROJŮ SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK SEZNAM OBRÁZKŮ	126 127 128 134
16 17	SEZNAM TABULEK SEZNAM PŘÍLOH	135

ÚVOD

V posledních letech je v celosvětové (a zejména v evropské) energetice snaha vyrábět energii co nejčistším způsobem. Přísné emisní limity jsou dány legislativou a jejich nedodržení je pokutováno. Elektrické spotřebiče dnešní doby mají oproti minulosti menší spotřebu energie, zato jich je ale více a také rychle roste počet jejich uživatelů. Potřeba elektrické energie se tedy stále zvyšuje. Primárním zdrojem elektrické energie jsou tepelné a jaderné elektrárny. S ubývajícími zásobami fosilních paliv je však třeba poohlížet se po alternativních zdrojích, zejména pak takových, které jsou udržitelné. Řeč je o tzv. obnovitelných zdrojích, mezi které patří vodní, větrná nebo sluneční energie. Do této skupiny se také řadí biomasa. Spalováním biomasy se uvolní stejné množství oxidu uhličitého, které bylo třeba pro její vznik. Biomasa je tedy důležitá nejen z pohledu své obnovitelnosti, ale i z hlediska neutrálnosti uhlíkové stopy. Dřevní biomasa je ve své podstatě nejstarším, a dlouho dobu také prakticky jediným palivem pro získávání tepelné energie. Jedním z druhů biomasy je tzv. odpadní biomasa. Tato biomasa může být produktem například zemědělské výroby, těžby dřeva nebo také dřevozpracujícího a stavebního průmyslu.

Palivo uvažované pro navrhovaný kotel je kontaminované dřevo. Jedná se o dřevo, které bylo v průběhu zpracování nějakým způsobem kontaminováno, například různými nástřiky, nátěry, mořením, lepidly apod. Takto ošetřené dřevo obsahuje značné množství znečišťujících látek. Z hlediska spalování je třeba sledovat zejména obsah chloru a síry v palivu. Obsah chloru a vysoká teplota spalin vede k vysokoteplotní korozi, obsah síry ke zvýšení teploty rosného bodu a tím ke zvýšení rizika vzniku nízkoteplotní koroze. Tato rizika byla v rámci návrhu kotle brána v potaz a byla navrhnuta vhodná opatření. Při spalování takovéhoto paliva je legislativou dán požadavek na setrvání spalin za posledním přívodem vzduchu do spalovací komory nad teplotou 850 °C po dobu alespoň dvou sekund.

1 CÍL PRÁCE

Cílem této diplomové práce je návrh roštového kotle na výrobu přehřáté páry s přirozenou cirkulací na spalování kontaminovaného dřeva. Návrh se skládá z přípravných stechiometrických výpočtů a následně tepelného výpočtu kotle. Dále je třeba provést základní rozměrový návrh kotle, stanovit dosaženou účinnost kotle a vypracovat základní schéma kotle. Zadané parametry potřebné pro výpočet jsou uvedeny v tabulce 1.1.

Parametr	Označení	Hodnota	Jednotka
Parní výkon kotle	M _{pp}	35	t/h
Tlak přehřáté páry	p _{pp}	4,1	MPa
Teplota přehřáté páry	t _{pp}	430	°C
Teplota napájecí vody	t _{nv}	115	°C
Výhřevnost paliva	Q_i^r	12,1	MJ/kg
	C ^{daf}	0,5312	-
	N ^{daf}	0,01	-
Dendrar é ala žané ha žlavány	S ^{daf}	0,0008	-
Prvkove složení norlaviný	H ^{daf}	0,05	-
	0 ^{daf}	0,403	-
	Cl ^{daf} max	0,005	-
Obsah popela v bezvodém stavu	Aď	0,04	-
Obsah vody v původním stavu	W ^r	0,3	-

Tab. 1.1 Zadané parametry

1.1 Způsob návrhu kotle

Návrh kotle je vypracován, pokud není uvedeno jinak, na základě metodiky popsané v knize "Parní kotle: Podklady pro tepelný výpočet" [1] a také na základě odborných konzultací, poznatků z praxe a zkušeností s návrhy parních kotlů poskytnuté odborným konzultantem.

Výpočty jsou zpracovány v programu MS Excel. Program počítá s přesnými, nezaokrouhlenými hodnotami, avšak v textové části jsou výpočty pro přehlednost zaokrouhleny na menší počet desetinných míst. Parametry páry potřebné pro výpočet byly určeny pomocí MS Excel pluginu – Thermo Tables. Samotná diplomová práce je sepsána v programu MS Word a všechna schémata, nákresy a výkres kotle jsou vypracovány v programu AutoCAD.

1.2 Koncepce a konstrukční provedení kotle

Kotel je navržen jako bubnový s přirozenou cirkulací parovodní směsi ve výparném systému. Kotel je tvořen celkem čtyřmi tahy. Až na poslední tah jsou všechny chlazeny membránovou stěnou výparníku. Čtvrtý tah tvoří nechlazené plechové stěny. Návrhový parní výkon kotle je 35 t/h, pára odcházející z kotle má teplotu 430 °C a tlak 4,1 MPa. Teplota napájecí vody je 115 °C.

Jako palivo je použito kontaminované dřevo (lakované a penetrované dřevo, stavební odpad, dřevní odpad z nábytkářské výroby...). Během výpočtu byl brán zřetel na obsah síry a zejména chloru v palivu, a celá koncepce kole je navržena tak, aby byly zajištěny jak podmínky dané legislativou, tak i ochrana tlakových částí kotle před vysokoteplotní korozí.

Rošt je protiběžný přesuvný vzduchem chlazený s pneumatickým pohazováním paliva. Část paliva shoří ve vznosu nad roštem, větší částice pak dohořívají přímo na roštu. Palivo je na rošt dopravováno šnekovým dopravníkem. Primární vzduch je ohříván vodou z ekonomizéru v ohříváku vzduchu umístěném mimo kotel na teplotu 200 °C. Následně je přiveden pod rošt.

Nad roštem je umístěna spalovací komora tvořena membránovou stěnou. V přední a zadní stěně jsou v několika úrovních rozmístěny trysky sekundárního vzduchu, který slouží k vyhoření prchavé hořlaviny. Z důvodu nutnosti setrvání spalin po dobu alespoň 2 vteřin nad teplotou 850 °C byla větší část spalovací komory opařena vyzdívkou.

Na spalovací komoru navazuje druhý tah, který je prázdný, a slouží k vychlazení spalin před vstupem do části s přehříváky.

Druhý a třetí tah je propojen obratovou komorou, která tvoří výsypku. Ta je určena k odloučení popílku v úletu, který je následně dopraven zpět do ohniště. Tím dojde k vyhoření nespálené hořlaviny obsažené v popílku.

Ve třetím tahu jsou umístěny trubky výparníku pro zajištění dostatečného výkonu výparného systému. Dále pak všechny tři přehříváky a dva díly ekonomizéru. Jako jedno ze dvou preventivních opatření proti vysokoteplotní korozi byl jako první umístěn přehřívák P2, poté P3 a jako poslední P1. Druhým opatřením bylo navržení přehříváků P2 a P3 jako souproudých. Tato opatření byla v závěrečné části práce ověřena. Svazky přehříváků a ekonomizérů třetího tahu jsou zavěšeny na závěsných trubkách, které jsou chlazeny sytou párou z bubnu. Ta následně vstupuje do přehříváků. Teplota páry je regulována vstřiky napájecí vody. První vstřik je umístěn mezi přehříváky P1 a P2, druhý pak mezi přehříváky P2 a P3.

Čtvrtý tah je vyplněn posledními čtyřmi svazky ekonomizéru, které jsou zavěšeny na nechlazených závěsech. Na čtvrtý tah navazuje tzv. zákotlí, ve kterém dochází k čištění spalin, to však není předmětem této práce.

2 PŘÍPRAVNÉ VÝPOČTY

V této kapitole jsou provedeny výpočty přepočtu složení paliva, stechiometrické výpočty a také výpočty entalpií spalin a vzduchu. Vypočtené hodnoty jsou vztaženy na 1 kg spáleného paliva.

2.1 Přepočet paliva

Ze všeho nejdříve je třeba přepočítat složení paliva pro původní stav. Takto přepočtené palivo lze následně použít při stechiometrických výpočtech.

Složení paliva v původním stavu

$$A^{r} = A^{d} \cdot (1 - W^{r}) = 0.04 \cdot (1 - 0.3) = 0.2800$$
(2.1)

$$C^{r} = C^{daf} \cdot (1 - A^{r} - W^{r}) = 0,5312 \cdot (1 - 0,0280 - 0,3) = 0,3570$$
(2.2)

$$N^{r} = N^{daf} \cdot (1 - A^{r} - W^{r}) = 0.05 \cdot (1 - 0.0280 - 0.3) = 0.0067$$
(2.3)

$$S^{r} = S^{daf} \cdot (1 - A^{r} - W^{r}) = 0,0008 \cdot (1 - 0,0280 - 0,3) = 0,005$$
(2.4)

$$H^{r} = H^{daf} \cdot (1 - A^{r} - W^{r}) = 0,01 \cdot (1 - 0,0280 - 0,3) = 0,0336$$
(2.5)

$$O^{r} = O^{daf} \cdot (1 - A^{r} - W^{r}) = 0,403 \cdot (1 - 0,0280 - 0,3) = 0,2708$$
(2.6)

$$Cl^r = Cl_{max}^{daf} \cdot (1 - A^r - W^r) = 0,005 \cdot (1 - 0,0280 - 0,3) = 0,0034$$
 (2.7)

Kontrola složení paliva

$$A^{r} + C^{r} + N^{r} + S^{r} + H^{r} + O^{r} + Cl^{r} + W^{r} =$$
(2.8)

= 0,2800 + 0,3570 + 0,0067 + 0,005 + 0,0336 + 0,2708 + 0,0034 + 0,3 = 1

2.2 Stechiometrické výpočty

Cílem stechiometrických výpočtů je určení objemu vzduchu, který je potřeba pro spálení jednotkového množství paliva a dále také určení objemu spalin, které jeho spálením vzniknou. Při těchto výpočtech se vychází ze složení paliva v hmotnostních podílech pro původní stav. Ve vzorcích je objem při normálních podmínkách, tedy při teplotě 0 °C a tlaku 101 325 kPa.

Minimální objem kyslíku potřebný pro spálení 1 kg paliva:

$$O_{O_{2\,min}} = 22,39 \cdot \left(\frac{C^r}{12,01} + \frac{H^r}{4,032} + \frac{S^r}{32,06} + \frac{O^r}{32}\right)$$

$$O_{O_{2\,min}} = 22,39 \cdot \left(\frac{0,3570}{12,01} + \frac{0,0336}{4,032} + \frac{0,0005}{32,06} + \frac{0,2708}{32}\right) = 1,0419 \ m^3/kg$$
(2.9)

kde S^r je obsah prchavé složky síry v původním stavu paliva. Při výpočtu byl uvažován celkový obsah síry v palivu, protože z rozboru paliva nebylo možné zjistit podíl prchavé hořlaviny. Tato skutečnost má však na výpočet zanedbatelný vliv, jelikož obsah síry v palivu je minimální.

Minimální objem suchého vzduchu potřebný pro spálení 1 kg paliva:

$$O_{vz,min}^{s} = \frac{100}{21} \cdot O_{O_{2}min}$$

$$O_{vz,min}^{s} = \frac{100}{21} \cdot 1,0419 = 4,9616 \ m^{3}/kg$$
(2.10)

Minimální objem vlhkého vzduchu potřebný pro spálení 1 kg paliva:

$$O_{vz,min} = f \cdot O_{vz,min}^{s} =$$

$$O_{vz,min} = 1,016 \cdot 4,9616 = 5,0449 \ m^{3}/kg$$
(2.11)

kde f je součinitel vyjadřující podíl vodní páry připadající na 1 m³ suchého vzduchu. Podle [2] lze pro běžné podmínky, tedy teplotu 20 °C a relativní vlhkost vzduchu 70 % uvažovat hodnotu tohoto součinitele jako 1,016.

Minimální objem suchých spalin vzniklý spálením 1 kg paliva (bez přebytku vzduchu):

$$O_{sp,min}^{s} = O_{CO_2} + O_{SO_2} + O_{N_2} + O_{Ar}$$

$$O_{sp,min}^{s} = 0,6631 + 0,0004 + 3,8779 + 0,0456 = 4,5870 \frac{m^3}{kg}$$
(2.12)

kde objem CO2 ve spalinách se určí ze vzorce

$$O_{CO_2} = \frac{22,26}{12,01} \cdot C^r + 0,0003 \cdot O_{vz,min}^s$$

$$O_{CO_2} = \frac{22,26}{12,01} \cdot 0,3570 + 0,0003 \cdot 4,9616 = 0,6631 \frac{m^3}{kg}$$
(2.13)

objem SO2 se určí ze vzorce

$$O_{SO_2} = \frac{21,89}{32,06} \cdot S^r$$

$$O_{SO_2} = \frac{21,89}{32,06} \cdot 0,0005 = 0,0004 \ m^3/_{kg}$$
(2.14)

objem N2 se určí ze vzorce

$$O_{N_2} = \frac{22.4}{28,016} \cdot N^r + 0.7805 \cdot O_{\nu z,min}^s$$

$$O_{N_2} = \frac{22.4}{27,016} \cdot 0.0067 + 0.7805 \cdot 4.9616 = 3.8779 \ m^3/kg$$
(2.15)

a objem Ar se určí ze vzorce

$$O_{Ar} = 0,0092 \cdot O_{vz,min}^{s}$$

$$O_{Ar} = 0,0092 \cdot 4,9616 = 0,0456 \ m^{3}/kg$$
(2.16)

Minimální objem vodní páry:

$$O_{H_2O,min} = \frac{44,8}{100} \cdot \frac{H^r}{4,032} + \frac{22,4}{100} \cdot \frac{W^r}{17,016} + (f-1) \cdot O_{\nu z,min}^s$$

$$O_{H_2O,min} = \frac{44,8}{100} \cdot \frac{3,36}{4,032} + \frac{22,4}{100} \cdot \frac{30}{17,016} + (1,016-1) \cdot 4,9616 = 0,8516 \frac{m^3}{kg}$$
(2.17)

Minimální objem vlhkých spalin vzniklý spálením 1 kg paliva:

$$O_{sp,min} = O_{sp,min}^{s} + O_{H_2O,min}$$
(2.18)

 $O_{sp,min} = 4,5870 + 0,8257 = 5,4386 \frac{m^3}{kg}$

2.3 Součinitel přebytku vzduchu a objemy vzduchu a spalin

Součinitel přebytku vzduchu je dle [1] dán typem roštu a obsahem popela v sušině. Pro výpočet byla navrhnuta hodnota 1,35. Tato hodnota byla po odborné konzultaci schválena.

Skutečný objem vzduchu potřebný pro spálení 1 kg paliva:

$$O_{vz} = \alpha \cdot O_{vz,min}$$
 (2.19)
 $O_{vz} = 1,35 \cdot 5,0449 = 6,8107 \ m^3/_{kg}$

Skutečný objem vlhkých spalin ze spálení 1 kg paliva:

$$O_{sp} = O_{sp,min} + (\alpha - 1) \cdot O_{vz,min}$$

$$O_{sp} = 5,4386 + (1,35 - 1) \cdot 5,0449 = 7,2043 \frac{m^3}{kg}$$
(2.20)

Objemové části tříatomových plynů:

$$r_{RO_2} = \frac{O_{SO_2} + O_{CO_2}}{O_{SP}}$$

$$r_{RO_2} = \frac{0,0004 + 0,6631}{7,2043} = 0,0921$$

$$r_{RO_2} = \frac{O_{H_2O}}{0}$$

$$(2.22)$$

$$r_{H_2O} = \frac{O_{H_2O}}{O_{SP}}$$
(2.22)

$$r_{H_20} = \frac{0,8808}{7,2043} = 0,1223$$

kde objem vodní páry se určí ze vzorce

$$O_{H_2O} = O_{H_2O,min} + (f-1) \cdot (\alpha - 1) \cdot O_{\nu z,min}^s$$
(2.23)

 $O_{H_20} = 0,8516 + (1,016 - 1) \cdot (\alpha - 1) \cdot 4,9616 = 0,8808 \ m^3/kg$

Součet objemových částí tříatomových plynů:

$$r_{SP} = r_{RO_2} + r_{H_2O}$$

$$r_{SP} = 0,0921 + 0,1223 = 0,2144$$
(2.24)

Koncentrace popílku ve spalinách:

$$\mu = \frac{10A^r}{O_{SP}} \cdot \frac{x_p}{100}$$

$$\mu = \frac{2.8}{7,2043} \cdot \frac{40}{100} = 1,5546 \frac{g}{m^3}$$
(2.25)

kde *x_p* je procento popela v úletu a na základě odborné konzultace je voleno 40 %.

2.4 Entalpie vzduchu a spalin

Taulata (°C)	Měrné entalpie složek spalin a vzduchu [kJ/Nm ³]							
replota [Cj	CO ₂	SO ₂	N ₂	Ar	H ₂ O	Vzduch		
0	0	0	0	0	0	0		
25	41,62	<mark>46,81</mark>	32,53	23,32	39,10	32,57		
100	170,00	191,20	129,50	93,07	150,60	132,30		
200	357,50	394,10	259,90	186,00	304,50	266,20		
300	558,80	610,40	392,10	278,80	462,80	402,50		
400	771,90	836,50	526,70	371,70	625,90	541,70		
500	994,40	1070,00	664,00	464,70	794,50	684,10		
600	1225,00	1310,00	804,30	557,30	968,80	829,60		
700	1462,00	1554,00	947,30	650,20	1149,00	978,10		
800	1705,00	1801,00	1093,00	743,10	1335,00	1129,00		
900	1952,00	2052,00	1241,00	835,70	1526,00	1283,00		
1000	2203,00	2304,00	1392,00	928,20	1723,00	1439,00		
1100	2458,00	2540,00	1544,00	1020,00	1925,00	1597,00		
1200	2716,00	2803,00	1698,00	1114,00	2132,00	1756,00		
1300	2976,00	3063 <mark>,</mark> 00	1853,00	1207,00	2344,00	1916,00		

Tab. 2.1 Měrné entalpie složek spalin a vzduchu [1]

Entalpie spalin vzniklých spálením 1 kg paliva:

$$I_{sp} = I_{sp,min} + (\alpha - 1) \cdot I_{vz\,min} + I_P \tag{2.26}$$

$$I_{sp} = 747,4853 + (1,35 - 1) \cdot 656,4163 + 0 = 977,2310 \frac{kJ}{kg}$$

kde IsP,min je entalpie spalin při spalování bez přebytku vzduchu vypočtená dle vzorce

$$I_{sp,min} = O_{CO_2} \cdot i_{CO_2} + O_{SO_2} \cdot i_{SO_2} + O_{N_2} \cdot i_{N_2} + O_{H_2O,min} \cdot i_{H_2O,min} + O_{Ar} \cdot i_{Ar}$$
(2.27)

$$I_{sp,min} = 0,6631 \cdot 170 + 0,0004 \cdot 191,20 + 3,8779 \cdot 129,50 + 0,8257 \cdot 150,60 + 0,0456 \cdot 93,07$$

 $I_{sp,min} = 747,4853 \frac{kJ}{kg}$

a $I_{vz,min}$ je entalpie minimálního objemu vzduchu vypočtená podle vzorce

$$I_{vz,min} = O_{vz,min}^{s} \cdot i_{vz,min} = 5,0449 \cdot 132,30 = 656,4163 \frac{kJ}{kg}$$
(2.28)

kde ivz, min je měrná entalpie vzduchu odečtená z tabulky 2.1

a I_P je entalpie popílku. Ta se dle [1] uvažuje pouze v případě splnění podmínky

$$A^{r} > \frac{6 \cdot Q_{i}^{r}}{41,8 \cdot X_{p}}$$

$$2,8 > \frac{6 \cdot 12100}{41,8 \cdot 40}$$

$$2,8 > 43,4211$$
(2.29)

Podmínka není splněna, proto se entalpie popílku ve výpočtu entalpie spalin vzniklých spálením 1 kg paliva neuvažuje. Vzorový výpočet byl proveden pro teplotu 100 °C. Výpočet byl dále proveden pro všechny tabelované teploty a výsledky entalpií spalin, vzduchu a spalin s přebytkem vzduchu byly přehledně zaneseny do tabulky 2.2.

Teplota [°C] I _{S,r}			ISP [kJ/kg]					
	I _{S,min} [KJ/Kg]	I _{V,min} [KJ/Kg]	α=1	α=1,2	α=1,25	α=1,3	α=1,35	α=1,4
0	0	0	0	0	0	0	0,00	0,00
25	188,13	161,60	188,13	220,45	228,53	236,61	244,69	252,77
100	747,49	656,42	747,49	878,77	911,59	944,41	977,23	1010,05
200	1512,87	1320,77	1512,87	1777,03	1843,07	1909,10	1975,14	2041,18
300	2298,14	1997,03	2298,14	2697,55	2797,40	2897,25	2997,10	3096,95
400	3104,63	2687,68	3104,63	3642,17	3776,55	3910,94	4045,32	4179,71
500	3932,52	3394,21	3932,52	4611,36	4781,07	4950,78	5120,49	5290,20
600	4782,25	4116,12	4782,25	5605,47	5811,28	6017,09	6222,89	6428,70
700	5651,73	4852,92	5651,73	6622,32	6864,96	7107,61	7350,25	7592,90
800	6540,61	5601,62	6540,61	7660,93	7941,01	8221,09	8501,17	8781,25
900	7445,30	6365,70	7445,30	8718,44	9036,72	9355,01	9673,29	9991,58
1000	8369,38	7139,71	8369,38	9797,32	10154,31	10511,29	10868,28	11225,26
1100	9304,21	7923,63	9304,21	10888,94	11285,12	11681,30	12077,49	12473,67
1200	10253,16	8712,52	10253,16	11995,67	12431,29	12866,92	13302,54	13738,17
1300	11211,52	9506,38	11211,52	13112,80	13588,12	14063,44	14538,76	15014,07

Tab. 2.2 Entalpie spalin, vzduchu a spalin s přebytkem vzduchu

3 TEPELNÁ BILANCE KOTLE

V rámci této kapitoly byla provedena tepelná bilance kotle spolu se stanovením účinnosti a potřebného množství paliva pro dosažení požadovaného tepelného výkonu.

3.1 Teplo přivedené do kotle

Teplo, které se přivede do kotle na 1 kg paliva se určí dle vzorce

$$Q_p^p = Q_i^r + i_p = 12100 + 40,96 = 12\,140,96 \frac{kJ}{kg}$$
(3.1)

kde i_p je fyzické teplo paliva. To se započítává v případě, že je palivo ohříváno mimo kotel nebo také v případě sušení paliva v otevřeném mlecím okruhu. Pokud palivo není předehříváno, uvažuje se fyzické teplo jen u paliv s obsahem vody dle podmínky

$$W^{r} \ge \frac{Q_{i}^{r}}{4,19 \cdot 150}$$
(3.2)
$$30 \ge \frac{12100}{4,19 \cdot 150}$$
$$30 \ge 19,2522$$

Podmínka je splněna. Fyzické teplo paliva se pak určí ze vzorce

$$i_p = c_p \cdot t_p = 2,0480 \cdot 20 = 40,96 \frac{kJ}{kg}$$
 (3.3)

kde c_p je teplená kapacita paliva a je dána obsahem vody a sušiny a jejich měrnými tepelnými kapacitami a určí se ze vzorce

$$c_p = c_w \cdot \frac{W_t^r}{100} + c_{su} \cdot \frac{100 - W_t^r}{100} = 4,19 \cdot \frac{30}{100} + 1,13 \cdot \frac{100 - 30}{100} = 2,0480 \frac{kJ}{kg}$$
(3.4)

hodnota měrné tepelné kapacity pro sušinu byla zvolena na základě odborné konzultace.

3.2 Ztráty a tepelná účinnost kotle

Tepelná účinnost kotle byla určena nepřímou metodou, která je založena na stanovení jednotlivých ztrát. V tabulce 3.1 je uvedeno poměrné rozložení popele v kotli spolu s jeho parametry. Poměry a teploty daných tuhých zbytků byly stanoveny na základě odborné konzultace. Tepelná účinnost kotle je vypočtena v podkapitole 3.2.6.

	X _i [-]	C _i [-]	t _i [°C]	c _i [kJ/kg [·] K]
Propad	<mark>0,6</mark> 0	0,05	400,00	0,9
Škvára II. III.	0,00	0,00	-	12.
Škvára IV.	0,15	0,30	400	0,9
Úlet	0,25	0,25	170	0,8346

Tab. 3.1 Rozložení a parametry popela v kotli

Kde: *X_i* je podíl popela z celkového množství v palivu

Ci je podíl hořlaviny v uvažovaném druhu tuhých zbytků

ti je teplota popílku

ci je měrná tepelná kapacita popílku pro teplotu ti [1]

3.2.1 Ztráta hořlavinou v tuhých zbytcích (mechanický nedopal)

Tato ztráta je způsobena obsahem nespálené hořlaviny v tuhých zbytcích, které odcházejí z kotle a byla vypočtena jako součet dílčích ztrát mechanickým nedopalem.

$$z_c = z_r + z_{cs23} + z_{cs4} + z_{ci} = 0,0024 + 0 + 0,0048 + 0,0063 = 0,0135$$
(3.5)

kde *z_r* je ztráta propadem

 z_{cs23} je ztráta ve škváře ve II. a III. tahu kotle z_{cs4} je ztráta ve škváře ve IV. tahu kotle $z_{cú}$ je ztráta v úletu

Tyto dílčí ztráty byly vypočteny podle následujícího vzorce:

$$z_{ci} = \frac{C_i}{1 - C_i} \cdot X_i \cdot \frac{A^r}{Q_p^p} \cdot Q_{ci}$$
(3.6)

Kde Q_{ci} je výhřevnost hořlaviny uvažovaného druhu tuhých zbytků. Dle [1] lze uvažovat hodnotu 32 600 kj/kg.

Ztráta propadem

$$z_{cr} = \frac{C_{cr}}{1 - C_{cr}} \cdot X_r \cdot \frac{A^r}{Q_p^p} \cdot Q_{cr} = \frac{0.05}{1 - 0.05} \cdot 0.6 \cdot \frac{0.028}{12140.96} \cdot 32600 = 0.0024$$
(3.7)

Ztráta ve škváře ve II. a III. tahu

Z důvodu snížení ztráty je popílek zachycený ve výsypce v obratové komoře mezi II. a III. tahem dopraven zpět do ohniště. Díky této recirkulaci je ztráta ve škváře ve II. a III. tahu nulová.

$$z_{cs23} = 0$$
 (3.8)

Ztráta ve škváře ve IV. tahu

$$z_{cs4} = \frac{C_{cs4}}{1 - C_{cs4}} \cdot X_{cs4} \cdot \frac{A^r}{Q_p^p} \cdot Q_{cs4} = \frac{0,30}{1 - 0,30} \cdot 0,15 \cdot \frac{0,028}{12140,96} \cdot 32600 = 0,0048$$
(3.9)

Ztráta v úletu

$$z_{c\acute{u}} = \frac{C_{c\acute{u}}}{1 - C_{c\acute{u}}} \cdot X_{c\acute{u}} \cdot \frac{A^r}{Q_p^p} \cdot Q_{c\acute{u}} = \frac{0.25}{1 - 0.25} \cdot 0.25 \frac{0.028}{12140.96} \cdot 32600 = 0.0063$$
(3.10)

3.2.2 Ztráta fyzickým teplem tuhých zbytků

Stejně jako v případě ztráty mechanickým nedopalem i tato ztráta je součtem dílčích ztrát.

$$z_f = z_{fr} + z_{fs23} + z_{fs4} + z_{fi} = 0,00125 + 0 + 0,00015 + 0,00013 = 0,0015$$
(3.11)

Ztráta propadem

$$z_{fr} = \frac{X_r}{1 - C_r} \cdot \frac{A^r}{Q_P^P} \cdot c_r \cdot t_r = \frac{0.6}{1 - 0.5} \cdot \frac{0.028}{12140.96} \cdot 0.9000 \cdot 400 = 0.00125$$
(3.12)

Ztráta ve škváře ve II. a III. tahu

Z důvodu recirkulace popílku je tato ztráta nulová.

$$z_{fs23} = 0 (3.13)$$

Ztráta ve škváře ve IV. tahu

$$z_{fs4} = \frac{X_{fs}}{1 - C_{fs}} \cdot \frac{A^r}{Q_P^P} \cdot c_{fs} \cdot t_{fs} = \frac{0.15}{1 - 0.3} \cdot \frac{2.8}{12140.96} \cdot 0.9000 \cdot 400 = 0.00015$$
(3.14)

Ztráta v úletu

$$z_{f\acute{u}} = \frac{X_{f\acute{u}}}{1 - C_{f\acute{u}}} \cdot \frac{A^r}{Q_P^P} \cdot c_{f\acute{u}} \cdot t_{f\acute{u}} = \frac{0.25}{1 - 0.25} \cdot \frac{2.8}{12140.96} \cdot 0.8346 \cdot 170 = 0.00013$$
(3.15)

3.2.3 Ztráta hořlavinou ve spalinách (chemický nedopal)

Tato ztráta dosahuje velmi malých hodnot, zejména pak u nových zařízení. Podle [2] lze ztrátu chemickým nedopalem určit dle vzorce

$$z_{co} = \frac{0.2116 \cdot mgCO \cdot O_{ss,min}}{\left(21 - O_{2ref}\right) \cdot Q_p^p} = \frac{0.2116 \cdot 100 \cdot 4.5870}{(21 - 11) \cdot 12140.96} = 0,0008$$
(3.16)

kde mgCO je emisní limit CO a po odborné konzultaci byla jeho hodnota stanovena na 100 mg/m³ a O_{2ref} je obsah kyslíku pro referenční stav spalin (pro dřevo je roven 11 %).

3.2.4 Ztráta citelným teplem spalin (komínová ztráta)

Komínová ztráta má největší vliv na účinnost. Co do velikosti, jedná se o nejvýznamnější ztrátu. Byla vypočtena na základě následujícího vzorce

$$z_k = (1 - z_c) \cdot \frac{I_{sp} - I_{vz}}{Q_p^p} = (1 - 0.0135) \cdot \frac{1675.77 - 218.16}{12140} = 0.1184$$
(3.17)

kde I_{sp} je entalpie spalin odečtená pro teplotu odchozích spalin (170 °C) lineární interpolací z tabulky 2.2. Teplota odchozích spalin byla konzultována. I_{vz} je entalpie vzduchu s daným přebytkem vzduchu pro teplotu vzduchu 25 °C. Výpočet byl proveden dle vzorce

$$I_{vz} = \alpha \cdot I_{vz,min} = 1,35 \cdot 161,60 = 218,16 \frac{kJ}{kg}$$
(3.18)

3.2.5 Ztráta sdílením tepla do okolí

Tato ztráta představuje množství tepla, které uniká stěnami kotle do okolí. Na základě odborné konzultace byla tato ztráta vypočtena jinak, než dle postupu uvedeného v [1], a to sice dle normy ČSN EN 12952-15

$$z_s = \frac{Q_{RC}}{Q_N} = \frac{0,3183}{27,2257} = 0,0117$$
(3.19)

kde Q_{RC} je ztrátové teplo kotle dle vzorce

$$Q_{RC} = Q_N^{0,7} \cdot c = 27\ 197, 14^{0,7} \cdot 0,0315 = 0,3183\ MW \tag{3.20}$$

Součinitel c byl volen na základě konzultace 0,0315

a Q_N je tepelný výkon kotle dle vzorce

$$Q_N = M_{pp} \cdot \left(i_{pp} - i_{nv}\right) = \frac{35}{3.6} \cdot (3283,1504 - 428,7966) = 27,2257 \, MW \tag{3.21}$$

Kde M_{pp} je parní výkon kotle [kg/s]

 i_{pp} je entalpie výstupní přehřáté páry [kJ/kg] pro teplotu 430 °C tlak 4,1 MPa i_{nv} je entalpie napájecí vody [kJ/kg] pro teplotu 115 °C a tlak 5,1 MPa

3.2.6 Tepelná účinnost kotle

Tepelná účinnost kotle vypočtená nepřímou metodou

$$\eta_k = 1 - z_c - z_f - z_{co} - z_k - z_s =$$

$$= 1 - 0,0135 - 0,0015 - 0,0008 - 0,1184 - 0,0117 = 85,41\%$$
(3.22)

3.3 Výrobní teplo páry a množství paliv

Při výpočtu výrobního tepla páry bylo bráno v potaz, že se neprovádí přihřívání páry, ani se pára neodebírá. Množství odluhu bylo zkonzultováno a jeho hodnota zvolena jako 0,5 %, což je menší, než 2 % a proto jej lze dle [1] při výpočtu výrobního tepla zanedbat. Výrobní teplo se tedy vypočte dle následujícího vzorce

$$Q_{\nu} = M_{pp} \cdot (i_{pp} - i_{n\nu}) = Q_N = 27\ 225,66\ kW \tag{3.23}$$

Množství paliva přivedeného do kotle

$$M_p = \frac{Q_v}{Q_p^p \cdot \frac{\eta_k}{100}} = \frac{27225,6618}{12140,96 \cdot 0,8541} = 2,6256 \frac{kg}{s}$$
(3.24)

Skutečně spálené palivo (výpočtové)

$$M_{pv} = M_p \cdot (1 - z_c) = 2,6256 \cdot (1 - 0,0135) = 2,5902 \frac{kg}{s}$$
(3.25)

4 VÝPOČET SPALOVACÍ KOMORY

V rámci této kapitoly byl proveden návrh rozměrů spalovací komory, výpočet adiabatické teploty v ohništi a teploty na výstupu z ohniště a dále byl proveden tepelný výpočet ohniště.

4.1 Návrh rozměrů spalovací komory

Návrh rozměrů ohniště vychází z plošného zatížení roštu. To by pro daný typ roštu mělo být v rozmezí od 1,8 do 2,2 MW/m². Pro prvotní výpočet byla zvolena střední hodnota, tedy 2 MW/m². Ze vzorce pro plošné zatížení byl vyjádřen vztah pro výpočet plochy roštu

$$S_{roš} = \frac{M_p \cdot Q_i^r}{q_s} = \frac{2,6256 \cdot 12140,96}{2} = 15,94 \ m^2 \tag{4.1}$$

Spalovací komora je tvořena membránovými stěnami, které se skládají z trubek, ve kterých proudí parovodní směs. Tyto trubky mají průměr 60,3 mm a rozteč 90 mm. Délka (hloubka) spalovací komory tedy musí být násobkem této rozteče. Délka spalovací komory byla volena 3,51 m a je shodná s délkou roštu. Šířka roštu pak vychází jako podíl plochy roštu a jeho délky. Šířka spalovací komory je však oproti šířce roštu větší o průměr zavodňovací trubky (219,1 mm) a dvojnásobek tloušťky těsnění, která byla na základě odborné konzultace volena jako 25 mm. Šířka spalovací komory se tedy vypočítá následovně:

$$b_{oh} = b_{roš} + D + 2 \cdot t_{t\check{e}s} = 4,23 + 0,2191 + 2 \cdot 0,025 = 4,5 m \tag{4.2}$$

skutečná plocha roštu je pak

$$S_{roš}^{sk} = a_{roš} \cdot b_{roš} = 3,51 \cdot 4,23 = 14,85 \ m^2 \tag{4.3}$$

a skutečné plošné zatížení roštu

$$q_s^{sk} = \frac{M_p \cdot Q_i^r}{S_{roš}^{sk}} = \frac{2,6256 \cdot 12100}{14,85} = 3,14 \ MW/m^2$$
(4.4)

Výška spalovací komory by se za jiných okolností dle [1] řídila objemovým zatížením ohniště. V tomto případě je však určujícím parametrem pro výšku spalovací komory délka dráhy spalin. Je třeba, aby spaliny za poslední tryskou sekundárního vzduchu setrvaly nejméně po dobu 2 sekund nad teplotou 850 °C.

Minimální délka dráhy spalin

$$l_{sp} = w_{sp} \cdot t_{min} = 8,3531 \cdot 2 = 16,70 \ m \tag{4.5}$$

kde rychlost spalin je vypočtena jako

$$w_{sp} = w_{sp,st\check{r}}^{oh} \cdot k_{sp}^{rp} = 5,576 \cdot 1,5 = 8,35 \ m/s \tag{4.6}$$

kde k_{sp}^{rp} je koeficient vyjadřující navýšení rychlosti v ose profilu oproti střední rychlosti proudu spalin $w_{sp,st\tilde{r}}^{oh}$, která vypočte jako

$$w_{sp,str}^{oh} = \frac{M_{sp}^{skut}}{S_{oh}} = \frac{M_{sp}^{skut}}{a_{oh} \cdot b_{oh}} = \frac{86,15}{3,51 \cdot 4,5} = 5,57 \ m/s$$
(4.7)

Skutečný objemový průtok spalin

$$M_{sp}^{skut} = M_{sp} \cdot \left(\frac{t_{sp}^{str} + 273,15}{273,15}\right) = 18,6609 \cdot \left(\frac{1014,34 + 273,15}{273,15}\right) = 87,94 \ m^3/_{s} \tag{4.8}$$

Objemový průtok pro normální podmínky

$$M_{sp} = M_{pv} \cdot O_{sp} = 2,5902 \cdot 7,2043 = 18,66 \ m^3/_s \tag{4.9}$$

Střední teplota spalin

$$t_{sp}^{st\check{r}} = \frac{t_a + t_{ok}}{2} = \frac{1166,18 + 861}{2} = 1014,09 \ ^{\circ}C \tag{4.10}$$

Adiabatická teplota je vypočtena v následující podkapitole 4.2. Teplota na konci ohniště (t_{ok}) byla po uvážení jisté rezervy navržena jako 861 °C a její hodnota byla následně v podkapitole 4.3 ověřena.

Výška spalovací komory je tedy dána součtem výšky nejvýše umístěné trysky sekundárního vzduchu a délky dráhy spalin a byla navrhnuta jako 20 m. Přechod mezi ohništěm a druhý tahem kotle je tvořen oknem, v němž by měla být rychlost spalin dle odborné konzultace kolem 7 m/s.

Výška okna

$$h_{ok} = \frac{M_{sp}^{ok}}{w_{sp} \cdot b_{oh}} = \frac{M_{sp} \cdot \left(\frac{t_{ok} + 273, 15}{273, 15}\right)}{w_{sp} \cdot b_{oh}} = \frac{18,66 \cdot \left(\frac{862 + 273, 15}{273, 15}\right)}{7 \cdot 4,5} = 2 m$$
(4.11)

4.2 Teplota nechlazeného plamene (adiabatická teplota)

Adiabatická teplota je teoretická teplota, které by dosáhl plamen, kdyby z něho nebylo odváděno teplo. Tato teplota se určí z celkového užitečného tepla uvolněného při spalování daného součtem tepel uvolněných v ohništi z paliva a vzduchu.

Celkové užitečné teplo uvolněné při spalování

$$I_u = Q_p^p \cdot \frac{1 - z_{co} - z_c - z_{fs}}{1 - z_c} + Q_{\nu z} =$$
(4.12)

$$I_u = 12140,96 \cdot \frac{1 - 0,0008 - 0,0135 - 0,0015}{1 - 0,0135} + 922,36 = 12\,888,26 \frac{kJ}{kg}$$

kde Q_{vz} je teplo přivedené vzduchem do spalovací komory. Vzduch je rozdělen na prohazovací, primární a sekundární. Primární vzduch je ohříván na teplotu 200 °C a jeho podíl je 45 % z celkového množství vzduchu. Sekundární vzduch tvoří 45 % z celkového množství vzduchu a podíl pohazovacího vzduchu je zbylých 10 %. Teplota pro oba vzduchy byla uvažována 25 °C. Entalpie pro všechny vzduchy potřebné pro výpočet byly odečteny z tabulky 2.2

Teplo přivedené vzduchem do spalovací komory

$$Q_{vz} = \alpha \cdot \left(x_{I} \cdot I_{vz}^{200^{\circ}C} + x_{II} \cdot I_{vz}^{25^{\circ}C} + x_{poh} \cdot I_{vz}^{25^{\circ}C} \right) =$$

$$Q_{vz} = 1,35 \cdot (0,45 \cdot 1320,77 + 0,45 \cdot 161,60 + 0,1 \cdot 161,60) = 922,36 \frac{kJ}{kg}$$
(4.13)

Následně byla pro entalpii I_u a daný přebytek vzduchu lineární interpolací z tabulky 2.2 určena teplota nechlazeného plamene jako 1 166,18 °C.

4.3 Tepelný výpočet ohniště

V rámci této podkapitoly bylo ověřeno, zda je na konci ohniště dosaženo teploty, která byla zvolena v předchozí podkapitole. Při prvním výpočtu teploty na konci ohniště bylo zjištěno, že tato teplota je výrazně nižší, než byl původní předpoklad. Proto bylo zavedeno opatření v podobě vyzdívky, která pokrývá velkou část membránové stěny (15,4 m). Toto řešení má za následek snížení množství tepla odebraného membránovou stěnou a tím pádem zvýšení výstupní teploty.

4.3.1 Výpočet skutečné teploty na konci ohniště

Skutečná teplota na výstupu z ohniště byla určena dle Gurvičova poloempirického vztahu, který je založen na teorii podobnosti v tepelných procesech ve spalovací komoře.

$$t_{ok}^{skut} = \frac{t_a + 273,15}{1 + M \cdot \left(\frac{a_o}{B_o}\right)^{0,6}} - 273,15 = \frac{1166,18 + 273,15}{1 + 0,59 \cdot \left(\frac{0,8099}{3,0115}\right)^{0,6}} = 861,69 \,^{\circ}C \tag{4.14}$$

kde: t_a je adiabatická teplota [°C]

M je součinitel respektující průběh teplot v ohništi [-] B_o je Boltzmanovo číslo (bezrozměrné podobnostní číslo) [-] a_o je stupeň černosti ohniště [-]

Součinitel M

Pro spalování tuhých paliv na roštu je dán vztahem

$$M = 0.59 - 0.5 \cdot x_0 = 0.59 - 0.5 \cdot 0 = 0.5900 \tag{4.15}$$

kde *x*_o vyjadřuje poměrnou výšku maximální hodnoty teploty plamene a dle [1] je pro roštová ohniště s tenkou vrstvou roven nule.

Boltzmanvo číslo

$$B_o = \frac{\varphi \cdot M_{pv} \cdot \overline{O_{sp} \cdot c}}{5.7 \cdot 10^{-1} \cdot \overline{\psi} \cdot F_{st} \cdot T_a^3} = 3,0115$$

$$(4.16)$$

kde: φ je součinitel uchování tepla [-] $\overline{O_{sp} \cdot c}$ je střední celkové měrné teplo spalin [kJ/kg·K] T_a je absolutní adiabatická teplota [K] F_{st} je celkový povrch stěn ohniště [m²] $\overline{\psi}$ je střední hodnota součinitele tepelné efektivnosti stěn [-]

Součinitel uchování tepla

$$\varphi = 1 - \frac{z_s}{\eta_k + z_s} = 1 - \frac{0,0117}{0,8541 + 0,0117} = 0,9865$$
(4.17)

Střední celkové měrné teplo spalin

$$\overline{Q_{sp} \cdot c} = \frac{I_u - I_{ok}}{t_a - t_{ok}} = \frac{12888,2854 - 9216,1667}{1166,18 - 861} = 12,03 \frac{kJ}{kg \cdot K}$$
(4.18)

Celkový povrch stěn ohniště

$$F_{st} = 2 \cdot (a_{oh} \cdot b_{oh} + a_{oh} \cdot h_{oh} + b_{oh} \cdot h_{oh})$$

$$F_{st} = 2 \cdot (3,51 \cdot 4,5 + 3,51 \cdot 20 + 4,5 \cdot 20) = 351,99 \ m^2$$
(4.19)

Střední hodnota součinitele tepelné efektivnosti stěn

$$\bar{\psi} = \frac{\sum x_i \cdot \xi_i \cdot F_i}{F_{st}} = \frac{x \cdot (\xi_{ms} \cdot F_{ms} + \xi_v \cdot F_v)}{F_{st}} =$$

$$\bar{\psi} = \frac{1 \cdot (0.1 \cdot 80.4870 + 0.45 \cdot 246.7080)}{351,9900} = 0.1730$$
(4.20)

kde x je úhlový součinitel, pro membránovou stěnu je roven 1
ξ je součinitel zanešení stěn, pro membránovou stěnu ξ=0,1 a pro vyzdívku ξ=0,45 (dle odborné konzultace)
F je povrch membránové stěny a povrch části s vyzdívkou

Povrch membránové stěny

$$F_{ms} = a_{oh} \cdot b_{oh} + h_{ok} \cdot (2 \cdot a_{oh} + b_{oh}) + 2 \cdot (h_{oh} - h_{ok} - h_{v}) \cdot (a_{oh} + b_{oh})$$
(4.21)

$$F_{ms} = 3,51 \cdot 4,5 + 2 \cdot (2 \cdot 3,51 + 4,5) + 2 \cdot (20 - 2 - 15,4) \cdot (3,51 + 4,5)$$

$$F_{ms} = 80,49 \ m^{2}$$

Povrch části s vyzdívkou

$$F_{v} = 2 \cdot h_{v} \cdot (a_{oh} + b_{oh}) = 2 \cdot 15.4 \cdot (3.51 + 4.5) = 246.71 \ m^{2}$$
(4.22)

Stupeň černosti ohniště

$$a_{o} = \frac{a_{pl} + (1 - a_{pl}) \cdot \frac{R}{F_{st}}}{1 - (1 - a_{pl}) \cdot (1 - \bar{\psi}) \cdot (1 - \frac{R}{F_{st}})}$$
(4.23)

$$a_o = \frac{0,3976 + (1 - 0,3976) \cdot \frac{15,6195}{351,99}}{1 - (1 - 0,3976) \cdot (1 - 0,1730) \cdot \left(1 - \frac{15,6195}{351,99}\right)} = 0,8099$$

Plocha hořící vrstvy paliva na roštu

$$R = a_{ro\check{s}} \cdot b_{ro\check{s}} = 3,251 \cdot 4,45 = 15,6195 \ m^2 \tag{4.24}$$

Efektivní stupeň černosti plamene

$$a_{pl} = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-1,5685 \cdot 0,1 \cdot 3,2309} = 0,3976$$
(4.25)

kde: *k* je součinitel zeslabení sálání – z rovnice 4.27 *p* je tlak v ohništi – u kotlů bez přetlaku se uvažuje p=0,1 MPa *s* je účinná tloušťka sálavé vrstvy – z rovnice 4.26

Účinná tloušťka sálavé vrstvy

$$s = 3.6 \cdot \frac{V_o}{F_{st}} = 3.6 \cdot \frac{a_{oh} \cdot b_{oh} \cdot h_{oh}}{F_{st}} = 3.6 \cdot \frac{3.51 \cdot 4.5 \cdot 20}{351,9900} = 3.23 m$$
(4.26)

Součinitel zeslabení sálání

$$k = k_{sp} \cdot r_{sp} + k_p \cdot \mu + 10 \cdot k_k \cdot \kappa_1 \cdot \kappa_2 \tag{4.27}$$

 $k = 1,3351 + 0,0834 + 10 \cdot 0,15 \cdot 1 \cdot 0,5 = 1,5685$

Součinitel zeslabení sálání nesvítivými tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7,8 + 16 \cdot r_{H_2O}}{3,16 \cdot \sqrt{p_{sp} \cdot s}}\right) \cdot \left(1 - 0,37 \cdot \frac{T_{ok}}{1000}\right) \cdot r_{sp}$$

$$k_{sp} \cdot r_{sp} = \left(\frac{7,8 + 16 \cdot 0,1233}{3,16 \cdot \sqrt{0,0214 \cdot 3,2309}}\right) \cdot \left(1 - 0,37 \cdot \frac{1134,15}{1000}\right) \cdot 0,2144$$
(4.28)

$$k_{sp} \cdot r_{sp} = 1,3351 \quad \frac{1}{m} \cdot MPa$$

kde: $r_{H_{2O}}$ a r_{sp} jsou objemové části tříatomových plynů – z rovnic 2.22 a 2.24 p_{sp} je parciální tlak tříatomových plynů ve spalinách T_{ok} je absolutní teplota spalin na výstupu z ohniště

Parciální tlak tříatomových plynů

$$p_{sp} = p \cdot r_{sp} = 0.1 \cdot 0.2144 = 0.02144 MPa \tag{4.29}$$

Součinitel zeslabení sálání popílkem

$$k_p \cdot \mu = \frac{43}{\sqrt[3]{T_{ok}^2 \cdot d^2}} \cdot \mu = \frac{43}{\sqrt[3]{1134, 15^2 \cdot 20^2}} \cdot 1,5546 = 0,0834 \ \frac{1}{m \cdot MPa}$$
(4.30)

kde: d je střední efektivní průměr částeček popílku a dle [1] je pro roštová ohniště roven 20 μm μ je koncentrace popílku ve spalinách – z rovnice 2.25

Součinitel zeslabení sálání koksovými částicemi

$$10 \cdot k_k \cdot \kappa_1 \cdot \kappa_2 = 10 \cdot 1 \cdot 0.5 \cdot 0.03 = 0.15 \ \frac{1}{m \cdot MPa}$$
(4.31)

kde: součinitel k_k je dle [1] roven 1 součinitel κ_1 je dle [1] roven 0,5 (ostatní palivo) součinitel κ_2 je dle [1] roven 0,03 (roštová ohniště)

4.3.2 Tepelný výkon ohniště

Tepelný výkon ohniště je dán množstvím tepla odevzdaného v ohništi do stěn a skutečně spáleného paliva v ohništi

$$Q_{oh} = Q_s \cdot M_{pv} = 3622,5090 \cdot 2,5902 = 9\,383,13\,kW \tag{4.32}$$

Množství tepla odevzdaného do stěn

$$Q_s = \varphi \cdot (I_u - I_{ok}) = 0,9865 \cdot (13\ 051,6735 - 9216,1667) = 3\ 622,51\ {kJ/kg} \qquad (4.33)$$

kde entalpie spalin na konci ohniště byla pro skutečnou teplotu na konci ohniště odečtena lineární interpolací z tabulky 2.2.

5 BILANČNÍ TEPELNÝ NÁVRH TEPLOSMĚNNÝCH PLOCH

V rámci následujících výpočtů byla provedena tepelná bilance teplosměnných ploch, jejímž smyslem je rozdělení celkového tepelného výkonu parního kole mezi jednotlivé teplosměnné plochy a také určení parametrů spalin a páry, respektive vody na vstupech a výstupech teplosměnných ploch. Tyto jsou pak přehledně shrnuty v tabulce 5.2 na konci této kapitoly. Tlakové ztráty v jednotlivých teplosměnných plochách byly voleny po odborné konzultaci a jsou sepsány v tabulce 5.1. Pro přehříváky byly voleny entalpické spády. Teplota pára je regulována dvěma vstřiky umístěnými za přehřívákem P1 a za přehřívákem P2. Návrh teplosměnných ploch postupoval od přehříváku P3 po ekonomizér, přičemž se vycházelo z parametrů v zadání.

Teplosměnnáplocha	∆p [MPa]
Přehřívák P3	0,15
Přehřívák P2	0,15
Přehřívák P1	0,15
Závěsné trubky	0,05
Výparník	0,00
Ekonomizér	0,50

Tab. 5.1 Tlakové ztráty teplosměnných ploch

Obr. 5.1 Schéma trasy pracovního média v kotli

5.1 Přehřívák P3

Parametry páry na výstupu

Teplota	$t_{P3}^{out} = 430 \ ^{\circ}C$			
Tlak	$p_{P3}^{out} = 4,1 MPa$			
Entalpie	$i_{P3}^{out} = f(t_{P3}^{out}; p_{P3}^{out}) = 3\ 283,15\ kJ/kg$			
Entalpický spád	$\Delta i_{P3} = 180 \ kJ/kg$			
Parametry páry na vstupu				
Teplota	$t_{P3}^{in} = f(i_{P3}^{in}; p_{P3}^{in}) = 356,23 \ ^{\circ}C$			

Tlak	$p_{P3}^{in} = p_{P3}^{out} + \Delta p_{P3} = 4,1 + 0,15 = 4,25 MPa$	
		1,1

Entalpie
$$i_{P3}^{in} = i_{P3}^{out} - \Delta i_{P3} = 3\ 283,15 - 180 = 3\ 103,15\ {}^{RJ}/_{kg}$$

Tepelný výkon přehříváku

$$Q_{P3} = M_{pp} \cdot \Delta i_{P3} = \frac{35}{3.6} \cdot 180 = 1\ 750,00\ kW \tag{5.1}$$

5.2 Přehřívák P2

Množství vstřiku bylo voleno jako 3 % z $M_{\mbox{\tiny PP}}.$ Entalpie páry na výstupu z přehříváku byla vypočtena z bilanční rovnice:

$$i_{P2}^{out} = \frac{i_{P3}^{in} - 0.03 \cdot i_{nv}}{0.97} = \frac{3\,103.15 - 0.03 \cdot 486.09}{0.97} = 3\,184.09 \ \frac{kJ}{kg}$$
(5.2)

kde i_{nv} je entalpie napájecí vody $-f(t_{nv};p_{nv})$ [kJ/kg]

Parametry páry na výstupu

Teplota $t_{P2}^{out} = f(i_{P2}^{out}; p_{P2}^{out}) = 389,20 \,^{\circ}C$

Tlak $p_{P2}^{out} = p_{P3}^{in} = 4,25 MPa$

Entalpický spád $\Delta i_{P2} = 190 \, kJ/kg$

Parametry páry na vstupu

Teplota $t_{P2}^{in} = f(i_{P2}^{in}; p_{P2}^{in}) = 316,23 \,^{\circ}C$

Tlak

$$p_{P2}^{in} = p_{P2}^{out} + \Delta p_{P2} = 4,25 + 0,15 = 4,4 MPa$$

Entalpie

$$i_{P2}^{in} = i_{P2}^{out} - \Delta i_{P2} = 3184,09 - 190 = 2.994,09 \ kJ/kg$$

Tepelný výkon přehříváku

$$Q_{P2} = 0.97 \cdot M_{pp} \cdot \Delta i_{P2} = 0.97 \cdot \frac{35}{3.6} \cdot 190 = 1\ 791.81\ kW \tag{5.3}$$

Obr. 5.2 Schéma bilance vstřiku mezi P2 a P3

5.3 Přehřívák P1

Množství vstřiku bylo voleno jako 4 % z M_{pp} . Entalpie páry na výstupu z přehříváku byla vypočtena z bilanční rovnice:

$$i_{P_1}^{out} = \frac{0.97 \cdot i_{P_2}^{in} - 0.04 \cdot i_{nv}}{0.93} = \frac{0.97 \cdot 2994.09 - 0.04 \cdot 486.09}{0.93} = (5.4)$$

 $i_{P1}^{out} = 3\ 101,96\ {kJ/_{kg}}$

Parametry páry na výstupu

Teplota $t_{P1}^{out} = f(i_{P1}^{out}; p_{P1}^{out}) = 357,16 \,^{\circ}C$

Tlak $p_{P1}^{out} = p_{P2}^{in} = 4,4 MPa$

Entalpický spád $\Delta i_{P1} = 260 \ kJ/kg$

Parametry páry na vstupu

Teplota	$t_{P1}^{in} = f(i_{P1}^{in}; p_{P1}^{in}) = 269,41^{\circ}C$
Tlak	$p_{P1}^{in} = p_{P1}^{out} + \Delta p_{P1} = 4,4 + 0,15 = 4,55 MPa$
Entalpie	$i_{p1}^{in} = i_{P1}^{out} - \Delta i_{P1} = 3101,96 - 260 = 2.841,96 \frac{kJ}{kg}$
Tepelný výkon přehříváku

$$Q_{P1} = 0.93 \cdot M_{pp} \cdot \Delta i_{P1} = 0.93 \cdot \frac{35}{3.6} \cdot 260 = 2\,350.83\,kW \tag{5.5}$$

Obr. 5.3 Schéma bilance vstřiku mezi P1 aP2

5.4 Výparník

Ve výparníku dochází k varu, což je izobaricko-izotermický děj, tedy děj při konstantním (saturačním) tlaku a konstantní teplotě, která je funkcí tohoto tlaku.

Tlak $p_{výp} = p_{P1}^{in} + \Delta i_{ZT} = 4,55 + 0,05 = 4,6 MPa$ Teplota $t_{výp} = f(p_{výp}) = 258,78 \,^{\circ}C$ Entalpie syté páry $i_{výp}^{out} = f(p_{výp}; x = 1) = 2.797,31 \, \frac{kJ}{kg}$ Entalpie syté kapaliny $i_{výp}^{in} = f(p_{výp}; x = 0) = 1.128,79 \, \frac{kJ}{kg}$ Entalpický spád $\Delta i_{výp} = i_{výp}^{out} - i_{výp}^{in} = 2797,31 - 1128,79 \quad (5.6)$ $\Delta i_{výp} = 1.668,52 \, \frac{kJ}{kg}$

Ekonomizér není navržen jako varný, a proto není přípustné, aby voda začala vřít v ekonomizéru, tedy ještě před vstupem do bubnu a výparného systému. Z tohoto důvodu se při návrhu uvažuje s tzv. nedohřevem, což je rozdíl teplot syté kapaliny vstupující do výparného systému a vody vystupující z ekonomizéru. Dle odborné konzultace by se hodnota nedohřevu měla pohybovat mezi 10 a 30 °C. Nedohřev byl volen jako 20 °C.

Tepelný výkon výparného systému

$$Q_{v\circ p} = 0.93 \cdot M_{pp} \cdot \left(\Delta i_{v\circ p} + i_{ned}\right) = 0.93 \cdot \frac{35}{3.6} \cdot (1668,52 + 96,93)$$
(5.7)

 $Q_{v \circ p} = 15\ 962,58\ kW$

kde ined je entalpie nedohřevu daná rozdílem entalpií syté páry a vody z ekonomizéru

$$\Delta i_{ned} = i_{\nu \psi p}^{in} - i_{EKO}^{out} = 1128,79 - 1031,86 = 96,93 \frac{kJ}{kg}$$
(5.8)

5.5 Závěsné trubky

Do závěsných trubek vstupuje pára z bubnu, která závěsné trubky chladí a následně vstupuje do přehříváku P1. Platí tedy:

$$p_{zt}^{out} = p_{p1}^{in} = 4,55 MPa$$

$$t_{zt}^{out} = t_{p1}^{in} = 269,41 °C$$

$$i_{zt}^{out} = i_{p1}^{in} = 2 841,96 {kJ/kg}$$

$$p_{zt}^{in} = p_{výp} = 4,6 MPa$$

$$t_{zt}^{in} = t_{výp} = 258,78 °C$$

$$i_{zt}^{in} = i_{výp}^{out} = 2 797,31 {kJ/kg}$$

Tepelný výkon závěsných trubek

$$Q_{zt} = 0.93 \cdot M_{pp} \cdot \Delta i_{zt} = 0.93 \cdot \frac{35}{3.6} \cdot 44.65 = 403.75 \, kW \tag{5.9}$$

kde Δi_{zt} je entalpický spád závěsných trubek a byl spočítán jako

$$\Delta i_{ZT} = i_{ZT}^{out} - i_{ZT}^{in} = 2841,96 - 2797,31 = 44,65 \frac{kJ}{kg}$$
(5.10)

5.6 Ekonomizér

V ekonomizéru je ohřívána napájecí voda, jejíž parametry jsou na vstupu známy. Voda z ekonomizéru následně přechází do bubnu. Je třeba však pamatovat, že teplota vody vstupující do bubnu je nižší o zvolený nedohřev. Parametry na výstupu z ekonomizéru jsou tedy také dány.

Parametry vody na výstupu

$$p_{EKO}^{out} = p_{v \circ p}^{in} = 4,6 MPa$$

$$t_{EKO}^{out} = t_{v \circ p} - t_{ned} = 258,78 - 20 = 238,78 °C$$

$$i_{EKO}^{out} = f(p_{EKO}^{inout}; t_{EKO}^{out}) = 1 031,86 \frac{kJ}{kg}$$

Parametry vody na vstupu

$$p_{EKO}^{in} = p_{EKO}^{out} + \Delta p_{EKO} = 4,6 + 0,5 = 5,1 MPa$$
$$t_{EKO}^{in} = t_{nv} = 115 \,^{\circ}C$$
$$i_{EKO}^{in} = i_{nv} = 486,0861 \frac{kJ}{kg}$$

Tepelný výkon ekonomizéru

$$Q_{EKO} = 0.93 \cdot M_{pp} \cdot \Delta i_{EKO} = \frac{35}{3.6} \cdot = 4.934,71 \, kW$$

kde *Aieko* je entalpický spád ekonomizéru a byl spočítán jako

$$\Delta i_{EKO} = i_{EKO}^{out} - i_{EKO}^{in} = 1031,8608 - 486,0861 = 545,77 \ kJ/kg$$

Tab. 5.2 Přehled parametrů a výkonů jednotlivých teplosměnných ploch

Teplosměnná pl	ocha	p [MPa]	t [°C]	i [kJ/kg]	∆i [kJ/kg]	Q [kW]
Elementa (n	in	5,10	115,00	486,09	E 4 E 77	4934,71
EKONOMIZER	out	4,60	238,78	1031,86	545,77	
Méreo an Ar	in	1.00	250 70	1128,79	1669 60	15962,58
уурагнік	out	4,60	258,78	2797,31	1008,00	
74. žení trubla.	in	4,60	258,78	2797,31	14 65	403,75
Zavesne trubky	out	4,55	269,41	2841,96	44,65	
	in	4,55	269,41	2841,96	260.00	2350,83
Frenrivak F1	out	4,40	357 <mark>,1</mark> 6	3101,96	200,00	
	in	<mark>4,4</mark> 0	3 <mark>16,</mark> 23	2994 <mark>,</mark> 09	100.00	1701.01
Frenrivak F2	out	4,25	389,20	3184,09	190,00	1/91,01
Přehřívák P3	in	4,25	356,23	3103,15	180.00	1750.00
	out	4,10	430,00	3283,15	180,00	1750,00

6 NÁVRH II. TAHU

Jak již bylo řečeno, druhý tah je navržen jako prázdný, a tedy kromě membránové stěny, která je částí výparníku, se v něm nenacházejí žádné další teplosměnné plochy. Spaliny je třeba před vstupem na další teplosměnné plochy vychladit, aby se předešlo vysokoteplotní korozi. Tento tah je zakončen výsypkou, která slouží k separaci popílku. Ten je následně zpětně zaveden do ohniště šnekovým dopravníkem.

6.1 Návrh rozměrů II. tahu

Výchozím parametrem pro návrh rozměrů tahu je rychlost spalin, která by se dle odborné konzultace měla pohybovat od 6 do 7 m/s. Šířka tahu je shodná s šířkou ohniště. Délka tahu se pak určí z průřezu spalinového kanálu, který vychází právě z rychlosti spalin. Navržené rozměry II. tahu jsou zobrazeny na obrázku 6.1 a přehledně shrnuty v tabulce 6.1.

Obr. 6.1 Schéma navržených rozměrů II. tahu

Tab. 6.1 Navržené rozměry II. tahu

Popis rozměru	Označení	Hodnota	Jednotka
Délka tahu	a _{ll}	2,34	m
Šířka tahu	b _{II}	4,5	m
Výška stěny od výsypky	h _{ll}	16,66	m
Výška výstupního průřezu výsypky	VII	3,1	m
Minimální vzdálenost zadní stěny tahu od výsypky	V _{II,min}	1,8	m
Úhel zkosení výsypky	β	35,00	•

Délka tahu

$$a_{II} = \frac{M_{sp}^{str}}{w_{sp}^{II} \cdot b_{II}} = \frac{72,48}{6,88 \cdot 4,5} = 2,34 m$$
(6.1)

kde $M_{sp}^{st\check{r}}$ je střední objemový průtok spalin pro střední teplotu spalin vypočten dle vzorce

$$M_{sp}^{st\check{r}} = M_{sp} \cdot \left(\frac{t_{sp}^{st\check{r}} + 273,15}{273,15}\right) = 18,66 \cdot \left(\frac{787,59 + 273,15}{273,15}\right) = 72,47 \ m^3/_s \tag{6.2}$$

kde $t_{sp}^{st\tilde{r}}$ je střední teplota spalin vypočtena dle vzorce

$$t_{sp}^{st\check{r}} = \frac{t_{ok} + t_{II}^{out}}{2} = \frac{861,69 + 713,5}{2} = 787,59 \,^{\circ}C \tag{6.3}$$

kde t_{II}^{out} je teplota na konci druhého tahu a její hodnota byla zvolena jako 713,5 °C a na konci kapitoly byla ověřena.

Délka tahu musí být opět násobkem rozteče varných trubek membránové stěny, proto skutečná délka tahu je 2,34 m.

Pro tuto délku byla zpětně vypočtena skutečná střední rychlost spalin ve druhém tahu

$$w_{sp}^{st\check{r}} = \frac{M_{sp}^{st\check{r}}}{a_{II} \cdot b_{II}} = \frac{72,4673}{2,34 \cdot 4,5} = 6,88 \, m/s \tag{6.4}$$

Na konci druhého tahu, v oblasti výsypky, dochází ke změně (zmenšení) spalinového průřezu. Podle odborné konzultace by zde měla být rychlost spalin okolo 9 m/s. S ohledem na toto doporučení byla navržena výška průřezu v_{IImin} .

$$v_{IImin} = \frac{M_{sp}^{str}}{w_{sp} \cdot b_{II}} = \frac{72,47}{9 \cdot 4,5} = 1,7893 \ m \to voleno \ 1,8 \ m \tag{6.5}$$

následně pak byla určena i výška výsypky jako

$$v_{II} = \frac{v_{IImin}}{\sin\beta} = \frac{1.8}{\sin 35^{\circ}} = 3,10 \ m \to voleno \ 3,1 \ m$$
 (6.6)

kde úhel β je úhel zkosení výsypky, který by se podle odborné konzultace měl pohybovat mezi 30 a 40°.

6.2 Tepelný výpočet

Cílem tepelného výpočtu je určit teplo předané membránové stěně spalinami a také teplotu spalin na konci druhého tahu.

Předané teplo se určí z rovnice sdílení tepla

$$Q = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} \ [kW] \tag{6.7}$$

kde: *k* je součinitel prostupu tepla [W/m²·K] *S* je celková teplosměnná plocha [m²] Δt_{ln} je střední logaritmický spád [°C]

Pro určení součinitele prostupu tepla je potřeba nejdříve určit součinitele přestupu tepla konvekcí a sáláním.

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_k = 0.023 \cdot \frac{\lambda}{d_e} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot d_e}{\nu}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m \tag{6.8}$$

$$\alpha_k = 0.023 \cdot \frac{0.0908}{3.08} \cdot \left(\frac{6.88 \cdot 3.08}{1.29 \cdot 10^{-4}}\right)^{0.8} \cdot 0.6057^{0.4} \cdot 1 \cdot 1 \cdot 1 = 8.28 \ W/_{m^2 \cdot K}$$

kde: λ je součinitel tepelné vodivosti při střední teplotě spalin [W/m·K] ν je součinitel kinematické viskozity při střední teplotě spalin [m²/s] P_r je Prandtlovo číslo [-] d_e je ekvivalentní průměr [m] c_t , c_l , c_m jsou opravné koeficienty [-]

Součinitel tepelné vodivosti, součinitel kinematické viskozity a Prandtlovo číslo byly určeny lineární interpolací z tabulek v [1] pro střední teplotu spalin a obsah vody ve spalinách, který je v následujících výpočtech stejný a byl určen v rovnici 2.22.

Opravné koeficienty byly také určeny z [1] a jsou stejné pro všechny případy podélného proudění v následujících tepelných výpočtech.

Ekvivalentní průměr

$$d_e = \frac{4 \cdot F_{sp}}{0} = \frac{4 \cdot (a_{II} \cdot b_{II})}{2 \cdot (a_{II} + b_{II})} = \frac{4 \cdot (2,34 \cdot 4,5)}{2 \cdot (2,34 + 4,5)} = 3,08 \, m \tag{6.9}$$

kde: F_{sp} je průtočný průřez kanálu [m²] O je obvod průřezu kanálu [m]

Součinitel přestupu tepla sáláním pro zaprášené spaliny (spalování tuhého paliva)

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{-3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.33 \cdot 1060.74^{3} \cdot \frac{1 - \left(\frac{591.93}{1060.74}\right)^{4}}{1 - \frac{591.93}{1060.74}} = 41.29 \ W/m^{2} \cdot K$$
(6.10)

kde: a_{st} je stupeň černosti povrchu stěn, dle [1] se uvažuje 0,8 [-] a je stupeň černosti proudu spalin při absolutní střední teplotě spalin T_s [-] T_z je absolutní teplota zaprášeného povrchu stěn [K]

Stupeň černosti proudu spalin

$$\alpha = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-0.4005} = 0.3300 \tag{6.11}$$

kde součin kps představuje optickou hustotu a určí se ze vztahu

$$k \cdot p \cdot s = (k_{sp} \cdot r_{sp} + k_p \cdot \mu) \cdot p \cdot s = 1,6118 \cdot 0,1 \cdot 2,4849$$
(6.12)

kde: $k_{sp} \cdot r_{sp}$ je součinitel zeslabení sálání tříatomovými plyny [1/m MPa] $k_p \cdot \mu$ je tento člen se u roštových ohnišť neuvažuje p je parciální tlak tříatomových plynů – 0,1 MPa s je efektivní tloušťka sálavé vrstvy [m]

Součinitel zeslabení sálání tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot r_{H_20}}{3.16 \cdot \sqrt{p_{sp} \cdot s}} - 1\right) \cdot \left(1 - 0.37 \cdot \frac{T_s}{1000}\right) \cdot r_{sp}$$

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot 0.1233}{3.16 \cdot \sqrt{0.0214 \cdot 2.4849}}\right) \cdot \left(1 - 0.37 \cdot \frac{1060.74}{1000}\right) \cdot 0.2144 = 1.6118$$
(6.13)

Efektivní tloušťka sálavé vrstvy

$$s = 3.6 \cdot \frac{V}{F_{st}} = 3.6 \cdot \frac{193,02}{279,63} = 2,4849 \ m$$
 (6.14)

kde: V je objem sálající vrstvy $[m^3]$ F_{st} je celkový povrch stěn sálající vrstvy $[m^2]$

Objem sálající vrstvy

$$V = a_{II} \cdot b_{II} \cdot \left(h_{II} + \frac{h_{oh} - h_{II}}{2}\right) = 2,34 \cdot 4,5 \cdot \left(16,66 + \frac{20 - 16,66}{2}\right) = 193,02 \ m^3 \tag{6.15}$$

Celkový povrch stěn sálající vrstvy

$$F_{st} = 2 \cdot a_{II} \cdot \left(h_{II} + \frac{h_{oh} - h_{II}}{2}\right) + b_{II} \cdot \left(h_{II} + \frac{h_{oh} - h_{II}}{\cos\beta} + h_{oh} + a_{II}\right)$$
(6.16)

$$F_{st} = 2 \cdot 2,34 \cdot \left(16,66 + \frac{20 - 16,66}{2}\right) + 4,5 \cdot \left(16,66 + \frac{20 - 16,66}{\cos 35^{\circ}} + 20 + 2,34\right)$$

 $F_{st} = 279,63 \ m^2$

Teplota zaprášeného povrchu stěn

$$T_z = t_{vyp} + \Delta t + 273,15 = 258,78 + 60 + 273,15 = 591,93 K$$
(6.17)

kde Δt je teplotní přírůstek, o který je teplota nánosů větší oproti teplotě média. Pro výparníky se dle odborné konzultace volí hodnota 60 °C.

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \xi \cdot (\alpha_k + \alpha_s) = 0.9 \cdot (8.28 + 41.29) = 44.61 \ ^W/_{m^2 \cdot K}$$
(6.18)

kde ξ je součinitel využití výhřevné plochy a byl volen na základě odborné konzultace 0,9

Součinitel prostupu tepla

$$k = \frac{\alpha_1}{1 + \varepsilon \cdot \alpha_1} = \frac{44,61}{1 + 0,008 \cdot 44,61} = 32,88 \, W/_{m^2 \cdot K} \tag{6.19}$$

kde ε je součinitel zanešení výhřevných ploch. Pro biomasu byla dle odborné konzultace zvolena hodnota 0,008.

Celková teplosměnná plocha

$$S = F_{st} - b_{II} \cdot (v_{II} + h_{ok}) = 279,63 - 4,5 \cdot (3,1+2) = 256,68 m^2$$
(6.20)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{602,90 - 454,71}{\ln \frac{602,90}{454,71}} = 525,33 \,^{\circ}C \tag{6.21}$$

$$\Delta t_1 = t_{ok} - t_{v \circ p} = 861,69 - 258,78 = 602,90 \ ^{\circ}C \tag{6.22}$$

$$\Delta t_2 = t_{II}^{out} - t_{v \circ p} = 713,50 - 258,78 = 454,71 \ ^{\circ}C \tag{6.23}$$

V této chvíli jsou již známy všechny členy pro výpočet předaného tepla. Stačí jen patřičné hodnoty dosadit do rovnice 6.7.

Teplo předané spalinami membránové stěně druhého tahu

$$Q_{II} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{32,87 \cdot 256,68 \cdot 525,33}{10^3} = 4\,433,43\,kW \tag{6.24}$$

Entalpie spalin na konci druhého tahu

$$I_{II}^{out} = \frac{M_{pv} \cdot I_{ok} - Q_{II}}{M_{pv}} = \frac{2,59 \cdot 9216,16 - 4433,43}{2,59} = 7\ 504,57\ \frac{kJ}{kg}$$
(6.25)

Skutečná teplota na konci druhého tahu

Následně byla pro tuto entalpii lineární interpolací z tabulky 2.2 odečtena skutečná teplota na konci druhého tahu 713,41 °C. Ta se od zvolené teploty 713,5 °C příliš neliší, a proto lze výpočet považovat za dostatečně přesný.

7 NÁVRH III. TAHU

Třetí tah je tvořen obratovou komorou a membránovými stěnami. V tomto tahu se nachází svazky všech tří přehříváků. Díky potřebné délce dráhy spalin ve spalovací komoře je kotel poměrně vysoký a navrhnuté svazky přehříváků by nevyplnily celý tah. Proto jsou do horní části tahu umístěny dva svazky ekonomizéru. Všechny tyto svazky jsou zavěšeny na závěsných trubkách, kterými proudí sytá pára z bubnu. Před přehříváky byl předsazen "V" výparník, pro dosažení požadovaného výkonu výparného systému. Tato část výparníku není zavěšena na závěsných trubkách, ale pouze na háčcích na přední stěně.

Z důvodu obsahu chlóru v palivu bylo třeba navrhnout svazky takovým způsobem, aby nedocházelo k vysokoteplotní korozi. Proto byl jako první umístěn přehřívák P2, poté P3 a jako poslední byl umístěn přehřívák P1. Jako druhé opatření byly přehříváky P3 a P2 navrženy jako souproudé. Tato opatření byla z hlediska vysokoteplotní koroze posouzena v podkapitole 11.2

Výška jednotlivých svazků by neměla být větší než 2 metry, aby byla zajištěna funkčnost parních ofukovačů, které slouží k čištění trubek od nánosů popílku za provozu kotle. Mezi svazky by také měl být uvažován prostor o výšce 700-800 mm. V těchto mezerách jsou umístěny průlezy, které slouží ke kontrole a opravám při odstávkách kotle. Při návrhu byla uvažována výška prostoru 800 mm.

Na začátku tepelného výpočtu dané teplosměnné plochy byla zvolena teplota na výstupu a na konci výpočtu návrhu dané části byla ověřena. Rozměry a počty trubek byly navrhovány iteračně s ohledem na následující podmínky:

- Rychlost spalin by měla být v rozmezí 6-7 m/s
- Rychlost páry v přehřívácích a závěsných trubkách by měla být v rozmezí 15-25 m/s
- Rychlost vody v ekonomizéru by měla být v rozmezí 0,5-1,5 m/s
- Součet výkonů přehříváků a závěsných trubek by neměl být výrazně jiný, než byl určen v kapitole 5.

7.1 Návrh délky III. tahu

Délka třetího tahu vychází z rychlosti spalin v části s přehřívákem P3, jelikož v této části je předpoklad nejvyšší rychlosti spalin. Tento předpoklad vychází ze skutečnosti, že první umístěný přehřívák P2 má oproti přehřívákům P3 a P1 dvojnásobnou podélnou rozteč trubek, a tedy i větší průtočný průřez spalin a tím pádem mají v této části spaliny nižší rychlost. Rychlost spalin je dále určena objemovým průtokem spalin, který je tím větší, čím větší je teplota spalin. V posledním umístěném přehříváku P1 je nižší teplota spalin, a tedy i nižší rychlost spalin. Je tedy zřejmé, že nevyšší rychlost spalin je v části s přehřívákem P3. Návrh byl proveden iteračně a níže je uveden finální výpočet pro střední teplotu spalin 545,8 °C.

Průtočný průřez spalin

$$F_{sp} = \frac{M_{sp}}{w_{sp}} \cdot \frac{t_{sp}^{st\check{r}} + 273,15}{273,15} = \frac{18,66}{6,8} \cdot \frac{545,8 + 273,15}{273,15} = 8,23 \ m^2 \tag{7.1}$$

Návrh závěsných trubek

Před výpočtem délky tahu byly navrženy rozměry závěsných trubek a jsou uvedeny v tabulce 7.1. Rozvržení závěsných trubek je patrné z obrázku 7.1 Tloušťku trubky je vhodné z důvodu namáhání na tah zvolit větší než pro trubky teplosměnných ploch. Vnější průměr závěsných trubek byl volen s ohledem na rychlost páry (15-25 m/s).

Obr. 7.1 Schéma rozvržení závěsných trubek ve III. tahu

Rychlost páry

$$w_{ZT}^{st\check{r}} = \frac{0.93 \cdot M_{pp} \cdot v_{ZT}^{st\check{r}}}{F_{ZT}} = \frac{0.93 \cdot 35 \cdot 0.044}{3.6 \cdot 0.0233} = 17.22 \ m/s$$
(7.2)

kde $v_{ZT}^{st\check{r}}$ je střední měrný objem páry v závěsných trubkách

$$v_{ZT}^{st\check{r}} = \frac{v_{ZT}^{in} + v_{ZT}^{out}}{2} = \frac{0,0431 + 0,0457}{2} = 0,044 \ m^3/kg$$
(7.3)

a F_{ZT} je průtočný průřez závěsných trubek

$$F_{ZT} = n_{ZT} \cdot n_{\check{r}ad} \cdot \frac{\pi \cdot d_{ZT}^2}{4} = 23 \cdot 2 \cdot \frac{\pi \cdot 0,0254}{4} = 0,0233 \ m^2$$
(7.4)

Popis parametru	Označení	Hodnota	Jednotka
Vnější průměr trubky	D	38	mm
Vnitřní průměr trubky	d	25,4	mm
Tloušťka stěny trubky	t	6,3	mm
Počet řad trubek	n _{řad}	2	-
Počet trubek v řadě	n _{tr}	23	-1
Podélná rozteč trubek	s ₁	200	mm
Délka podélných trubek	l _{zt}	0,5	m
Délka delší příčné trubky	l _{zt1}	2,16	m
Délka kratší příčné trubky	I _{zt2}	0,725	m
Výška úseku se závěsnými trubkami	h	0,7	m

Tab. 7.1 Navržené rozměry závěsných trubek

Délka III. tahu

$$a_{III} = \frac{F_{sp} + n_{\check{r}ad} \cdot n_{ZT} \cdot \frac{\pi \cdot D_{ZT}^2}{4}}{b_{oh} - n_{tr} \cdot D_{tr}} = \frac{8,23 + 2 \cdot 23 \cdot \frac{\pi \cdot 0,038}{4}}{4,5 - 45 \cdot 0,038} = 2,97 \, m \tag{7.5}$$

Takto určená délka tahu je vyhovující, protože je dělitelná roztečí trubek tvořících membránovou stěnu třetího tahu.

7.2 První část III. tahu – obratová komora

Na výsypku na konci druhého tahu navazuje obratová komora, která je zkosená podobně jako výsypka. Schéma spolu s rozměry obratové komory jsou na obrázku a v tabulce níže.

Popis rozměru	Označení	Hodnota	Jednotka
Délka části s výsypkou	a _{kom}	0,78	m
Délka zkosení obratové komory	a _{zkos}	2,19	m
Výška od zkosení po konec úseku	h _{kom}	1,0	m
Výška výstupního průřezu výsypky	v _{II}	1,78	m
Úhel zkosení výsypky	γ	45,00	o

Tab. 7.2 Navržené rozměry obratové komory

Obr. 7.2 Nákres rozměrů obratové komory

Obratová komora je tvořena pouze membránovou stěnou a její tepelný výpočet je uveden níže.

7.2.1 Tepelný výpočet membránové stěny

Teplota na výstupu první části III. tahu t_{ok}^{out} byla volena 702,65 °C a na konci výpočtu byla ověřena. Na začátku tepelného výpočtu bylo třeba určit střední teplotu spalin, objemový průtok spalin pro tuto teplotu a také střední rychlost spalin. Tepelný výpočet byl proveden podobně jako v případě membránové stěny druhého tahu.

Střední teplota spalin v obratové komoře

$$t_{sp}^{st\check{r}} = \frac{t_{II}^{out} + t_{ok}^{out}}{2} = \frac{713,40 + 702,65}{2} = 708,03 \,^{\circ}C$$
(7.6)

Objemový průtok spalin v obratové komoře

$$M_{sp}^{st\check{r}} = M_{sp} \cdot \left(\frac{t_{sp}^{st\check{r}} + 273,15}{273,15}\right) = 18,66 \cdot \left(\frac{708,03 + 273,15}{273,15}\right) = 67,03 \ m^3/_{s} \tag{7.7}$$

Střední rychlost spalin v obratové komoře

$$w_{sp}^{st\check{r}} = \frac{M_{sp}^{st\check{r}}}{v_{kom}^{st\check{r}} \cdot b_{oh}} = \frac{67,03}{3,04 \cdot 4,5} = 4,91 \ m_{s}$$
(7.8)

kde $v_{kom}^{st\check{r}}$ je střední hodnota vstupní výšky a výstupní délky obratové komory určená podle

$$v_{kom}^{st\check{r}\check{r}} = \frac{v_{III} + a_{III}}{2} = \frac{3.1 + 2.97}{2} = 3.04 \ m \tag{7.9}$$

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_k = 0.023 \cdot \frac{\lambda}{d_e} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot d_e}{\nu}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m \tag{7.10}$$

$$\alpha_k = 0.023 \cdot \frac{0.0839}{3.6251} \cdot \left(\frac{4.91 \cdot 3.6251}{1.14 \cdot 10^{-4}}\right)^{0.8} \cdot 0.6136^{0.4} \cdot 1 \cdot 1 \cdot 1 = 6.26 \ W/_{m^2 \cdot K}$$

Součinitel tepelné vodivosti, součinitel kinematické viskozity a Prandtlovo číslo byly určeny lineární interpolací z tabulek v [1] pro střední teplotu spalin a obsah vody ve spalinách z rovnice 2.22 a jsou sepsány v tabulce 7.3

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	8,39 [.] 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	1,14 [.] 10 ⁻⁴	m²/s
Prandtlovo číslo	Pr	0,616	-

Tab. 7.3 Fyzikální vlastnosti spalin v první části III. tahu

Ekvivalentní průměr

$$d_e = \frac{4 \cdot F}{O} = \frac{4 \cdot \left(v_{kom}^{st\check{r}} \cdot b_{III}\right)}{2 \cdot \left(v_{kom}^{st\check{r}} + b_{III}\right)} = \frac{4 \cdot (3,0350 \cdot 4,5)}{2 \cdot (3,0350 + 4,5)} = 3,6251 \, m \tag{7.11}$$

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.3005 \cdot 981.18^{3} \cdot \frac{1 - \left(\frac{591.93}{981.18}\right)^{4}}{1 - \frac{591.93}{981.18}} = 31.84 \ W/m^{2} \cdot K$$
(7.12)

kde Tz je dosazena z rovnice 6.17.

Stupeň černosti proudu spalin

$$\alpha = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-0.3574} = 0.3300 \tag{7.13}$$

$$k \cdot p \cdot s = (k_{sp} \cdot r_{sp} + k_p \cdot \mu) \cdot p \cdot s = 2,0373 \cdot 0,1 \cdot 1,7542 = 0,3574$$
(7.14)

Součinitel zeslabení sálání tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot r_{H_20}}{3.16 \cdot \sqrt{p_{sp} \cdot s}} - 1\right) \cdot \left(1 - 0.37 \cdot \frac{T_s}{1000}\right) \cdot r_{sp}$$
(7.15)

$$k_{sp} \cdot r_{sp} = \left(\frac{7,8 + 16 \cdot 0,1223}{3,16 \cdot \sqrt{0,0214 \cdot 1,7542}}\right) \cdot \left(1 - 0,37 \cdot \frac{981,18}{1000}\right) \cdot 0,2144 = 2,0373$$

Efektivní tloušťka sálavé vrstvy

$$s = 3.6 \cdot \frac{V}{F_{st}} = 3.6 \cdot \frac{30,6403}{62,8800} = 1,7542 \ m \tag{7.16}$$

Objem sálající vrstvy

$$V = \left(a_{III} \cdot v_{II} - \frac{a_{zkos}^2}{2}\right) \cdot b_{III} = \left(\left(2,97 \cdot 3,1 - \frac{2,19^2}{2}\right)\right) \cdot 4,5 = (7.17)$$

 $V = 30,64 m^3$

Celkový povrch stěn sálající vrstvy

$$F_{st} = 2 \cdot \left(a_{III} \cdot v_{II} - \frac{a_{zkos}^{2}}{2} \right) + b_{III} \cdot \left(a_{kom} + \sqrt{2} \cdot a_{zkos} + h_{kom} + a_{III} + v_{II} \right) = (7.18)$$

$$F_{st} = 2 \cdot \left(2,97 \cdot 3,10 - \frac{2,19^{2}}{2} \right) + 4,50 \cdot \left(0,78 + \sqrt{2} \cdot 2,19 + 1 + 2,97 + 3,10 \right) =$$

$$F_{st} = 62,88 \ m^{2}$$

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \xi \cdot (\alpha_k + \alpha_s) = 0.8 \cdot (6.26 + 31.84) = 30.48 \ W/m^2 \cdot K \tag{7.19}$$

kde ξ je součinitel využití výhřevné plochy a pro obratovou komoru byl volen na základě odborné konzultace 0,8.

Součinitel prostupu tepla

$$k = \frac{\alpha_1}{1 + \varepsilon \cdot \alpha_1} = \frac{30,48}{1 + 0,008 \cdot 30,48} = 24,51 \,^W/_{m^2 \cdot K} \tag{7.20}$$

Celková teplosměnná plocha

$$S = F_{st} - b_{III} \cdot (v_{II} + a_{kom} + a_{III}) = 62,88 - 4,5 \cdot (3,1 + 0,78 + 2,97) = (7.21)$$

$$S = 28,8495 m^2$$

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{454,62 - 443,87}{\ln \frac{454,62}{443,87}} = 449,23 \,^{\circ}C \tag{7.22}$$

$$\Delta t_1 = t_{II}^{out} - t_{v \circ p} = 713,40 - 258,78 = 454,62 \ \circ C \tag{7.23}$$

$$\Delta t_2 = t_{ok}^{out} - t_{v \circ p} = 702,65 - 258,78 = 443,87 \ ^{\circ}C \tag{7.24}$$

Teplo předané spalinami membránové stěně obratové komory

$$Q_{ok}^{MS} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{24,51 \cdot 28,85 \cdot 449,23}{10^3} = 317,59 \, kW \tag{7.25}$$

Entalpie spalin na konci obratové komory

$$I_{ok}^{out} = \frac{M_{pv} \cdot I_{ll}^{out} - Q_{ok}^{MS}}{M_{pv}} = \frac{2,59 \cdot 7504,57 - 317,59}{2,59} = 7\ 381,96\ \frac{kJ}{kg}$$
(7.26)

Skutečná teplota na konci obratové komory

Následně byla pro tuto entalpii lineární interpolací z tabulky 2.2 odečtena skutečná teplota na konci obratové komory 702,75 °C°. Ta se od zvolené teploty 702,65 °C příliš neliší, a proto lze výpočet považovat za dostatečně přesný.

7.3 Druhá část III. tahu – Výparník

Po prvním tepelném výpočtu třetího tahu byla provedena předběžná kontrola tepelné bilance. Z výsledků bylo patrné, že navržený výparný systém nemá potřebný výkon. Řešením je umístění dalších varných trubek do prostoru mezi obratovou komoru a první přehřívák. Jedná

se o trubky ohnuté do tvaru písmene "V", které vybočují ze zadní membránové stěny. Jsou zavěšeny v místě zpětného ohybu na háčcích umístěných na přední membránové stěně a zaplňují celou šířku tahu. Tímto navýšením teplosměnné plochy bylo dosaženo požadovaného tepelného výkonu výparného systému. Nákres schématu výparníku je zobrazen na obrázku 7.3 a rozměry pro výpočet jsou uvedeny v tabulce 7.4. Fyzikální vlastnosti spalin jsou uvedeny v tabulce 7.5. Řešení bylo zrealizováno na základě odborné konzultace. Tepelný výpočet je rozdělen na část s výparníkem a na část s membránovou stěnou.

Popis parametru	Označení	Hodnota	Jednotka
Vnější průměr trubky	D	51	mm
Vnitřní průměr trubky	d	43	mm
Tloušťka stěny trubky	t	4	mm
Počet řad trubek	n _{řad}	44	-
Počet trubek v řadě	n _{tr}	2	-
Počet vinutí	z	1	-
Podélná rozteč trubek	S ₁	100	mm
Příčná střední rozteč trubek	s ₂	300	mm
Délka trubek	l _{tr}	2,8	m
Výška počítaného úseku	h	1,3	m

Tab. 7.4 Navržené rozměry výparníku

Obr. 7.3 Nákres výparníku v druhé části III. tahu

7.3.1 Výparník

Teplota na konci druhé části třetího tahu byla zvolna jako $t_V^{out} = 671$ °C a byla ověřena na konci výpočtu.

Střední teplota spalin v části s výparníkem

$$t_{sp}^{st\check{r}} = \frac{t_{ok}^{out} + t_{V}^{out}}{2} = \frac{702,75 + 671}{2} = 686,88 \ ^{\circ}C \tag{7.27}$$

Objemový průtok spalin v části s výparníkem

$$M_{sp}^{st\check{r}} = M_{sp} \cdot \left(\frac{t_{sp}^{st\check{r}} + 273,15}{273,15}\right) = 18,66 \cdot \left(\frac{686,88 + 273,15}{273,15}\right) = 65,58 \ m^3/_{S}$$
(7.28)

Střední rychlost spalin v části s výparníkem

$$w_{sp}^{st\check{r}} = \frac{M_{sp}^{st\check{r}}}{F_{sp}} = \frac{65,58}{6,81} = 9,62 \ m/s$$
(7.29)

Průtočný průřez spalin v části s výparníkem

$$F_{sp} = a_{III} \cdot b_{III} - D \cdot l_{tr} \cdot n_{tr} = 2,97 \cdot 4,5 - 0,051 \cdot 2,92 \cdot 44 = 6,81 \ m^2$$
(7.30)

Součinitel přestupu tepla konvekcí ze strany spalin pro příčné proudění a uspořádání trubek za sebou

$$\alpha_k = 0.2 \cdot c_z \cdot c_s \cdot \frac{\lambda}{D} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot D}{\nu}\right)^{0.65} \cdot Pr^{0.33} =$$
(7.31)

$$0.2 \cdot 1 \cdot 1 \cdot \frac{0.0821}{0.051} \cdot \left(\frac{9.62 \cdot 0.051}{1.10 \cdot 10^{-4}}\right)^{0.65} \cdot 0.6158^{0.33} = 57.76 \ W/m^2 \cdot K$$

Kde: c_z je součinitel opravy na počet podélných řad [-] (pro $n_{rad} > 10$ je roven 1) c_s je součinitel opravy na uspořádání svazku v závislosti na poměrné příčné rozteči a podélné rozteči [-] (pro $\sigma_2 > 2$ je roven 1) D je vnější průměr trubek

$$\sigma_2 = \frac{s_2}{D} = \frac{0.3}{0.051} = 5,88 \tag{7.32}$$

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	8,21 [.] 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	1,10 ⁻⁴	m²/s
Prandtlovo číslo	Pr	0,616	-

Tab. 7.5 Fyzikální vlastnosti spalin v druhé části III. tahu

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{-3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$
(7.33)

$$\alpha_s = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.0995 \cdot 960.23^3 \cdot \frac{1 - \left(\frac{591.93}{960.23}\right)^2}{1 - \frac{591.93}{960.23}} = 10.07 \ W/_{m^2 \cdot K}$$

kde Tz je dosazena z rovnice 6.17.

Stupeň černosti proudu spalin

$$\alpha = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-0.1048} = 0.0995 \tag{7.34}$$

$$k \cdot p \cdot s = (k_{sp} \cdot r_{sp} + k_p \cdot \mu) \cdot p \cdot s = 7,8281 \cdot 0,1 \cdot 0,1339 = 0,1048$$
(7.35)

Součinitel zeslabení sálání tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot r_{H_20}}{3.16 \cdot \sqrt{p_{sp} \cdot s}} - 1\right) \cdot \left(1 - 0.37 \cdot \frac{T_s}{1000}\right) \cdot r_{sp}$$
(7.36)

$$k_{sp} \cdot r_{sp} = \left(\frac{7,8 + 16 \cdot 0,1223}{3,16 \cdot \sqrt{0,0214 \cdot 0,1339}}\right) \cdot \left(1 - 0,37 \cdot \frac{960,23}{1000}\right) \cdot 0,2144 = 7,8281 \ \frac{1}{m \cdot MPa}$$

Efektivní tloušťka sálavé vrstvy

$$s = 0.9 \cdot D \cdot \left(\frac{4 \cdot s_1 \cdot s_2}{\pi \cdot D^2} - 1\right) = 0.9 \cdot 0.051 \cdot \left(\frac{4 \cdot 0.1 \cdot 0.08}{\pi \cdot 0.051^2} - 1\right) = 0.1339 \ m \tag{7.37}$$

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \alpha_k + \alpha_s = 57,76 + 10,07 = 67,83 \ W/_{m^2 \cdot K}$$
 (7.38)

Součinitel prostupu tepla

$$k = \frac{\alpha_1}{1 + \varepsilon \cdot \alpha_1} = \frac{67,83}{1 + 0,008 \cdot 67,83} = 43,97 \ W/m^2 \cdot K \tag{7.39}$$

Celková teplosměnná plocha trubek výparníku

$$S = \pi \cdot D \cdot n_{tr} \cdot n_{\check{r}ad} \cdot z \cdot l_{tr} = \pi \cdot 0,051 \cdot 44 \cdot 2 \cdot 1 \cdot 2,8 = 38,77 \ m^2$$
(7.40)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{443,97 - 412,22}{\ln \frac{443,97}{412,22}} = 427,90 \,^{\circ}C$$
(7.41)

$$\Delta t_1 = t_{ok}^{out} - t_{v \circ p} = 702,75 - 258,78 = 443,97 \ ^\circ C \tag{7.42}$$

$$\Delta t_2 = t_V^{out} - t_{v \circ p} = 671,00 - 258,78 = 412,22 \ \circ C \tag{7.43}$$

Teplo předané spalinami membránové stěně obratové komory

$$Q_V^{\nu \psi p} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{43,97 \cdot 38,77 \cdot 427,90}{10^3} = 729,53 \ kW \tag{7.44}$$

7.3.2 Membránová stěna

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_{k} = 0.023 \cdot \frac{\lambda}{d_{e}} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot d_{e}}{\nu}\right)^{0.8} \cdot Pr^{0.4} \cdot c_{t} \cdot c_{l} \cdot c_{m}$$
(7.45)

$$\alpha_k = 0.023 \cdot \frac{0.0821}{0.1042} \cdot \left(\frac{9.62 \cdot 0.1042}{1.10 \cdot 10^{-4}}\right)^{0.8} \cdot 0.6158^{0.4} \cdot 1 \cdot 1 \cdot 1 = 21.97 \ W/m^2 \cdot K$$

Ekvivalentní průměr

$$d_e = \frac{4 \cdot F_{sp}}{0} = \frac{4 \cdot 6,81}{261,42} = 0,1042 \ m \tag{7.46}$$

$$0 = 2 \cdot (a_{III} + b_{III}) + 2 \cdot (D + l_{tr}) \cdot n_{tr} =$$
(7.47)

$$0 = 2 \cdot (2,97 + 4,5) + 2 \cdot (0,051 + 2,8) \cdot 44 = 261,42 m$$

Součinitel přestupu tepla sáláním

Pro část s membránovou stěnou je součinitel přestupu tepla sáláním a střední logaritmický spád stejný jako v případě části s výparníkem, protože v obou případech jsou stejné podmínky.

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}} = 10,07 \ W/_{m^{2} \cdot K}$$
(7.48)

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \xi \cdot (\alpha_k + \alpha_s) = 0.9 \cdot (21.97 + 10.07) = 28.84 \ W/m^2 \cdot K \tag{7.49}$$

Součinitel prostupu tepla

$$k = \frac{\alpha_1}{1 + \varepsilon \cdot \alpha_1} = \frac{28,84}{1 + 0,008 \cdot 28,84} = 23,43 \ W/m^2 \cdot K \tag{7.50}$$

Celková teplosměnná plocha

$$S = 2 \cdot h \cdot (a_{III} + b_{III}) = 2 \cdot 1,3 \cdot (2,97 \cdot 4,5) = 19,42 \ m^2$$
(7.51)

Teplo předané spalinami membránové stěně obratové komory

$$Q_V^{MS} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{23,43 \cdot 19,42 \cdot 427,90}{10^3} = 194,75 \, kW \tag{7.52}$$

Celkové teplo předané v části s výparníkem

$$Q_V = Q_V^{\nu \circ p} + Q_V^{MS} = 729,53 + 194,75 = 924,30 \, kW$$
(7.53)

Entalpie spalin na konci části výparníkem

$$I_V^{out} = \frac{M_{pv} \cdot I_{ok}^{out} - Q_V}{M_{pv}} = \frac{2,59 \cdot 7381,95 - 924,30}{2,59} = 7\ 025,12\ \frac{kJ}{kg}$$
(7.54)

Skutečná teplota na konci části s výparníkem

Následně byla pro tuto entalpii lineární interpolací z tabulky 2.2 odečtena skutečná teplota na konci obratové komory 671,16 °C. Ta se od zvolené teploty 671 °C příliš neliší, a proto lze výpočet považovat za dostatečně přesný.

7.4 Třetí část III. tahu – závěsné trubky

Tepelný výpočet této části je rozdělen na tři části – část s příčnými trubkami, se svislými trubkami a na část s membránovou stěnou. Nákres schématu závěsných trubek je zobrazen na obrázku 7.4 a rozměry pro výpočet jsou uvedeny v tabulce 7.1. Fyzikální vlastnosti spalin jsou uvedeny v tabulce 7.8. Teplota spalin na výstupu z třetí části tahu byla volena $t_{ZT}^{out} = 660,66 \,^{\circ}C$ a byla ověřena na konci výpočtu.

Obr. 7.4 Nákres závěsných trubek ve třetí části III. tahu

Střední teplota spalin v části se závěsnými trubkami

$$t_{sp}^{st\check{r}} = \frac{t_V^{out} + t_{ZT}^{out}}{2} = \frac{671,16 + 660,66}{2} = 665,91 \,^{\circ}C \tag{7.55}$$

Objemový průtok spalin v části se závěsnými trubkami

$$M_{sp}^{st\check{r}} = M_{sp} \cdot \left(\frac{t_{sp}^{st\check{r}} + 273,15}{273,15}\right) = 18,66 \cdot \left(\frac{665,91 + 273,15}{273,15}\right) = 64,15 \ m^3/_s \tag{7.56}$$

Střední rychlost spalin v části se závěsnými trubkami

$$w_{sp}^{st\check{r}} = \frac{M_{sp}^{st\check{r}}}{F_{sp}} = \frac{64,15}{13,15} = 4,8763 \ m/s$$
(7.57)

Průtočný průřez spalin v části se závěsnými trubkami

$$F_{sp} = a_{III} \cdot b_{III} - \pi \cdot D^2 \cdot n_{tr} \cdot n_{\check{r}ad} = 2,97 \cdot 4,5 - \pi \cdot 0,038^2 \cdot 23 \cdot 2 = 13,15 \ m^2 \qquad (7.58)$$

7.4.1 Příčné závěsné trubky

Parametry páry jsou uvedeny v tabulce 7.6. Pro tyto parametry byly určeny fyzikální vlastnosti páry (tabulka 7.7).

Součinitel přestupu tepla konvekcí na straně páry pro podélné proudění

$$\alpha_2 = 0.023 \cdot \frac{\lambda_p}{d_{ZT}} \cdot \left(\frac{w_p^{st\check{r}} \cdot d_{ZT}}{\nu_p}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m =$$
(7.59)

$$\alpha_2 = 0.023 \cdot \frac{5.25 \cdot 10^{-2}}{0.0254} \cdot \left(\frac{17.60 \cdot 0.0254}{0.0454}\right)^{0.8} \cdot 1.2992^{0.4} \cdot 1 \cdot 1 \cdot 1 = 2.031.10 \ ^W/_{m^2 \cdot K}$$

Střední rychlost proudění páry v trubkách

$$w_p^{st\check{r}} = \frac{M_p \cdot v_p}{F_{ZT}} = \frac{9,04 \cdot 0,0454}{0,0233} = 17,60 \ \frac{m}{s}$$
(7.60)
Tab. 7.6 *Parametry páry v příčných ZT v třetí části III. tahu*

Parametr		Označení	Hodnota	Jednotka
	Vstup	t_{ZT}^{in}	266,16	°C
Teplota	Výstup	t_{ZT}^{out}	269,41	°C
	Střední hodnota	$t_{ZT}^{st\check{r}}$	267,78	°C
Tlak	Vstup	p_{ZT}^{in}	4,555	MPa
	Výstup	p_{ZT}^{out}	4,550	MPa
	Střední hodnota	$p_{ZT}^{st\check{ m r}}$	4,5525	MPa
	Vstup	i ⁱⁿ I _{ZT}	2829,58	kJ/kg
Entalpie	Výstup	i ^{out}	2841,98	kJ/kg
	Střední hodnota	i ^{stř}	2835,78	kJ/kg
Hmotnos	tní průtok	M _p	9,040	kg/s

Tab. 7.7 Fyzikální vlastnosti páry v příčných ZT v třetí části III. tahu

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,25 [.] 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	8,30 [.] 10 ⁻⁷	m²/s
Prandtlovo číslo	Pr	1,299	-
Měrný objem	v _p	0,045	m³/kg

Součinitel přestupu tepla konvekcí ze strany spalin pro příčné proudění

$$\alpha_k = 0.2 \cdot c_z \cdot c_s \cdot \frac{\lambda}{D_{ZT}} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot D_{ZT}}{\nu}\right)^{0.65} \cdot Pr^{0.33} =$$
(7.61)

$$\alpha_k = 0.2 \cdot 0.91 \cdot 1 \cdot \frac{5.25 \cdot 10^{-2}}{0.038} \cdot \left(\frac{17.60 \cdot 0.038}{8.30 \cdot 10^{-7}}\right)^{0.65} \cdot 1.2992^{0.33} = 41.99 \ W/m^2 \cdot K$$

$$c_z = 0.91 + 0.0125 \cdot (n_{\check{r}ad} - 2) = 0.91 \cdot 0.0125 \cdot (2 - 2) = 0.91$$
(7.62)

$$\sigma_2 = \frac{s_2}{D_{ZT}} = \frac{0,125}{0,038} = 3,2895 \tag{7.63}$$

dle [1] se součinitel opravy na uspořádání svazku v závislosti na poměrné příčné rozteči uvažuje roven 1 v případě, že poměrná rozteč $\sigma_2 > 2$, což je splněno.

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	8,03 [.] 10 ⁻²	W/m ⁻ K
Součinitel kinematické viskozity	v	1,06 [.] 10 ⁻⁴	m²/s
Prandtlovo číslo	Pr	0,618	_

Tab. 7.8 Fyzikální vlastnosti spalin ve třetí části III. tahu

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{-3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$
(7.64)

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.2402 \cdot 939,06^{3} \cdot \frac{1 - \left(\frac{661.29}{939,06}\right)^{4}}{1 - \frac{661.29}{939,06}} = 23.12 \ W/_{m^{2} \cdot K}$$

Stupeň černosti proudu spalin

$$\alpha = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-0.2402} = 0.2135 \tag{7.65}$$

$$k \cdot p \cdot s = (k_{sp} \cdot r_{sp} + k_p \cdot \mu) \cdot p \cdot s = 3,3370 \cdot 0,1 \cdot 0,7197 = 0,2402$$
(7.66)

Součinitel zeslabení sálání tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot r_{H_20}}{3.16 \cdot \sqrt{p_{sp} \cdot s}} - 1\right) \cdot \left(1 - 0.37 \cdot \frac{T_s}{1000}\right) \cdot r_{sp}$$
(7.67)

$$k_{sp} \cdot r_{sp} = \left(\frac{7,8 + 16 \cdot 0,1223}{3,16 \cdot \sqrt{0,0214 \cdot 0,7197}}\right) \cdot \left(1 - 0,37 \cdot \frac{939,06}{1000}\right) \cdot 0,2144 = 3,3370 \ \frac{1}{m \cdot MPa}$$

Efektivní tloušťka sálavé vrstvy

$$s = 0.9 \cdot D \cdot \left(\frac{4 \cdot s_1 \cdot s_2}{\pi \cdot D^2} - 1\right) = 0.9 \cdot 0.038 \cdot \left(\frac{4 \cdot 0.2 \cdot 0.125}{\pi \cdot 0.038^2} - 1\right) = 0.7197 \ m \tag{7.68}$$

Teplota zaprášeného povrchu stěn

$$T_{z} = t_{zt}^{st\check{r}} + \left(\varepsilon + \frac{1}{\alpha_{2}}\right) \cdot \frac{Q}{S} \cdot 10^{3} + 273,15 =$$

$$T_{z} = 267,78 + \left(0,008 + \frac{1}{2031,10}\right) \cdot \frac{109,65}{7,91} \cdot 10^{3} + 273,15 = 661,29 K$$
(7.69)

Předpokládaný tepelný výkon příčných závěsných trubek

$$Q = 0.93 \cdot M_p \cdot \left(i_{zt}^{out} - i_{zt}^{in}\right) = 0.93 \cdot 9.04 \cdot (2841.85 - 2829.72) = 112.07 \ kW$$
(7.70)

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \alpha_k + \alpha_s = 41,99 + 23,12 = 65,11 \ ^W/_{m^2 \cdot K}$$
(7.71)

Součinitel prostupu tepla pro přehříváky páry

$$k = \frac{\psi \cdot \alpha_1}{1 + \frac{\alpha_1}{\alpha_2}} = \frac{0.6 \cdot 65.11}{1 + \frac{65.11}{2031.10}} = 37.85 \ W/_{m^2 \cdot K}$$
(7.72)

Celková teplosměnná plocha příčných závěsných trubek

$$S = \pi \cdot D \cdot n_{tr} \cdot n_{\check{r}ad} \cdot l_{ZT}^{s\check{t}} = \pi \cdot 0,038 \cdot 23 \cdot 2 \cdot 1,44 = 7,91 \ m^2$$
(7.73)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{443,97 - 412,22}{\ln \frac{443,97}{412,22}} = 398,11 \,^{\circ}C \tag{7.74}$$

$$\Delta t_1 = t_V^{out} - t_{p,ZT}^{out} = 671,16 - 269,41 = 401,75 \ ^\circ C \tag{7.75}$$

$$\Delta t_2 = t_{ZT}^{out} - t_{p,ZT}^{in} = 660,66 - 266,16 = 394,50 \ ^{\circ}C$$
(7.76)

Teplo předané spalinami příčným závěsným trubkám

$$Q_{ZT}^{p\check{r}\check{t}\check{c}} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{37,80 \cdot 7,91 \cdot 398,11}{10^3} = 119,17 \ kW \tag{7.77}$$

Z porovnání skutečného a předpokládaného tepelného výkonu závěsných trubek je vidět, že fyzikální parametry páry, a tedy i výpočet, lze považovat za přesné, jelikož se výkony výrazně neliší.

7.4.2 Podélné závěsné trubky

Parametry páry jsou uvedeny v tabulce 7.9. Pro tyto parametry byly určeny fyzikální vlastnosti páry (tabulka 7.10).

Součinitel přestupu tepla konvekcí na straně páry pro podélné proudění

$$\alpha_2 = 0.023 \cdot \frac{\lambda_p}{d_{ZT}} \cdot \left(\frac{w_p^{St\check{T}} \cdot d_{ZT}}{v_p}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m =$$
(7.78)

$$\alpha_2 = 0.023 \cdot \frac{5.28 \cdot 10^{-2}}{0.0254} \cdot \left(\frac{17.42 \cdot 0.0254}{0.0454}\right)^{0.8} \cdot 1.320^{0.4} \cdot 1 \cdot 1 \cdot 1 = 2.063.63 \ W/_{m^2 \cdot K}$$

Střední rychlost proudění páry v trubkách

$$w_p^{st\check{r}} = \frac{M_p \cdot v_p}{F_{ZT}} = \frac{9,04 \cdot 0,045}{0,0233} = 17,42 \ m/s \tag{7.79}$$

Tab. 7.9 Parametry páry v podélných ZT v třetí části III. tahu

Parametr		Označení	Hodnota	Jednotka
	Vstup	t_{ZT}^{in}	264,91	°C
Teplota	Výstup	t_{ZT}^{out}	266,16	°C
	Střední hodnota	$t_{ZT}^{st\check{ m r}}$	265,53	°C
Tlak	Vstup	p_{ZT}^{in}	4,56	MPa
	Výstup	p_{ZT}^{out}	4,555	MPa
	Střední hodnota	$p_{ZT}^{st\check{r}}$	4,5575	MPa
	Vstup	i ⁱⁿ _{ZT}	2824,52	kJ/kg
Entalpie	Výstup	i ^{out} ZT	2829,58	kJ/kg
	Střední hodnota	$i_{ZT}^{st\check{r}}$	2827,05	kJ/kg
Hmotnos	tní průtok	M _p	9,040	kg/s

Tab. 7.10 Fyzikální vlastnosti páry v podélných ZT v třetí části III. tahu

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,28 [.] 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	8,16 [.] 10 ⁻⁷	m²/s
Prandtlovo číslo	Pr	1,320	-
Měrný objem	v _p	0,045	m ³ /kg

Součinitel přestupu tepla konvekcí ze strany spalin pro podélné proudění

$$\alpha_{k} = 0.023 \cdot \frac{\lambda}{d_{e}} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot d_{e}}{v}\right)^{0.8} \cdot Pr^{0.4} =$$

$$\alpha_{k} = 0.23 \cdot \frac{5.28 \cdot 10^{-2}}{2.576} \cdot \left(\frac{4.88 \cdot 2.576}{8.16 \cdot 10^{-7}}\right)^{0.8} \cdot 1.320^{0.4} = 6.76 \ W/_{m^{2} \cdot K}$$
(7.80)

Ekvivalentní průměr

$$d_e = \frac{4 \cdot F}{O} = \frac{4 \cdot 13,16}{20,43} = 2,576 \ m \tag{7.81}$$

Světlý průřez

$$F = a_{III} \cdot b_{III} - \pi \cdot D^2 \cdot n_{zt} \cdot n_{\check{r}ad} = 2,97 \cdot 4,5 - \pi \cdot 0,038^2 \cdot 23 \cdot 2 = 13,16 \ m^2$$
(7.82)

Obvod průřezu

$$0 = 2 \cdot (a_{III} + b_{III}) + \pi \cdot D \cdot n_{tr} \cdot n_{\check{r}ad} = 2 \cdot (2,97 + 4,5) + \pi \cdot 0,038 \cdot 23 \cdot 2 = (7.83)$$

$$0 = 20,43 m$$

Střední rychlost spalin

$$w_{sp}^{st\check{r}} = \frac{M_{sp}^{st\check{r}}}{F} = \frac{64,15}{13,16} = 4,88 \ m/s \tag{7.84}$$

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{-3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$
(7.85)

$$\alpha_s = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.5260 \cdot 939,06^3 \cdot \frac{1 - \left(\frac{680,24}{939,06}\right)^4}{1 - \frac{680,24}{939,06}} = 58,75 \ W/_{m^2 \cdot K}$$

Stupeň černosti proudu spalin

$$\alpha = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-0.7465} = 0.5260 \tag{7.86}$$

$$k \cdot p \cdot s = (k_{sp} \cdot r_{sp} + k_p \cdot \mu) \cdot p \cdot s = 0,8630 \cdot 0,1 \cdot 8,65 = 0,7465$$
(7.87)

Součinitel zeslabení sálání tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot r_{H_20}}{3.16 \cdot \sqrt{p_{sp} \cdot s}} - 1\right) \cdot \left(1 - 0.37 \cdot \frac{T_s}{1000}\right) \cdot r_{sp}$$

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot 0.1223}{3.16 \cdot \sqrt{0.0214 \cdot 8.65}}\right) \cdot \left(1 - 0.37 \cdot \frac{939.06}{1000}\right) \cdot 0.2144 = 0.8630 \frac{1}{m \cdot MPa}$$

Efektivní tloušťka sálavé vrstvy

$$s = 0.9 \cdot D \cdot \left(\frac{4 \cdot s_1 \cdot s_2}{\pi \cdot D^2} - 1\right) = 0.9 \cdot 0.038 \cdot \left(\frac{4 \cdot 0.2 \cdot 1.52}{\pi \cdot 0.038^2} - 1\right) = 8.65 \ m \tag{7.89}$$

Teplota zaprášeného povrchu stěn

$$T_{z} = t_{zt}^{st\check{r}} + \left(\varepsilon + \frac{1}{\alpha_{2}}\right) \cdot \frac{Q}{S} \cdot 10^{3} + 273,15 =$$

$$T_{z} = 265,53 + \left(0,008 + \frac{1}{2063,63}\right) \cdot \frac{45,81}{2,75} \cdot 10^{3} + 273,15 = 680,24 K$$
(7.90)

Předpokládaný tepelný výkon podélných závěsných trubek

$$Q = 0.93 \cdot M_p \cdot \left(i_{zt}^{out} - i_{zt}^{in}\right) = 0.93 \cdot 9.04 \cdot (2829.58 - 2824.52) = 45.81 \ kW \tag{7.91}$$

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \alpha_k + \alpha_s = 6,76 + 58,75 = 65,51 \ W/_{m^2 \cdot K}$$
(7.92)

Součinitel prostupu tepla pro přehříváky páry

$$k = \frac{\psi \cdot \alpha_1}{1 + \frac{\alpha_1}{\alpha_2}} = \frac{0.6 \cdot 65.51}{1 + \frac{65.51}{2063.63}} = 38.09 \ W/m^2 \cdot K \tag{7.93}$$

Celková teplosměnná plocha podélných závěsných trubek

$$S = \pi \cdot D \cdot n_{tr} \cdot n_{\check{r}ad} \cdot l_{zt} = \pi \cdot 0,038 \cdot 23 \cdot 2 \cdot 0,5 = 2,75 \ m^2$$
(7.94)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{405,00 - 395,75}{\ln \frac{405,00}{395,75}} = 400,36 \,^{\circ}C$$
(7.95)

$$\Delta t_1 = t_V^{out} - t_{p,ZT}^{out} = 671,16 - 266,16 = 405,00 \ ^\circ C \tag{7.96}$$

$$\Delta t_2 = t_{ZT}^{out} - t_{p,ZT}^{in} = 660,66 - 264,91 = 395,75 \ ^{\circ}C \tag{7.97}$$

Teplo předané spalinami podélným závěsným trubkám

$$Q_{ZT}^{pod} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{38,09 \cdot 2,75 \cdot 400,36}{10^3} = 41,88 \ kW \tag{7.98}$$

Z porovnání skutečného a předpokládaného tepelného výkonu závěsných trubek je vidět, že fyzikální parametry páry, a tedy i výpočet, lze považovat za přesné, jelikož se výkony výrazně neliší.

7.4.3 Membránová stěna

Součinitel přestupu tepla konvekcí pro podélné proudění

Jelikož jsou smysl proudění i parametry výpočtu stejné jako v případě podélných závěsných trubek, je shodný i součinitel přestupu tepla konvekcí.

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{-3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}} =$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.4161 \cdot 939.06^{3} \cdot \frac{1 - \left(\frac{591.93}{939.06}\right)^{4}}{1 - \frac{591.93}{939.06}} = 42.21 \ W/m^{2} \cdot K$$
(7.99)

kde Tz je dosazena z rovnice 6.17.

Stupeň černosti proudu spalin

$$\alpha = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-0.5729} = 0.4361 \tag{7.100}$$

$$k \cdot p \cdot s = (k_{sp} \cdot r_{sp} + k_p \cdot \mu) \cdot p \cdot s = 1,22 \cdot 0,1 \cdot 4,69 = 0,5729$$
(7.101)

Součinitel zeslabení sálání tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot r_{H_20}}{3.16 \cdot \sqrt{p_{sp} \cdot s}} - 1\right) \cdot \left(1 - 0.37 \cdot \frac{T_s}{1000}\right) \cdot r_{sp}$$
(7.102)

$$k_{sp} \cdot r_{sp} = \left(\frac{7,8 + 16 \cdot 0,1223}{3,16 \cdot \sqrt{0,0214 \cdot 4,69}}\right) \cdot \left(1 - 0,37 \cdot \frac{939,06}{1000}\right) \cdot 0,2144 = 1,22 \ \frac{1}{m \cdot MPa}$$

Efektivní tloušťka sálavé vrstvy

$$s = 0.9 \cdot D \cdot \left(\frac{4 \cdot s_1 \cdot s_2}{\pi \cdot D^2} - 1\right) = 0.9 \cdot 0.038 \cdot \left(\frac{4 \cdot 0.2 \cdot 0.8225}{\pi \cdot 0.038^2} - 1\right) = 4.69 \ m \tag{7.103}$$

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \xi \cdot (\alpha_k + \alpha_s) = 0.9 \cdot (6.76 + 42.21) = 44.07 \ ^W/_{m^2} \cdot K \tag{7.104}$$

Součinitel prostupu tepla pro odpařovací plochy

$$k = \frac{\alpha_1}{1 + \varepsilon \cdot \alpha_1} = \frac{44,07}{1 + 0,008 \cdot 44,07} = 32,59 \ W/m^2 \cdot K \tag{7.105}$$

Celková teplosměnná plocha

$$S = 2 \cdot h \cdot (a_{III} + b_{III}) = 2 \cdot 0.7 \cdot (2.97 \cdot 4.5) = 10.46 \, m^2 \tag{7.106}$$

Teplo předané spalinami membránové stěně v části se závěsnými trubkami

$$Q_{ZT}^{MS} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{32,59 \cdot 10,46 \cdot 407,10}{10^3} = 138,73 \ kW \tag{7.107}$$

Celkové teplo předané v části se závěsnými trubkami

$$Q_{ZT} = Q_{ZT}^{p\check{r}\check{t}\check{c}} + Q_{ZT}^{pod} + Q_{ZT}^{MS} = 119,17 + 41,88 + 138,73 = 299,78 \, kW \tag{7.108}$$

Entalpie spalin na konci části výparníkem

$$I_{ZT}^{out} = \frac{M_{pv} \cdot I_{V}^{out} - Q_{ZT}}{M_{pv}} = \frac{2,59 \cdot 7025,12 - 299,78}{2,59} = 6\,909,38 \ \frac{kJ}{kg}$$
(7.109)

Skutečná teplota na konci části se závěsnými trubkami

Následně byla pro tuto entalpii lineární interpolací z tabulky 2.2 odečtena skutečná teplota na konci části se závěsnými trubkami 660,89 °C. Ta se od zvolené teploty 660,66 °C příliš neliší, a proto lze výpočet považovat za dostatečně přesný.

Obr. 7.5 Průběh teplot médií v části se závěsnými trubkami

7.5 Čtvrtá část III. tahu – přehřívák P2

Přehřívák P2 byl navrhnut jako souproudý z důvodu vysoké teploty spalin. Tímto se předejte vzniku vysokoteplotní korozi. Podélná rozteč je volena větší než u ostatních přehříváků z důvodu zanášení trubek. Vinutí přehříváku bylo navrženo jako trojhad z důvodu vysoké rychlosti páry uvnitř trubek. Schéma přehříváku P2, rozměry a fyzikální vlastnosti spalin a páry jsou uvedeny níže. Tepelný výpočet je rozdělen na přehřívák, membránovou stěnu a závěsné trubky. Teplota na výstupu ze čtvrté části třetího tahu byla volena 577,15 °C a byla ověřena na konci výpočtu.

Popis parametru	Označení	Hodnota	Jednotka
Vnější průměr trubky	D	31,8	mm
Vnitřní průměr trubky	d	23,8	mm
Tloušťka stěny trubky	t	4	mm
Počet řad trubek	n _{řad}	10	-
Počet trubek v řadě	n _{tr}	22	-
Počet vinutí	z	3	-
Podélná rozteč trubek	S ₁	200	mm
Příčná střední rozteč trubek	s ₂	70	mm
Délka trubek	l _{tr}	2,87	m
Výška počítaného úseku	h	2,72	m

Tab. 7.11 Navržené rozměry přehříváku P2

Obr. 7.6 Schéma rozvržení přehříváku P2 ve III. tahu

Střední teplota spalin v úseku s přehřívákem P2

$$t_{sp}^{st\check{r}} = \frac{t_{ZT}^{out} + t_{sp,P2}^{out}}{2} = \frac{660,89 + 577,15}{2} = 619,02 \,^{\circ}C \tag{7.110}$$

Objemový průtok spalin v úseku s přehřívákem P2

$$M_{sp}^{st\check{r}} = M_{sp} \cdot \left(\frac{t_{sp}^{st\check{r}} + 273,15}{273,15}\right) = 18,6609 \cdot \left(\frac{619,02 + 273,15}{273,15}\right) = 60,95 \ m^3/_S \tag{7.111}$$

Střední rychlost spalin v úseku s přehřívákem P2

$$w_{sp}^{st\check{r}} = \frac{M_{sp}^{st\check{r}}}{F_{sp}} = \frac{67,0319}{11,15} = 5,47 \ m/s$$
(7.112)

Průtočný průřez spalinového kanálu

$$F_{sp} = a_{III} \cdot b_{III} - \pi \cdot D_{zt}^{2} \cdot n_{zt} \cdot n_{\check{r}ad} - D \cdot l_{tr} \cdot n_{tr} =$$

$$F_{sp} = 2,97 \cdot 4,5 - \pi \cdot 0,038^{2} \cdot 23 \cdot 2 - 0,0318 \cdot 2,87 \cdot 22 = 11,15 \ m^{2}$$
(7.113)

7.5.1 Část s přehřívákem

Parametr		Označení	Hodnota	Jednotka
Teplota	Vstup	$t_{p_2}^{in}$	316,23	°C
	Výstup	$t_{p_2}^{out}$	389,20	°C
	Střední hodnota	$t_{p_2}^{st\check{r}}$	352,71	°C
Tlak	Vstup	p_{P2}^{in}	4,4	MPa
	Výstup	p_{P2}^{out}	4,250	MPa
	Střední hodnota	$p_{p_2}^{st\check{r}}$	4,325	MPa
Entalpie	Vstup	i ⁱⁿ _{p2}	2996,4	kJ/kg
	Výstup	i ^{out}	3182, <mark>6</mark> 9	kJ/kg
	Střední hodnota	i ^{stř}	3089,54	kJ/kg
Hmotnos	tní průtok	M _p	9,430	kg/s

Tab. 7.12 Parametry páry v přehříváku P2 ve čtvrté části III. tahu

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,43 [.] 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	1,37 [.] 10 ⁻⁶	m²/s
Prandtlovo číslo	Pr	1,040	-
Měrný objem	v _p	0,0614	m³/kg

Tab. 7.13 Fyzikální vlastnosti páry v přehříváku P2 ve čtvrté části III. tahu

Součinitel přestupu tepla konvekcí na straně páry pro podélné proudění

$$\alpha_2 = 0.023 \cdot \frac{\lambda_p}{d} \cdot \left(\frac{w_p^{st\check{r}} \cdot d}{v_p}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m =$$
(7.114)

$$\alpha_2 = 0.023 \cdot \frac{5.43 \cdot 10^{-2}}{0.0238} \cdot \left(\frac{19.70 \cdot 0.0238}{0.0614}\right)^{0.8} \cdot 1.040^{0.8} \cdot 1 \cdot 1 \cdot 1 = 1.429.48 \ W/m^2 \cdot K$$

Střední rychlost páry

$$w_p^{st\check{r}} = \frac{M_p \cdot v_p}{F_p} = \frac{9,04 \cdot 0,0614}{0,0294} = 19,72 \ m/s \tag{7.115}$$

Průtočný průřez svazku

$$F_p = n_{tr} \cdot z \cdot \frac{\pi \cdot d^2}{4} = 22 \cdot 3 \cdot \frac{\pi \cdot 0,0,238^2}{4} = 0,0294 \ m^2 \tag{7.116}$$

Tab. 7.14 F	Fyzikální	vlastnosti	spalin ve	čtvrté	části	III.	tahu
-------------	-----------	------------	-----------	--------	-------	------	------

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	7,62 [.] 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	ν	9,75 [.] 10 ⁻⁵	m²/s
Prandtlovo číslo	Pr	0,623	-

Součinitel přestupu tepla na straně spalin pro příčné proudění

$$\alpha_{k} = 0.2 \cdot c_{z} \cdot c_{s} \cdot \frac{\lambda}{D} \cdot \left(\frac{w_{sp}^{st\tilde{r}} \cdot D}{\nu}\right)^{0.65} \cdot Pr^{0.33} =$$

$$\alpha_{k} = 0.2 \cdot 1 \cdot 1 \cdot \frac{7.62 \cdot 10^{-2}}{0.0318} \cdot \left(\frac{5.47 \cdot 0.0318}{9.75 \cdot 10^{-5}}\right)^{0.65} \cdot 0.623^{0.33} = 53.77 \ W/m^{2} \cdot K$$
(7.117)

Protože je počet řad ≥ 10 , je součinitel c_z roven 1.

$$\sigma_2 = \frac{s_2}{D} = \frac{0.07}{0.0318} = 2,0964 \tag{7.118}$$

Poměrná rozteč $\sigma_2 > 2$, proto je součinitel c_s roven 1.

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$
(7.119)

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1789 \cdot 892.17^{3} \cdot \frac{1 - \left(\frac{708.24}{892.17}\right)^{4}}{1 - \frac{708.24}{892.17}} = 19.05 \ W/m^{2} \cdot K$$

Stupeň černosti proudu spalin

$$\alpha = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-0,1971} = 0,1789 \tag{7.120}$$

$$k \cdot p \cdot s = (k_{sp} \cdot r_{sp} + k_p \cdot \mu) \cdot p \cdot s = 4,3611 \cdot 0,1 \cdot 0,4518 = 0,1971$$
(7.121)

Součinitel zeslabení sálání tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot r_{H_20}}{3.16 \cdot \sqrt{p_{sp} \cdot s}} - 1\right) \cdot \left(1 - 0.37 \cdot \frac{T_s}{1000}\right) \cdot r_{sp}$$
(7.122)
$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot 0.1223}{3.16 \cdot \sqrt{0.0214 \cdot 0.4518}}\right) \cdot \left(1 - 0.37 \cdot \frac{892.17}{1000}\right) \cdot 0.2144 = 4.3611 \ \frac{1}{m} \cdot MPa$$

Efektivní tloušťka sálavé vrstvy

$$s = 0.9 \cdot D \cdot \left(\frac{4 \cdot s_1 \cdot s_2}{\pi \cdot D^2} - 1\right) = 0.9 \cdot 0.0318 \cdot \left(\frac{4 \cdot 0.2 \cdot 0.07}{\pi \cdot 0.0318^2} - 1\right) = 0.4518 \ m \tag{7.123}$$

Teplota zaprášeného povrchu stěn

$$T_{z} = t_{P2}^{st\check{r}} + \left(\varepsilon + \frac{1}{\alpha_{2}}\right) \cdot \frac{Q}{S} \cdot 10^{3} + 273,15 =$$

$$T_{z} = 352,71 + \left(0,008 + \frac{1}{1429,48}\right) \cdot \frac{1791,81}{189,24} \cdot 10^{3} + 273,15 = 708,24 K$$
(7.124)

Součinitel přestupu tepla ze spalin do přehříváku P2

$$\alpha_1 = \alpha_k + \alpha_s = 53,77 + 19,05 = 72,82 \ W/_{m^2 \cdot K}$$
(7.125)

Součinitel prostupu tepla pro přehříváky páry

$$k = \frac{\psi \cdot \alpha_1}{1 + \frac{\alpha_1}{\alpha_2}} = \frac{0.6 \cdot 72.82}{1 + \frac{72.82}{1429.48}} = 41.57 \ W/_{m^2 \cdot K}$$
(7.126)

Celková teplosměnná plocha přehříváku P2

$$S = \pi \cdot D \cdot n_{tr} \cdot n_{\check{r}ad} \cdot z \cdot l_{tr} = \pi \cdot 0,0318 \cdot 22 \cdot 10 \cdot 3 \cdot 2,87 = 189,24 \, m^2 \tag{7.127}$$

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{344,67 - 187,94}{\ln \frac{344,67}{187,94}} = 258,43 \,^{\circ}C$$
(7.128)

$$\Delta t_1 = t_{sp,P2}^{in} - t_{p,P2}^{in} = 660,89 - 316,23 = 344,67 \ ^\circ C \tag{7.129}$$

$$\Delta t_2 = t_{sp,P2}^{out} - t_{p,P2}^{out} = 577,14 - 389,20 = 187,94 \,^{\circ}C \tag{7.130}$$

Teplo předané spalinami přehříváku P2

$$Q_{P2} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{41,57 \cdot 189,24 \cdot 258,43}{10^3} = 2\ 033,12\ kW \tag{7.131}$$

7.5.2 Část s membránovou stěnou

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_k = 0.023 \cdot \frac{\lambda}{d_e} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot d_e}{\nu}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m \tag{7.132}$$

$$\alpha_k = 0.023 \cdot \frac{0.0762}{0.3011} \cdot \left(\frac{5.47 \cdot 0.3011}{9.75 \cdot 10^{-5}}\right)^{0.8} \cdot 0.6225^{0.4} \cdot 1 \cdot 1 \cdot 1 = 11.30 \, W/_{m^2 \cdot K}$$

Ekvivalentní průměr

$$d_e = \frac{4 \cdot F_{sp}}{0} = \frac{4 \cdot 11,15}{148,11} = 0,3011 \,m \tag{7.133}$$

Obvod průřezu

$$0 = 2 \cdot (a_{III} + b_{III}) + 2 \cdot (D + l_{tr}) \cdot n_{tr} + \pi \cdot D_{ZT} \cdot n_{ZT} \cdot n_{\check{t}ad} =$$
(7.134)
$$0 = 2 \cdot (2,97 + 4,5) + 2 \cdot (0,0318 + 2,87) \cdot 22 + \pi \cdot 0,038 \cdot 23 \cdot 2 = 148,11 m$$

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1789 \cdot 892.17^{3} \cdot \frac{1 - \left(\frac{591.93}{892.17}\right)^{4}}{1 - \frac{591.93}{892.17}} = 15.61 \ W/m^{2} \cdot K$$
(7.135)

Kde: stupeň černosti proudu spalin je stejný, jako v části s přehřívákem

 T_z je dosazena z rovnice 6.17

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \xi \cdot (\alpha_k + \alpha_s) = 0.9 \cdot (11.60 + 15.61) = 24.48 \ W/_{m^2 \cdot K}$$
(7.136)

Součinitel prostupu tepla pro odpařovací plochy

$$k = \frac{\alpha_1}{1 + \varepsilon \cdot \alpha_1} = \frac{24,49}{1 + 0,008 \cdot 24,49} = 20,48 \, W/_{m^2 \cdot K} \tag{7.137}$$

Celková teplosměnná plocha

$$S = 2 \cdot h \cdot (a_{III} + b_{III}) = 2 \cdot 2,72 \cdot (2,97 + 4,5) = 40,64 m^2$$
(7.187)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{402,11 - 318,36}{\ln \frac{402,11}{318,36}} = 358,61^{\circ}C$$
(7.139)

$$\Delta t_1 = t_{sp,P2}^{in} - t_{v \circ p} = 660,89 - 258,78 = 402,11 \ ^\circ C \tag{7.140}$$

$$\Delta t_2 = t_{sp,P2}^{out} - t_{v \circ p} = 557,14 - 258,78 = 318,36 \ ^{\circ}C \tag{7.141}$$

Teplo předané spalinami membránové stěně

$$Q_{P2}^{MS} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{20,48 \cdot 40,64 \cdot 358,61}{10^3} = 298,43kW$$
(7.142)
7.5.3 Část se závěsnými trubkami

Parametr		Označení	Hodnota	Jednotka
	Vstup	t_{ZT}^{in}	262,66	°C
Teplota	Výstup	t_{ZT}^{out}	264,91	°C
	Střední hodnota	t_{ZT}^{str}	263,78	°C
Tlak	Vstup	p_{ZT}^{in}	4,57	MPa
	Výstup	p_{ZT}^{out}	4,560	MPa
	Střední hodnota	$p_{ZT}^{st\check{r}}$	4,565	MPa
Entalpie	Vstup	i ⁱⁿ _{ZT}	2815,41	kJ/kg
	Výstup	i ^{out} ZT	2824,23	kJ/kg
	Střední hodnota	i ^{out} _{ZT}	2819,82	kJ/kg
Hmotnos	tní průtok	M_p	9,040	kg/s

Tab. 7.15 Parametry páry v ZT ve čtvrté části III. tahu

Tab. 7.16 Fyzikální vlastnosti páry v ZT ve čtvrté části III. tahu

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,30 [.] 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	8,04 [.] 10 ⁻⁷	m²/s
Prandtlovo číslo	Pr	1,339	-
Měrný objem	v _p	0,0445	m ³ /kg

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_2 = 0.023 \cdot \frac{\lambda_p}{d_{ZT}} \cdot \left(\frac{w_p^{st\check{r}} \cdot d_{ZT}}{\nu_p}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m =$$
(7.143)

$$\alpha_2 = 0.023 \cdot \frac{0.053}{0.0254} \cdot \left(\frac{17.25 \cdot 0.0254}{0.0445}\right)^{0.8} \cdot 1.339^{0.8} \cdot 1 \cdot 1 \cdot 1 = 2.092.83 \, W/_{m^2 \cdot K}$$

Střední rychlost proudění páry v trubkách

$$w_p^{st\check{r}} = \frac{M_p \cdot v_p}{F_{ZT}} = \frac{9,04 \cdot 0,0445}{0,0233} = 17,25 \ m/s \tag{7.144}$$

Součinitel přestupu tepla konvekcí ze strany spalin pro podélné proudění

Jelikož jsou smysl proudění i parametry výpočtu stejné jako v případě membránové stěny, je shodný i součinitel přestupu tepla konvekcí.

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1789 \cdot 892.17^{3} \cdot \frac{1 - \left(\frac{582.22}{892.17}\right)^{4}}{1 - \frac{582.22}{892.17}} = 15.35 \ W/m^{2} \cdot K$$
(7.145)

Kde stupeň černosti proudu spalin je stejný, jako v části s přehřívákem.

Teplota zaprášeného povrchu stěn

$$T_{z} = t_{p,ZT}^{st\check{r}} + \left(\varepsilon + \frac{1}{\alpha_{2}}\right) \cdot \frac{Q}{S} \cdot 10^{3} + 273,15 =$$

$$T_{z} = 263,78 + \left(0,008 + \frac{1}{2092,83}\right) \cdot \frac{79,79}{14,94} = 582,22 \ K$$
(7.146)

Předpokládaný tepelný výkon závěsných trubek

$$Q = M_p \cdot \left(i_{zt}^{out} - i_{zt}^{in}\right) = 0,904 \cdot (2815,41 - 2824,23) = 79,79 \, kW \tag{7.147}$$

Celková teplosměnná plocha

$$S = \pi \cdot D_{zt} \cdot n_{zt} \cdot n_{\check{r}ad} \cdot h = \pi \cdot 0,038 \cdot 23 \cdot 2 \cdot 2,72 = 14,94 \ m^2 \tag{7.148}$$

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \alpha_k + \alpha_s = 11,60 + 15,36 = 26,96 \ W/_{m^2 \cdot K}$$
(7.149)

Součinitel prostupu tepla pro přehříváky páry

$$k = \frac{\psi \cdot \alpha_1}{1 + \frac{\alpha_1}{\alpha_2}} = \frac{0.6 \cdot 26.96}{1 + \frac{26.96}{2092.83}} = 15.97 \ W/_{m^2 \cdot K}$$
(7.150)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{395,98 - 314,49}{\ln \frac{395,98}{314,49}} = 353,67^{\circ}C$$
(7.151)

$$\Delta t_1 = t_{sp,P2}^{in} - t_{ZT}^{out} = 660,89 - 264,91 = 395,98 \ ^{\circ}C \tag{7.152}$$

$$\Delta t_2 = t_{sp,P2}^{out} - t_{ZT}^{in} = 557,14 - 258,78 = 314,49 \ ^{\circ}C \tag{7.153}$$

Teplo předané spalinami závěsným trubkám

$$Q_{P2}^{ZT} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{15,97 \cdot 14,94 \cdot 353,67}{10^3} = 84,36 \, kW \tag{7.154}$$

Z porovnání skutečného a předpokládaného tepelného výkonu závěsných trubek je vidět, že fyzikální parametry páry, a tedy i výpočet, lze považovat za přesné, jelikož se výkony výrazně neliší.

Celkové teplo předané v části s přehřívákem P2

$$Q_{P2}^{celkov\acute{e}} = Q_{P2} + Q_{P2}^{MS} + Q_{P2}^{ZT} = 2\ 033,12 + 298,43 + 84,36 = 2\ 415,91\ kW \tag{7.155}$$

Entalpie spalin na konci části s přehřívákem P2

$$I_{P2}^{out} = \frac{M_{pv} \cdot I_{ZT} - Q_{P2}^{celkov\acute{e}}}{M_{pv}} = \frac{2,59 \cdot 6\,909,38 - 2\,415,91}{2,59} = 5\,976,68 \frac{kJ}{kg}$$
(7.156)

Skutečná teplota na konci části s přehřívákem P2

Následně byla pro tuto entalpii lineární interpolací z tabulky 2.2 odečtena skutečná teplota na konci části s přehřívákem P2 577,67 °C. Ta se od zvolené teploty 577,15 °C příliš neliší, a proto lze výpočet považovat za dostatečně přesný.

Obr. 7.7 Průběh teplot médií v části s přehřívákem P2

7.6 Pátá část III. tahu – přehřívák P3

Přehřívák P3 byl navrhnut jako souproudý (stejně jako přehřívák P2). Svazek vyplňuje celou šířku tahu a vinutí přehříváku bylo navrženo jako jednohad. Schéma přehříváku P3, rozměry a fyzikální vlastnosti spalin a páry jsou uvedeny níže. Tepelný výpočet je opět rozdělen na přehřívák, membránovou stěnu a závěsné trubky. Teplota na výstupu z páté části třetího tahu byla volena 513,92 °C a byla ověřena na konci výpočtu.

Popis parametru	Označení	Hodnota	Jednotka
Vnější průměr trubky	D	38	mm
Vnitřní průměr trubky	d	30	mm
Tloušťka stěny trubky	t	4	mm
Počet řad trubek	n _{řad}	16	-
Počet trubek v řadě	n _{tr}	45	-
Počet vinutí	z	1	-
Podélná rozteč trubek	S ₁	100	mm
Příčná střední rozteč trubek	s ₂	90	mm
Délka trubek	l _{tr}	2,87	m
Výška počítaného úseku	h	2,15	m

Tab. 7.17 Navržené rozměry přehříváku P3

Obr. 7.8 Schéma rozvržení přehříváku P3 ve III. tahu

Střední teplota spalin v úseku s přehřívákem P3

$$t_{sp}^{st\check{r}} = \frac{t_{sp,P2}^{out} + t_{sp,P3}^{out}}{2} = \frac{577,66 + 513,92}{2} = 545,79^{\circ}C$$
(7.157)

Objemový průtok spalin v úseku s přehřívákem P3

$$M_{sp}^{st\check{r}} = M_{sp} \cdot \left(\frac{t_{sp}^{st\check{r}} + 273,15}{273,15}\right) = 18,6609 \cdot \left(\frac{545,79 + 273,15}{273,15}\right) = 55,95 \ m^3/_{s} \tag{7.158}$$

Střední rychlost spalin v úseku s přehřívákem P3

$$w_{sp}^{st\check{r}} = \frac{M_{sp}^{st\check{r}}}{F_{sp}} = \frac{55,95}{8,25} = 6,78 \ m/s$$
(7.159)

Průtočný průřez spalinového kanálu

$$F_{sp} = a_{III} \cdot b_{III} - \pi \cdot D_{zt}^{2} \cdot n_{zt} \cdot n_{\check{r}ad} - D \cdot l_{tr} \cdot n_{tr} =$$

$$F_{sp} = 2,97 \cdot 4,5 - \pi \cdot 0,038^{2} \cdot 23 \cdot 2 - 0,038 \cdot 2,87 \cdot 45 = 8,25 m^{2}$$
(7.160)

7.6.1 Část s přehřívákem

Tab. 7.18 Parametry páry v přehříváku P3 v páté části III. tahu

Parametr		Označení	Hodnota	Jednotka
	Vstup	t_{P3}^{in}	356,23	°C
Teplota	Výstup	t_{P3}^{out}	430,00	°C
	Střední hodnota	$t_{P3}^{st\check{ m r}}$	393,12	°C
Tlak	Vstup	p_{P3}^{in}	4,25	MPa
	Výstup	p_{P3}^{out}	4,100	MPa
	Střední hodnota	$p_{P3}^{st\check{r}}$	4,175	MPa
	Vstup	i ⁱⁿ 1 _{P3}	3104,86	kJ/kg
Entalpie	Výstup	i ^{out} _{P3}	3282,01	kJ/kg
	Střední hodnota	i ^{stř} _{P3}	3193,44	kJ/kg
Hmotnos	tní průtok	M_p	9,722	kg/s

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,78 [.] 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	1,67 [.] 10 ⁻⁶	m²/s
Prandtlovo číslo	Pr	0,996	-
Měrný objem	V _p	0,0614	m ³ /kg

Tab. 7.19 Fyzikální vlastnosti páry v přehříváku P3 v páté části III. tahu

Součinitel přestupu tepla konvekcí na straně páry pro podélné proudění

$$\alpha_2 = 0.023 \cdot \frac{\lambda_p}{d} \cdot \left(\frac{w_p^{st\check{r}} \cdot d}{v_p}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m =$$
(7.161)

$$\alpha_2 = 0.023 \cdot \frac{5.43 \cdot 10^{-2}}{0.030} \cdot \left(\frac{19.70 \cdot 0.030}{0.0614}\right)^{0.8} \cdot 1.040^{0.8} \cdot 1 \cdot 1 \cdot 1 = 1.290.83 \ W/m^2 \cdot K$$

Střední rychlost páry

$$w_p^{st\check{r}} = \frac{M_p \cdot v_p}{F_p} = \frac{9,72 \cdot 0,0614}{0,0318} = 21,17 \ m/s \tag{7.162}$$

Průtočný průřez svazku

$$F_p = n_{tr} \cdot z \cdot \frac{\pi \cdot d^2}{4} = 45 \cdot 1 \cdot \frac{\pi \cdot 0,0,30^2}{4} = 0,0318 \, m^2 \tag{7.163}$$

Součinitel přestupu tepla na straně spalin pro příčné proudění

Tab. 7.20 Fyzikální vlastnosti spalin v páté části III. tahu

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	6,99 [.] 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	8,46 [.] 10 ⁻⁵	m²/s
Prandtlovo číslo	Pr	0,630	-

$$\alpha_k = 0.2 \cdot c_z \cdot c_s \cdot \frac{\lambda}{D} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot D}{\nu}\right)^{0.65} \cdot Pr^{0.33} =$$
(7.164)

$$\alpha_k = 0.2 \cdot 1 \cdot 1 \cdot \frac{6.99 \cdot 10^{-2}}{0.030} \cdot \left(\frac{6.78 \cdot 0.030}{8.46 \cdot 10^{-5}}\right)^{0.65} \cdot 0.623^{0.33} = 65.40 \ W/m^2 \cdot K$$

Protože je počet řad ≥ 10 , je součinitel c_z roven 1.

$$\sigma_2 = \frac{s_2}{D} = \frac{0.09}{0.030} = 2,3684 \tag{7.165}$$

Poměrná rozteč $\sigma_2 > 2$, proto je součinitel c_s roven 1.

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$
(7.166)

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1392 \cdot 818.94^{3} \cdot \frac{1 - \left(\frac{728.51}{818.94}\right)^{4}}{1 - \frac{728.51}{818.94}} = 13.28 \ W/_{m^{2} \cdot K}$$

Stupeň černosti proudu spalin

$$\alpha = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-0.1499} = 0.1392 \tag{7.167}$$

$$k \cdot p \cdot s = (k_{sp} \cdot r_{sp} + k_p \cdot \mu) \cdot p \cdot s = 6,3194 \cdot 0,1 \cdot 0,2372 = 0,1499$$
(7.168)

Součinitel zeslabení sálání tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot r_{H_20}}{3.16 \cdot \sqrt{p_{sp} \cdot s}} - 1\right) \cdot \left(1 - 0.37 \cdot \frac{T_s}{1000}\right) \cdot r_{sp}$$

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot 0.1223}{3.16 \cdot \sqrt{0.0214 \cdot 0.2372}}\right) \cdot \left(1 - 0.37 \cdot \frac{818.94}{1000}\right) \cdot 0.2144 = 6.3194 \ \frac{1}{m} \cdot MPa$$

Efektivní tloušťka sálavé vrstvy

$$s = 0.9 \cdot D \cdot \left(\frac{4 \cdot s_1 \cdot s_2}{\pi \cdot D^2} - 1\right) = 0.9 \cdot 0.038 \cdot \left(\frac{4 \cdot 0.1 \cdot 0.09}{\pi \cdot 0.038^2} - 1\right) = 0.2372 \ m \tag{7.170}$$

Teplota zaprášeného povrchu stěn

$$T_{z} = t_{P3}^{st\check{r}} + \left(\varepsilon + \frac{1}{\alpha_{2}}\right) \cdot \frac{Q}{S} \cdot 10^{3} + 273,15 =$$

$$T_{z} = 393,12 + \left(0,008 + \frac{1}{1290,83}\right) \cdot \frac{1750}{246,69} \cdot 10^{3} + 273,15 = 728,51 K$$
(7.171)

Součinitel přestupu tepla ze spalin do přehříváku P3

$$\alpha_1 = \alpha_k + \alpha_s = 65,40 + 13,28 = 78,67 \ ^W/_{m^2 \cdot K}$$
(7.172)

Součinitel prostupu tepla pro přehříváky páry

$$k = \frac{\psi \cdot \alpha_1}{1 + \frac{\alpha_1}{\alpha_2}} = \frac{0.6 \cdot 78.67}{1 + \frac{78.67}{1290.83}} = 44.4 \ ^W/_{m^2 \cdot K}$$
(7.173)

Celková teplosměnná plocha přehříváku P3

$$S = \pi \cdot D \cdot n_{tr} \cdot n_{\check{r}ad} \cdot z \cdot l_{tr} = \pi \cdot 0,030 \cdot 45 \cdot 16 \cdot 1 \cdot 2,87 = 246,69 \, m^2 \tag{7.174}$$

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{221,43 - 83,91}{\ln \frac{221,43}{83,91}} = 141,73 \ ^\circ C \tag{7.175}$$

$$\Delta t_1 = t_{sp,P2}^{out} - t_{p,P3}^{in} = 577,67 - 356,23 = 221,43 \ ^\circ C \tag{7.176}$$

$$\Delta t_2 = t_{sp,P3}^{out} - t_{p,P3}^{out} = 513,92 - 430 = 83,91 \,^{\circ}C \tag{7.177}$$

Teplo předané spalinami přehříváku P3

$$Q_{P3} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{44,49 \cdot 246,69 \cdot 141,73}{10^3} = 1\,555,60\,kW \tag{7.178}$$

7.6.2 Část s membránovou stěnou

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_k = 0.023 \cdot \frac{\lambda}{d_e} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot d_e}{\nu}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m \tag{7.179}$$

$$\alpha_k = 0.023 \cdot \frac{0.0699}{0.1169} \cdot \left(\frac{6.78 \cdot 0.1169}{8.46 \cdot 10^{-5}}\right)^{0.8} \cdot 0.6299^{0.4} \cdot 1 \cdot 1 \cdot 1 = 17.19 \ W/m^2 \cdot K$$

Ekvivalentní průměr

$$d_e = \frac{4 \cdot F_{sp}}{0} = \frac{4 \cdot 8,25}{282,15} = 0,1169m \tag{7.180}$$

Obvod průřezu

$$0 = 2 \cdot (a_{III} + b_{III}) + 2 \cdot (D + l_{tr}) \cdot n_{tr} + \pi \cdot D_{ZT} \cdot n_{ZT} \cdot n_{\check{r}ad} =$$
(7.181)
$$0 = 2 \cdot (2,97 + 4,5) + 2 \cdot (0,038 + 2,87) \cdot 45 + \pi \cdot 0,038 \cdot 23 \cdot 2 = 282,15 m$$

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{-3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1392 \cdot 818.94^{3} \cdot \frac{1 - \left(\frac{591.93}{818.94}\right)^{4}}{1 - \frac{591.93}{818.94}} = 10.29 \ W/m^{2} \cdot K$$
(7.182)

Kde: stupeň černosti proudu spalin je stejný, jako v části s přehřívákem T_z je dosazena z rovnice 6.17

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \xi \cdot (\alpha_k + \alpha_s) = 0.9 \cdot (17.19 + 10.29) = 24.73 \ W/_{m^2 \cdot K}$$
(7.183)

Součinitel prostupu tepla pro odpařovací plochy

$$k = \frac{\alpha_1}{1 + \varepsilon \cdot \alpha_1} = \frac{24,73}{1 + 0,008 \cdot 24,73} = 20,65 \ W/m^2 \cdot K \tag{7.184}$$

Celková teplosměnná plocha

$$S = 2 \cdot h \cdot (a_{III} + b_{III}) = 2 \cdot 2,15 \cdot (2,97 + 4,5) = 32,12 m^2$$
(7.185)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{318,88 - 255,13}{\ln \frac{318,88}{255,13}} = 285,82^{\circ}C$$
(7.186)

$$\Delta t_1 = t_{sp,P3}^{in} - t_{v \circ p} = 577,67 - 258,78 = 318,88 \ ^\circ C \tag{7.187}$$

$$\Delta t_2 = t_{sp,P3}^{out} - t_{v \circ p} = 513,92 - 258,78 = 255,13 \ ^{\circ}C \tag{7.188}$$

Teplo předané spalinami membránové stěně

$$Q_{P3}^{MS} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{20,65 \cdot 32,12 \cdot 285,82}{10^3} = 189,54 \, kW \tag{7.189}$$

7.6.3 Část se závěsnými trubkami

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_{2} = 0.023 \cdot \frac{\lambda_{p}}{d_{ZT}} \cdot \left(\frac{w_{p}^{st\check{r}} \cdot d_{ZT}}{v_{p}}\right)^{0.8} \cdot Pr^{0.4} \cdot c_{t} \cdot c_{l} \cdot c_{m} =$$
(7.190)

$$\alpha_2 = 0.023 \cdot \frac{0.0533}{0.0254} \cdot \left(\frac{17.08 \cdot 0.0254}{0.0440}\right)^{0.0} \cdot 1.331^{0.8} \cdot 1 \cdot 1 \cdot 1 = 2.127.09 W/m^2 \cdot K$$

Střední rychlost proudění páry v trubkách

$$w_p^{st\check{r}} = \frac{M_p \cdot v_p}{F_{ZT}} = \frac{9,04 \cdot 0,0440}{0,0233} = 17,08 \ m/s \tag{7.191}$$

Parametr		Označení	Hodnota	Jednotka
	Vstup	t_{ZT}^{in}	261,16	°C
Teplota	Výstup	t_{ZT}^{out}	262,66	°C
	Střední hodnota t_{2T}^{str}	t_{ZT}^{str}	261,91	°C
Tlak	Vstup	p_{ZT}^{in}	4,575	MPa
	Výstup	p_{ZT}^{out}	4,570	MPa
	Střední hodnota	$p_{ZT}^{st\check{r}}$	4,5725	MPa
Entalpie	Vstup	i ⁱⁿ _{ZT}	2808,92	kJ/kg
	Výstup	i ^{out} ZT	262,659	kJ/kg
	Střední hodnota	i_{ZT}^{out}	1535,79	kJ/kg
Hmotnos	tní průtok	M _p	9,040	kg/s

Tab. 7.21 Parametry páry v ZT v páté části III. tahu

Tab. 7.22 Fyzikální vlastnosti páry v ZT v páté části III. tahu

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,33 [.] 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	7,92 [.] 10 ⁻⁷	m²/s
Prandtlovo číslo	Pr	1,331	-
Měrný objem	v _p	0,044	m ³ /kg

Součinitel přestupu tepla konvekcí ze strany spalin pro podélné proudění

Jelikož jsou smysl proudění i parametry výpočtu stejné jako v případě membránové stěny, je shodný i součinitel přestupu tepla konvekcí.

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{-3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1392 \cdot 818.94^{3} \cdot \frac{1 - \left(\frac{574.28}{818.94}\right)^{4}}{1 - \frac{574.28}{818.94}} = 9.95 \ W/m^{2} \cdot K$$
(7.192)

Kde stupeň černosti proudu spalin je stejný, jako v části s přehřívákem.

Teplota zaprášeného povrchu stěn

$$T_{z} = t_{p,ZT}^{st\check{r}} + \left(\varepsilon + \frac{1}{\alpha_{2}}\right) \cdot \frac{Q}{S} \cdot 10^{3} + 273,15 =$$
(7.193)

$$T_z = 261,91 + \left(0,008 + \frac{1}{2127,09}\right) \cdot \frac{54,68}{11,81} = 574,28 \, K$$

Předpokládaný tepelný výkon závěsných trubek

$$Q = M_p \cdot \left(i_{zt}^{out} - i_{zt}^{in} \right) = 0,904 \cdot (2814,97 - 2808,92) = 54,68 \, kW \tag{7.194}$$

Celková teplosměnná plocha

$$S = \pi \cdot D_{zt} \cdot n_{zt} \cdot n_{\check{r}ad} \cdot h = \pi \cdot 0,038 \cdot 23 \cdot 2 \cdot 2,15 = 11,81 \, m^2 \tag{7.195}$$

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \alpha_k + \alpha_s = 17,19 + 15,35 = 27,14 \ W/m^2 \cdot K$$
 (7.196)

Součinitel prostupu tepla pro přehříváky páry

$$k = \frac{\psi \cdot \alpha_1}{1 + \frac{\alpha_1}{\alpha_2}} = \frac{0.6 \cdot 27.14}{1 + \frac{27.14}{2127.09}} = 16,08 \ W/_{m^2 \cdot K}$$
(7.197)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{315,01 - 252,76}{\ln \frac{315,01}{252,76}} = 282,74 \,^{\circ}C \tag{7.198}$$

$$\Delta t_1 = t_{sp,P3}^{in} - t_{ZT}^{out} = 577,67 - 262,66 = 315,01 \ ^\circ C \tag{7.199}$$

$$\Delta t_2 = t_{sp,P3}^{out} - t_{ZT}^{in} = 513,92 - 261,16 = 252,76 \ ^{\circ}C \tag{7.200}$$

Teplo předané spalinami závěsným trubkám

$$Q_{P3}^{ZT} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{15,97 \cdot 14,94 \cdot 282,74}{10^3} = 84,36 \ kW \tag{7.201}$$

Z porovnání skutečného a předpokládaného tepelného výkonu závěsných trubek je vidět, že fyzikální parametry páry, a tedy i výpočet, lze považovat za přesné, jelikož se výkony výrazně neliší.

Celkové teplo předané v části s přehřívákem P3

$$Q_{P3}^{celkov\acute{e}} = Q_{P3} + Q_{P3}^{MS} + Q_{P3}^{ZT} = 1555,60 + 189,54 + 53,68 = 1\,798,83 \ kW \tag{7.202}$$

Entalpie spalin na konci části s přehřívákem P3

$$I_{P3}^{out} = \frac{M_{pv} \cdot I_{P2}^{out} - Q_{P3}^{celkov\acute{e}}}{M_{pv}} = \frac{2,5902 \cdot 5\,976,68 - 1798,83}{2,5902} = 5\,282,22 \ \frac{kJ}{kg}$$
(7.203)

Skutečná teplota na konci části s přehřívákem P3

Následně byla pro tuto entalpii lineární interpolací z tabulky 2.2 odečtena skutečná teplota na konci části s přehřívákem P3 514,67 °C. Ta se od zvolené teploty 513,92 °C příliš neliší, a proto lze výpočet považovat za dostatečně přesný.

Obr. 7.9 Průběh teplot médií v části s přehřívákem P3

7.7 Šestá část III. tahu – přehřívák P1

Přehřívák P1 byl navrhnut jako protiproudý pro dosažení co největšího teplotního spádu. Z důvodu většího počtu řad by výška svazku byla větší, než je výška přípustná, tedy 2 m. Proto byl přehřívák rozdělen na dva svazky, mezi které je umístěn parní ofukovač. Schéma přehříváku P1, rozměry a fyzikální vlastnosti spalin a páry jsou vedeny níže. Tepelný výpočet je opět rozdělen na přehřívák, membránovou stěnu a závěsné trubky. Teplota na výstupu z páté části třetího tahu byla volena 421,17 °C a byla ověřena na konci výpočtu.

Popis parametru	Označení	Hodnota	Jednotka
Vnější průměr trubky	D	33,7	mm
Vnitřní průměr trubky	d	25,7	mm
Tloušťka stěny trubky	t	4	mm
Počet řad trubek	n _{řad}	28	-
Počet trubek v řadě	n _{tr}	45	-
Počet vinutí	z	1	-
Podélná rozteč trubek	s ₁	100	mm
Příčná střední rozteč trubek	s ₂	80	mm
Délka trubek	l _{tr}	2,87	m
Výška počítaného úseku	h	3,68	m

Tab. 7.23 Navržené rozměry přehříváku P1

Obr. 7.10 Schéma rozvržení přehříváku P1 ve III. tahu

Střední teplota spalin v úseku s přehřívákem P1

$$t_{sp}^{st\check{r}} = \frac{t_{sp,P3}^{out} + t_{sp,P1}^{out}}{2} = \frac{514,67 + 421,17}{2} = 467,92 \,^{\circ}C \tag{7.204}$$

Objemový průtok spalin v úseku s přehřívákem P1

$$M_{sp}^{st\check{r}} = M_{sp} \cdot \left(\frac{t_{sp}^{st\check{r}} + 273,15}{273,15}\right) = 18,6609 \cdot \left(\frac{467,92 + 273,15}{273,15}\right) = 50,63 \ m^3/_{s} \tag{7.205}$$

Střední rychlost spalin v úseku s přehřívákem P1

$$w_{sp}^{st\check{r}} = \frac{M_{sp}^{st\check{r}}}{F_{sp}} = \frac{50,63}{8,80} = 5,75 \ m/s$$
(7.206)

Průtočný průřez spalinového kanálu

$$F_{sp} = a_{III} \cdot b_{III} - \pi \cdot D_{zt}^{2} \cdot n_{zt} \cdot n_{\check{r}ad} - D \cdot l_{tr} \cdot n_{tr} =$$

$$F_{sp} = 2,97 \cdot 4,5 - \pi \cdot 0,038^{2} \cdot 23 \cdot 2 - 0,0337 \cdot 2,87 \cdot 45 = 8,80 \ m^{2}$$
(7.207)

7.7.1 Část s přehřívákem

Tab.	7.24 Parametry	v páry v přehi	říváku P1	v šesté část	i III.	tahu
_						

Paramet	•	Označení	Hodnota	Jednotka
	Vstup	t_{P1}^{in}	269,41	°C
Teplota	Výstup	t_{P1}^{out}	357,12	°C
	Střední hodnota	$t_{p_1}^{st\check{r}}$	313,26	°C
Tlak	Vstup	p_{P1}^{in}	4,55	MPa
	Výstup	p_{P1}^{out}	4,400	MPa
	Střední hodnota	$p_{P1}^{st\check{r}}$	4,475	MPa
Entalpie	Vstup	i ⁱⁿ P1	2845,86	kJ/kg
	Výstup	i ^{out}	3100,26	kJ/kg
	Střední hodnota	i ^{stř} 1 _{P1}	2973,06	kJ/kg
Hmotnos	tní průtok	M _p	9,040	kg/s

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,19 ⁻ 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	1,10 ⁻¹⁰⁻⁶	m²/s
Prandtlovo číslo	Pr	1,114	°-
Měrný objem	Vp	0,0537	m ³ /kg

Tab. 7.25 Fyzikální vlastnosti páry v přehříváku P1 v šesté části III. tahu

Součinitel přestupu tepla konvekcí na straně páry pro podélné proudění

$$\alpha_2 = 0.023 \cdot \frac{\lambda_p}{d} \cdot \left(\frac{w_p^{st\check{r}} \cdot d}{v_p}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m =$$
(7.208)

$$\alpha_2 = 0.023 \cdot \frac{5.19 \cdot 10^{-2}}{0.0257} \cdot \left(\frac{20.80 \cdot 0.0257}{0.0537}\right)^{0.8} \cdot 1.114^{0.8} \cdot 1 \cdot 1 \cdot 1 = 1.719.99 \ W/m^2 \cdot K$$

Střední rychlost páry

$$w_p^{st\check{r}} = \frac{M_p \cdot v_p}{F_p} = \frac{9,04 \cdot 0,0537}{0,0233} = 20,80 \ m/s$$
 (7.209)

Průtočný průřez svazku

$$F_p = n_{tr} \cdot z \cdot \frac{\pi \cdot d^2}{4} = 45 \cdot 1 \cdot \frac{\pi \cdot 0,0257^2}{4} = 0,0233 \, m^2 \tag{7.210}$$

Součinitel přestupu tepla na straně spalin pro příčné proudění

Tab. 7.26 Fyzikální vlastnosti spalin v šesté části III. tahu

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	6,31 ⁻ 10 ⁻²	W/m ⁻ K
Součinitel kinematické viskozity	v	7,15 [.] 10 ⁻⁵	m²/s
Prandtlovo číslo	Pr	0,638	-

$$\alpha_k = 0.2 \cdot c_s \cdot \frac{\lambda}{D} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot D}{\nu}\right)^{0.65} \cdot Pr^{0.33} =$$
(7.211)

$$\alpha_{k} = 0.2 \cdot 1 \cdot 1 \cdot \frac{6.31 \cdot 10^{-2}}{0.0337} \cdot \left(\frac{5.75 \cdot 0.0337}{7.15 \cdot 10^{-5}}\right)^{0.65} \cdot 0.638^{0.33} = 55.04 \ W/m^{2} \cdot K$$

Protože je počet řad ≥ 10 , je součinitel c_z roven 1.

$$\sigma_2 = \frac{s_2}{D} = \frac{0.08}{0.0337} = 2.3739 \tag{7.212}$$

Poměrná rozteč $\sigma_2 > 2$, proto je součinitel c_s roven 1.

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$
(7.213)

$$\alpha_s = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1457 \cdot 741.07^3 \cdot \frac{1 - \left(\frac{639.11}{741.07}\right)^4}{1 - \frac{639.11}{741.07}} = 13.34 \ W/_{m^2 \cdot K}$$

Stupeň černosti proudu spalin

$$\alpha = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-0.1575} = 0.1457 \tag{7.214}$$

$$k \cdot p \cdot s = (k_{sp} \cdot r_{sp} + k_p \cdot \mu) \cdot p \cdot s = 6,5177 \cdot 0,1 \cdot 0,2417 = 0,1575$$
(7.215)

Součinitel zeslabení sálání tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot r_{H_20}}{3.16 \cdot \sqrt{p_{sp} \cdot s}} - 1\right) \cdot \left(1 - 0.37 \cdot \frac{T_s}{1000}\right) \cdot r_{sp}$$

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot 0.1223}{3.16 \cdot \sqrt{0.0214 \cdot 0.2417}}\right) \cdot \left(1 - 0.37 \cdot \frac{741.07}{1000}\right) \cdot 0.2144 = 6.5177 \ \frac{1}{m} \cdot MPa$$

Efektivní tloušťka sálavé vrstvy

$$s = 0.9 \cdot D \cdot \left(\frac{4 \cdot s_1 \cdot s_2}{\pi \cdot D^2} - 1\right) = 0.9 \cdot 0.038 \cdot \left(\frac{4 \cdot 0.1 \cdot 0.08}{\pi \cdot 0.0337^2} - 1\right) = 0.2417 \ m \tag{7.217}$$

Teplota zaprášeného povrchu stěn

$$T_{z} = t_{P1}^{st\check{r}} + \left(\varepsilon + \frac{1}{\alpha_{2}}\right) \cdot \frac{Q}{S} \cdot 10^{3} + 273,15 =$$

$$T_{z} = 313,26 + \left(0,008 + \frac{1}{1719,99}\right) \cdot \frac{2350,83}{382,85} \cdot 10^{3} + 273,15 = 639,11 K$$
(7.218)

Součinitel přestupu tepla ze spalin do přehříváku P1

$$\alpha_1 = \alpha_k + \alpha_s = 55,04 + 13,34 = 68,38 \ ^W/_{m^2 \cdot K}$$
(7.219)

Součinitel prostupu tepla pro přehříváky páry

$$k = \frac{\psi \cdot \alpha_1}{1 + \frac{\alpha_1}{\alpha_2}} = \frac{0.6 \cdot 68.38}{1 + \frac{68.38}{1719.99}} = 39.46 \ W/_{m^2 \cdot K}$$
(7.220)

Celková teplosměnná plocha přehříváku P1

$$S = \pi \cdot D \cdot n_{tr} \cdot n_{\check{r}ad} \cdot z \cdot l_{tr} = \pi \cdot 0,0337 \cdot 45 \cdot 28 \cdot 1 \cdot 2,87 = 382,85 \, m^2 \tag{7.221}$$

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{157,55 - 151,76}{\ln \frac{157,55}{151,76}} = 154,64 \,^{\circ}C$$
(7.222)

$$\Delta t_1 = t_{sp,P1}^{in} - t_{p,P1}^{in} = 514,67 - 357,12 = 157,55 \,^{\circ}C \tag{7.223}$$

$$\Delta t_2 = t_{sp,P1}^{out} - t_{p,P1}^{out} = 421,17 - 269,41 = 151,76 \,^{\circ}C \tag{7.224}$$

Teplo předané spalinami přehříváku P1

$$Q_{P1} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{39,46 \cdot 328,85 \cdot 154,64}{10^3} = 2\ 336,12\ kW \tag{7.225}$$

7.7.2 Část s membránovou stěnou

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_k = 0.023 \cdot \frac{\lambda}{d_e} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot d_e}{\nu}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m$$
(7.226)

$$\alpha_k = 0.023 \cdot \frac{0.0631}{0.1250} \cdot \left(\frac{5.75 \cdot 0.1250}{7.15 \cdot 10^{-5}}\right)^{0.8} \cdot 0.6377^{0.4} \cdot 1 \cdot 1 \cdot 1 = 15.45 \ W/m^2 \cdot K$$

Ekvivalentní průměr

$$d_e = \frac{4 \cdot F_{sp}}{0} = \frac{4 \cdot 8,80}{281,77} = 0,1250 \ m \tag{7.227}$$

Obvod průřezu

$$O = 2 \cdot (a_{III} + b_{III}) + 2 \cdot (D + l_{tr}) \cdot n_{tr} + \pi \cdot D_{ZT} \cdot n_{ZT} \cdot n_{\check{t}ad} =$$
(7.228)
$$O = 2 \cdot (2,97 + 4,5) + 2 \cdot (0,0337 + 2,87) \cdot 45 + \pi \cdot 0,038 \cdot 23 \cdot 2 = 281,77 m$$

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1457 \cdot 741.07^{3} \cdot \frac{1 - \left(\frac{591.93}{741.07}\right)^{4}}{1 - \frac{591.93}{741.07}} = 8.97 \ W/m^{2} \cdot K$$
(7.229)

Kde: stupeň černosti proudu spalin je stejný, jako v části s přehřívákem

 T_z je dosazena z rovnice 6.17

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \xi \cdot (\alpha_k + \alpha_s) = 0.9 \cdot (15.45 + 8.97) = 21.97 \ ^W/_{m^2} \cdot K \tag{7.230}$$

Součinitel prostupu tepla pro odpařovací plochy

$$k = \frac{\alpha_1}{1 + \varepsilon \cdot \alpha_1} = \frac{21,97}{1 + 0,008 \cdot 21,97} = 18,69 \ W/_{m^2 \cdot K}$$
(7.231)

Celková teplosměnná plocha

$$S = 2 \cdot h \cdot (a_{III} + b_{III}) = 2 \cdot 3,68 \cdot (2,97 + 4,5) = 54,98 \ m^2$$
(7.232)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{255,89 - 162,39}{\ln \frac{255,89}{162,39}} = 205,61^{\circ}C$$
(7.233)

$$\Delta t_1 = t_{sp,P1}^{in} - t_{v \circ p} = 514,67 - 258,78 = 255,89 \ ^\circ C \tag{7.234}$$

$$\Delta t_2 = t_{sp,P1}^{out} - t_{v \circ p} = 421,17,-258,78 = 162,39 \ ^{\circ}C \tag{7.235}$$

Teplo předané spalinami membránové stěně

$$Q_{P1}^{MS} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{20,65 \cdot 32,12 \cdot 205,61}{10^3} = 211,24 \ kW \tag{7.236}$$

7.7.3 Část se závěsnými trubkami

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_2 = 0,023 \cdot \frac{\lambda_p}{d_{ZT}} \cdot \left(\frac{w_p^{st\check{r}} \cdot d_{ZT}}{\nu_p}\right)^{0,8} \cdot Pr^{0,4} \cdot c_t \cdot c_l \cdot c_m =$$
(7.237)

$$\alpha_2 = 0,023 \cdot \frac{0,0535}{0,0254} \cdot \left(\frac{16,93 \cdot 0,0254}{0,0436}\right)^{0,8} \cdot 1,383^{0,8} \cdot 1 \cdot 1 \cdot 1 = 2\,157,86\,^W/_{m^2 \cdot K}$$

Střední rychlost proudění páry v trubkách

$$w_p^{st\check{r}} = \frac{M_p \cdot v_p}{F_{ZT}} = \frac{9,04 \cdot 0,0436}{0,0233} = 16,93 \ m/s \tag{7.238}$$

Parametr	Parametr		Hodnota	Jednotka
	Vstup	t_{ZT}^{in}	259,66	°C
Teplota	Výstup	t_{ZT}^{out}	261,16	°C
	Střední hodnota	$t_{ZT}^{st\check{r}}$	260,41	°C
	Vstup	p_{ZT}^{in}	4,585	MPa
Tlak	Výstup	p_{ZT}^{out}	4,575	MPa
	Střední hodnota	$p_{ZT}^{st\check{r}}$	4,58	MPa
	Vstup	i_{ZT}^{in}	2802,27	kJ/kg
Entalpie	Výstup	i ^{out} ZT	2808,47	kJ/kg
	Střední hodnota	i_{ZT}^{out}	2805,37	kJ/kg
Hmotnos	tní průtok	M _p	9,040	kg/s

Tab. 7.27 Parametry páry v ZT v šesté části III. tahu

Tab. 7.28 Fyzikální vlastnosti páry v ZT v šesté části III. tahu

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,35 ⁻ 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	7,82.10-7	m²/s
Prandtlovo číslo	Pr	1,383	-
Měrný objem	Vp	0,0436	m ³ /kg

Součinitel přestupu tepla konvekcí ze strany spalin pro podélné proudění

Jelikož jsou smysl proudění i parametry výpočtu stejné jako v případě membránové stěny, je shodný i součinitel přestupu tepla konvekcí.

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1457 \cdot 741.07^{3} \cdot \frac{1 - \left(\frac{574.28}{741.07}\right)^{4}}{1 - \frac{574.28}{741.07}} = 8.34 \ W/m^{2} \cdot K$$
(7.239)

Kde stupeň černosti proudu spalin je stejný, jako v části s přehřívákem.

Teplota zaprášeného povrchu stěn

$$T_{z} = t_{p,ZT}^{st\check{r}} + \left(\varepsilon + \frac{1}{\alpha_{2}}\right) \cdot \frac{Q}{S} \cdot 10^{3} + 273,15 =$$

$$T_{z} = 260,41 + \left(0,008 + \frac{1}{2157,86}\right) \cdot \frac{56,03}{20,21} = 557,03 K$$
(7.240)

Předpokládaný tepelný výkon závěsných trubek

$$Q = M_p \cdot \left(i_{zt}^{out} - i_{zt}^{in}\right) = 0,904 \cdot (2808,48 - 2802,27) = 56,03 \, kW \tag{7.241}$$

Celková teplosměnná plocha

$$S = \pi \cdot D_{zt} \cdot n_{zt} \cdot n_{\check{r}ad} \cdot h = \pi \cdot 0,038 \cdot 23 \cdot 2 \cdot 3,68 = 20,21 \, m^2 \tag{7.242}$$

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \alpha_k + \alpha_s = 15,45 + 8,34 = 23,79 \ W/m^2 \cdot K \tag{7.243}$$

Součinitel prostupu tepla pro přehříváky páry

$$k = \frac{\psi \cdot \alpha_1}{1 + \frac{\alpha_1}{\alpha_2}} = \frac{0.6 \cdot 23.79}{1 + \frac{23.79}{2157.87}} = 14.12 \ W/_{m^2 \cdot K}$$
(7.244)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{253,51 - 161,51}{\ln \frac{253,51}{161,51}} = 204,07 \,^{\circ}C \tag{7.245}$$

$$\Delta t_1 = t_{sp,P1}^{in} - t_{ZT}^{out} = 514,67 - 261,16 = 253,51 \ ^\circ C \tag{7.246}$$

$$\Delta t_2 = t_{sp,P1}^{out} - t_{ZT}^{in} = 421,17 - 259,66 = 161,51 \ ^{\circ}C \tag{7.247}$$

Teplo předané spalinami závěsným trubkám

$$Q_{P1}^{ZT} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{14,12 \cdot 20,21 \cdot 204,07}{10^3} = 58,22 \ kW \tag{7.248}$$

Z porovnání skutečného a předpokládaného tepelného výkonu závěsných trubek je vidět, že fyzikální parametry páry, a tedy i výpočet, lze považovat za přesné, jelikož se výkony výrazně neliší.

Celkové teplo předané v části s přehřívákem P1

$$Q_{P_1}^{celkov\acute{e}} = Q_{P_1} + Q_{P_1}^{MS} + Q_{P_1}^{ZT} = 2336,12 + 211,24 + 58,22 = 2\ 605,58\ kW \tag{7.249}$$

Entalpie spalin na konci části s přehřívákem P1

$$I_{P1}^{out} = \frac{M_{pv} \cdot I_{P3}^{out} - Q_{P1}^{celkov\acute{e}}}{M_{pv}} = \frac{2,59 \cdot 5282,22 - 2\ 605,58}{2,59} = 4\ 276,29\ \frac{kJ}{kg}$$
(7.250)

Skutečná teplota na konci části s přehřívákem P1

Následně byla pro tuto entalpii lineární interpolací z tabulky 2.2 odečtena skutečná teplota na konci části s přehřívákem P1 421,48. Ta se od zvolené teploty 421,17 °C příliš neliší, a proto lze výpočet považovat za dostatečně přesný.

Obr. 7.11 Průběh teplot médií v části s přehřívákem P1

7.8 Sedmá část III. tahu – ekonomizér E7

Ekonomizér je ve třetím tahu rozdělen na dva svazky. Z ekonomizéru E6 je voda zavedena do ohříváku vzduchu umístěného mimo kotel, a odtud jde do ekonomizéru E7. Oba ekonomizéry byly navrženy jako protiproudé. Zaplňují celou šířku tahu a rozměry trubek byly navržen s ohledem na rychlost vody, která by se dle odborné konzultace měla pohybovat v rozmezí 0,5-1,5 m/s. Výška svazků opět nepřesahuje 2 m. Schéma ekonomizéru E7, rozměry a fyzikální vlastnosti spalin a páry jsou vedeny níže. Tepelný výpočet je rozdělen na ekonomizér, membránovou stěnu a závěsné trubky. Teplota na výstupu ze sedmé části třetího tahu byla volena 360,23 °C a byla ověřena na konci výpočtu.

Popis parametru	Označení	Hodnota	Jednotka
Vnější průměr trubky	D	31,8	mm
Vnitřní průměr trubky	d	23,8	mm
Tloušťka stěny trubky	t	4	mm
Počet řad trubek	n _{řad}	20	-
Počet trubek v řadě	n _{tr}	45	-
Počet vinutí	z	1	-
Podélná rozteč trubek	s ₁	100	mm
Příčná střední rozteč trubek	s ₂	80	mm
Délka trubek	ltr	2,87	m
Výška počítaného úseku	h	2,32	m

Tab. 7.29 Navržené rozměry ekonomizéru E7

Obr. 7.12 Schéma rozvržení ekonomizéru E7 ve III. tahu

Střední teplota spalin v úseku s ekonomizérem E7

$$t_{sp}^{st\check{r}} = \frac{t_{sp,P1}^{out} + t_{sp,E6}^{out}}{2} = \frac{421,48 + 360,23}{2} = 390,86 \,^{\circ}C$$
(7.251)

Objemový průtok spalin v úseku s ekonomizérem E7

$$M_{sp}^{st\check{r}} = M_{sp} \cdot \left(\frac{t_{sp}^{st\check{r}} + 273,15}{273,15}\right) = 18,6609 \cdot \left(\frac{390,86 + 273,15}{273,15}\right) = 45,36 \ m^3/_s \qquad (7.252)$$

Střední rychlost spalin v úseku s ekonomizérem E7

$$w_{sp}^{st\check{r}} = \frac{M_{sp}^{st\check{r}}}{F_{sp}} = \frac{45,36}{9,05} = 5,01 \ m/s$$
(7.253)

Průtočný průřez spalinového kanálu

$$F_{sp} = a_{III} \cdot b_{III} - \pi \cdot D_{zt}^{2} \cdot n_{zt} \cdot n_{\check{r}ad} - D \cdot l_{tr} \cdot n_{tr} =$$

$$F_{sp} = 2,97 \cdot 4,5 - \pi \cdot 0,038^{2} \cdot 23 \cdot 2 - 0,0318 \cdot 2,87 \cdot 45 = 9,05 m^{2}$$
(7.254)

7.8.1 Část s ekonomizérem

Tab. 7.30 Parametry vody v ekonomizéru E7 v sedmé části III. tahu

Parametr		Označení	Hodnota	Jednotka
	Vstup	t_{E6}^{in}	200,78	°C
Teplota	Výstup	t_{E6}^{out}	238,78	°C
	Střední hodnota	$t_{E6}^{st\check{r}}$	219,78	°C
Tlak	Vstup	p_{E6}^{in}	4,7	MPa
	Výstup	p_{E6}^{out}	4,600	MPa
	Střední hodnota	p_{E6}^{str}	4,65	MPa
	Vstup	i ⁱⁿ E6	857,16	kJ/kg
Entalpie	Výstup	i ^{out} E6	1031,87	kJ/kg
Střední hodnota		i ^{stř} E6	944,51	kJ/kg
Hmotnostní průtok		M _v	9,040	kg/s
Měrný ob	ojem	vv	11,87.10-4	m ³ /kg

Součinitel přestupu tepla konvekcí na straně vody pro podélné proudění

Dle [1] odpadá určení součinitele přestupu tepla ze stěny do vody, protože má vysokou hodnotu, tedy lze zanedbat termický odpor na straně vody.

Střední rychlost vody

$$w_{v}^{st\check{r}} = \frac{M_{v} \cdot v_{v}}{F_{v}} = \frac{9,04 \cdot 11,87 \cdot 10^{-4}}{0,020} = 0,54 \, m/s \tag{7.255}$$

Průtočný průřez svazku

$$F_{\nu} = n_{tr} \cdot z \cdot \frac{\pi \cdot d^2}{4} = 45 \cdot 1 \cdot \frac{\pi \cdot 0.0238^2}{4} = 0.020 \ m^2 \tag{7.256}$$

Součinitel přestupu tepla na straně spalin pro příčné proudění

Tab. 7.31 Fyzikální vlastnosti spalin v sedmé části III. tahu

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,65 ⁻ 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	5,92 [.] 10 ⁻⁵	m²/s
Prandtlovo číslo	Pr	0,645	-

$$\alpha_k = 0.2 \cdot c_z \cdot c_s \cdot \frac{\lambda}{D} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot D}{\nu}\right)^{0.65} \cdot Pr^{0.33} =$$
(7.257)

$$\alpha_{k} = 0.2 \cdot 1 \cdot 1 \cdot \frac{5.65 \cdot 10^{-2}}{0.0318} \cdot \left(\frac{5.01 \cdot 0.0318}{5.92 \cdot 10^{-5}}\right)^{0.65} \cdot 0.645^{0.33} = 52.16 \ W/m^{2} \cdot K$$

Protože je počet řad ≥ 10 , je součinitel c_z roven 1.

$$\sigma_2 = \frac{s_2}{D} = \frac{0.08}{0.0318} = 2,52 \tag{7.258}$$

Poměrná rozteč $\sigma_2 > 2$, proto je součinitel c_s roven 1.

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$
(7.259)

$$\alpha_s = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1560 \cdot 664.01^3 \cdot \frac{1 - \left(\frac{541.90}{664.01}\right)^4}{1 - \frac{541.90}{664.01}} = 7.09 \ W/_{m^2 \cdot K}$$

Stupeň černosti proudu spalin

$$\alpha = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-0.1695} = 0.1560 \tag{7.260}$$

$$k \cdot p \cdot s = (k_{sp} \cdot r_{sp} + k_p \cdot \mu) \cdot p \cdot s = 6,5295 \cdot 0,1 \cdot 0,2597 = 0,1695$$
(7.261)

Součinitel zeslabení sálání tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot r_{H_20}}{3.16 \cdot \sqrt{p_{sp} \cdot s}} - 1\right) \cdot \left(1 - 0.37 \cdot \frac{T_s}{1000}\right) \cdot r_{sp}$$

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot 0.1223}{3.16 \cdot \sqrt{0.0214 \cdot 0.2597}}\right) \cdot \left(1 - 0.37 \cdot \frac{664.01}{1000}\right) \cdot 0.2144 = 6.5295 \frac{1}{m \cdot MPa}$$

Efektivní tloušťka sálavé vrstvy

$$s = 0.9 \cdot D \cdot \left(\frac{4 \cdot s_1 \cdot s_2}{\pi \cdot D^2} - 1\right) = 0.9 \cdot 0.0318 \cdot \left(\frac{4 \cdot 0.1 \cdot 0.08}{\pi \cdot 0.0318^2} - 1\right) = 0.2597 \ m \tag{7.263}$$

Teplota zaprášeného povrchu stěn

$$T_{z} = t_{v}^{st\check{r}} + \varepsilon \cdot \frac{Q}{S} \cdot 10^{3} + 273,15 =$$

$$T_{z} = 219,78 + 0,080 \cdot \frac{1579,63}{258,05} \cdot 10^{3} + 273,15 = 541,90 K$$
(7.264)

Předpokládaný tepelný výkon ekonomizéru E7

$$Q = M_{\nu} \cdot \left(i_{\nu}^{out} - i_{\nu}^{in}\right) = 9,04 \cdot (1031,87 - 944,51) = 1579,63 \ kW \tag{7.265}$$

Součinitel přestupu tepla ze spalin do ekonomizéru E7

$$\alpha_1 = \alpha_k + \alpha_s = 52,16 + 7,09 = 59,25 \ ^W/_{m^2 \cdot K}$$
(7.266)

Součinitel prostupu tepla pro ohříváky vody

$$k = \psi \cdot \alpha_1 = 0.6 \cdot 59.25 = 35.55 \ ^W/_{m^2 \cdot K}$$
(7.267)

Celková teplosměnná plocha ekonomizéru E7

$$S = \pi \cdot D \cdot n_{tr} \cdot n_{\check{r}ad} \cdot z \cdot l_{tr} = \pi \cdot 0.0318 \cdot 45 \cdot 20 \cdot 1 \cdot 2.87 = 258.05 \ m^2 \tag{7.268}$$

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{182,70 - 159,45}{\ln \frac{182,70}{159,45}} = 170,81 \,^{\circ}C \tag{7.269}$$

$$\Delta t_1 = t_{sp,E6}^{in} - t_{v,E6}^{in} = 421,48 - 238,78 = 182,70 \,^{\circ}C \tag{7.270}$$

$$\Delta t_2 = t_{sp,E6}^{out} - t_{\nu,E6}^{out} = 360,23 - 200,78 = 159,45 \ ^{\circ}C \tag{7.271}$$

Teplo předané spalinami ekonomizéru E7

$$Q_{E6} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{39,46 \cdot 328,85 \cdot 170,81}{10^3} = 1\ 566,90\ kW \tag{7.272}$$

Z porovnání skutečného a předpokládaného tepelného výkonu ekonomizéru je vidět, že fyzikální parametry páry, a tedy i výpočet, lze považovat za přesné, jelikož se výkony výrazně neliší.

7.8.2 Část s membránovou stěnou

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_k = 0.023 \cdot \frac{\lambda}{d_e} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot d_e}{\nu}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m$$
(7.273)

$$\alpha_k = 0.023 \cdot \frac{0.0565}{0.1285} \cdot \left(\frac{5.01 \cdot 0.1285}{5.92 \cdot 10^{-5}}\right)^{0.8} \cdot 0.6454^{0.4} \cdot 1 \cdot 1 \cdot 1 = 14.39 \ W/m^2 \cdot K$$

Ekvivalentní průměr

$$d_e = \frac{4 \cdot F_{sp}}{0} = \frac{4 \cdot 9,05}{281,59} = 0,1285 \ m \tag{7.274}$$

Obvod průřezu

$$O = 2 \cdot (a_{III} + b_{III}) + 2 \cdot (D + l_{tr}) \cdot n_{tr} + \pi \cdot D_{ZT} \cdot n_{ZT} \cdot n_{\check{t}ad} =$$
(7.275)
$$O = 2 \cdot (2,97 + 4,5) + 2 \cdot (0,0318 + 2,87) \cdot 45 + \pi \cdot 0,038 \cdot 23 \cdot 2 = 281,59 m$$

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1560 \cdot 664.01^{3} \cdot \frac{1 - \left(\frac{591.93}{664.01}\right)^{4}}{1 - \frac{591.93}{664.01}} = 7.95 \ W/m^{2} \cdot K$$
(7.276)

Kde: stupeň černosti proudu spalin je stejný, jako v části s ekonomizérem T_z je dosazena z rovnice 6.17

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \xi \cdot (\alpha_k + \alpha_s) = 0.9 \cdot (14.39 + 7.95) = 20.10 \ W/_{m^2 \cdot K}$$
(7.277)

Součinitel prostupu tepla

$$k = \frac{\alpha_1}{1 + \varepsilon \cdot \alpha_1} = \frac{20,10}{1 + 0,008 \cdot 20,10} = 17,31 \ W/m^2 \cdot K \tag{7.278}$$

Celková teplosměnná plocha

$$S = 2 \cdot h \cdot (a_{III} + b_{III}) = 2 \cdot 2,32 \cdot (2,97 + 4,5) = 34,66 \ m^2$$
(7.279)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{162,70 - 101,45}{\ln \frac{162,70}{101,45}} = 129,67^{\circ}C$$
(7.280)

$$\Delta t_1 = t_{sp,E6}^{in} - t_{v \circ p} = 421,48 - 258,78 = 162,70 \ ^\circ C \tag{7.281}$$

$$\Delta t_2 = t_{sp,E6}^{out} - t_{v \circ p} = 360,23 - 258,78 = 101,45 \ ^\circ C \tag{7.282}$$

Teplo předané spalinami membránové stěně

$$Q_{E6}^{MS} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{17,31 \cdot 34,66 \cdot 129,67}{10^3} = 77,84 \ kW \tag{7.283}$$

7.8.3 Část se závěsnými trubkami

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_2 = 0.023 \cdot \frac{\lambda_p}{d_{ZT}} \cdot \left(\frac{w_p^{st\check{r}} \cdot d_{ZT}}{\nu_p}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m =$$
(7.284)

$$\alpha_2 = 0.023 \cdot \frac{0.0537}{0.0254} \cdot \left(\frac{16.82 \cdot 0.0254}{0.0433}\right)^{0.8} \cdot 1.3986^{0.8} \cdot 1 \cdot 1 \cdot 1 = 2\ 180.56\ W/_{m^2 \cdot K}$$

Střední rychlost proudění páry v trubkách

$$w_p^{st\check{r}} = \frac{M_p \cdot v_p}{F_{ZT}} = \frac{9,04 \cdot 0,0433}{0,0233} = 16,82 \ m/s \tag{7.285}$$

Parametr		Označení	Hodnota	Jednotka
	Vstup	t_{ZT}^{in}	259,21	°C
Teplota	Výstup	t_{ZT}^{out}	259,66	°C
	Střední hodnota	$t_{ZT}^{st\check{r}}$	259,43	°C
Tlak	Vstup	p_{ZT}^{in}	4,59	MPa
	Výstup	p_{ZT}^{out}	4,585	MPa
	Střední hodnota	$p_{ZT}^{st\check{r}}$	4,5875	MPa
	Vstup	i ⁱⁿ _{ZT}	2799,91	kJ/kg
Entalpie	Výstup	i ^{out} ZT	2801,803	kJ/kg
	Střední hodnota	i ^{out} _{ZT}	2800,857	kJ/kg
Hmotnos	tní průtok	M _p	9,040	kg/s

T_{-1}	7 2 2	Darran atra		77	a a Jan h	× 4	π	4 1
1 a.D.	1.32	Parametry	pary v	ZIV	seame	casii .	Ш.	ianu

Tab. 7.3	3 Fyzikálni	vlastnosti	páry v ZI	Γv sedmé	části III.	tahu
----------	-------------	------------	-----------	----------	------------	------

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,37 ⁻ 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	7,74.10-7	m²/s
Prandtlovo číslo	Pr	1,399	-
Měrný objem	Vp	0,0433	m ³ /kg

Součinitel přestupu tepla konvekcí ze strany spalin pro podélné proudění

Jelikož jsou smysl proudění i parametry výpočtu stejné jako v případě membránové stěny, je shodný i součinitel přestupu tepla konvekcí.

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{-3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1457 \cdot 664.01^{3} \cdot \frac{1 - \left(\frac{543.95}{664.01}\right)^{4}}{1 - \frac{543.95}{664.01}} = 7.12 \ W/_{m^{2} \cdot K}$$
(7.286)

Kde stupeň černosti proudu spalin je stejný, jako v části s ekonomizérem.

Teplota zaprášeného povrchu stěn

$$T_{z} = t_{p,ZT}^{st\check{r}} + \left(\varepsilon + \frac{1}{\alpha_{2}}\right) \cdot \frac{Q}{S} \cdot 10^{3} + 273,15 =$$
(7.287)

$$T_z = 259,43 + \left(0,008 + \frac{1}{2180,56}\right) \cdot \frac{17,11}{12,74} + 273,15 = 543,95 K$$

Předpokládaný tepelný výkon závěsných trubek

$$Q = M_p \cdot \left(i_{zt}^{out} - i_{zt}^{in}\right) = 0,904 \cdot (2801,80 - 2799,91) = 17,11 \, kW \tag{7.288}$$

Celková teplosměnná plocha

$$S = \pi \cdot D_{zt} \cdot n_{zt} \cdot n_{\check{r}ad} \cdot h = \pi \cdot 0,038 \cdot 23 \cdot 2 \cdot 2,32 = 12,74 \ m^2$$
(7.289)

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \alpha_k + \alpha_s = 14,39 + 7,12 = 21,51 \ {}^W/_{m^2 \cdot K}$$
(7.290)

Součinitel prostupu tepla pro přehříváky páry

$$k = \frac{\psi \cdot \alpha_1}{1 + \frac{\alpha_1}{\alpha_2}} = \frac{0.6 \cdot 21.51}{1 + \frac{21.51}{2180.56}} = 12.78 \ W/_{m^2 \cdot K}$$
(7.291)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{161,82 - 101,02}{\ln \frac{161,82}{101,02}} = 129,05 \,^{\circ}C \tag{7.292}$$

$$\Delta t_1 = t_{sp,E6}^{in} - t_{ZT}^{out} = 421,48 - 259,66 = 161,82 \ ^{\circ}C \tag{7.293}$$

$$\Delta t_2 = t_{sp,E6}^{out} - t_{ZT}^{in} = 360,23 - 259,21 = 101,02 \ ^{\circ}C \tag{7.294}$$

Teplo předané spalinami závěsným trubkám

$$Q_{E6}^{ZT} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{12,78 \cdot 12,74 \cdot 129,04}{10^3} = 21,01 \, kW \tag{7.295}$$

Z porovnání skutečného a předpokládaného tepelného výkonu závěsných trubek je vidět, že fyzikální parametry páry, a tedy i výpočet, lze považovat za přesné, jelikož se výkony výrazně neliší.

Celkové teplo předané v části s ekonomizérem E7

$$Q_{E6}^{celkov\acute{e}} = Q_{E6} + Q_{E6}^{MS} + Q_{E6}^{ZT} = 1566,90 + 77,84 + 21,01 = 1\ 665,75\ kW \tag{7.296}$$

Entalpie spalin na konci části s ekonomizérem E7

$$I_{E6}^{out} = \frac{M_{pv} \cdot I_{P1}^{out} - Q_{E6}^{celkov\acute{e}}}{M_{pv}} = \frac{2,59 \cdot 4276,29 - 1665,75}{2,59} = 3\,633,20 \ \frac{kJ}{kg}$$
(7.297)

Skutečná teplota na konci části s ekonomizérem E7

Následně byla pro tuto entalpii lineární interpolací z tabulky 2.2 odečtena skutečná teplota na konci části s ekonomizérem E7 360,68. Ta se od zvolené teploty 360,23 °C příliš neliší, a proto lze výpočet považovat za dostatečně přesný.

Obr. 7.13 Průběh teplot médií v části s ekonomizérem E7

7.9 Osmá část III. tahu – ekonomizér E6

Schéma ekonomizéru E6, rozměry a fyzikální vlastnosti spalin a páry jsou vedeny níže. Tepelný výpočet je pět rozdělen na ekonomizér, membránovou stěnu a závěsné trubky. Teplota na výstupu z osmé části třetího tahu byla volena 316,93 °C a byla ověřena na konci výpočtu.

Popis parametru	Označení	Hodnota	Jednotka
Vnější průměr trubky	D	31,8	mm
Vnitřní průměr trubky	d	23,8	mm
Tloušťka stěny trubky	t	4	mm
Počet řad trubek	n _{řad}	22	-
Počet trubek v řadě	n _{tr}	45	-
Počet vinutí	z	1	-
Podélná rozteč trubek	s ₁	100	mm
Příčná střední rozteč trubek	s ₂	80	mm
Délka trubek	ltr	2,87	m
Výška počítaného úseku	h	4,03	m

Tab. 7.34 Navržené rozměry ekonomizéru E6

Obr. 7.14 Schéma rozvržení ekonomizéru E6 ve III. tahu

Střední teplota spalin v úseku s ekonomizérem E6

$$t_{sp}^{st\check{r}} = \frac{t_{sp,E6}^{out} + t_{sp,E5}^{out}}{2} = \frac{360,68 + 316,93}{2} = 338,81 \,^{\circ}C$$
(7.298)

Objemový průtok spalin v úseku s ekonomizérem E6

$$M_{sp}^{st\check{r}} = M_{sp} \cdot \left(\frac{t_{sp}^{st\check{r}} + 273,15}{273,15}\right) = 18,6609 \cdot \left(\frac{338,81 + 273,15}{273,15}\right) = 41,81 \ m^3/_s \tag{7.299}$$

Střední rychlost spalin v úseku s ekonomizérem E6

$$w_{sp}^{st\check{r}} = \frac{M_{sp}^{st\check{r}}}{F_{sp}} = \frac{41,81}{9,05} = 4,62 \ m/s$$
(7.300)

Průtočný průřez spalinového kanálu

Je stejný jako v části s ekonomizérem E7.

7.9.1 Část s ekonomizérem

Parametr		Označení	Hodnota	Jednotka
	Vstup	t_{E5}^{in}	212,00	°C
Teplota	Výstup	t _{E5} ^{out}	238,00	°C
	Střední hodnota	t ^{stř} ES	225,00	°C
	Vstup	p_{E5}^{in}	4,9	MPa
Tlak	Výstup	p_{E5}^{out}	4,800	MPa
	Střední hodnota	p_{E5}^{str}	4,85	MPa
	Vstup	i ⁱⁿ E5	907,82	kJ/kg
Entalpie	Výstup	i ^{out} E5	1028,18	kJ/kg
	Střední hodnota	i ^{stř} E5	968,00	kJ/kg
Hmotnostní průtok		M_v	9,040	kg/s
Měrný ob	ojem	vv	11,96.10-4	m ³ /kg

Tab. 7.35 Parametry vody v ekonomizéru E6 v osmé části III. tahu

Součinitel přestupu tepla konvekcí na straně vody pro podélné proudění

Dle [1] odpadá určení součinitele přestupu tepla ze stěny do vody, protože má vysokou hodnotu, tedy lze zanedbat termický odpor na straně vody.

Střední rychlost vody

$$w_v^{st\check{r}} = \frac{M_v \cdot v_v}{F_v} = \frac{9,04 \cdot 11,96 \cdot 10^{-4}}{0,020} = 0,54 \ m/s \tag{7.301}$$

Průtočný průřez svazku

Je stejný jako v části s ekonomizérem E7.

Součinitel přestupu tepla na straně spalin pro příčné proudění

Tab. 7.36 Fyzikální vlastnosti spalin v osmé části III. tahu

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,19 ⁻ 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	5,15 [.] 10 ⁻⁵	m²/s
Prandtlovo číslo	Pr	0,651	-

$$\alpha_k = 0.2 \cdot c_z \cdot c_s \cdot \frac{\lambda}{D} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot D}{\nu}\right)^{0.65} \cdot Pr^{0.33} =$$
(7.302)

$$\alpha_k = 0.2 \cdot 1 \cdot 1 \cdot \frac{5.19 \cdot 10^{-2}}{0.0318} \cdot \left(\frac{4.62 \cdot 0.0318}{5.15 \cdot 10^{-5}}\right)^{0.65} \cdot 0.651^{0.33} = 49.92 \quad W/m^2 \cdot K$$

Protože je počet řad ≥ 10 , je součinitel c_z roven 1.

$$\sigma_2 = \frac{s_2}{D} = \frac{0.08}{0.0318} = 2,52 \tag{7.303}$$

Poměrná rozteč $\sigma_2 > 2$, proto je součinitel c_s roven 1.

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$
(7.304)

$$\alpha_s = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1596 \cdot 611.96^3 \cdot \frac{1 - \left(\frac{528.82}{611.96}\right)^4}{1 - \frac{528.82}{611.96}} = 6.11 \ W/_{m^2 \cdot K}$$

Stupeň černosti proudu spalin

$$\alpha = 1 - e^{-k \cdot p \cdot s} = 1 - e^{-0.1739} = 0.1596 \tag{7.305}$$

$$k \cdot p \cdot s = (k_{sp} \cdot r_{sp} + k_p \cdot \mu) \cdot p \cdot s = 6,6962 \cdot 0,1 \cdot 0,2597 = 0,1739$$
(7.306)

Součinitel zeslabení sálání tříatomovými plyny

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot r_{H_20}}{3.16 \cdot \sqrt{p_{sp} \cdot s}} - 1\right) \cdot \left(1 - 0.37 \cdot \frac{T_s}{1000}\right) \cdot r_{sp}$$

$$k_{sp} \cdot r_{sp} = \left(\frac{7.8 + 16 \cdot 0.1223}{3.16 \cdot \sqrt{0.0214 \cdot 0.2597}}\right) \cdot \left(1 - 0.37 \cdot \frac{611.96}{1000}\right) \cdot 0.2144 = 6.6962 \frac{1}{m \cdot MPa}$$

Efektivní tloušťka sálavé vrstvy

Je stejná jako v části s ekonomizérem E7.

Teplota zaprášeného povrchu stěn

$$T_z = t_v^{st\check{r}} + \varepsilon \cdot \frac{Q}{S} \cdot 10^3 + 273,15 =$$
(7.308)

$$T_z = 225,00 + 0,080 \cdot \frac{1088,28}{283,85} \cdot 10^3 + 273,15 = 528,82 K$$

Předpokládaný tepelný výkon ekonomizéru E6

$$Q = M_{\nu} \cdot \left(i_{\nu}^{out} - i_{\nu}^{in}\right) = 9,04 \cdot (1028,18 - 907,82) = 1\ 088,28\ kW \tag{7.309}$$

Součinitel přestupu tepla ze spalin do ekonomizéru E6

$$\alpha_1 = \alpha_k + \alpha_s = 49,92 + 6,11 = 56,02 \ W/_{m^2 \cdot K}$$
(7.310)

Součinitel prostupu tepla pro ohříváky vody

$$k = \psi \cdot \alpha_1 = 0.6 \cdot 56.02 = 33.62 \ W /_{m^2 \cdot K}$$
(7.311)

Celková teplosměnná plocha ekonomizéru E6

$$S = \pi \cdot D \cdot n_{tr} \cdot n_{\check{r}ad} \cdot z \cdot l_{tr} = \pi \cdot 0,0318 \cdot 45 \cdot 22 \cdot 1 \cdot 2,87 = 283,85 \ m^2 \tag{7.312}$$

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{112,68 - 104,93}{\ln \frac{112,68}{104,93}} = 113,58 \,^{\circ}C$$
(7.313)

$$\Delta t_1 = t_{sp,E5}^{in} - t_{v,E5}^{in} = 360,68 - 238,00 = 112,68 \,^{\circ}C \tag{7.314}$$

$$\Delta t_2 = t_{sp,E5}^{out} - t_{v,E5}^{out} = 316,93 - 212,00 = 104,93 \ ^\circ C \tag{7.315}$$

Teplo předané spalinami ekonomizéru E6

$$Q_{E5} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{33,62 \cdot 283,85 \cdot 113,58}{10^3} = 1\ 083,72\ kW \tag{7.316}$$

Z porovnání skutečného a předpokládaného tepelného výkonu ekonomizéru je vidět, že fyzikální parametry páry, a tedy i výpočet, lze považovat za přesné, jelikož se výkony výrazně neliší.

7.9.2 Část s membránovou stěnou

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_k = 0.023 \cdot \frac{\lambda}{d_e} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot d_e}{\nu}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m \tag{7.317}$$

$$\alpha_k = 0.023 \cdot \frac{0.0519}{0.1285} \cdot \left(\frac{4.62 \cdot 0.1285}{5.15 \cdot 10^{-5}}\right)^{0.8} \cdot 0.6506^{0.4} \cdot 1 \cdot 1 \cdot 1 = 13.89 \ W/_{m^2 \cdot K}$$

Ekvivalentní průměr

Je stejný jako v části s ekonomizérem E7

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{-3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1596 \cdot 611.96^{3} \cdot \frac{1 - \left(\frac{591.93}{611.96}\right)^{4}}{1 - \frac{591.93}{611.96}} = 7.15 \ W/m^{2} \cdot K$$
(7.318)

Kde: stupeň černosti proudu spalin je stejný, jako v části s ekonomizérem T_z je dosazena z rovnice 6.17

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \xi \cdot (\alpha_k + \alpha_s) = 0.9 \cdot (13.89 + 7.15) = 18.93 \ W/_{m^2 \cdot K}$$
(7.319)

Součinitel prostupu tepla

$$k = \frac{\alpha_1}{1 + \varepsilon \cdot \alpha_1} = \frac{18,93}{1 + 0,008 \cdot 18,93} = 16,44 \ W/m^2 \cdot K \tag{7.320}$$

Celková teplosměnná plocha

$$S = 2 \cdot h \cdot (a_{III} + b_{III}) = 2 \cdot 4,03 \cdot (2,97 + 4,5) = 60,21 \ m^2$$
(7.321)

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{101,90 - 58,15}{\ln \frac{101,90}{58,15}} = 77,99 \ ^{\circ}C$$
(7.322)

$$\Delta t_1 = t_{sp,E5}^{in} - t_{v \circ p} = 360,68 - 258,78 = 101,90 \ ^{\circ}C \tag{7.323}$$

$$\Delta t_2 = t_{sp,E5}^{out} - t_{v \circ p} = 316,93 - 258,78 = 58,15 \ ^{\circ}C \tag{7.324}$$

Teplo předané spalinami membránové stěně

$$Q_{E5}^{MS} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{16,44 \cdot 60,21 \cdot 77,99}{10^3} = 77,21 \, kW \tag{7.325}$$

7.9.3 Část se závěsnými trubkami

Součinitel přestupu tepla konvekcí pro podélné proudění

$$\alpha_2 = 0.023 \cdot \frac{\lambda_p}{d_{ZT}} \cdot \left(\frac{w_p^{st\check{r}} \cdot d_{ZT}}{\nu_p}\right)^{0.8} \cdot Pr^{0.4} \cdot c_t \cdot c_l \cdot c_m =$$
(7.326)

$$\alpha_2 = 0.023 \cdot \frac{0.0538}{0.0254} \cdot \left(\frac{16.74 \cdot 0.0254}{0.0432}\right)^{0.8} \cdot 1.4075^{0.8} \cdot 1 \cdot 1 \cdot 1 = 2.193.11 \ W/m^2 \cdot K$$

Střední rychlost proudění páry v trubkách

$$w_p^{st\check{r}} = \frac{M_p \cdot v_p}{F_{ZT}} = \frac{9,04 \cdot 0,0432}{0,0233} = 16,74 \ m/s \tag{7.327}$$
Parametr		Označení	Hodnota	Jednotka
	Vstup	t_{ZT}^{in}	258,78	°C
Teplota	Výstup	t_{ZT}^{out}	259,21	°C
	Střední hodnota	$t_{ZT}^{st\check{r}}$	258,99	°C
	Vstup	p_{ZT}^{in}	4,6	MPa
Tlak	Výstup	p _{ZT} ^{out}	4,590	MPa
	Střední hodnota	$p_{ZT}^{st\check{r}}$	4,595	MPa
	Vstup	i ⁱⁿ _{ZT}	2797,308	kJ/kg
Entalpie	Výstup	i ^{out}	2799,436	kJ/kg
	Střední hodnota	i ^{out} ZT	2798,372	kJ/kg
Hmotnostní průtok		M _p	9,040	kg/s

Tab. 7.37 Parametry páry v ZT v osmé části III. tahu

Tab. 7.38 Fyzikální vlastnosti páry v ZT v osmé části III. tahu

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	5,38 ⁻ 10 ⁻²	W/m [·] K
Součinitel kinematické viskozity	v	7,70 ⁻⁷	m²/s
Prandtlovo číslo	Pr	1,408	-
Měrný objem	v _p	0,0432	m ³ /kg

Součinitel přestupu tepla konvekcí ze strany spalin pro podélné proudění

Jelikož jsou smysl proudění i parametry výpočtu stejné jako v případě membránové stěny, je shodný i součinitel přestupu tepla konvekcí.

Součinitel přestupu tepla sáláním

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{a_{st} + 1}{2} \cdot a \cdot T_{s}^{-3} \cdot \frac{1 - \left(\frac{T_{z}}{T_{s}}\right)^{4}}{1 - \frac{T_{z}}{T_{s}}}$$

$$\alpha_{s} = 5.7 \cdot 10^{-8} \cdot \frac{0.8 + 1}{2} \cdot 0.1596 \cdot 611.96^{3} \cdot \frac{1 - \left(\frac{539.50}{611.96}\right)^{4}}{1 - \frac{539.50}{611.96}} = 6.27 \ W/m^{2} \cdot K$$
(7.328)

Kde stupeň černosti proudu spalin je stejný, jako v části s ekonomizérem.

Teplota zaprášeného povrchu stěn

$$T_{z} = t_{p,ZT}^{st\check{r}} + \left(\varepsilon + \frac{1}{\alpha_{2}}\right) \cdot \frac{Q}{S} \cdot 10^{3} + 273,15 =$$
(7.329)

$$T_z = 258,99 + \left(0,008 + \frac{1}{2193,11}\right) \cdot \frac{19,25}{22,13} + 273,15 = 539,50 \, K$$

Předpokládaný tepelný výkon závěsných trubek

$$Q = M_p \cdot \left(i_{zt}^{out} - i_{zt}^{in}\right) = 0,904 \cdot (2799,45 - 2797,31) = 19,25 \, kW \tag{7.330}$$

Celková teplosměnná plocha

$$S = \pi \cdot D_{zt} \cdot n_{zt} \cdot n_{\check{r}ad} \cdot h = \pi \cdot 0,038 \cdot 23 \cdot 2 \cdot 4,03 = 22,13 \, m^2 \tag{7.331}$$

Součinitel přestupu tepla ze spalin do stěny

$$\alpha_1 = \alpha_k + \alpha_s = 13,89 + 6,27 = 20,17 \ ^W/_{m^2 \cdot K}$$
(7.332)

Součinitel prostupu tepla pro přehříváky páry

$$k = \frac{\psi \cdot \alpha_1}{1 + \frac{\alpha_1}{\alpha_2}} = \frac{0.6 \cdot 20.17}{1 + \frac{20.17}{2193.11}} = 11.99 \ W/m^2 \cdot K \tag{7.333}$$

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{101,48 - 58,15}{\ln \frac{101,48}{58,15}} = 77,82 \,^{\circ}C \tag{7.334}$$

$$\Delta t_1 = t_{sp,E5}^{in} - t_{ZT}^{out} = 360,68 - 259,21 = 101,48 \ ^{\circ}C \tag{7.335}$$

$$\Delta t_2 = t_{sp,E5}^{out} - t_{ZT}^{in} = 316,93 - 258,78 = 58,15 \ ^{\circ}C \tag{7.336}$$

Teplo předané spalinami závěsným trubkám

$$Q_{E5}^{ZT} = \frac{k \cdot S \cdot \Delta t_{ln}}{10^3} = \frac{11,99 \cdot 22,13 \cdot 77,82}{10^3} = 20,65 \ kW \tag{7.337}$$

Z porovnání skutečného a předpokládaného tepelného výkonu závěsných trubek je vidět, že fyzikální parametry páry, a tedy i výpočet, lze považovat za přesné, jelikož se výkony výrazně neliší.

Celkové teplo předané v části s ekonomizérem E6

$$Q_{E5}^{celkov\acute{e}} = Q_{E5} + Q_{E5}^{MS} + Q_{E5}^{ZT} = 1083,72 + 77,21 + 20,65 = 1\ 181,58\ kW \tag{7.338}$$

Entalpie spalin na konci části s ekonomizérem E6

$$I_{E5}^{out} = \frac{M_{pv} \cdot I_{E6}^{out} - Q_{E5}^{celkov\acute{e}}}{M_{pv}} = \frac{2,59 \cdot 3633,20 - 1181,58}{2,59} = 3\ 177,03\ \frac{kJ}{kg}$$
(7.339)

Skutečná teplota na konci části s ekonomizérem E6

Následně byla pro tuto entalpii lineární interpolací z tabulky 2.2 odečtena skutečná teplota na konci části s ekonomizérem E6 317,17 °C. Ta se od zvolené teploty 316,93 °C příliš neliší, a proto lze výpočet považovat za dostatečně přesný.

Obr. 7.15 Průběh teplot médií v části s ekonomizérem E6

8 NÁVRH OHŘÍVÁKU VZDUCHU

Tato teplosměnná plocha (OVZ) slouží k předehřátí primárního vzduchu z teploty 25 °C na teplotu 200 °C. Pro ohřev vzduchu je použita ohřátá napájecí voda z ekonomizéru E6. Ta je po ochlazení vrácena zpět do ekonomizéru E7. Ohřátý vzduch je zaveden pod rošt. Usnadňuje vzněcování paliva, intenzifikuje spalování a chladí rošt. Vzhledem k riziku nízkoteplotní koroze v důsledku vstupní teploty vzduchu byl OVZ umístěn mimo kotel.

Protože k ohřevu slouží napájecí voda a nikoli spaliny, je vhodné trubky výměníku osadit žebry pro zvýšení teplosměnné plochy. Trubky jsou umístěny vystřídaně a výměník je navržen jako protiproudý z důvodu dosažení co největšího přenosu tepla. Rychlost vzduchu by se měla dle odborné konzultace pohybovat mezi 10-12 m/s a rychlost vody by měla ideálně být kolem 1 m/s. S ohledem na tyto podmínky a potřebnou teplosměnnou plochu byly navrženy rozměry výměníku a trubek a jdou uvedeny v tabulce níže.

8.1 Návrh rozměrů OVZ

Popis parametru	Označení	Hodnota	Jednotka
Délka OVZ	a _{ovz}	1,53	m
Šířka OVZ	b _{ovz}	1,36	m
Výška OVZ	h _{ovz}	1,16	m
Vnější průměr trubky	D	31,8	mm
Vnitřní průměr trubky	d	23,8	mm
Tloušťka stěny trubky	t	4	mm
Výška žebra	h _ž	15	mm
Průměr trubky s žebrem	D _ž	61,8	mm
Rozteč žeber	S _ž	5	mm
Počet žeber na metr délky	n _ž	200	-
Tloušťka žebra	t _ž	1	mm
Počet řad trubek	n _{řad}	9	-
Počet trubek v řadě	n _{tr}	14	-
Počet vinutí	z	2	-
Podélná rozteč trubek	s ₁	80	mm
Příčná střední rozteč trubek	s ₂	80	mm
Délka trubek	l _{tr}	1,53	m

Tab. 8.1 Navržené rozměry OVZ

Obr. 8.1 Schéma rozvržení ohříváku vzduchu

Střední rychlost vody

$$w_{v}^{st\check{r}} = \frac{M_{v} \cdot v_{v}}{F_{v}} = \frac{9,04 \cdot 11,86 \cdot 10^{-4}}{0,0125} = 0,86 \ m/s \tag{8.1}$$

Průtočný průřez svazku OVZ

$$F_{\nu} = n_{tr} \cdot z \cdot \frac{\pi \cdot d^2}{4} = 14 \cdot 2 \cdot \frac{\pi \cdot 0,0238^2}{4} = 0,0125 \ m^2 \tag{8.2}$$

Střední rychlost vzduchu v OVZ

$$w_{\nu z}^{st\check{r}} = \frac{M_{\nu z}^{st\check{r}}}{F_{\nu z}} = \frac{11,21}{0,97} = 11,61 \ m/s$$
(8.3)

Objemový průtok vzduchu v OVZ

$$M_{\nu z}^{st\check{r}} = 0.45 \cdot O_{\nu z} \cdot M_{p\nu} \cdot \left(\frac{t_{\nu z}^{st\check{r}} + 273,15}{273,15}\right) = 0.45 \cdot 6.81 \cdot 2.59 \cdot \left(\frac{112,50 + 273,15}{273,15}\right) \tag{8.4}$$

$$M_{vz}^{st\check{r}} = 11,21 \ m^3/_S$$

Průtočný průřez OVZ

$$F_{vz} = l_{tr} \cdot (h_{0VZ} - D \cdot n_{tr} - 2 \cdot t_{\breve{z}} \cdot h_{\breve{z}} \cdot n_{\breve{z}} \cdot n_{tr})$$

$$F_{vz} = 1,53 \cdot (1,16 - 0,0318 \cdot 14 - 2 \cdot 0,001 \cdot 0,015 \cdot 200 \cdot 14) = 0,97 m^{2}$$
(8.5)

Parametr		Označení	Hodnota	Jednotka
	Vstup	t_v^{in}	238,00	°C
Teplota	Výstup	t_v^{out}	200,78	°C
	Střední hodnota	$t_v^{st\check{r}}$	219,39	°C
Tlak	Vstup	p_{v}^{in}	4,8	MPa
	Výstup	p_{v}^{out}	4,70	MPa
	Střední hodnota	$p_{v}^{st\check{r}}$	4,75	MPa
	Vstup	i_v^{in}	1028,17	kJ/kg
Entalpie	Výstup	i_v^{out}	857,2017	kJ/kg
	Střední hodnota	i_v^{out}	942,686	kJ/kg
Hmotnostní průtok		M _v	9,04	kg/s
Měrný objem		v _v	11,86 ⁻ 10 ⁻⁴	m ³ /kg

Tab. 8.2 Parametry vody v OVZ

8.2 Tepelný výpočet OVZ

V rámci této podkapitoly byl proveden tepelný výpočet OVZ, jehož cílem bylo stanovení potřebné plochy pro ohřátí primárního vzduchu. Při výpočtu součinitele prostupu tepla nebyl dle [1] uvažován součinitel přestupu tepla za strany vody, ani termický odpor na vnitřní straně média. Vzorec pro výpočet součinitele prostupu tepla je tedy zjednodušen na tvar:

$$k = \frac{1}{\frac{1}{\alpha_1}} = \alpha_1 \tag{8.6}$$

Dále je dle [1] zanedbán součinitel přestupu tepla sáláním, tedy platí, že $\alpha_1 = \alpha_k$.

Parametr		Označení	Hodnota	Jednotka
	Vstup	t_{vz}^{in}	25,00	°C
Teplota	Výstup	t_{vz}^{out}	200,00	°C
	Střední hodnota	$t_{vz}^{st\check{r}}$	112,50	°C
	Vstup	i_{vz}^{in}	161,60	kJ/kg
Entalpie	Výstup	i_{vz}^{out}	1320,77	kJ/kg
	Střední hodnota	i_{vz}^{out}	741,1848	kJ/kg
Hmotnostní průtok		M_{vz}	1,166	kg/s
Součinitel tepelné vodivosti		λ	32,79 [.] 10 ⁻³	kg/s
Součinitel kinematické viskozity		v	24,65 [.] 10 ⁻⁶	kg/s

Tab. 8.3 Parametry a fyzikální vlastnosti vzduchu v OZV

Součinitel přestupu tepla konvekcí ze strany vzduchu (kruhová žebra a vystřídané uspořádání)

$$\begin{aligned} \alpha_{k} &= 0.23 \cdot c_{z} \cdot \varphi_{\sigma}^{0,2} \cdot \frac{\lambda}{s_{\tilde{z}}} \cdot \left(\frac{D}{s_{\tilde{z}}}\right)^{-0.54} \cdot \left(\frac{h_{\tilde{z}}}{s_{\tilde{z}}}\right)^{-0.14} \cdot \left(\frac{w_{vz}^{st\check{r}} \cdot s_{\tilde{z}}}{v}\right)^{0.65} \\ \alpha_{k} &= 0.23 \cdot 1 \cdot 0.8362^{0.2} \cdot \frac{0.033}{0.005} \cdot \left(\frac{0.0318}{0.005}\right)^{-0.54} \cdot \left(\frac{0.015}{0.005}\right)^{-0.14} \cdot \left(\frac{11.61 \cdot 0.005}{24.65 \cdot 10^{-6}}\right)^{0.65} \\ \alpha_{k} &= 71.47 \ W/_{m^{2}} \cdot K \end{aligned}$$

kde: součinitel $c_z = 1$, a byl určen z nomogramu uvedeném v [1] φ_{σ} je součinitel určující uspořádání trubek ve svazku [-]

$$\varphi_{\sigma} = \frac{\sigma_1 - 1}{\sigma_2' - 1} = \frac{2,5157 - 1}{2,8127 - 1} = 0,8362$$
kde σ_2' je poměrná úhlopříčná rozteč
(8.8)

$$\sigma_2' = \sqrt{\frac{\sigma_1^2}{4} + \sigma_2^2} = \frac{\sqrt{\left(\frac{s_1}{2}\right)^2 + s_2^2}}{D} = \frac{\sqrt{\left(\frac{0.08}{2}\right)^2 + 0.08^2}}{0.0318} = 2,8127$$
(8.9)

V případě žebrovaných trubek se počítá redukovaný součinitel přestupu tepla α_{1r} , který vychází ze součinitele přestupu tepla konvekcí ze strany vzduchu:

$$a_{1r} = \left(\frac{S_{\check{z}}}{S} \cdot E \cdot \mu_{\check{z}} + \frac{S_h}{S}\right) \cdot \frac{\psi_{\check{z}} \cdot \alpha_k}{1 + \varepsilon \cdot \psi_{\check{z}} \cdot \alpha_k}$$

$$a_{1r} = (0,9169 \cdot 0,810 \cdot 1 + 0,0831) \cdot \frac{0,85 \cdot 71,47}{1 + 0 \cdot 0,85 \cdot 71,47} = 50,17 \ W/m^2 \cdot K$$
(8.10)

kde: $\frac{S_{\check{z}}}{s}$ je podíl výhřevné plochy žeber a celkové plochy na straně vzduchu [-] $\frac{S_h}{s}$ je podíl volných částí trubky, kde nejsou žebra a celkové plochy na straně vzduchu [1] E je součinitel efektivnosti žebra [-] $\mu_{\check{z}}$ je součinitel rozšíření žebra a dle [1] byl určen jako 1 [-] $\psi_{\check{z}}$ je koeficient charakterizující nerovnoměrné rozdělení α_k po povrchu žebra a dle [1] je pro kruhová žebra roven 0,85 [-] ε je součinitel znečištění byl pro vzduch uvažován 0 [-]

$$\frac{S_{\check{z}}}{S} = \frac{\left(\frac{D_{\check{z}}}{D}\right)^2 - 1}{\left(\frac{D_{\check{z}}}{D}\right)^2 - 1 + 2 \cdot \left(\frac{S_{\check{z}}}{D} - \frac{t_{\check{z}}}{D}\right)} = \frac{\left(\frac{0,0618}{0,0318}\right)^2 - 1}{\left(\frac{0,0618}{0,0318}\right)^2 - 1 + 2 \cdot \left(\frac{0,005}{0,0318} - \frac{0,001}{0,0318}\right)} = 0,9196 \quad (8.11)$$

$$\frac{S_h}{S} = 1 - \frac{S_{\check{z}}}{S} = 1 - 0,9196 = 0,0831 \tag{8.12}$$

Součinitel efektivnosti žebra byl odečten z nomogramu uvedeném v [1] na základě součinitele β a poměru průměru žebra a trubky.

$$E = f\left(\beta \cdot h_{\check{z}}; \frac{D_{\check{z}}}{D}\right) = (0,7465; 1,9434) = 0,810$$
(8.13)

$$\beta = \sqrt{\frac{2 \cdot \psi_{\check{z}} \cdot \alpha_k}{t_{\check{z}} \cdot \lambda_{\check{z}} \cdot (1 + \varepsilon \cdot \psi_{\check{z}} \cdot \alpha_k)}} = \sqrt{\frac{2 \cdot 0.85 \cdot 71.47}{0.001 \cdot 50 \cdot (1 + 0 \cdot 0.85 \cdot 71.47)}} = 49.30$$
(8.14)

kde součinitel tepelné vodivosti byl žeber $\lambda_{\check{z}}$ byl uvažován 40 W/mK (ocel).

Součinitel prostupu tepla

$$k = \frac{1}{\frac{1}{\alpha_1}} = \alpha_1 = \alpha_{1r} = 50,17 \quad W/m^2 \cdot K$$

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{175,75 - 38}{\ln \frac{175,75}{38}} = 89,96 \ ^{\circ}C$$
(8.15)

$$\Delta t_1 = t_v^{out} - t_{vz}^{in} = 200,78 - 25 = 175,78 \ ^\circ C$$
$$\Delta t_2 = t_v^{in} - t_{vz}^{out} = 238 - 200 = 38 \ ^\circ C$$

Potřebný tepelný výkon OVZ

$$Q_{OVZ} = \alpha \cdot M_{vz} \cdot (i_{vz}^{out} - i_{vz}^{in}) = 1,35 \cdot 1,656 \cdot (1320,77 - 161,60) = 1\,719,49 \ kW \qquad (8.16)$$

Plocha potřebná pro přenesení potřebného výkonu OVZ

$$S = \frac{Q_{OVZ} \cdot 10^3}{k \cdot \Delta t_{ln}} = \frac{1719,49 \cdot 10^3}{50,17 \cdot 89,96} = 381,03 \ m^2 \tag{8.17}$$

Potřebný počet řad trubek OVZ

$$n_{\check{r}ad} = \frac{S}{S_{tr} \cdot l_{lt} \cdot n_{tr} \cdot z} = \frac{381,03}{0,98 \cdot 1,53 \cdot 14 \cdot 2} = 9,05 \to 9$$
(8.18)

kde S_{tr} je plocha jedné trubky určená jako

$$S_{tr} = \pi \cdot D + 2 \cdot \pi \cdot \frac{D_{\tilde{z}}^2 - D^2}{4} \cdot n_{\tilde{z}}$$

$$S_{tr} = \pi \cdot 0,0318 + 2 \cdot \pi \cdot \frac{0,0618 - 0,318}{4} \cdot 200 = 0,98 \ m^2$$
(8.19)

Skutečná plocha

$$S = S_{tr} \cdot l_{lt} \cdot n_{tr} \cdot n_{\check{r}ad} \cdot z = 0,98 \cdot 1,53 \cdot 14 \cdot 9 \cdot 2 = 378,64 \ m^2$$
(8.20)

Skutečný výkon OVZ

$$Q_{OVZ} = \frac{k \cdot \Delta t_{ln} \cdot S}{10^3} = \frac{50,17 \cdot 89,96 \cdot 378,64}{10^3} = 1\ 708,74\ kW \tag{8.21}$$

Z porovnání skutečného a předpokládaného tepelného výkonu ohříváku vzduchu je vidět, že výpočet lze považovat za dostatečně přesný, jelikož se výkony výrazně neliší.

Obr. 8.2 Průběh teplot médií v ohříváku vzduchu

9 NÁVRH IV. TAHU

Čtvrtý tah je tvořen nechlazeným plechovým kanálem, ve kterém jsou umístěny zbývající (4) svazky ekonomizéru na nechlazených závěsech. Ekonomizér ve čtvrtém tahu byl počítán jako celek s tím, že byl následně rozdělen na jednotlivé svazky tak, aby výška jednoho svazku nepřesahovala 2 m. Šířka i délka kanálu již není tvořena trubkami, a proto nemusí rozměry kanálu násobkem roztečí. Rozměry kanálu byly navrženy s ohledem na rychlost vody (0,5 - 1,5 m/s) a spalin (6 - 7 m/s). Rychlosti byly doporučeny odborným konzultantem.

Popis parametru	Označení	Hodnota	Jednotka
Délka kanálu	a _{IV}	3,5	m
Šířka kanálu	b _{IV}	2,4	m
Vnější průměr trubky	D	31,8	mm
Vnitřní průměr trubky	d	23,8	mm
Tloušťka stěny trubky	t	4	mm
Počet řad trubek	n _{řad}	120	-
Počet trubek v řadě	n _{tr}	30	-
Počet vinutí	z	1	-
Podélná rozteč trubek	s ₁	80	mm
Příčná střední rozteč trubek	s ₂	80	mm
Délka trubek	l _{tr}	3,4	m

Tab. 9.1 Navržené parametry IV. tahu a trubek ekonomizéru E5-E1

Obr. 9.1 Schéma rozvržení ekonomizéru E5-E1 ve IV. tahu

Střední rychlost vody

$$w_{v}^{st\check{r}} = \frac{M_{v} \cdot v_{v}}{F_{v}} = \frac{9,04 \cdot 11,03 \cdot 10^{-4}}{0,0133} = 0,75 \ m/s \tag{9.1}$$

Průtočný průřez svazku ekonomizéru

$$F_{\nu} = n_{tr} \cdot z \cdot \frac{\pi \cdot d^2}{4} = 30 \cdot 1 \cdot \frac{\pi \cdot 0,0238^2}{4} = 0,0133 \ m^2$$
(9.2)

Střední teplota spalin ve IV. tahu

$$t_{sp}^{st\check{r}} = \frac{t_{sp,IV}^{out} + t_{sp,IV}^{out}}{2} = \frac{316,17 + 170}{2} = 243,58 \,^{\circ}C$$
(7.251)

Objemový průtok spalin ve IV. tahu

$$M_{sp}^{st\check{r}} = M_{sp} \cdot \left(\frac{t_{sp}^{st\check{r}} + 273,15}{273,15}\right) = 18,6609 \cdot \left(\frac{243,58 + 273,15}{273,15}\right) = 35,30 \ m^3/_s \qquad (7.252)$$

Střední rychlost spalin ve IV. tahu

$$w_{sp}^{st\check{r}} = \frac{M_{sp}^{st\check{r}}}{F_{sp}} = \frac{35,30}{5,16} = 6,85 \ m/s$$
(7.253)

Průtočný průřez spalinového kanálu

$$F_{sp} = a_{IV} \cdot b_{IV} - D \cdot l_{tr} \cdot n_{tr} = 3,5 \cdot 2,4 - 0,0318 \cdot 3,4 \cdot 30 = 5,16 \ m^2 \tag{7.254}$$

Navržená délka (3,5 m) a šířka (2,4 m) tahu jsou z hlediska rychlosti vody a spalin vyhovující.

Součinitel přestupu tepla konvekcí na straně vody pro podélné proudění

Dle [1] odpadá určení součinitele přestupu tepla ze stěny do vody, protože má vysokou hodnotu, tedy lze zanedbat termický odpor na straně vody a z důvodu nízké teploty spalin lze zanedbat i součinitel přestupu tepla sáláním. Platí tedy, že $\alpha_1 = \alpha_k$.

Součinitel přestupu tepla na straně spalin pro příčné proudění

Tab. 9.2 Fyzikálni	vlastnosti spalin	ve IV.	tahu
--------------------	-------------------	--------	------

Veličina	Označení	Hodnota	Jednotka
Součinitel tepelné vodivosti	λ	4,38.10-2	W/m [·] K
Součinitel kinematické viskozity	v	3,80 ⁻ 10 ⁻⁵	m²/s
Prandtlovo číslo	Pr	0,666	-

$$\alpha_k = 0.2 \cdot c_z \cdot c_s \cdot \frac{\lambda}{D} \cdot \left(\frac{w_{sp}^{st\check{r}} \cdot D}{\nu}\right)^{0.65} \cdot Pr^{0.33} =$$
(7.257)

$$\alpha_{k} = 0.2 \cdot 1 \cdot 1 \cdot \frac{4.38 \cdot 10^{-2}}{0.0318} \cdot \left(\frac{6.85 \cdot 0.0318}{3.80 \cdot 10^{-5}}\right)^{0.65} \cdot 0.666^{0.33} = 66.79 \ W/m^{2} \cdot K$$

Protože je počet řad ≥ 10 , je součinitel c_z roven 1.

$$\sigma_2 = \frac{s_2}{D} = \frac{0.08}{0.0318} = 2.52 \tag{7.258}$$

Poměrná rozteč $\sigma_2 > 2$, proto je součinitel c_s roven 1.

Součinitel přestupu tepla ze spalin do ekonomizéru

 $\alpha_1 = \alpha_k = 66,79 \ ^W/_{m^2 \cdot K}$

(7.266)

Tab. 9.3 Parametry vody v ekonomizéru ve IV. tahu				
Parametr		Označení	Hodnota	Jednotka
Teplota	Vstup	$t_{E,IV}^{in}$	115,00	°C
	Výstup	$t_{E,IV}^{out}$	212,00	°C
	Střední hodnota	$t_{E,IV}^{st\check{r}}$	163,50	°C
	Vstup	$p_{E,IV}^{in}$	5,1	MPa
Tlak	Výstup	$p_{E,IV}^{out}$	4,900	MPa
	Střední hodnota	$p_{E,IV}^{st\check{ m r}}$	5	MPa
Entalpie	Vstup	$i_{E,IV}^{in}$	486,01	kJ/kg
	Výstup	$i_{E,IV}^{out}$	907,87	kJ/kg
	Střední hodnota	$i_{E,IV}^{st\check{r}}$	696,94	kJ/kg

Součinitel prostupu tepla pro ohříváky vody

Hmotnostní průtok

$$k = \psi \cdot \alpha_1 = 0.6 \cdot 66.79 = 40.08 \ W / m^2 \cdot K \tag{7.267}$$

 M_v

9,040

kg/s

Střední logaritmický spád

$$\Delta t_{ln} = \frac{\Delta t_1 - \Delta t_2}{\ln \frac{\Delta t_1}{\Delta t_2}} = \frac{105,17 - 55,00}{\ln \frac{105,17}{55,00}} = 77,39 \,^{\circ}C$$
(7.269)

$$\Delta t_1 = t_{sp,IV}^{in} - t_{v,EIV}^{out} = 317,17 - 115,00 = 105,17 \,^{\circ}C \tag{7.270}$$

$$\Delta t_2 = t_{sp,IV}^{out} - t_{\nu,EIV}^{in} = 170,00 - 115,00 = 55,00 \,^{\circ}C \tag{7.271}$$

Tepelný výkon

$$Q_{E,IV} = M_{v} \cdot \left(i_{v}^{out} - i_{v}^{in}\right) = 9,04 \cdot (907,87 - 486,01) = 3\ 814,29\ kW \tag{7.265}$$

Potřebná plocha ekonomizéru pro přenesení tepelného výkonu

$$S = \frac{Q_{E,IV} \cdot 10^3}{k \cdot \Delta t_{ln}} = \frac{3814,29 \cdot 10^3}{40,08 \cdot 77,39} = 1\ 229,80\ m^2 \tag{7.268}$$

Počet řad ekonomizéru

$$n_{\check{r}ad} = \frac{S}{\pi \cdot D \cdot l_{tr} \cdot n_{tr}} = \frac{1229,80}{\pi \cdot 0,0318 \cdot 3,4 \cdot 30} = 120,34 \to 120$$
(7.222)

Skutečná plocha ekonomizéru

$$S = \pi \cdot D \cdot l_{tr} \cdot n_{tr} \cdot n_{\check{r}ad} = \pi \cdot 0,0318 \cdot 3,4 \cdot 30 \cdot 120 = 1\,232,99\,\,m^2 \tag{7.22}$$

Skutečný výkon ekonomizéru

$$Q_{E,IV} = \frac{S \cdot k \cdot \Delta t_{ln}}{10^3} = \frac{1232,99 \cdot 40,08 \cdot 77,39}{10^3} = 3\ 824,22\ kW \tag{7.23}$$

Entalpie spalin na konci IV. tahu

$$I_{E,IV}^{out} = \frac{M_{pv} \cdot I_{E6}^{out} - Q_{E,IV}}{M_{pv}} = \frac{2,59 \cdot 3177,03 - 3824,22}{2,59} = 1\ 700,63\ \frac{kJ}{kg}$$
(7.339)

Skutečná teplota na konci IV. tahu

Následně byla pro tuto entalpii lineární interpolací z tabulky 2.2 odečtena skutečná teplota na konci IV. tahu 170,76 °C. Ta se od zvolené teploty 170 °C příliš neliší, a proto lze výpočet považovat za dostatečně přesný.

Obr. 9.2 Průběh teplot médií v ekonomizéru E1-5

10 KONTROLA TEPELNÉ BILANCE

Kontrola tepelné bilance byla provedena dle [1] a slouží pro kontrolu správnosti celého tepelného výpočtu. Do celkového tepelného výkonu kotle se započítávají všechny skutečné tepelné výkony jednotlivých teplosměnných ploch, kromě ohříváku vzduchu. V tomto konkrétním případě, kdy je vzduch ohříván vodou z ekonomizéru, je třeba výkon ohříváku vzduchu odečíst.

Součet tepel všech výhřevných ploch

$$\sum Q_{bi} = Q_{oh} + Q_{II} + Q_{ok}^{MS} + Q_V + Q_{ZT} + Q_{P2}^{celkov\acute{e}} + Q_{P3}^{celkov\acute{e}} + Q_{P1}^{celkov\acute{e}}$$
(10.1)
+ $Q_{E7}^{celkov\acute{e}} + Q_{E6}^{celkov\acute{e}} + Q_{E,IV} - Q_{OVZ} = 9\ 383,13 + 4\ 433,43 + 317,59 + 924,30 + 299,78 + 2\ 415,91 + 1\ 798,83 + 2\ 605,58 + 1\ 665,75 + 1\ 181,58 + 3\ 824,22 - 1708,74 = 27\ 141,36\ kW$

Tepelná bilance

$$\Delta Q = Q_p^p \cdot \eta_k - \frac{\sum Q_{bi}}{M_{pv}} \cdot (1 - z_c) =$$

$$\Delta Q = 12\ 140,96 \cdot 0,8541 - \frac{27\ 141,36}{2,5902} \cdot (1 - 0,0135) = 32,11\ kJ/kg$$
(10.2)

Odchylka tepelné bilance

$$\Delta = \frac{\Delta Q}{Q_p^p} \cdot 100 = \frac{32,11}{12\,140,96} \cdot 100 = 0,26\,\% \tag{10.3}$$

Při správném výpočtu by odchylka od tepelné bilance neměla být vetší, než 0,5 %. Tato podmínka je splněna, a lze tedy tepelný výpočet kotle považovat za správný. Po provedení tepelné bilance byl zkonstruován pilový diagram (obrázek 10.1), který znázorňuje průběh teplot médií v jednotlivých teplosměnných plochách.

Obr. 10.1 Pilový diagram

11 Kontrola nízkoteplotní a vysokoteplotní koroze

11.1 Nízkoteplotní koroze – rosný bod

Výpočet rosného bodu spalin slouží ke kontrole, zda je navržená teplota odchozích spalin z kotle 170 °C dostatečně vysoká, aby nedocházelo k nízkoteplotní korozi na posledních teplosměnných plochách kotle. Výpočet je proveden dle odborné konzultace.

$$t_r = \frac{9\,366}{22,169 - 0,4343 \cdot \ln\left(\frac{\omega_{H_2O}}{100 - \omega_{SO_2} \cdot \omega_{SO_3}} \cdot \frac{\omega_{SO_2} \cdot \omega_{SO_3}}{1 - \omega_{SO_2} \cdot \omega_{SO_3}} \cdot 10^5\right)} - 273,15 \tag{11.1}$$

$$t_r = \frac{9\,366}{22,169 - 0,4343 \cdot \ln\left(\frac{12,63}{100 - 0,011 \cdot 0,0006} \cdot \frac{0,011 \cdot 0,0006}{1 - 0,011 \cdot 0,0006} \cdot 10^5\right)} - 273,15$$

 $t_r = 129,21 \,^{\circ}C$

kde ω_{H_20} je objemový obsah vody ve spalinách

$$\omega_{H_20} = \frac{O_{H_20} + (f-1) \cdot (\alpha - 1) \cdot O_{vz,min}^s}{O_{sp,min} + (\alpha - 1) \cdot O_{vz,min}} \cdot 100$$

$$\omega_{H_20} = \frac{0,881 + (1,016 - 1) \cdot (1,35 - 1) \cdot 4,96}{5,44 + (1,35 - 1) \cdot 5,05} = 12,63\%$$
(11.2)

 ω_{SO_2} je objemový obsah oxidu siřičitého ve spalinách vypočítaný podle vzorce:

$$\omega_{SO_2} = \frac{O_{SO_2}}{O_{sp,min} + (\alpha - 1) \cdot O_{vz,min}} \cdot 100 = \frac{8 \cdot 10^{-4}}{5,44 + (1,35 - 1) \cdot 5,05} = 0,011\%$$
(11.3)

a ω_{SO_3} je objemový obsah oxidu sírového ve spalinách. Procento oxidace se uvažuje v rozmezí 1-5 %. Z důvodu bezpečnosti volím 5 %.

$$\omega_{SO_3} = 0.05 \cdot \omega_{SO_2} = 0.05 \cdot 0.011 = 0.0006 \%$$
(11.4)

Z uvedeného je patrné, že rozdíl mezi navrženou teplotou odchozích spalin z kotle a vypočítanou teplotou rosného bodu je dostatečný pro zamezení vzniku nízkoteplotní koroze. Teplota 170 °C by se mohla z ekonomického hlediska zdát vysoká, jelikož spaliny o této teplotě mají ještě potenciál předat zbytkové teplo. Takto uvažovaná teplota odchozích spalin bere v potaz i navazující části kotle či provoz kotle mimo oblast jmenovitého výkonu. Řešením by mohlo být odsíření spalin a následné umístění výměníku, kde by již teplota rosného budu nebyla výrazně ovlivněna obsahem oxidů síry ve spalinách, a tedy by bylo možné spaliny více vychladit a využít tak jejich zbytkové teplo.

11.2 Vysokoteplotní koroze

Obsah chloru a vysoká teplota spalin mají za následek vysokoteplotní (chlorovou) korozi. Riziko vzniku vysokoteplotní koroze je třeba kontrolovat zejména při spalování biomasy a odpadů, kde je obsah chloru poměrně vysoký. Tato kontrola byla v rámci práce provedena, a to zanesením teplot povrchů trubek jednotlivých teplosměnných ploch a teplot spalin do Flingernova diagramu. Výsledky jsou vidět na obrázku 11.1. Vhodným předřazením přehříváku P2 a P1 a jejich souproudým uspořádáním se zamezilo vzniku vysokoteplotní koroze na těchto plochách. Z diagramu je patrné, že k vysokoteplotní korozi dochází na části membránové stěny ve spalovací komoře. Jako řešení se nabízí použití materiálu INCONEL pro trubky membránové stěny, které nejsou pokryty vyzdívkou. Tento materiál díky vysokému obsahu chromu zajišťuje velmi dobrou odolnost v mnoha korozních prostředí, včetně vysokoteplotní koroze. Vzhledem k výšce vyzdívky – 15,4 m z celkových 20 m výšky ohniště, by se jednalo o pokrytí zbývajících necelých 5 m.

Teplota povrchu trubek byla určena dle odborné konzultace jako součet teploty média uvnitř trubky a teplotního přídavku, který je dle normy pro ekonomizéry 15 °C + 2 x tloušťka stěny, pro přehříváky 35 °C a pro membránové stěny 50 °C.

Obr. 11.1 Flingernův diagram

12 ZÁVĚR

Cílem této práce byl návrh roštového kotle na výrobu přehřáté páry s přirozenou cirkulací. Zadaný požadovaný parní výkon kotle byl 35 t/h a parametry páry na výstupu byly tlak 4,1 MPa a teplota 430 °C. Dále byla zadána teplota napájecí vody 115 °C, prvkové složení paliva a jeho výhřevnost. Jako palivo slouží kontaminované dřevo.

Hlavní část práce je tvořena tepelnými výpočty jednotlivých teplosměnný ploch, kterým předchází stechiometrické výpočty. Bylo určeno potřebné množství vzduchu pro spálení 1 kg paliva a také množství spalin, které spálením tohoto množství paliva vznikne. Množství paliva přivedeného do kotle a potřebného pro dosažená požadovaného výkonu je 2,63 kg/s. V rámci úvodních výpočtů byly také určeny entalpie spalin, které jsou důležitým prvkem v následujících teplených výpočtech. Účinnost kotle byla stanovena nepřímou metodou jako 85,41 % na základě určení jednotlivých zrát kotle.

Při návrhu kotle byl brán v potaz obsah chloru a síry v palivu. Z hlediska vysokoteplotní koroze se jako problematická oblast jevila zejména spalovací komora a svazky přehříváků. Ochrana spalovací komory prosti vysokoteplotní korozi je řešena vyzdívkou a pokovením nekrytých trubek membránové stěny materiálem INCONEL. Svazky přehříváků byly navrženy s vhodným smyslem proudění médií a také jejich umístění v tahu bylo voleno tak, aby nedocházelo k vysokoteplotní korozi. Dále bylo třeba zajistit, aby spaliny za posledním přívodem vzduchu setrvaly po dobu alespoň dvou sekund nad teplotou 850 °C, aby došlo k zajištění oxidační a termické destrukci škodlivých látek. Pro splnění této podmínky byla navrhnuta výška spalovací komory jako 20 m a zároveň byla její velká část pokryta vyzdívkou.

Druhý tah je navržen jako prázdný. Je tomu tak z důvodu vychlazení spalin, aby se zabránilo vysokoteplotní korozi prvních navazujících svazků a také proto, že teplota měknutí popela bývá u tohoto typu paliva relativně nízká (v porovnání například s uhlím), a je tedy třeba spaliny vychladit, aby nedocházelo k nalepování popela na svazky přehříváků.

Třetí tah je tvořen svazky všech tří přehříváků a dvou svazků ekonomizéru. Voda z předposledního ekonomizéru je vyvedena mimo kotel do ohříváku vzduchu a poté je opět zavedena zpět do posledního ekonomizéru. Tyto teplosměnné plochy jsou zavěšeny na párou chlazených trubkách. Na začátku tahu je umístěn výparník, který slouží pro zajištění potřebného výparného výkonu.

Čtvrtý tah je tvořen nechlazenou plechovou šachtou, ve které je umístěno pět zbývajících svazků ekonomizéru. Teplota spalin na výstupu je 170 °C. V závěru práce byla určena teplota rosného bodu. Po porovnání těchto dvou teplot lze konstatovat, že by nemělo docházet k nízkoteplotní korozi posledních teplosměnných ploch. Jako kontrola opatření proti vysokoteplotní korozi byl sestrojen Flingernův diagram. Také byla provedena kontrola tepelné bilance. Tepelný výpočet lze považovat za správný, jelikož odchylka od tepelné bilance je menší, než 0,5 %. Teploty spalin a pracovního média jsou názorně zobrazeny v pilovém diagramu. Byl vypracován výkres základního schématu kotle, který je nedílnou součástí této práce.

13 SEZNAM POUŽITÝCH ZDROJŮ

- [1] BUDAJ, Florian. Parní kotle: podklady pro tepelný výpočet. 4. přeprac. vyd. Brno: Nakladatelství VUT Brno, 1992. ISBN 80-214-0426-4.
- [2] DLOUHÝ, Tomáš. Výpočty kotlů a spalinových výměníků. Vyd. 3. V Praze: Nakladatelství ČVUT, 1999. ISBN 978-80-01-03757-7.
- [3] Biomasa využítí, zpracování, výhody a nevýhody, energetické využití v ČR. OEnergetice.cz [online]. 2017-02-06 [cit. 2020-05-28]. Dostupné z: <u>https://oenergetice.cz/obnovitelne-zdroje/biomasa-vyuziti-zpracovani-vyhody-a-nevyhody</u>
- [4] Excel in Mechanical Engineering: ThermoTables [online]. University of Alabama [cit. 2020-05-28]. Dostupné z: https://www.me.ua.edu/ExcelinME/thermo.htm

14 SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

Symbol	Veličina	Jednotka
а	Stupeň černosti proudu spalin	-
a _{II}	Délka druhého tahu	m
a _{III}	Délka třetího tahu	m
a_{IV}	Délka čtvrtého tahu	m
A^d	Obsah popela v bezvodém stavu	%
a_{OVZ}	Délka ohříváku vzduchu	m
a_o	Stupeň černosti ohniště	-
a _{oh}	Délka spalovací komory	m
a_{pl}	Stupeň černosti plamene	-
A ^r	Obsah popela v původním stavu paliva	%
$a_{roš}$	Šířka roštu	m
a _{st}	Stupeň černosti povrchu stěn	-
Bo	Boltzmanovo číslo	-
b_{OVZ}	Šířka ohříváku vzduchu	m
b _{oh}	Šířka ohniště	m
$b_{roš}$	Šířka roštu	m
C^{daf}	Obsah uhlíku v palivu v bezvodém stavu bez popela	%
C _i	Tepelná kapacita popílku v dané části kotle	kJ/kg
C_i	Podíl hořlaviny v uvažovaném druhu tuhých zbytků	%
Cl_{max}^{daf}	Obsah chloru v palivu v bezvodém stavu bez popela	%
C _p	Tepelná kapacita paliva	kJ/kg
C ^r	Obsah uhlíku v původním stavu paliva	%
C _s	Součinitel opravy na uspořádání svazku	-
C _{su}	Tepelná kapacita sušiny	kJ/kg
C _W	Tepelná kapacita vody	kJ/kg
Cz	Součinitel opravy na počet podélných řad	-
d	Vnitřní průměr trubek	mm
D	Vnější průměr trubek	mm
d_e	Ekvivalentní průměr	m
Dž	Průměr trubky s žebrem	mm
Ε	Součinitel efektivnosti žebra	-
F_{ZT}	Průtočný průřez závěsných trubek	m^2

F _{ms}	Povrch membránové stěny	m^2
F_{sp}	Průřez spalinového kanálu	m^2
F _{st}	Celkový povrch stěn sálající vrstvy	m^2
F_{vz}	Průtočný průřez ohříváku vzduchu	m^2
h	Výška úseku s daným svazkem trubek	m
h _{II}	Výška stěny druhého tahu od výsypky	m
H ^{daf}	Obsah vodíku v palivu v bezvodém stavu bez popela	%
h _{ovz}	Výška ohříváku vzduchu	m
h _{ok}	Výška okna ohniště	m
H^r	Obsah vodíku v původním stavu paliva	%
h_v	Výška vyzdívky	m
h _ž	Výška žebra	mm
i _{nv}	Entalpie napájecí vody	°C
i _p	Fyzické teplo paliva	kJ/kg
I_p	Entalpie popílku	kJ/kg
I _{sp,min}	Entalpie spalin při spalování bez přebytku vzduchu	kJ/kg
I _{sp}	Entalpie spalin vzniklých spálením 1 kg paliva	kJ/kg
I _u	Celkové užitečné teplo uvolněné při spalování	kJ/kg
I _{vz,min}	Entalpie minimálního objemu vzduchu	kJ/kg
I _{vz}	Entalpie vzduchu s daným přebytkem vzduchu	kJ/kg
k	Součinitel zeslabení sálání	-
$k_k \cdot \kappa_1 \cdot \kappa_2$	Součinitel zeslabení sálání koksovými částicemi	-
$k_p \cdot \mu$	Součinitel zeslabení sálání popílkem	-
$k_{sp} \cdot r_{sp}$	Součinitel zeslabení sálání tříatomovými plyny	-
k_{sp}^{rp}	Koeficient navýšení rychlosti spalin v ose profilu	-
k	Součinitel prostupu tepla	$W/m^2 \cdot K$
l_{sp}	Minimální délka dráhy spalin ve spalovací komoře	m
l _{tr}	Délka trubek svazku	m
Μ	Součinitel respektující průběh teplot v ohništi	-
M_p	Množství paliva přivedeného do kotle	kg/s
M_{pp}	Hmotnostní průtok páry	kg/s
M_{pv}	Množství spáleného paliva	kg/s
M _{sp}	Objemový průtok spalin pro normální podmínky	m^3/kg
M_{sp}^{skut}	Objemový průtok spalin pro dané podmínky	m^3/kg

M_v	Hmotnostní průtok vody	kg/s
$M_{ u z}^{st \check{r}}$	Střední objemový průtok vzduchu	m^3/s
N ^{daf}	Obsah dusíku v palivu v bezvodém stavu bez popela	%
N ^r	Obsah dusíku v původním stavu paliva	%
$n_{\check{r}ad}$	Počet řad trubek svazku	-
n _{tr}	Počet trubek v jedné řadě svazku	-
$n_{\check{ extsf{z}}}$	Počet žeber na metr trubky	-
0	Obvod spalinového kanálu	m
<i>O</i> _{<i>CO</i>₂}	Objem oxidu uhličitého ve spalinách	m^3/kg
$O_{H_2O,min}$	Minimální objem vodní páry	m^3/kg
$O_{H_2 O}$	Objem vodní páry	m^3/kg
O_{N_2}	Objem dusíku ve spalinách	m^3/kg
$O_{O_{2min}}$	Minimální objem kyslíku potřebný pro spálení 1 kg paliva	m ³ /kg
O_{SO_2}	Objem oxidu siřičitého ve spalinách	m ³ /kg
O_{Ar}	Objem argonu a vzácných plynů ve spalinách	m^3/kg
0 ^{daf}	Obsah kyslíku v palivu v bezvodém stavu bez popela	%
0 ^r	Obsah kyslíku v původním stavu paliva	%
O _{sp,min}	Minimální objem vlhkých spalin vzniklý spálením 1 kg paliva	m³/kg
$O^{s}_{sp,min}$	Minimální objem suchých spalin vzniklý spálením 1 kg paliva	m³/kg
O_{sp}	Skutečný objem spalin vzniklý spálením 1 kg paliva	m^3/kg
$O_{vz,min}$	Minimální objem vlhkého vzduchu potřebný pro spálení 1 kg paliva	m^3/kg
$O_{vz,min}^{s}$	Minimální objem suchého vzduchu potřebný pro spálení 1 kg paliva	m ³ /kg
O_{vz}	Skutečný objem vzduchu potřebný pro spálení 1 kg paliva	m^3/kg
p	Tlak v ohništi	-
p_{pp}	Tlak přehřáté páry	МРа
Pr	Prandtlovo číslo	-
p_{sp}	Parciální tlak tříatomových plynů ve spalinách	МРа
Q_N	Tepelný výkon kotle	MW
Q_{RC}	Ztrátové teplo kotle	MW
Q_i^r	Výhřevnost paliva	MJ/kg
Q_{oh}	Tepelný výkon ohniště	kW
Q_p^p	Teplo přivedené do kotle	kJ/kg
q_s	Návrhové plošné zatížení roštu	MW/m^2
Q_s	Teplo odevzdané do stěn ohniště	kJ/kg

Q_{v}	Výrobní teplo páry	MW
Q_{vz}	Teplo přivedené do ohniště vzduchem	kJ/kg
R	Plocha hořící vrstvy paliva na roštu	m^2
$r_{H_{2}O}$	Objemový podíl vody ve spalinách	-
r_{RO_2}	Objem tříatomových plynů	-
r _{SP}	Součet objemových částí tříatomových plynů	-
S	Účinná tloušťka sálavé vrstvy	m
S	Teplosměnná plocha	m^2
<i>S</i> ₁	Podélná rozteč trubek svazku	m
<i>s</i> ₂	Příčná rozteč trubek svazku	m
S ^{daf}	Obsah síry v palivu v bezvodém stavu bez popela	%
S ^r	Obsah síry v původním stavu paliva	%
S _{roš}	Návrhová plocha roštu	m^2
S _{tr}	Plocha jedné trubky v ohříváku vzduchu	m^2
S _ž	Rozteč žeber	mm
t	Tloušťka stěny trubky	mm
t _a	Adiabatická teplota	°C
t _i	Teplota popílku v dané části kotle	°C
t _{min}	Doba setrvání spalin nad požadovanou teplotou	S
t_{nv}	Teplota napájecí vody	°C
t _{ok}	Teplota na konci ohniště	°C
t_{pp}	Teplota přehřáté páry	°C
t _r	Teplota rosného bodu	°C
$t_{sp}^{st\check{r}}$	Střední teplota spalin	°C
t _{těs}	Tloušťka těsnění	m
T_z	Absolutní teplota zaprášeného povrchu stěn	°C
$t_{\check{ extsf{z}}}$	Tloušťka žebra	mm
v_{II}	Výška výstupního průřezu výsypky	m
v_{IImin}	Minimální vzdálenost zadní stěny tahu od výsypky	m
V_o	Aktivní objem ohniště	m^3
v	Měrný objem spalin	m^3/kg
$ u_p$	Měrný objem páry	m^3/kg
$v_{ZT}^{st\check{r}}$	Střední měrný objem páry v závěsných trubkách	m^3/kg
v_v	Měrný objem vody	m³/kg

W^r	Obsah vody v původním stavu paliva	%
W ^{Stř}	Střední rychlost páry v závěsných trubkách	m/s
W ^{stř}	Střední rychlost páry v trubkách svazku	m/s
W ^{oh} sp.stř	Střední rychlost spalin v ohništi	m/s
W _{sp}	Rychlost spalin	m/s
W _v ^{stř}	Střední rychlost vody	m/s
W ^{stř}	Střední rychlost vzduchu	m/s
x	Úhlový součinitel	-
<i>x</i> ₀	Součinitel poměrné výšky plamene	-
x_I	Podíl primárního vzduchu z celkového vzduchu přivedeného do ohniště	%
<i>x</i> ₁₁	Podíl sekundárního vzduchu z celkového vzduchu přivedeného do ohniště	%
X _i	Podíl popela z celkového množství v palivu	%
x_p	Procento popela v úletu	%
x_{poh}	Podíl pohazovacího vzduchu z celkového vzduchu přivedeného do ohniště	%
Z _C	Ztráta hořlavinou v tuhých zbytcích	%
Z _{co}	Ztráta hořlavinou ve spalinách	%
Z_f	Ztráta fyzickým teplem tuhých zbytků	%
Z _k	Komínová ztráta	%
Z _S	Ztráta sdílením tepla do okolí	%
Ζ	Počet vinutí trubek svazku	-
α	Součinitel přebytku vzduchu	-
a_{1r}	Redukovaný součinitel přestupu tepla	$W/m^2 \cdot K$
α1	Součinitel přestupu tepla ze strany spalin	$W/m^2 \cdot K$
α2	Součinitel přestupu tepla ze strany páry	$W/m^2 \cdot K$
α_k	Součinitel přestupu tepla konvekcí	$W/m^2 \cdot K$
α_s	Součinitel přestupu tepla sáláním	$W/m^2 \cdot K$
β	Součinitel efektivnosti žebra	-
Δ	Odchylka od tepelné bilance	%
ΔQ	Tepelná bilance	kJ/kg
Δt_{ln}	Střední logaritmický spád	°C
ε	Součinitel zanesení výhřevné plochy	-
η_k	Tepelná účinnost kotle	%
λ	Součinitel tepelné vodivosti	$W/m \cdot K$
μ	Koncentrace popílku ve spalinách	-

$\mu_{\check{ extsf{z}}}$	Součinitel rozšíření žebra	-
ν	Kinematická viskozita	m^2/s
ξ	Součinitel zanesení stěn	-
σ_1	Poměrná podélná rozteč	-
σ_2	Poměrná příčná rozteč	-
σ'_2	Poměrná úhlopříčná rozteč trubek svazku	-
arphi	Součinitel uchování tepla	-
$arphi_{\sigma}$	Součinitel uspořádání trubek ve svazku	-
ψ	Součinitel tepelné efektivnosti	-
$ar{\psi}$	Střední hodnota součinitele teplené efektivnosti stěn	-
$\psi_{\check{ extsf{z}}}$	Koeficient nerovnoměrného rozdělení přestupu tepla po povrchu žebra	-
ω_{SO_2}	Objemový obsah oxidu siřičitého ve spalinách	%
ω_{SO_3}	Objemový obsah oxidu sírového ve spalinách	%

15 SEZNAM OBRÁZKŮ

Obr. 5.1 Schéma trasy pracovního média v kotli	34
Obr. 6.1 Schéma navržených rozměrů II. tahu	40
Obr. 7.1 Schéma rozvržení závěsných trubek ve III. tahu	47
Obr. 7.2 Nákres rozměrů obratové komory	49
Obr. 7.3 Nákres výparníku v druhé části III. tahu	53
Obr. 7.4 Nákres závěsných trubek ve třetí části III. tahu	58
Obr. 7.5 Průběh teplot médií v části se závěsnými trubkami	66
Obr. 7.6 Schéma rozvržení přehříváku P2 ve III. tahu	67
Obr. 7.7 Průběh teplot médií v části s přehřívákem P2	75
Obr. 7.8 Schéma rozvržení přehříváku P3 ve III. tahu	76
Obr. 7.9 Průběh teplot médií v části s přehřívákem P3	84
Obr. 7.10 Schéma rozvržení přehříváku P1 ve III. tahu	85
Obr. 7.11 Průběh teplot médií v části s přehřívákem P1	93
Obr. 7.12 Schéma rozvržení ekonomizéru E7 ve III. tahu	94
Obr. 7.13 Průběh teplot médií v části s ekonomizérem E7 1	.02
Obr. 7.14 Schéma rozvržení ekonomizéru E6 ve III. tahu 1	.03
Obr. 7.15 Průběh teplot médií v části s ekonomizérem E6 1	.11
Obr. 8.1 Schéma rozvržení ohříváku vzduchu 1	13
Obr. 8.2 Průběh teplot médií v ohříváku vzduchu 1	.17
Obr. 9.1 Schéma rozvržení ekonomizéru E5-E1 ve IV. tahu 1	18
Obr. 9.2 Průběh teplot médií v ekonomizéru E1-5 1	21
Obr. 10.1 Pilový diagram 1	.23
Obr. 11.1 Flingernův diagram 1	.25

16 SEZNAM TABULEK

Tab. 1.1 Zadané parametry	14
Tab. 2.1 Měrné entalpie složek spalin a vzduchu [1]	
Tab. 2.2 Entalpie spalin, vzduchu a spalin s přebytkem vzduchu	21
Tab. 3.1 Rozložení a parametry popela v kotli	23
Tab. 5.1 Tlakové ztráty teplosměnných ploch	
Tab. 5.2 Přehled parametrů a výkonů jednotlivých teplosměnných ploch	
Tab. 6.1 Navržené rozměry II. tahu	41
Tab. 7.1 Navržené rozměry závěsných trubek	
Tab. 7.2 Navržené rozměry obratové komory	
Tab. 7.3 Fyzikální vlastnosti spalin v první části III. tahu	
Tab. 7.4 Navržené rozměry výparníku	
Tab. 7.5 Fyzikální vlastnosti spalin v druhé části III. tahu	
Tab. 7.6 Parametry páry v příčných ZT v třetí části III. tahu	
Tab. 7.7 Fyzikální vlastnosti páry v příčných ZT v třetí části III. tahu	
Tab. 7.8 Fyzikální vlastnosti spalin ve třetí části III. tahu	60
Tab. 7.9 Parametry páry v podélných ZT v třetí části III. tahu	
Tab. 7.10 Fyzikální vlastnosti páry v podélných ZT v třetí části III. tahu	
Tab. 7.11 Navržené rozměry přehříváku P2	
Tab. 7.12 Parametry páry v přehříváku P2 ve čtvrté části III. tahu	
Tab. 7.13 Fyzikální vlastnosti páry v přehříváku P2 ve čtvrté části III. tahu	
Tab. 7.14 Fyzikální vlastnosti spalin ve čtvrté části III. tahu	
Tab. 7.15 Parametry páry v ZT ve čtvrté části III. tahu	
Tab. 7.16 Fyzikální vlastnosti páry v ZT ve čtvrté části III. tahu	
Tab. 7.17 Navržené rozměry přehříváku P3	
Tab. 7.18 Parametry páry v přehříváku P3 v páté části III. tahu	
Tab. 7.19 Fyzikální vlastnosti páry v přehříváku P3 v pátě části III. tahu	
Tab. 7.20 Fyzikální vlastnosti spalin v pátě části III. tahu	
Tab. 7.21 Parametry party v Z1 v pate casti III. tahu	
1 ab. /.22 Fyzikalni vlastnosti pary v Z1 v pate casti III. tahu	
Tab. 7.23 Navrzene rozmery prehrivaku P1	
Tab. 7.24 Parametry pary v prehrivaku PI v seste casti III. tahu	
Tab. 7.25 Fyzikalni vlastnosti pary v prehrivaku PI v seste casti III. tahu	
1 ab. /.26 Fyzikalni vlastnosti spalin v seste casti III. tahu Tab. 7 27 Demonstrum formus ZT su žesté žásti III. tahu	
Tab. 7.29 Furilitius view of the state of th	
Tab. 7.20 Nevryžené rozměžní okonomizání E7	
Tab. 7.29 Navrzene rozmery ekonomizeru E/	
Tab. 7.21 Evzilyální vlostnosti snolin v sodmé části III. tahu	
Tab. 7.31 Fyzikalini vlastnosti spalini v sedme časti III. tahu	100
Tab. 7.32 Farametry pary VZ1 V sedine časti III. tahu.	100
Tab. 7.33 Fyzikalni vlastnosti pary v Z1 v sedine časti III. tanu	102
Tab. 7.34 Navizene lozinery ekonomizeru E6 y camé části III. tahu	104
Tab. 7.35 Faramenty vouy v ekonomizeru EU v osilie času III. taliu	104
Tab. 7.30 Fyzikalili vlasniosu spalili v oslič časti III. taliu	100
Tab. 7.38 Evzikální vlastnosti náry v ZT v osmé části III. tahu	109
Tab. 8.1 Navržené rozměry OVZ	117
Tab. 8.2 Parametry vody v OVZ	112 11 <i>1</i>

Tab. 8.3 Parametry a fyzikální vlastnosti vzduchu v OZV	
Tab. 9.1 Navržené parametry IV. tahu a trubek ekonomizéru E5-E1	
Tab. 9.2 Fyzikální vlastnosti spalin ve IV. tahu	
Tab. 9.3 Parametry vody v ekonomizéru ve IV. tahu	

17 SEZNAM PŘÍLOH

1 Výkres základního schématu kotle