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Abstrakt
Jednou z hlavních aplikací infračervené spektroskopie je analýza složení a chemických
vlastností molekulárních vzorků. Techniky infračervené spektroskopie dalekého pole však
často mají problém detekovat malá množství molekul. Jedním ze způsobů, jak překonat
nízký signál malých molekulárních množství, je pokud je vystavíme vlivu silného blízkého
pole. V této práci teoreticky studujeme zesílenou infračervenou spektroskopii s fotono-
vými a elektronovými sondami. Nejprve představíme řešerši se zaměřením na elektro-
dynamiku a nanofotoniku. Poté ukážeme výsledky numerických a analytických výpočtů
pro optické účinné průřezy a spektra energiových ztrát elektronů pro nanoantény. Hlavní
část této práce se zabývá semianalytickým modelováním systému anténa-molekuly, kde
porovnáváme modelované výsledky molekulárních signatur ve spektrech s numerickými
simulacemi. V neposlední řadě stanovíme měřítka pro návrh nanoantény s nejvyššíím
výkonem v zesílené spektroskopii pro uvažovaný systém a detekci signálu.

Summary
One of the main applications of infrared spectroscopy is analysis of the composition and
chemical properties of molecular samples. However, the far-field infrared spectroscopy
techniques often suffer to detect small amounts of molecules. One of the ways to overcome
the low signal of minute molecular amounts is by introducing the influence of a strong
near field. In this thesis, we theoretically study the enhanced infrared spectroscopy with
photon and electron probes. First, we review the theoretical background, with a focus
on electrodynamics and nanophotonics. Then we show the results of numerical and ana-
lytical calculations for the optical cross sections and the electron energy loss spectra for
nano-antennas. The main part of this thesis deals with semi-analytical modeling of the
antenna-molecules system, where we compare the results of molecular signatures in the
spectra from the model with the numerical simulations. Last, we establish figures of merit
for designing nano-antenna with the best performance in enhanced spectroscopy for the
considered system and signal detection.

Klíčová slova
molekulární vibrace, povrchově zesílená infračervená spektroskopie absorbce, nanoanténa,
spektroskopie energiových ztrát elektronů
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electron energy-loss spectroscopy
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Introduction
Grau, teurer Freund, ist alle Theorie
und grün des Lebens goldner Baum.

Johann Wolfgang von Goethe
Faust

One of the main applications of infrared spectroscopy is analysis of the composition and
chemical properties of molecular samples. With the obtained spectra, one can determine
which chemical groups are present in the studied sample, their concentration, identify the
chemical bonds, or even the potential chemical reactions [1]. Because of the relatively
small optical cross section of the molecules, large amounts of the sample are usually needed
for a conclusive measurement and data analysis.

In this context, so-called enhanced spectroscopies emerge as promising candidates for
overcoming this hindrance of low signal. By introducing strong near fields that excite the
molecular samples, the signals obtained by the measurement can be enhanced by a few
orders of magnitudes [2]. Among the enhanced spectroscopy techniques, the most promi-
nent are surface-enhanced fluorescence (SEF) [3], surface-enhanced infrared absorption
(SEIRA) [4], surface-enhanced Raman spectroscopy (SERS) [5], or tip-enhanced Raman
spectroscopy (TERS) [6]. Much larger enhancement is observed if the molecules are
placed into the near field of a resonant nanostructure (e.g. nano-antenna), which has its
resonance tuned to the resonance frequency of the molecule vibration [7]. Another direc-
tion of the enhanced spectroscopies may be their utilization in spectroscopies based on
an inelastic interaction between the sample and fast electrons. The signal enhancement
would allow the study of minute amounts of samples and grant unprecedented spatial
resolution, with the possibility of studying vibrational sample response, which emerged
in recent years.

In this study, we focus mainly on SEIRA spectroscopy with both photons and its ana-
log with electron probes. We introduce their theoretical description of these techniques,
involving both numerical and analytical modeling. The proper description of the under-
lying physical mechanisms behind resonant SEIRA is one of the most important aspects
that need to be resolved. The theoretical description could result in designing experiments
in a way for optimal enhanced spectroscopy performance.

Some works proposed that the response could be intuitively understood in the means of
coupled harmonic oscillators [8] or by the model of coupled dipoles [9, 10]. We continue in
work published in a recent article [11], where the enhancement of the signal was discussed
in terms of interference.

In Chapter 1, we review the theoretical foundations, mainly the important concepts of
electrodynamics and material response. We elaborate on the electromagnetic scattering
of a simplified system represented by a point-like oscillating dipole, which will be later
used to represent both the molecular sample and a finite-size nano-antenna [(A) in Fig. 1].

In Chapter 2 we first consider the interaction of a point dipole with the field of a
nearby second dipole, which results in the coupling of the dipoles. The second dipole can
represent, for example, a molecular sample positioned in the vicinity of the nano-antenna
[(S) in Fig. 1]. With this formalism, we will model the interaction of an antenna-molecule
system considered in the enhanced spectroscopies. Then, we consider illumination and
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(NF)

(EB) (S)

(PW)

(A)

Figure 1: Scheme of an enhanced spectroscopy experiment. The system with which we
will deal in the thesis consists of a nano-antenna (A) and a molecular sample (S). The
external source of the electric field resulting in excitation of the system could either be a
plane wave illumination tuned in frequency to the antenna resonance (PW) or the field of
a swift electron beam (EB). The near-field interaction between the antenna and molecular
sample (NF) results in the enhancement of the spectroscopic signal of the molecules.

subsequent inducement of the point dipole by a plane electromagnetic wave [(PW) in
Fig. 1]. We introduce the concept of optical cross sections and show how they could be
calculated numerically. Lastly, we consider the inelastic interaction of nanostructures with
a fast electron beam [(EB) in Fig. 1], which represents a localized probe of the electric
field.

In Chapter 3, we review vibrational spectroscopy and put the main focus on enhanced
spectroscopy with photons and electrons. We follow up with Chapter 4, where we describe
the near-field interaction of the antenna and molecular sample [(NF) in Fig. 1], resulting
in the enhanced molecular signal. We describe the mechanism behind resonant SEIRA
by using an approximation analytical model of multiple scattering processes between
the nano-antenna and the sample. We consider both the case of probing the system
with photons and with electrons. Lastly, we establish figures of merit (FOM) based on
the analytical model. With the FOMs we can evaluate the performance of antennas of
different shapes or materials in experiments where we study either the power lost during
the interaction (transmission experiments or EELS) or the radiated power (scattering
experiments).
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1. ELECTROMAGNETIC SCATTERING

1 Electromagnetic scattering
For aeons past, humanity was constantly interested in the nature of light and the possi-
bilities of utilizing it in its favor. In this chapter, we present a brief overview of electrody-
namics, introduce Green’s function as a tool for solving differential equations, which will
be utilized to solve scattering problems, and also introduce the formalism of electromag-
netically interacting point dipoles. Lastly, we describe models of material response to the
external electric field and introduce the concept of nano-antenna. The main sources are
Refs. [12, 13], the reader may find deeper views into this topic in, for example, Refs. [14,
15].

1.1 Electrodynamics
In this section, we first introduce Maxwell’s equations and constitutive relations account-
ing for the influence of the matter. Then we introduce the equations for the electromag-
netic potentials.

1.1.1 Maxwell’s equations and constitutive relations
Maxwell’s equations are the cornerstone of electrodynamics. The sources, sinks, and
temporal and spatial evolution of electromagnetic fields are contained in these equations.
Even though the theory of electrodynamics, as published by Maxwell, is over 160 years
old now, is still used for the description of countless electrodynamic phenomena. It can be
used for the classical description of electromagnetic problems or implemented into newly
emerging fields such as nanophotonics describing the behavior of electromagnetic fields at
the nanoscale. The form in which we know Maxwell’s equations nowadays was simplified
from the original Maxwell’s manuscript by Oliver Heaviside to the following form using
the formalism of vector calculus

∇ ·D(r, t) = ρf(r, t), (1.1)
∇ · B(r, t) = 0, (1.2)

∇× E(r, t) = −∂B(r, t)
∂t

, (1.3)

∇×H(r, t) = Jf(r, t) +
∂D(r, t)

∂t
, (1.4)

where D is the dielectric displacement field, B is the magnetic induction, E is the electric
field, H is the magnetic field, Jf is the free current density and ρf is the free charge
density. The dielectric displacement can be expressed in terms of the electric field and
the macroscopic polarization field

D(r, t) = ε0E(r, t) + P(r, t), (1.5)

where ε0 is the vacuum permittivity. The polarization field P represents the density of
electric dipole moments as P(r, t) = nep, where ne is the density of the electric dipoles
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1.1. ELECTRODYNAMICS

and p is the electric dipole moment. The magnetic induction and the macroscopic mag-
netization field contribute to the magnetic field as

H(r, t) = 1

µ0
B(r, t)−M(r, t), (1.6)

where µ0 is the vacuum permeability. Similarly to the polarization field, we introduced
the magnetization field as M(r, t) = nmm, with the density of the magnetic dipoles nm
and the magnetic dipole moment m. With ε0 and µ0 we can define the speed of light as
c2 = 1/(ε0µ0).

We now plug the relations for D and H back into Eqs. (1.1) and (1.4), respectively, to
obtain

∇ · E(r, t) = ρ(r, t)
ε0

, (1.7)

∇× B(r, t) = µ0J(r, t) + µ0ε0
∂E(r, t)

∂t
, (1.8)

where we defined the total charge density (ρ) and the total current density (J). The total
charge and current densities consist of the contribution from the free charge and current
densities, which can be adjusted externally, and the bound current and charge densities
Jb and ρb, respectively, emerging due to the polarization and magnetization of the matter.

ρ = ρf + ρb = ρf −∇ · P, (1.9)

J = Jf + Jb = Jf +∇×M +
∂P
∂t

. (1.10)

When considering the response of the matter to the electromagnetic fields, one must be
cautious about the spatial and temporal non-locality of the response. It turns out to
be convenient to express the so-called constitutive relations between the fields D and
H, which are dependent on the material response to the electric field E and magnetic
induction B, respectively, in the Fourier space as shown in Appendix A1. In so-called
linear and translationally invariant media, the constitutive relations are linear. When
considering non-linear media, higher-order terms would have to be considered in the
relations. We express the constitutive as

D(k, ω) = ε0εr(k, ω)E(k, ω), (1.11)
H(k, ω) = µ0µr(k, ω)B(k, ω), (1.12)

where k is the angular wavevector, ω is the angular frequency, and the linear coefficients
between the fields are the dielectric function εr and the relative permeability µr. An elec-
tromagnetic field in a linear medium can be expressed as a superposition of monochromatic
fields that are called plane waves. We now consider just one sinusoidal plane wave

E(r, t) = 1

2

[
Eei(k·r−ωt) + c.c.

]
, (1.13)

B(r, t) = 1

2

[
Bei(k·r−ωt) + c.c.

]
, (1.14)

1For the Fourier transform, we use the notation D(k, ω) = FT
{

D(r, t)
}
, E(k, ω) =

FT
{

E(r, t)
}
,H(k, ω) = FT

{
H(r, t)

}
, and B(k, ω) = FT

{
B(r, t)

}
.
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1. ELECTROMAGNETIC SCATTERING

where the electromagnetic fields have to be real, so we added the complex conjugate (c.c).
Equivalently, we can write E(r, t) = Re

{
Eei(k·r−ωt)

}
.

One of the major results of the electromagnetic theory was the ascertainment that
the electromagnetic fields carry energy. We now derive the equation for the conservation
of electromagnetic energy. For clarity, we drop the spatial and temporal dependencies in
parentheses. We start by applying the dot products E· to Eq. (1.3) and B· to Eq. (1.8).
After subtracting these two equations and rearranging them, we obtain

B · (∇× E)− E(∇× B) + B · ∂B
∂t

+ ε0µ0E ·
∂E
∂t

= −µ0J · E. (1.15)

After using the vector identity ∇ · (u × v) = v · (∇× u) − u(∇× v), expressing the dot
product of vector and its derivative as u · ∂

∂t
u = 1

2
∂
∂t
|u|2, multiplying both sides of the

equation by 1/µ0, and rearranging the terms, we reach the following form

∇ ·
(

1

µ0
E× B

)
= −J · E− ∂

∂t

1

2

(
ε0|E|2 +

1

µ0
|B|2

)
. (1.16)

We now integrate this equation over a volume Ω and apply the divergence theorem for
the first term, where we interchange the volume integration of divergence of the vector to
the integration over the closed boundary of the volume ∂Ω and get

‹
∂Ω

(
1

µ0
E× B︸ ︷︷ ︸

S

)
· r̂ dΩ = −

ˆ
Ω

J · E d3r︸ ︷︷ ︸
Dissipation

− ∂

∂t

ˆ
Ω

1

2

(
ε0|E|2 +

1

µ0
|B|2

)
︸ ︷︷ ︸

w

d3r, (1.17)

where dΩ is a infinitesimal surface element and r̂ is a vector perpendicular to it. This
identity tells us that the energy of the electromagnetic waves is conserved and is inter-
preted by Poynting’s theorem. It states that the term on the left side of the equation
describes the energy flowing inside or outside the volume, and we denoted it as the Poynt-
ing vector S, which has the meaning of the energy flow density. The first term on the
right side accounts for the dissipation losses by the heating of the material. The second
term expresses the temporal change in the energy of the electromagnetic field, where we
denoted the electromagnetic energy density as w.

In many cases, we are interested in a time average of the energy flow. We again consider
plane electromagnetic wave, e.g. the fields are time-harmonic E(r, t) = Re {Er(r)e−iωt}
and B(r, t) = Re {Br(r)e−iωt}. The time-averaged Poynting vector then reads2

〈Sr(r)〉 =
1

2
Re
{

1

µ0
Er(r)× B∗

r (r)
}
. (1.18)

With the help of Eq. (A.8), 〈S〉 can be rewritten as

〈Sr(r)〉 =
1

2

√
ε0

µ0

∣∣Er(r)
∣∣2k̂ = Ir(r)k̂, (1.19)

where k̂ is a unit vector in the direction of the wave propagation given by the wavevector
k, and we defined the intensity of the electromagnetic wave as Ir(r) =

∣∣〈Sr(r)〉
∣∣.

2Time average of a product of two time-harmonic variables is usually defined as 〈fg〉 =

1/T
´ T
0
(fe−iωt + c.c.) (ge−iωt + c.c.)dt = 1/2Re{fg∗}. where T = 2π/ω is the period of the oscilla-

tion
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1.2. DYADIC GREEN’S FUNCTION

1.1.2 Electromagnetic potentials
Important quantities, which can be useful in the description and computation of elec-
tromagnetic fields are the vector and scalar potentials. We may relate B to the vector
potential

B(r, t) = ∇×A(r, t), (1.20)

so that Eq. (1.2) is automatically fulfilled. By plugging this expression for magnetic
induction into Eq. (1.3), and assuming that the spatial and temporal derivatives are
interchangeable we get

∇× E(r, t) + ∂

∂t

(
∇×A(r, t)

)
= ∇×

(
E(r, t) + ∂A(r, t)

∂t

)
= 0. (1.21)

We can attribute the term in parentheses to a divergence of some scalar field V , as the curl
of divergence equals zero. We will call this newly defined quantity the scalar electrostatic
potential. If we express the electric field in terms of the potentials we get

E(r, t) = −∂A(r, t)
∂t

−∇V (r, t). (1.22)

The minus sign before the electrostatic potential gradient V is convention having roots in
the charge performing work against the field E.

When dealing with electromagnetic potentials, the so-called Lorenz gauge comes in
handy, notably when one wants to derive the wave equations for potentials. The gauge
condition is in the form

∇ ·A(r, t) + ε0µ0
∂V (r, t)

∂t
= 0, (1.23)

and it will be used in the following section for the derivation of Green’s function of the
wave equation.

1.2 Dyadic Green’s function
Green’s function is a powerful tool for solving differential equations and many love it
for its elegance. To introduce the concept of Green’s function and its relation to the
solutions of electromagnetic fields, we refer the reader to Appendix B. In this section,
we derive the dyadic Green’s function for the wave equation in the vacuum. The wave
equation is very important because various physical phenomena can be described in terms
of waves. The definition of the wave, as the solution of the wave equation, is intrinsically
linked to it. For this part, we will consider time-harmonic fields E(r, t) = Re {Er(r)e−iωt}
and the current density J(r, t) = Re {Jr(r)e−iωt}. If we apply the curl ∇× to Eq. (1.3),
interchange the spatial and temporal derivatives, and express the ∇× B with Eq. (1.8),
we get inhomogeneous wave equation for the electric field in the form

−∇×∇× Er(r) + k2Er(r) = −iµ0ωJr(r), (1.24)

where we defined the free-space wavenumber k as k = ω/c. The wavenumber is connected
to the wavelength of the wave λ as k = 2π/λ. We now describe the electric field in form of
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1. ELECTROMAGNETIC SCATTERING

vector and scalar potentials and suppose the time harmonicity A(r, t) = Re {Ar(r)e−iωt}
and V (r, t) = Re {Vr(r)e−iωt}. The relation (1.22) will then take the subsequent form

Er(r) = iωAr(r)−∇Vr(r). (1.25)

By inserting this expression for the electric field back into the inhomogeneous wave equa-
tion (1.24) and by applying the Lorenz gauge (1.23), we get the wave equation for the
vector potential

∇2Ar(r) + k2Ar(r) = −µ0Jr(r), (1.26)

which is in the form of the Helmholtz Eq. (B.5), and its solution can be written with the
help of Green’s function (B.3) as

Ar(r) = µ0

ˆ
G(r, r′)Jr(r′) d3r′. (1.27)

Again, by applying the Lorenz gauge, we get the equation for the scalar potential

Vr(r) = −
iωµ0

k2 ∇ ·
ˆ

G(r, r′)Jr(r′) d3r′. (1.28)

If we now insert the obtained relations for vector and scalar potentials back into Eq. (1.25)
we get

Er(r) = iωµ0

ˆ (←→I +
1

k2∇∇
)
G(r, r′) · Jr(r′) d3r′ = iωµ0

ˆ ←→
G (r, r′) · Jr(r′) d3r′, (1.29)

where
←→
I is the unit dyad, and we defined the dyadic Green’s dyadic function

←→
G =

(
←→I +

1

k2∇∇
)

eikR

4πR
, (1.30)

where R =
∣∣r− r′

∣∣ is the magnitude of the vector R = r− r′. After rewriting the dyadic
Green’s function into components, it can be seen that it is a symmetric dyad, in this case,←→
G =

←→
G T, where (·)T means transposition.

It can be helpful to express the Green’s dyadic in the Cartesian coordinates as [13]
←→
G =

[(
1 +

ikR− 1

k2R2

)
←→
I +

3− 3ikR− k2R2

k2R2
R⊗R
R2

]
eikR

4πR
. (1.31)

Depending on the distance R, we can split the Green’s dyadic in Cartesian coordinates
into different terms. In the regime where the wavelength of the wave λ is much larger than
the considered distances λ >> R, the part dependent on (kR)−3 prevails. We label this
region in the vicinity of the origin as the near field (NF). The near-field part of Green’s
dyadic then reads

←→
G NF =

[
−
←→I + 3

R⊗R
R2

]
1

k2R2
eikR

4πR
. (1.32)

If we think about very large distances from the origin, the major contribution is from the
part of Green’s dyadic, which is dependent on (kR)−1. We label this distant region as
the far field (FF), where λ << R. The far-field component of the Green’s dyadic can be
expressed as

←→
G FF =

[
←→I − R⊗R

R2

]
eikR

4πR
. (1.33)
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1.3. DIPOLE RADIATION

1.3 Dipole radiation
In Section 1.1, we introduced the macroscopic (averaged) description of polarized or mag-
netized matter with the help of the polarization and magnetization fields. We now move
to the microscopic description, where we consider a system consisting of point charges ran-
domly distributed in the matter. We can consider E and B emerging between the point
charges, but from now on we won’t assume magnetic fields. Such a system is schemati-
cally shown in Fig. 1.1 (a). The current density created by a system of point-like moving
charges labeled qn can be written as

J(r, t) =
∑
n

qn
drn(t)

dt
δ(r− rn), (1.34)

where rn is the position vector of the charge qn. By developing the current density into
the Taylor series with origin r0, which is usually considered to be in the center of the
charge distribution, and keeping only the first term of the series, we get

J(r, t) = dp(r, t)
dt

δ(r− r0). (1.35)

With this, we approximated the response of the matter to the response of a point dipole
located in its center. If we now assume time harmonicity of the current density J(r, t) =
Re {Jr(r)e−iωt} and the dipole moment p(r, t) = Re {pr(r)e−iωt}, we can write Jr(r) =
−iωpr(r)δ(r− r0). After inserting this current in Eq. (1.29), we get

Er(r) = ω2µ0
←→
G (r, r0) · pr(r0). (1.36)

We next assume linear dependency between the induced dipole model and the electric
field driving the dipole mediated by a diagonal polarizability tensor ←→α with components
αii where i = x, y, z as

pr(r) =←→α · Er(r). (1.37)

The polarizability accounts for the material properties and the geometry of the structure
and in this thesis we will always assume that the tensor is diagonal.

(a)                                                                          (b)

p(r0)

Einc,r

Er(r)

qn

rn

r

x

y

z

Figure 1.1: (a) Scheme of n discrete charges forming a medium. (b) Scattering of the
incoming light from the medium, which is approximated by a point dipole in the center.
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1. ELECTROMAGNETIC SCATTERING

By expressing the dipole in terms of the polarizability, we can write

Er(r) =
k2

ε0

←→
G (r, r0) · ←→α · Einc,r(r0), (1.38)

we can see that the electric field of a dipole located at the position r0 is fully described
by the Green’s dyadic. We now introduce the field enhancement tensor as

←→
f =

k2

ε0

←→
G (r, r0) · ←→α . (1.39)

The field enhancement describes how large (or small, depending on the distance from the
dipole) is the electric field in the vicinity of the dipole compared to the incoming field.

In the following sections, we will use this approach to approximate the field radiated
from the nanostructure by a point dipole, described by the polarizability tensor←→α driven
by the incoming field Einc,r. The situation is schematically sketched in Fig. 1.1 (b). The
incoming field can be a propagating electromagnetic wave, an evanescent electromagnetic
field (for example of a nanostructure or of a focused electron beam), or even a second
dipole. We describe the driving of an electric dipole by different external fields and its
subsequent radiation in Chapter 2.

1.4 Material response
To model the material response to the external electric field, we assume that the material
consists of discrete charges, which under the influence of the field form electric dipoles.
The dipole can be thought of as a positive charge and a negative charge connected by a
bond. When the external field is dynamic, this dipole oscillates and it can be modeled
via a harmonic oscillator model. We assume that the movement of the positive charge
(i.e. heavy positive ion) can be neglected, and the negative charge (i.e. electron or
a positive ion) oscillates on the spring representing the bond. We can see the scheme of
this approximative model in Fig. 1.2 (a). We consider force proportional to the strength
of the bond Fbond, which acts oppositely to the oscillator displacement, the damping
force Fdamp, proportional to the electron’s velocity, and the driving external force Fdrive,
represented by the external electric field. We can then write the equation of motion as

mr̈ = −kr︸︷︷︸
Fbond

−mγṙ︸ ︷︷ ︸
Fdamp

−eE(r, t)︸ ︷︷ ︸
Fdrive

, (1.40)

where r is the displacement of the oscillator from equilibrium, m is the oscillator mass, k
is a constant that depends on the strength of the bond, e is the elementary charge, and
γ is the damping parameter. The resonant frequency of the oscillator can be described
by its properties as ω0 =

√
k/m. If we assume time harmonic external field E(r, t) =

Re {Er(r)e−iωt} the displacement in the steady state is

r =
−e

m(ω2
0 − ω2 − iγω)

Er(r). (1.41)
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Gold

CBP

hBN

z
||

x

y

k

(b)(a)

E

(c) (d)

e− e−

e−
e−

e−

e−

e−

+ + +

+ + +

e−

+ + +

Figure 1.2: (a) Schematic sketch of a structure consisting of discrete electric dipoles
induced by an external electric field. The response can be modeled with a harmonic
oscillator model, where we assume negative charges, bound to stationary nuclei oscillate.
(b) Dielectric function of a CBP molecule (shown in the inset, which is taken from [16]).
With the dots, we plot experimentally measured dielectric function taken from Ref. [17].
We can recognize three vibrational resonances at approximately 179.5, 183.5, and 187
meV. With the full line, we plot the fit of the Lorentz model (1.44). We assume one
oscillator with parameters ε∞ = 3.05, F1 = 382.683meV2, ω0,1 = 179.777meV and γ1 =
1.029meV. We can see that the real part is always positive, thus yielding weak oscillator
behavior. (c) Dielectric function in the upper Reststrahlen band of hBN ε⊥. We again
use the Lorentz model with the parameters ε∞ = 4.52, F1 = 56 910.331meV2, ω0,1 =
168.634meV and γ1 = 0.868meV. The transverse optical phonon is situated at around
168meV, and the real part of the dielectric function is negative from this point until
approximately 202meV (gray area), thus exhibiting strong oscillator behavior. In the
inset (taken from [18]) we plot the structure of a hBN crystal and the in-plane schematic.
(d) Dielectric function of gold. Dots represent experimental data for gold by Palik [19],
extracted from FDTD. With the full line, we plot the fit of the data with the Drude model
from Eq. (1.45). The parameters are ε∞ = 3.931, ωp = 7517meV and γ = 59meV.
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1. ELECTROMAGNETIC SCATTERING

We can assume that the system has an induced electric dipole moment p, because of
the charge displacement

pr(r) = −er. (1.42)

Thus with pr(r) we can express the polarization field Pr(r) as the dipole moment density
Pr(r) = nepr(r) and consider Eq. (1.11) to write the dielectric function as

εr(ω) = 1 +
nee

2

mε0

1

ω2
0 − ω2 − iγω

. (1.43)

This model of dielectric function based on the harmonic oscillator is called the Lorentz
model. It offers the description of several types of resonances in matter, most notably
the vibrational and electronic. We can generalize the Lorentz model for the case of more
oscillators, accounting for resonant contributions to the response at different frequencies
and write

εr(ω) = ε∞ +
∑
j

Fj

ω2
0,j − ω2 − iγjω

, (1.44)

where we introduced background permittivity ε∞ ≡ εr(ω −→ ∞), accounting for the non-
resonant contributions to the polarization [20], ω0,j is the resonance frequency and γj is
the damping parameter of the j-th oscillator, which has the strength Fj. The oscillator
strength conceals oscillator mass and the charge density and depending on its magnitude,
two regimes of the oscillations emerge. When the real part of the dielectric function
is always positive, the oscillator is denoted as weak. For example, it can be used to
model response due to vibrations in molecular samples, as we can see in Fig. 1.2 (b).
Here we plot the experimentally measured dielectric function of 4,4-bis(N-carbazolyl)-1,1-
biphenyl (CBP) molecules [17]. We fit the data of the C-H bond stretching resonance at
approximately 180meV with the Lorentz model. For larger oscillator strengths, we get
a strong oscillator regime, the real part of the dielectric function has a band where it
is negative and is responsible for polaritonic behavior. If the light with frequency lying
inside this band impinges on the material, it gets mostly reflected. We can see such
a band in Fig. 1.2 (c) where we plot the dielectric function of hexagonal boron nitride
(hBN). This material is part of the family of van der Waals materials, which are formed
by two-dimensional atomic crystals, stacked on each other as shown in a scheme of the
hBN layers in the inset of Fig. 1.2 (c). The individual layers are bound by the van der
Waals interaction [21]. Hence, the materials exhibit strong anisotropy. The response of
hBN is given by dielectric tensor ←→ε = (ε⊥, ε⊥, ε‖), where we denote the parallel ‖ and
perpendicular ⊥ components with respect to the anisotropy (optical) axis, in this case,
the z-axis. In Fig. 1.2 (c), we plot ε⊥ in the so-called upper Reststrahlen band.

A special form of the harmonic oscillator model expressed by Eq. (1.44) arises if we
consider the response of free electrons, i.e. we assume no bonds between electrons and
the positive ion cores. Therefore there are no restoring forces, the electrons move freely as
the electron gas [see inset in Fig. 1.2 (d)], which results in ω0 = 0. This model is named
the Drude model and reads

εr(ω) = ε∞ −
ω2

p

ω2 + iγω
, (1.45)
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1.5. OPTICAL AND INFRARED ANTENNAS

where we again suppose the background permitivity ε∞ and we have defined the bulk
plasma frequency ωp =

√
nee2/meε0, where ne is the concentration of free electrons and

me is the electron mass. Plasma frequency is the eigenfrequency of the longitudinal
oscillations of the electron gas in matter. In the definition, me is the electron mass, and
ne is the electron density. We plot the experimentally obtained dielectric function of gold
in Fig. 1.2 (d) and fit it with the Drude model.

1.5 Optical and infrared antennas
As the definition states, an optical antenna is a device designed to efficiently convert
freely propagating optical radiation to localized energy, and vice versa [22]. While radio-
frequency (RF) antennas are widely spread in today’s communication, one of the main
goals of nanophotonics and adjacent fields is to make use of optical analog to the RF
antennas. Nano-antennas and other resonant nanostructures have the ability to squeeze
incident light into the nanoscale, which offers a large variety of potential applications,
such as photodetection [23], photovoltaics [24, 25], lasing [26], utilizing them as probes
for nanoimaging or a single-photon sources [27]. Recently, the use of plasmonic nano-
antennas in heat-assisted magnetic recording (HAMR) was proposed, where the design
would be used in the next generation of hard disk drives [28, 29]. Another current use
is in the field of biosensing, for example, pregnancy tests [30] or tests of SARS-CoV-2
based on plasmonic nanoparticles designed during recent COVID-19 pandemic [31, 32].
The enhanced spectroscopies such as plasmon-enhanced fluorescence, tip-enhanced and
surface-enhanced Raman spectroscopy, and surface-enhanced infrared absorption spec-
troscopy make use, we will discuss the latter two in more detail in Chapter 3.

One of the main differences between optical and RF antennas is that the optical an-
tenna dimensions are in a fraction of the optical wavelength (tens to hundreds of nanome-
ters). The optical antennas are typically made of materials that can support different
types of resonant excitations when exposed to an external electromagnetic field. Optical
antennas mostly rely on the excitation of the localized surface plasmons, or Mie-type
dielectric resonances. When considering the infrared region, metallic antennas can still
support plasmonic resonances, but the dimensions of such infrared antennas need to be
much larger than those of optical antennas. Another suitable candidate for infrared an-
tennas3 made of phononic materials, which have resonances in IR natively and which can
support localized surface phonons. Now we describe the general properties of the optical
and infrared antennas, which we will refer to as nano-antennas, even though, the infrared
antennas could be of micrometer lengths.

One of the most important aspects of antennas are their resonant properties [34]. The
traditional perfectly conductive metallic RF dipole antennas can be thought of as res-
onators supporting standing electromagnetic waves. We consider the simplest case of a
half-wavelength antenna made of perfectly reflective metal and an incoming electromag-
netic wave of resonant wavelength illuminating it. The electromagnetic field displaces
the electrons in the antenna back and forth, while generating standing waves of free
charges, the amplitude of the waves is maximized at the resonance. As the name states,

3For plural of the word antenna, there are two possibilities. Throughout this thesis, we use the form
antennas, as we are dealing with nano-analogs to the electric RF aerials. The form antennae is typically
associated with the protuberances on the heads of insects [33].
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Figure 1.3: (a) Radio-frequency antenna (blue) consisting of two metallic wires. The
incident electric field induces charge oscillations in the wires, schematically marked with
positive and negative signs. The resonance frequency of the oscillations is linked to the
antenna length L. (b) Metallic nanorod, acting as a nano-analog to the RF antenna. The
incident electric field again induces charge oscillations, and the antenna supports localized
plasmon polariton resonance. (c) Electric field magnitude around cylinder-shaped infrared
antenna with round edges. The length L of the antenna is 3190 nm, and the diameter D
is 100 nm. The antenna’s material is defined by Palik’s experimental data for gold [19].
The displayed field is induced after the excitation with a plane wave of energy 160meV
(wavelength 7750 nm) and calculated in COMSOL. We can see that the electric field is
highly localized near the antenna tips and exponentially decays further on.

the antenna length is linked to the resonance wavelength as λ = 2L [27]. We can see a
scheme of dipolar resonance in an RF antenna in Fig. 1.3 (a). This simple formula can
not be used for the nano-antennas, because the electromagnetic is not perfectly reflected
from the metal, as in the case of RF antennas, but instead penetrates the material [34].
For the simplest case, we can consider rod-shaped nano-antenna shown schematically in
Fig. 1.3 (b). The resonance wavelength of the nano-antenna λres can be written as [35]

λres =
2L

m
na1 + a2, (1.46)

where L is the length of the antenna’s long axis, in the direction where oscillations take
place, n is the refractive index of the surrounding medium, a1 is a parameter accounting for
the antenna geometry and material, a2 is a parameter accounting for the phase associated
with reflections at the ends of the antenna and m is the order of mode. In comparison
to the RF antennas, we also assume that the antenna can support higher order modes
than just the dipole, for which m = 1. We can see dipolar resonance in nano-antenna in
Fig. 1.3 (b). From Eq. (1.46), we can deduce that by elongating the antenna, the resonance
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red-shifts to the lower energies. This aspect of antenna behavior is very important and
will be exploited in the next sections to tailor nano-antennas to the desired resonance.

Another paramount aspect of nano-antenna is the enhancement of the electromagnetic
fields. Numerical simulations [36, 37] can predict this enhancement and show that it could
be in orders of tens to hundreds. This near-field is highly confined within the vicinity of
the antenna sharpnesses, as is again shown by the numerical simulations and by near-field
experiments [38]. When supposing rod-shaped nano-antenna, where the dipolar resonance
is induced, the field is particularly intense near the sharp apexes, as shown in Fig. 1.3 (c),
creating so-called hot-spots. In this thesis, we will not deal with higher-order modes, which
can have hot-spots in other parts of the antenna. We can attribute the field enhancement
to the induced charge density, displaced by the external electric field, which is the largest
near the sharpnesses. On the other hand, we can look at the field enhancement in the
context of the field scattered by an object described with Green’s dyadic (1.36), and the
field-enhancement tensor (1.39).
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2. POINT-DIPOLE MODEL OF ELECTROMAGNETIC SCATTERING

2 Point-dipole model of
electromagnetic scattering

In this chapter, we describe the interaction of previously derived point dipole with external
sources and show how we can describe the electric field scattered from the dipole. We
consider interaction with a field of a second dipole, electromagnetic plane wave, and
field of a beam of swift electrons. We complete the overview with results of numerical
simulations for an interaction of nano-antennas with plane wave and electron beam and
compare them to the analytically obtained results.

2.1 Interaction between two point dipoles
We now introduce the description of the interaction between two point dipoles. This
theoretical model be used for describing a general system consisting of two entities with
dipole moments, for example, it is used for modeling scattering-type scanning near-field
optical microscopy (s-SNOM) experiments, with a tip probing a sample, each represented
by one dipole [39, 40]. We will use the coupled dipoles formalism in the derivations of
formulas for enhanced spectroscopies in Chapter 4, where we will study the system of
a nano-antenna and object, representing a molecular sample. We now summarize the
formalism of the equations for coupled dipoles.

The first dipole will represent the antenna and we will denote all variables accompa-
nying its description with (·)A, second dipole (·)O will represent the object. Each of the
dipoles, is situated at rA(O) and has a dipole moment pA(O)

r
(
rA(O)

)
, which we will simply

denote as pA(O). The dipole produces the electric field given by Eq. (1.38)

EA(O)
dip,r (r) =

k2

ε0

←→
G
(

r, rA(O)
)
· pA(O). (2.1)

Each dipole is driven by a total field, consisting of an incoming external field Er,inc
(
rA(O)

)
,

and by the incoming field of the second dipole EO(A)
r,dip

(
rA(O)

)
. The total field inducing each

dipole then reads

Etot
inc,r

(
rA(O)

)
= Einc,r

(
rA(O)

)
+ EO(A)

dip,r

(
rA(O)

)
. (2.2)

The induced dipole moment of each dipole can be written as1

pA(O) =←→α A(O) ·
(

EA(O)
inc +

k2

ε0

←→
G AO(OA) · pO(A)

)
. (2.3)

The dipole moment can be expressed with its polarizability ←→α A(O) via Eq. (1.37) as
pO(A) = ←→α A(O) · Etot,A(O)

inc . The situation of the two dipoles induced by the respective
incoming external field and the fields acting between them is schematically shown in
Fig. 2.1 (a). The system of equations (2.3) yields the following solution

1We will use the notation Etot,A(O)
inc = Etot

inc,r
(
rA(O)

)
for the total field inducing each dipole, EA(O)

inc =

Einc,r
(
rA(O)

)
for the incoming external field and EOA(AO)

dip = EO(A)
dip,r

(
rA(O)

)
for the field of the second

dipole. We denote the Green’s dyadic which propagates the field from a dipole situated at rO(A) to the
position of the second dipole rA(O) as

←→
G AO(OA) =

←→
G
(

rA(O), rO(A)
)

.
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Figure 2.1: (a) Scheme of coupled dipole interaction. Each dipole has its dipole moment
pO(A) driven by an external incoming field EA(O)

inc and by the field of the second dipole
EOA(AO)

dip (b)-(f) Individual terms in Eq. (2.9) b) Field directly scattered by the antenna
EA after illumination by EA

inc. (c) Field directly scattered by the object EO after being
illuminated by EO

inc. (d) Incoming field EO
inc induces the object dipole which acts with its

field on the antenna, enhanced with the field enhancement
←→
f . The antenna then radiates

field EAO
inc . (e) Same as in (d), but now the antenna field induces the object dipole, which

then scatters the field EOA
inc . (f) Last term considered in Eq. (2.9): the antenna dipole is

driven by the external field, the antenna induces a dipole in the object with its field, and
the object then acts back, resulting in the field radiated by the antenna EAOA

inc .

pA(O) =←→α A(O) ·
(←→I − k4

ε2
0

←→
G OA(AO) · ←→α O(A) ·

←→
G AO(OA) · ←→α A(O)

)−1

·
(

EA(O)
inc +

k2

ε0

←→α O(A) ·
←→
G OA(AO) · EO(A)

inc

)
, (2.4)

where
←→I is a unit dyad. This general formula can be used for the description of a weak

and strong interaction between the two point dipoles. In this thesis we will consider only
the weak interaction, e.g. one of the dipoles is very weakly polarizable compared to the
other, or both dipoles are sufficiently apart from each other. With the weak interaction
in consideration, the total field inducing each of the two dipoles Etot,A(O)

inc = pA(O)/←→α A(O)

can be developed into the Taylor series, under the assumption that norm of the operator
(k4/ε2

0)
←→
G OA(AO) · ←→α O(A) ·

←→
G AO(OA) · ←→α A(O) is less than unity [41]. We can then write

Etot,A(O)
inc = EA(O)

inc +
k2

ε0

←→
G OA(AO) · ←→α O(A) · EO(A)

inc

+
k4

ε2
0

←→
G AO(OA) · ←→α O(A) ·

←→
G OA(AO) · ←→α A(O) · EA(O)

inc + ... . (2.5)

18



2. POINT-DIPOLE MODEL OF ELECTROMAGNETIC SCATTERING

The field scattered from each dipole EA(O)
sca (r) evaluated at some observation point r can be

again written with Eq. (1.38), We denote the Green’s dyadic
←→
G
(
r, rA(O)

)
which propagates

the scattered field as
←→
G A(O)

sca and obtain

EA(O)
sca (r) = k2

ε0

←→
G A(O)

sca · ←→α A(O) · Etot,A(O)
inc . (2.6)

After rewriting Etot,A(O)
inc with Eq. (2.5) we get

EA(O)
sca =

k2

ε0

←→
G A(O)

sca · ←→α A(O) ·
(

EA(O)
inc +

k2

ε0

←→
G AO(OA) · ←→α O(A) · EO(A)

inc

+
k2

ε0

←→
G AO(AO) · ←→α O(A) · k

2

ε0

←→
G OAAO) · ←→α A(O) · EA(O)

inc + ...
)
.

(2.7)

We recognize the field enhancement tensor from Eq. (1.39) as

←→
f =

k2

ε0

←→
G AO · ←→α A, (2.8)

where the field produced by an antenna is evaluated at the position of the object.
The total scattered field of the antenna-object system is the sum of the scattered

fields (2.7). From the reciprocity theorem and the symmetry of Green’s dyadic in free
space we can write

←→
G AO =

←→
G OA [42], which allows us to evaluate Green’s dyadic when

the source and observation points are interchanged. After rearranging, where we use
the fact, that polarizability tensors are considered to be diagonal, thus commutative,
and expressing the field enhancement, we can write the total scattered field in the form
resembling the Born series

Etot
sca =

k2

ε0

←→
G A

sca ·
←→α A · EA

inc︸ ︷︷ ︸
EA

+
k2

ε0

←→
G O

sca ·
←→α O · EO

inc︸ ︷︷ ︸
EO

+
k2

ε0

←→
G A

sca ·
←→
f · ←→α O · EO

inc︸ ︷︷ ︸
EAO

+
k2

ε0

←→
G O

sca ·
←→α O ·

←→
f · EA

inc︸ ︷︷ ︸
EOA

+
k2

ε0

←→
G A

sca ·
←→
f · ←→α O ·

←→
f · EA

inc︸ ︷︷ ︸
EAOA

+... ,

(2.9)

where we denoted the individual terms of series with superscripts, to emphasize the num-
ber of scattering events. A similar expansion of the scattered field was already done in
Ref. [43]. The individual terms are described and schematically depicted in Fig. 2.1 (b-f).

2.2 Interaction with photons
When probing bulk materials with electromagnetic waves (or when emphasizing the par-
ticle nature of light, photons), we can detect the scattered waves in the forward direction,
and measure the transmitted portion of the waves or in the backward direction, utiliz-
ing reflection schemes. We can then determine the material absorption, caused by the
dissipation, from the energy conservation, where the sum of reflected, transmitted, and
absorbed light should provide us with the total energy of the incoming light. From en-
ergy conservation, extinction is commonly defined as the decrease of the transmitted light
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with respect to the initial intensity. When considering small structures, the scattering
into several directions is now possible, instead of just forward transmission and backward
reflection, nevertheless, we can still observe the light transmitted through in the primary
direction and obtain transmission. A way to describe the interaction of small structures
with incoming light is by means of optical cross sections. Cross sections represent an
effective area in which the electromagnetic wave interacts with the studied object. In
this context, it will be the probability that a part of the incoming power will be ab-
sorbed, scattered, or transmitted, and we obtain them by dividing the respective power
(absorbed, scattered, transmitted) by the incoming power. In the next section, we derive
the relations for the optical cross sections using point-dipole formalism. After that, we
show numerically calculated results and compare them with the analytical ones.

2.2.1 Optical cross sections
One of the most important formulas in the description of scattering from a target is the op-
tical theorem. It contains the conservation of energy and can be used in the description of
several phenomena, for example from the description of waves (electromagnetic, acoustic).
The optical theorem relates the extinguished power of an incoming plane wave impinging
on an object to the scattering amplitude in the forward direction of the incoming field,
and its general form is [44]

σext =
4π

k
Im
{
Asca

}
, (2.10)

where σext is the extinction cross section, k is free space wavenumber and Asca is the
scattering amplitude in the forward direction k̂ = k/k. For the scattering of the electro-
magnetic wave, we can express Asca as [12]

Asca =
E∗

inc · F(k̂)∣∣Einc
∣∣2 , (2.11)

where Einc is the incoming field in the direction k̂ and F(k̂) is the far-field scattering
amplitude in the direction of the incoming field. The polarization of the incident field
can be written by means of the field amplitude Einc and the polarization vector ε̂ as
Einc = Eincε̂. We now write the scattered field (1.36) in the direction k̂ and express it
with the far-field Green’s dyadic (1.33) as

Esca

(
k̂
)
=

k2

ε0

[
←→
I − R⊗R

R2

]
eikR

4πR
· ←→α · Eincε̂ =

eikR

R

k2

4πε0

←→α · Eincε̂︸ ︷︷ ︸
F(k̂)

, (2.12)

where we expressed the scattered field in the direction of the incoming light k̂, which we
chose as the z-direction, and then the second term in brackets vanished, as the polarization
vector ε̂ is perpendicular to the propagation direction. We also defined the far-field
scattering amplitude F(k̂). If we express Asca from Eq. (2.11) with F(k̂) from Eq. (2.12)
and plug it into the optical theorem in Eq. (2.10) we get the formulation of the extinction
cross section

σext =
k

ε0
Im
{
ε̂∗ · ←→α · ε̂

}
. (2.13)
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Esca
(r )

σext

Isca

Einc (k)
Einc (k)∂Ω

Esca(k)

Ω

σabs

σext = σsca +σabs
Figure 2.2: Schematic representation of light scattering on a structure. The incoming
light propagates in a direction given by k̂. After the interaction with an object, light
can be absorbed or scattered. By integrating over a spherical boundary enclosing the
sample, we get the scattering cross section. By placing a detector in the direction k̂, we
get the transmitted light, which is diminished by the extinction, summing the scattered
and absorbed portions of the incoming light.

The extinction cross section has the unit of area. We schematically depict the extinction
measurement in Fig. 2.2. It is measured by placing a detector after the object in the
direction of the incoming wave and tells us, how was the incoming power attenuated by
the interaction of incoming light with an object it impinges on. There are two possible
channels through which the power can be lost. It can be scattered in different directions
than that of the passing incoming light or it can get absorbed in the object.

Now we express the scattering cross section, which tells us about the total power
scattered from the object. It is usually defined by considering outwards power flow through
an imaginary border enclosing an object which radiates, which is then integrated over
the imaginary border and normalized to the incoming power. As we expressed by the
Eq. (1.17), the energy flow of the electromagnetic field can be expressed via the Poynting
vector 〈S〉. By integrating the time-averaged Poynting vector of the scattered field 〈Ssca〉
over the imagined boundary ∂Ω enclosing the volume Ω and dividing by the magnitude of
the time-averaged Poynting vector of the incoming field 〈Sinc〉 we get the scattering cross
section

σsca =
1

〈Sinc〉

˛
∂Ω

〈Ssca〉 · r̂dΩ, (2.14)

where dΩ is an infinitesimal element of the boundary and r̂ is a unit vector normal to this
element. After expressing the Poynting vector from Eq. (1.19) we get

σsca =
1∣∣Einc
∣∣2
˛
∂Ω

∣∣Esca
∣∣2dΩ. (2.15)

By inserting the far-field formulation of Esca for oscillating dipole as in Ref. [12] we get
the scattering cross section in the form

σsca =
k4

6πε2
0

∣∣←→α · ε̂∣∣2. (2.16)

We again schematically show a scattering experiment, where the scattered intensity Isca
is measured in Fig. 2.2.
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From the optical theorem, we know that the extinction cross section contains the total
extinguished power. The power that is taken from the incoming wave can also be lost due
to the dissipation in the structure and is labeled as the absorption cross section, which is
expressed as

σabs = σext − σsca. (2.17)

For small or weakly polarizable absorbing structures with small ←→α , the scattering cross
section becomes negligible and the absorption cross section becomes the major contributor
to the extinction σabs ≈ σext [45].

2.2.2 Numerical calculations of optical cross sections
Numerical simulations of the response of nanostructures to the impinging electromagnetic
waves are one of the major contributors to explaining the response. They provide infor-
mation about the field magnitudes, phases, and other quantities usually unattainable in
standard far-field experiments, although some near-field techniques can measure them [38,
46], and they can be afterward directly compared with numerical simulations. In this the-
sis, we use two commercial numerical solvers, finite-difference time-domain (FDTD) Ansys
Lumerical software for the computations of the response of nanostructures to plane-wave
illumination, and finite-element-method based COMSOL Multiphysics for the com-
putations of plane-wave and electron-beam excitation.

In this section, we will show numerically calculated optical cross sections and compare
them with the analytical results, using formalism for the extinction and scattering cross
sections introduced in the previous section. We will be specifically interested in the
computation of the far-field response of infrared (IR) antennas, for which we will use
FDTD Lumerical (the methodology is described in Appendix C.1). In comparison to
the optical antennas, the metallic infrared antennas are much larger, as was discussed
in Sec. 1.5. Because of the size of the IR antennas, the scattering emerges as a non-
negligible contribution to the total extinction and, in some cases, even dominates it. We
now show the calculations of the response of nano-antennas of the same shape and similar
dimensions to ones previously used and thoroughly discussed in Ref. [47], as they will be
used in the next chapter for the modeling of the enhanced spectroscopies. The antennas
are hemispherically ended cylinders with varying diameters D. By changing the diameter,
the resonance for an antenna of a certain length shifts towards shorter wavelengths, as we
can see in Fig. 2.3 (a). The antenna dimensions are also in Tab. D.2.

For the later application in enhanced spectroscopy, which we discuss in Chap. 4, the
resonance of the antennas has to be tuned to approximately 7.9 µm, which roughly corre-
sponds to the Si-CH3 vibration in polydimethylsiloxane (PDMS) molecule. The antenna
had to be elongated, to shift the resonance towards a longer wavelength [the resonance
wavelength scales linearly with the antenna length, as we can see from Eq.(1.46)]. The
lengths and sizes of the antennas are plotted together with a schematic depiction of the
shape in Fig. 2.3 (b) with green dots.

We can see the numerically calculated cross sections for gold nano-antenna of 100 nm
diameter in Fig. 2.4 (a). The extinction and scattering cross sections were obtained from
the FDTD monitors, their sum provides the extinction cross section. In Fig. 2.4 (b)
with circles and full lines, we plot the maxima of the three numerically calculated cross
sections maxima for the different sizes of nano-antennas from Fig. 2.3 (b). As was already
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Figure 2.3: (a) Simulated extinction cross sections for gold antennas of length 1.82 µm
and varying diameter. When broadening the nano-antenna, the resonance energy shifts
toward shorter wavelengths (blueshift). (b) Lengths and diameters (green dots) of gold
nano-antennas, whose resonances are tuned to approximately λres = 7.9 µm. With the
black dots, we plot the dependence of the magnitude of the x-component of the antenna
polarizability (evaluated at the λres). To maintain the same resonance frequency while
increasing the diameter D (blueshift of the resonance) of the nano-antennas, they had to
be elongated as well (redshift of the resonance). Optical response of the gold antennas in
(a) and (b) is modeled with the dielectric function from Ref. [19], plotted in Fig. 1.2 (d).

discussed in Ref. [47], we can distinguish three antenna regimes as the ratio between
the magnitude of absorption and scattering cross sections changes as a function of the
antenna size. We can see that for the smallest antennas, the majority of the contribution
to extinction is from the antenna absorption, yielding σext ≈ σabs.As we increase the
antenna size, the scattering and absorption increase, too, until the diameter of 60 nm.
For this antenna, the absorption cross section has a maximal value and matches the
scattering in its magnitude. From this point on, the absorption decreases. On the other
hand, the scattering keeps increasing, and with the larger antennas, we enter the last
regime, where the major contribution to the extinction is from scattering. Absorption
appears to be asymptotically approaching zero, so for larger antennas, the contribution
to the extinction would be given mainly by the scattering σext ≈ σsca.

This behavior has been previously discussed in terms of the theory of resonators,
where depending on the ratio between the internal (dissipation) and external (radiation)
losses, we can distinguish three coupling regimes [48]. When the external-to-internal ratio
(e.g. the ratio between the scattering and absorption) is below one, when the antenna is
dominantly absorbing, the regime is called under-coupled. When the external-to-internal
ratio is equal to one, the resonator is denoted as critically-coupled, for larger antennas,
where the external losses prevail, the regime is called over-coupled. These three regimes
play an important role in the enhanced spectroscopies, and they will be discussed in the
next chapter.

Now we compare the numerically calculated cross sections with the analytical relations
from Sec. 2.2. We can substitute the calculated antenna polarizability in equations for
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(a) (b)

Figure 2.4: (a) Comparison of the optical cross sections calculated numerically by FDTD
(full lines) and semi-analytically obtained using Eqs. (2.18-2.20) (dashed line) for a gold
nano-antenna which is cylindrically shaped with hemispherical apexes. The antenna diam-
eter is D = 100 nm and length is L = 3190 nm. The numerical and analytical calculations
match fairly well when evaluating the scattering, the extinction and absorption shows a
discrepancy. (b) Cross section values at resonance wavelength λres plotted as a function
of the antenna diameter D for different antenna sizes from Fig. 2.3 (b). With the vertical
dashed line, the points for the antenna from (a) are highlighted. With the blue back-
ground (nano-antenna diameters under about 50 nm), we mark the under-coupled regime,
with the green background (diameter 60 nm) the critically coupled regime, and with the
red background (diameters over about 70 nm) the over-coupled regime.

the extinction (2.13) and scattering (2.16) and calculate the cross sections. We obtain the
absorption cross section from the energy conservation (2.17).

We will use computed polarizabilities obtained using multipole expansion for nanopho-
tonics (MENP) package as described in Appendix C.1. We consider incoming electromag-
netic plane wave with x-polarization, so that Einc = Eincx̂, where x̂ is a unit vector in the
x-direction. The antenna’s long axis is oriented along the x-axis, so the response would
come only from the x-component of the polarizability αA

xx. In the next we simply denote
αA

xx = αA. In Fig. 2.3 (b), we plot the obtained magnitude of the scalar polarizabilities∣∣αA
∣∣ for different dimensions of nano-antennas, whose resonances are tuned to approxi-

mately λres = 7.9 µm. Both antenna length and polarizability are seemingly saturating
and have decreasing slopes for larger antennas. This behavior can be interpreted by an
interplay between the dependences of polarizability on the antenna length and the diam-
eter. When considering the scalar polarizabilities, Eqs. (2.13),(2.16) and (2.17) can be
simplified

σA
ext =

k

ε0
Im
{
αA}, (2.18)

σA
sca =

k4

6πε2
0

∣∣αA∣∣2, (2.19)

σA
abs = σA

ext − σA
sca. (2.20)
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We plot these expressions, into which we plugged the computed polarizability of the
antenna of 50 nm with dashed lines in Fig. 2.4 (a). We can see that the scattering obtained
from the model matches almost perfectly with the numerically calculated result, but in
extinction and absorption, there is a slight discrepancy. We again take the maxima of the
calculated cross sections and plot them into Fig. 2.4 (b), with triangles and dashed lines.
We can see that the scattering cross sections match well, the relative error is smaller than
2.5% for all antennas except for the smallest one with diameter 10 nm, where the error is
about 5%. This could be because of too coarse mesh of the simulation.

The extinction shows a discrepancy between the numerically and analytically obtained
spectra, and the error is about 2.5%. The absorption cross sections show a discrepancy,
which is similar in size to the extinction (as the absorption is obtained from the energy
conservation), although as it diminishes, the error grows. The discrepancy shall be a focus
of future study, although we assume it arises as a consequence of the dipole approximation.

Up to this point, we have only dealt with nano-antennas of a cylindrical rod shape
with hemispherical apexes. After inducing a dipolar resonance within the nano-antenna,
the electric field is greatly enhanced at the antenna apexes. We now describe the case of
two neighboring nano-antennas separated by a nanometric gap. When the resonance is
induced in the nano-antennas, they can interact via their near-fields in the gap dividing
them and can be coupled [49].

The lower-energy mode emerging due to the dipolar coupling is associated with the
dipoles within the nano-antennas that oscillate in phase and is called a bright mode
(sometimes denoted as bonding). The net dipole moment of such mode is non-zero,
thus the interaction with the plane electromagnetic wave is efficient [50]. This mode is
relatively redshifted to the dipolar resonance of just one antenna forming the dimer. The
charges at the ends forming the gap are attracted, thus deforming the symmetry which
was in the isolated nano-antenna. When we compare the field enhancement near the
antenna apex for isolated nanorods, much stronger field enhancement is obtained in the
gap [37]. We illustrate the dimer nano-antenna by simulation results in Fig. 2.5 (a),
where we illuminated the nano-antenna with a plane wave which is polarized along the
long antenna axis. We can see that the near field is enhanced at the far tips of the dimer
nano-antenna, similarly to the isolated nano-antenna [Fig. 1.3 (c)], but we also see the
stronger field localized in the gap. The field enhancement strongly depends on the size
of the gap and grows when we shrink it [51]. As the computations were performed for an
antenna with flat ends forming the gap, we can see that the field is largest near the outer
rim of the cylinder, because of the sharp edge.

The second coupled-antenna mode, which has higher energy, is formed by two anti-
parallel dipoles. Therefore, it has zero net dipole moment and it cannot be excited by
the plane wave and also does not radiate. For this reason, it is sometimes called dark
(or anti-bonding) mode. Albeit when studying nano-antennas with, for example, fast
electrons (which we discuss in Sec. 2.3) or sharp illuminated tips producing near-fields,
we can excite even these dark modes and higher-order modes.

We show numerically calculated optical cross sections for bright-mode in gold dimer
antenna in Fig. 2.5 (b) with the full line. The antenna diameter is 20 nm and its length
is 2795 nm. We tuned the antenna resonance by adjusting the length of the rods to
approximately 7.9 µm. As the dipoles are coupled, we cannot simply model the response
as the sum of the individual polarizabilities of the isolated nanorods [37]. Nevertheless,
we explore the possibility of approximative analytical calculation of the cross sections via
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Figure 2.5: (a) Electric field of a bright mode within plasmonic dimer nano-antenna
consisting of two cylindrical nanorods, with one flat end (in the gap) and one hemispherical
end. The gap between the nano-rods is 70 nm, the diameter of rods is 100 nm, and each
rod has a length of 2795 nm. The dimer is illuminated by a plane wave with orientation
aligned with the dimer’s long axis. We can see that the largest near-field enhancement
is localized in the gap. (b) Calculated optical cross section of dimer antenna of diameter
40 nm. We compare the results of FDTD simulations (full lines) with the results of a
point dipole approximation (dashed lines). With the vertical dotted line, we mark the
resonance wavelength λres = 7.9 µm. (c) Cross sections maxima at the resonance. With
the dotted line, we denote the values from (b).

Eqs. (2.18-2.20), with which we assume that we can model the behavior of two coupled
dipoles by an effective polarizability of a single dipole centered in the center of the gap.
We show the results of such approximative dipole expansion in Fig. 2.5 (b) with the
dashed lines. We can see that the scattering cross section is described fairly well, but the
extinction has an error of about 10% and absorption 20%. To obtain correct values of
the cross section from the dipole expansion, the expansion would have to be done for one
antenna forming the dimer and then the dipole moment of the coupled antennas would
need to be modeled via coupled dipole model described in Sec. 2.1.

We again change the nano-antenna diameter (while changing its length to keep the
same resonance frequency) and show the calculated cross sections in Fig. 2.5 (c). The
dimensions of the antennas are in Tab. D.2. We obtain similar behavior as for the isolated
nano-antennas in Fig. 2.4 (b) For smaller diameters (20 nm and 40 nm), the dimer is in the
under-coupled regime, where the extinction is given mainly by the absorption cross section.
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Figure 2.6: (a) Absorption (blue) and scattering (red) cross section of hBN antenna of
diameter D = 40 nm and length L = 120 nm. The antenna is cylindrical with hemispher-
ical apexes. The antenna is tuned to the vibrational resonance of the C-H bond in a CBP
molecule at approximately 6.91 µm [Fig. 1.2 (c)]. (b) Absorption and scattering cross
sections of gold nano-antenna of the same shape as hBN antenna in (a), with D = 40 nm
and length L = 2270 nm. Compared to the hBN antenna, we can see that the cross
sections of the gold antenna are much broader, and about two orders of magnitude larger
for absorption and five orders for scattering. Cross section were numerically calculated in
FDTD.

For larger antennas, with diameters larger than 60 nm, we have the over-coupled regime,
where the scattering prevails and the absorption cross section is diminishing. Somewhere
between diameters 40 nm and 60 nm, we would expect the critically coupled nano-antenna,
which has maximal absorption and has the same magnitude as the scattering. We again
compare the numerically simulated cross sections with the analytical model of one dipole
approximating the response, for which we plot the results with triangles and dashed lines
in Fig. 2.5 (c). We can see the scattering cross sections are predicted fairly well for all
antenna diameters, the relative error is always under 5%. The error in the extinction
and absorption cross sections grows from about 5% for the smallest antennas up to 15%
for the largest antennas. We can also compare the values of optical cross sections with
Fig. 2.4 (a), and see that the dimer antennas which are larger have larger cross sections.

We now focus back on isolated rod-shaped nano-antennas, whose resonances are of
a different nature than localized plasmons in gold. It was already shown, that nano-
antennas made of hexagonal boron nitride (hBN) can support localized phonon polariton
resonances [52, 53]. The gold nano-antennas previously considered in this section were
tuned approximately 7.9 µm, e.g. the resonance frequency of Si-CH3 vibration in PDMS.
The upper reststrahlen band of hBN, where localized surface phonon polaritons can be
supported within the nano-antenna, lies between 6.12 µm and 7.35 µm, thus the antenna
resonance can not be tuned to the PDMS resonance. Because of this, we choose CBP
molecule with vibrational resonance around 6.91 µm [shown in Fig. 1.2 (b)], which was
previously considered in Refs. [54, 55, 56], as the resonance is within the reststrahlen band
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of hBN. We plot the numerically calculated scattering and absorption cross sections in
Fig. 2.6 (a). The hBN antenna has length 120 nm and diameter 40 nm. We can see that
the absorption cross section is approximately 3 orders larger than the scattering, thus the
antenna is in the under-coupled regime.

We can immediately recognize, that the cross sections are several orders smaller than
previously considered golden nano-antennas [Fig. 2.4 (b)]. For a fair comparison, we
computed scattering and absorption cross sections of golden nano-antennas of different
dimensions, whose resonances are tuned to that of CBP at 6.9 µm [Fig. 1.2 (b)]. We
plot the result of the antenna of diameter 40 nm in Fig. 2.6 (b). We can recognize that
the antenna is in the under-coupled regime (absorption is larger than scattering), but for
larger diameters of gold antennas, we were again able to achieve the critically-coupled
and over-coupled regimes.

2.3 Interaction with electrons
In contrast to photons, where the incoming excitation can be spatially much larger com-
pared to the dimensions of the studied nanostructures, the use of localized probes of-
fers better spatial resolution and the possibility for spatially resolved probing and spec-
troscopy. Such localized probes could be tips used in scanning probe microscopy or focused
beams of electrons. In this section, we will develop the basics of the theory of investigat-
ing excitations in nanostructures with a beam of swift electrons with electron energy-loss
spectroscopy (EELS). For further reading, we refer to the enchiridion of the description
of the field of an electron beam interaction with the sample, which is Ref. [57].

2.3.1 EELS and the loss probability
EELS can be performed in a scanning transmission electron microscope (STEM) while
studying the energy lost by the electrons transmitted through a sample. We now de-
scribe the experimental setup and depict it schematically in Fig. 2.7 (a). Electrons are
extracted from the gun and accelerated with a high voltage (typically ranging from 60 kV
to 300 kV), thus moving at relativistic speeds. The electron beam then passes through
focusing optics and a monochromator, so the beam spot size and energy spread are greatly
reduced. The beam then passes through or in the vicinity of the studied sample. Most of
the electrons interact elastically or do not interact at all, thus they preserve their initial
energy. Some of the electrons can interact inelastically and lose a part of their initial
energy in the process. The electrons that do not lose any energy give rise to a so-called
zero-loss peak (ZLP), which usually prevails over all the other contributions in magnitude
and produces (an unwanted) background and, thus typically needs to be subtracted from
the spectra. The full-width at half maximum (FWHM) of the zero-loss peak gives us infor-
mation about the energy resolution. When analyzing the inelastically scattered electrons,
we usually distinguish two spectral ranges. The low-loss region ranges from the lowest
energies accessible by the energy resolution, which is for state-of-art microscopes having
around 10meV [58] and extends to tens of eV. The core-loss region of EELS encompasses
energy losses of tens to hundreds of eV, which are associated with transitions of electrons
from core-level states to valence states, giving information about elemental and chemical
composition. In this thesis, we focus only on the low-loss region of the EEL spectra. This
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region contains losses due to vibrational excitations, excitations of valence electrons, or
interband electronic transitions, as well as quasiparticle excitations. Such excitations can
be bulk and surface plasmons, phonons, or optical waveguide modes. Many of these ex-
citations are normally undetectable by standard optical spectroscopic techniques because
of energy-momentum mismatch with freely propagating photons. As we will show later
in this section, the field of the electron beam is evanescent and thus can provide enough
momentum and in turn induce such excitations. When the sample is nanostructured,
localized plasmons or phonons can be excited. Again, contrary to the standard photon
investigation, due to the high localization of the electron beam and the symmetry of its
field, we can probe even the dark modes, which are not radiative [59]. When the excitation
is radiative, cathodoluminescence (CL) can be measured on a detector, we will discuss
cathodoluminescence theoretically in the section. Some of the processes triggered by the
field of swift electrons are depicted in Fig. 2.7 (b).

After the interaction, the beam passes through a magnetic prism, acting as an electron
spectrometer, where it is distributed by energies with the act of Lorentz force. After that,
the spectrally distributed electrons land on the detector, where after integration of all the
electrons we obtain the loss spectrum. The samples can be studied spatially, as STEM
offers a scanning regime, where we scan over the sample. From each scanned point we
obtain the EEL spectrum, while looking at one particular energy loss and imaging the
whole scanned region, one can obtain a so-called EELS map, gaining spatial information
about the loss event.

We now move to the theoretical description of the interaction between the fast electron
and the sample. The moving electron can be represented as a point charge traversing along
trajectory rB. We can express the moving charge by means of the current density which
can be rewritten via the charge density ρe(r, t) = −eδ(r− rB) as

Je(r, t) = ρev = −evδ(r− rB). (2.21)

We assume that the electron moves in the straight line positive z-direction, through the
point RB = (xB, yB), the geometry is depicted in the inset of Fig. 2.7 (c). By transforming
the current density into ω-space, changing the derivation over t with derivation over z
and using the filtration ability of the δ-function we get

Je(r, ω) = −ev̂δ(R−RB)eiωz/v. (2.22)

With the help of the current density, we can express the components of the electromagnetic
field produced by the moving electron. We now express the perpendicular and parallel
components of the electric field of a swift electron E(r, ω) = (ER, Ez) traversing in the
z-direction. The field components perpendicular to the electron trajectory are

ER(R, ω) =
2eω

4πε0γLv2 e
iωz/vK1

(
ω
∣∣R−RB

∣∣
vγL

)
R−RB∣∣R−RB

∣∣ , (2.23)

where γL =
√
1/(1− v2/c2) is the Lorentz factor, v is the electron velocity, and K1 is

the first-order modified Bessel function of the second kind. We can see that the field is
polychromatic. In contrast to the spatially broad monochromatic electromagnetic plane
wave, the electron beam represents a localized field source covering a broad range of
energies. We plot the parallel components of the electric field of the moving electron for
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Figure 2.7: a) Schematic representation of the EELS experiment. b) Some processes
emerging after the interaction of the matter with a beam of swift electrons. On planar
surfaces, propagating surface plasmon polaritons (SPP) can be excited, when the beam
interacts with a tailored structure, localized (particle) surface plasmons (LSP). Energy can
be lost in favor of electron transitions. For radiative processes we can detect the emitted
photons as cathodoluminiscence (CL). Secondary electrons (SE) leaving the sample can
be detected, as well as Auger electrons (AE). Adapted from [57] c) Electric field of a
swift electron in parallel and perpendicular direction for two electron velocities 0.328c
and 0.777c, corresponding to accelerating voltages 30 kV and 300 kV respectively, which
is the range typically used in STEM. In the inset, the geometry is depicted.

two velocities at Fig 2.7 (c) with red curves. The field decays with the distance, and
we can see that the decay is greater for the larger velocity. At larger distances, both
curves approach an exponential asymptote [57], and the field is thus evanescent. This is
in contrast to the field of freely propagating plane waves. For the component of the field
parallel to the electron movement, we get

Ez(z, ω) =
2eωi

4πε0γ2
Lv

2 e
iωz/vK0

(
ω
∣∣R−RB

∣∣
vγL

)
, (2.24)

where K0 is the zeroth-order modified Bessel function of the second kind. We plot the
z-component of the electric field with blue curves in Fig. 2.7 (c), again for two different
velocities. Similarly to the perpendicular components, the field is evanescent and decays
with distance from the electron.

Straightforward interpretation of experimental EEL spectra is often impossible due to
the finite spectral resolution, and possible distortions due to microscope and spectrometer
aberrations. Furthermore, the highly localized nature of the EEL signal and its spatial
variations require theoretical models to provide further insights and explanations. We can
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2. POINT-DIPOLE MODEL OF ELECTROMAGNETIC SCATTERING

derive a formula for calculating the loss probability ΓEELS, that electron loses a quantum
of energy h̄ω while interacting with the sample. We start by expressing the dissipated
power from the Eq. (1.17), and we integrate it over time to obtain the change in energy
∆E due to dissipation in the sample as

∆E = −
ˆ ∞

−∞
d3r
ˆ ∞

−∞
J∗

e · Eind(r, t)dt, (2.25)

where J∗
e is complex conjugate of the driving current density of the electron beam and

Eind is the field induced in the sample. Now we express the energy loss in the frequency
space, to assign each frequency a probability of the event. By using the Rayleigh-Parseval
theorem (A.5) we get

∆E = − 1

π

ˆ ∞

−∞
d3r
ˆ ∞

0

Re
{

J∗
e · Eind(r, ω)

}
dω =

ˆ ∞

0

h̄ωΓEELS(ω)dω, (2.26)

where we defined the loss probability ΓEELS as

ΓEELS(ω) = −
1

πh̄ω

ˆ ∞

−∞
Re
{

J∗
e · Eind(r, ω)

}
d3r. (2.27)

If we now plug in the current density from Eq. (2.22) we get

ΓEELS(ω) =
e

πh̄ω

ˆ ∞

−∞
Re
{

v̂ · Eind(Rb, z, ω)e−iωz/v
}

dz, (2.28)

which is the loss probability formula obtained from the solution concerning the work
performed on the electron by the induced field as first formulated in [60]. The loss
probability can be directly compared with experimentally measured normalized spectra
from STEM experiments. We can see that to obtain the loss probability, we only need
to find the induced electric field. For bulk, surface, and some simple geometries, we can
express the induced field and calculate the loss probability analytically. For more complex
geometries, implementation of this formalism into some numerical solver is necessary. We
describe the calculations of EELS in Comsol Multiphysics in Appendix section C.2.2
and show results of the numerical calculations in Sec. 2.3.3.

2.3.2 Loss probability in the interaction with the point dipole
When considering the excitation of a dipole in an arbitrarily shaped nanostructure, we will
use the formalism of a point dipole. We now derive the loss probability, that an electron
loses energy by inducing a dipole moment of the point dipole with its field. We start by
plugging for the current density of the electron beam from Eq. (2.22) into Eq. (2.27) for
the loss probability. The induced field of a point dipole located at rp can be written with
Eq. (1.36) and we get

ΓEELS(ω) =
e

πh̄ω

ˆ ∞

−∞
Re
{
δ(R−RB)e−iωz/vω2µ0

←→
G (r, rp) · ←→α · Eel(rp)

}
d3r. (2.29)

We now multiply the loss probability with −i2 and interchange the real and imaginary
parts of the integrand and use the delta function. The loss probability is then

ΓEELS(ω) = −
e

πh̄ω

ˆ ∞

−∞
Im
{

e−iωz/viω2µ0
←→
G (RB, z, rp) · ←→α · Eel(rp)

}
dz. (2.30)
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We again exploit the symmetry of the Green’s dyadic
←→
G (RB, z, rp) =

←→
G (rp,RB, z) and

we can recognize (−e)iωµ0
´∞
−∞
←→
G (rp,RB, z)e−iω(z)/vdz as the complex conjugate of the

field produced by the electron at the position of the dipole Eel,∗(rp) and write

ΓEELS(ω) =
1

πh̄
Im
{

Eel,∗(rp) · ←→α · Eel(rp)
}
. (2.31)

We can see that this formulation of the loss probability resembles the relation for the ex-
tinction cross section in Eq. (2.13), which is however normalized to the incoming intensity
and scaled with k and different prefactor. Extinction is also normalized to the incoming
light intensity I, while in loss probability, the frequency dependence embedded in the
electric field of the fast electrons still plays a role. We can also write the loss probability
using the dipole moment and arrive at the expression

ΓEELS(ω) =
1

πh̄
Im
{

Eel,∗(rp) · p
}
. (2.32)

2.3.3 Numerical calculations of EELS
In Sec. 2.2.2, we presented the results of simulations of nano-antennas illuminated with
electromagnetic plane waves. We compared the numerically calculated optical cross sec-
tions with the semi-analytical results of the dipole model, in which we used numerically
calculated polarizability. In this section, we show results obtained from numerical calcula-
tions of electron-energy loss spectroscopy performed in Comsol, studying nano-antennas
interacting with a focused beam of fast electrons. The EELS simulations are described
in Appendix C.2.2. Firstly, we show that we can obtain the polarizability even from the
EELS simulations in Comsol, and then we employ the polarizability within the EELS
dipole model. We follow the procedure described in [61], which is similar to the dipole
expansion performed in FDTD using the MENP package. Albeit the methods should
match, we want to compare the antenna polarizability obtained from Comsol and how
we can perform the dipole expansion with EELS and replicate the loss-probability spec-
tra. We also want to evaluate the field enhancement of the antennas near-field. With the
obtained polarizabilities and field enhancements, we will compare the performance of en-
hanced spectroscopies with photons and electrons in Chapter 4. We show the considered
system in Fig. 2.8 (a).

As we have shown in Sec. 2.3.2, the field of the electron beam can induce a dipole
moment in the structure. We can express the dipole moment from Eq. (1.42), where we
assume that the induced charge is distributed as a charge density ρind,r(r). In this manner,
we can obtain the dipole moment by multiplying charge density at each point with the
displacement vector r and integrating over considered volume Ω of the structure as

pcar =

ˆ
Ω

ρind,r(r)r d3r =
i
ω

ˆ
Ω

Jind,r(r)d3r, (2.33)

where we expressed the charge density with the induced current density Jind,r. We also
denoted “r” in the subscript to emphasize, that we deal with a cartesian electric dipole
moment. In this expression, we assume the long-wavelength (quasistatic) approximation,
where we neglect the ω-dependence of the induced currents, and assume that the wave-
length of the electromagnetic field inducing the dipole moment is much larger than the
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2. POINT-DIPOLE MODEL OF ELECTROMAGNETIC SCATTERING

structure. Thus, all the charges in the structure experience the same driving field and are
driven homogenously. For structures comparable in dimensions or even larger than the
wavelength, retardation effects take part, and quasistatic approximation can not be used.

For comparison, we also use the implementation of exact multipole moment expan-
sion into Comsol, as is described in [61]. The electric spherical dipole moment can be
expressed as [62]

psph =
i

ω

{ˆ
Ω

Jind,r(r)j0(kr)d3r + k2

2

ˆ
Ω

[
3
(

r · Jind,r(r)
)

r− r2Jind,r(r)
]j2(kr)

(kr)2 d3r
}
,

(2.34)

where r is the position vector with magnitude |r| = r, j0(kr) and j2(kr) are the zeroth
and the second order spherical Bessel functions, respectively2. We plot them spherical
Bessel functions for three different values of r in Fig. 2.8 (b). We can see that depending
on the r, and an energy region considered, the functions oscillate more rapidly. For the
long-wavelength regime where kr << 1, we can break the approximate expression down
into psph ≈ pcar + ikTcar, where we recognize the cartesian electric dipole moment from
Eq. (2.33), while the second term is the cartesian electric toroidal moment [62]. We can
see that for the considered geometry of the hBN antenna and energies around 180meV,
j0(kr) ≈ 1, while j0(kr) ≈ 0 [Fig. 2.8 (b)], thus yielding psph ≈ pcar. For gold antennas
with dimensions in order of micrometres, we can see that the Bessel functions start to
oscillate more rapidly, therefore the need for the calculation of the psph is necessary.

The induced current density can be directly obtained from Comsol, where it is com-
puted as

Jind,r(r) = iωε0(εr − 1)Eind,r(r), (2.35)

where εr is dielectric function of the medium and Eind,r(r) the induced electric field.
We can evaluate the polarizability ←→α from Eq. (1.42) using the dipole moment p.

For this, we also need to evaluate the field of the electron beam which drives the dipole.
We can obtain the field analytically from Eqs. (2.23-2.24) or directly from Comsol as
we described in Appendix C.2.2. We will be using the latter, albeit they match fairly
well [C.3 (c)]. We assume that for this geometry of the beam-antenna-object system
[Fig. 2.8 (a)] the polarization of the antenna is mainly in the x-direction, and we can
then again consider just the xx-component of the polarizability tensor which we denote
as αA

xx = αA. It is then calculated as

α =
px

Eel
x (x

A)
, (2.36)

where Eel
x is the x-component of the electric field of the electron beam evaluated in the

antenna center xA, where the induced point dipole is located. We plot the cartesian
and spherical polarizability obtained from Eqs. (2.33-2.34) for an hBN nano-antenna in
Fig. 2.8 (c). We can see that the cartesian and spherical polarizabilities are indeed the
same for the considered geometry and energy region. We also compare the polarizabilities
obtained from Comsol simulation, where the dipole within the nanostructure is induced

2The zeroth order spherical Bessel function is commonly known as the sinc function and yields ex-
pression j0(x) =

sin(x)
x . Spherical Bessel function of the second order is j2(x) =

(
3
x2 − 1

) sin(x)
x − 3 cos(x)

x2 .
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Figure 2.8: (a) Scheme of the considered geometry. An electron beam induces a dipole
moment in the nanostructure. We evaluate field enhancement of the nanostructure at
a point r. We assume that all polarization is dominantly in the x-direction. (b) The
zeroth and the second-order spherical Bessel functions are plotted for three values of r.
(c) Polarizability of a cylindrical hBN of antenna with hemispherical apexes (see inset)
of radius 20 nm and length 120 nm. With blue lines, we plot the quasistatic (cartesian)
polarizability obtained from the dipole moment computed in Comsol after performing
integration of currents induced by the field of the electrons (Eq. (2.33)). With red lines, we
plot the exact (spherical) polarizability of Eq. (2.34). We can see that for the considered
geometry and energies, the αcar is almost the same as αsph. With green lines, we plot αsph
obtained plane-wave illumination of the same hBN nano-antenna for comparison. (d)
Field enhancement evaluated 30 nm from the antenna apex. With the black line, we plot
the field enhancement of Eq. (2.37) and with green line, we plot the field enhancement
calculated by plane-wave illumination.
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2. POINT-DIPOLE MODEL OF ELECTROMAGNETIC SCATTERING

by the field of an electron beam, with polarizability obtained from a simulation, where we
consider the nano-antenna illuminated by a plane wave. The methodology is described
in Appendix C.2.1. We recognize that we obtain nearly the same values, confirming that
the dipole expansion performed in EELS works fairly well.

In the following chapters, we discuss enhanced spectroscopic techniques, where an
enhancement of a signal is caused by the field enhancement. For this reason, we also
evaluate the field enhancement produced by a nano-antenna excited by an electron beam.
At our x-position of interest xr, where we want to obtain the field enhancement, we observe
a superposition of the field of the electron beam and the induced field of the antenna, as
schematically depicted in Fig. 2.8 (a). We can express the field enhancement from the
field enhancement tensor. As we again suppose that xx-component prevails over all the
others, we assume the scalar field enhancement denoted as f = fxx. The incoming field
inducing the dipole moment would be the field of an electron beam at the position of
the center of the nano-antenna. From the simulations in Comsol we are able to obtain
the total field Etot

x (xr) = EA
x (x

r) +Eel
x (x

r). The field enhancement can then be expressed
from Eqs. (1.38-1.39) as

fxx(x
r) =

EA
x (x

r)

Eel
x (x

A)
. (2.37)

The field enhancement does not depend on the external source of the field, but only on
the antenna polarizability and Green’s function [see Eq.1.39], so it should be the same for
the case of an antenna dipole excited by a plane electromagnetic wave or by the field of
a focused electron beam, which is confirmed in Fig. 2.8 (d).

Now, we show the results of simulations of electron energy-loss spectroscopy in Com-
sol. We again assume hBN nano-antenna, of the same shape and dimensions as in the
simulations of plane-wave illumination [Fig. 2.6 (a)]. We consider the electron beam to
be positioned at x = 400 nm from the antenna center (340 nm from the antenna apex)
with velocity of 0.446c (Tab. D.1). We plot the loss probability spectrum, obtained by
calculating Eq. (C.7). We plot the calculated EEL spectrum in Fig. 2.9 (a). We can com-
pare the EEL spectrum with optical cross sections of the same antenna [Fig 2.6 (a)], after
which we can see that we again obtain resonance peak at the resonance energy 179.7 eV
(wavelength 6.9 µm), which gives us information about the energy loss of the electron due
to inducing a resonance within the nano-antenna.

As we have shown in Sec. 2.3.2, we can also compute the loss probability due to an
induced dipole. We again assume that the antenna is polarized in the x-direction (we again
replace the polarizability tensor by the xx-component and write αA

xx = αA). Eq. (2.31)
for the dipole model then becomes

ΓA
EELS(ω) =

1

πh̄
Im
{
Eel,∗

x (xA)αAEel
x (x

A)
}
=

1

πh̄

∣∣Eel
x (x

A)
∣∣2Im{αA}. (2.38)

For the evaluation, we can use the cartesian or spherical polarizabilities obtained from
Comsol [Fig. 2.8 (c)]. We plot the spectra calculated with different polarizabilities in
Fig. 2.9 (a) and compare them with the EEL spectrum calculated via Eq. (C.7). In
Fig. C.3 (e), we can see that the relative error is under 2% for the cartesian polarizability
and about 1.5%. for the spherical.

We now show how the loss probability maximum (acquired at resonance as highlighted
in Fig. 2.9 (a) with the vertical dotted line) depends on the impact parameter (the distance
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Figure 2.9: (a) Simulated EEL spectra of an hBN nano-antenna (diameter D = 40 nm
and length L = 120 nm). The electron beam is positioned 340 nm from the antenna
apex. With the black line, we plot the spectrum calculated from Eq. (C.7), obtained by
integrating the field induced by the nano-antenna along the electron trajectory. With red
and blue lines we plot loss probability obtained from Eq. (2.38), into which we plugged
computed dipole moments αA

car (red dashed line) and αA
sph (blue dashed line) respectively.

With the dotted line, we denote the energy of the dipole resonance. (b) Loss probabilities
at the energy of the dipole resonance were evaluated for different impact parameters b of
the electron beam. We can recognize that near the antenna, the dipole model stops being
valid. With the vertical dotted line we mark the values from (a).

of the electron beam and the nanostructure). In Fig. 2.9 (c), we plot the numerical
results, starting with impact parameter 5 nm from the antenna apex (e.g. 65 nm from the
center) until 605 nm. We can see that according to Eq. (2.23) the electric field of fast
electrons decreases with distance. As the field induced within the nanostructure, from
which we calculate the loss probability, depends on the external field, we can see that
the loss probability decreases rapidly for larger impact parameters. For the largest EELS
signal, it is thus beneficial to have the beam as close to the nanostructure as possible.
In Fig. 2.9 (c), we again compare the loss probability obtained from Eq. (C.7) with the
one calculated using the model of the loss probability for an induced dipole in Eq. (2.38).
We can see that the loss probabilities of the induced dipole are smaller compared to the
numerical simulations. In Fig. C.3 (f), we recognize that the relative error is about 20%
when the beam is posistioned 5 nm from the antenna tip and then decreases. The error
could be caused by the limits of the dipole approximation, as we are assuming that the
dipole is induced at the center of the nano-antenna. If the beam is too close, because of
the strong and rapidly changing field, the dipole becomes distorted. Also, higher-order
modes could get excited and cause signal distortion due to partial spectral overlap with
the dipolar mode.

With these results, we conclude this chapter. We showed that we can obtain polariz-
abilities of nanostructures and near-field distributions in their vicinity, from simulations of
both plane-wave illumination and electron beam excitation. We will use these quantities
in Chapter 4 for model of the enhanced spectroscopies.
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3 Vibrational spectroscopy
Infrared (IR) spectroscopy is a powerful tool for studying molecular samples active in

the IR region. Molecules support vibrational resonances, which are in the IR region, and
by finding out the energy of such resonance, we can distinguish vibrations and describe
our sample. From them, one can obtain information about constituents present in the
sample, their configuration, and the chemical bonds between them [1]. The obtained
spectral information can be used in the study of organic and inorganic molecules [63],
analysis of polymers [64]l, and for applications in medicine, for example for diagnosing
of cancer [65, 66, 67]. Applications in very different fields are also plausible, revealing
counterfeit paintings [68], examining the age and the degradation of heritage items, such
as paintings and statues [69] or even gaining and studying forensic evidence in crimininal
investigations [70].

In the following chapter, a brief overview of IR spectroscopy and adjacent techniques
used for the study of organic molecules is described. We then focus on surface-enhanced
infrared spectroscopy (SEIRA) and the possibility of studying vibrational samples with
focused electron beams.

3.1 Infrared and visible spectroscopy techniques
From quantum mechanics, we get very important results regarding the energy of a quan-
tum system. The energy, of, for example, electrons, bound in atom shells is discretized
and can have only certain values En, where n is a positive integer. In the equilibrium,
all of the electrons are in the ground state, but when energy is added to the system,
for example, in the form of an absorbed photon of energy E = h̄ω, the electrons can be
excited to higher-energy states En+1, on which they can stay or from which they can relax
back while emitting the energy. Only certain transitions are allowed, the absorbed energy
must overlap with the difference between two states, and many selection rules govern the
possibility of transition.

The transition from one energy state to another can be induced in many ways. We
mentioned the excitation of electrons to a higher energy state and the subsequent radiative
decay of the excited electrons, luminescence. In the previous chapter, we introduced
cathodoluminescence, which is a luminescent process induced by an electron beam. When
a photon induces the transition, we talk about photoluminescence. Based on the decay
time (time between absorption of photon and emission of the new one), we can divide
photoluminescence into two regimes. The first one is fluorescence, where the photon is
emitted almost immediately (typically about 10−6 s and shorter) after the absorption, the
second is phosphorescence, where the lifetime can be in the units of seconds or longer [71].
Fluorescence microscopy is often used to study organic molecules, either the ones that
show autofluorescence or by using markers (fluorophores) that connect to certain parts
of particular molecules [72]. From the measurement, we can obtain the lifetime of the
excited states [73], and it can also provide information about the concentration, mobility,
or configuration of the molecules. The mechanism of fluorescence is shown in the energy
diagram in Fig. 3.1. Impinging photon is absorbed by the sample and its energy h̄ω
is given to the electron and raises it from the ground state S0 to a higher electronic
band S1. It can then relax by non-radiative processes, going to a lower vibrational state

37



3.1. INFRARED AND VISIBLE SPECTROSCOPY TECHNIQUES

S0

E

ħω'ħω

ħωvib

ħωvib ħωvib

S1

Fluorescence Raman
scattering

Rayleigh
scattering

Infrared
absorption

Anti-StokesStokes

2

1

2

1

2

1

Vibrational
states

Vibrational
states

Virtual
states

Electronic 
states

Figure 3.1: Jablonski diagram representing transitions of electrons between discrete energy
states. When a photon induces the transition between two electronic states, we talk about
fluorescence. If we consider scattering, when the polarization state of our sample can be
changed, and new, short-lived virtual states can emerge for electrons, we talk about
Rayleigh (elastic) and Raman (inelastic) scattering. Transition between two vibrational
states is called the infrared absorption, because of the energy of the transition.

and giving energy h̄ωvib to molecular vibration or phonons in solid matter. After the
relaxation, the electron goes back to the ground state, and a visible photon of lower
energy h̄ω′ = h̄ω − h̄ωvib is emitted. Because the fluorescence is based on electronic
transitions, the emitted photon energies typically correspond to the visible spectral range.
When considering absorption processes, photon impinging on studied sample needs to
have exactly the energy of the difference between two energy levels to be absorbed and
we gain the information about the studied sample from the absorbed photons. That is
not the case for scattering spectroscopy, where we can study the change in energy of
photons re-emitted after absorption. Raman spectroscopy is one of the most common
scattering techniques for examining vibrational sample response. Fig 3.1 schematically
shows three cases of scattering, where an electron can be raised to a virtual energy state
after absorbing a photon. Such virtual energy states have short lifetimes [75]. After the
decay of the electron back to the real electronic state, a photon is emitted. The first case
of the scattering is Rayleigh (elastic) scattering, where the radiated photon has the same
energy as the photon which induced the transition. Inelastic processes in this scenario
are called Raman scattering. Electron, after being raised to the virtual state, can relax
back into a higher-energy vibrational state, than where it was before, thus the emitted
photon has a smaller energy. Such energy discrepancy is labeled as the Stokes shift. If
the electron is already excited from the higher vibrational state, after being raised to the
virtual state and the relaxation, it can relax to the ground state. The radiated photon
then has a larger energy, and the energy shift is labeled as the anti-Stokes shift. Because
of the condition of already excited electrons, of which the majority are in the ground state
at room temperature, the anti-Stokes shift peak in spectra is typically less intense than
the Stokes one. We can see a typical Raman spectrum in Fig. 3.2 (a). The quantity on
the x-axis of Raman spectra is typically labeled as the Raman shift, meaning the change
in photon energy compared to the source photons.
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Figure 3.2: Comparison of (a) theoretical Raman spectroscopy spectrum (sensitive to
changes of the sample polarizability) and (b) transmittance spectrum for obtaining in-
frared (IR) absorption (sensitive to the change of the dipole moment in sample) for CO2
molecule. In Raman spectroscopy, we illuminate the sample with a monochromatic pho-
ton source (e.g. laser) and measure the shift of the frequency of emitted photons due to
inelastic scattering. We can see that the Raman peak corresponds to the excitation of
symmetric stretching mode, where the total dipole moment is zero, but the polarizability
is changing. In IR absorption, we illuminate the sample with a polychromatic IR source
and study absorption on different frequencies, we can see that the two dips correspond to
the excitation of vibrations depicted on the schemes, for which the dipole moment of the
molecule is changing. Inspired by Ref. [74].

When investigating samples with infrared light, we can directly induce vibrational
transitions. With the photons of the energy corresponding to the transition energy miss-
ing from the measured spectra, we can tell which transitions took place. This infrared
absorption process is again depicted in Fig. 3.1. Infrared absorption measurement is most
commonly performed as a transmission experiment, for example, in Fourier transform
infrared spectroscopy (FTIR). A typical transmittance spectrum is shown in Fig. 3.2 (b),
where we can also see the complementarity of IR absorption and Raman spectroscopy.
Different vibrations can have different symmetry, resulting in change of either the polar-
izability of the sample or its dipole moment. Raman scattering is sensitive to the change
of the polarizability during vibrations, and infrared absorption is sensitive to the changes
in the dipole moment [1], which makes both techniques useful for different vibrational
resonances.

39



3.2. SURFACE-ENHANCED SPECTROSCOPIES

3.2 Surface-enhanced spectroscopies
One of the main advantages of Raman spectroscopy and IR absorption spectroscopy is that
both techniques are label-free and non-destructive, which makes them ideal for studying
even sensitive molecular samples. One particular problem arises when one deals with small
amounts of analyte. Both spectroscopies suffer from the subsequent loss of the signal,
which can be lost in the noise during the measurement. This hindrance can be overcome
by placing our sample into a strong near field (e.g. near a resonant nano-antenna), which
can be because of their evanescent nature strongly enhanced, as we discussed in Sec. 1.5.
resulting in the detected IR vibrational signal being magnified significantly.

In a 1974 article, Fleischmann et al reported an unusually large Raman signal of
organic molecules adsorbed on a rough metallic layer [76]. This new spectroscopic method
was labeled as surface-enhanced Raman Spectroscopy (SERS), as it was carried out on
a rough planar surface. Many contributed to the explanation of this phenomenon and
successfully attributed it to the electromagnetic effect of the near field produced by the
substrate roughness and also to the chemical effect [77], which arises due to the chemical
interactions between the sample and a metallic surface. The signal enhancement factor of
SERS, defined as the ratio between the enhanced signal and the sole sample signal, was
estimated to be maximally about 10 orders of magnitude [78].

Just six years after the first observation of SERS, a similar enhancement of the signal
was discovered for infrared absorption, and surface-enhanced infrared absorption (SEIRA)
was founded [79]. Similarly to SERS, the enhancement in SEIRA strongly depends on
the surface morphology and the material used. These enhancements were reported as
about 1-3 orders of magnitude. This phenomenon was later re-labeled as non-resonant
SEIRA1. For the case of randomly sized and placed islands on the surface, the distribution
of the resonances contributing to the IR extinction/transmission merges into a smooth
background. Such background provides a signal enhancement for a large region of the
IR spectrum. On the other, only some of the particles have resonance and ensuing max-
imal field enhancement at the particular energy of the vibration. The independence of
the signal enhancement on the energy can be helpful in some applications, particularly
when looking at broader spectral ranges, with molecules with many resonances. The
contributing effects were again identified as the electromagnetic and chemical effects [80].

In 2008, Neubreuch et al. showed, that much greater signal enhancement is obtained
when one uses arrays of nanostructures of the same size and shape, which all support
resonance on the same energy, as the molecular vibration [7]. Such nanostructures can
be, for example, nano-antennas described in Sec. 1.5, and they labeled this enhancement
process as the resonant SEIRA. This effect can be viewed as a mere consequence of the
spectral dependence of the near-field magnitude of the nanostructure, which has been

1Few words shall be said about the nomenclature of the surface-enhanced techniques. As they were first
observed on rough metallic surfaces, the enhancement origin was assumed to come from the rough surface,
thus the label as surface-enhanced. A similar enhancing phenomenon was reported in the presence of a
sharp metallic tip, for example, for tip-enhanced Raman spectroscopy (TERS). Both of these mechanisms
take the main advantage of the same physical process, which is the magnification of the signal caused
by the presence of the near field produced by nanostructures. We will talk about the origin of the
signal enhancement in the next section. The label to be suggested could be generally the field-enhanced
spectroscopies, but in the rest of this thesis, the classic nomenclature of ”surface-enhanced” will be used
for the enhanced infrared absorption.
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Figure 3.3: (a) Relative transmittance spectra of nano-antenna arrays covered by a molec-
ular layer. Different colors correspond to different nano-antenna lengths, as can be seen
from the shift of the resonance peak. Peak (dip) features can be observed in the broad
plasmonic peaks, giving us an enhanced signal of the molecular layer. Depending on the
tuning of the antenna resonance (extremes of the broad plasmonic peaks) to the energies
of the molecular vibrations, different strengths of the enhancement were observed. The
light was polarized in accordance with the long antenna axis in all cases except for the
pink curve. In that case, polarization is perpendicular, thus the dipolar resonance is not
excited and there is no enhancement of the signal. This curve then factually represents
the response of the bare molecular layer. Adapted from [4]. (b) Experimentally measured
vibrational signal strengths (magnitudes of the molecular features) for nano-antennas of
length approximately 1500 nm (red-dots) for different positions x of the molecular sam-
ple (narrow deposited patches) at the nano-antennas. With the blue line, simulated
vibrational strengths are plotted. With the green line, numerically calculated near-field
intensity enhancement dependence on the x-position is plotted. Adapted from [81].

shown, that it is the largest near its resonance [37], and we discuss the role of the field
enhancement in SEIRA in the next chapter.

In Fig. 3.3 (a), we can see how the resonance tuning influences the signal enhance-
ment. Transmittance spectra of nano-antenna arrays with four different lengths, which
were illuminated by light polarized in the respect of the long antenna axis, so the dipolar
resonance was excited, are plotted. The enhanced molecular signature grows stronger as
it is closer to the antenna resonance. Because of the spectral dependence of the field
enhancement, we can also see that even the off-resonance molecular signatures are en-
hanced slightly. For comparison, the same array of nano-antennas of length 1.46 µm was
illuminated by light polarized perpendicularly to the antenna axis, so the longitudinal
dipole was not excited and no enhanced signal arose. Such a vanishing signal would be
obtained from the standard transmittance experiment without the nano-antennas.

Scaling of the signal enhancement also depends on the location of the molecular sample
and the near-field distribution. In Fig. 3.3 (b) the magnitude of the enhanced vibrational
signal is plotted for different positions of the molecular sample in regards to the nano-
antenna. This was achieved by considering tailored molecular patches placed at different
antenna positions. With the green curve on the second axis, the field enhancement squared
(near-field intensity divided by the incoming light intensity f 2 = I/I0) is plotted. We can
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see that the strength of the signal depends on the field enhancement squared and we
obtain the largest signal for samples positioned near the tip of the nano-antenna, where
at the dipolar resonance, the field is the largest [Fig. 1.3 (c)].

3.3 Infrared spectroscopy with focused electron beams
While infrared absorption spectroscopy can give reasonable spectral information about
the sample, and with the field enhancement, we are able to study minute amounts of
analytes, spatial information often gives us another valuable degree of freedom. With
standard light-based spectroscopies, discussed in previous sections, the spatial resolution
is diffraction-limited, therefore yielding micrometer spatial resolution in infrared [82]. The
desired signal of the studied sample can also be lost in the background signal, obtained
after illumination of a large area [(Fig. 3.4 (a))]. Albeit by introducing a sharp metal-
lic tip [Fig. 3.4 (b)], in scanning near-field optical microscopy, the diffraction limit can
be suppressed and spatial resolution can be in order tens of nanometers [83]. Electron
energy-loss spectroscopy (EELS) performed in scanning transmission electron microscope
(STEM) with a localized electron probe, described in Sec. 2.3, however, yields much better
spatial resolution compared to the light-based techniques [(Fig. 3.4 (c))]. Spectroscopic
information of individual atoms can be obtained [84, 85].

Until recent years, the STEM-EELS was confined only to near-infrared and higher
energies regions, where it was not possible to study for example molecular vibrations,
IR plasmons and phonons, which are typically situated in regions below 500meV. The
restrictions arose mainly due to insufficient technological equipment. With the recent
development in TEM instrumentation, particularly in the monochromators, cold field
emission electron guns, and spectrometers, the feasibility of performing infrared measure-
ment appeared [58]. The FWHM of the zero-loss peak was narrowed down to a few tens of
meVs [Fig. 3.4 (d)]. On the other hand, one major problem that emerged while studying
organic vibrational samples is beam-induced damage. The sample can be degraded either
by direct irradiation of the field of the electron beam, by the bombardment, heating,
charging, and other processes [86, 87].

Several recent studies showed that by exploiting the feasibilities of state-of-the-art
transmission electron microscopes, EELS of sensitive vibrational samples is possible [89,
90, 91]. Probing low-energy excitations in for example hexagonal boron nitride [Fig. 1.2 (c)]
is nowadays accessible in EELS [18]. Liquids and liquid interfaces, play a central role in
many research fields. Recently, a novel approach to studying liquids in STEM-EELS by
encapsulating water between two thin sheets was shown. Stretching of the O-H phonon
of water at approximately 400meV was detected [(Fig. 3.4 (e))], changes of the structure
of water near solid surface, solidification fronts and different isotopes were studied [88].

Similarly to light-based vibrational measurements, when examining small amounts of
analytes by EELS, the signal can be hindered behind the background noise and lost. As
was proposed by Konečná et al [55], and was also discussed in Ref. [92], surface-enhanced
molecular EELS can be the way to overcome this [(Fig. 3.4 (f))]. Similarly to SERS and
SEIRA, the molecular signal is enhanced by the presence of a strong near field generated
e.g. by a nano-antenna.

We now recapitulate some results from Ref. [55]. In Fig. 3.4 (g), we can see spectra
for a silver plasmonic nanorod and in Fig. 3.4 (h) spectra for a hexagonal boron nitride
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Figure 3.4: (a) Standard photon-based IR measurement. The sample layer (blue) is
placed on the substrate (gray). The light gets either absorbed or scattered by the sample
and we can then measure the transmitted or reflected intensity. (b) Scanning near-field
optical microscopy, utilizing a metallic probe, The sharp tip can localize the incoming
electromagnetic field in its vicinity. (c) Electron energy-loss spectroscopy utilizes a fo-
cused beam of fast electrons. The electron can interact inelastically with the sample and
lose some energy, which can then be quantified. (d) Comparison between experimen-
tal zero-loss peaks obtained with an unmonochromated electron beam (black) and with
a monochromated one (red). (e) With the monochromated beam, much better energy
resolution can be achieved, enabling the detection of vibrational signals. (f) Scheme of
field-enhanced electron energy-loss spectroscopy. The electron beam induces a resonance
within the nano-antenna, which then interacts with its strong near-field with the studied
sample. (g) Numerically calculated EEL spectra of a silver nanorod covered by a layer of
PMMA. Different zero-loss peak FWHMs are considered. (h) Numerically calculated EEL
spectra of a hBN nanorod. (d-e) Adapted from Ref. [88]. (g-h) Adapted from Ref. [55].
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phononic nanorod obtained from numerical simulations. The silver nanorod was covered
by poly(methyl methacrylate) (PMMA). In the paper, they approximated the response
of the PMMA by a carbonyl (C=O bond) stretching at about 215 eV. With the gray
dashed line, bare silver nanorod spectra are plotted. When the nanorod is covered by a
layer characterized by the background permittivity of the PMMA, we can see that the
resonance is red-shifted. With a black line the simulated spectrum, where we can see
that the molecular feature is present, caused by the interaction between the antenna field
and the molecules. We can recognize that the molecular features are similar to the ones
obtained by photon-based SEIRA [Fig. 3.3 (a)]. The signal of the sole molecular shell is
plotted with the black dashed line and multiplied by a factor of 10 for better visibility.
The simulated spectra were then convolved with a Gaussian curve, approximating the
broadening of the spectra in the experiment and mimicking instrumental resolution. As
we can see in the figure (spectra were scaled and vertically shifted for better visibility),
the degree of monochromation matters greatly, as for broader ZLP the molecular features
start to disappear.

The hexagonal boron nitride antenna was functionalized with a CBP. The dashing
and color legend is kept the same as in Fig. 3.3 (g). We can see that the the peak, which
informs us about energy lost due to the excitation of localized phonon polariton resonance,
is much narrower than the plasmon in silver. Compared to the molecular feature in the
plasmonic peak of the silver nanorod, which is in the form of a weak perturbation, splitting
occurs, and two hybridized modes emerge in the case of the hBN antenna coupled to the
molecular layer. Nevertheless, the consequent convolution with a Gaussian curve showed,
that for the molecular feature to be observable, the FWHM of the zero-loss peak would
need to be below 1 meV, which is not yet achieved even in the state-of-the-art systems.

With EELS, ultra-remote sensing was proposed. The electron beam is considered to
be positioned at one end of the nano-antenna, while the molecular sample is covering
the other end. With this, after the beam interacts with the nano-antenna, in which it
can excite a resonance. The near-field then interacts with the molecular sample on the
other end, which acts back on the antenna, changing its response and providing enhanced
spectral information about the sample. Ultra-remote sensing could be beneficial regarding
the sample degradation caused by the direct interaction with the electron beam, as the
only damage would come from the strong near-field generated in the vicinity of the tip of
the nano-antenna.

Several other aspects, such as coupling of the molecular resonance with the higher-
order modes within the nano-antennas, which can be directly probed by the electron
beam, the decay of the signal regarding the distance of the beam, and evaluation of the
strong coupling, were also studied in Ref. [55].

In Ref. [92], semi-infinite foil and some other shapes of nano-structures (oblate spheroid,
sphere, prolate spheroid, and cylinder) were theoretically studied in the context of surface-
enhanced EELS. By modeling the response of the antenna-molecule system, the propor-
tionality of the enhanced signal on the square of the electric field acting on the molecules,
similarly as in SEIRA. Signal enhancements in order of hundreds or even thousands were
predicted using the formalism, showing the possibility of studying vibrational samples in
STEM-EELS with unprecedented sensitivity.
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4 Enhanced spectroscopy with
photons and electrons

In contrast to the previous interpretations of SEIRA, where the molecular scattering
was neglected, for example, in [47] it was shown, that the molecular signature appears even
in the scattering cross-section. This goes against the previous interpretation of SEIRA
as uniquely an absorption process, where the molecular scattering is neglected, due to
the small amounts of the analyte and, therefore small scattering cross sections. SEIRA
was already discussed in terms of coupled dipoles in Refs. [9, 10]. From the coupled
dipole formalism, we are able to obtain molecular signatures in SEIRA as a consequence
of an interference process. In this study, we continue in modeling SEIRA via model from
Ref. [11] where SEIRA was explained by means of elastic light scattering between the
antenna and the object, yielding the interference. We also explore the similarities of the
molecular signatures appearing in SEIRA spectra and the ones in the surface-enhanced
EELS and continue in work begun in Ref. [55]. We also establish several figures of merit,
with which we can design optimal nano-antenna for enhanced spectroscopy experiments
regarding the type of the collected signal, and emphasize, that for both electrons and
light, we obtain similar equations and results.

4.1 Enhanced molecular absorption
Firstly, we focus on plane-wave illumination, and for the simulations of SEIRA, we choose
golden round-rod antennas with hemispherical apexes aforementioned in Sec. 2.2.2. For
the molecular sample, we choose polydimethylsiloxane (PDMS) molecules. As we con-
sider a study of a small amount of the molecules, we approximate the sample by a 20 nm
diameter sphere located in the vicinity of the antenna apex. We define the sphere with the
Lorentz model of Eq. (1.44) with one oscillator, mimicking Si-CH3 vibration at approxi-
mately 0.157 eV. We assume that the sphere is isotropic and its response is characterized
by a quasistatic polarizability αO from Eq. (C.1). We plot the dielectric function of PDMS
and polarizability of the PDMS nanosphere in Fig. 4.1 (a).

To simulate the SEIRA experiment, we performed FDTD calculations of a system
consisting of a nano-antenna and two nanospheres, as described in Appendix C.1. The
nanosphere’s centers are located 30 nm from each apex of the nano-antenna. We consider
the same gold cylindrical nano-antennas, with hemispherical caps at the ends that were
described in Sec. 2.2.2, where we calculated optical cross sections of the bare antenna.
To obtain the signatures of the molecular sample in the antenna cross sections, we per-
formed simulations with an object characterized by the Lorentz dielectric function from
the Eq. (1.44) and labeled it as “resonant particle” (RES) simulation. By subtracting sim-
ulations of the antennas without resonant nanoparticles from the simulations of antennas
coupled with resonant nanoparticles, we obtain the molecular signatures ∆σ. Molecular
signatures yield the baselined feature in the spectra caused by the presence of the object.
To obtain molecular signatures, we can take two approaches: (1) we subtract simula-
tion with the object characterized with εr = 1, which we label as “no particle” (NP).
We plot the difference in Fig. 4.1 (b) with the dashed line. Because of the background
molecular permittivity, the simulation with the resonant object is redshifted against the
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NP simulation. We see that this redshift distorts the lineshape, and instead of just the
dip, we obtain a complex lineshape resembling a Fano shape. For the other case (2), we
consider simulation with an object defined by the background permittivity of the PDMS
εr = ε∞ and we label this simulation as “background” (BG). Because of the background
permittivity, the antenna cross sections are red-shifted. We then subtract BG from the
RES simulation, after which we obtain a lineshape in the simple form of a dip. From
now on, we will use baselined spectra obtained by subtracting BG simulation for easier
interpretation to avoid the redshift distortion of the lineshape.

We consider plane wave illumination of the antenna-object system, with x-polarized
electric field Einc = Eincx̂. The antenna’s long axis is oriented with respect to the x-axis
[inset sketch in Fig. 4.1 (c)]. The response then depends on the xx-component of the
polarizability, which we will denote simply as αA = αA

xx. We plot αA for the model-
case gold nano-antenna from Fig. 2.4 in Fig. 4.1 (c). The polarizability is generally a
complex quantity, and we can write αA =

∣∣αA
∣∣ei arg(αA). As we can see in Fig. 4.1 (c), at

the resonance frequency of the molecule ωres, the polarizability of the antenna is purely
imaginary, so we can write arg(αA(ωres)) = π/2. We will later use this equality for
simplification of terms in the SEIRA analytical model.

We also consider that the field enhancements near the antenna apexes are the largest in
the x direction. We then assume

∣∣fxx∣∣ would be the dominant contribution among all the
others and simply denote f = fxx. We obtained the field enhancements for nano-antennas
from the FDTD simulations as we describe in Appendix C.1. From Eq. (1.39), we can see
that the field enhancement depends on the polarizability. We plot the field enhancement
f at 30 nm from the antenna apex (where the center of the nanosphere is located) with
crimson lines in Fig. 4.1 (c). There is a clear similarity between the spectral dependence
of the polarizability and the field enhancement. The field enhancement is a complex
quantity and reads f =

∣∣f ∣∣ei arg(f). We can again see in Fig. 4.1 (c), that at the molecular
resonance, field enhancement is purely imaginary, which yields arg(f(ωres)) = π/2.

As we discussed in Chapter 3, and as the name states, surface-enhanced infrared
absorption was assumed to be an absorption process. When considering small absorbing
molecular samples, the scattering is negligible because of the weak polarizability and small
dimensions of the samples. The whole contribution to the molecular extinction is then
from the absorption. In the extinction spectra of the SEIRA system, a magnified signature
was identified and attributed to the field-enhanced object absorption cross section as it
scaled with

∣∣f ∣∣2 [4, 81] which was demonstrated in Fig. 3.3. The magnitude of the dip was
also assumed to be negative of object absorption cross section (the scattering cross section
of a small object is negligible; absorption cross section is then the unique contributor to
the extinction) multiplied by the square of the field enhancement amplitude

∣∣f ∣∣2:
σO,enh

abs =
∣∣f ∣∣2σO

abs =
∣∣f ∣∣2 k

ε0
Im
{
αO}. (4.1)

In the FDTD calculations of the antenna-object system, we placed an absorption monitor
around the object [inset in Fig. 4.1 (d)]. With this monitor, we obtained the absorption
cross section, which is enhanced by the antenna near-field. We plot the enhanced object
absorption in Fig. 4.1 (d) and compare it with enhanced absorption obtained from the
Eq (4.1). We used quasistatic object polarizability and field enhancement at the point of
the object center, plotted in Fig. 4.1 (a) and (c), respectively. We can see that the ana-
lytical formula predicts the enhanced absorption fairly well, even by using the quasistatic
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Figure 4.1: (a) Quasistatic polarizability of a nanosphere (black line), obtained from
Eq. (C.1). The nanosphere has a diameter D = 20 nm and is characterized by PDMS
dielectric function (pink lines). We can see the resonance of Si-CH3 at about 0.157meV,
for which we used Lorentz model from Eq. (1.44) with parameters ε∞ = 1.55, F1 =
364.838meV2, ω0,1 = 155.957meV and γ1 = 2.480meV. With the dotted line, we plot
the background polarizability αO

∞ of the same sphere from Eq. (C.1), characterized just
by ε∞ = 1.55. (b) Baselined extinction cross section, bearing information about the
molecular signature in two cases: (1) after subtraction of the simulation of a bare golden
antenna with no object (NP) and (2) after subtraction of simulation with a sphere char-
acterized by the background polarizability αO

∞ (BG) from the simulation of the golden
antenna with the resonant particle (RES). (c) Polarizability of the nano-antenna (black
lines) and field enhancement at the point of the object, 30 nm from the apex (crimson
lines). (d) Absorption cross section obtained from FDTD simulation of the antenna and
the object, when placing the monitor just around the object (full pink line) compared
to the field-enhanced object absorption of Eq. (4.1). We compare the lineshape to the
negative of the baselined extinction cross section to demonstrate that the field-enhanced
object absorption does not describe the lineshape.
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approximation and point field enhancement. We can see that for this particular antenna,
the field enhancement at the position of the object center at the resonance is about 40
times greater than the field of the incoming wave. The enhancement of the molecular
signal for the case of this particular antenna is

∣∣f ∣∣2 ≈ 1600, as we can see from the field
enhancement magnitude at resonance plotted in Fig. 4.1 (c).

Nevertheless, when comparing the signature obtained after subtracting BG simulation
from RES simulation with field-enhanced molecular absorption, it does predict the mag-
nitude of the molecular signal at the resonance, but not the lineshape, as we can see in
Fig. 4.1 (d).

4.2 Detecting the antenna scattering in SEIRA
We now recapitulate part of the results from Ref. [11] and build on them.

4.2.1 Molecular signatures
First, we show molecular signatures obtained from FDTD simulations. We plot baselined
molecular signatures (obtained after subtraction of the BG simulation) for the system of
gold nano-antenna from Fig. 2.4 with two PDMS spheres in Fig. 4.2 (a).

We will now study the dependency of molecular signatures on antenna size. We
numerically calculated magnitudes of extinction, scattering, and absorption molecular
signatures for cylindrical gold antennas of varying diameter and length (which we previ-
ously described in Sec. 2.2.2). All antennas are resonantly tuned approximately to the
frequency of the PDMS oscillator at 7.9 µm. We can see the results in Fig. 4.2 (b), for
which we obtained the same results as in [47]. The extinction signature was obtained by
summing the scattering and absorption signatures. Depending on the antenna coupling
regime (blue, green, and red regions in Fig. 2.4) we can distinguish three different types of
signatures. For under coupled regime (small antennas) both the absorption and scatter-
ing are negative. That is until the point of the critical coupling, where the total antenna
scattering and absorption cross sections are equal. While looking at the molecular sig-
nature for the critically coupled regime, the whole contribution to extinction is given by
scattering, as the absorption is approximately zero. For larger antennas (over-coupled
regime) absorption signature flips sign and is positive from now on. This behavior results
in a decrease of the extinction signature magnitude compared to scattering, which means
that by looking at the scattering signature, we would obtain a larger signal. We will deal
with the process behind the flip of the absorption signature sign later in this section. Now
we move to describing the cross section signatures with an analytical model.

Firstly, we suppose that the antenna has much larger components of the polarizability
tensor ←→α A than the object ←→α O. This condition can be fulfilled for example for gold
IR antennas [x-component of polarizability in Fig. 4.1) (c)], and for small sphere repre-
senting the molecules as we can see for example in Fig. 4.1) (a). The ratio between the
magnitudes of the antenna polarizability and the polarizability of the small molecular
sample is αA/αO ≈ 107. With this in mind, we make an approximation in the scattered
field of Eq. (2.9) and we neglect all terms multiplied with ←→α O · ←→α O and the terms with
multiplications repeated more times. We can also neglect the field scattered directly by
the object after being illuminated by the incoming field EO. When we consider large field
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enhancement
←→
f �

←→
I , the terms EAO and EOA are negligible compared to the EAOA and

can be neglected, too [43]. The approximate expression for the scattered field then reads

Etot
sca ≈

k2

ε0

←→
G A

sca ·
←→α A · EA

inc︸ ︷︷ ︸
EA

+
k2

ε0

←→
G A

sca ·
←→
f · ←→α O ·

←→
f · EA

inc︸ ︷︷ ︸
EAOA

. (4.2)

Similarly, as in Section 2.2, where we derived the optical cross section for structures de-
fined by their polarizability, we can derive the optical cross section for the antenna-object
system. For obtaining the cross section SEIRA system, we have to plug the approximate
expression for the scattered field of the antenna-object system of Eq. (4.2), into the op-
tical theorem of Eqs. (2.10-2.12) for extinction and into Eq. (2.15) for scattering, as was
done in Ref. [11]. From this derivation, the spectral signatures were interpreted in terms
of interference, the EAOA carries the information about the molecule, and it is labeled
as the field-enhanced molecular scattering. In case of extinction, where we look at the
scattered light in the direction of the incoming field EA

inc, the field enhanced molecular
scattering EAOA interferes with the incident field EA

inc. For the case of scattering EAOA

interferes with the field scattered directly by the antenna EA. The interference in both
the extinction and scattering then yield the molecular features observed in the SEIRA
spectra. For the derivation used in this thesis, we take a slightly different path, with
which we obtain the same results. We use the fact, that EA and EAOA are propagated by
the Green’s dyadic of the antenna. We write the approximate of the total scattered field
in the form Etot

sca ≈ k2

ε0

←→
G A

sca ·
←→α system · EA

inc where we introduced the polarizability of the
Antenna-Object system as

←→α system =←→α A +
←→
f · ←→α O ·

←→
f . (4.3)

We again consider x-polarization of the incident field and prevailing xx-terms in both
polarizability and field enhancement tensors. The scalar polarizability of the antenna-
object system then reads

αsystem = αA + f 2αO. (4.4)

With the polarizability of the antenna-object system, we now express the optical cross
sections. Firstly we plug the system polarizability into the extinction cross section in
Eq. (2.13) and we get

σext ≈
k

ε0
Im
{
αA + f 2αO} = σA

ext +∆σext. (4.5)

We divided the equation into two terms and in the first term, we recognized the bare
antenna extinction cross section σA

ext as in Eq. (2.18). The second term is the signature
in the antenna extinction caused by the presence of the object ∆σext which reads

∆σext =
k

ε0
Im
{
f 2αO

}
. (4.6)

We can see that the molecular signature in extinction scales with the object polarizability
αO and with the square of the field enhancement f 2, which is in concordance with the
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(b)(a)

Figure 4.2: (a) Scattering, extinction, and absorption cross section signatures (subtracted
molecular features in the SEIRA spectra, see inset) for a system consisting of a nano-
antenna and two spherical objects representing molecular samples at its apexes (see inset
scheme) The nano-antenna is a round-rod shaped with hemispherical apexes of 100 nm di-
ameter and 3.19 µm length, previously discussed as a model case nano-antenna in Fig. 2.4.
With full line we plot obtained from FDTD simulations. With the dashed line, we plot the
cross sections obtained analytically from Eqs. (4.6),(4.8) and (4.11). For evaluating the
analytical model we used antenna polarizability, object polarizability and field enhance-
ment near the antenna apexes as described in Appendix C.1. With the vertical dotted
line, we mark the molecular resonance wavelength (approximately at 7.9 µm), at which
we will take the values of the magnitudes into (b). We can see that with the analytical ex-
pressions, we are able to fully describe the lineshapes of all three optical cross sections. (b)
Cross section signatures magnitudes at resonance for different antennas from Fig. 2.3 (b).
We can see that we can attribute the behavior of the different signatures to the antenna
coupling regimes from Fig. 2.4 (b). For the critically coupled antenna (diameter 60 nm)
the absorption signature vanishes and the extinction is uniquely given by the scattering
contribution. With the vertical dotted line, we mark the values for 100 nm diameter an-
tenna from (a). The cross sections obtained analytically from Eqs. (4.9),(4.10) and (4.15).

reports from literature [81, 93]. Thus for the largest extinction signature, when looking at
the same molecular sample (αO is the same in all cases), we want to find an antenna with
the largest field enhancement at the position of the sample. Previously it was reported
that the largest field enhancement would take place in the critical coupling regime for gap
antenna (two nanorods coupled together), where the field is evaluated in gap [94]. Thus
gap antennas, which already have great field enhancement in the gap, look like promising
candidates We plot the computed extinction in Fig. 4.2 (a). We can see that compared to
the antenna-enhanced molecular absorption of Eq. (4.1) we are now able to fully describe
the extinction signature lineshape.

After deriving the extinction cross section of the SEIRA system, we can also look at
the scattering cross section signature. As we mentioned previously, SEIRA was thought
of as a unique absorption process, with a negligible enhanced molecular scattering, but in
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Ref. By plugging the polarizability of the antenna-object system (4.4) into the scattering
cross section (2.16) we obtain

σsca ≈
k4

6πε2
0

(∣∣αA∣∣2 + 2Re
{
f 2(αA)∗αO}+∣∣f 2αO∣∣2)≈ σA

sca +∆σsca. (4.7)

We divide this expression into three terms, in the first we again recognize the scattering
of the bare antenna σA

sca from Eq. (2.19). Previously it was assumed that the third
term, which is the object scattering influenced by the antenna near-field was is the only
contribution to the scattering in SEIRA. With the model used here, the interference of
the field scattered by the antenna and the EAOA is considered and introduces the second
term in parentheses. From Fig. 4.1) (a) and (c) we can read values of αA, αO and f of a
model-case nano-antenna considered. From the values, we see that the last term in the
parentheses of Eq. (4.7) can be neglected, as it is approximately four orders of magnitude
smaller than the second term. The second term

∆σsca =
k4

3πε2
0
Re
{
f 2(αA)∗αO}, (4.8)

is then responsible for the molecular signature in scattering cross section. We recognize
that the scattering signature depends on the field enhancement, similarly to the extinction
cross section of Eq. (4.6), and in addition, it also depends on the antenna polarizability.
This results in the scattering signature being inherently connected to the size and the
material of the nano-antenna and also in the need to design nano-antenna with large
polarizability which also produces strong near-fields in its vicinity. We plot the scattering
signature for our model case antenna in Fig. 4.2 (a) and we see that with this model
we are again able to fully describe the lineshape and magnitude of molecular scattering
signal.

We now express the cross-section signatures at molecular resonance frequency ωres,
and for the next, we denote σ(ωres) = σr. As we mentioned in the previous section and
can see in Fig. 4.1) (c), both the field enhancement and antenna polarizability are purely
imaginary at the energy of the molecular resonance ωres, from which we can than deduce
that arg(f) and arg(αA) are equal to π/2 at the ωres. As the antenna polarizability is
purely imaginary, we also note that at the resonance, we have Im

{
αA(ωres)

}
=
∣∣αA(ωres)

∣∣.
In the following, we will deal with the cross sections at the resonance frequency and we
will then write the antenna polarizabilities at the resonance as

∣∣αA
∣∣. For the expression

at resonance, we assume that all the variables on the right-hand side are evaluated at the
resonance too, and we don’t write the index (·)r for simplicity.

We can now write the extinction signature of Eq. (4.6) at resonance frequency as

∆σr
ext = −

k

ε0

∣∣f ∣∣2Im{αO}. (4.9)

We recognize that at the resonance the extinction signature is equal to the negative of
the enhanced object absorption of Eq. (4.1), which we already saw in Fig. 4.1 (d).

When we express scattering signature from Eq. (4.8), we obtain

∆σr
sca = − k4

3πε2
0

∣∣f ∣∣2∣∣αA∣∣Im{αO}. (4.10)
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We plot the extinction and scattering signature values at molecular resonance in Fig. 4.2 (b)
where we compare them with the numerically calculated ones. We see that despite the
non-trivial course of the signatures, we can describe them with the model. We also note
that the extinction signature is largest for the antenna of 80 nm diameter, for scattering
for the antenna of 100 nm diameter, which is our considered model-case antenna.

To this point, the expressions in this section were recapitulated from Ref. [11], and
we added the numerical and analytical results for different antenna sizes. Unlike in the
reference, we also focus on the absorption and absorption signatures and express them
from the energy conservation, where

σabs = σext − σsca = σA
abs +∆σabs, (4.11)

where we again divided the cross section into two contributions. In the first, we recognize
the absorption cross section of the bare antenna σA

abs = σA
ext − σA

sca. The second term
∆σabs = ∆σext − ∆σsca is the molecular signature in the absorption cross section. We
plot the absorption signature in Fig. 4.2 (b) and we again compare it with the numerical
result, for which we can again describe the lineshape, with a slightly larger error, due to
the error propagation.

Now we take a step back and again look at the total antenna cross sections of
Eqs. (2.18-2.20), expressed at the energy of the molecular resonance. We again replace
the imaginary part of antenna polarizability Im{αA} with their magnitude at resonance∣∣αA
∣∣. The antenna extinction at the resonance then reads

σA,r
ext =

k

ε0

∣∣αA∣∣. (4.12)

The scattering cross section is

σA,r
sca =

k4

6πε2
0

∣∣αA∣∣2. (4.13)

We can also express the antenna absorption from the energy conservation and get

σA,r
abs = σA,r

ext − σA,r
sca . (4.14)

For small antennas, which are dominantly absorbing and their scattering cross section
is negligible due to the scaling with the square of the polarizability, the extinction is
For large antennas where scattering dominates the extinction, we have σA,r

ext ≈ σA,r
sca . The

total cross sections at the energy of the PDMS resonance at approximately 7.9 µm were
previously plotted in Fig. where we saw, that the model matches the results obtained
from numerical simulations fairly well.

We now express the absorption signature at the molecular resonance from the energy
conservation, using Eqs. (4.9) and (4.10)

∆σr
abs = ∆σr

ext −∆σr
sca = − k

ε0

∣∣f ∣∣2Im{αO}︸ ︷︷ ︸
∆σr

ext

[
1−

∣∣αA
∣∣∣∣αA,crit
∣∣
]
. (4.15)

Here, we recognized that we can express scattering from Eq. (4.10) via the extinction sig-
nature of Eq. (4.9) which we factor out. We then obtain antenna polarizability magnitude
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4. ENHANCED SPECTROSCOPY WITH PHOTONS AND ELECTRONS∣∣αA
∣∣ multiplied by a factor k3/(3πε0). When considering the case of the critically coupled

antenna (σabs ≈ σsca), the absorption signature is zero. As the extinction signature is
always non-zero at the resonance [Eq. (4.9)], it means that the terms in parentheses must
be zero, therefore the antenna polarizability must be equal to the inverse of the prefactor.
We label the inverse of the prefactor as the polarizability of the critically coupled antenna
which reads ∣∣αA,crit∣∣ = 3πε0(

kr
)3 . (4.16)

We used this concept as we can see that for critically coupled antennas with polarizability∣∣αA
∣∣ = ∣∣αA,crit

∣∣, the absorption signature is zero.
Now we have expressions for all three spectral signatures at the resonance ∆σr

ext,∆σr
sca

and ∆σr
abs and we plot them in Fig. 4.2 (b)1 with triangles connected by a dashed line.

We again used the field enhancement and antenna polarizability obtained from FDTD
and analytically calculated object polarizability from Eq. (C.1) as in the previous section.
We see very good match with the numerical results, the relative error in scattering is
<2.5%, in extinction <5%. In Absorption the relative error is 40% for the critically
coupled antenna of diameter 60, as the values are near zero, the error diminishes to
about 5% for the smallest and largest antennas and the flip in the absorption signature.
We also recognize that the extinction signature is largest for the antenna with diameter
80 nm. From the model, we can then assume that the field enhancement produced by this
particular antenna is therefore largest at point 30 nm from the antenna apex. As we are
changing the size of the nano-antennas (radii and lengths as in Fig.), many factors, such
as the local curvature or charge reservoir can contribute to the spatial decay of the field
enhancement. We discuss this behavior for different antennas in Sec. more thoroughly.

Now we focus on the explanation of the flip in absorption signature sign. The total
absorption signature consists of the enhanced object absorption σO,enh

abs and of the change
in the absorption cross section caused by the presence of the field of the object ∆σr

abs.
These changes arise due to multiple illumination of the antenna by the near-field of the
object. We can evaluate the change in antenna absorption from FDTD simulations, we
can put the absorption monitor just around the antenna. Fig. 4.3 (a) In Fig. 4.3 (b)
we plot the total absorption signature and the contributions of field-enhanced molecular
absorption and change in the antenna absorption for different sizes of antennas of Fig..
We see that there is an interplay between the positive field enhanced and negative antenna
absorption which results in the flip.

1While obtaining SEIRA baselined spectra of molecular signatures, we subtract BG simulation, with
an object characterized by the background permittivity εO

r = εO
∞. The response of the object can be

described by the quasistatic polarizability from Eq. (C.1) αO
bkg = 4πε0a

3(εO
∞ − 1)/(εO

∞ + 2), where we
assumed that surrounding medium is vacuum with εr,m = 1. In the analytical model, we then plug the
polarizability αO from which subtract the background polarizability αO

∞. The argument of the object
polarizability after the subtraction of the background would then be π/2 as we see that it would be purely
imaginary in Fig. 4.1 (a).
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(b)(a)

Figure 4.3: a) Absorption cross sections, were obtained from different monitors, as shown
in the inset. The pink line corresponds to the field-enhanced molecular absorption ob-
tained from FDTD (full line), previously plotted in Fig. 4.1 (d) and again compared with
analytical results of Eq. (4.1) (dashed line). With the blue line, we plot the total absorp-
tion signature, as in Fig. 4.2 (a). With the cyan line, we plot the change in the antenna
absorption caused by the presence of the object (the difference between the total ab-
sorption signature and the field-enhanced molecular absorption). We mark the resonance
wavelength of the molecule with the dashed line. (b) Magnitudes of absorption signatures
and field-enhanced molecular absorption for different antennas. We can see that depend-
ing on the value of the field enhanced molecular and the change in the antenna absorption
we get different regimes of the total absorption, resulting in the flip of the sign. As is the
enhanced object absorption at resonance equal to the negative extinction signature, it is
the largest for the antenna of 80 nm diameter which has the largest field enhancement at
the position of the center of the object

Now we evaluate the antenna absorption signature from the analytical model, where we
plug for enhanced object absorption at the resonance and use the fact that the imaginary
part is the magnitude

∆σA,r
abs = ∆σr

abs − σO,enh,r
abs = − k

ε0

∣∣f ∣∣2Im{αO}︸ ︷︷ ︸
∆σr

ext

[
2−

∣∣αA
∣∣∣∣αA,crit
∣∣
]
. (4.17)

In Fig. 4.3 The field-enhanced molecular absorption in Eq. (4.1) is always positive.
We can see that for critically coupled antennas with polarizability

∣∣αA
∣∣ = ∣∣αA,crit

∣∣, the
antenna absorption signature is equal to the extinction signature, which is the negative
of the field-enhanced object absorption. This results after summing the absorption con-
tributions in the vanishing absorption signature for the critically coupled antenna. The
validity of this formula needs to be verified, but we again discuss it next chapter.

For large antennas, similarly to the antenna absorption cross section, we can see that
the ∆σA,r

abs is diminishing. The absorption signature could then be approximated just by
the field-enhanced object absorption. From the energy conservation, we see that for this
limiting case ∆σr,lim

ext = ∆σr,lim
sca + σO,enh

abs , and use the fact that the extinction signature
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at resonance is negative of the enhanced object absorption σO,enh
abs . We can see that the

scattering signature can then be as large as double the extinction signature, as was already
reported in Ref. [11]

∆σr,lim
sca ≈ 2∆σr,lim

ext . (4.18)

Therefore, when considering large antennas and performing a scattering experiment, the
vibrational signal would be twice as large as one seen in extinction.

4.2.2 Molecular contrasts
Various metrics can be chosen to describe the magnitude of the enhanced SEIRA signal.
For example, contrast normalized to the volume of the molecular layer was proposed in
Ref. [47]. We choose a different metric and define the relative molecular contrast δσ
as the ratio between molecular signature in the cross section ∆σ and the total antenna
cross section σA. We plot the molecular contrasts for our model case system (cylindrical
gold nano-antenna with hemispherical apexes and two nanospheres with the center located
30 nm from each apex) obtained from FDTD calculations with the full lines in Fig. 4.4 (a).
Similarly to the signatures, we obtain peak or dip features around the molecular resonance.
We can see that for this particular antenna, the absorption contrast is larger than the
extinction and scattering in this case, as the antenna cross section in the denominator
is diminishing. In Fig. 4.4 (b), we plot the molecular contrasts for various antenna sizes
from Fig. 2.3 (b) with dots connected by full lines. For evaluation, we used antenna cross
sections from Fig. 2.4 (b) and molecular signatures from Fig. 4.2 (b). We can see that,
similarly to the absorption signature, the absorption contrast flips sign and is zero for
the critically coupled antenna. For large antennas, where the antenna absorption cross
section in the denominator diminishes, the contrast greatly grows. We also note that the
largest extinction and scattering contrasts are maximal for the antenna of 50 nm diameter.
Furthermore, the scattering contrast appears to be approximately twice as large as the
extinction contrast.

We will now express the molecular contrasts analytically, for comparison of the ana-
lytical SEIRA model with numerical simulations and for obtaining information about the
dependence of the contrasts on antenna parameters (polarizability and the field enhance-
ment at a certain location). We write the molecular contrasts for extinction, scattering,
and absorption, by using antenna cross sections from Eqs. (2.18-2.20) and molecular sig-
natures from Eqs. (4.6), (4.8) and (4.11) as

δσext =
∆σext

σA
ext

= −
Im
{
f 2αO}

Im
{
αA
} , (4.19)

δσsca =
∆σsca

σA
sca

= −2
Re
{
f 2(αA)∗αO}∣∣αA

∣∣2 , (4.20)

δσabs =
∆σabs

σA
abs

=
∆σext −∆σsca

σA
ext − σA

sca
. (4.21)

We plug in the antenna polarizability, field enhancement caused by the antenna at the
position where the object center would be, and the object polarizability, as in the previous
section. We plot the analytically obtained contrasts in Fig 4.4 (a) with the dashed line. We
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can see that for extinction and scattering, we obtain good agreement between the model
and numerical results, but for absorption, there is a discrepancy. It is caused by the error
propagation in the antenna absorption cross section and the absorption signature, which
are both obtained from extinction and scattering.

We again evaluate the cross section contrasts at the frequency of the molecular reso-
nance frequency ωres similarly as total antenna cross sections and molecular signatures in
the previous section. Extinction contrast at resonance is

δσr
ext =

∆σr
ext

σA,r
ext

= −
∣∣f ∣∣2∣∣αA
∣∣Im{αO}. (4.22)

We can see that the extinction contrast scales with the field enhancement squared, but
compared to the extinction signature is also divided by the magnitude of the antenna
polarizability. For the largest extinction contrast, the optimal antenna would be one
with strong near-field enhancement in its vicinity and with small polarizability, e. g. a
weakly polarizable and/or small antenna. We plot the calculated extinction contrasts at
resonance in Fig. 4.4 (b). We can see, that the model predicts the contrasts obtained
from FDTD fairly well, the relative error is for all antennas below 2%, except the smallest
one (relative error about 7%). We see that the largest contrast emerges for an antenna
of diameter 50 nm. From the model, we assume that for this particular antenna, the
ratio between field enhancement at a distance 30 nm from the apex and the antenna
polarizability would be maximal.

Scattering contrast at resonance is

δσr
sca =

∆σr
sca

σA
sca

= −2
∣∣f ∣∣2∣∣αA
∣∣Im{αO},︸ ︷︷ ︸
2δσr

ext

(4.23)

which is twice as large as the extinction contrast. This could be of great importance for
scattering experiments. We again compare the results of the analytical model with the
FDTD results in Fig. 4.4 (b). Similarly to the extinction, the relative errors between the
model and FDTD are about 2% for all antennas except the smallest one, with a relative
error of about 10%.

Absorption contrast at molecular resonance can then be written from the energy con-
servation as

δσr
abs =

∆σr
abs

σA,r
abs

=
∆σr

ext −∆σr
sca

σA,r
ext − σA,r

sca
. (4.24)

Similarly to the absorption signature, the contrast flips sign and is zero for the case of
the critically coupled antenna (diameter 60 nm). For larger antennas, as the antenna
absorption in the denominator approaches zero, the absorption contrast grows. We again
compare the analytical results with FDTD results in Fig. 4.4 (b). The relative errors for
absorption contrast are larger than for the extinction and scattering contrasts, similarly
to the absorption signature. It can be seen as a result of the error propagation and the
fact, that for the antennas near the critical coupling, the scattering signature is near zero,
which enhances the error between the model and FDTD.

We now focus on the contrasts of the antenna signatures, which we obtain after sub-
tracting the molecular contribution to the respective signature. With these contrasts,
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(b)(a)

Figure 4.4: (a) Extinction, scattering and absorption cross-section contrasts, which are
taken as molecular signatures divided by the total antenna cross sections for model-case
system (50 nm diameter round-rod antenna with two objects placed near its apexes) from
Figs. 4.2 and 2.4, respectively. With full lines, we plot contrasts obtained from FDTD
simulations, with dashed lines contrasts obtained from the analytical model. (b) Cross
section contrasts magnitudes for different sizes of nano-antennas. With dots connected
by full lines, we plot the results from FDTD, and with triangles connected by dashed
lines the analytical results. We recognize that scattering contrast is approximately twice
as large as extinction contrast, which is the result of the analytical model. In absorption
contrast, we see the characteristic flip of the sign and notice that it gets larger for larger
antennas, as the antenna absorption cross section in the denominator diminishes. With
the vertical dotted line, we mark the cross sections at resonance for the antenna in (a).

we gain insight into the changes in the antenna cross sections separated from the con-
tribution of the enhanced molecular absorption. We already obtained a change in the
antenna absorption in Eq. (4.17), with which we discussed its magnitude compared to
the field-enhanced molecular absorption of Eq. (4.1). The relative magnitudes of these
two contributions result in the flip of the sign of the summed absorption signature. The
antenna absorption contrast is

δσA,r
abs =

∆σA,r
abs

σA,r
abs

= −2
∣∣f ∣∣2∣∣αA
∣∣ ∣∣αO

∣∣. (4.25)

We used the assumption that the scattering cross section of the object is vanishingly
small (the third term in Eq. (4.7) which was neglected) and the scattering signature is
fully given by the change in the antenna scattering caused by the presence of the molecule

∆σA,r
sca ≈ ∆σr

sca. (4.26)

In SEIRA spectra, one would expect that the enhanced molecular absorption would be
in the form of a peak seen in the extinction spectra, as the power is lost in the excitation,
but instead, we obtain a dip of the same magnitude in extinction. This means that there
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(b)(a)

Figure 4.5: (a) Antenna signatures. With the red curve, we plot the change in the
scattering cross section, which is fully given by the molecular signature in the scattering,
thus the same as in Fig. 4.2 (b). With the cyan line, we plot the change in antenna
absorption, which is the same as in Fig. 4.3 (b). With the purple curve, we plot the
total change in the antenna extinction caused by the interaction with the object, which
is negative of the enhanced object absorption multiplied by the factor of two. We can
compare the evolution of the antenna signatures for different antennas with the total
antenna cross sections of Fig. 2.4 (b). (b) Antenna cross section contrasts, obtained
by dividing respective signatures from (a) with the total antenna cross sections from
Fig. 2.4 (b). We can see that the antenna contrasts are the same for all three cross
sections.

is a discrepancy of a factor of two and it needs to be compensated by the change in the
antenna extinction (scattering and absorption)

δσA,r
ext =

∆σr
ext −∆σO,enh,r

abs

σA,r
ext

= −2
∣∣f ∣∣2∣∣αA
∣∣ ∣∣αO

∣∣. (4.27)

We plot the changes in antenna cross sections for different antennas in Fig 4.5 (a).
We can see that they resemble the total antenna cross sections in some features. The
absorption has an extreme near the critical coupling regime and is the same as the scat-
tering. For larger antennas, the absorption diminishes and the major contribution to the
extinction is from the scattering. Because of the dependence of signatures on the field
enhancement, the extinction and scattering are not increasing, but instead, they have an
extreme and, for larger antennas, they diminish too.

When comparing Eqs. (4.25), (4.26) and (4.27), we recognize that all of the antenna
contrasts are the same

δσA,r
sca = δσA,r

ext = δσA,r
abs = −2

∣∣f ∣∣2∣∣αA
∣∣ ∣∣αO

∣∣. (4.28)

We plot the contrasts in Fig. 4.5 (b). The scattering contrast is from Fig. 4.4 (b). We
recognize that both the analytical model and numerical calculations predict that the
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contrasts are in fact the same. For this particular choice of antenna shapes and distance
from the antenna apexes, where we place the object center, we obtain the largest contrast
for an antenna with diameter 50 nm.

4.3 Field-enhanced electron energy-loss spectroscopy
As we stated and reviewed in Sec. 3.3, even the vibrational electron energy loss spec-
troscopy suffers from a loss of signal when probing small amounts of samples. As was
proposed in Ref. [55], and further discussed in Ref. [92] an analog to surface-enhanced
infrared absorption could be performed in EELS. By plugging the dipole moments of the
antenna-object system [Eq. (2.4)] into Eq. (2.32) we reach the same expressions as in
Ref. [55], with which we can model the field-enhanced electron energy loss spectroscopy
(FEELS) lineshapes based on the coupled dipole model. We now derive the approximative
model, considering a weakly polarizable object, and the EEL signatures and contrasts.

Firstly we assume that the feature in the spectrum caused by the object would only
be a weak perturbation added to the loss probability of inducing a resonance within a
nanoantenna. The total loss probability that the electron will interact with the antenna-
object system can then be written as

ΓEELS(ω) = ΓA
EELS(ω) + ∆ΓEELS(ω), (4.29)

where is ΓA
EELS is the loss probability of the bare antenna from Eq. (2.38) and ∆Γ is

the object signature in the spectrum. We again assume that the antenna is polarized
dominantly in the x-direction. By assuming that we can expand the electric field inducing
the dipole moment via the series from Eq. (2.5), we divide the signature in the EEL
spectrum into individual terms

∆ΓEELS(ω) =
1

πh̄
Im
{
Eel,O,∗

x αOEel,O
x

}
︸ ︷︷ ︸

ΓO
EELS

+
1

πh̄
Im
{
Eel,O,∗

x αOfEel,A
x

}
︸ ︷︷ ︸

ΓOA
EELS

+
1

πh̄
Im
{
Eel,A,∗

x fαOEel,O
x

}
︸ ︷︷ ︸

ΓAO
EELS

+
1

πh̄
Im
{
Eel,A,∗

x f 2αOEel,A
x

}
︸ ︷︷ ︸

ΓAOA
EELS

+... .
(4.30)

The first term ΓO
EELS is the loss probability of the sole object. ΓOA

EELS is the first term
which accounts for a multiple scattering between the antenna and the object. The object
is induced with the near-field produced by the antenna induced by the electron beam, then
the object then acts back on the electron beam causing the energy loss. ΓAO

EELS denotes
the loss caused after the beam interacts with the antenna induced by the near-field of
the object. The last written term ΓAOA

EELS accounts for the double scattering event between
the antenna and the object. The electron beam induces the dipole in the antenna, which
then, via its near-field, induces the object, which acts back on the antenna. The antenna
then interacts with the beam, which loses energy. The following terms can be derived
in a similar manner, but we will not deal with them as we are again considering weakly
scattering objects, which results in these terms being negligible.

For the numerical calculations and evaluation of the FEELS, we consider a round-rod-
shaped hBN antenna, which supports localized phonon polaritons, previously considered
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(a) (b)

αBG
OαA

BG

αOαA
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Figure 4.6: (a) Electron-energy loss spectrum molecular signature of a CBP sphere (10 nm
radius) with center placed 30 nm from the apex of a cylindrical-shaped hBN antenna with
round apexes (radius 20 nm and length 120 nm) obtained after subtraction of the spectrum
of the bare antenna with no particle (NP) from the spectrum of the antenna and resonant
object (RES). We also plot individual terms of Eq. (4.30): ΓO

EELS (purple line), ΓOA
EELS and

ΓAO
EELS are the same (pink lines), and ΓAOA

EELS (black line). (b) EEL molecular signature
obtained by subtracting the simulation with an object characterized by the background
polarizability αO

∞ of the same sphere from Eq. (C.1), characterized just by ε∞ = 2.8, which
we label as the “BG” simulation, compared to the “RES” simulation in (a). We again
plot the individual terms from Eq. (4.30) into which we plug the polarizability αO − αO

∞
with the same color legend as in (a). CBP was modeled via the Lorentz oscillator model
of Eq. (1.44). We assumed one oscillator with parameters ε∞ = 2.8, F1 = 382.683meV2,
ω0,1 = 179.777meV and γ1 = 1.029meV.

in Secs. 2.2.2 and 2.3.3. We perform all numerical computations in COMSOL [described
in Appendix C.2.2], where we consider just one object at the antenna apex for simplicity,
as we do not exploit the simulation symmetries. Our considered object is again a nano-
sphere of radius 10 nm characterized by one oscillator of the CBP dielectric function
[Fig. 1.2 (b)] positioned 30 nm from the antenna apex.

We again perform more simulations to obtain FEEL spectra. The first simulation is
with both the antenna and object characterized by their respective dielectric functions
interacting with the field of the electron beam, we label this simulation as “resonant”
(RES). The second simulation labeled as “no particle“ (NP) considers just the bare an-
tenna. When we subtract NP simulation from RES, we obtain a molecular signature in
the EEL spectra. Similarly to the optical-cross sections (Fig. 4.1), because of the redshift
of the spectra caused by the background permittivity of the object, we obtain an asym-
metric Fano-like shape. We plot the loss probability signature in Fig. 4.6 (a) with the full
black line.

We plot the individual terms of Eq. (4.30) in Fig. 4.6. We approximate the object po-
larizability by the quasistatic polarizability of Eq. (C.1). The loss probability of inducing
a resonance within the object ΓO

EELS is negligible (about 10−7 eV−1). The ΓAO
EELS and ΓOA

EELS
terms are the same with magnitude in the order of 10−6 eV−1. The ΓAOA

EELS term almost
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describes the lineshape near the resonance, albeit it is a bit distorted further away from
the resonance.

Similarly to Sec. 4.1, we subtract a simulation with an object defined by the back-
ground permittivity ε∞ = 2.8, which we again label as “background” (BG) simulation,
from the RES simulation, to counteract the redshift caused by the dielectric background.
We obtain a different lineshape, which is not as asymmetric as the one obtained by sub-
tracting NP simulation, and we can now recognize the characteristic dip in the spectra
(compare with Fig. 4.1). We again plot the individual terms of Eq. (C.1) into which we
plugged the polarizability of the object from which we subtracted the background polar-
izability αO

∞ given by Eq. (C.1) into which we plugged ε∞ = 2.8. We can see that the
ΓO

EELS term is again negligible, and the ΓAO
EELS and ΓOA

EELS terms contribute mainly off reso-
nance. The ΓAOA

EELS term predicts the lineshape fairly well, particularly near the resonance
energy. Therefore we approximate the signature in the EEL only by the contribution by
the double scattering event between an antenna and the molecule ΓAOA

EELS as

∆ΓEELS(ω) ≈
1

πh̄
Im
{
Eel,A,∗

x f 2αOEel,A
x

}
. (4.31)

The larger the antenna polarizability compared to the object polarizability, the more
precise this approximation is. In such case, we obtain larger field enhancement, resulting
in all terms except ΓAOA

EELS negligible. From now on, we will always assume that the
signatures are obtained by subtracting the BG simulation.

One of the motivations of this study was to compare the obtained signal in enhanced
spectroscopy with photons (e.g. extinction cross section) and with electrons (electron
energy-loss spectroscopy). Hence, we now compare the EEL probability signature with
the extinction signature. The comparison of EEL spectra and extinction spectra of en-
hanced spectroscopies was already done in Ref. [95], where symmetries and detuning were
discussed.

We plot the EEL signature in Fig. 4.7 with the blue line and the extinction signature
with the red line and we can recognize that the lineshapes are very similar. We can
compare the approximative analytical formulas Eq. (4.31) and Eq. (4.6) where we assume
that the molecular signature in the spectra is based on the double scattering event between
the antenna and the object and depend on Im

{
f 2αO}. We plot the analytical models in

Fig. 4.7 (a) with dashed lines and recognize that we are able to describe both the extinction
(similarly to Sec. 4.2) and EELS signatures close to the resonance energy (dotted line), but
further away there appear small deviations, which could be attributed to the neglection
of the other terms in the analytical mode.

We can again focus on the loss probability signature at the frequency of the molecular
resonance for different sizes of the antennas. We sustain the same resonance energy of the
antenna (tuned to approximately the molecular resonance of CBP). For larger antennas,
we obtain larger signatures, as the field enhancement produced by the antenna grows
significantly. We see that the trend is very similar in EELS and extinction, although they
differ a bit. This discrepancy could be caused by different mesh sizes of the domains
(in the EELS, the mesh was finer around the beam and needed to be finer around the
molecules) or by the detuning of extinction and EELS previously discussed in Ref. [95].
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(b)(a)

Figure 4.7: (a) Comparison between the molecular signatures in electron energy loss
probability (blue) and extinction cross section (red) for a system of hBN antenna and
CBP sphere considered in Fig. 4.6 (b). With the full lines, we plot the results from
COMSOL simulations, and with dashed lines analytical expressions of Eq. (4.6) and
Eq. (4.31) for extinction and EELS, respectively. With the vertical dashed line, we mark
the resonance energy of the CBP molecule at approximately 178.8meV. (b) Molecular
signature magnitudes at the energy of the molecular resonance for different sizes of hBN
antennas. All antennas were resonantly tuned to approximately the energy of the CBP
molecule resonance. The antenna dimensions are in Table. D.3 With circles connected by
full lines we plot the results from COMSOL simulations and with triangles connected by
dashed lines the analytical results for loss probability contrast of Eq. (4.32) (blue) and
extinction contrast of Eq. (4.9) (red). With the vertical dashed line, we mark the values
from (a).

For the comparison with the analytical model, we again assume that the field enhance-
ment at the resonance frequency of the molecule ωres is purely imaginary (arg(f(ωres)) =
π/2) and write

∆Γr
EELS = − 1

πh̄

∣∣Eel,A
x

∣∣2∣∣f ∣∣2Im{αO}, (4.32)

where all the variables on the right-hand side are evaluated at the resonance energy but
we did not write the superscript for simplicity. We plot the results of the EELS signature
at resonance in Fig. 4.7 (b) and also plot the extinction signatures at resonance evaluated
from Eq. (4.9) for the hBN antenna and CBP sphere system. The relative error is largest
for the smallest antenna of radius 10 nm, where it is 7% for EELS and 12% for extinction.
for the other antennas, it is always under 2% for EELS and under 5% for extinction.

We now focus on the study of the molecular contrasts in spectra. From the analytical
model, we assume the mechanisms behind the extinction and EELS to be similar, hence
we suppose that contrasts should be the same for both photons and electrons. We define
the molecular contrast in the EEL spectra similarly to the extinction cross section contrast
[Eq. (4.19)] as a ratio between the molecular signature and the total antenna loss as

δΓEELS(ω) =
∆ΓEELS

ΓA
EELS

. (4.33)
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(b)(a)

Figure 4.8: (a) Molecular contrasts in electron energy-loss probability (blue) and extinc-
tion (red). With the full line, we plot the numerically calculated values from COMSOL
and with the dashed line, the analytically calculated contrasts from Eq. (4.33) for EELS
and for extinction, we take it from Eq. (4.19). Near the resonance, all the contrasts give us
approximately the same values, thus confirming a similar nature of enhancement in both
FEELS and SEIRA. With the dashed line, we plot the energy of the molecular resonance
of CBP. (b) Molecular contrast at resonance for different sizes of hBN nano-antennas.
With blue and red dots connected by the full line, we plot the values of EELS and extinc-
tion contrasts, respectively. With the triangles with dashed lines denote the results using
Eq. (4.34) for EELS and of Eq. (4.22) for extinction.

We plot the numerically calculated contrast in EEL spectra (obtained from data from
Fig. 2.9 for ΓA

EELS and Fig. 4.7 for ∆ΓEELS) for the previously considered system of hBN
antenna with 20 nm radius and CBP sphere in Fig. 4.8. We can see that the contrast is
about 1% between the signature and the total antenna loss probability. We again compare
the contrast with extinction contrast (obtained from Fig. 2.6 and Fig. 4.7) and find that
the contrast is the same for EEL spectra and extinction spectra. The contrast is much
larger than for the system of the large gold antenna and PDMS molecule (Fig. 4.4). This
originates from the small cross section of the hBN antenna relative to the CBP sphere.
The only difference between EELS and extinction contrast is their respective scaling with
energy, resulting from the distinct natures of the processes.

We compare the contrasts with the analytical models. For extinction contrast, we plug
the signature from Eq. (4.31) and the loss probability of the bare antenna from Eq. (2.38)
into Eq. (4.33) and for extinction, we take it from Eq. (4.19). For the EEL contrast, we can
see that we are able to describe the contrast lineshape and magnitude near the resonance,
but there is a difference further away from the resonance. The extinction contrast is
described well, similar to the gold antennas with the PDMS molecule of Fig. 4.4 (a). At
the resonance, both extinction and EELS with both the model and numerical computation
yield the same contrast. The results further confirm the viability of the analytical model
approximation for the weakly polarizable object of Eq. (4.31).

63



4.4. FIGURES OF MERIT

We again evaluate the contrasts at the energy of the molecular resonance of CBP at
approximately 178.8meV. We can see that it is the largest for the antenna of radius 20 nm
for both EELS and extinction. For larger antennas, the contrasts are approximately the
same, confirming the similarity between FEELS and extinction in SEIRA. For the antenna
of radius 10 nm, the contrasts differ, which is most likely due to the very small dimensions
of the antenna with coarse mesh. We can analytically express the EEL contrast at the
resonance with the help of Eq. (4.32) and Eq. (2.38), where in the latter, we evaluate it
at the resonance energy of the molecule. We obtain

δΓr
EELS = −

∣∣f ∣∣2∣∣αA
∣∣Im{αO} = δσr

ext, (4.34)

where we also noted that the molecular contrast at the resonance in EELS is exactly the
same as the molecular contrast observed in extinction [Eq. (4.22)]. With this, we can then
assume that we only need to know antenna polarizability and the near-field distribution
around the antenna to model both molecular signatures and molecular contrast of the
enhanced spectroscopies with both photons and electrons. We compare the analytically
obtained contrast from EELS with the extinction contrast in Fig. 4.8 (b). Contrasts at the
resonance approximately match (the relative error is under 4%.) except for the smallest
antennas, where the discrepancy for the antenna of radius 10 nm is under 7% for EELS
and under 12% for extinction.

With the analytical formulas for both optical cross section and EELS signatures
and contrasts, we now move to design figures of merit for evaluation of the enhanced-
spectroscopy performance using the analytical models.

4.4 Figures of merit
In the previous sections, we established analytical expressions for the absorption, scatter-
ing, and extinction signatures and contrasts in the SEIRA cross sections using the coupled
point-dipoles formalism. We also showed that similar expressions arise for loss probabil-
ity obtained in electron-energy loss spectroscopy. With the knowledge of the analytical
formulas we now focus on the optimization of the antenna for best SEIRA performance
depending on the type of collected signal.

There are several aspects of enhanced spectroscopy experiments towards which figures
of merit (FOM) can be stated. We can perform the experiment with photon probes or
with electron probes. With both types of probes, we can also look at the power lost during
the interaction (extinguished power in extinction and electron energy loss in EELS) or
the power radiated/scattered.

The detector and sample chosen in the experiment play crucial roles too. When
having a poor detector, we are looking for an antenna that gives us the largest molecular
signature. When having a good detector but a weakly responding sample, we are targeting
the largest contrast.

In all the expressions in Secs. 4.2 and 4.3, the influence of the antenna shape, size, and
material in the enhanced spectroscopy is mediated through the antenna polarizability
and the field enhancement. We establish figures of merit in the form of dependence
of the field enhancement squared on the antenna polarizability. We showed how the
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Figure 4.9: Figure of merit for extinction cross section and EELS signatures and contrasts
in enhanced spectroscopies. (a) Dependence of the square of the field enhancement

∣∣f ∣∣2
(evaluated at the resonance energy 0.157 eV and 30 nm from the antenna apex) on the
imaginary part of the antenna polarizability Im

{
αA} for various gold antennas from

Fig. 2.3 (b), for which the dimensions are in Tab. D.2. The diameters of the antennas
are increasing from left to right; for some of them, shapes and sizes are schematically
depicted in the insets. With the blue horizontal lines, we mark values of constant

∣∣f ∣∣2.
With red diagonal lines, we mark the constant values of the ratio

∣∣f ∣∣2/Im{αA}. With
the green vertical dashed line, we mark the theoretical value of the polarizability of the
critically coupled antenna αA,crit from Eq. (4.16).

molecular signatures and contrasts depend on the antenna’s polarizability and the near-
field enhancement produced by the antenna. With the analytical expressions, we are now
able to state figures of merit for the design of nano-antennas.

Firstly we focus on extinction, which is the quantity measured in a typical transmis-
sion experiment. The signatures in both SEIRA extinction and FEELS depend on one
parameter of the antenna, which is the near-field enhancement [Eqs. (4.9) and (4.32)].
We plot the values of the field enhancement squared for various gold cylindrical nano-
antennas from Fig. 2.3 (b) in Fig. 4.9 as a function of an imaginary part of the respective
antenna polarizability with golden dots. We evaluate all the variables at the energy of
the molecular resonance at approximately 0.157 eV. At the resonance, Im{αA} should be
equal to

∣∣αA(ωres)
∣∣, but we consider the fact that the antennas are not precisely tuned to

the molecular resonance and not assume the equality. From now on, we will refer to the
respective antennas with the value of their diameter (Tab. D.2). With the blue horizontal
lines, we mark the values of constant field enhancement. From Eq. (4.6), we see that the
largest signature would be for the antenna with the largest

∣∣f 2
∣∣, which happens for the

antenna with diameter 80 nm, marked with the blue circle. It is also the antenna with
the largest extinction signature [Fig. 4.2].
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Figure 4.10: (a) Near-field enhancement as a function of distance from the antenna apex x
for different antenna diameters D [antennas with diameters and lengths from Fig. 2.3 (b)].
The field enhancement is evaluated at the energy of the molecular resonance at 0.157 eV
(7.9 µm). We can see that the largest field enhancements for the antennas are near the
apexes (because of the size of the mesh cells, the apex is slightly shifted from x = 0 nm).
(b) Field enhancement at two different positions for different antennas. With the orange
curve, we evaluate it approximately at the antenna apex. With the pink curve, we evaluate
it at 30 nm from the apex, where the object center in SEIRA simulations is positioned.
The field decays at different rates for different antennas, thus yielding a maximum for
antenna of diameter 50 nm when evaluating the field enhancement near the apex, but for
antenna for diameter 80 nm, when evaluating 30 nm from the apex. With the dots, we
mark the maxima of the respective curves. Data were interpolated for better visibility, as
the mesh-cell size is not homogeneous and the points at which the field is evaluated are
not equidistant in FDTD.

The contrast (molecular signature in the cross section divided by the total antenna
cross section) in SEIRA extinction and FEELS at the energy of the molecular resonance
depends on the ratio

∣∣f ∣∣2/Im{αA} [see Eqs. (4.22) and (4.8), where we assumed that for
precisely tuned antennas the polarizability at resonance is purely imaginary]. With the
red lines, we mark values of constant ratio between the field enhancement squared and
antenna polarizability. We can see that the largest value of the ratio is for the antenna
of diameter 50 nm, marked with the red circle. We can again compare this result with
Fig. 4.4, where the antenna with the largest extinction contrast is the one with diameter
50 nm. We also plot the value of the polarizability for the critically coupled antenna from
Eq. (4.16) by the green dashed line. We can see that this value nearly coincides with
the polarizability antenna of diameter 60 nm, which is critically coupled. The validity of
this formula needs to be verified for other nano-antennas with different shapes and from
different materials. For now, it gives us an approximate division line between two regimes
of the antennas. On the left-hand side with respect to the green dashed line, we have
antennas that have a larger extinction signature than the scattering signature, while on
the right-hand side, the scattering signature is larger [Fig. 4.2 (b)].
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Figure 4.11: (a) Spatial decay of the ratio between the square of the field enhancement and
the antenna polarizability, which is proportional to the molecular contrasts. We obtained
this data by squaring the spatial decay of the near-field enhancement from Fig. 4.10 and
multiplying it with the value of Im{αA} for respective nano-antennas. This ratio is in the
formula for extinction and scattering contrast. We can see that the value of

∣∣f ∣∣2/Im{αA}
is largest for the smallest antennas, as they have smaller polarizability than the larger
antennas, and also rises near their apexes, as there is largest

∣∣f ∣∣2. (b) The same as in
(a), but for three selected distances from the antenna apex x. We can see that for the
distance considered in the SEIRA simulations (x =30 nm) we obtain the largest contrast
for antenna of diameter 50 nm, but when approaching closer to the apex, the trend changes
and the contrast is largest for the smallest antenna of diameter 20 nm. With the dots, we
mark the maxima of the respective curves.

For the simulations of SEIRA and FEELS, we considered the object center to be
positioned 30 nm from the antenna apex. Because of the different diameters of the hemi-
spherical apex and sizes of the antennas, even the field decay rate varies between different
antennas. We can look at this as a consequence of the form of the field enhancement
tensor, where we are changing the polarizability and the distance from the center, where
the point dipole is located. Thus the results of the largest signature and contrast are
influenced by the considered distance.

We plot the field enhancement for the different sizes of the gold antennas in Fig. 4.10 (a).
We set the apex of the antenna as point x = 0 nm. Because of the coarse mesh in the
simulations near the apexes of the antenna, the apex was in reality shifted, thus the max-
ima are not precisely at x = 0 nm. We can see that the largest field enhancement near
the apex of the nano-antenna is for the diameter 50 nm, which is close to the antenna
which is critically coupled (antenna of diameter 60 nm). This is in concordance with the
previous reports [94]. When looking at the value of the near-field enhancement for the
antenna of diameter 50 nm, we can assume [Eq. (4.6)] that the molecular signature would
be magnified by the factor

∣∣f ∣∣2 ≈ 105. The near-field decays with the distance from
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Figure 4.12: Figure of merit for scattering cross section signatures and contrasts in en-
hanced spectroscopies. (a) Dependence of the square of the field enhancement

∣∣f ∣∣2 (evalu-
ated at the resonance energy 7.9 µm and 30 nm from the antenna apex) on the magnitude
the antenna polarizability

∣∣αA
∣∣ for various gold antennas from Fig. 2.3 (b), for which the

dimensions are in Tab. D.2. With the blue diagonal lines, we mark values of constant
product

∣∣f ∣∣2∣∣αA
∣∣. With the red diagonal lines, we mark the constant values of the ratio∣∣f ∣∣2/∣∣αA

∣∣. With the green vertical dashed line, we mark the theoretical value of the po-
larizability of the critically coupled antenna αA,crit.

the antenna apex. When looking at the field enhancement at the point 30 nm from the
antenna apex, we can see that it is truly the largest for the antenna of diameter 80 nm,
which has the largest extinction signature.

When looking at molecular contrast, we have shown that its magnitude is proportional
to
∣∣f ∣∣2/∣∣αA

∣∣. We take the dependence of
∣∣f ∣∣ for different antennas from Fig. 4.10 and

multiply it by
∣∣f ∣∣/∣∣αA

∣∣ and plot the result in Fig. 4.11. From this, we obtain spatial
dependence of the molecular contrast for various gold nano-antennas. We can see that for
the smallest antenna with the smallest polarizability (polarizabilities with sizes are plotted
in Fig. 2.3), we obtain much better contrast near the antenna tip, as proposed previously.
When looking at the decay rate of the contrast for different distances, we recognize that
for the distance chosen previously (30 nm), the largest contrast is for antenna of diameter
50 nm, as the field decays faster for the one with diameter 20 nm. When going closer to
the apex, we can see that the smaller antennas start to have a larger contrast.

When looking at the performance of the antennas in enhanced spectroscopy exper-
iments, where we detect scattered light, we can establish similar FOMs as we did for
extinction and EELS. We again plot the values of the field enhancement squared at posi-
tion 30 nm from the antenna apex, but now we plot their dependence on the magnitude
of the antenna polarizability, which enters the scattering cross section in Eq. (2.19). The
scattering signature at the resonance frequency in Eq. (4.10) scales with

∣∣αA
∣∣ and

∣∣f ∣∣2,
thus for the largest scattering signature, a large antenna with large field enhancement
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Figure 4.13: (a) Spatial decay of the product
∣∣f ∣∣2∣∣αA

∣∣ on which the scattering signature
at resonance from Eq. (4.13) depends, plotted for various sizes of antennas, labeled with
their diameters D. Values of x mark the distance from the antenna apex. (b) Product∣∣f ∣∣2∣∣αA

∣∣ for two different positions from the antenna apex, with yellow we plot the values
near the antenna apex and with the pink the values 30 nm from the apex. With the dots,
we mark the maxima of the respective curves.

would be optimal. With the diagonal blue lines, we plot values of the constant product
of
∣∣f ∣∣2∣∣αA

∣∣, and we mark the dot corresponding to the antenna with the largest value of
this product with the blue circle. It is the second largest antenna with diameter 100 nm,
which has the largest scattering signature, as we saw in Fig. 4.2 (b). There we have also
observed, that the largest scattering signature is for a different antenna than the largest
extinction signature (antenna of diameter 80 nm). Nevertheless, the antennas are similar
in size, thus one antenna could be used for extinction experiments, where we obtain the
largest extinction signature and almost the largest scattering signature, or vice-versa.

With the red diagonal lines, we plot the constant values of the ratio
∣∣f ∣∣2/∣∣αA

∣∣, which
scales the scattering contrast at the resonance energy [see Eq. (4.23)]. The lines are similar
to the ones in Fig. 4.9, where we observed the same behavior and largest contrast for
antenna of diameter, which is the same for scattering and it is confirmed in Fig. 4.4 (b).
We also again mark the critically coupled antenna with the green circle, and with the
vertical green line, we plot the theoretical value of the polarizability magnitude. From
Figs. 4.9 and 4.12, we can assume that for obtaining the largest contrast (in this considered
system of gold antennas of cylindrical shaped tuned to the resonance 0.157 eV), we can
choose the same antenna, which is versatile in this point of view.

We can again look at the dependence of the decay rate of the scattering signature
as a function of the distance from the antenna apex. In Fig. 4.13 (a), we took the field
enhancement of Fig. 4.10 (a), squared it, and multiplied it with the antenna polarizabilities
for the respective antennas. We can see that the scattering signature is largest when the
object is placed at the apex of the antenna of 35 nm, which we also show in Fig. 4.13 (b).
When looking further away from the apex, at a distance 30 nm, where we place the object
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in the SEIRA simulations, we obtain the largest value for antenna of diameter 100 nm as
previously.

For the decay rate of the scattering contrast, we can look back to Fig. 4.11, where
even though we multiply

∣∣f ∣∣2 by Im{αA}, we can assume that the relative scaling between
antennas is same for

∣∣αA
∣∣, as the antennas are tuned or even slightly off-tuned to the energy

of the molecular resonance. Thus, the figure would be valid for scattering contrasts and
we obtain the same spatial scaling as for extinction, described previously.

With the figures of merit for gold round rod antennas tuned to the molecular resonance
of PDMS at 0.157 eV, we can easily design the best antenna for our chosen experiment
regarding its size and subsequent polarizability and field enhancement. With the spatial
dependence of field enhancement for different antennas and knowledge of the antenna
polarizability, we can also choose the best antenna for performance regarding extinction
and EELS or scattering signatures and contrasts, when assuming we place our studied
sample in different distances. On the other hand, such spatial information about the
molecular signatures or contrasts can be used for obtaining information about the field
enhancement at the point, when we know where the molecule is placed, or to find out the
sample position relative to the nano-antenna apex when we know the field enhancement
from simulations.

We now show the figures of merit for different shapes of gold nano-antennas and com-
pare their predicted enhanced-spectroscopy performance. Until now, we were considering
cylindrically-shaped antennas with hemispherical apexes. We consider antennas of el-
liptical cross section, with a constant height 100 nm, for which we change the diameter
(semi-minor axis) until we obtain the shape of a disc. Here we study the effects of the
local curvature at the end of the nano-antennas on the performance in the enhanced spec-
troscopies, as the x-dimensions are comparable. All nano-antennas are again tuned to
the resonance energy 0.157 eV, thus we also had to elongate them. The dimensions of
elliptical antennas are in Tab. D.2.

In Fig. 4.14 (a), we plot the dependence of the field enhancement squared (evaluated at
position 30 nm from the antenna apex) on the imaginary part of the antenna polarizability.
We also plot the results obtained for the gold rods from Fig. 4.9 for comparison with the
elliptical-shaped antennas. We can see that the first elliptical-shaped antenna has similar
field enhancement and polarizability as the round-rod antenna of similar dimensions.
When making the ellipsis broader, we observe a rapid decrease in the field enhancement.
The polarizability is changing for the first few elliptical antennas, but is approaching
similar value for the larger ones. This effect can be viewed as a consequence of the length
of the antenna in the x-direction, which is almost the same for the antennas (Tab. D.2).
With the same polarizability in the x-direction, we can attribute the decrease of the field
enhancement to the local curvature, where for the disk, the field is not as localized as for
the sharp end of a thinner elliptical nano-antenna.

Overall, the elliptical nano-antennas have similar values of field enhancement as the
round rods, but the ones approaching the shape of a disc are worse than even the smallest
round rod. The contrast is worse for all the elliptical antennas, as the polarizability
(and thus the extinction cross section) is larger than for the round rods, but the field
enhancement is smaller.

We can also study the performance of the dimer antennas with a gap previously
mentioned in Sec. 2.2.2. We evaluate the field enhancement in the center of the gap and
plot the dependence on the Im{αA}. For the smallest antenna, the field enhancement in
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(a) (b)

Figure 4.14: (a) Dependence of
∣∣f ∣∣2 on Im{αA} for various gold nano-antennas. With the

yellow dots, we plot the values for gold rod-like nano-antennas and with the green dots,
we plot values for elliptical nano-antennas, which are broadened up until their diameter is
the same in length resulting in a disc shape. The field enhancement is evaluated at their
resonance energy at approximately 0.157 eV and 30 nm from the antenna apex. With the
cyan color, we plot the dimer antennas, where the field enhancement is evaluated in the
center of the gap. The shape and dimension of the antennas are schematically depicted
by the insets with matching colors. With the blue and red lines, we plot the values of
constant

∣∣f ∣∣2 and the ratio
∣∣f ∣∣2/Im{αA} respectively. (b) Same as in (a), but we plot

the dependence on
∣∣αA
∣∣. The red and blue lines are constant values of

∣∣f ∣∣2∣∣αA
∣∣ and∣∣f ∣∣2/∣∣αA

∣∣ respectively. We can see that for some of the larger elliptical shape antennas,
Im{αA} 6=

∣∣αA
∣∣.

the gap is comparable with the field enhancement at the ends of gold round rods, but
for larger diameters, the field enhancement in the gap is one order of magnitude larger.
With the guiding blue horizontal and red diagonal lines, we can see that for the dimer
antennas, the model predicts larger signatures and contrasts compared to the round rod
antennas or elliptical antennas in extinction and EELS.

In Fig. 4.14 (b) we plot the dependence of the field enhancement on
∣∣αA
∣∣. We compare

the performance of the gold round rods with the elliptical antennas, for which we can see
that we again obtain similar values of contrasts and signatures, but for the larger, disc-like
nano-antennas, the field enhancement decreases rapidly, resulting in a decrease in both
signature and contrast. We can notice that the values of

∣∣αA
∣∣ differ a bit from the values

of Im{αA} as the ellipsis cross sections were very broad in energy and the resonance was
not exactly tuned to the molecular one.

We also plot the dependences of
∣∣f ∣∣2 on

∣∣αA
∣∣ for dimer antennas. The two smaller

dimer antennas predict similar values of the scattering signature, but the contrast is larger.
For the three biggest dimer antennas, the values of both scattering signature and contrast
are larger than for all of the other shapes considered.

Overall, dimer antennas seem to be the best candidates for both extinction (and EELS)
and scattering experiments of enhanced spectroscopy. Particularly the larger dimer an-
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(a) (b)

Figure 4.15: (a) Dependence of
∣∣f ∣∣2 on Im{αA} for gold nano-antennas (yellow) and hBN

antennas (magenta). We are changing the diameters of the antennas, but they match
for hBN and gold in order, to be comparable. The field enhancement is evaluated at the
resonance energy 0.18 eV and 30 nm from the antenna apex, therefore the gold antennas
are different ones than those considered in previous FOMs. We again plot the isolines
with red and blue, as in Fig. (b) Same as in (a), but we plot the dependence on

∣∣αA
∣∣.

tennas predict the largest values in both signatures and contrasts. Albeit the large ellipsis
shapes and disc nano-antennas showed poor performance, they may be, for example, uti-
lized for the case of a very weakly interacting sample, with which the whole antenna
would be covered and the field, which is very non-localized compared to the sharp tip of
the nanorod would enhance the signal from a larger volume of the sample.

We now focus on antennas tuned to the molecular resonance of CBP at approximately
0.18 eV. In Fig. 4.15 (a), we plot the values of the

∣∣f ∣∣2 for different series of gold round
rods (dimensions are in Tab. D.3). We choose different golden nano-antennas, for the
comparison of hBN nano-antennas to be fair, as they will be tuned to the same resonance
frequency and also will have the same diameter and thus the same shape of their apex.
With the same diameter we can exclude the effect of the local curvature on the field
enhancement. The major difference between these two antennas is the nature of their
resonance (plasmonic in gold and phononic in hBN) and their different length (in order
of micrometers for gold antennas and hundreds of nanometers for hBN antennas). The
dimensions of hBN antennas, which were previously dealt with in Sec. 4.3 are in Tab. D.3.
We plot the values of the field enhancement for hBN nano-antennas previously considered
in Fig. 4.7. We can immediately see, that their polarizabilities are a couple of orders of
magnitudes smaller than the gold round rods (which results in smaller cross sections, as
we showed in Fig. 2.6), but the field enhancements squared are comparable. We have the
same color legend of isolines of constant values of

∣∣f ∣∣2 and
∣∣f ∣∣2/Im{αA} as in previous

figures. With this figure of merit, we can assume that the signatures appearing in spectra
would be comparable in magnitude, albeit smaller for hBN antennas, but the contrast
would be much larger in the hBN antennas. The hBN antenna with the largest contrast
is the second smallest one, which is in concordance with Fig. 4.8. We can also recognize
that even for the gold antennas, the one with radius 20 nm has the largest contrast.
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In Fig. 4.15 (b), we plot the values of field enhancement squared as they depend on
the magnitude of the polarizability at resonance. In the scattering experiment, the larger
signature would be for gold antennas, as it scales with

∣∣αA
∣∣, but the contrast would be

again the best for hBN antennas as it scales with 1/
∣∣αA
∣∣.

With the figures of merit, we now have a comparison of antenna performances in
enhanced spectroscopies. These FOMs are general for the case of a weakly scattering
object enhanced by the near-field of nano-antenna tuned to certain resonance energy.
Thus when comparing different antennas at the same resonance frequency, the procedure
for recognizing the antenna with best performance would be the same.
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5. CONCLUSIONS AND OUTLOOK

5 Conclusions and outlook
This diploma thesis focused on the theoretical description of enhanced spectroscopy,

which utilized strong-near fields produced by resonant nanostructures in signal enhance-
ment when studying minute amounts of analytes. One of its aims was the comparison
of performance in different experiments (scattering and extinction or electron energy-loss
spectroscopy) with nano-antennas made of various sizes and materials (relatively small
hBN antennas and relatively large gold antennas) and different shapes (round-rods, el-
lipses, and dimer antennas).

The first chapter reviewed the electrodynamics and introduced relations needed for the
next derivations. With the help of the relations, we were able to perform an approximation
of a discrete charge distribution in the form of a point dipole interacting with an external
field source. Then we focused on a material response and introduced Lorentz and Drude
oscillator models for different materials, which were then used throughout the thesis.
Lastly, we introduced the concept of nano-antenna and reviewed some of its aspects and
properties.

In the second chapter, we discussed the interaction of a point dipole with external
sources of electric field. Firstly we focused on the interaction with a second nearby dipole,
after which the two dipoles formed a coupled system. This coupled-dipoles formalism is
used for modeling the response of a system consisting of a nano-antenna and a molecular
sample, used for enhanced spectroscopy experiments. Under the assumption of a weakly
interacting sample that is either small or weakly polarizable (which coincides with the
studied molecular sample in enhanced spectroscopy), we expanded the electric field ra-
diated from the coupled dipoles into an infinite series consisting of multiple scattering
events between the nano-antenna and the molecular sample. Then we moved back to the
description of just one dipole, which is induced by a plane electromagnetic wave. We
defined the optical cross sections and then showed the results of numerical calculations of
various nano-antennas. We showed how the cross sections depend on the antenna polariz-
ability, into which is projected its material and shape, Next, we briefly reviewed electron
energy-loss spectroscopy, showed how we can analytically express the field of a relativistic
electron, and introduced the analytical expression for the loss probability. We then ex-
pressed the probability that an electron would lose energy towards inducing a dipole. We
also pointed out the fact that the relations are similar for EELS and extinction. Then we
again showed results of numerical computations, where we compared the polarizabilities
obtained by either the dipole expansion in EELS with the dipole expansion by a plane
wave illumination. Lastly, we presented numerically calculated EEL spectra and discussed
the validity of the dipole expansion with the distance of the electron beam.

In the third chapter, we reviewed infrared vibrational spectroscopy methods, with the
main focus on enhanced absorption spectroscopy studying small amounts of analytes.
We discussed previous results obtained in the field of resonant surface-enhanced infrared
absorption (SEIRA) where the plane wave illumination is considered and then focused
on the recently emerged possibility of studying vibrational samples within a transmission
electron microscope in electron energy-loss spectroscopy. Similarly to the light-base spec-
troscopies, even the EELS suffers from a subsequent loss of a signal when studying small
samples, thus field-enhanced EELS was proposed.

In chapter four, we introduced the analytical model for explaining SEIRA signatures
for a weakly interacting sample, previously derived in Ref. [11]. This model assumes that
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the signatures are based on interference between the incident illumination (in extinction)
and the field scattered directly by the antenna (in scattering) with one of the terms of
the infinite series of scattering events. This one term encompasses the double scattering
event between the antenna and sample. We showed a comparison of the numerical results
of signatures in optical cross sections and compared them with the analytical model and
achieved a very good match. Then we focused on relative contrasts in the cross sections
and the explanation of the flip in absorption cross section signatures sign. We showed
that there are two contributions to the total absorption signature and its total value is
given by the interplay between the field-enhanced object absorption and the change in
the antenna absorption given by the interaction with the object. Then, we applied the
approximative formalism to the field-enhanced electron energy loss spectroscopy and we
compared the results with the results obtained from numerical calculations, where we also
compared molecular signatures in EELS and extinction. We showed that the scaling is
similar and when considering the loss probability and extinction cross section contrasts,
we obtained the same values. The last part was dedicated to establishing figures of merit
(FOMs) based on the theoretical model, where we studied the performance of various
nano-antennas with respect to their polarizabilities and near-field distribution. With
these FOMs, we were able to resolve the enhancement of the signal in different scenarios
of experiments (scattering or extinction and EELS) for various nano-antennas.

In this last section, we focus on a future outlook, where we discuss some aspects that
were not considered and studied in this thesis.

Firstly, we considered a system of nano-antenna and weakly polarizable object, but the
case of a strongly polarizable object, resulting in the strong coupling of the system, could
also be studied. With the model, we considered a simple case where all the polarizations
were in one direction and we considered the molecular sample to be a small sphere. Other
steps could be considering a molecular layer and modeling its polarizability analytically
via the core-shell model.

An interesting system to study, considering the results of FOMs, would be hBN dimer
antennas, which would provide relatively large contrast, similar to the hBN nanorods,
but also large field enhancement as the gold dimers. For the dimers, the proper modeling
of the polarizability (by two coupled dipoles and not just one effective dipole) could be
done, and the effects of different shapes of the antennas forming the dimer and the gap
shape could also be an interesting topic of study.

For the electron-based spectroscopies, cathodoluminescence could a promising candi-
date for studying samples. It should be possible to model cathodoluminescence similarly
to the scattering cross section. Infrared cathodoluminescence is not very common, but
the results of the theoretical model are not bound just to the infrared region but different
(e.g. excitonic) samples could be studied. In EELS, the feasibility of exciting higher-order
modes within the nano-antenna could also be interesting. In EELS, we did not provide
results for gold antennas, where the effects of a dipole approximation would not be neg-
ligible, as the field would not be homogenous within the nano-antenna as for a relatively
small hBN antenna. Some effective position of the distorted dipole would then need to
be established.
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A. FOURIER TRANSFORM

A Fourier transform
A.1 General Fourier transform
The Fourier transform is an integral transform used for the decomposition of a function
into the basis of sinusoidal functions. In many fields, e.g. in crystallography, mathematics,
or electrotechnics, different conventions are used. We adapt formalism from Ref. [96]. The
Fourier transform of a function that is dependent on three space coordinates r = (x, y, z)
and time t, can be written as

FT
{
f(r, t)

}
= F(k, ω) =

˘
f(r, t)e−i(k·r−ωt)d3rdt, (A.1)

and the inverse Fourier transform of a function dependent on Fourier coordinates k =
(kx, ky, kz) and ω is

FT−1{F(k, ω)}= f(r, t) = 1

(2π)4

˘
F(k, ω)ei(k·r−ωt)d3kdω. (A.2)

Relations can be also written for the Fourier transform for derivatives

FT

{
∂f(r, t)

∂t

}
= −iωFT

{
f(r, t)

}
, (A.3)

FT

{
∂f(r, t)
∂xi

}
= ikiFT

{
f(r, t)

}
. (A.4)

When considering two real functions of time, we can obtain so-called Rayleigh-Parseval
theorem which reads [97]

ˆ
f1(t)f2(t)dt =

ˆ
F1(ω)F

∗
2 (ω)dω =

ˆ
Re
{
F1(ω)F

∗
2 (ω)

}
dω. (A.5)

A.2 Fourier transform of electromagnetic fields
By employing the Fourier transform, we can transform Maxwell equations [Eqs. (1.2-1.3)
and (1.7-1.8)] to the Fourier space. In the absence of sources, the equations read

ε0εrk · E(k, ω) = 0, (A.6)
k · B(k, ω) = 0, (A.7)

k× E(k, ω) = ωB(k, ω), (A.8)
k× B(k, ω) = −ε0εrµ0µrωE(k, ω). (A.9)
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B. GREEN’S FUNCTION

B Green’s function
B.1 Green’s function of general differential equation
Let us consider an ordinary linear differential equation with a differential operator O(r)
acting on a function f(r). We suppose that the differential equation is inhomogeneous
with a source term Q(r),

O(r)f(r) = −Q(r). (B.1)

We introduce the Green’s function of this differential equation as a response to the impact
of a point source.

O(r)G(r, r′) = −δ(r− r′), (B.2)

where δ(r− r′) is the Dirac’s delta function1. With the help of Green’s function, we can
immediately assume the solution of this differential equation in the form

f(r) =
ˆ

G(r, r′)Q(r′)dV ′. (B.3)

If we plug this solution back into our differential equation, we show that it is indeed
fulfilled.

O(r)
ˆ

G(r, r′)Q(r′)dV ′ = −
ˆ

δ(r− r′)Q(r′)dV ′ = −Q(r). (B.4)

B.2 Green’s function of the Helmholtz equation
The Helmholtz equation is widespread in many fields. In its homogeneous form, it can
be viewed as a solution of eigenvalues k for the Laplace operator ∇2. We consider an
inhomogeneous case with the source term on the right side Q(r)

(∇2 + k2)f(r) = −Q(r). (B.5)

According to Eq. (B.2), the solution of this equation for a point source located in r = r′
is

(∇2 + k2)G(r, r′) = −δ(r− r′). (B.6)

If we assume unbound and homogeneous space, the Green’s function can only depend on
the distance R =

∣∣r− r′
∣∣. We then rewrite G(r, r′) = g(R). By transforming the previous

equation to the spherical coordinates and realizing that the function depends only on R,
we get (for R 6= 0) (

1

R

∂2

∂R2R + k2
)
g
(
R
)
= 0. (B.7)

1Dirac’s delta function is a distribution defined as δ(r− r′) =
{
∞, if r = r′.
0, otherwise.
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The general solution of this equation is in the form

g
(
R
)
= C

eikR

R
+D

e−ikR

R
. (B.8)

We choose only the solution that depends on eikR, as we suppose that k > 0 and we
want a diverging wave. After integration of the Green’s function over a sphere with an
infinitesimal volume and applying the divergence theorem, we get a value of parameter
C = 1/4π.

The Green’s function of the Helmholtz equation then reads

G(r, r′) = eikR

4πR
. (B.9)

.
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C. NUMERICAL SIMULATIONS

C Numerical simulations
C.1 Finite-difference time-domain method
For part of the calculations of the interaction of nanostructures with plane electromag-
netic wave in this thesis, commercial software based on the finite-difference time-domain
(FDTD) method, Ansys Lumerical FDTD (Ansys, Inc) was used. As the name states, the
finite-difference method is used to solve partial differential equations by substituting the
derivatives with finite differences. FDTD Lumerical is based on the time domain solution
of Maxwell’s equations, employing temporal and spatial discretization of the problem [98].
The considered system is divided into discrete rectangular cells, often called Yee cells,
named after one of the authors of the FDTD algorithm [99]. For more information about
the FDTD computational scheme and all the possibilities of simulations, we refer the
reader to the Lumerical Learning Center [100].

For simulating the electromagnetic illumination we positioned our nanostructure inside
the total-field scattered-field (TFSF) source, which illuminates its insides with a plane
wave. This source divides the simulation domain into two regions: (1) Total field region,
which is located inside the surface of the source, where is both the incident field and the
field scattered from the structure, and (2) Scattered field region, where only the scattered
field is included. For obtaining absorption cross section, we placed a monitor inside the
TFSF source, so it would record inward flowing power from the source and outward flowing
power, which is reduced by the absorbed power. From this monitor, we are able to obtain
absorption cross section σabs. We placed a second monitor outside the TFSF source,
where the outward flowing power is given just by the scattered field. This monitor grants
us the scattering cross section σsca. We show the simulation layout in Fig. C.1 (a). We
assumed x-polarization of the incident field, which is propagating in the z-direction and
a broadband IR source (wavelength from 5 µm to 11.2 µm). We exploited the symmetries
of the simulation and by imposing boundary conditions (symmetric in the y-direction
and anti-symmetric in the x-direction), we reduced the simulation volume by a factor of
4. We did not consider any substrate, the surrounding medium was assumed to be air
ε = 1. For evaluating quantities needed for evaluating the SEIRA model, we followed
the approach from Ref. [11] and did four types of simulations, which we will now detail.
First, we performed a simulation of a nano-antenna without any surrounding objects. We
placed the power-absorbed (PA) monitor inside the TFSF source. The monitor records
the distribution of the electromagnetic field and the refractive index in each mesh cell. We
show the simulation layout in Fig. C.1 (b). With these quantities, we were able to obtain
the dipole moment of the nano-antenna, following the approach from Ref. [101]. Within
this approach, evaluation of the exact multipole moments was implemented into Matlab
code. We assumed just the dipole contribution, the dipole moment can be expressed
using Eq. (2.34). The integration is performed over the volume of the antenna V . The
induced current density was calculated from Eq. (2.35), for which the electric field and
relative permittivity were obtained from the PA monitor. The integration could have been
performed, as the induced currents are zero everywhere outside the antenna, thus the only
contribution to the dipole moment comes within the volume of the antenna. With the
dipole moment, we can substitute the response of the antenna with the response of a point
dipole. We label this simulation as NP (from “no particle”).
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(a) (b)

Absorption monitor Scattering monitor

TFSF source

Power-absorbed monitor

TFSF source

Figure C.1: (a) Simulation layout used for calculating absorption and scattering cross
sections. The nanostructure is illuminated by a plane wave, which is polarized along the
x-axis and propagates in the z-axis. The source of the plane wave is the total-field scatter-
field (TFSF) source (yellow). The absorption monitor (blue) is placed inside the source
to record dissipated power. The scattering monitor (red) is placed outside the source
to record radiated power. (b) Simulation layout used for monitoring the distribution of
electromagnetic field and refractive index. The nanostructure is again illuminated by the
TFSF source. Inside the source, we place a power-absorbed monitor, which records the
distribution of the refractive index and electromagnetic fields.

A second simulation was done to obtain the polarizability of the antenna. We per-
formed a simulation of an empty domain with just the source and obtained the incident
field at the center of the antenna, where the point dipole is situated. The polarizability
was then obtained from Eq. (1.37).

Third and fourth simulations were performed to calculate the response of the antenna
and object. As we are using the mirror symmetry, we assume two spherical objects
situated at the apexes of the antenna. The center of the objects is situated 30 nm from
the tip of the antenna. In the third simulation, we considered objects to be absorbing,
characterized by the Lorentz model dielectric function (1.44). From this simulation, we
obtained cross-sections of the antenna-object system accounting for the response of the
antenna resonance and connected molecular signature in the spectrum. We label this
simulation as RES (from “resonant object”).

Extracting the molecular feature from the spectra is not as straightforward as it may
seem. As we show in Sec. 4.1, because of the redshift introduced by the background per-
mittivity of the molecular sample, after subtracting NP simulation from RES simulation,
we obtain distorted lineshape [Fig. 4.1 (b)]. In Ref. [4], a smoothing algorithm was used
to obtain the plasmonic peak, which can then be subtracted from the RES simulation to
obtain baselined molecular features.

We performed a fourth simulation, where we again considered the spherical objects
but instead of characterizing them with a resonant dielectric function, we characterized
the objects just by the background permittivity of the object εO

∞ from the Lorentz model.
Because of this background, the antenna resonance is red-shifted and we can subtract it
from the absorbing NP simulation to obtain SEIRA spectra. In Fig. 4.1 (b), we show that
the lineshape is less distorted than after subtraction of NP simulation and the molecular
feature in the form of a dip is very pronounced. We label this simulation as BG (from
“background”).
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The polarizability of a small nanosphere, approximating the molecules could be ob-
tained similarly as the antenna polarizability. As we are considering a sphere with a
radius of 10 nm and we are studying the response in the infrared region, we approximate
the polarizability by the formula for quasistatic polarizability of a small sphere in the
form

α = 4πε0εma
3 εr − εr,m

εr + 2εr,m
, (C.1)

where a is the sphere radius, εr,m is the dielectric function of the surrounding medium
and εr is the dielectric function of the sphere material. For a sphere, it is isotropic, so the
polarizability tensor is diagonal with identical components.

C.2 Finite element method

C.2.1 Plane-wave illumination simulations
Finite-element method (FEM) based software Comsol Multiphysics [102] is another
possibility for studying the interaction of electromagnetic fields with more complex ge-
ometries. FEM is a widely used method for solving differential equations numerically. It
takes advantage of dividing the system into small finite-sized elements (mesh). Several
comparative studies based on simulation time, accuracy, convergence, and computational
demandingness were carried out, showing the pros and cons of FEM and FDTD [103,
104]. One main disadvantage of FDTD is its rectangular mesh, which coarsely describes
curved geometries. In comparison, in Comsol, there is a possibility for different mesh-cell
shapes.

Similarly to FDTD, plane-wave illumination of a structure can be implemented in
Comsol. By recording power flow across boundaries, the scattered power can be com-
puted. Absorption can be obtained by integrating the dissipated power within the struc-
ture. In this section, we describe the simulations of a plane-wave illumination implemented
in Comsol.

We use the Radio Frequency Toolbox implemented in Comsol. We assume a
box-shaped simulation domain. It has to be large enough (at least half a wavelength)
for electromagnetic fields. The medium is assumed to be the vacuum, ε = 1; we do
not account for the presence of the substrate, although it is mandatory to support the
nanostructures in the transmission experiment.

The whole simulation domain is enclosed by swept layers ( we typically use five of
them), on which are imposed Perfectly-Matched Layer (PML) boundary condi-
tions. PMLs, sometimes called sponge layers, are used to mimic an open simulation
domain, where there are no reflections from the borders. In the frequency domain, PMLs
transform coordinates into complex-valued ones. This transformation makes waves flowing
such domains absorbed and fully attenuated at the last layer, thus forbidding reflections.

The whole simulation is divided into discrete mesh elements, which are shaped as
tetrahedrons, using Free tetrahedral. The size of the mesh elements should be, for a
typical electromagnetic simulation, about one-tenth of the wavelength considered. Finer
mesh refinement needs to be defined around regions, where large or rapidly-changing
electromagnetic fields are expected. In our considered simulations, the refinement is
typically needed in the vicinity of the nano-antenna and the electron beam. As the real
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Object

Vacuum

Plane 
wave

PML

(a)
(b)

Figure C.2: (a) Simulation layout in Comsol. An object is placed inside the simulation
domain filled with the vacuum. The source of the electromagnetic field is a plane wave, and
the whole simulation is enclosed within boundaries onto which Perfectly-Matched
Layer boundary conditions are imposed. (b) Mesh of the simulation. The object has
finer mesh, as we expect greater and fast-changing fields nearby it. The PMLs are swept
with five layers.

phenomena do not depend on any artificial mesh, we need to perform convergence tests
with respect to the size of the simulation domain and refinement of the mesh elements,
until the computed values converge. The simulation layout is depicted in Fig. C.2.

In Comsol following equation in Electromagnetic waves interface is solved to
obtain distribution of the complex, frequency-dependent electric field E

1

µr
∇× (∇× E)− k2

0εrE = 0, (C.2)

where µr is relative permeability, εr the dielectric function, k0 is the free-space wavenumber
and ω angular frequency.

We define the incoming electromagnetic wave as a Background field in the form
of a wave, polarized in x-direction and propagating in z-direction as

E = E0e−ikz, (C.3)

and we chose the amplitude |E0| = 1.
The scattering cross section is defined by Eq. (2.14)

σsca =
1

〈Sinc〉

˛
∂Ω

〈Ssca〉 · r̂dΩ, (C.4)

where for the time-averaged Poynting vector 〈Ssca〉 we plug the power flow computed in
Comsol, and 〈Sinc〉 = E2

0/2
√

ε0/µ0 is the time-averaged Poynting vector of the incoming
field. The integration is performed over the boundary between vacuum and PMLs.

The absorption cross section is defined with the help of the dissipated power of
Eq. (1.17)

σabs =
1

〈Sinc〉

ˆ
Ω

Qhd3r, (C.5)

where Qh is the total power dissipation density computed in Comsol. The integration is
performed over the volume of the considered structure.
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C.2.2 EELS simulations
For a straightforward implementation of the interaction between a structure and a field
of a focused beam of swift electrons, Comsol is typically used, nevertheless it can be
calculated using FDTD too [105]. We follow the Comsol simulation procedure, which
uses the classical dielectric formalism for simulating the STEM-EELS experiment with a
focused electron beam as reported in previous studies [18, 55, 106, 107].

The electron beam is defined with the node Edge Current, which describes a line
electric current. We express the current produced by an electron as

I = I0eiωz/v, (C.6)

where I0 is the current amplitude, z is the electron trajectory and v electron velocity.
With the definition of the electron trajectory as a 1D straight line, we assume a non-recoil
approximation, where the electron’s trajectory is not deviated by the interaction with the
nanostructure. This assumption is very precise for high-energy electrons interacting with
optical near fields. We also assume a perfectly focused beam, as the edge current flows
through 1D Polygon.

Within the solution of Eq. (C.2), we can calculate the electric field of the bare elec-
tron beam. For such calculation, we position the beam at xb=400 nm from the origin
rprobe = (0, 0, 0). In the origin, we situate Domain Point Probe, which will enable us
to monitor the electric field at the point. To achieve reasonable results, we also put a
so-called refined domain, for the mesh to be more fine. We can then directly compare
the analytically obtained electric field [Eqs. (2.23) and (2.24)] with this numerically cal-
culated field, multiplied by the elementary charge e, which we show in Fig. C.3 (c). The
numerically calculated field bears a small imaginary part, which is most likely due to
numerical error. We can see that the relative error is about 3% in Fig. C.3 (d).

With the computed electric field, we can compute the loss probability by the Edge
Probe monitor with the formula

ΓEELS(ω) =
e

πh̄ω

ˆ zmax

zmin

Re
{
Eind

z (xb, yb, z, ω)e−iωz/v
}

dz, (C.7)

where (xb, yb) is the beam position in the xy-plane. We integrate over the electron trajec-
tory z =(zmin,zmax), which extends over the whole simulation domain. For obtaining loss
probability in eV−1, we need to normalize the loss probability ΓEELS by the factor e2/I0h̄.

For the simulations, we used an accelerating voltage of 120 keV (the corresponding
electron speed is 58.7% of the speed of light, more typical values are specified in Tab. D.1).
For the definition of the electromagnetic response of the material, we use the dielectric
function εr. We can define it analytically via the Lorentz [Eq. (1.44)] or the Drude model
[Eq. (1.45)] or import tabulated data. Relative permeability µr is considered to be 1.

All simulations had to be performed twice. First, with the structure defined with its
dielectric function, we computed the total field, summing the field of the electron beam
and also the induced field. The second simulation that needed to be carried out is with
εr = 1 everywhere. Both simulations had to have the same mesh and other specifications.
By subtracting the second simulation from the first one we obtain the loss probability.

Lastly, we show relative errors between spectra obtained either from Eq. (C.7) with the
one calculated using the model of the loss probability for an induced dipole in Eq. (2.38)
as we discuss in Sec. 2.3.3.
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C.2. FINITE ELEMENT METHOD

BeamVacuum

PML

Object
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Figure C.3: (a) Geometrical arrangement of EELS simulation in Comsol. (b) Simulation
is discretized into mesh elements, the size of the elements needs to be reduced in the region
of large and rapidly changing fields, in this case around the nanostructure and in the
vicinity of the electron beam. (c) Comparison of the components of the electric field of a
beam of fast electron evaluated 500 nm from the beam. We compare it with the analytical
model from Eqs. (2.23) and (2.24) d) Relative error of the electric field components from
(c). (e) Relative errors between the loss probabilities are obtained by either integration of
the induced field or by the dipole model. (f) Relative errors between the loss probability
maxima for different impact parameters b are obtained by either integration of the induced
field or by the dipole model.
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D. TABLES

D Tables
Table D.1: Electron energies and their relativistic velocities (in fraction of the speed of
light).

Electron energy / keV Electron velocity / c
60 0.446
100 0.548
120 0.587
300 0.777

L L L

D DD

(a) (b) (c)

Figure D.1: Schematical depictions of nano-antennas considered in tables, with the labels
of their dimensions. (a) Cylindrically shaped nano-antenna with hemispherical apexes,
referred to as round-rod. (b) Flat nano-antenna of height 100 nm with elliptical cross
section. (c) Dimer antenna consisting of two rods, the size of the gap is 70 nm

Table D.2: Dimensions of different shapes of gold antennas tuned to resonance energy at
approximately 0.157 eV. The dimensions legends are schematically depicted in Fig. D.1.

Round-rod Ellipse Dimer
D / nm L / nm D / nm L / nm D / nm L / nm

20 1820 100 3300 20 1760
30 2330 200 3400 40 2420
40 2640 300 3500 60 2680
50 2820 600 3600 80 2790
60 2970 1200 3600 100 2815
70 3050 2000 3600
80 3120 3000 3600
100 3190 3600 3600
120 3250

Table D.3: Dimensions of round-rod gold and hBN nano-antennas tuned to resonance
energy at approximately 0.18 eV. The dimensions legend is in Fig. D.1 (a)

Gold hBN
Radius Length Radius Length

20 1580 20 60
40 2270 40 120
60 2560 60 180
80 2680 80 239
100 2740 100 295
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List of abbreviations
AE Auger electron

BG background

CBP 4,4-bis(N-carbazolyl)-1,1-biphenyl

CL cathodoluminescence

EELS electron energy-loss spectroscopy

FDTD finite-difference time-domain method

FEELS field-enhanced electron energy-loss spectroscopy

FEM finite element method

FF far field

FOM figure of merit

FTIR Fourier-transformed infrared spectroscopy

FWHM full width at half maximum

HAMR heat-assisted magnetic recording

hBN hexagonal boron nitride

IR infrared

LSP localized surface plasmon

MENP multipole expansion for nanophotonics

NF near field

NP no particle

PDMS polydimethylsiloxane

PMMA poly(methyl methacrylate)

RES resonance

RF radio frequency

SARS-CoV-2 strain of coronavirus, which causes COVID-19 illness

SE secondary electron

SEF surface-enhanced fluorescence

SEIRA surface-enhanced infrared absorption
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SERS surface-enhanced Raman spectroscopy

SNOM scanning near-field optical microscopy

SPP surface plasmon polariton

s-SNOM scattering-type scanning near-field optical microscopy

STEM scanning transmission electron microscope

TEM transmission electron microscope

TFSF total-field scattered-field

ZLP zero-loss peak
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